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Abstract

In high-dimensional data, structured noise caused by observed and unobserved factors af-
fecting multiple target variables simultaneously, imposes a serious challenge for modeling,
by masking the often weak signal. Therefore, (1) explaining away the structured noise
in multiple-output regression is of paramount importance. Additionally, (2) assumptions
about the correlation structure of the regression weights are needed. We note that both
can be formulated in a natural way in a latent variable model, in which both the interesting
signal and the noise are mediated through the same latent factors. Under this assumption,
the signal model then borrows strength from the noise model by encouraging similar ef-
fects on correlated targets. We introduce a hyperparameter for the latent signal-to-noise
ratio which turns out to be important for modelling weak signals, and an ordered infinite-
dimensional shrinkage prior that resolves the rotational unidentifiability in reduced-rank
regression models. Simulations and prediction experiments with metabolite, gene expres-
sion, FMRI measurement, and macroeconomic time series data show that our model equals
or exceeds the state-of-the-art performance and, in particular, outperforms the standard
approach of assuming independent noise and signal models.

Keywords: Bayesian reduced-rank regression, latent variable models, latent signal-to-
noise ratio, multiple-output regression, nonparametric Bayes, shrinkage priors, structured
noise, weak effects

1. Introduction

Explaining away structured noise is one of the cornerstones for successful modeling of high-
dimensional output data in the regression framework (Fusi et al., 2012; Klami et al., 2013;
Rai et al., 2012; Rakitsch et al., 2013; Stegle et al., 2012; Virtanen et al., 2011). The
structured noise refers to dependencies between response variables, which are unrelated to
the dependencies of interest between the response variables and the covariates. It is noise
caused by observed and unobserved confounders that affect multiple variables simultane-
ously. Common observed confounders in medical and biological data include age and sex
of an individual, whereas unobserved confounders include, for example, the state of the cell
being measured, measurement artifacts influencing multiple probes, or other unrecorded ex-
perimental conditions. When not accounted for, structured noise may both hide interesting
relationships and result in spurious findings (Leek and Storey, 2007; Kang et al., 2008).

The effects of known confounders can be removed straightforwardly by using supervised
methods. For the unobserved confounders, a routinely used approach for explaining away
structured noise has been to assume a priori independent effects for the interesting and
uninteresting factors. For example, in the factor regression setup (West, 2003; Stegle et al.,
2010; Fusi et al., 2012), the target variables Y are assumed to have been generated as

Y = XΘ +HΛ + E, (1)

where YN×K is the matrix of K target variables (or dependent variables) and XN×P contains
the covariates (or independent variables), for the N observations. The model parameter
matrix HN×S2 comprises the unknown latent factors and ΛS2×K the factor loadings, which
are used to model away the structured noise. The term EN×K represents independent un-
structured noise and the elements of E are independently distributed, vec(E) ∼ N (0, INK).
In this paper we call this model independent-noise BRRR. To reduce the effective num-
ber of parameters in the regression coefficient matrix ΘP×K , a low-rank structure may be
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Figure 1: Illustration of (a) a priori independent interesting and uninteresting effects and
(b) the latent noise assumption. Latent noise is mediated to the target variable
measurements through a common subspace with the interesting effects.

assumed:
Θ = Ψ Γ, (2)

where the rank S1 of parameters ΨP×S1 and ΓS1×K is substantially lower than the number
of target variables K and covariates P . The low-rank decomposition of the regression
coefficient matrix (2) may be given an interpretation whereby the covariates X affect S1

latent components with coefficients specified in Ψ, and the components, in turn, affect
the target Y with coefficients Γ. Another line of work in multiple output prediction has
focused on borrowing information from the correlation structure of the target variables when
learning the regression model. The intuition stems from the observation that correlated
targets are often seen to be affected similarly by the covariates, for example in genetic
applications (see, e.g., Davis et al., 2014; Inouye et al., 2012). One popular method, GFlasso
(Kim et al., 2009), learns the regression coefficients using

Θ̂ = argmin
∑
k

(yk −Xθk)T (yk −Xθk)+

λ
∑
j

∑
k

|θjk|+ γ
∑

(m,l)∈E

r2
ml

∑
j

|θjm − sign(rml)θjl|, (3)

where the θk are the columns of Θ̂. Two regularization parameters are introduced: λ
represents the standard Lasso penalty, and γ encourages the effects θjm and θjl of the jth
covariate on correlated outputs m and l to be similar. Here rml represents the correlation
between the mth and lth phenotypes. The E is an a priori specified correlation graph for
the output variables, with edges representing correlations to be accounted for in the model.

In this paper we propose a model that simultaneously learns the structured noise and
encourages the sharing of information between the noise and the regression models. To
motivate the new model, we note that by assuming independent prior distributions on Γ
and Λ in model (1), one implicitly assumes independence of the interesting and uninterest-
ing effects, caused by covariates X and unknown factors H, respectively (Fig. 1a). The
assumption is appealing for example when explaining away batch effects (Fusi et al., 2012)

3



Gillberg et al.

in high-dimensional data, but may be inadequate in the presence of other types of noise
in molecular biology, where gene expression and metabolomics measurements record con-
centrations of compounds generated by ongoing latent biological processes. In this kind
of situations, a limited set of covariates, such as single nucleotide polymorphisms (SNPs),
determines the activity of the latent process only partially and all other activity of the
process is due to unrecorded factors. In such cases, the noise affects the measurement
levels through the very same process as the interesting signal (Fig. 1b), and rather than
assuming independence of the effects, an assumption about parallel effects would be more
appropriate. We refer to this type of noise as latent noise as it can be considered to affect
the same latent subspace as the interesting effects. We note that in practice both types of
structured noise are likely to be present. In this work, our main focus is on the latent noise,
but we also present a comparison with a model that includes both types of structured noise
simultaneously.

A natural way to encode the assumption of latent noise is to use the following model
structure:

Y = (XΨ + Ω) Γ + E, (4)

where the ΩN×S1 is a matrix consisting of unknown latent factors. In (4), Γ mediates the
effects of both the interesting and uninteresting signals on the target variables. We note
that the change required in the model structure is small, and has in fact been presented
earlier (Bo and Sminchisescu 2009; recently extended with an Indian Buffet Process prior
on the latent space by Bargi et al. 2014). We now proceed to using the structure (4) for
GFlasso-type sharing of information (3) between the regression and noise models while
simultaneously explaining away structured noise. To see that the information sharing be-
tween noise and regression models follows immediately from model (4), one can consider
simulations generated from the model. The a priori independence assumption of model (1)
results in uncorrelated regression weights regardless of the correlations between target vari-
ables (Figure 2a). The assumption of latent noise (4), however, encourages the regression
weights to be correlated in a similar way as the target variables are (Figure 2c).

In this work, we focus on modelling weak signals in high-dimensional data with struc-
tured noise, where we consider effects that explain a tiny portion, say < 1%, of the variance
of the target variables as weak. We have hypothesized above that a model with the structure
(4) might be particularly well-suited for this purpose. Additionally, (i) particular emphasis
must be put on defining adequate prior distributions to distinguish the weak effects from
noise as effectively as possible, and (ii) scalability to large sample size is needed in order to
have any chance of learning the weak effects. For (i), we define latent signal-to-noise ratio
β as a generalization of the standard signal-to-noise ratio in the latent space:

β =
Trace(Var(X Ψ))

Trace(Var(Ω))
, (5)

We use the latent signal-to-noise ratio as a hyperparameter in our model, and show that
it is a key parameter affecting model performance. It can be either learned or set using
prior knowledge. In addition, we introduce an ordered infinite-dimensional shrinkage prior
that resolves the inherent rotational ambiguity in the model (4), by sorting both signal and
noise components by their importance. Finally, we present efficient inference methods for
the model.
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Figure 2: Conditional distribution of the correlation between regression coefficients, given
the correlation between the corresponding target variables. In (a) the model (1)
assumes a priori independent regression and noise models, and in (c) the model
(4) makes the latent noise assumption. (b) A mixture of the models in a and c.
The data were generated using equation (18), as described in Section 5.3, and α
denotes the relative proportion of latent noise in data generation. The dashed
lines denote the 95% confidence intervals of the conditional distributions.

