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1. Proof of Theorem 5 (iv)

Proof that if the quantity ∆ =
∑

G∈G p⊀(G|D), then ∆ · p̂⊀(f |D) ≤ p⊀(f |D) ≤ ∆ · p̂⊀(f |D) +
1−∆.

Proof

On one hand,

∆ · p̂⊀(f |D)

=

∑
G∈G p⊀(G,D)

p⊀(D)
·
∑

G∈G f(G)p⊀(G,D)∑
G∈G p⊀(G,D)

=

∑
G∈G f(G)p⊀(G,D)

p⊀(D)

=

∑
G f(G)p⊀(G,D)

p⊀(D)
−

∑
G/∈G f(G)p⊀(G,D)

p⊀(D)

≤
∑

G f(G)p⊀(G,D)

p⊀(D)

= p⊀(f |D).
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Figure 1: Plot of the SAD Performance of the
PO-MCMC and the DDS for Tic-
Tac-Toe
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Figure 2: Plot of the Total Running Time of
the PO-MCMC and the DDS for
Tic-Tac-Toe

On the other hand,

∆ · p̂⊀(f |D) + 1−∆

=

∑
G∈G f(G)p⊀(G,D)

p⊀(D)
+

∑
G/∈G p⊀(G,D)

p⊀(D)

≥
∑

G∈G f(G)p⊀(G,D)

p⊀(D)
+

∑
G/∈G f(G)p⊀(G,D)

p⊀(D)

=

∑
G f(G)p⊀(G,D)

p⊀(D)

= p⊀(f |D).

Combining the above two inequalities, we complete the whole proof.

2. Supplementary Experimental Results for the DDS

As a supplement to Section 4.1 in the main paper, this section shows more experimental results for
the DDS by varying the sample size. With the same experimental settings as in Section 4.1, we
performed the experiment for the data cases Tic-Tac-Toe, Wine, Child with m = 500, and German.
By examining each figure from Figures 1, 3, 5, and 7, and the corresponding figure from Figures
2, 4, 6, and 8, we can conclude that the learning performance of the DDS with each sample size is
significantly better than the performance of the PO-MCMC in each data case.

3. Supplementary Experimental Results for the IW-DDS

As a supplement to Section 4.2 in the main paper, this section shows more experimental results for
the IW-DDS by varying the sample size. We performed the experiment for the data cases Wine,
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Figure 3: Plot of the SAD Performance of
the PO-MCMC and the DDS for
Wine
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Figure 4: Plot of the Total Running Time of
the PO-MCMC and the DDS for
Wine
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Figure 5: Plot of the SAD Performance of the
PO-MCMC and the DDS for Child
(m = 500)
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Figure 6: Plot of the Total Running Time of
the PO-MCMC and the DDS for
Child (m = 500)
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Figure 7: Plot of the SAD Performance of the
PO-MCMC and the DDS for Ger-
man
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Figure 8: Plot of the Total Running Time of
the PO-MCMC and the DDS for
German
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Figure 9: Plot of the SAD Performance of the
DP+MCMC, the K-best, and the
IW-DDS for Wine
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Figure 10: Plot of the Total Running Time of
the DP+MCMC, the K-best, and
the IW-DDS for Wine

Child with m = 500, and German. By examining each figure from Figures 9, 11, and 13, and the
corresponding figure from Figures 10, 12, and 14, we can clearly see the advantage of the IW-DDS
in the structure learning over the other two methods for each data case.

4. Memory-Saving Strategies for the DDS and the IW-DDS with a Very Large No

In this section, we briefly describe our memory-saving strategies for the DDS and the IW-DDS if a
very large number of DAG samples are required by a user for his or her specific requirement. As
the reader will see, while the memory-saving strategy for the DDS is straightforward, the memory-
saving strategy for the IW-DDS is more complicated because it needs to ensure that all the duplicate
DAGs among the No sampled DAGs are eliminated.
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Figure 11: Plot of the SAD Performance of
the DP+MCMC, the K-best, and
the IW-DDS for Child (m = 500)
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Figure 12: Plot of the Total Running Time of
the DP+MCMC, the K-best, and
the IW-DDS for Child (m = 500)
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Figure 13: Plot of the SAD Performance of
the DP+MCMC, the K-best, and
the IW-DDS for German
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Figure 14: Plot of the Total Running Time of
the DP+MCMC, the K-best, and
the IW-DDS for German
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As discussed in Section 3.2 in the main paper, the overall memory cost of the DDS algorithm
is O(n2n + n2No): Step 1 of the DDS has O(n2n) memory cost; and Steps 2 and 3 of the DDS
haveO(n2No) memory cost 1. Since typically 104 to 105 DAG samples are sufficient for estimating
p≺(f |D), the O(n2No) space cost coming from Steps 2 and 3 does not become an issue at all.
Nevertheless, if a very large No (such as more than 1 × 106) is needed for the estimation because
of some specific requirement of a user, some memory-saving strategy needs to be used in Steps 2
and 3 to reduce their memory cost. One simple memory-saving strategy is as follows: No can be
replaced with a smaller value of Nbl in the DDS algorithm, where Nbl is the size of a sample block,
and then Steps 2 and 3 can be repeated dNo/Nble times. This will not change the properties of the
estimator coming from the DDS algorithm but can reduce the overall memory requirement of the
DDS to O(n2n + n2Nbl). Note that for the performance of our time-saving strategy for the DAG
sampling step (described in Section 3.2.1 of the main paper), a largeNbl is actually preferred. Thus,
Nbl can take a value that is large but still does not lead to the memory issue for a computer. (For
instance, the value of Nbl can be set around several millions for a computer with 2.0 to 8.0 GB
memory.) In addition, note that the estimator p̂≺(f |D) can be constructed by Eq. (5) in the main
paper on the fly when each DAG gets sampled, so that the memory of storing all the No sampled
DAGs can be saved.

