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Abstract

Crowdsourcing is a popular paradigm for effectively collecting labels at low cost. The
Dawid-Skene estimator has been widely used for inferring the true labels from the noisy
labels provided by non-expert crowdsourcing workers. However, since the estimator maxi-
mizes a non-convex log-likelihood function, it is hard to theoretically justify its performance.
In this paper, we propose a two-stage efficient algorithm for multi-class crowd labeling prob-
lems. The first stage uses the spectral method to obtain an initial estimate of parameters.
Then the second stage refines the estimation by optimizing the objective function of the
Dawid-Skene estimator via the EM algorithm. We show that our algorithm achieves the
optimal convergence rate up to a logarithmic factor. We conduct extensive experiments on
synthetic and real datasets. Experimental results demonstrate that the proposed algorithm
is comparable to the most accurate empirical approach, while outperforming several other
recently proposed methods.

Keywords: crowdsourcing, spectral methods, EM, Dawid-Skene model, non-convex op-
timization, minimax rate

1. Introduction

With the advent of online services such as Amazon Mechanical Turk, crowdsourcing has
become an efficient and inexpensive way to collect labels for large-scale data. However,
labels collected from the crowd can be of low quality since crowdsourcing workers are often
non-experts and sometimes unreliable. As a remedy, most crowdsourcing services resort to
labeling redundancy, collecting multiple labels from different workers for each item. Such
a strategy raises a fundamental problem in crowdsourcing: how to infer true labels from
noisy but redundant worker labels?
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For labeling tasks with k different categories, Dawid and Skene (1979) develop a max-
imum likelihood approach to this problem based on the EM algorithm. They assume that
each worker is associated with a k×k confusion matrix, where the (l, c)-th entry represents
the probability that a random chosen item in class l is labeled as class c by the worker. The
true labels and worker confusion matrices are jointly estimated by maximizing the likelihood
of the observed labels, where the unobserved true labels are treated as latent variables.

Although this EM-based approach has had empirical success (Snow et al., 2008; Raykar
et al., 2010; Liu et al., 2012; Zhou et al., 2012; Chen et al., 2013; Zhou et al., 2014), there is as
yet no theoretical guarantee for its performance. A recent theoretical study (Gao and Zhou,
2014) shows that the global optimal solutions of the Dawid-Skene estimator can achieve
minimax rates of convergence in a simplified scenario, where the labeling task is binary and
each worker has a single parameter to represent her labeling accuracy (referred to as the
“one-coin” model in what follows). However, since the likelihood function is nonconvex, this
guarantee is not operational because the EM algorithm can get trapped in a local optimum.
Several alternative approaches have been developed that aim to circumvent the theoretical
deficiencies of the EM algorithm, still the context of the one-coin model (Karger et al., 2013,
2014; Ghosh et al., 2011; Dalvi et al., 2013), but, as we survey in Section 2, they either fail
to achieve an optimal rate or make restrictive assumptions that can be hard to justify in
practice.

We propose a computationally efficient and provably optimal algorithm to simultane-
ously estimate true labels and worker confusion matrices for multi-class labeling problems.
Our approach is a two-stage procedure, in which we first compute an initial estimate of
worker confusion matrices using a spectral method, and then in the second stage we turn
to the EM algorithm. Under some mild conditions, we show that this two-stage procedure
achieves minimax rates of convergence up to a logarithmic factor, even after only one iter-
ation of EM. In particular, given any δ ∈ (0, 1), we provide an upper bound on the number
of workers and the number of items so that our method can correctly estimate labels for all
items with probability at least 1 − δ. We also establish a matching lower bound. Further,
we provide both upper and lower bounds for estimating the confusion matrix of each worker
and show that our algorithm achieves the optimal accuracy.

This work not only provides an optimal algorithm for crowdsourcing but provides new
general insight into the method of moments. Empirical studies show that when the spectral
method is used as an initialization for the EM algorithm, it outperforms EM with random
initialization (Liang, 2013; Chaganty and Liang, 2013). This work provides a concrete way
to justify such observations theoretically. It is also known that starting from a root-n
consistent estimator obtained by the spectral method, one Newton-Raphson step leads to
an asymptotically optimal estimator (Lehmann and Casella, 2003). However, obtaining
a root-n consistent estimator and performing a Newton-Raphson step can be demanding
computationally. In contrast, our initialization doesn’t need to be root-n consistent, thus
a small portion of data suffices to initialize. Moreover, performing one iteration of EM is
computationally more attractive and numerically more robust than a Newton-Raphson step
especially for high-dimensional problems.

The paper is organized as follows. In Section 2, we provide background on crowdsourcing
and the method of moments for latent variables models. In Section 3, we describe our
crowdsourcing problem. Our provably optimal algorithm is presented in Section 4. Section
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5 is devoted to theoretical analysis (with the proofs gathered in the Appendix). In Section
6, we consider the special case of the one-coin model. A simpler algorithm is introduced
together with a sharper rate. Numerical results on both synthetic and real datasets are
reported in Section 7, followed by our conclusions in Section 8.

2. Related Work

Many methods have been proposed to address the problem of estimating true labels in
crowdsourcing (Whitehill et al., 2009; Raykar et al., 2010; Welinder et al., 2010; Ghosh
et al., 2011; Liu et al., 2012; Zhou et al., 2012; Dalvi et al., 2013; Karger et al., 2014, 2013;
Parisi et al., 2014; Zhou et al., 2014). The methods in Raykar et al. (2010); Ghosh et al.
(2011); Karger et al. (2014); Liu et al. (2012); Karger et al. (2013); Dalvi et al. (2013) are
based on the generative model proposed by Dawid and Skene (1979). In particular, Ghosh
et al. (2011) propose a method based on Singular Value Decomposition (SVD) which ad-
dresses binary labeling problems under the one-coin model. The analysis in Ghosh et al.
(2011) assumes that the labeling matrix is full, that is, each worker labels all items. To relax
this assumption, Dalvi et al. (2013) propose another SVD-based algorithm which explicitly
considers the sparsity of the labeling matrix in both algorithm design and theoretical anal-
ysis. Karger et al. (2014) propose an iterative algorithm for binary labeling problems under
the one-coin model and extended it to multi-class labeling tasks by converting a k-class
problem into k − 1 binary problems (Karger et al., 2013). This line of work assumes that
tasks are assigned to workers according to a random regular graph, thus imposes specific
constraints on the number of workers and the number of items. In Section 5, we compare our
theoretical results with that of existing approaches (Ghosh et al., 2011; Dalvi et al., 2013;
Karger et al., 2014, 2013). The methods in Raykar et al. (2010); Liu et al. (2012); Chen
et al. (2013) incorporate Bayesian inference into the Dawid-Skene estimator by assuming a
prior over confusion matrices. Zhou et al. (2012, 2014) propose a minimax entropy principle
for crowdsourcing which leads to an exponential family model parameterized with worker
ability and item difficulty. When all items have zero difficulty, the exponential family model
reduces to the generative model suggested by Dawid and Skene (1979).

Our method for initializing the EM algorithm in crowdsourcing is inspired by recent
work using spectral methods to estimate latent variable models (Anandkumar et al., 2014,
2015, 2012, 2013; Chaganty and Liang, 2013; Zou et al., 2013; Hsu et al., 2012; Jain and Oh,
2014). The basic idea in this line of work is to compute third-order empirical moments from
the data and then to estimate parameters by computing a certain orthogonal decomposition
of tensor derived from the moments. Given the special symmetric structure of the moments,
the tensor factorization can be computed efficiently using the robust tensor power method
(Anandkumar et al., 2014). A problem with this approach is that the estimation error can
have a poor dependence on the condition number of the second-order moment matrix and
thus empirically it sometimes performs worse than EM with multiple random initializations.
Our method, by contrast, requires only a rough initialization from the moment of moments;
we show that the estimation error does not depend on the condition number (see Theorem
4 (b)).

Recently, Balakrishnan et al. (2016) study the convergence rate of EM algorithm under a
good initialization, which belongs to a ball centered at the true parameter. They show that
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when the radius of the ball is small enough to satisfy certain gradient stability condition
and sample deviation condition, EM has a geometric convergence rate. Although this is an
insightful theoretical result, Balakrishnan et al. (2016) fail to provide a practical approach
to constructing such an initialization.

Other related work is by Dasgupta and Schulman (2007), who study an EM algorithm for
learning mixture of Gaussians under certain initialization. They establish a nearly optimal
estimation precision when using a two-round EM algorithm to learn the parameters from a
mixture of k well-separated spherical Gaussians in the high-dimensional space. The space
dimension d is assumed to be much greater than log(k). Although the high-level idea is
quite similar to ours (i.e., constructing a good initializer and running one or two steps of
EM), our work is different from this work in several respects. First, while Dasgupta and
Schulman (2007) require the Gaussian means to be well separated, we do not assume the
workers’ labeling distributions for different true labels to be separated. In fact, for any
worker, we allow his/her labeling distributions for two classes to be arbitrarily close or even
identical. We only assume that there is a partitioning of the workers into three groups,
such that the averaged confusion matrix of each group has full rank. Second, Dasgupta and
Schulman (2007) consider the high-dimensional case where the dimension of the parameter
space is d � log(k). In crowdsourcing, the labeling distribution lies in a k-dimensional
space where k is the number of classes. Typically k is a small integer (below 10). Finally,
in terms of analysis technique, Dasgupta and Schulman (2007) heavily rely on Gaussian
concentration results. Our work uses a variety of techniques for different theorems. In
particular, for Theorem 3, we repeatedly use matrix perturbation and matrix concentration
results to establish the sample complexity for the spectral method. For Theorem 4, we create
three random events in equation (33) (that holds with high probability), then establish
both a prediction error bound and a confusion matrix estimation error bound for the EM
algorithm. We use Le Cam’s method (Yu, 1997) to establish the minimax lower bound
result in Theorem 5.

3. Problem Setting

Throughout this paper, [a] denotes the integer set {1, 2, . . . , a} and σb(A) denotes the b-th
largest singular value of matrix A. Suppose that there are m workers, n items and k classes.
The true label yj of item j ∈ [n] is assumed to be sampled from a probability distribution

P[yj = l] = wl where {wl : l ∈ [k]} are positive values satisfying
∑k

l=1wl = 1. Denote by a
vector zij ∈ Rk the label that worker i assigns to item j. When the assigned label is c, we
write zij = ec, where ec represents the c-th canonical basis vector in Rk in which the c-th
entry is 1 and all other entries are 0. A worker may not label every item. Let πi indicate the
probability that worker i labels a randomly chosen item. If item j is not labeled by worker
i, we write zij = 0. Our goal is to estimate the true labels {yj : j ∈ [n]} from the observed
labels {zij : i ∈ [m], j ∈ [n]}.

For this estimation purpose, we need to make assumptions on the process of generating
observed labels. Following the work of Dawid and Skene (1979), we assume that the proba-
bility that worker i labels an item in class l as class c is independent of any particular chosen
item, that is, it is a constant over j ∈ [n]. Let us denote the constant probability by µilc. Let
µil = [µil1 µil2 · · · µilk]T . The matrix Ci = [µi1 µi2 . . . µik] ∈ Rk×k is called the confusion
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Algorithm 1: Estimating confusion matrices

Input: integer k, observed labels zij ∈ Rk for i ∈ [m] and j ∈ [n].

Output: confusion matrix estimates Ĉi ∈ Rk×k for i ∈ [m].

(1) Partition the workers into three disjoint and non-empty group G1, G2 and G3.
Compute the group aggregated labels Zgj by Eq. (1).

(2) For (a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, compute the second and the third order

moments M̂2 ∈ Rk×k, M̂3 ∈ Rk×k×k by Eq. (2a)-(2d), then compute Ĉ�c ∈ Rk×k and

Ŵ ∈ Rk×k by tensor decomposition:

(a) Compute whitening matrix Q̂ ∈ Rk×k (such that Q̂T M̂2Q̂ = I) using SVD.

(b) Compute eigenvalue-eigenvector pairs {(α̂h, v̂h)}kh=1 of the whitened tensor

M̂3(Q̂, Q̂, Q̂) by using the robust tensor power method. Then compute ŵh = α̂−2
h

and µ̂�h = (Q̂T )−1(α̂hv̂h).

(c) For l = 1, . . . , k, set the l-th column of Ĉ�c by some µ̂�h whose l-th coordinate has

the greatest component, then set the l-th diagonal entry of Ŵ by ŵh.