2. Related work

Simultaneously solving multiple real-valued prediction tasks with the same set of covariates
is called multiple-output regression (Breiman and Friedman, 1997); and more generally
sharing of statistical strength between related tasks is called multitask learning (Baxter,
1996; Caruana, 1997). The data consist of N input-output pairs (xn,yn)n=1,...,N ; the P -
dimensional input vectors x (covariates) are used for predicting K-dimensional vectors y of
target variables. The common approach to dealing with structured noise due to unobserved
confounders is to apply factor regression modeling (1) (West, 2003) and to explain away
the structured noise using a noise model that is assumed to be a priori independent of the
regression model (Stegle et al., 2010; Fusi et al., 2012; Rai et al., 2012; Virtanen et al.,
2011; Klami et al., 2013; Rakitsch et al., 2013). A recent Bayesian reduced-rank regression
(BRRR) model (Marttinen et al., 2014) implements the routine assumption of the indepen-
dence of the regression and noise models; we will include it in the comparison studies of
this paper.

Methods for multiple-output regression without the structured noise model have been
proposed in other fields. In the application fields of genomic selection and multi-trait
quantitative trait loci mapping, solutions (Yi and Banerjee, 2009; Xu et al., 2009; Calus
and Veerkamp, 2011; Stephens, 2013) for low-dimensional target variable vectors (K < 10)
have been proposed, but these methods do not scale up to the currently emerging needs
of analyzing higher-dimensional target variable data. Additionally, sparse multiple-output
regression models have been proposed for prediction of phenotypes from genomic data (Kim
et al., 2009; Sohn and Kim, 2012).

Many methods for multi-task learning have been proposed in the field of kernel methods
(Evgeniou and Pontil, 2007). These methods do not, however, scale up to data sets with

5



Gillberg et al.

several thousands of samples, required for predicting the weak effects. Other relevant work
include a recent method based on the BRRR presented by Foygel et al. (2012), but it does
not scale to the dimensionalities of our experiments either. Methods for high-dimensional
phenotypes have been proposed in the field of expression quantitative trait loci mapping
(Bottolo et al., 2011) for the related task of finding associations (and avoiding false positives)
rather than prediction, which is our main focus. Also functional assumptions (Wang et al.,
2012) have been used to constrain related learning problems.

3. Model

In this Section, we present the details of our new model, Bayesian reduced rank regression
with latent noise (latent-noise BRRR), show how the hyperparameters can be set using
the latent signal-to-noise ratio, and analyze theoretically some properties of the infinite-
dimensional shrinkage prior.

3.1 Model details: latent-noise BRRR

Our model is given by

Y = (XΨ + Ω)Γ + E, (6)

where YN×K contains the K-dimensional response variables for N observations, and XN×P
contains the predictor variables. The product Θ = ΨΓ, of ΨP×S1 and ΓS1×K , results in
a regression coefficient matrix with rank S1. The ΩN×S1 contains unknown latent factors
representing the latent noise. Finally, EN×K = [e1, . . . , eN ]T , with ei ∼ N(0,Σ), where Σ =
diag(σ2

1, . . . , σ
2
K) is a matrix of uncorrelated target variable-specific noise vectors. Figure 3

displays graphically the structure of the model. In the figure, the node corresponding to the
parameter Γ that is shared by the regression and noise models is highlighted with green.

Similarly to a recent BRRR model (Marttinen et al., 2014) and the Bayesian infinite
sparse factor analysis model (Bhattacharya and Dunson, 2011), we assume the number
of components S1 connecting the covariates to the targets to be infinite. Accordingly, the
number of rows in the weight matrix Γ, and the numbers of columns in Ψ and Ω, are infinite.
The low-rank nature of the model is enforced by shrinking the columns of Ψ and rows of Γ
and Ω increasingly with the growing column/row index, such that only a small number of
columns/rows are influential in practice. The increasing shrinkage also solves any rotational
unidentifiability issues by enforcing the model to mediate the strongest effects through the
first columns/rows. In Section 3.4 we explore the basic properties of the infinite-dimensional
prior, to ensure its soundness. The hierarchical priors for the projection weight matrix Γ,
where Γ = [γhj ], are set as follows:

γhj |φΓ
hj , τh ∼ N

(
0,
(
φΓ
hjτh

)−1
)
, φΓ

hj ∼ Ga(ν/2, ν/2),

τh =

h∏
l=1

δl, δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2. (7)

Here τh is a global shrinkage parameter for the hth row of Γ and the φΓ
hjs are local shrinkage

parameters for the individual elements of Γ, to provide additional flexibility over the global
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Figure 3: Graphical representation of latent-noise BRRR. The observed data are denoted by
black circles, variables related to the reduced-rank regression part of the model by
white circles, variables related only to the noise model are denoted by gray circles,
and variables related to both the regression and the structured noise model are
denoted with green circles. The matrix ΦΓ

S1×K comprises the sparsity parameters
for the K target variables for the components.

shrinkage priors. The same parameters τh are used to shrink the columns of the matrices
Ψ = [ψjh] and Ω = [ωjh], because the scales of Γ and Ψ (or Ω) are not identifiable separately:

ψjh|τh ∼ N
(

0, (τh)−1
)
, and ωjh|τh ∼ N

(
0, σ2

Ω (τh)−1
)
,

where σ2
Ω is a parameter that specifies the amount of latent noise, which is used to regularize

the model (see the next Section). With the priors specified, the hidden factors Ω can be
integrated out analytically, yielding

yi ∼ N
(
(ΨΓ)Txi, σ

2
Ω(Γ∗)T (Γ∗) + Σ

)
, i = 1, . . . , N, (8)

where Γ∗ is obtained from Γ by multiplying the rows of Γ with the shrinkages (τh)−1/2 of
the columns of Ω.

Finally, conjugate prior distributions

σ−2
j ∼ Ga(aσ, bσ), j = 1, . . . ,K, (9)

are placed on the noise parameters of the target variables.

3.2 Regularization of latent-noise BRRR through the variance of Ω

The latent signal-to-noise ratio β in Equation (5) has an intuitive interpretation: given our
prior distributions for Ψ and Ω, the prior latent SNR indicates the extent to which we believe
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the noise to explain variation in Y , as compared to the variance explained by the covariates
X. Thus, the latent SNR acts as a regularization parameter: when the latent variables Ω
are allowed to have a large variance, the data will be explained by the noise model rather
than the covariates. We note that this approach to regularization is non-standard and it
may have favourable characteristics compared to the commonly used L1/L2 regularization
of regression weights. First of all, the regression weights remain relatively unbiased as they
need not be enforced to zero to control for overfitting. This is important when the effects
are weak: if the effects were shrunk towards zero, they might be lost completely.

Secondly, while regularizing with the a priori selected latent SNR, the regularization
parameter itself remains interpretable: every value of the variance parameter of Ω can
be immediately interpreted as the percentage of variance explained by the noise model
as compared to the covariates. In our experiments, we use cross-validation to select the
variance of Ω and the interpretability of the parameter makes it easy to express beliefs of
the plausible values based on prior knowledge. Making similar educated guesses for L1/L2
regularization parameters is not straightforward.

3.3 Difference between latent-noise BRRR and independent-noise BRRR

We call the standard Bayesian reduced rank regression (Equation 1), which assumes inde-
pendent noise and signal models, the independent-noise BRRR. The new latent-noise BRRR
differs from it in two ways: in the latent-noise BRRR

1. the structure of the model is different in that the noise model uses the same projection
parameters as the regression model, and

2. the model is regularized by modifying the variance of the noise model. This is achieved
by learning the latent signal-to-noise ratio parameter β.

In Section 5.5 we show that both of these improvements are needed to reach the performance
differences observed.

We emphasize that although the technical difference between the two models is minor,
the models are very different from the conceptual point of view, as discussed in the Intro-
duction, as well as from the practical point of view. In particular, it has been reported
before that with weak effects the independent-noise BRRR may suffer from severe insta-
bility, resulting from a highly multi-modal posterior distribution and, consequently, poor
convergence and mixing properties of the learning algorithms (Koop et al., 2006; Marttinen
et al., 2014). In Section 5.11, we demonstrate how the latent noise assumption provides
just the required additional regularization to make the formal Bayesian inference tractable
even with weak effects.

As both independent structured noise and latent noise could be present, a logical exten-
sion to the models presented so far is to consider both noise types simultaneously,

Y = (XΨ + Ω) Γ +HΛ + E, (10)

where the distributional assumptions for Ψ,Ω and Γ are the same as in latent-noise BRRR,
and for H and Λ they follow independent-noise BRRR. The Gibbs updates for this model
are straightforward modifications of those for the latent-noise BRRR and independent-noise
BRRR. We have implemented also this model and study its performance in Section 5.9.
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We note that the latent-noise model is, in principle, able to express data generated by
the independent-noise BRRR model, and vice versa. The latent-noise BRRR model may
learn noise components that are independent from the signal in practice, having negligible
contribution from the regression part XΨ. On the other hand, nothing prevents the inde-
pendent noise model to learn some correlated regression and noise components. Therefore,
the family of models defined by Equation (10) that simultaneously includes both kinds of
structured noise may have redundancy in its parameters. Indeed, the experiments in Section
5.9 demonstrate only minor improvements from this model.

