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Abstract
We consider the problem of improving the efficiency of randomized Fourier feature maps to acceler-
ate training and testing speed of kernel methods on large data sets. These approximate feature maps
arise as Monte Carlo approximations to integral representations of shift-invariant kernel functions
(e.g., Gaussian kernel). In this paper, we propose to use Quasi-Monte Carlo (QMC) approxima-
tions instead, where the relevant integrands are evaluated on a low-discrepancy sequence of points
as opposed to random point sets as in the Monte Carlo approach. We derive a new discrepancy
measure called box discrepancy based on theoretical characterizations of the integration error with
respect to a given sequence. We then propose to learn QMC sequences adapted to our setting based
on explicit box discrepancy minimization. Our theoretical analyses are complemented with empir-
ical results that demonstrate the effectiveness of classical and adaptive QMC techniques for this
problem.

1. Introduction

Kernel methods (Schölkopf and Smola, 2002; Wahba, 1990; Cucker and Smale, 2001) offer a com-
prehensive suite of mathematically well-founded non-parametric modeling techniques for a wide
range of problems in machine learning. These include nonlinear classification, regression, cluster-
ing, semi-supervised learning (Belkin et al., 2006), time-series analysis (Parzen, 1970), sequence
modeling (Song et al., 2010), dynamical systems (Boots et al., 2013), hypothesis testing (Harchaoui
et al., 2013), causal modeling (Zhang et al., 2011) and many more.
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The central object of kernel methods is a kernel function k : X × X → R defined on an input
domain X ⊂ Rd 1. The kernel k is (non-uniquely) associated with an embedding of the input space
into a high-dimensional Hilbert spaceH (with inner product 〈·, ·〉H) via a feature map, Ψ : X → H,
such that

k(x, z) = 〈Ψ(x),Ψ(z)〉H .

Standard regularized linear statistical models in H then provide non-linear inference with respect
to the original input representation. The algorithmic basis of such constructions are classical Rep-
resenter Theorems (Wahba, 1990; Schölkopf and Smola, 2002) that guarantee finite-dimensional
solutions of associated optimization problems, even ifH is infinite-dimensional.

However, there is a steep price of these elegant generalizations in terms of scalability. Consider,
for example, least squares regression given n data points {(xi, yi)}ni=1 and assume that n � d.
The complexity of linear regression training using standard least squares solvers is O(nd2), with
O(nd) memory requirements, and O(d) prediction speed on a test point. Its kernel-based nonlinear
counterpart, however, requires solving a linear system involving the Gram matrix of the kernel
function (defined by Kij = k(xi,xj)). In general, this incurs O(n3 +n2d) complexity for training,
O(n2) memory requirements, and O(nd) prediction time for a single test point – none of which are
particularly appealing in “big data” settings. Similar conclusions apply to other algorithms such as
Kernel PCA.

This is rather unfortunate, since non-parametric models, such as the ones produced by kernel
methods, are particularly appealing in a big data settings as they can adapt to the full complexity of
the underlying domain, as uncovered by increasing data set sizes. It is well-known that imposing
strong structural constraints upfront for the purpose of allowing an efficient solution (in the above
example: a linear hypothesis space) often limits, both theoretically and empirically, the potential to
deliver value on large amounts of data. Thus, as big data becomes pervasive across a number of
application domains, it has become necessary to be able to develop highly scalable algorithms for
kernel methods.

Recent years have seen intensive research on improving the scalability of kernel methods; we
review some recent progress in the next section. In this paper, we revisit one of the most successful
techniques, namely the randomized construction of a family of low-dimensional approximate fea-
ture maps proposed by Rahimi and Recht (2008). These randomized feature maps, Ψ̂ : X → Cs,
provide low-distortion approximations for (complex-valued) kernel functions k : X × X → C:

k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Cs (1)

where Cs denotes the space of s-dimensional complex numbers with the inner product, 〈α, β〉Cs =∑s
i=1 αiβ