(3) Compute Ĉi by Eq. (5).

matrix of worker i. In the special case of the one-coin model, all the diagonal elements of
Ci are equal to a constant while all the off-diagonal elements are equal to another constant
such that each column of Ci sums to 1.

4. Our Algorithm

In this section, we present an algorithm to estimate the confusion matrices and true labels.
Our algorithm consists of two stages. In the first stage, we compute an initial estimate for
the confusion matrices via the method of moments. In the second stage, we perform the
standard EM algorithm by taking the result of the Stage 1 as an initialization.

4.1 Stage 1: Estimating confusion matrices

Partitioning the workers into three disjoint and non-empty groups G1, G2 and G3, the
outline of this stage is the following: we use the method of moments to estimate the averaged
confusion matrices for the three groups, then utilize this intermediate estimate to obtain
the confusion matrix of each individual worker. In particular, for g ∈ {1, 2, 3} and j ∈ [n],
we calculate the averaged labeling within each group by

Zgj :=
1

|Gg|
∑
i∈Gg

zij . (1)
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Denoting the aggregated confusion matrix columns by

µ�gl := E(Zgj |yj = l) =
1

|Gg|
∑
i∈Gg

πiµil,

our first step is to estimate C�g := [µ�g1, µ
�
g2, . . . , µ

�
gk] and to estimate the distribution of true

labels W := diag(w1, w2, . . . , wk). The following proposition shows that we can solve for C�g
and W from the moments of {Zgj}.

Proposition 1 (Anandkumar et al. (2015)) Assume that the vectors {µ�g1, µ�g2, . . . , µ�gk}
are linearly independent for each g ∈ {1, 2, 3}. Let (a, b, c) be a permutation of {1, 2, 3}.
Define

Z ′aj := E[Zcj ⊗ Zbj ] (E[Zaj ⊗ Zbj ])−1 Zaj ,

Z ′bj := E[Zcj ⊗ Zaj ] (E[Zbj ⊗ Zaj ])−1 Zbj ,

M2 := E[Z ′aj ⊗ Z ′bj ],
M3 := E[Z ′aj ⊗ Z ′bj ⊗ Zcj ].

Then,

M2 =

k∑
l=1

wl µ
�
cl ⊗ µ�cl and M3 =

k∑
l=1

wl µ
�
cl ⊗ µ�cl ⊗ µ�cl.

Since we only have finite samples, the expectations in Proposition 1 must be approxi-
mated by empirical moments. In particular, they are computed by averaging over indices
j = 1, 2, . . . , n. For each permutation (a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, we compute

Ẑ ′aj :=
( 1

n

n∑
j=1

Zcj ⊗ Zbj
)( 1

n

n∑
j=1

Zaj ⊗ Zbj
)−1

Zaj , (2a)

Ẑ ′bj :=
( 1

n

n∑
j=1

Zcj ⊗ Zaj
)( 1

n

n∑
j=1

Zbj ⊗ Zaj
)−1

Zbj , (2b)

M̂2 :=
1

n

n∑
j=1

Ẑ ′aj ⊗ Ẑ ′bj , (2c)

M̂3 :=
1

n

n∑
j=1

Ẑ ′aj ⊗ Ẑ ′bj ⊗ Zcj . (2d)

The statement of Proposition 1 suggests that we can recover the columns of C�c and

the diagonal entries of W by operating on the moments M̂2 and M̂3. This is implemented
by the tensor factorization method in Algorithm 1. In particular, the tensor factorization
algorithm returns a set of vectors {(µ̂�h, ŵh) : h = 1, . . . , k}, where each (µ̂�h, ŵh) estimates a
particular column of C�c (for some µ�cl) and a particular diagonal entry of W (for some wl).
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It is important to note that the tensor factorization algorithm doesn’t provide a one-to-one
correspondence between the recovered column and the true columns of C�c . Thus, µ̂�1, . . . , µ̂

�
k

represents an arbitrary permutation of the true columns.
To discover the index correspondence, we take each µ̂�h and examine its greatest com-

ponent. We assume that within each group, the probability of assigning a correct label
is always greater than the probability of assigning any specific incorrect label. This as-
sumption will be made precise in the next section. As a consequence, if µ̂�h corresponds
to the l-th column of C�c , then its l-th coordinate is expected to be greater than other
coordinates. Thus, we set the l-th column of Ĉ�c to some vector µ̂�h whose l-th coordinate
has the greatest component (if there are multiple such vectors, then randomly select one
of them; if there is no such vector, then randomly select a µ̂�h). Then, we set the l-th

diagonal entry of Ŵ to the scalar ŵh associated with µ̂�h. Note that by iterating over

(a, b, c) ∈ {(2, 3, 1), (3, 1, 2), (1, 2, 3)}, we obtain Ĉ�c for c = 1, 2, 3 respectively. There will

be three copies of Ŵ estimating the same matrix W—we average them for the best accuracy.

In the second step, we estimate each individual confusion matrix Ci. The following
proposition shows that we can recover Ci from the moments of {zij}.

Proposition 2 For any g ∈ {1, 2, 3} and any i ∈ Gg, let a ∈ {1, 2, 3}\{g} be one of the
remaining group index. Then

πiCiW (C�a)T = E[zijZ
T
aj ].

Proof First, notice that

E[zijZ
T
aj ] = E

[
E[zijZ

T
aj |yj ]

]
=

k∑
l=1

wlE
[
zijZ

T
aj |yj = l

]
. (3)

Since zij for 1 ≤ i ≤ m are conditionally independent given yj , we can write

E
[
zijZ

T
aj |yj = l

]
= E [zij |yj = l]E

[
ZTaj |yj = l

]
= (πiµil)(µ

�
al)

T . (4)

Combining (3) and (4) implies the desired result,

E[zijZ
T
aj ] = πi

k∑
l=1

wlµil(µ
�
al)

T = πiCiW (C�a)T .

Proposition 2 suggests a plug-in estimator for Ci. We compute Ĉi using the empirical
approximation of E[zijZ

T
aj ] and using the matrices Ĉ�a , Ĉ�b , Ŵ obtained in the first step.

Concretely, we calculate

Ĉi := normalize

( 1

n

n∑
j=1

zijZ
T
aj

)(
Ŵ (Ĉ�a)T

)−1

 , (5)

where the normalization operator rescales the matrix columns, making sure that each col-
umn sums to 1. The overall procedure for Stage 1 is summarized in Algorithm 1.
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4.2 Stage 2: EM algorithm

The second stage is devoted to refining the initial estimate provided by Stage 1. The joint
likelihood of true label yj and observed labels zij , as a function of confusion matrices µi,
can be written as

L(µ; y, z) :=
n∏
j=1

m∏
i=1

k∏
c=1

(µiyjc)
I(zij=ec).

By assuming a uniform prior over y, we maximize the marginal log-likelihood function

`(µ) := log

 ∑
y∈[k]n

L(µ; y, z)

 . (6)

We refine the initial estimate of Stage 1 by maximizing the objective function (6), which
is implemented by the Expectation Maximization (EM) algorithm. The EM algorithm
takes as initialization the values {µ̂ilc} provided as output by Stage 1, and then executes
the following E-step and M-step for at least one round.

E-step Calculate the expected value of the log-likelihood function, with respect to the
conditional distribution of y given z under the current estimate of µ:

Q(µ) := Ey|z,µ̂ [log(L(µ; y, z))] =
n∑
j=1

{
k∑
l=1

q̂jl log

(
m∏
i=1

k∏
c=1

(µilc)
I(zij=ec)

)}
,

where q̂jl ←
exp

(∑m
i=1

∑k
c=1 I(zij = ec) log(µ̂ilc)

)∑k
l′=1 exp

(∑m
i=1

∑k
c=1 I(zij = ec) log(µ̂il′c)

) for j ∈ [n], l ∈ [k].

(7)

M-step Find the estimate µ̂ that maximizes the function Q(µ):

µ̂ilc ←
∑n

j=1 q̂jlI(zij = ec)∑k
c′=1

∑n
j=1 q̂jlI(zij = ec′)

for i ∈ [m], l ∈ [k], c ∈ [k]. (8)

In practice, we alternatively execute the updates (7) and (8), for one iteration or until
convergence. Each update increases the objective function `(µ). Since `(µ) is not concave,
the EM update doesn’t guarantee converging to the global maximum. It may converge to
distinct local stationary points for different initializations. Nevertheless, as we prove in
the next section, it is guaranteed that the EM algorithm will output statistically optimal
estimates of true labels and worker confusion matrices if it is initialized by Algorithm 1.

5. Convergence Analysis

To state our main theoretical results, we first need to introduce some notation and assump-
tions. Let

wmin := min{wl}kl=1 and πmin := min{πi}mi=1
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be the smallest portion of true labels and the most extreme sparsity level of workers. Our
first assumption assumes that both wmin and πmin are strictly positive, that is, every class
and every worker contributes to the dataset.

Our second assumption assumes that the confusion matrices for each of the three groups,
namely C�1 , C�2 and C�3 , are nonsingular. As a consequence, if we define matrices Sab and
tensors Tabc for any a, b, c ∈ {1, 2, 3} as

Sab :=
k∑
l=1

wl µ
�
al ⊗ µ�bl = C�aW (C�b )T and Tabc :=

k∑
l=1

wl µ
�
al ⊗ µ�bl ⊗ µ�cl,

then there will be a positive scalar σL such that σk(Sab) ≥ σL > 0.
Our third assumption assumes that within each group, the average probability of assign-

ing a correct label is always higher than the average probability of assigning any incorrect
label. To make this statement rigorous, we define a quantity

κ := min
g∈{1,2,3}

min
l∈[k]

min
c∈[k]\{l}

{µ�gll − µ�glc}

indicating the smallest gap between diagonal entries and non-diagonal entries in the confu-
sion matrix. The assumption requires that κ is strictly positive. Note that this assumption
is group-based, thus doesn’t assume the accuracy of any individual worker.

Finally, we introduce a quantity that measures the average ability of workers in identify-
ing distinct labels. For two discrete distributions P andQ, let DKL (P,Q) :=

∑
i P (i) log(P (i)/Q(i))

represent the KL-divergence between P and Q. Since each column of the confusion matrix
represents a discrete distribution, we can define the following quantity:

D = min
l 6=l′

1

m

m∑
i=1

πiDKL (µil, µil′) . (9)

The quantity D lower bounds the averaged KL-divergence between two columns. If D is
strictly positive, it means that every pair of labels can be distinguished by at least one
subset of workers. As the last assumption, we assume that D is strictly positive.

The following two theorems characterize the performance of our algorithm. We split
the convergence analysis into two parts. Theorem 3 characterizes the performance of Algo-
rithm 1, providing sufficient conditions for achieving an arbitrarily accurate initialization.
We provide the proof of Theorem 3 in Appendix A.

Theorem 3 For any scalar δ > 0 and any scalar ε satisfying ε ≤ min
{

36κk
πminwminσL

, 2
}

, if

the number of items n satisfies

n = Ω

(
k5 log((k +m)/δ)

ε2π2
minw

2
minσ

13
L

)
,

then the confusion matrices returned by Algorithm 1 are bounded as

‖Ĉi − Ci‖∞ ≤ ε for all i ∈ [m],

with probability at least 1− δ. Here, ‖ · ‖∞ denotes the element-wise `∞-norm of a matrix.
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Theorem 4 characterizes the error rate in Stage 2. It states that when a sufficiently
accurate initialization is taken, the updates (7) and (8) refine the estimates µ̂ and ŷ to the
optimal accuracy. See Appendix B for the proof.

Theorem 4 Assume that µilc ≥ ρ holds for all (i, l, c) ∈ [m]× [k]2. For any scalar δ > 0,
if confusion matrices Ĉi are initialized in a way such that

‖Ĉi − Ci‖∞ ≤ α := min

{
ρ

2
,
ρD

16

}
for all i ∈ [m] (10)

and the number of workers m and the number of items n satisfy

m = Ω

(
log(1/ρ) log(kn/δ)

D

)
and n = Ω

(
log(mk/δ)

πminwminα2

)
,

then, for µ̂ and q̂ obtained by iterating (7) and (8) (for at least one round), with probability
at least 1− δ,

(a) Let ŷj = arg maxl∈[k] q̂jl, then ŷj = yj holds for all j ∈ [n].

(b) ‖µ̂il − µil‖22 ≤
48 log(8mk/δ)

πiwln
holds for all (i, l) ∈ [m]× [k].