3.4 Proofs of the soundness of the infinite prior

In this Section we verify the sensibility of the infinite non-parametric prior, which we in-
troduce for ordering the components according to decreasing importance, and of a compu-
tational approximation resulting from truncation of the infinite model.

It has been proven that in Bayesian factor models a1 > 2 and a2 > 3 (in our case defined
in eqn 7) is sufficient for the elements of ΛΛT to have finite variance in a Bayesian factor
model (1), even if an infinite number of columns with a prior similar to our model is assumed
for Λ (Bhattacharya and Dunson, 2011). In this Section we present similar characteristics
for the infinite reduced-rank regression model. The detailed proofs can be found in the
Supplementary material. First, in analogy to the infinite Bayesian factor analysis model,
we show that

a1 > 2 and a2 > 3 (11)

is sufficient for the prediction of any of the response variables to have finite variance under
the prior distribution (Proposition 1). Second, we show that the underestimation of uncer-
tainty (variance) resulting from using a finite rank approximation to the infinite reduced-
rank regression model decays exponentially with the rank of the approximation (Proposition
2). For notational clarity, let Ψh denote the hth column of the Ψ matrix in the following.
With this notation, the prediction for the ith response variable can be written as

ỹi = xTΘi

= xT
∞∑
h=1

Ψhγhi.

Furthermore, let Γ(·) denote below the gamma function (not to be confused with the matrix
Γ used in all other Sections of this paper).
Proposition 1: Finite variance of predictions Suppose that a1 > 2 and a2 > 3. Then

Var(ỹi) =
ν

ν − 2

P∑
j=1

Var(xj)
Γ(a1 − 2)/Γ(a1)

1− Γ(a2 − 2)/Γ(a2)
. (12)

A detailed proof is provided in the Supplementary material.
Proposition 2: Truncation error of the finite rank approximation Let ỹi

S1 denote
the prediction for the ith target variable when using an approximation for Ψ and Γ consisting
of the first S1 columns or rows only, respectively. Then,

Var(ỹi)−Var(ỹi
S1)

Var(ỹi)
=

[
Γ(a2 − 2)

Γ(a2)

]S1

,

9
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that is, the reduction in the variance of the prediction resulting from using the approxima-
tion, relative to the infinite model, decays exponentially with the rank of the approximation.
A detailed proof is provided in the Supplementary material.

4. Efficient computation by reparameterization

For estimating the parameters of the latent-noise BRRR, we use Gibbs sampling, updating
the parameters one by one by sampling them from their conditional posterior probability
distributions, given the current values of all other parameters. The bottleneck of the com-
putation is in updating the matrix Ψ, and below we present a novel efficient update for this
parameter.

4.1 Update of Γ

The conditional distribution of the parameter matrix Γ of latent-noise BRRR can be up-
dated using a standard result for Bayesian linear models (Bishop et al., 2006) which states
that if

β ∼ N(0,Σβ), and y|X∗, β ∼ N(X∗β,Σy), (13)

then

β|y,X∗ ∼ N(Σβ|Y (X∗TΣ−1
y y),Σβ|y), (14)

where

Σβ|y = (Σ−1
β +X∗TΣ−1

y X∗)−1. (15)

Because in our model (6) the columns Ei of the noise matrix are assumed independent with
variances σ2

1, . . . , σ
2
K , we get

Yi ∼ N((XΨ + Ω)Γi, σ
2
i IN ). (16)

Thus, by substituting

X∗ ← XΨ + Ω, β ← Γi, and Σy ← σ2
i IN

into (13), together with prior covariance Σβ derived from (7), we immediately obtain the
posterior of Γi from (14) and (15).

4.2 Updates of ΦΓ, δ, σ and Ω

The updates of the hyperparameters are the same as in Bayesian Reduced Rank Regression,
and the conditional posterior distributions of the hyperparameters can be found in the
Supplementary material of Marttinen et al. (2014). The Ω has the same conditional posterior
distribution as the model parameter H of Marttinen et al. (2014).

4.3 Improved update of Ψ

The computational bottleneck of the näıve Gibbs sampler is the update of parameter Ψ,
which has PS1 elements with a joint multivariate Gaussian distribution, conditionally on
the other parameters (Geweke, 1996; Marttinen et al., 2014). Thus, the inversion of the

10
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precision matrix of the joint distribution has a computational cost of O(P 3S3
1). To remove

the bottleneck, we reparameterize our model, after which a linear algebra trick by Stegle
et al. (2011) can be used to reduce the computational cost of the bottleneck to O(P 3 +S3

1).
When sampling Ψ we also integrate over the distribution of Ω following the standard result
from Equation (8). The reparameterization and the new posteriors are presented in the
Supplementary material.

In brief, the trick is that the eigenvalue decomposition of a matrix of the form

C ⊗R+ σI (17)

can be evaluated inexpensively. After reparameterizing the model in the proposed way the
posterior covariance matrix of Ψ becomes of the form (17) and the eigenvalue decomposition
can then be used to efficiently generate samples from the posterior distribution of Ψ. We
note that the trick can also be applied to the original formulation of the Bayesian reduced-
rank regression model by Geweke (1996) and the R-code published with this article allows
generating samples from the original model as well. In the next Section, we compare the
computational cost of the algorithm using the näıve Gibbs sampler and the improved version
that uses the new parameterization.

4.4 Sampling the maximum rank of the model

The sparse infinite factor analysis model presented by Bhattacharya and Dunson (2011) uses
a certain adaption procedure to update the maximum rank, i.e., the truncation point of their
infinite-rank factor model. The idea is to update the maximum rank occasionally during
the algorithm such that ranks having all elements of the corresponding projection vectors
within some pre-specified distance from zero are removed from the model and, if none of
the ranks has all elements within the threshold, another rank is added into the model. We
have implemented a modification of this approach where we adapt the maximum rank of
our infinite reduced rank regression model using a pre-specified cutoff for the amount of
variance explained by the corresponding rank. With a slight abuse of terminology, we shall
call this updating of the rank as sampling in the sequel.

5. Experiments

We start with a basic validation of the latent-noise BRRR model, and its relative merits over
alternatives in a prediction task, using simulations with the ground truth available (Section
5.3), and a real-world omics dataset (Section 5.4). Section 5.5 analyses these results in
more detail and identifies the characteristics of the proposed latent-noise BRRR model that
are responsible for the performance differences observed, by considering the impact of each
novel model aspect in isolation. Section (5.7) investigates another application domain, the
detection of multivariate associations. In order to assess the prediction performance in more
general, we analyse several additional real-world data sets from different domains in Section
5.8.

Different aspects of the inference algorithm are considered in three sub-sections: sam-
pling vs. cross-validation of the rank and the latent signal-to-noise ratio (Section 5.6),
speedup resulting from the proposed re-parameterization of the algorithm (Section 5.10),
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and convergence diagnostics (Section 5.11). To assess the value of further extensions, Sec-
tion 5.9 considers a model that includes both latent and independent structured noise
simultaneously. Finally, Section 5.12 summarizes the findings on all real data sets.

5.1 Data sets

Experiments were performed on the following data sets:

NFBC1966 [N = 4702, P = 101,K = 96,metabolomics prediction from SNPs] The
NFBC1966 data set comprises genome-wide SNP data along with metabolomics mea-
surements for a cohort of 4,702 individuals (Rantakallio, 1969; Soininen et al., 2009).
With these data, 96 metabolites belonging to the subclasses VLDL, IDL, LDL and
HDL (Inouye et al., 2012) were used as the target variables and SNPs known to be
associated with lipid metabolism (Teslovich et al., 2010; Kettunen et al., 2012; Global
Lipids Genetics Consortium, 2013) were used as the covariates. Effects of age, sex,
and lipid lowering medication were regressed out from the metabolomics data as a
preprocessing step. For the genotype data, SNPs with low minor allele frequency
(<0.01) were removed as a preprocessing step. For this data set, the comparison
method GFlasso required excessive training time and we used 5-fold cross-validation
to evaluate test set performances. Where cross-validation was needed for selecting
model parameter values, the validation data performance was measured as an average
over 3 validation sets, each comprising 1

10 of the training samples.