∗
i , with z∗ denoting the conjugate of the complex number z (though Rahimi and Recht

(2008) also define real-valued feature maps for real-valued kernels, our technical exposition is sim-
plified by adopting the generality of complex-valued features). The mapping Ψ̂(·) is now applied
to each of the data points, to obtain a randomized feature representation of the data. We then apply
a simple linear method to these random features. That is, if our data is {(xi, yi)}ni=1 we learn on
{(zi, yi)}ni=1 where zi = Ψ̂(xi). As long as s is sufficiently smaller than n, this leads to more
scalable solutions, e.g., for regression we get back to O(ns2) training and O(sd) prediction time,
with O(ns) memory requirements. This technique is immensely successful, and has been used in

1. In fact, X can be a rather general set. However, in this paper it is restricted to being a subset of Rd.
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recent years to obtain state-of-the-art accuracies for some classical data sets (Huang et al., 2014;
Dai et al., 2014; Sindhwani and Avron, 2014; Lu et al., 2014).

The starting point of Rahimi and Recht (2008) is a celebrated result that characterizes the class
of positive definite functions:

Definition 1 A function g : Rd 7→ C is a positive definite function if for any set of m points,
x1 . . .xm ∈ Rd, the m×m matrix A defined by Aij = g(xi − xj) is positive semi-definite.

Theorem 2 (Bochner (1933)) A complex-valued function g : Rd 7→ C is positive definite if and
only if it is the Fourier Transform of a finite non-negative Borel measure µ on Rd, i.e.,

g(x) = µ̂(x) =

∫
Rd
e−ix

Twdµ(w), ∀x ∈ Rd .

Without loss of generality, we assume henceforth that µ(·) is a probability measure with associated
probability density function p(·).

A kernel function k : Rd × Rd 7→ C on Rd is called shift-invariant if k(x, z) = g(x − z), for
some positive definite function g : Rd 7→ C. Bochner’s theorem implies that a scaled shift-invariant
kernel can therefore be put into one-to-one correspondence with a density p(·) such that,

k(x, z) = g(x− z) =

∫
Rd
e−i(x−z)Twp(w)dw . (2)

For the most notable member of the shift-invariant family of kernels – the Gaussian kernel:

k(x, z) = e−
‖x−z‖22

2σ2 ,

the associated density is again Gaussian N (0, σ−2Id).
The integral representation of the kernel (2) may be approximated as follows:

k(x, z) =

∫
Rd
e−i(x−z)Twp(w)dw

≈ 1

s

s∑
j=1

e−i(x−z)Tws

= 〈Ψ̂S(x), Ψ̂S(z)〉Cs ,

through the feature map,

Ψ̂S(x) =
1√
s

[
e−ix

Tw1 . . . e−ix
Tws

]
∈ Cs . (3)

The subscript S denotes dependence of the feature map on the sequence S = {w1, . . . ,ws}.
The goal of this work is to improve the convergence behavior of this approximation, so that

a smaller s can be used to get the same quality of approximation to the kernel function. This is
motivated by recent work that showed that in order to obtain state-of-the-art accuracy on some im-
portant data sets, a very large number of random features is needed (Huang et al., 2014; Sindhwani
and Avron, 2014).
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Our point of departure from the work of Rahimi and Recht (2008) is the simple observation
that when w1, . . . ,ws are are drawn from the distribution defined by the density function p(·), the
approximation in (3) may be viewed as a standard Monte Carlo (MC) approximation to the integral
representation of the kernel. Instead of using plain MC approximation, we propose to use the low-
discrepancy properties of Quasi-Monte Carlo (QMC) sequences to reduce the integration error in
approximations of the form (3). A self-contained overview of Quasi-Monte Carlo techniques for
high-dimensional integration problems is provided in Section 2. In Section 3, we describe how
QMC techniques apply to our setting.

We then proceed to apply an average case theoretical analysis of the integration error for any
given sequence S (Section 4). This bound motivates an optimization problem over the sequence S
whose minimizer provides adaptive QMC sequences fine tuned to our kernels (Section 5).