In Theorem 4, the assumption that all confusion matrix entries are lower bounded by
ρ > 0 is somewhat restrictive. For datasets violating this assumption, we enforce positive
confusion matrix entries by adding random noise: Given any observed label zij , we replace
it by a random label in {1, ..., k} with probability kρ. In this modified model, every entry
of the confusion matrix is lower bounded by ρ, so that Theorem 4 holds. The random noise
makes the constant D smaller than its original value, but the change is minor for small ρ.

To see the consequence of the convergence analysis, we take error rate ε in Theorem 3
equal to the constant α defined in Theorem 4. Then we combine the statements of the two
theorems. This shows that if we choose the number of workers m and the number of items
n such that

m = Ω̃

(
1

D

)
and n = Ω̃

(
k5

π2
minw

2
minσ

13
L min{ρ2, (ρD)2}

)
; (11)

that is, if both m and n are lower bounded by a problem-specific constant and logarithmic
terms, then with high probability, the predictor ŷ will be perfectly accurate, and the esti-
mator µ̂ will be bounded as ‖µ̂il − µil‖22 ≤ Õ(1/(πiwln)). To show the optimality of this
convergence rate, we present the following minimax lower bounds. See Appendix C for the
proof.

Theorem 5 There are universal constants c1 > 0 and c2 > 0 such that:

10



Spectral Methods meet EM: A Provably Optimal Algorithmfor Crowdsourcing

(a) For any {µilc}, {πi} and any number of items n, if the number of workers m ≤ 1/(4D),
then

inf
ŷ

sup
v∈[k]n

E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣{µilc}, {πi}, y = v

]
≥ c1n.

(b) For any {wl}, {πi}, any worker-item pair (m,n) and any pair of indices (i, l) ∈ [m]×[k],
we have

inf
µ̂

sup
µ∈Rm×k×k

E
[
‖µ̂il − µil‖22

∣∣∣{wl}, {πi}] ≥ c2 min

{
1,

1

πiwln

}
.

In part (a) of Theorem 5, we see that the number of workers should be at least 1/D,
otherwise any predictor will make many mistakes. This lower bound matches our sufficient
condition on the number of workers m (see Eq. (11)). In part (b), we see that the best
possible estimate for µil has 1/(πiwln) mean-squared error. It verifies the optimality of our
estimator µ̂il. It is also worth noting that the constraint on the number of items n (see
Eq. (11)) depends on problem-specific constants, which might be improvable. Nevertheless,
the constraint scales logarithmically with m and 1/δ, thus is easy to satisfy for reasonably
large datasets.

5.1 Discussion of theoretical results

In this section, we present a discussion of the foregoing theoretical results. In particular,
we compare Theorem 3 and Theorem 4 to existing theoretical results on crowdsourcing and
the EM method.

5.1.1 Sparse sampling regime vs. dense sampling regime

In our theoretical analysis, we make the assumption that the minimum labeling frequency
πmin is bounded away from zero, i.e., πmin = Ω(1). This corresponds to the dense sampling
regime where the average number of labels for each item should be Θ(m). According to
Theorem 4, to guarantee perfect label prediction with probability 1 − δ, we require the

average number of samples for each item to be Ω
(

log(1/δ)πmin

D̄

)
. Two related works in the

dense sampling regime include Ghosh et al. (2011) and Gao and Zhou (2014). Ghosh et al.
(2011) studied the one-coin model for binary labeling. To attain a δ prediction error, their
algorithm requires m and n to scale with 1/δ2, while our algorithm allows m and n to scale
with log(1/δ). Gao and Zhou (2014) studied the minimax rate of the prediction error and
showed that maximizing likelihood is statistically optimal. However, they didn’t provide a
polynomial-time algorithm to achieve the minimax rate.

Another sampling regime is the sparse sampling regime, where the labeling frequency
πmin goes to zero as the number of items n goes to infinity. In fact, this is a practical
regime for large-scale datasets when workers complete only a vanishing fraction of the total
tasks. As can be seen in condition (11), our theoretical result doesn’t apply to the very
sparse regime when π = o(1/

√
n). Several work have been devoted to investigate the sparse

sampling regime (Karger et al., 2014, 2013; Dalvi et al., 2013). Under the sparse sampling
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regime, the high-probability recovery of all true labels might be impossible. However, it is
still of great interest to establish the upper bound on the prediction error as a function of
the average number of labels per item. Karger et al. (2014, 2013) show that if worker labels
are organized by a random regular bipartite graph, then the number of labels on each item
should scale as log(1/δ), where δ is the label prediction error. Their analysis assumes that
the limit of number of items goes to infinity, or that the number of workers is many times
of the number of items. Dalvi et al. (2013) provide algorithms that improve the theoretical
guarantee for the one-coin model. Their algorithms succeed without the regular bipartite
graph assumption, and without the requirement that the limit of number of items goes to
infinity.

Although our theoretical analysis does not fully cover the sparse sampling regime, the
algorithm sill applies to the sparse regime and achieves reasonably good performance (see,
e.g., the experiment with TREC data in Section 7.2). Empirically, spectral-initialized EM
is rather robust for both dense and sparse sampling regimes.1

5.1.2 Lower bound on the number of items

In both Theorem 3 and 4, we require lower bounds on the number of times. It is interesting
to see whether these bounds can be improved. One idea is to improve those lower bounds
using the technique from Balakrishnan et al. (2016) discussed in Section 2. Nevertheless,
as we explain below, such improvement is up to a multiplicative factor 1/α, which doesn’t
depend on σL, wmin and πmin. We recall that there are two lower bounds on the number of
items n in our theoretical results.

1. The lower bound in the condition of Theorem 3 (denoted by nspectral). It relies on the
target error ε, the minimum singular value σL and the minimum prior probabilities
πmin, wmin.

2. The lower bound in the condition of Theorem 4 (denoted by nEM). It establishes the
performance guarantee for EM. This lower bound relies on the initialization accuracy
α and the minimum prior probabilities πmin, wmin.

Theorem 4 shows that it is sufficient to set the target error of Theorem 3 equal to ε := α.
Thus, the constant nspectral also depends on α. Due to the additional dependence on σL,
the condition on nspectral is more restrictive than that on nEM.

The result of Balakrishnan et al. (2016) provides conditions (e.g., gradient stability con-
dition and certain sample deviation condition) under which the EM method has geometric
convergence rate. Assuming that these conditions are weaker than ours in Theorem 4,
then instead of requiring the initialization condition ‖Ĉi − Ci‖∞ ≤ α for all i ∈ [m] as in
equation (10), we may have another constant α′ > α, such that ‖Ci − Ĉi‖∞ ≤ α′ ensures
the linear convergence of EM. (It might be difficult to find the largest α′ that makes the
conditions of Balakrishnan et al. (2016) hold). The best possible value of α′ is 1 since any
entry of Ĉi and Ci is bounded by 1. This means that we can potentially improve nspectral by

1. An anonymous reviewer pointed out that if the system designer has the control over how to assign
tasks to the workers, our result can be applied to sparse sampling regime via a grouping technique. In
particular, one can partition the items into groups of small size and assign different workers to each
groups of items so that the each subgroups of items and workers form a dense sub-matrix.

12
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a factor of 1/α. Note that α is a constant that doesn’t depend on σL. Thus, this potential
improvement doesn’t affect the lower bound’s dependence on the condition number of the
confusion matrix.

The result of Balakrishnan et al. (2016) provides conditions for EM to work but it
doesn’t show how to initialize EM to satisfy these conditions. Our paper uses the spectral
method to do the initialization. As a consequence, the restriction on nspectral is a premise
for the spectral method to work. In order to improve the dependence on the condition
number, one has to invent a better initialization scheme, which is out of the scope of this
paper.

5.1.3 Discussion of simple majority voting estimator

It is also interesting to compare our algorithm with the majority voting estimator, where
the true label is simply estimated by a majority vote among workers. Gao and Zhou (2014)
show that if there are many spammers and few experts, the majority voting estimator gives
almost a random guess. In contrast, our algorithm requires a sufficiently large mD to
guarantee good performance. Since mD is the aggregated KL-divergence, a small number
of experts suffices to ensure it is large enough.

6. One-Coin Model

In this section, we consider a simpler crowdsourcing model that is usually referred to as the
“one-coin model.” For the one-coin model, the confusion matrix Ci is parameterized by a
single parameter pi. More concretely, its entries are defined as

µilc =

{
pi if l = c,
1−pi
k−1 if l 6= c.

(12)

In other words, the worker i uses a single coin flip to decide her assignment. No mat-
ter what the true label is, the worker has pi probability to assign the correct label, and
has 1 − pi probability to randomly assign an incorrect label. For the one-coin model, it
suffices to estimate pi for every worker i and estimate yj for every item j. Because of its
simplicity, the one-coin model is easier to estimate and enjoys better convergence properties.

To simplify our presentation, we consider the case where πi ≡ 1; noting that with proper
normalization, the algorithm can be easily adapted to the case where πi < 1. The statement
of the algorithm relies on the following notation: For every two workers a and b, let the
quantity Nab be defined as

Nab :=
k − 1

k

(∑n
j=1 I(zaj = zbj)

n
− 1

k

)
.

For every worker i, let workers ai, bi be defined as

(ai, bi) = arg max
(a,b)
{|Nab| : a 6= b 6= i}.

The algorithm contains two separate stages. First, we initialize p̂i by an estimator based on
the method of moments. In contrast with the algorithm for the general model, the estimator

13



Zhang, Chen, Zhou and Jordan

Algorithm 2: Estimating one-coin model

Input: integer k, observed labels zij ∈ Rk for i ∈ [m] and j ∈ [n].
Output: Estimator p̂i for i ∈ [m] and ŷj for j ∈ [n].

(1) Initialize p̂i by

p̂i ←
1

k
+ sign(Nia1)

√
NiaiNibi

Naibi

(13)

(2) If 1
m

∑m
i=1 p̂i ≥

1
k does not hold, then set p̂i ← 2

k − p̂i for all i ∈ [m].

(3) Iteratively execute the following two steps for at least one round:

q̂jl ∝ exp
( m∑
i=1

I(zij = el) log(p̂i) + I(zij 6= el) log
(1− p̂i
k − 1

))
for j ∈ [n], l ∈ [k],

(14)

p̂i ←
1

n

n∑
j=1

k∑
l=1

q̂jlI(zij = el) for i ∈ [m], (15)

where update (14) normalizes q̂jl, making
∑k

l=1 q̂jl = 1 hold for all j ∈ [n].

(4) Output {p̂i} and ŷj := arg maxl∈[k]{q̂jl}.

for the one-coin model doesn’t need third-order moments. Instead, it only relies on pairwise
statistics Nab. Second, an EM algorithm is employed to iteratively maximize the objective
function (6). See Algorithm 2 for a detailed description.

To theoretically characterize the performance of Algorithm 2, we need some additional
notation. Let κi be the i-th largest element in {|pi − 1/k|}mi=1. In addition, let κ :=
1
m

∑m
i=1(pi − 1/k) be the average gap between all accuracies and 1/k. We assume that κ is

strictly positive. We follow the definition of D in Eq. (9). The following theorem is proved
in Appendix D.

Theorem 6 Assume that ρ ≤ pi ≤ 1− ρ holds for all i ∈ [m]. For any scalar δ > 0, if the
number of workers m and the number of items n satisfy

m = Ω

(
log(1/ρ) log(kn/δ)

D

)
and n = Ω

(
log(mk/δ)

κ6
3 min{κ2, ρ2, (ρD)2}

)
, (16)

then, for p̂ and ŷ returned by Algorithm 2, with probability at least 1− δ,

(a) ŷj = yj holds for all j ∈ [n];

(b) |p̂i − pi| ≤ 2

√
3 log(6m/δ)

n holds for all i ∈ [m].
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Opt-D&S MV-D&S Majority Voting KOS Ghosh-SVD EigenRatio

π = 0.2 7.64 7.65 18.85 8.34 12.35 10.49

π = 0.5 0.84 0.84 7.97 1.04 4.52 4.52

π = 1.0 0.01 0.01 1.57 0.02 0.15 0.15

Table 1: Prediction error (%) on the synthetic dataset. The parameter π indicates the
sparsity of data—it is the probability that the worker labels each task.