DILGOM [N = 509, P = 65,K = 18 . . . 137, metabolomics and gene expression pre-
diction from SNPs] The DILGOM data set (Inouye et al., 2010) consists of genome-
wide SNP data along with metabolomics and gene expression measurements. For
details concerning metabolomics and gene expression data collection, see Soininen
et al. (2009) and Kettunen et al. (2012). In total 509 individuals had all three mea-
surement types. The DILGOM metabolomics data comprises 137 metabolites, most
of which represent NMR-quantified levels of lipoproteins classified into 4 subclasses
(VLDL, IDL, LDL, HDL), together with quantified levels of amino acids, some serum
extracts, and a set of quantities derived as ratios of the aforementioned metabolites.
All 137 metabolites were used simultaneously as prediction targets. In gene expres-
sion prediction, in total 387 probes corresponding to curated gene sets of 8 KEGG
lipid metabolism pathways were used as the prediction targets. A separate model
was learnt for each pathway. The average number of probes in a pathway was 48.
For details about the pathways, see the Supplementary material. On these data sets,
10-fold cross-validation was used to evaluate test set performances. To select values
of the parameters that required evaluation on validation data, the training data was
then further divided into 9 folds, on which cross-validation was performed to select
parameters according to averaged validation set performance.

fMRI [N = 1307, P = 776,K = 250, fMRI response prediction from text stimuli]
The cognitive neuroscience data set (Wehbe et al., 2014) consists of a time series
of fMRI measurements from 8 subjects reading a chapter from “Harry Potter and
the Sorcerers Stone“ using Rapid Serial Visual Presentation: words of the text are
presented one by one in the center of a screen. Brain voxel activations were measured
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every 2 seconds. The 250 most accurately predictable voxels (see Supplementary
material of Wehbe et al., 2014) of the fMRI measurements were used as prediction
targets. The fMRI measurements from all patients were predicted simultaneously
from features of the words being shown, such as semantic and syntactic properties,
visual properties and discourse level features. The data were divided into 10 folds,
only two of which were used to measure test data performance. This computational
compromise was needed as the preprocessing (Wehbe et al., 2014) for each fold required
about 10,000 hours of computation. To select the values of parameters that required
evaluation on validation data, the training data were further divided into 10 folds,
on which cross-validation was performed to select parameters according to averaged
validation set performance.

econ [N = 120, P = 52,K = 52,macroeconomic time series prediction] The macroe-
conomic time series data set (Stock and Watson, 2006) consists of monthly values
of 52 macroeconomic indicators. Prediction performance of these values from their
earlier values was measured with different lags (1 month, 2 months, etc.). The data
were processed as described by Carriero et al. (2011). Data for each month were used
as a test set (395 test sets) while using data from the previous 10 years for training.
Where cross-validation was needed for learning the values of model parameters, data
from the last 2 years before the month-to-be-predicted were used for validation and
data from the previous 8 years for training.

5.2 Methods included in comparison

We compared the latent-noise BRRR with a state-of-the-art sparse multiple-output regres-
sion method Graph-guided Fused Lasso (’GFlasso’) (Kim and Xing, 2009), BRRR/factor
regression model (Marttinen et al., 2014) with and without the a priori independent noise
model (’independent-noise BRRR’, ’BRRR without noise model’), standard Bayesian linear
model (’blm’) (Gelman et al., 2004), standard ridge regression (’ridge regression’) (Hoerl
and Kennard, 1970), elastic-net-penalized multi-task learning (’L2/L1 MTL’), kernel regres-
sion with linear and Gaussian kernels combined with a process for removing confounding
factors (Stegle et al., 2012) (’KRR with linear kernel + PEER’, ’KRR with Gaussian kernel
+ PEER’) and a baseline method of predicting with target data mean. GFlasso constitutes
a suitable comparison as it encourages sharing of information between correlated responses,
as our model, but does that within the Lasso-type penalized regression framework without
the use of a noise model to explain away the structured noise. L2/L1 MTL is a multitask
regression method implemented in the glmnet package (Friedman et al., 2010) that allows
elastic net regularization. It does not use a noise model to explain away confounders either.
The blm method and ridge regression were selected as a simple single-task baselines.

In one of the experiments, on an association study, latent-noise BRRR is compared with
independent-noise BRRR and canonical correlation analysis (’cca’), considered the state-
of-the-art methods for the detection of multivariate associations (Marttinen et al., 2013,
2014). Additionally, the simple univariate linear model (’lm’) is included as it represents
the common baseline in association analysis.

We compare latent-noise BRRR also with two other new models for structured noise
modeling. In the simulations, we study the performance of correlated Bayesian reduced
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rank regression (’correlated BRRR’), which is presented in more detail in the Supplemen-
tary material. In brief, in the correlated BRRR, the correlation structure of the target
variables learnt by an a priori independent noise model is used as a prior for the regression
weight parameters. With the NFBC1966 data and the macroeconomic time series data
sets, we also study the performance of the method presented in Equation (10) in Section
3.3 that explicitly models both latent and independent structured noise, abbreviated as
’latent+independent-noise BRRR’.

Parameters for the different methods were specified as follows:

GFlasso: The regularization parameters of the gw2 model were selected from the
default grid using cross-validation. The method has been developed for genomic data
indicating the default values should be appropriate. However, for NFBC1966 data, we
were unable to run the method with the smallest values of the regularization parame-
ters {110, 60, 10} due to lengthy runtime with these values. With this computational
compromise of leaving out these three values, the average training time for the largest
training data sets was ∼ 650 h. With NFBC1966 data, the pre-specified correlation
network required by the GFlasso was constructed to match the VLDL, IDL, LDL,
and HDL metabolite clusters from Inouye et al. (2012). Within these clusters, the
correlation network was fixed to the empirical correlations, and to 0 otherwise. With
DILGOM data, we used the empirical correlation network, with correlations below 0.8
fixed to 0 to reduce the number of edges in the network for computational speedup.

independent-noise BRRR, BRRR without noise model: Hyperparameters
a1 and a2 of all the BRRR models were fixed to 10 and 4, respectively. In total
1,000 MCMC samples were generated and 500 were discarded as burn-in. In prelim-
inary tests similar results were obtained with 50,000 samples. The remaining sam-
ples, thinned by a factor of 10, were used for prediction. The maximum rank of the
infinite-rank BRRR model was learned using cross-validation from the set of values
{5, 10, 15} for the NFBC1966 data set, {2, 4, 8} for the metabolomics prediction task
on the DILGOM data set and {2, 5, 10, 20} for the gene expression prediction task on
the DILGOM data set. These grids were selected based on initial experiments. For
the fMRI response prediction, the possible values for the maximal rank were limited
to {2, 4} in order to save computational time. For the econometrics data set, max-
imum ranks of {5, 10, 20} were used. In the association detection task, the rank of
independent noise BRRR was fixed to 1 as this was already sufficient for the task.

latent-noise BRRR: With the NFBC1966 data, the latent signal-to-noise ratio
β was selected using cross-validation from a range of values from 100 to 1

100 , β =
{100, 10, 2, 1, 1

7.5 ,
1
15 ,

1
30 ,

1
60 ,

1
100}, in order to thoroughly evaluate the sensitivity of the

model to this parameter. For the other data sets and tasks, the sets of values were
as follows: DILGOM metabolomics prediction: β = {10, 2, 1, 1

7.5 ,
1
15 ,

1
30 ,

1
60 ,

1
100}, DIL-

GOM gene expression prediction β = {10, 1, 1
5 ,

1
10 ,

1
30 ,

1
50 ,

1
100 ,

1
300} and for macroe-

conomic time series prediction β = {10, 2, 1, 1
7.5 ,

1
15 ,

1
30 ,

1
60 ,

1
100}. For fMRI response

prediction, the set of values was limited to β = {10, 1, 1
10} to save computation time.

Other parameters, including the number of iterations, were set as for the independent-
noise BRRR. The performance of the model was evaluated both by sampling the
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maximum rank and by learning it with cross-validation from the same range of val-
ues as with independent-noise BRRR. Shrinkage hyperparameters were set to non-
informative values, a1 =10 and a2 = 4, similarly to the corresponding parameters a3

and a4 of independent-noise BRRR.

blm: The variance hyperparameter of BLM was integrated over using MCMC. The
variance hyperparameter was assigned a Gamma prior with both shape and rate pa-
rameters set to 1. In total 1,000 posterior samples were generated and 500 were
discarded as burn-in.

ridge regression: Ridge regression was used as implemented in the glmnet package
with default parameters. The default convergence threshold parameters of glmnet

were used and no warnings/numerical problems occurred.

L1/L2 MTL: The effects of different types of regularization penalties are an active
research topic and we ran a continuum of mixtures of L1 and L2 penalties ranging
from group lasso to ridge regression. The mixture parameter α controlling the bal-
ance between L1 and L2 regularization was evaluated on the grid [0, 0.1, . . ., 0.9,
1.0] and selected using a 10-fold cross validation. The default convergence thresh-
old parameters of glmnet were used and neither warnings nor numerical problems
occurred.