Finally, empirical results (Section 6) clearly demonstrate the superiority of QMC techniques
over the MC feature maps (Rahimi and Recht, 2008), the correctness of our theoretical analysis and
the potential value of adaptive QMC techniques for large-scale kernel methods.

2. Preliminaries

In this section we give the notation that will be used throughout the paper, a summary of related
work and an overview of the Quasi-Monte Carlo method.

2.1 Notation

We use i both for subscript and for denoting
√
−1, relying on the context to distinguish between the

two. We use y, z, . . . to denote scalars. We use w, t,x . . . to denote vectors, and use wi to denote
the i-th coordinate of vectors w. Furthermore, in a sequence of vectors, we use wi to denote the i-th
element of the sequence and use wij to denote the j-th coordinate of vector wi. Given x1, . . . ,xn,
the Gram matrix is defined as K ∈ Rn×n where Kij = k(xi,xj) for i, j = 1, . . . , n. We denote the
error function by erf(·), i.e., erf(z) =

∫ z
0 e
−z2dz for z ∈ C; see Weideman (1994) and Mori (1983)

for more details.
In “MC sequence” we mean points drawn randomly either from the unit cube or certain dis-

tribution that will be clear from the text. For “QMC sequence” we mean a deterministic sequence
designed to reduce the integration error. Typically, it will be a low-discrepancy sequence on the unit
cube.

It is also useful to recall the definition of Reproducing Kernel Hilbert Space (RKHS).

Definition 3 (Reproducing Kernel Hilbert Space (Berlinet and Thomas-Agnan, 2004)) A repro-
ducing kernel Hilbert space (RKHS) is a Hilbert Space H : X → C that possesses a reproducing
kernel, i.e., a function h : X × X → C for which the following hold for all x ∈ X and f ∈ H:

• h(x, ·) ∈ H

• 〈f, h(x, ·)〉H = f(x) (Reproducing Property)

Equivalently, RKHSs are Hilbert spaces with bounded, continuous evaluation functionals. In-
formally, they are Hilbert spaces with the nice property that if two functions f, g ∈ H are close in
the sense of the distance derived from the norm in H (i.e., ‖f − g‖H is small), then their values
f(x), g(x) are also close for all x ∈ X ; in other words, the norm controls the pointwise behavior of
functions inH (Berlinet and Thomas-Agnan, 2004).
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2.2 Related Work

In this section we discuss related work on scalable kernel methods. Relevant work on QMC methods
is discussed in the next subsection.

Scalability has long been identified as a key challenge associated with deploying kernel methods
in practice. One dominant line of work constructs low-rank approximations of the Gram matrix,
either using data-oblivious randomized feature maps to approximate the kernel function, or using
sampling techniques such as the classical Nyström method (Williams and Seeger, 2001). In its
vanilla version, the latter approach - Nyström method - samples points from the data set, computes
the columns of the Gram matrix that corresponds to the sampled data points, and uses this partial
computation of the Gram matrix to construct an approximation to the entire Gram matrix. More
elaborate techniques exist, both randomized and deterministic; see Gittens and Mahoney (2013) for
a thorough treatment.

More relevant to our work is the randomized feature mapping approach. Pioneered by the
seminal paper of Rahimi and Recht (2008), the core idea is to construct, for a given kernel on
a data domain X , a transformation Ψ̂ : X → Cs such that k(x, z) ≈ 〈Ψ̂(x), Ψ̂(z)〉Cs . Invoking
Bochner’s theorem, a classical result in harmonic analysis, Rahimi and Recht show how to construct
a randomized feature map for shift-invariant kernels, i.e., kernels that can be written k(x, z) =
g(x− y) for some positive definite function g(·).