It is worth contrasting condition (11) with condition (16), namely the sufficient con-
ditions for the general model and for the one-coin model. It turns out that the one-coin
model requires much milder conditions on the number of items. In particular, κ3 will be
close to 1 if among all the workers there are three experts giving high-quality answers. As
a consequence, the one-coin model is more robust than the general model. By contrasting
the convergence rate of µ̂il (by Theorem 4) and p̂i (by Theorem 6), the convergence rate of
p̂i does not depend on {wl}kl=1. This is additional evidence that the one-coin model enjoys
a better convergence rate because of its simplicity.

7. Experiments

In this section, we report the results of empirical studies comparing the algorithm we propose
in Section 4 (referred to as Opt-D&S) with a variety of other methods. We compare to the
Dawid & Skene estimator initialized by majority voting (refereed to as MV-D&S), the pure
majority voting estimator, the multi-class labeling algorithm proposed by Karger et al.
(2013) (referred to as KOS), the SVD-based algorithm proposed by Ghosh et al. (2011)
(referred to as Ghost-SVD) and the “Eigenvalues of Ratio” algorithm proposed by Dalvi
et al. (2013) (referred to as EigenRatio). The evaluation is made on three synthetic datasets
and five real datasets.

7.1 Synthetic data

For synthetic data, we generate m = 100 workers and n = 1000 binary tasks. The true
label of each task is uniformly sampled from {1, 2}. For each worker, the 2-by-2 confusion
matrix is generated as follow: the two diagonal entries are independently and uniformly
sampled from the interval [0.3, 0.9], then the non-diagonal entries are determined to make
the confusion matrix columns sum to 1. To simulate a sparse dataset, we make each worker
label a task with probability π. With the choice π ∈ {0.2, 0.5, 1.0}, we obtain three different
datasets.

We execute every algorithm independently ten times and average the outcomes. For the
Opt-D&S algorithm and the MV-D&S estimator, the estimation is outputted after ten EM
iterates. For the group partitioning step involved in the Opt-D&S algorithm, the workers
are randomly and evenly partitioned into three groups.

The main evaluation metric is the error of predicting the true label of items. The
performance of various methods are reported in Table 1. On all sparsity levels, the Opt-
D&S algorithm achieves the best accuracy, followed by the MV-D&S estimator. All other
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Figure 1: Comparing the convergence rate of the Opt-D&S algorithm and the MV-D&S es-
timator on synthetic dataset with π = 0.2: (a) convergence of the prediction error.
(b) convergence of the squared error

∑m
i=1 ‖Ĉi − Ci‖2F for estimating confusion

matrices.

methods are consistently worse. It is not surprising that the Opt-D&S algorithm and the
MV-D&S estimator yield similar accuracies, since they optimize the same log-likelihood
objective. It is also meaningful to look at the convergence speed of both methods, as
they employ distinct initialization strategies. Figure 1 shows that the Opt-D&S algorithm
converges faster than the MV-D&S estimator, both in estimating the true labels and in
estimating confusion matrices. This can be explained by the general theoretical guarantee
associated with Opt-D&S (recall Theorem 3).

The first and the second iteration of the Opt-D&S curve in Figure 1(b) correspond to the
confusion matrix estimation error achieved by 1) the spectral method and 2) the spectral
method with one iteration of EM, respectively. In Table 2, we provide a more detailed
comparison, where the errors are compared with π ∈ {0.2, 0.5, 1.0} and at different stages
of the iteration. We found that for dense data (π = 1), the spectral method alone provides
a reasonably good estimate on the confusion matrix, but its performance degenerates as
the data becomes sparser. For both dense and sparse data, the spectral method with one
iteration of EM achieves the nearly optimal error rate, which coincides with our theoretical
prediction. In contrast, if the algorithm is initialized by majority voting, then one iteration
of EM fails to provide a good estimate. Table 2 shows that its error rate is an order-
of-magnitude higher than the spectral method initialized EM. This supports our concern
that majority-voting initialization can be far from optimal—a principal motivation for this
paper. Nevertheless, both initializations converge to the same error rate after ten iterations.
Given the robustness of the EM method, deriving a sufficient and necessary condition under
which the majority-voting initialization converges to an optimal solution remains an open
problem.
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π = 0.2 π = 0.5 π = 1.0

Spectral Method 2.084 0.583 0.164

Opt-D&S (1st iteration) 0.972 0.352 0.143

Opt-D&S (10th iteration) 0.962 0.343 0.143

MV-D&S (1st iteration) 5.912 6.191 6.618

MV-D&S (10st iteration) 0.962 0.343 0.143

Table 2: Squared error for estimating the confusion matrix. The table compares (1) spectral
method; (2) spectral initialization + one iteration of EM; (3) spectral initialization
+ 10 iterations of EM; (4) majority voting initialization + one iteration of EM;
and (5) majority voting initialization + 10 iterations of EM.

Dataset name # classes # items # workers # worker labels

Bird 2 108 39 4,212

RTE 2 800 164 8,000

TREC 2 19,033 762 88,385

Dog 4 807 52 7,354

Web 5 2,665 177 15,567

Table 3: The summary of datasets used in the real data experiment.

7.2 Real data

For real data experiments, we compare crowdsourcing algorithms on five datasets: three
binary tasks and two multi-class tasks. Binary tasks include labeling bird species (Welin-
der et al., 2010) (Bird dataset), recognizing textual entailment (Snow et al., 2008) (RTE
dataset) and assessing the quality of documents in TREC 2011 crowdsourcing track (Lease
and Kazai, 2011) (TREC dataset). Multi-class tasks include labeling the bread of dogs
from ImageNet (Deng et al., 2009) (Dog dataset) and judging the relevance of web search
results (Zhou et al., 2012) (Web dataset). The statistics for the five datasets are summa-
rized in Table 3. Since the Ghost-SVD algorithm and the EigenRatio algorithm work on
binary tasks, they are evaluated on the Bird, RTE and TREC dataset. For the MV-D&S
estimator and the Opt-D&S algorithm, we iterate their EM steps until convergence.

Since entries of the confusion matrix are positive, we find it helpful to incorporate this
prior knowledge into the initialization stage of the Opt-D&S algorithm. In particular, when
estimating the confusion matrix entries by equation (5), we add an extra checking step
before the normalization, examining if the matrix components are greater than or equal
to a small threshold ∆. For components that are smaller than ∆, they are reset to ∆.
The default choice of the thresholding parameter is ∆ = 10−6. Later, we will compare the
Opt-D&S algorithm with respect to different choices of ∆. It is important to note that this
modification doesn’t change our theoretical result, since the thresholding step doesn’t take
effect if the initialization error is bounded by Theorem 3.

Table 4 summarizes the performance of each method. The MV-D&S estimator and the
Opt-D&S algorithm consistently outperform the other methods in predicting the true label
of items. The KOS algorithm, the Ghost-SVD algorithm and the EigenRatio algorithm yield
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Opt-D&S MV-D&S Majority Voting KOS Ghosh-SVD EigenRatio

Bird 10.09 11.11 24.07 11.11 27.78 27.78

RTE 7.12 7.12 10.31 39.75 49.13 9.00

TREC 29.80 30.02 34.86 51.96 42.99 43.96

Dog 16.89 16.66 19.58 31.72 – –

Web 15.86 15.74 26.93 42.93 – –

Table 4: Error rate (%) in predicting the true labels on real data.
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Figure 2: Comparing the MV-D&S estimator the Opt-D&S algorithm with different thresh-
olding parameter ∆. The predict error is plotted after the 1st EM update and
after convergence.

poorer performance, presumably due to the fact that they rely on idealized assumptions
that are not met by the real data. In Figure 2, we compare the Opt-D&S algorithm with
respect to different thresholding parameters ∆ ∈ {10−i}6i=1. We plot results for three
datasets (RET, Dog, Web), where the performance of the MV-D&S estimator is equal to or
slightly better than that of Opt-D&S. The plot shows that the performance of the Opt-D&S
algorithm is stable after convergence. But when only using the spectral method with just
one E-step for the label prediction (i.e., the red curve Opt-D&S: 1st iteration in Figure 2),
the error rates are more sensitive to the choice of ∆. A proper choice of ∆ makes the Opt-
D&S algorithm perform better than MV-D&S. The result suggests that a proper spectral
initialization with just an E-step is good enough for the purposes of prediction. In practice,
the best choice of ∆ can be obtained by cross validation.

8. Conclusions

Under the generative model proposed by Dawid and Skene (1979), we propose an optimal
algorithm for inferring true labels in the multi-class crowd labeling setting. Our approach
utilizes the method of moments to construct an initial estimator for the EM algorithm.
We proved that our method achieves the optimal rate with only one iteration of the EM
algorithm.

To the best of our knowledge, this work provides the first instance of provable conver-
gence for a latent variable model in which EM is initialized with the method of moments.
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One-step EM initialized by the method of moments not only leads to better estimation error
in terms of the dependence on the condition number of the second-order moment matrix but
it also computationally more attractive than the standard one-step estimator obtained via
a Newton-Raphson step. It is interesting to explore whether a properly initialized one-step
EM algorithm can achieve the optimal rate for other latent variable models such as latent
Dirichlet allocation or other mixed membership models.
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Appendix A. Proof of Theorem 3

If a 6= b, it is easy to verify that Sab = C�aW (C�b )T = E[Zaj ⊗ Zbj ]. Furthermore, we can
upper bound the spectral norm of Sab, namely

‖Sab‖op
≤

k∑
l=1

wl ‖µ�al‖2 ‖µ
�
bl‖2 ≤

k∑
l=1

wl ‖µ�al‖1 ‖µ
�
bl‖1 ≤ 1.

For the same reason, it can be shown that ‖Tabc‖op
≤ 1.

Our proof strategy is briefly described as follows: we upper bound the estimation error
for computing empirical moments (2a)-(2d) in Lemma 7, and upper bound the estimation
error for tensor decomposition in Lemma 8. Then, we combine both lemmas to upper bound
the error of formula (5).

Lemma 7 Given a permutation (a, b, c) of (1, 2, 3), for any scalar ε ≤ σL/2, the second

and the third moments M̂2 and M̂3 computed by equation (2c) and (2d) are bounded as

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} ≤ 31ε/σ3
L (17)

with probability at least 1− δ, where δ = 6 exp(−(
√
nε− 1)2) + k exp(−(

√
n/kε− 1)2).

Lemma 8 Suppose that (a, b, c) is permutation of (1, 2, 3). For any scalar ε ≤ κ/2, if the

empirical moments M̂2 and M̂3 satisfy

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} ≤ εH (18)

for H := min

{
1

2
,

2σ
3/2
L

15k(24σ−1
L + 2

√
2)
,

σ
3/2
L

4
√

3/2σ
1/2
L + 8k(24/σL + 2

√
2)

}

then the estimates Ĉ�c and Ŵ are bounded as

‖Ĉ�c − C�c ‖op ≤
√
kε and ‖Ŵ −W‖op ≤ ε.

with probability at least 1− δ, where δ is defined in Lemma 7.

Combining Lemma 7, Lemma 8, if we choose a scalar ε1 satisfying

ε1 ≤ min{κ/2, πminwminσL/(36k)}, (19)

then the estimates Ĉ�g (for g = 1, 2, 3) and Ŵ satisfy

‖Ĉ�g − C�g‖op ≤
√
kε1 and ‖Ŵ −W‖op ≤ ε1. (20)

with probability at least 1− 6δ, where

δ = (6 + k) exp
(
− (
√
n/kε1Hσ

3
L/31− 1)2

)
.
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To be more precise, we obtain the bound (20) by plugging ε := ε1Hσ
3
L/31 into Lemma 7,

then plugging ε := ε1 into Lemma 8. The high probability statement is obtained by apply-
ing a union bound.

Assuming inequality (20), for any a ∈ {1, 2, 3}, since ‖C�a‖op ≤
√
k, ‖Ĉ�a − C�a‖op ≤√

kε1 and ‖W‖
op
≤ 1,

∥∥∥Ŵ −W∥∥∥
op

≤ ε1, Lemma 18 (the preconditions are satisfied by

inequality (19)) implies that ∥∥∥Ŵ Ĉ�a −WC�a

∥∥∥
op

≤ 4
√
kε1,

Since condition (19) implies

‖Ŵ Ĉ�a −WC�a‖op ≤ 4
√
kε1 ≤

√
wminσL/2 ≤ σk(WC�a)/2

Lemma 17 yields that ∥∥∥∥(Ŵ Ĉ�a

)−1
− (WC�a)−1

∥∥∥∥
op

≤ 8
√
kε1

wminσL
.