KRR with linear kernel + PEER: First, the PEER software (Stegle et al., 2012)
was used to remove the effects of confounders using 15 components. Then kernel ridge
regression with a normalized linear kernel (Bishop et al., 2006) was applied using the
residuals from PEER as the target variables. Kernel ridge regression was regularized
according to the standard approach of adding parameter λ to the diagonal elements
of the kernel. The value of λ was selected using cross-validation from a set of 10
values ranging from 0.1 to 100, [10−1, 10−0.66, . . . , 101.67, 102]. To share information
between the different target variables, the approach of using the same kernel for all
target variables was adopted.

KRR with Gaussian kernel + PEER: Kernel ridge regression using a Gaussian
kernel was used. Regularization and the use of PEER were otherwise similar to
KRR with linear kernel + PEER. The radius parameter of the Gaussian kernel was
selected using cross-validation from a set of 30 values ranging from 0.001 to 1000,
[10−3, 10−2.79, . . . , 102.79, 103]

cca: This is the conventional classical canonical correlation analysis that attempts to
identify linear combinations of the columns of the input and output matrices that are
maximally correlated with each other.

correlated BRRR: Rank and hyperparameters a1, a2, a3 and a4 were set as with the
independent-noise BRRR. This model is presented in detail in Supplementary Section
1.
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latent+independent-noise BRRR: With the NFBC1966 data, the hyperparame-
ters a1, a2, a3 and a4 were set as with the independent-noise BRRR. The latent signal-
to-noise ratio β was selected using cross-validation from a range of values from 100
to 1

100 , β = {100, 10, 2, 1, 1
7.5 ,

1
30 ,

1
60 ,

1
100} and the maximum rank was fixed to 10. For

the econometrics data set, maximum ranks of {5, 10, 20} were used and the signal-to-
noise ratio β was selected using cross-validation from the values β = {10, 2, 1, 1

5 ,
1
10 ,

1
30 .

For both data sets, the variance parameter of the a priori independent noise H was
selected from values {10−6, 1}, value 10−6 corresponding to the extreme case of latent-
noise BRRR.

5.3 Simulation experiment: impact of the noise model assumptions

In this Section, we study the implications of different noise model assumptions. Perfor-
mances of models with different noise model assumptions are measured on simulated data
sets generated from a continuum of models between the two extremes of assuming either
latent noise, or a priori independent regression and noise models. The synthetic data are
generated according to

Y = (XΨ + αΩ) Γ + (1− α)HΛ + E, (18)

where vec(E) ∼ N (0, INK) and the parameter α ∈ [0, 1] defines the proportion of variance
attributed to the latent noise versus independent noise. We study a continuum of problems
with the values of parameter α = 0, 0.1, . . . , 1. The parameters Γ and Λ are orthogonalized
using Gramm-Schmidt orthogonalization. The parameters are scaled so that covariates X
explain 3 % of the variance of Y through XΨΓ, the diagonal Gaussian noise N (0, INK)
explains 20 % of the total variance of Y and the structured noise αΩΓ+(1−α)HΛ explains
the remaining 77 % of the total variance of Y . The simulation was repeated 100 times and
training data sets of 500 and 2000 samples were generated for each replicate. To compare
the methods, performance in mean squared error (MSE) of the models learned with each
method was compared to that of the true model on a test set of 15 000 samples. The
number of covariates was fixed to 30 and the number of dependent variables to 60. Rank
of the regression coefficient matrix and structured noise was set to 3 when simulating the
data sets.

For independent-noise BRRR, the rank of the regression coefficient parameters Ψ and Γ
was fixed to the true value while the rank of the noise model was learnt from the data. For
latent-noise BRRR, the performance of the model was evaluated both by fixing the rank
of the regression coefficient matrix to its true value and by learning it from the data. The
variance of Ω was selected using 10-fold cross-validation. The grid for latent signal-to-noise
ratios β was β = 1

5 to 1
15 , β = {1

5 ,
1

7.5 ,
1
10 ,

1
12.5 ,

1
15}. More specifically, Var(vec(Ω)) = σ2

ΩINK
where σ2

Ω = 1
β ×Trace (Var (X)). The grid was chosen according to the interpretation given

in Section 3.2; it corresponds to assuming that the latent noise explains 5 to 15 times the
variance explained by the covariates.

Figures 4 (a) and (b) present the results of a simulation study with training sets of
500 and 2000 samples, respectively. When the structured noise is generated according to
the conventional assumption of independent signal and noise, the model making the inde-
pendence assumption (i.e., the independent-noise BRRR) performs equally well to the true
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model with both 500 and 2000 samples. However, when the assumption is violated and the
proportion of latent noise increases, the performance of the independent-noise BRRR breaks
down, whereas the latent-noise BRRR performs consistently well. The method that does
not explain away the structured noise at all (BRRR without noise model) is always inferior
to the null model with the training set of 500 samples. When the number of training samples
is increased to 2000 and the noise is generated according to the latent-noise assumption,
the model, however, outperforms even the independent-noise BRRR.Thus, having no noise
model is in this case better than having the noise model based on the incorrect indepen-
dence assumption, which emphasizes the importance of the assumptions on which the noise
model is based. Interestingly, with n=2000 the BRRR without noise model is among the
best performing methods whereas with n=500 it is clearly the worst, highlighting the fact
that the smaller n gets, the more important the right assumptions become.

The latent-noise end of the continuum appears to be more difficult for the methods that
do not account for the structured noise (blm, BRRR without noise model). This weak but
consistent trend can be seen in Figure 4(b) where the difference between the oracle and
these methods increases with the percentage of latent noise. This behaviour is, however,
rather intuitive in terms of Equation (18); by rewriting

Y = (XΨ + αΩ) Γ + (1− α)HΛ + E,

= XΨΓ + αΩΓ + (1− α)HΛ + E

it is obvious that as α→ 1, the structured noise (coming from Ω and H) will with certainty
be projected on the particular target variables that are affected by the covariates X. In
other words, latent noise blurs exactly the relationships of interest, being very disruptive.

Figure 4 shows results also for an alternative novel model that shares information be-
tween the noise and regression models (correlated BRRR, see Supplementary material for a
detailed description). The model includes a separate noise model for the structured noise,
as in (1), but achieves the information sharing by assuming a joint prior for the noise and
regression models. In detail, conditional on the noise model, the current residual correla-
tion matrix between the response variables is used as a prior for the rows of Γ. This way
the correlations between target variables are propagated into the corresponding regression
weights; however, the strongest noise components are not automatically coupled with the
strongest signal components. Notably, the performance of the correlated BRRR model is
very similar to the regular BRRR model that does not have any dependence between the
noise and signal components.

5.4 NFBC1966: metabolomics prediction

In this Section, the models accounting for latent noise are evaluated in terms of predictive
performance on the NFBC1966 data with different training set sizes. Figure 5 presents the
test data MSE for the different methods. With the larger training set sizes, latent-noise
BRRR outperforms the other methods. With the smallest training data size, ridge regression
and latent-noise BRRR perform equally outperforming all other methods. However, ridge
regression is unable to improve its performance as the number of training data points
increases, and with the larger training sets it is outperformed by the more complex methods.
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Figure 4: Performance of different methods, compared to the true model, as a function of
the proportion of latent noise with a training set of (a) 500 and (b) 2000 samples.
The x-axis indicates the proportion of noise generated according to the latent
noise assumptions (100% corresponds to α = 1). Bars denote ± 1 standard
deviation, computed independently for each x-coordinate. The performance of
100% means the amount of variance explained by the model is equal to the amount
explained by the true model. The performance of 0% means that the method does
not explain any variance of the target variables, whereas negative values indicate
the variance actually increases after taking the predictions into account.

Method blm performs worse than the baseline (null model, prediction with training set
mean), even with the largest training data set containing 3761 individuals, and BRRR
without noise model requires the largest training set size in order to outperform the baseline.
A paired t-test for the performance difference between latent-noise BRRR and independent-
noise BRRR yields a p-value of 0.03 suggesting a statistically significant difference.

5.5 Differences between latent-noise BRRR and independent-noise BRRR on
NFBC1966 metabolomics prediction

The two differences between our new approach, latent-noise BRRR, and independent-noise
BRRR are (1) model structure (latent-noise BRRR shares parameters between the regres-
sion and noise models) and (2) using the latent signal-to-noise ratio parameter β to regular-
ize the model. In order to identify how these developments lead to the observed performance
differences on the NFBC1966 data, we performed a sensitivity analysis for the two methods
with respect to the assumed amount of variance attributed to the noise model.