Similarly, if a very large No (such as more than 1 × 106) is needed in the IW-DDS to obtain
p̂⊀(f |D) = (

∑
G∈G f(G)p⊀(G,D))/(

∑
G∈G p⊀(G,D)) or the corresponding sound interval, the

following memory-saving strategy can be used to reduce the memory requirement of the IW-DDS
algorithm: No can be replaced with a smaller value of Nbl in the IW-DDS algorithm, where Nbl

is the size of a sample block, and then Steps 2 and 3 of the DDS as well as the bias-correction
step can be repeated in dNo/Nble iterations. (Similar to the DDS algorithm, Nbl can take a value
that is large but still does not lead to the memory issue for a computer.) In each iteration, after
the bias-correction step which eliminates the duplicates among the Nbl DAGs is done, up to Nbl

DAGs get sorted according to p(D|G) and then are stored as a file on the hard disk. Finally, after
these dNo/Nble iterations are finished, the elimination of the duplicate DAGs across the DAGs
stored in dNo/Nble files is performed as follows: each time some score threshold pthr can always
be found (based on p(D|G) of the corresponding quantile of the sorted DAGs) such that O(Nbl)
DAGs whose p(D|G) is not greater than pthr are newly retrieved from these dNo/Nble files and
reloaded into the memory each time. Thus, the elimination of the duplicate DAGs only needs to
be performed among these DAGs in the memory so that both the denominator (

∑
G∈G p⊀(G,D))

and the numerator (
∑

G∈G f(G)p⊀(G,D)) of p̂⊀(f |D) can be updated accordingly. When all the
DAGs have been retrieved from these dNo/Nble files, p̂⊀(f |D) is obtained and its denominator∑

G∈G p⊀(G,D) can also be used to obtain ∆. Using this strategy, the expected time cost of the
IW-DDS becomesO(nk+1C(m)+kn2n+n2No+nk+1No+Nbl log(Nbl)dNo/Nble+Cw,r(n)No+
n2No) = O(nk+1C(m) + kn2n + n2No + nk+1No + log(Nbl)No + Cw,r(n)No), where Cw,r(n)
is the time cost that a DAG of n nodes is written to the hard disk and then is reloaded from the hard
disk to the memory. The corresponding memory requirement is O(n2n + n2Nbl), with the addition
of the O(n2No) space in the hard disk required to record O(No) DAGs among the dNo/Nble files.

We demonstrate the performance of our memory-saving strategy for the IW-DDS based on the
data case Insur19 with m = 200 in Figures 15 and 16. In our experiment we fixed Nbl = 2 × 106

1. As described in the main paper, since Step 1 of the DDS limits our application to Bayesian networks with up to
around n = 25 variables, the actual memory requirement of Steps 2 and 3 of the DDS is to hold O(No)× n (32-bit)
integers in the memory when vector representations for orders and DAGs are used.
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Figure 15: Plot of ∆ versus No for Insur19
(m = 200)
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Figure 16: Plot of the Running Time versus
No for Insur19 (m = 200)

as the size of the sample block. We increased No from 2 × 106 to 1.2 × 107 with each increment
2 × 106 and showed the corresponding change of ∆ and the running time in Figures 15 and 16.
(We performed 20 independent runs for the data case to get the results.) By temporarily storing the
sampled DAGs in the hard disk, our IW-DDS (equipped with our memory-saving strategy) is shown
to be able to efficiently sample No = 1.2 × 107 DAGs so that the resulting mean of ∆ can reach
95.39% with the time cost µ̂(Tt) = 1, 933.44 seconds.

5. Boxplots for Comparing the PO-MCMC, the DOS, and the DDS in Terms of MAD

In this section we use boxplots to re-demonstrate the comparison of the PO-MCMC, the DOS, and
the DDS for all the 33 data cases in Table 1 in the main paper. Note that in these boxplots the
criterion MAD (= SAD/(n(n − 1))) is used instead of SAD. Though everything except the scale
of the Y axis is the same between a boxplot using SAD and a boxplot using MAD, the comparison
among data sets with different values of n can be directly made by using MAD. These boxplots
(Figures 17 to 49) clearly illustrate the advantage of our DDS method over the PO-MCMC method,
as described in Section 4.1 in the main paper.