By Lemma 19, for any i ∈ [m], the concentration bound∥∥∥∥∥∥ 1

n

n∑
j=1

zijZ
T
aj − E[zijZ

T
aj ]

∥∥∥∥∥∥
op

≤ ε1

holds with probability at least 1−m exp(−(
√
nε1−1)2). Combining the above two inequal-

ities with Proposition 2, then applying Lemma 18 with preconditions∥∥(WC�a)−1
∥∥

op
≤ 1

wminσL
and

∥∥E [zijZTaj]∥∥op
≤ 1,

we have ∥∥∥( 1

n

n∑
j=1

zijZ
T
aj

)(
Ŵ Ĉ�a

)−1

︸ ︷︷ ︸
Ĝ

−πiCi
∥∥∥

op

≤ 18
√
kε1

wminσL
. (21)

Let Ĝ ∈ Rk×k be the first term on the left hand side of inequality (21). Each column of Ĝ,

denoted by Ĝl, is an estimate of πiµil. The `2-norm estimation error is bounded by 18
√
kε1

wminσL
.

Hence, we have

‖Ĝl − πiµil‖1 ≤
√
k‖Ĝl − πiµil‖2 ≤

√
k‖Ĝ− πiCi‖op ≤

18kε1
wminσL

, (22)
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and consequently, using the fact that
∑k

c=1 µilc = 1, we have

∥∥∥normalize(Ĝl)− µil
∥∥∥

2
=

∥∥∥∥∥∥ Ĝl

πi +
∑k

c=1

(
Ĝlc − πiµilc

) − µil
∥∥∥∥∥∥

2

≤ ‖Ĝl − πiµil‖2 + ‖Ĝl − πiµil‖1‖µil‖2
πi − ‖Ĝl − πiµil‖1

≤ 72kε1
πminwminσL

(23)

where the last step combines inequalities (21), (22) with the bound 18kε1
wminσL

≤ πi/2 from
condition (19), and uses the fact that ‖µil‖2 ≤ 1.

Note that inequality (23) holds with probability at least

1− (36 + 6k) exp
(
− (
√
n/kε1Hσ

3
L/31− 1)2

)
−m exp(−(

√
nε1 − 1)2).

It can be verified that H ≥ σ
5/2
L

230k . Thus, the above expression is lower bounded by

1− (36 + 6k +m) exp
(
−
( √

nε1σ
11/2
L

31× 230 · k3/2
− 1
)2)

,

If we represent this probability in the form of 1− δ, then

ε1 =
31× 230 · k3/2

√
nσ

11/2
L

(
1 +

√
log((36 + 6k +m)/δ)

)
. (24)

Combining condition (19) and inequality (23), we find that to make ‖Ĉ − C‖∞ bounded by
ε, it is sufficient to choose ε1 such that

ε1 ≤ min
{επminwminσL

72k
,
κ

2
,
πminwminσL

36k

}
This condition can be further simplified to

ε1 ≤
επminwminσL

72k
(25)

for small ε, that is ε ≤ min
{

36κk
πminwminσL

, 2
}

. According to equation (24), the condition (25)

will be satisfied if

√
n ≥ 72× 31× 230 · k5/2

επminwminσ
13/2
L

(
1 +

√
log((36 + 6k +m)/δ)

)
.

Squaring both sides of the inequality completes the proof.
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A.1 Proof of Lemma 7

Throughout the proof, we assume that the following concentration bound holds: for any
distinct indices (a′, b′) ∈ {1, 2, 3}, we have∥∥∥∥∥∥ 1

n

n∑
j=1

Za′j ⊗ Zb′j − E[Za′j ⊗ Zb′j ]

∥∥∥∥∥∥
op

≤ ε. (26)

By Lemma 19 and the union bound, this event happens with probability at least 1 −
6 exp(−(

√
nε − 1)2). By the assumption that ε ≤ σL/2 ≤ σk(Sab)/2 and Lemma 17, we

have ∥∥∥∥∥∥ 1

n

n∑
j=1

Zcj ⊗ Zbj − E[Zcj ⊗ Zbj ]

∥∥∥∥∥∥
op

≤ ε and

∥∥∥∥∥∥
 1

n

n∑
j=1

Zaj ⊗ Zbj

−1

− (E[Zaj ⊗ Zbj ])−1

∥∥∥∥∥∥
op

≤ 2ε

σ2
k(Sab)

Under the preconditions

‖E[Zcj ⊗ Zbj ]‖op
≤ 1 and

∥∥(E[Zaj ⊗ Zbj ])−1
∥∥

op
≤ 1

σk(Sab)
,

Lemma 18 implies that∥∥∥∥∥∥
 1

n

n∑
j=1

Zcj ⊗ Zbj

 1

n

n∑
j=1

Zaj ⊗ Zbj

−1

− E[Zcj ⊗ Zbj ](E[Zaj ⊗ Zbj ])−1

∥∥∥∥∥∥
op

≤ 2

(
ε

σk(Sab)
+

2ε

σ2
k(Sab)

)
≤ 6ε/σ2

L (27)

and for the same reason, we have∥∥∥∥∥∥
 1

n

n∑
j=1

Zcj ⊗ Zaj

 1

n

n∑
j=1

Zbj ⊗ Zaj

−1

− E[Zcj ⊗ Zaj ](E[Zbj ⊗ Zaj ])−1

∥∥∥∥∥∥
op

≤ 6ε/σ2
L

(28)

Now, let matrices F2 and F3 be defined as

F2 := E[Zcj ⊗ Zbj ](E[Zaj ⊗ Zbj ])−1,

F3 := E[Zcj ⊗ Zaj ](E[Zbj ⊗ Zaj ])−1,

and let the matrix on the left hand side of inequalities (27) and (28) be denoted by ∆2 and
∆3, we have∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3

∥∥∥
op

=

∥∥∥∥(F2 + ∆2

)
(Zaj ⊗ Zbj)

(
F3 + ∆3

)T
− F2 (Zaj ⊗ Zbj)F T3

∥∥∥∥
op

≤ ‖Zaj ⊗ Zbj‖op

(
‖∆2‖op

‖F3 + ∆2‖op
+ ‖F2‖op

‖∆3‖op

)
≤ 30ε ‖Zaj ⊗ Zbj‖op

/σ3
L.
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where the last steps uses inequality (27), (28) and the fact that max{‖F2‖op
, ‖F3‖op

} ≤ 1/σL
and

‖F3 + ∆2‖op
≤ ‖F3‖op + ‖∆2‖op ≤ 1/σL + 6ε/σ2

L ≤ 4/σL.

To upper bound the norm ‖Zaj ⊗ Zbj‖op
, notice that

‖Zaj ⊗ Zbj‖op
≤ ‖Zaj‖2 ‖Zbj‖2 ≤ ‖Zaj‖1 ‖Zbj‖1 ≤ 1.

Consequently, we have∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3
∥∥∥

op

≤ 30ε/σ3
L. (29)

For the rest of the proof, we use inequality (29) to bound M̂2 and M̂3. For the second
moment, we have∥∥∥M̂2 −M2

∥∥∥
op

≤ 1

n

n∑
j=1

∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3
∥∥∥

op

+

∥∥∥∥∥∥F2

 1

n

n∑
j=1

Zaj ⊗ Zbj

F T3 −M2

∥∥∥∥∥∥
op

≤ 30ε/σ3
L +

∥∥∥∥∥∥F2

 1

n

n∑
j=1

Zaj ⊗ Zbj − E[Zaj ⊗ Zbj ]

F T3

∥∥∥∥∥∥
op

≤ 30ε/σ3
L + ε/σ2

L ≤ 31ε/σ3
L.

For the third moment, we have

M̂3 −M3 =
1

n

n∑
j=1

(
Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3

)
⊗ Zcj

+

 1

n

n∑
j=1

F2 (Zaj ⊗ Zbj)F T3 ⊗ Zcj − E
[
F2 (Zaj ⊗ Zbj)F T3 ⊗ Zcj

] . (30)

We examine the right hand side of equation (30). The first term is bounded as∥∥∥(Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3
)
⊗ Zcj

∥∥∥
op

≤
∥∥∥Ẑ ′aj ⊗ Ẑ ′bj − F2 (Zaj ⊗ Zbj)F T3

∥∥∥
op

‖Zcj‖2

≤ 30ε/σ3
L. (31)

For the second term, since ‖F2Zaj‖2 ≤ 1/σL, ‖F3Zbj‖2 ≤ 1/σL and ‖Zcj‖2 ≤ 1, Lemma 19
implies that∥∥∥∥∥∥ 1

n

n∑
j=1

F2 (Zaj ⊗ Zbj)F T3 ⊗ Zcj − E
[
F2 (Zaj ⊗ Zbj)F T3 ⊗ Zcj

]∥∥∥∥∥∥
op

≤ ε/σ2
L (32)

with probability at least 1− k exp(−(
√
n/kε− 1)2). Combining inequalities (31) and (32),

we have ∥∥∥M̂3 −M3

∥∥∥
op

≤ 30ε/σ3
L + ε/σ2

L ≤ 31ε/σ3
L.

Applying a union bound to all high-probability events completes the proof.
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A.2 Proof of Lemma 8

Chaganty and Liang (2013) (Lemma 4) prove that when condition (18) holds, the tensor
decomposition method of Algorithm 1 outputs {µ̂�h, ŵh}kh=1, such that with probability at
least 1− δ, a permutation π satisfies

‖µ̂�h − µ�cπ(h)‖2 ≤ ε and
∥∥ŵh − wπ(h)

∥∥
∞ ≤ ε.

Note that the constant H in Lemma 8 is obtained by plugging upper bounds ‖M2‖op ≤ 1
and ‖M3‖op ≤ 1 into Lemma 4 of Chaganty and Liang (2013).

The π(h)-th component of µ�cπ(h) is greater than other components of µ�cπ(h), by a margin

of κ. Assuming ε ≤ κ/2, the greatest component of µ̂�h is its π(h)-th component. Thus,

Algorithm 1 is able to correctly estimate the π(h)-th column of Ĉ�c by the vector µ̂�h.

Consequently, for every column of Ĉ�c , the `2-norm error is bounded by ε. Thus, the spectral-
norm error of Ĉ�c is bounded by

√
kε. Since W is a diagonal matrix and

∥∥ŵh − wπ(h)

∥∥
∞ ≤ ε,

we have ‖Ŵ −W‖op ≤ ε.

Appendix B. Proof of Theorem 4

We define three random events that will be shown holding with high probability:

E1 :

m∑
i=1

k∑
c=1

I(zij = ec) log(µiyjc/µilc) ≥ mD/2 for all j ∈ [n] and l ∈ [k]\{yj}.

E2 :
∣∣∣ n∑
j=1

I(yj = l)I(zij = ec)− nwlπiµilc
∣∣∣ ≤ ntilc for all (i, l, c) ∈ [m]× [k]2.

E3 :
∣∣∣ n∑
j=1

I(yj = l)I(zij 6= 0)− nwlπi
∣∣∣ ≤ ntilc

µilc
for all (i, l, c) ∈ [m]× [k]2. (33)

where tilc > 0 are scalars to be specified later. We define tmin to be the smallest element
among {tilc}. Assuming that E1 ∩ E2 holds, the following lemma shows that performing
updates (7) and (8) attains the desired level of accuracy. See Section B.1 for the proof.

Lemma 9 Assume that E1∩E2 holds. Also assume that µilc ≥ ρ for all (i, l, c) ∈ [m]× [k]2.
If Ĉ is initialized such that inequality (10) holds, and scalars tilc satisfy

2 exp
(
−mD/4 + log(k)

)
≤ tilc ≤ πminwmin min

{
ρ

8
,
ρD

64

}
. (34)

Then by alternating updates (7) and (8) for at least one round, the estimates Ĉ and q̂ are
bounded as

|µ̂ilc − µilc| ≤ 4tilc/(πiwl). for all i ∈ [m], l ∈ [k], c ∈ [k].

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−mD/4 + log(k)

)
for all j ∈ [n].
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Next, we characterize the probability that events E1, E2 and E3 hold. For measuring P[E1],
we define auxiliary variable si :=

∑k
c=1 I(zij = ec) log(µiyjc/µilc). It is straightforward to

see that s1, s2, . . . , sm are mutually independent on any value of yj , and each si belongs to
the interval [0, log(1/ρ)]. it is easy to verify that

E

[
m∑
i=1

si

∣∣∣yi] =

m∑
i=1

πiDKL

(
µiyj , µil

)
.