Subsequently, there has been considerable effort given to extending this technique to other
classes of kernels. Li et al. (2010) use Bochner’s theorem to provide random features to the wider
class of group-invariant kernels. Maji and Berg (2009) suggested random features for the intersec-
tion kernel k(x, z) =

∑d
i=1 min(xi, zi). Vedaldi and Zisserman (2012) developed feature maps

for γ-homogeneous kernels. Sreekanth et al. (2010) developed feature maps for generalized RBF
kernels k(x, z) = g(D(x, z)2) where g(·) is a positive definite function, and D(·, ·) is a distance
metric. Kar and Karnick (2012) suggested feature maps for dot-product kernels. The feature maps
are based on the Maclaurin expansion, which is guaranteed to be non-negative due to a classical
result of Schoenberg (1942). Pham and Pagh (2013) suggested feature maps for the polynomial ker-
nels. Their construction leverages known techniques from sketching theory. It can also be shown
that their feature map is an oblivious subspace embedding, and this observation provides stronger
theoretical guarantees than point-wise error bounds prevalent in the feature map literature (Avron
et al., 2014). By invoking a variant of Bochner’s theorem that replaces the Fourier transform with
the Laplace transform, Yang et al. (2014) obtained randomized feature maps for semigroup kernels
on histograms. We note that while the original feature maps suggested by Rahimi and Recht were
randomized, some of the aforementioned maps are deterministic.

Our work is more in-line with recent efforts on scaling up the random features, so that learning
and prediction can be done faster. Le et al. (2013) return to the original construction of Rahimi and
Recht (2008), and devise a clever distribution of random samples w1,w2, . . . ,ws that is structured
so that the generation of random features can be done much faster. They showed that only a very
limited concession in term of convergence rate is made. Hamid et al. (2014), working on the poly-
nomial kernel, suggest first generating a very large amount of random features, and then applying
them a low-distortion embedding based the Fast Johnson-Lindenstruass Transform, so the make the
final size of the mapped vector rather small. In contrast, our work tries to design w1, . . . ,ws so that
less features will be necessary to get the same quality of kernel approximation.
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Several other scalable approaches for large-scale kernel methods have been suggested over the
years, starting from approaches such as chunking and decomposition methods proposed in the early
days of SVM optimization literature. Raykar and Duraiswami (2007) use an improved fast Gauss
transform for large scale Gaussian Process regression. There are also approaches that are more spe-
cific to the objective function at hand, e.g., Keerthi et al. (2006) builds a kernel expansion greedily
to optimize the SVM objective function. Another well known approach is the Core Vector Ma-
chines (Tsang et al., 2005) which draws on approximation algorithms from computational geometry
to scale up a class of kernel methods that can be reformulated in terms of the minimum enclosing
ball problem.

For a broader discussion of these methods, and others, see Bottou et al. (2007).

2.3 Quasi-Monte Carlo Techniques: an Overview

In this section we provide a self-contained overview of Quasi-Monte Carlo (QMC) techniques. For
brevity, we restrict our discussion to background that is necessary for understanding subsequent
sections. We refer the interested reader to the excellent reviews by Caflisch (1998) and Dick et al.
(2013), and the recent book Leobacher and Pillichschammer (2014) for a much more detailed expo-
sition.

Consider the task of computing an approximation of the following integral

Id[f ] =

∫
[0,1]d

f(x)dx . (4)

One can observe that if x is a random vector uniformly distributed over [0, 1]d then Id[f ] = E [f(x)].
An empirical approximation to the expected value can be computed by drawing a random point set
S = {w1, . . . ,ws} independently from [0, 1]d, and computing:

IS [f ] =
1

s

∑
w∈S

f(w) .

This is the Monte Carlo (MC) method.
Define the integration error with respect to the point set S as,

εS [f ] = |Id(f)− IS(f)| .

When S is drawn randomly, the Central Limit Theorem asserts that if s = |S| is large enough then
εS [f ] ≈ σ[f ]s−1/2ν where ν is a standard normal random variable, and σ[f ] is the square-root of
the variance of f ; that is,

σ2[f ] =

∫
[0,1]d

(f(x)− Id(f))2 dx .