Figure 6 presents the results of this sensitivity analysis. For latent-noise BRRR, the as-
sumed variance of the noise model controlled by the a priori signal-to-noise ratio β affects
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Figure 5: Test data MSE for different amounts of training data on the NFBC1966
metabolomics data. The MSEs have been scaled to give the null model a MSE of
1.

performance in a consistent way, whereas for independent-noise BRRR the impact appears
random. If the performance difference stemmed mainly from controlling the variance of the
noise model, controlling that parameter for both models should lead to similar results. On
the other hand, if the difference in the model structure alone sufficed to explain the perfor-
mance difference, the difference should not be sensitive to the variance of the noise model.
Hence, we conclude that, on this data set, both the new model structure and regularization
by using the latent signal-to-noise ratio are required for improved performance.

We also studied the variability of the estimated latent SNR on different folds. The
optimal l-SNR was estimated very consistently, the results are presented in Supplementary
Figure 3.

5.6 Evaluation of the chosen inference procedures for rank and noise
parameters

Inference for the proposed model could naturally be done in several alternative ways. In
this Section we justify the proposed inference procedure.

In the simulations (Section 5.3), sampling the maximum rank of the infinite prior worked
well, measured in terms of predictive performance. Figure 4 shows that sampling the
maximum rank actually improves performance, as compared to fixing it to the value used
in the generative process, when the latent noise assumption is wrong (left end), both when
N = 500 and when N = 2000. When the latent noise assumption holds (right end), the two
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Figure 6: Sensitivity of latent-noise BRRR and independent-noise BRRR to the variance of
the structured noise with different maximum ranks. The results are on NFBC1966
test data MSE (N =1880 and N =3761) as a function of the noise model variance.
Lower axis: a priori latent signal-to-noise ratio of latent-noise BRRR and the
upper axis: variance of the model parameter H of independent-noise BRRR. The
bar denotes the standard deviation of the test set performance difference observed
between the two models in cross-validation. The figures also present the unscaled
performance of the null model and the performance of the latent-noise BRRR
when using sampling to infer the latent signal-to-noise ratio (latent-noise BRRR,
sample l-SNR) and when using sampling to infer the maximum rank (latent-noise
BRRR, sample rank). When N = 3761, sampling the rank results in similar
performance as obtained with the fixed values and thus the curves overlap.

inference procedures perform equally well. With the NFBC1966 data set (Figure 5), learning
the maximum rank of the infinite prior by sampling (latent-noise BRRR, sample rank) or by
cross-validation (latent-noise BRRR) results in very similar test set performances, similarly
to in the simulation experiment in Section 5.3. Hence, we conclude that for learning the
maximum rank, both sampling and cross-validation are appropriate techniques. We also
ran the independent-noise BRRR so that the rank was sampled instead of selecting it using
cross-validation on this data. However, the results were poor, with the test data MSE equal
to 1.019 with N =1880 and 1.005 with N =3761. The lines were omitted for clarity. We
hypothesize that the problems with the instability of the model (see Section 5.11) were
accentuated when the rank was sampled.

The key parameter of our model, the latent signal-to-noise ratio, was estimated using
cross-validation. In the simulations, the cross-validation based scheme allowed estimation of
the latent signal-to-noise ratio to a reasonable accuracy. The estimated values are included
in Figure 2 in the Supplementary material. While the latent signal-to-noise ratio of the
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generative process was ≈ 1/25, the estimated posterior latent signal-to-noise ratios ranged
from 1

14 to 1
19 in the parts of the domain where the percentage of correlated structured

noise was 100-80%. When the percentage of correlated structured noise was 0-10 %, the
model correctly learnt lower variance for the latent noise and a corresponding stronger latent
signal-to-noise ratio β.

We also studied the performance of latent-noise BRRR while sampling the variance of the
noise model. A non-informative prior was assigned for the variance of Ω, Ω ∼ N (0, σ2

Ω) and
σ−2

Ω ∼ Gamma(shape = 0.001, rate = 0.001). The performance of this model is presented
in Figure 6. The performance of latent-noise BRRR when sampling the variance of Ω is
consistently worse than when using cross-validation to select the value of the latent signal-
to-noise ratio. Hence, we conclude that, as opposed to other parameters, cross-validation is
needed to learn the latent-signal to ratio to reach the improved performance.

5.7 NFBC1966: multivariate association detection

Detection of associations between multiple SNPs and metabolites is a topic that has received
attention recently (see, e.g., Kim et al., 2009; Inouye et al., 2012; Marttinen et al., 2014).
Here we demonstrate the potential of the new method in this task using two illustrative
example genes for which ground truth is available. Associations between SNPs within two
genes, LIPC and XRCC4, and the metabolites in the NFBC1966 data are investigated
in the experiment. Note that the covariates (SNPs) used in this experiment are different
from the ones used in the prediction experiment: here SNPs in individual genes are used,
whereas in the prediction experiment all known lipid-associated SNPs were used. LIPC was
selected as a reference, because it is one of the most strongly lipid-associated genes. On the
contrary, XRCC4 was discovered only recently using three cohorts of individuals (Marttinen
et al., 2014), and it was selected to serve as an example of a complex association detectable
only by associating multiple SNPs with multiple metabolites, and not visible using simpler
methods.

We use the proportion of total variance explained (PTVE) as the test score (Marttinen
et al., 2014), and sample 100 permutations to measure the power to detect the associations.
Furthermore, we use downsampling to evaluate the impact of the amount of training data.
For comparison, we select the BRRR, the exhaustive pairwise (univariate) linear regression
(’lm’), and canonical correlation analysis (CCA) (Ferreira and Purcell, 2009), these being
the methods that have been proposed for the task and having a sensible runtime in putative
genome-wide applications. For lm, the minimum p-value of the regression coefficient over
all SNP-metabolite pairs, and for the CCA, the minimum p-value over all SNPs (each
SNP associated with all metabolites jointly) are used as the test scores. The association
involving the XRCC4 gene was originally detected using the BRRR model; however, unlike
here, informative priors were used for the regression coefficients.

Table 1 presents the ranking of the original data among the permuted data with different
sample sizes and methods. Ten MCMC chains were computed for both models to account for
sampling variability on this difficult and relatively strongly collinear data. The association
score was obtained by averaging over the scores for different chains. As expected, all
methods were able to detect the association involving LIPC with both training set sizes.
However, latent-noise BRRR had the highest power to detect the XRCC4 gene.
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Table 1: Power of different methods to detect the association between metabolomics profiles
and XRCC4 or LIPC genes with N =4702 and N =2351 samples. Power is
measured as the proportion of association test scores in permuted data sets smaller
than the test score in the original data set. Value 1 indicates that the association
score of the unpermuted data was higher than the score in any permutation.

XRCC4 LIPC
N =4702 N =2351 N =4702 N =2351

latent-noise BRRR 0.98 0.94 1 1.00
independent-noise BRRR 0.41 0.32 1 0.99
lm 0.62 0.74 1 1.00
cca 0.20 0.24 1 1.00

5.8 Results: other real-world data sets

To thoroughly study the empirical value of the new method, we compared it to alternative
methods on macroeconomic time series prediction, metabolomics and gene expression pre-
diction experiments on the DILGOM data set and the fMRI response prediction. In these
domains, explaining away structured noise is of crucial importance.

With the DILGOM data, the prediction of the weak effects was challenging for all
methods. Indeed, we noticed that the null model using the average training data value
for prediction was better than any other method in terms of MSE over all target variables
with the single exception of L1/L2 MTL, which set all regression coefficients to zero thus
reducing to the null model. However, a detailed investigation of the results revealed that
while many of the target variables could not be predicted at all (as indicated by the worse
than null model MSE) some of the target variables could still be predicted better than the
null model, and by focusing the analysis on the MSE computed over the predictable target
variables (i.e., those that could be predicted better than the null by at least one method),
comparisons regarding the model performances could still be made. For consistency, both
metrics were computed also with the fMRI and econometrics data sets. To save computation
time, we chose to evaluate only the cross-validation based variant of our model for the fMRI
data, as this approach had already been identified as the most promising implementation
of our method.

Table 2 and supplementary Table 1 present the results of the macroeconomic time series
prediction experiment, metabolomics and gene expression prediction experiments on the
DILGOM data set and the fMRI response prediction experiments. The results have been
normalized so that the score for the null model (prediction using the mean) is 1. Table 2
presents the results for the predictable target variables and supplementary Table 1 presents
the results obtained by averaging test data MSE over all target variables.