We denote the right hand side of the above equation by D. The following lemma shows
that the second moment of si is bounded by the KL-divergence between labels.

Lemma 10 Conditioning on any value of yj, we have

E[s2
i |yi] ≤

2 log(1/ρ)

1− ρ
πiDKL

(
µiyj , µil

)
.

According to Lemma 10, the aggregated second moment of si is bounded by

E

[
m∑
i=1

s2
i

∣∣∣yi] ≤ 2 log(1/ρ)

1− ρ

m∑
i=1

πiDKL

(
µiyjc, µilc

)
=

2 log(1/ρ)

1− ρ
D

Thus, applying the Bernstein inequality, we have

P
[∑
i=1

si ≥ D/2|yi
]
≥ 1− exp

− 1
2(D/2)2

2 log(1/ρ)
1−ρ D + 1

3(2 log(1/ρ))(D/2)

 ,

Since ρ ≤ 1/2 and D ≥ mD, combining the above inequality with the union bound, we
have

P[E1] ≥ 1− kn exp

(
− mD

33 log(1/ρ)

)
. (35)

For measuring P[E2], we observe that
∑n

j=1 I(yj = l)I(zij = ec) is the sum of n i.i.d. Bernoulli
random variables with mean p := πiwlµilc. Since tilc ≤ πminwminρ/8 ≤ p, applying the Cher-
noff bound implies

P

∣∣∣ n∑
j=1

I(yj = l)I(zij = ec)− np
∣∣∣ ≥ ntilc

 ≤ 2 exp(−nt2ilc/(3p)) = 2 exp

(
−

nt2ilc
3πiwlµilc

)
,

For measuring P[E3], note that
∑n

j=1 I(yj = l)I(zij 6= ec) is the sum of n i.i.d. Bernoulli

random variables with mean q := πiwl. Since tilc
µilc
≤ πminwminρ/8

ρ ≤ q, using a Chernoff
bound yields

P

∣∣∣ n∑
j=1

I(yj = l)I(zij 6= 0)− nq
∣∣∣ ≥ n tilc

µilc

 ≤ 2 exp(−
nt2ilc

3qµ2
ilc

) ≤ 2 exp

(
−

nt2ilc
3πiwlµilc

)
,

Summarizing the probability bounds on E1, E2 and E3, we conclude that E1 ∩ E2 ∩ E3

holds with probability at least

1− kn exp

(
− mD

33 log(1/ρ)

)
−

m∑
i=1

k∑
l=1

4 exp

(
−

nt2ilc
3πiwlµilc

)
. (36)
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Proof of Part (a) According to Lemma 9, for ŷj = yj being true, it sufficient to have
exp(−mD/4 + log(k)) < 1/2, or equivalently

m > 4 log(2k)/D. (37)

To ensure that this bound holds with probability at least 1− δ, expression (36) needs to be
lower bounded by δ. It is achieved if we have

m ≥ 33 log(1/ρ) log(2kn/δ)

D
and n ≥ 3πiwlµilc log(8mk/δ)

t2ilc
(38)

If we choose

tilc :=

√
3πiwlµilc log(8mk/δ)

n
. (39)

then the second part of condition (38) is guaranteed. To ensure that tilc satisfies condi-
tion (34). We need to have√

3πiwlµilc log(8mk/δ)

n
≥ 2 exp

(
−mD/4 + log(k)

)
and√

3πiwlµilc log(8mk/δ)

n
≤ πminwminα/4.

The above two conditions require that m and n satisfy

m ≥
4 log(2k

√
n/(3πminwminρ log(8mk/δ)))

D
(40)

n ≥ 48 log(8mk/δ)

πminwminα2
(41)

The four conditions (37), (38), (40) and (41) are simultaneously satisfied if we have

m ≥ 33 log(1/ρ) log(2kn/δ)

D
and

n ≥ 48 log(8mk/δ)

πminwminα2
.

Under this setup, ŷj = yj holds for all j ∈ [n] with probability at least 1− δ.

Proof of Part (b) If tilc is set by equation (39), combining Lemma 9 with this assignment,
we have

(µ̂ilc − µilc)2 ≤ 48µilc log(8mk/δ)

πiwln

with probability at least 1 − δ. Summing both sides of the inequality over c = 1, 2, . . . , k
completes the proof.
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B.1 Proof of Lemma 9

To prove Lemma 9, we study the consequences of update (7) and update (8). We prove
two important lemmas, which show that both updates provide good estimates if they are
properly initialized.

Lemma 11 Assume that event E1 holds. If µ and its estimate µ̂ satisfy

µilc ≥ ρ and |µ̂ilc − µilc| ≤ δ1 for all i ∈ [m], l ∈ [k], c ∈ [k], (42)

and q̂ is updated by formula (7), then q̂ is bounded as:

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−m

(
D

2
− 2δ1

ρ− δ1

)
+ log(k)

)
for all j ∈ [n]. (43)

Proof
For an arbitrary index l 6= yj , we consider the quantity

Al :=

m∑
i=1

k∑
c=1

I(zij = ec) log(µ̂iyjc/µ̂ilc)

By the assumption that E1 and inequality (42) holds, we obtain that

Al =

m∑
i=1

k∑
c=1

I(zij = ec) log(µiyjc/µilc) +

m∑
i=1

k∑
c=1

I(zij = ec)

[
log
( µ̂iyjc
µiyjc

)
− log

( µ̂ilc
µilc

)]

≥

(
m∑
i=1

πiDKL

(
µiyj , µil

)
2

)
− 2m log

( ρ

ρ− δ1

)
≥ m

(
D

2
− 2δ1

ρ− δ1

)
. (44)

Thus, for every index l 6= yj , combining formula (7) and inequality (44) implies that

q̂jl ≤
1

exp(Al)
≤ exp

(
−m

(
D

2
− 2δ1

ρ− δ1

))
.

Consequently, we have

q̂jyj ≥ 1−
∑
l 6=yj

q̂jl ≥ 1− k exp

(
−m

(
D

2
− 2δ1

ρ− δ1

))
.

Combining the above two inequalities completes the proof.

Lemma 12 Assume that event E2 holds. If q̂ satisfies

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ δ2 for all j ∈ [n], (45)

and µ̂ is updated by formula (8), then µ̂ is bounded as:

|µ̂ilc − µilc| ≤
2ntilc + 2nδ2

(7/8)nπiwl − nδ2
. for all i ∈ [m], l ∈ [k], c ∈ [k]. (46)
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Proof By formula (8), we can write µ̂ilc = A/B, where

A :=
n∑
j=1

q̂jlI(zij = ec) and B :=
k∑

c′=1

n∑
j=1

q̂jlI(zij = ec′) =

n∑
j=1

q̂jlI(zij 6= 0).

Combining this definition with the assumption that event E2 and inequality (45) hold, we
find that

|A− nπiwlµilc| ≤
∣∣∣ n∑
j=1

I(qjl = yj)I(zij = ec)− nπiwlµilc

∣∣∣+
∣∣∣ n∑
j=1

q̂jlI(zij = ec)−
n∑

j=1

I(qjl = yj)I(zij = ec)
∣∣∣

≤ ntilc + nδ2.

Similarly, using the assumption that event E3 and inequality (45) hold, we have

|B − nπiwl| ≤
∣∣∣ n∑
j=1

I(qjl = yj)I(zij 6= 0)− nπiwl
∣∣∣+
∣∣∣ n∑
j=1

q̂jlI(zij 6= 0)−
n∑
j=1

I(qjl = yj)I(zij 6= 0)
∣∣∣

≤ ntilc
µilc

+ nδ2.

Combining the bound for A and B, we obtain that

|µ̂ilc − µilc| =
∣∣∣∣nπiwlµilc + (A− nπiwlµilc)

nπiwl + (B − nπiwl)
− µilc

∣∣∣∣ =

∣∣∣∣(A− nπiwlµilc)− µilc(B − nπiwl)nπiwl + (B − nπiwl)

∣∣∣∣
≤ 2ntilc + 2nδ2

nπiwl − n(tilc/µilc)− nδ2
.

Condition (34) implies
tilc
µilc
≤ tilc

ρ
≤ πminwminρ

8ρ
=
πminwmin

8
,

lower bounding the denominator. Plugging in this bound completes the proof.

To proceed with the proof, we assign specific values to δ1 and δ2. Let

δ1 := min

{
ρ

2
,
ρD

16

}
and δ2 := tmin/2. (47)

We claim that at any step in the update, the preconditions (42) and (45) always hold.
We prove the claim by induction. Before the iteration begins, µ̂ is initialized such

that the accuracy bound (10) holds. Thus, condition (42) is satisfied at the beginning. We
assume by induction that condition (42) is satisfied at time 1, 2, . . . , τ−1 and condition (45)
is satisfied at time 2, 3, . . . , τ − 1. At time τ , either update (7) or update (8) is performed.
If update (7) is performed, then by the inductive hypothesis, condition (42) holds before
the update. Thus, Lemma 11 implies that

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−m

(
D

2
− 2δ1

ρ− δ1

)
+ log(k)

)
.
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The assignment (47) implies D
2 −

2δ1
ρ−δ1 ≥

D
4 , which yields that

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp(−mD/4 + log(k)) ≤ tmin/2 = δ2,

where the last inequality follows from condition (34). It suggests that condition (45) holds
after the update.

On the other hand, we assume that update (8) is performed at time τ . Since update (8)
follows update (7), we have τ ≥ 2. By the inductive hypothesis, condition (45) holds before
the update, so Lemma 12 implies

|µ̂ilc − µilc| ≤
2ntilc + 2nδ2

(7/8)nπiwl − nδ2
=

2ntilc + ntmin

(7/8)nπiwl − ntmin/2
≤ 3ntilc

(7/8)nπiwl − ntmin/2
,

where the last step follows since tmin ≤ tilc. Noticing ρ ≤ 1, condition (34) implies that tmin ≤
πminwmin/8. Thus, the right hand side of the above inequality is bounded by 4tilc/(πiwl).
Using condition (34) again, we find

4tilc
πiwl

≤ 4tilc
πminwmin

≤ min

{
ρ

2
,
ρD

16

}
= δ1,

which verifies that condition (42) holds after the update. This completes the induction.

Since preconditions (42) and (45) hold for any time τ ≥ 2, Lemma 11 and Lemma 12
implies that the concentration bounds (43) and (46) always hold. These two concentration
bounds establish the lemma’s conclusion.

B.2 Proof of Lemma 10

By the definition of si, we have

E[s2
i ] = πi

k∑
c=1

µiyjc(log(µiyjc/µilc))
2 = πi

k∑
c=1

µiyjc(log(µilc/µiyjc))
2

We claim that for any x ≥ ρ and ρ < 1, the following inequality holds:

log2(x) ≤ 2 log(1/ρ)

1− ρ
(x− 1− log(x)). (48)

We defer the proof of inequality (48), focusing on its consequence. Let x := µilc/µiyjc, then
inequality (48) yields that

E[s2
i ] ≤

2 log(1/ρ)

1− ρ
πi

(
k∑
c=1

µilc − µiyjc − µiyjc log(µilc/µiyjc)

)
=

2 log(1/ρ)

1− ρ
πiDKL

(
µiyj , µil

)
.

It remains to prove the claim (48). Let f(x) := log2(x) − 2 log(1/ρ)
1−ρ (x − 1 − log(x)). It

suffices to show that f(x) ≤ 0 for x ≥ ρ. First, we have f(1) = 0 and

f ′(x) =
2(log(x)− log(1/ρ)

1−ρ (x− 1))

x
.
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For any x > 1, we have

log(x) < x− 1 ≤ log(1/ρ)

1− ρ
(x− 1)

where the last inequality holds since log(1/ρ) ≥ 1 − ρ. Hence, we have f ′(x) < 0 and
consequently f(x) < 0 for x > 1.

For any ρ ≤ x < 1, notice that log(x) − log(1/ρ)
1−ρ (x − 1) is a concave function of x, and

equals zero at two points x = 1 and x = ρ. Thus, f ′(x) ≥ 0 at any point x ∈ [ρ, 1), which
implies f(x) ≤ 0.

Appendix C. Proof of Theorem 5

In this section we prove Theorem 5. The proof separates into two parts.

C.1 Proof of Part (a)

Throughout the proof, probabilities are implicitly conditioning on {πi} and {µilc}. We
assume that (l, l′) are the pair of labels such that

D =
1

m

m∑
i=1

πiDKL (µil, µil′) .