In other words, the root mean square error of the Monte Carlo method is,(
ES
[
εS [f ]2

])1/2 ≈ σ[f ]s−1/2. (5)

Therefore, the Monte Carlo method converges at a rate of O(s−1/2).
The aim of QMC methods is to improve the convergence rate by using a deterministic low-

discrepancy sequence to construct S, instead of randomly sampling points. The underlying intuition
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Figure 1: Comparison of MC and QMC sequences.

is illustrated in Figure 1, where we plot a set of 1000 two-dimensional random points (left graph),
and a set of 1000 two-dimensional points from a quasi-random sequence (Halton sequence; right
graph). In the random sequence we see that there is an undesired clustering of points, and as a
consequence empty spaces. Clusters add little to the approximation of the integral in those regions,
while in the empty spaces the integrand is not sampled. This lack of uniformity is due to the fact
that Monte Carlo samples are independent of each other. By carefully designing a sequence of
correlated points to avoid such clustering effects, QMC attempts to avoid this phenomena, and thus
provide faster convergence to the integral.

The theoretical apparatus for designing such sequences are inequalities of the form

εS(f) ≤ D(S)V (f) ,

in which V (f) is a measure of the variation or difficulty of integrating f(·) andD(S) is a sequence-
dependent term that typically measures the discrepancy, or degree of deviation from uniformity, of
the sequence S. For example, the expected Monte Carlo integration error decouples into a variance
term, and s−1/2 as in (5).

A prototypical inequality of this sort is the following remarkable and classical result:

Theorem 4 (Koksma-Hlawka inequality) For any function f with bounded variation, and se-
quence S = {w1, . . . ,ws}, the integration error is bounded above as follows,

εS [f ] ≤ D?(S)VHK [f ] ,

where VHK is the Hardy-Krause variation of f (see Niederreiter (1992)), which is defined in terms
of the following partial derivatives,

VHK [f ] =
∑

I⊂[d],I 6=∅

∫
[0,1]|I|

∣∣∣∣∣ ∂f∂uI
∣∣∣∣
uj=1,j /∈I

∣∣∣∣∣ duI , (6)

and D? is the star discrepancy defined by

D?(S) = sup
x∈[0,1]d

|disrS(x)| ,

7
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where disrS is the local discrepancy function

disrS(x) = Vol(Jx)− |{i : wi ∈ Jx}|
s

with Jx = [0, x1)× [0, x2)× · · · × [0, xd) with Vol(Jx) =
∏d
j=1 xj .

Given x, the second term in disrS(x) is an estimate of the volume of Jx, which will be accurate
if the points in S are uniform enough. D?(S) measures the maximum difference between the actual
volume of the subregion Jx and its estimate for all x in [0, 1]d.

An infinite sequence w1,w2, . . . is defined to be a low-discrepancy sequence if, as a function of
s, D?({w1, . . . ,ws}) = O((log s)d/s). Several constructions are know to be low-discrepancy se-
quences. One notable example is the Halton sequences, which are defined as follows. Let p1, . . . , pd
be the first d prime numbers. The Halton sequence w1,w2, . . . of dimension d is defined by

wi = (φp1(i), . . . , φpd(i))

where for integers i ≥ 0 and b ≥ 2 we have

φb(i) =

∞∑
a=1

iab
−a

in which i0, i1, · · · ∈ {0, 1, . . . , b− 1} is given by the unique decomposition

i =

∞∑
a=1

iab
a−1 .

It is outside the scope of this paper to describe all these constructions in detail. However we
mention that in addition to the Halton sequences, other notable members are Sobol’ sequences,
Faure sequences, Niederreiter sequences, and more (see Dick et al. (2013), Section 2). We also
mention that it is conjectured that the O((log s)d/s) rate for star discrepancy decay is optimal.

The classical QMC theory, which is based on the Koksma-Hlawka inequality and low discrep-
ancy sequences, thus achieves a convergence rate of O((log s)d/s). While this is asymptotically
superior to O(s−1/2) for a fixed d, it requires s to be exponential in d for the improvement to man-
ifest. As such, in the past QMC methods were dismissed as unsuitable for very high-dimensional
integration.