Latent-noise BRRR outperforms independent-noise BRRR consistently on the gene ex-
pression (on 8/10 folds), metabolomics (10/10 folds) and fMRI response prediction (2/2
folds) tasks on both scores. In the fMRI response prediction, the latent-noise BRRR and
L1/L2 MTL are the only methods that outperform the null model. With the DILGOM data
none of the methods outperformed the null model when averaged over all target variables
and when concentrating on the predictable target variables, only the latent-noise BRRR and
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KRR with Gaussian kernel were able to outperform the null model. With gene expression
prediction, latent noise BRRR (sample rank), GFlasso and the kernel methods outperform
the null model, latent-noise BRRR being the best. The econometrics data is the only case in
which the independent-noise BRRR is more accurate than the latent-noise BRRR on both
metrics, and the latent-noise BRRR is the third best method. In this data set, however,
the effects appear rather strong as different methods explain up to 10-32% of the variance
of the target variables and the best method is, in fact, ridge regression.

On the small DILGOM data sets, L1/L2 MTL sets all regression weights to zero as
hypothesized in Section 3.2. This demonstrates the need to develop new alternatives to
L1/L2 regularization: when modeling weak effects on small data sets, using L1/L2 penalties
can prevent analysis altogether. Ridge regression appears to suffer from the same problem on
the NFBC data set: although shrinking weights towards zero efficiently avoids overfitting,
the model is only able to learn the strongest effects. Thus ridge regression outperforms
most methods on the smallest training set (where the complex methods easily overfit), but
heavily loses as the training set increases and the more complex methods become able to
also benefit from the weak effects. Regularization by making the noise model stronger as
in latent-noise BRRR avoids this problem.

The standard method blm performs surprisingly poorly especially as compared to ridge
regression. The implementation was checked carefully. Predictive performance with the
standard least squares linear model was also evaluated for some of the data sets (results
not shown) and we found that it performed even worse than the blm. We hypothesize that
the collinearity present in all of the data sets analyzed harmed the performance of blm and
lm more than that of ridge regression.

5.9 Results: simultaneous modeling of both latent and independent
structured noise

As both latent and independent structured noise can be present simultaneously, we eval-
uated the possible gains from taking both noise types simultaneously into account. A model
that incorporates both latent and independent structured noise, here called latent+independent-
noise BRRR, was evaluated for the metabolomics prediction task on the NFBC1966 data
and on the macroeconomic time series prediction task, the strong domains of the methods
of interest.

Results of this experiment are presented in Table 3. In metabolomics prediction, ac-
counting for both noise types improved results slightly on the smallest training data size as
compared to the best performing method latent-noise BRRR. On the larger training data
sets, the more flexible latent+independent-noise BRRR model performed worse than the
latent-noise BRRR that only accounts for latent noise. On the macroeconomic time series
prediction task, accounting for both noise types improved performance as compared to only
accounting for the dominant noise type (independent structured noise) on the smaller train-
ing data set. For summary,even though slight performance improvements were seen with
the smallest training set sizes, the results indicate that as the size of the training data set
increases, the advantages disappear. We hypothesize that the potential under-identifiability
issues discussed in Section 3.3 hinder model performance more than the increased flexibility
improves it.
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econometrics
DILGOM:

gene expression
DILGOM:

metabolomics
fMRI

latent-noise
BRRR

0.73320±0.22564 0.99990±0.00057 1.00046±0.00130 0.99798±0.00282

latent-noise
BRRR,

sample rank
0.73453±0.21219 1.00039±0.00107 0.99995±0.00100

independent-
noise
BRRR

0.71072±0.20549 1.00051±0.00038 1.04163±0.03781 1.00215±0.00183

L1/L2 MTL 0.75035±0.15651 1.00000±0.00000 1.00000±0.00000 0.99786±0.00090

GFlasso 1.00010±0.00106 0.99996±0.00221

KRR with
linear
kernel

+ PEER

0.88138±0.11021 1.00093±0.00057 0.99995±0.00006 1.00236±0.00112

KRR with
Gaussian
kernel

+ PEER

0.90497±0.09707 0.99985±0.00016 0.99998±0.00004 1.00649±0.00179

BRRR
without

noise model
0.81818±0.34747 1.00568±0.00274 1.30795±0.08802 1.06722±0.05586

ridge
regression

0.689771 ±0.202603 1.001798±0.001090 1.000445±0.003089 1.003388±0.007420

blm 1.59040±1.23041 1.04245±0.00914 1.52573±0.08859 2.08650±0.25396

null model 1.00000±0.00000 1.00000±0.00000 1.00000±0.00000 1.00000±0.00000

Table 2: Test data MSE computed on the predictable target variables on the econometrics,
DILGOM and fMRI data sets. Bold font indicates better than baseline accuracy
achieved by predicting with the training data mean.

5.10 Improvement in computational efficiency resulting from the
reparameterization of model

To confirm the computational speed-up resulting from the reparameterization presented
in Section 4, we performed an experiment where the algorithm implementing the näıve
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NFBC
N = 3761

NFBC
N = 1880

econometrics
N = 120

econometrics
N = 60

latent-noise
BRRR

0.9833±0.0077 0.9949±0.0037 0.7536±0.2143 0.8374±0.1816

latent+independent-
noise BRRR

0.9840±0.0072 0.9947±0.0019 0.7445±0.1918 0.7889±0.1561

independent-
noise
BRRR

0.9849±0.0078 0.9980±0.0059 0.7339±0.1977 0.8097±0.2085

Table 3: Performance of the most flexible modeling assumptions. Test data MSE on the
NFBC and econometrics data sets. On the larger training data sets, latent-noise
BRRR and independent noise BRRR outperform the model that accounts for both
noise types, latent+independent-noise BRRR. On the smaller training data sets,
however, this model outperforms the models that only account for one noise type.

Gibbs sampling updates for the Bayesian reduced-rank regression (Geweke, 1996; Karlsson,
2012) was compared with the new algorithm that uses the reparameterization. Similar
improvements were achieved with all other BRRR models as well.

Ten simulated data replicates were generated from the prior. The number of samples in
the training set was fixed to 5000 and the number of target variables was set to 12. Rank of
the regression coefficient matrix was 2. Runtime was measured as a function of the number
of covariates, which was varied from 100 to 300; 1000 posterior samples were generated.
The new algorithm that reparameterizes the model clearly outperformed the näıve Gibbs
sampler (Figure 7). As a sanity check, the regression coefficient matrices estimated by the
algorithms were compared , and found to be similar.

5.11 Efficiency of the algorithm

To investigate the efficiency of the proposed algorithm and to compare it with the alternative
methods, we recorded the wall-clock run times with the NFBC1966 data set, shown in Figure
8. In addition, we studied the conventional convergence diagnostics. To assess convergence
and mixing, we re-computed four MCMC chains of 2000 posterior samples each, for each of
the BRRR methods. Averaged effective sample sizes (ESS) and potential scale reduction
factors (PSRF) were computed for 200 randomly selected parameters of the regression
coefficient matrix (Gelman et al., 2004). These results are presented in Table 4.

All BRRR methods, except for independent-noise BRRR, converge (PSRF < 1.1) and
mix acceptably efficiently (Neffective

Nsamples
≈ 40

1000 ). Independent noise BRRR, however, showed

poor mixing and convergence. In initial experiments we observed that the PSRF for the
independent-noise BRRR did not necessarily ever reach values indicating convergence even
when sampled for 15,000 iterations. Thus, we decided to simply use the same number of
MCMC iterations for each method in our experiments. The reason for the bad behaviour was
the multimodality of the posterior distribution, caused by the too flexible model structure
of the independent noise model, and the resulting convergence of the different chains into
different modes.
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Figure 7: Runtime of the algorithm implementing the näıve Gibbs sampler with computa-
tional complexity and the new algorithm that reparameterizes the model. The
näıve algorithm has a computational complexity of O(P 3S3

1) and the new algo-
rithm O(P 3 + S3

1). Random variation over the repetitions was minimal and the
error bars were omitted for clarity.

independent-noise
BRRR

BRRR without
noise model

latent-noise
BRRR

latent-noise
BRRR,

sample rank

1000 samples 4.46 ± 0.32 1.03 ± 0.03 1.06 ± 0.05 1.01 ± 0.004
2000 samples 3.42 ± 0.18 1.02 ± 0.02 1.05 ± 0.05 1.01 ± 0.003

Table 4: Averaged PSRF.

To further demonstrate the difference between the latent-noise and independent-noise
BRRR methods, we visualized the MCMC trace of the association metric used in Section
5.7. The instability of independent-noise BRRR is strikingly visible in Figure 9. The chains
converge to different modes and mix very slowly. On the other hand, the latent-noise BRRR
appears to mix adequately and always converges to the same mode, except for one of the
ten chains with the XRCC4 gene, which converges to a mode with a lower value of the
explained variance.