Let Q be a uniform distribution over the set {l, l′}n. For any predictor ŷ, we have

max
v∈[k]n

E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣y = v

]
≥

∑
v∈{l,l′}n

Q(v) E
[ n∑
j=1

I(ŷj 6= yj)
∣∣∣y = v

]

=
n∑
j=1

∑
v∈{l,l′}n

Q(v) E
[
I(ŷj 6= yj)

∣∣∣y = v
]
. (49)

Thus, it is sufficient to lower bound the right hand side of inequality (49).
For the rest of the proof, we lower bound the quantity

∑
y∈{l,l′}n Q(v) E[I(ŷj 6= yj)|y] for

every item j. Let Z := {zij : i ∈ [m], j ∈ [n]} be the set of all observations. We define two
probability measures P0 and P1, such that P0 is the measure of Z conditioning on yj = l,
while P1 is the measure of Z conditioning on yj = l′. By applying Le Cam’s method (Yu,
1997) and Pinsker’s inequality, we have∑

v∈{l,l′}n
Q(v) E

[
I(ŷj 6= yj)

∣∣∣y = v
]

= Q(yj = l)P0(ŷj 6= l) + Q(yj = l′)P1(ŷj 6= l′)

≥ 1

2
− 1

2
‖P0 − P1‖TV

≥ 1

2
− 1

4

√
DKL (P0,P1). (50)

The remaining arguments upper bound the KL-divergence between P0 and P1. Conditioning
on yj , the set of random variables Zj := {zij : i ∈ [m]} are independent of Z\Zj for both
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P0 and P1. Letting the distribution of X with respect to probability measure P be denoted
by P(X), we have

DKL (P0,P1) = DKL (P0(Zj),P1(Zj)) + DKL (P0(Z\Zj),P1(Z\Zj)) = DKL (P0(Zj),P1(Zj)) ,
(51)

where the last step follows since P0(Z\Zj) = P1(Z\Zj). Next, we observe that z1j , z2j , . . . , zmj
are mutually independent given yj , which implies

DKL (P0(Zj),P1(Zj)) =
m∑
i=1

DKL (P0(zij),P1(zij))

=
m∑
i=1

[
(1− πi) log

(
1− πi
1− πi

)
+

k∑
c=1

πiµilc log

(
πiµilc
πiµil′c

)]

=

m∑
i=1

k∑
c=1

πiDKL (µilc, µil′c) = mD. (52)

Combining inequality (50) with equations (51) and (52), we have∑
v∈{l,l′}n

Q(v) E
[
I(ŷj 6= yj)

∣∣∣y = v
]
≥ 1

2
− 1

4

√
mD.

Thus, if m ≤ 1/(4D), then the above inequality is lower bounded by 3/8. Plugging this
lower bound into inequality (49) completes the proof.

C.2 Proof of Part (b)

Throughout the proof, probabilities are implicitly conditioning on {πi} and {wl}. We define
two vectors

u0 :=

(
1

2
,
1

2
, 0, . . . , 0

)T
∈ Rk and u1 :=

(
1

2
+ δ,

1

2
− δ, 0, . . . , 0

)T
∈ Rk,

where δ ≤ 1/4 is a scalar to be specified. Consider a m-by-k random matrix V whose entries
are uniformly sampled from {0, 1}. We define a random tensor uV ∈ Rm×k×k, such that
(uV )il := uVil for all (i, l) ∈ [m]× [k]. Givan an estimator µ̂ and a pair of indices (̄i, l̄), we
have

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥
∑
v∈[k]n

P(y = v)

(∑
V

P(V ) E
[
‖µ̂īl̄ − µīl̄‖22

∣∣∣µ = uV , y = v
])

.

(53)

For the rest of the proof, we lower bound the term
∑

V P(V ) E[‖µ̂īl̄ − µīl̄‖22|µ = uV , y =

v] for every v ∈ [k]n. Let V̂ be an estimator defined as

V̂ =

{
0 if ‖µ̂īl̄ − u0‖2 ≤ ‖µ̂īl̄ − u1‖2.
1 otherwise.
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If µ = uV , then V̂ 6= Vīl̄ ⇒ ‖µ̂īl̄ − µīl̄‖2 ≥
√

2
2 δ. Consequently, we have

∑
V

P(V ) E[‖µ̂īl̄ − µīl̄‖22|µ = uV , y = v] ≥ δ2

2
P[V̂ 6= Vīl̄|y = v]. (54)

Let Z := {zij : i ∈ [m], j ∈ [n]} be the set of all observations. We define two probability
measures P0 and P1, such that P0 is the measure of Z conditioning on y = v and µīl̄ = u0,
and P1 is the measure of Z conditioning on y = v and µīl̄ = u1. For any other pair of
indices (i, l) 6= (̄i, l̄), µil = uVil for both P0 and P1. By this definition, the distribution of
Z conditioning on y = v and µ = uV is a mixture of distributions Q := 1

2P0 + 1
2P1. By

applying Le Cam’s method (Yu, 1997) and Pinsker’s inequality, we have

P[V̂ 6= Vīl̄|y = v] ≥ 1

2
− 1

2
‖P0 − P1‖TV

≥ 1

2
− 1

4

√
DKL (P0,P1). (55)

Conditioning on y = v, the set of random variables Zi := {zij : j ∈ [n]} are mutually
independent for both P0 and P1. Letting the distribution of X with respect to probability
measure P be denoted by P(X), we have

DKL (P0,P1) =
m∑
i=1

DKL (P0(Zi),P1(Zi)) = DKL (P0(Zī),P1(Zī)) , (56)

where the last step follows since P0(Zi) = P1(Zi) for all i 6= ī. Next, we let J := {j : vj = l̄}
and define a set of random variables ZiJ := {zij : j ∈ J}. It is straightforward to see that
ZiJ is independent of Zi\ZiJ for both P0 and P1. Hence, we have

DKL (P0(Zī),P1(Zī)) = DKL (P0(ZīJ),P1(ZīJ)) + DKL (P0(Zī\ZīJ),P1(Zī\ZīJ))

= DKL (P0(ZīJ),P1(ZīJ)) , (57)

where the last step follows since P0(Zī\ZīJ) = P1(Zī\ZīJ). Finally, since µīl̄ is explicitly
given in both P0 and P1, the random variables contained in ZīJ are mutually independent.
Consequently, we have

DKL (P0(ZīJ),P1(ZīJ)) =
∑
j∈J

DKL

(
P0(zīj),P1(zīj)

)
= |J | πī

1

2
log

(
1

1− 4δ2

)
≤ 5

2
|J | πīδ2. (58)

Here, we have used the fact that log(1/(1− 4x2)) ≤ 5x2 holds for any x ∈ [0, 1/4].

Combining the lower bound (55) with upper bounds (56), (57) and (58), we find

P[V̂il 6= Vil|y = v] ≥ 3

8
I
(

5

2
|J | πīδ2 ≤ 1

4

)
.
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Plugging the above lower bound into inequalities (53) and (54) implies that

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥ 3δ2

16
P
[
|{j : yj = l̄}| ≤ 1

10πīδ
2

]
.

Note than |{j : yj = l̄}| ∼ Binomial(n,wl̄). Thus, if we set

δ2 := min

{
1

16
,

1

10πīwl̄n

}
,

then 1
10πīδ

2 is greater than or equal to the median of |{j : yj = l̄}|, and consequently,

sup
µ∈Rm×k×k

E
[
‖µ̂īl̄ − µīl̄‖22

]
≥ min

{
3

512
,

3

320πīwl̄n

}
,

which establishes the theorem.

Appendix D. Proof of Theorem 6

Our proof strategy is briefly described as follow: We first upper bound the error of Step
(1)-(2) in Algorithm 2. This upper bound is presented as lemma 13. Then, we analyze the
performance of Step (3), taking the guarantee obtained from the previous two steps.

Lemma 13 Assume that κ3 > 0. Let p̂i be initialized by Step (1)-(2). For any scalar

0 < t <
κκ3

3
18 , the upper bound

max
i∈[m]
{|p̂i − pi|} ≤

18t

κ3
3

(59)

holds with probability at least 1−m2 exp(−nt2/2).

The rest of the proof upper bounds the error of Step (3). The proof follows very similar
steps as in the proof of Theorem 4. We first define two events that will be shown holding
with high probability.

E1 :
m∑
i=1

k∑
c=1

I(zij = ec) log(µiyjc/µilc) ≥ mD/2 for all j ∈ [n] and l ∈ [k]\{yj}.

E2 :
∣∣∣ n∑
j=1

I(zij = eyj )− npi
∣∣∣ ≤ nti for all i ∈ [m].

Lemma 14 Assume that E1 ∩ E2 holds. Also assume that ρ ≤ pi ≤ 1− ρ for all i ∈ [m]. If
p̂ is initialized such that

|p̂i − pi| ≤ α := min

{
κ

2
,
ρ

2
,
ρD

16

}
for all i ∈ [m] (60)
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and scalars ti satisfy

exp
(
−mD/4 + log(k)

)
≤ ti ≤ min

{
ρ

4
,
ρD

32

}
(61)

Then the estimates p̂ and q̂ obtained by alternating updates (14) and (15) satisfy:

|p̂i − pi| ≤ 2ti. for all i ∈ [m].

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−mD/4 + log(k)

)
for all j ∈ [n].

As in the proof of Theorem 4, we can lower bound the probability of the event E1∩E2 by
applying Bernstein’s inequality and the Chernoff bound. In particular, the following bound
holds:

P[E1 ∩ E2] ≥ 1− kn exp

(
− mD

33 log(1/ρ)

)
−

m∑
i=1

2 exp

(
−nt

2
i

3pi

)
. (62)

The proof of inequality (62) precisely follows the proof of Theorem 4.

Proof of upper bounds (a) and (b) in Theorem 6 To apply Lemma 14, we need to
ensure that condition (60) holds. If we assign t := ακ3

3/18 in Lemma 13, then condition (60)
holds with probability at least 1 −m2 exp(−nα2κ6

3/648). To ensure that this event holds
with probability at least 1− δ/3, we need to have

n ≥ 648 log(3m2/δ)

α2κ6
3

. (63)

By Lemma 14, for ŷj = yj being true, it suffices to have

m > 4 log(2k)/D (64)

To ensure that E1 ∩ E2 holds with probability at least 1− 2δ/3, expression (62) needs to be
lower bounded by 1− 2δ/3. It is achieved by

m ≥ 33 log(1/ρ) log(3kn/δ)

D
and n ≥ 3pi log(6m/δ)

t2i
(65)

If we choose

ti :=

√
3 log(6m/δ)

n
. (66)

then the second part of condition (65) is guaranteed. To ensure that tilc satisfies condi-
tion (61). We need to have√

3 log(6m/δ)

n
≥ exp

(
−mD/4 + log(k)

)
and√

3 log(6m/δ)

n
≤ α/2.
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The above two conditions requires that m and n satisfy

m ≥
4 log(k

√
n/(3 log(6m/δ)))

D
(67)

n ≥ 12 log(6m/δ)

α2
. (68)

The five conditions (63), (64), (65), (67) and (68) are simultaneously satisfied if we have

m ≥ 33 log(1/ρ) log(3kn/δ)

D
and

n ≥ 648 log(3m2/δ)

α2κ6
3

.

Under this setup, ŷj = yj holds for all j ∈ [n] with probability at least 1 − δ. Combining
equation (66) with Lemma 14, the bound

|p̂i − pi| ≤ 2

√
3 log(6m/δ)

n

holds with probability at least 1− δ.

D.1 Proof of Lemma 13

We claim that after initializing p̂ via formula (13), it satisfies

min

{
max
i∈[m]
{|p̂i − pi|},max

i∈[m]
{|p̂i − (2/k − pi)|}

}
≤ 18t

κ3
3

(69)

with probability at least 1−m2 exp(−nt2/2). Assuming inequality (69), it is straightforward
to see that this bound is preserved by the algorithm’s step (2). In addition, step (2) ensures
that 1

m

∑m
i=1 p̂i ≥

1
k , which implies

max
i∈[m]
{|p̂i − (2/k − pi)|} ≥

∣∣∣∣∣ 1

m

m∑
i=1

p̂i −

(
2

k
− 1

m

m∑
i=1

pi

)∣∣∣∣∣
≥ 1

k
−
(

1

k
− κ
)

= κ >
18t

κ3
3

. (70)

Combining inequalities (69) and (70) establishes the lemma.