However, several authors noticed that QMC methods perform better than MC even for very
high-dimensional integration (Sloan and Wozniakowski, 1998; Dick et al., 2013).2 Contemporary
QMC literature explains and expands on these empirical observations, by leveraging the structure
of the space in which the integrand function lives, to derive more refined bounds and discrepancy
measures, even when classical measures of variation such as (6) are unbounded. This literature has
evolved along at least two directions: one, where worst-case analysis is provided under the assump-
tion that the integrands live in a Reproducing Kernel Hilbert Space (RKHS) of sufficiently smooth
and well-behaved functions (see Dick et al. (2013), Section 3) and second, where the analysis is
done in terms of average-case error, under an assumed probability distribution over the integrands,
instead of worst-case error (Wozniakowski, 1991; Traub and Wozniakowski, 1994). We refrain from
more details, as these are essentially the paths that the analysis in Section 4 follows for our specific
setting.

2. Also see: “On the unreasonable effectiveness of QMC”, I.H. Sloan https://mcqmc.mimuw.edu.pl/
Presentations/sloan.pdf
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Algorithm 1 Quasi-Random Fourier Features
Input: Shift-invariant kernel k, size s.
Output: Feature map Ψ̂(x) : Rd 7→ Cs.

1: Find p, the inverse Fourier transform of k.
2: Generate a low discrepancy sequence t1, . . . , ts.
3: Transform the sequence: wi = Φ−1(ti) by (7).

4: Set Ψ̂(x) =
√

1
s

[
e−ix

Tw1 , . . . , e−ix
Tws

]
.

3. QMC Feature Maps: Our Algorithm

We assume that the density function in (2) can be written as p(x) =
∏d
j=1 pj(xj), where pj(·) is a

univariate density function. The density functions associated to many shift-invariant kernels, e.g.,
Gaussian, Laplacian and Cauchy, admits such a form.

The QMC method is generally applicable to integrals over a unit cube. So typically integrals
of the form (2) are handled by first generating a low discrepancy sequence t1, . . . , ts ∈ [0, 1]d, and
transforming it into a sequence w1, . . . ,ws in Rd, instead of drawing the elements of the sequence
from p(·) as in the MC method.

To convert (2) to an integral over the unit cube, a simple change of variables suffices. For
t ∈ Rd, define

Φ−1(t) =
(
Φ−1

1 (t1), . . . ,Φ−1
d (td)

)
∈ Rd , (7)

where Φj(·) is the cumulative distribution function (CDF) of pj(·), for j = 1, . . . , d. By setting
w = Φ−1(t), then (2) can be equivalently written as∫

Rd
e−i(x−z)Twp(w)dw =

∫
[0,1]d

e−i(x−z)TΦ−1(t)dt .

Thus, a low discrepancy sequence t1, . . . , ts ∈ [0, 1]d can be transformed using wi = Φ−1(ti),
which is then plugged into (3) to yield the QMC feature map. This simple procedure is summarized
in Algorithm 1. QMC feature maps are analyzed in the next section.

4. Theoretical Analysis and Average Case Error Bounds

The proofs for assertions made in this section and the next can be found in the Appendix.
The goal of this section is to develop a framework for analyzing the approximation quality of

the QMC feature maps described in the previous section (Algorithm 1). We need to develop such
a framework since the classical Koksma-Hlawka inequality cannot be applied to our setting, as the
following proposition shows:

Proposition 5 For any p(x) =
∏d
j=1 pj(xj), where pj(·) is a univariate density function, let

Φ−1(t) =
(
Φ−1

1 (t1), . . . ,Φ−1
d (td)

)
.

For a fixed u ∈ Rd, consider fu(t) = e−iu
TΦ−1(t), t ∈ [0, 1]d. The Hardy-Krause variation of

fu(·) is unbounded. That is, one of the integrals in the sum (6) is unbounded.