5.12 Results: summary of the results with the real data sets

To provide an overview of the performances of the different methods on the various data
sets and tasks, the methods’ performances were ranked for each task/data set. For the
prediction tasks, methods were ranked according to the MSE on the test set. When none
of the methods outperformed the null model, the scores on the predictable target variables
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Figure 8: Computation times of the methods for different training set sizes N on the
NFBC1966 metabolomics data.

independent-noise
BRRR

BRRR without
noise model

latent-noise
BRRR

latent-noise BRRR,
sample rank

1000 samples 4.32 ± 0.32 43.88 ± 0.93 44.83 ± 0.25 40.74 ± 1.18
2000 samples 5.15 ± 0.66 84.39 ± 1.61 86.40 ± 0.43 77.77 ± 1.25

Table 5: Effective sample sizes for the Bayesian reduced rank regression methods.
Independent-noise BRRR mixes substantially worse than the other methods.

were compared instead. In the association detection task, estimated statistical power was
used as the ranking criterion. Table 6 presents the overview results.

Averaged over all data sets and tasks, latent-noise BRRR outperforms the comparison
methods. In particular, the latent-noise BRRR outperforms the independent-noise BRRR
on all setups except for the macroeconomic time series prediction task, where independent-
noise BRRR is the best method and the two variants of latent-noise BRRR follow. The
difference between the latent-noise BRRR and the independent-noise BRRR is consistent,
present on 4/5 test folds on the NFBC1966 metabolite prediction, 8/10 test folds on the
DILGOM gene expression prediction, 10/10 test folds on DILGOM metabolite prediction
and on 2/2 folds on the fMRI response prediction. On macroeconomic time series prediction,
independent-noise BRRR is better on 218/395 test folds. In the association detection task
the latent-noise BRRR has higher power with both training set sizes on the challenging
XRCC4 gene (0.94 vs. 0.32 with n=2,351; 0.98 vs. 0.41 with n=4,702).
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Simultaneously accounting for both latent and independent structured noise improves
performance on the smallest training data sets considered in the macroeconomic time series
prediction and metabolomics prediction (NFBC1966) as compared to accounting for only
one type of noise. On the other hand, with the larger training set sizes, the models with
just the dominant noise type present perform better than the model including both noise
types simultaneously.

Selecting the rank for latent-noise BRRR by sampling or by cross-validation results
in comparable performance. Average performance ranks for cross-validation based and
sampling-based inferences are 2.5 and 3.5, respectively. For the NFBC1966 data set and
gene expression prediction task on the DILGOM data set, cross-validation yields better
performance. On metabolomics prediction on DILGOM and the macroeconomic time se-
ries prediction, on the other hand, the sampling-based approach works better. It is also
intriguing that similarly to the simulations, the sampling based variant of the model works
better with independent structured noise (macroeconomic time series prediction) than the
cross-validation based approach.

Latent-noise BRRR outperforms the null model on all test cases except for the metabolomics
prediction on the DILGOM data. Even on that data set, however, the variant of the model
that samples the maximum rank of the infinite prior outperforms the null model. We hy-
pothesize that the poor performance may have resulted from convergence to some inferior
mode of the posterior distribution; this can happen to latent-noise BRRR (as demonstrated
in Figure 9) although the sharing of information between the signal and noise models makes
it substantially more stable than the independent-noise BRRR.

6. Discussion

In this work, we evaluated the performance of multiple-output regression with different
assumptions for the structured noise. While most existing methods assume a priori inde-
pendence of the interesting effects and the uninteresting structured noise, we started from
the opposite assumption of strong dependence between the components of the model. This
assumption may be deemed appropriate for instance with the molecular biological data sets
often analyzed with such methods. Using simulations we demonstrated the harmfulness of
the independence assumption when latent noise was present. In real data experiments the
model assuming latent noise outperformed state-of-the-art methods in prediction of metabo-
lite measurements from genotype (SNP) data and fMRI response prediction, and showed
consistently good performance in the different domains. In an illustrative multivariate as-
sociation detection task, the latent noise model had increased power to detect associations
invisible to other methods. To better address the computational needs, we presented a new
algorithm reducing the runtime considerably, and improving the scalability of the BRRR
models as the number of variables increases. The prior distributions were parameterized
in terms of the new concept of latent signal-to-noise ratio, which was a key ingredient for
optimal model performance. In addition, the rotational unidentifiability of the model was
solved using ordered infinite-dimensional shrinkage priors. We also demonstrated that the
two modifications (model structure, regularization through the latent signal-to-noise ratio)
made to the existing state-of-the-art noise modeling approach were both needed in order to
reach the optimal performance.
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NFBC
N = 3761

econometrics
N = 120

DILGOM:
gene

expression
N = 458

DILGOM:
metabolomics

N = 458

fMRI
N = 1307

NFBC:
XRCC4

association
detection
N = 4702

Average
rank

latent-noise
BRRR

1 3 2 8 2 1 2.8

latent-noise
BRRR,

sample rank
2 4 6 1 3.2

independent
noise
BRRR

3 2 7 9 4 3 4.7

L1/L2 MTL 7 5 4 5 1 4.4

GFlasso 4 5 3 4.0

KRR with
linear
kernel

+ PEER

6 7 8 2 5 5.6

KRR with
Gaussian
kernel

+ PEER

5 8 1 4 7 5.0

BRRR
without

noise model
9 6 10 10 8 8.6

blm 11 10 11 11 9 10.4

null model 10 9 3 6 3 6.2

ridge
regression

8 1 9 7 6 6.2

cca 4

lm 2

Table 6: Summary: ranking of methods according to performance in each studied data set
and task.

In real data both latent and independent structured noise can be present. We studied a
model incorporating both types simultaneously, and, based on these results, we concluded
that the possible gains in predictive power as compared to modeling only the dominant
type of noise were not worthwhile. In fact, results were also found to degrade when both
noise types were included, which we hypothesize to be the result of poor identifiability of
the corresponding model

The new model implementing the concept of latent noise was studied using high-dimensional
data containing weak signal (weak effects). The new model exploits a ubiquitous character-
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istic of such data: while the interesting effects are weak, the noise is strong. Latent-noise
BRRR borrows statistical strength from the noise model so as to alleviate learning of the
weak effects, by automatically enforcing the regression coefficients on correlated target
variables to be correlated. This intuitive characteristic can be seen as a counterpart of the
powered correlation priors (Krishna et al., 2009) in the target variable space: Krishna et
al. used the correlation structure of the covariates as a prior for the regression weights to
enforce correlated covariates to have correlated weights.

The latent-noise BRRR is an extension of several common model families. By removing
the covariates, the model reduces to a standard factor analysis model, which explains the
output data with underlying factors. Thus, the latent-noise BRRR can be seen as a reversed
analogy of PCA regression (West, 2003), in which components of the input space are used as
covariates in prediction; in latent-noise BRRR components derived from the output space
are predicted using the covariates (see Bo and Sminchisescu, 2009). Allowing the noise
term to affect the latent space directly results in interesting connections to linear mixed
models (LMMs) and best linear unbiased prediction (BLUP) (Robinson, 1991); using the
latent noise formulation, the model can explain away bias in the residuals as in BLUP. On
the other hand, LMMs have a random term for each sample and target variable. While
LMMs are not computationally feasible to generalize for high-dimensional targets due to
the NK random effect parameters and the associated inversion of an NK×NK covariance
matrix, the latent-noise BRRR can be seen as a low-rank generalization of LMMs for high-
dimensional target variables: the covariates are used for prediction in the latent space and
in this space there is a noise term for each sample and dimension. Therefore, the number
of random effect parameters stays at NS1 and inference remains tractable.

In summary, our findings extend the existing literature on modeling structured noise in
an important way by showing that structured noise can, and should, be taken advantage
of when learning the interesting effects between the covariates and the target variables,
and how this can be done. Code in R for the new method is available for download at
//http://research.cs.aalto.fi/pml/software/latentNoise/.
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P. Soininen, A. Kangas, P. Würtz, T. Tukiainen, T. Tynkkynen, R. Laatikainen, M. Järvelin,
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Figure 9: Convergence plots of the association score parameter, that is, the proportion of
the total variance explained (PTVE), for latent-noise BRRR and independent-
noise BRRR. 10 MCMC chains were computed using data sets with 4702 samples
from genes LIPC and XRCC4. The green line marks the 0.05 significance level
of the test score, obtained by permutation sampling. The chains, whose associ-
ation scores exceed the significance threshold, are drawn in black, whereas the
chains that do not exceed it are drawn in red. Latent-noise BRRR converges and
mixes appropriately: chains with different initializations converge and traverse
the posterior. On the contrary, the independent-noise BRRR behaves rather
pathologically: different chains converge to different solutions and explore the
posterior poorly.
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