We turn to prove claim (69). For any worker a and worker b, it is obvious that I(zaj =
zbj) are independent random variables for j = 1, 2, . . . , n. Since

E[I(zaj = zbj)] = papb + (k − 1)
1− pa
k − 1

1− pb
k − 1

=
k

k − 1
(pa − 1/k)(pb − 1/k) +

1

k

and k−1
k (I(zaj = zbj) − 1

k ) belongs to the interval [−1, 1], applying Hoeffding’s inequality
implies that

P(|Nab − (pa − 1/k)(pb − 1/k)| ≤ t) ≥ 1− exp(−nt2/2) for any t > 0.
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By applying the union bound, the inequality

|Nab − (pa − 1/k)(pb − 1/k)| ≤ t (71)

holds for all (a, b) ∈ [m]2 with probability at least 1−m2 exp(−nt2/2). For the rest of the
proof, we assume that this high-probability event holds.

Given an arbitrary index i, we take indices (ai, bi) such that

(ai, bi) = arg max
(a,b)
{|Nab| : a 6= b 6= i}. (72)

We consider another two indices (a∗, b∗) such that |pa∗ − 1/k| and |pb∗ − 1/k| are the two
greatest elements in {|pa− 1/k| : a ∈ [m]\{i}}. Let βi := pi− 1/k be a shorthand notation,
then inequality (71) and equation (72) yields that

|βaiβbi | ≥ |Naibi | − t ≥ |Na∗b∗ | − t ≥ |βa∗βb∗ | − 2t ≥ |βa∗βb∗ |/2, (73)

where the last step follows since 2t ≤ κ2
3/2 ≤ |βa∗βb∗ |/2. Note that |βbi | ≤ |βa∗ | (since

|βa∗ | is the largest entry by its definition), inequality (73) implies that |βai | ≥
|βb∗βa∗ |

2|βbi |
≥

|βb∗ |
2 ≥ κ3/2. By the same argument, we obtain |βbi | ≥ |βb∗ |/2 ≥ κ3/2. To upper bound the

estimation error, we write |Niai |, |Nibi |, |Naibi | in the form of

|Niai | = |βiβai |+ δ1

|Nibi | = |βiβbi |+ δ2

|Naibi | = |βaiβbi |+ δ3,

where |δ1|, |δ2|, |δ3| ≤ t. Firstly, notice that Niai , Nibi ∈ [−1, 1], thus,∣∣∣∣∣
√
|NiaiNibi |
|Naibi |

−

√
|NiaiNibi |
|βaiβbi |

∣∣∣∣∣ ≤
∣∣∣∣∣ 1√
|Naibi |

− 1√
|βaiβbi |

∣∣∣∣∣ ≤ t

2(|βaiβbi | − t)3/2
≤ t

(κ2
3/4)3/2

,

(74)

where the last step relies on the inequality |βaiβbi | − t ≥ κ2
3/4 obtained by inequality (73).

Secondly, we upper bound the difference between
√
|NiaiNibi | and

√
|β2
i βaiβbi |. If |βi| ≤ t,

using the fact that |βai |, |βbi | ≤ 1, we have∣∣∣∣√|NiaiNibi | −
√
|β2
i βaiβbi |

∣∣∣∣ ≤√|NiaiNibi |+
√
|β2
i βaiβbi | ≤

√
4t2 +

√
t2 ≤ 3t.

If |βi| > t, using the fact that |βai |, |βbi | ∈ [κ3/2, 1] and |βaiβbi | ≥ κ2
3/2, we have∣∣∣∣√|NiaiNibi | −

√
|β2
i βaiβbi |

∣∣∣∣ ≤ |βiβbiδ1|+ |βiβaiδ2|+ |δ1δ2|√
|β2
i βaiβbi |

≤ |δ1|√
|βai/βbi |

+
|δ2|√
|βbi/βai |

+
|δ1δ2|

t
√
|βaiβbi |

≤ 3
√

2t/κ3.
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Combining the above two upper bounds implies∣∣∣∣∣
√
|NiaiNibi |
|βaiβbi |

−

√
|β2
i βaiβbi |
|βaiβbi |

∣∣∣∣∣ =

∣∣∣√|NiaiNibi | −
√
|β2
i βaiβbi |

∣∣∣√
|βaiβbi |

≤ 6t

κ2
3

. (75)

Combining inequalities (74) and (75), we obtain∣∣∣∣∣
√
|NiaiNibi |
|Naibi |

− |βi|

∣∣∣∣∣ ≤ 14t

κ3
3

. (76)

Finally, we turn to analyzing the sign of Nia1 . According to inequality (71), we have

Nia1 = βiβa1 + δ4,

where |δ4| ≤ t. Following the same argument for βai and βbi , it was shown that |βa1 | ≥ κ3/2.
We combine inequality (76) with a case study of sign(Nia1) to complete the proof. Let

p̂i :=
1

k
+ sign(Nia1)

√
|NiaiNibi |
|Naibi |

.

If sign(Nia1) 6= sign(βiβa1), then |βiβa1 | ≤ |δ4| ≤ t. Thus, |βi| ≤ t/|βai | ≤ 2t/κ3, and
consequently,

max{|p̂i − pi|, |p̂i − (2/k − pi)|} ≤

∣∣∣∣∣
√
|NiaiNibi |
|Naibi |

∣∣∣∣∣+ |pi − 1/k|

≤

∣∣∣∣∣
√
|NiaiNibi |
|Naibi |

− |pi − 1/k|

∣∣∣∣∣+ 2|pi − 1/k| ≤ 18t

κ3
3

(77)

Otherwise, we have sign(Nia1) = sign(βiβa1) and consequently sign(βi) = sign(Nia1)sign(βa1).
If sign(βa1) = 1, then sign(βi) = sign(Nia1), which yields that

|p̂i − pi| =

∣∣∣∣∣sign(Nia1)

√
|NiaiNibi |
|Naibi |

− sign(βi)|βi|

∣∣∣∣∣ ≤ 14t

κ3
3

. (78)

If sign(βa1) = −1, then sign(βi) = −sign(Nia1), which yields that

|p̂i − (2/k − pi)| =

∣∣∣∣∣sign(Nia1)

√
|NiaiNibi |
|Naibi |

+ sign(βi)|βi|

∣∣∣∣∣ ≤ 14t

κ3
3

. (79)

Combining inequalities (77), (78) and (79), we find that

min

{
max
i∈[m]
{|p̂i − pi|},max

i∈[m]
{|p̂i − (2/k − pi)|}

}
≤ 18t

κ3
3

.

which establishes claim (69).
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D.2 Proof of Lemma 14

The proof follows the argument in the proof of Lemma 9. We present two lemmas upper
bounding the error of update (14) and update (15), assuming proper initialization.

Lemma 15 Assume that event E1 holds. If p and its estimate p̂ satisfies

ρ ≤ pi ≤ 1− ρ and |p̂i − pi| ≤ δ1 for all i ∈ [m], (80)

and q̂ is updated by formula (14), then q̂ is bounded as:

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ exp

(
−m

(
D

2
− 2δ1

ρ− δ1

)
+ log(k)

)
for all j ∈ [n]. (81)

Proof Following the proof of Lemma 11, the lemma is established since both | log(p̂i/pi)|
and | log((1− p̂i)/(1− pi))| are bounded by log(ρ/(ρ− δ1)).

Lemma 16 Assume that event E2 holds. If q̂ satisfies

max
l∈[k]
{|q̂jl − I(yj = l)|} ≤ δ2 for all j ∈ [n], (82)

and p̂ is updated by formula (15), then p̂ is bounded as:

|p̂i − pi| ≤ ti + δ2. for all i ∈ [m]. (83)

Proof By formula (15), we have

p̂i − pi =
1

n

 n∑
j=1

I(zij = eyi)− npi

+
1

n

n∑
j=1

k∑
l=1

(q̂il − I(yj = l))I(zij = el).

Combining inequality (82) with the inequality implied by event E2 completes the proof.

Following the steps in the proof of Lemma 9, we assign specific values to δ1 and δ2. Let

δ1 := min

{
ρ

2
,
ρD

16

}
and δ2 := min

i∈[m]
{ti}.

By the same inductive argument for proving Lemma 9, we can show that the upper
bounds (81) and (83) always hold after the first iteration. Plugging the assignments of
δ1 and δ2 into upper bounds (81) and (83) completes the proof.
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Appendix E. Basic Lemmas

In this section, we prove some standard lemmas that we use for proving technical results.

Lemma 17 (Matrix Inversion) Let A,E ∈ Rk×k be given, where A is invertible and E
satisfies that ‖E‖op ≤ σk(A)/2. Then

‖(A+ E)−1 −A−1‖op ≤
2‖E‖op

σ2
k(A)

.

Proof A little bit of algebra reveals that

(A+ E)−1 −A−1 = (A+ E)−1EA−1.

Thus, we have

‖(A+ E)−1 −A−1‖op ≤
‖E‖op

σk(A)σk(A+ E)
.

We can lower bound the eigenvalues of A+ E by σk(A) and ‖E‖op. More concretely, since

‖(A+ E)θ‖2 ≥ ‖Aθ‖2 − ‖Eθ‖2 ≥ σk(A)− ‖E‖op

holds for any ‖θ‖2 = 1, we have σk(A + E) ≥ σk(A) − ‖E‖op. By the assumption that
‖E‖op ≤ σk(A)/2, we have σk(A+ E) ≥ σk(A)/2. Then the desired bound follows.

Lemma 18 (Matrix Multiplication) Let Ai, Ei ∈ Rk×k be given for i = 1, . . . , n, where
the matrix Ai and the perturbation matrix Ei satisfy ‖Ai‖op ≤ Ki, ‖Ei‖op ≤ Ki. Then∥∥∥∥∥

n∏
i=1

(Ai + Ei)−
n∏
i=1

Ai

∥∥∥∥∥
op

≤ 2n−1

(
n∑
i=1

‖Ei‖op

Ki

)
n∏
i=1

Ki.

Proof By the triangle inequality, we have∥∥∥∥∥
n∏
i=1

(Ai + Ei)−
n∏
i=1

Ai

∥∥∥∥∥
op

=

∥∥∥∥∥∥
n∑
i=1

i−1∏
j=1

Aj

( n∏
k=i+1

(Ak + Ek)

)
Ei

∥∥∥∥∥∥
op

≤
n∑
i=1

‖Ei‖op

i−1∏
j=1

‖Aj‖op

( n∏
k=i+1

‖Ak + Ek‖op

)

≤
n∑
i=1

2n−i
‖Ei‖op

Ki

n∏
i=1

Ki

= 2n−1

(
n∑
i=1

‖Ei‖op

Ki

)
n∏
i=1

Ki

which completes the proof.
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Lemma 19 (Matrix and Tensor Concentration) Let {Xj}nj=1, {Yj}nj=1 and {Zj}nj=1

be i.i.d. samples from some distribution over Rk with bounded support (‖X‖2 ≤ 1, ‖Y ‖2 ≤ 1
and ‖Z‖2 ≤ 1 with probability 1). Then with probability at least 1− δ,∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj − E[X1 ⊗ Y1]

∥∥∥∥∥∥
F

≤
1 +

√
log(1/δ)√
n

. (84)

∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj ⊗ Zj − E[X1 ⊗ Y1 ⊗ Z1]

∥∥∥∥∥∥
F

≤
1 +

√
log(k/δ)√
n/k

. (85)

Proof Inequality (84) is proved in Lemma D.1 of Anandkumar et al. (2015). To prove
inequality (85), we note that for any tensor T ∈ Rk×k×k, we can define k-by-k matrices
T1, . . . , Tk such that (Ti)jk := Tijk. As a result, we have ‖T‖2F =

∑k
i=1 ‖Ti‖

2
F . If we set T

to be the tensor on the left hand side of inequality (85), then

Ti =
1

n

n∑
j=1

(Z
(i)
j Xj)⊗ Yj − E[(Z

(i)
j X1)⊗ Y1]

By applying the result of inequality (84), we find that with probability at least 1− kδ′, we
have ∥∥∥∥∥∥ 1

n

n∑
j=1

Xj ⊗ Yj ⊗ Zj − E[X1 ⊗ Y1 ⊗ Z1]

∥∥∥∥∥∥
2

F

≤ k

(
1 +

√
log(1/δ′)√
n

)2

.

Setting δ′ = δ/k completes the proof.
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