6. Boxplots for Comparing the DP+MCMC, the K-best, and the IW-DDS in Terms
of MAD

In this section we use boxplots to re-demonstrate the comparison of the DP+MCMC, the K-best,
and the IW-DDS in terms of MAD for all the 33 data cases in Table 3 in the main paper. These
boxplots (Figures 50 to 82) clearly illustrate the advantage of our IW-DDS algorithm, as described
in Section 4.2 in the main paper.
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Figure 17: Boxplot of the
MAD Performance
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the DOS, and
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Tic-Tac-Toe
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Figure 18: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and
the DDS for
Glass
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Figure 19: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and
the DDS for
Wine
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Figure 20: Boxplot of the
MAD Performance
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Figure 21: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Credit
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Figure 22: Boxplot of the
MAD Performance
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Figure 23: Boxplot of the
MAD Performance
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Figure 24: Boxplot of the
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DDS for Vehicle
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Figure 25: Boxplot of the
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the DOS, and the
DDS for German

1

2

3

4

5

6

x 10
−3

PO−MCMC DOS DDS

M
A

D

Syn15 (n = 15, m = 100)

Figure 26: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Syn15
(m = 100)
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Figure 27: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Syn15
(m = 200)
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Figure 28: Boxplot of the
MAD Performance
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Figure 29: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Syn15
(m = 1000)
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Figure 30: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Syn15
(m = 2000)
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Figure 31: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Syn15
(m = 5000)
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Figure 32: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Letter
(m = 100)
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Figure 33: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Letter
(m = 200)
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Figure 34: Boxplot of the
MAD Performance
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DDS for Letter
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Figure 35: Boxplot of the
MAD Performance
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Figure 37: Boxplot of the
MAD Performance
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the DOS, and the
DDS for Letter
(m = 5000)
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Figure 38: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Insur19
(m = 100)
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Figure 39: Boxplot of the
MAD Performance
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Figure 40: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Insur19
(m = 500)
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Figure 41: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Insur19
(m = 1000)
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Figure 42: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Insur19
(m = 2000)
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Figure 43: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Insur19
(m = 5000)
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Figure 44: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 100)
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Figure 45: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 200)
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Figure 46: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 500)
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Figure 47: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 1000)
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Figure 48: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 2000)
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Figure 49: Boxplot of the
MAD Performance
of the PO-MCMC,
the DOS, and the
DDS for Child
(m = 5000)
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Figure 50: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Tic-Tac-Toe
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Figure 51: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Glass
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Figure 52: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Wine
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Figure 53: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Housing
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Figure 54: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Credit
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Figure 55: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Zoo
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Figure 56: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Tumor
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Figure 57: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Vehicle
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Figure 58: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
German

14



STRUCTURE LEARNING IN BNS OF A MODERATE SIZE BY EFFICIENT SAMPLING

0.04

0.06

0.08

0.1

0.12

0.14

DP+MCMC K−best IW−DDS

M
A

D

Syn15 (n = 15, m = 100)

Figure 59: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 100)
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Figure 60: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 200)
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Figure 61: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 500)
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Figure 62: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 1000)
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Figure 63: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 2000)
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Figure 64: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Syn15
(m = 5000)
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Figure 65: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 100)
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Figure 66: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 200)
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Figure 67: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 500)
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Figure 68: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 1000)
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Figure 69: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 2000)

0

1

2

3

4

5

6

7

x 10
−4

DP+MCMC K−best IW−DDS

M
A

D

Letter (n = 17, m = 5000)

Figure 70: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Letter
(m = 5000)

16



STRUCTURE LEARNING IN BNS OF A MODERATE SIZE BY EFFICIENT SAMPLING

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

DP+MCMC K−best IW−DDS

M
A

D

Insur19 (n = 19, m = 100)

Figure 71: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Insur19 (m = 100)
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Figure 72: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Insur19 (m = 200)
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Figure 73: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and
the IW-DDS for
Insur19 (m = 500)
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Figure 74: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for In-
sur19 (m = 1000)

0

1

2

3

4

5

6

x 10
−4

DP+MCMC K−best IW−DDS

M
A

D

Insur19 (n = 19, m = 2000)

Figure 75: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for In-
sur19 (m = 2000)
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Figure 76: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for In-
sur19 (m = 5000)
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Figure 77: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 100)
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Figure 78: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 200)
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Figure 79: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 500)
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Figure 80: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 1000)
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Figure 81: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 2000)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

DP+MCMC K−best IW−DDS

M
A

D

Child (n = 20, m = 5000)

Figure 82: Boxplot of the
MAD Performance
of the DP+MCMC,
the K-best, and the
IW-DDS for Child
(m = 5000)

18


	Proof of Theorem 5 (iv) 
	Supplementary Experimental Results for the DDS 
	Supplementary Experimental Results for the IW-DDS 
	Memory-Saving Strategies for the DDS and the IW-DDS with a Very Large No 
	Boxplots for Comparing the PO-MCMC, the DOS, and the DDS in Terms of MAD 
	Boxplots for Comparing the DP+MCMC, the K-best, and the IW-DDS in Terms of MAD 