9
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Our framework is based on a new discrepancy measure, box discrepancy, that characterizes inte-
gration error for the set of integrals defined with respect to the underlying data domain. Throughout
this section we use the convention that S = {w1, . . . ,ws}, and the notation X̄ = {x− z | x, z ∈ X}.

Given a probability density function p(·) and S, we define the integration error εS,p[f ] of a
function f(·) with respect to p(·) and the s samples as,

εS,p[f ] =

∣∣∣∣∣
∫
Rd
f(x)p(x)dx− 1

s

s∑
i=1

f(wi)

∣∣∣∣∣ .
We are interested in characterizing the behavior of εS,p[f ] on f ∈ FX̄ where

FX̄ =
{
fu(x) = e−iu

Tx, u ∈ X̄
}
.

As is common in modern QMC analysis (Leobacher and Pillichschammer, 2014; Dick et al.,
2013), our analysis is based on setting up a Reproducing Kernel Hilbert Space of “nice” functions
that is related to integrands that we are interested in, and using properties of the RKHS to derive
bounds on the integration error. In particular, the integration error of integrands in an RKHS can be
bounded using the following proposition.

Proposition 6 (Integration Error in an RKHS) Let H be an RKHS with kernel h(·, ·). Assume
that κ = supx∈Rd h(x,x) <∞. Then, for all f ∈ H we have,

εS,p[f ] ≤ ‖f‖HDh,p(S) , (8)

where

Dh,p(S)2 =

∥∥∥∥∥
∫
Rd
h(ω, ·)p(ω)dω − 1

s

s∑
l=1

h(wl, ·)

∥∥∥∥∥
2

H

(9)

=

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ− 2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω

+
1

s2

s∑
l=1

s∑
j=1

h(wl,wj) .

Remark 7 In the theory of RKHS embeddings of probability distributions (Smola et al., 2007;
Sriperumbudur et al., 2010), the function

µh,p(x) =

∫
Rd
h(ω,x)p(ω)dω

is known as the kernel mean embedding of p(·). The function

µ̂h,p,S(x) =
1

s

s∑
l=1

h(wl,x)

is then the empirical mean map.

10
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The RKHS we use is as follows. For a vector b ∈ Rd, let us define �b = {u ∈ Rd | |uj | ≤ bj}.
Let

F�b =
{
fu(x) = e−iu

Tx, u ∈ �b
}
,

and consider the space of functions that admit an integral representation over F�b of the form

f(x) =

∫
u∈�b

f̂(u)e−iu
Txdu where f̂(u) ∈ L2(�b) . (10)

This space is associated with bandlimited functions, i.e., functions with compactly-supported in-
verse Fourier transforms, which are of fundamental importance in the Shannon-Nyquist sampling
theory. Under a natural choice of inner product, these spaces are called Paley-Wiener spaces and
they constitute an RKHS (Berlinet and Thomas-Agnan, 2004; Yao, 1967; Peloso, 2011).

Proposition 8 (Kernel of Paley-Wiener RKHS) By PWb, denote the space of functions which
admit the representation in (10), with the inner product 〈f, g〉PWb

= (2π)2d〈f̂ , ĝ〉L2(�b). PWb is
an RKHS with kernel function,

sincb(u,v) = π−d
d∏
j=1

sin (bj(uj − vj))
uj − vj

.

For notational convenience, in the above we define sin(b · 0)/0 to be b. Furthermore, 〈f, g〉PWb
=

〈f, g〉L2(�b).

If bj = supu∈X̄ |uj | then X̄ ⊂ �b, so FX̄ ⊂ F�b. Since we wish to bound the integration error
on functions in FX̄ , it suffices to bound the integration error on F�b. Unfortunately, while F�b de-
fines PWb, the functions in it, being not square integrable, are not members of PWb, so analyzing
the integration error in PWb do not directly apply to them. However, damped approximations of
fu(·) of the form f̃u(x) = e−iu

Tx sinc(Tx) are members of PWb with ‖f̃‖PWb
= 1√

T
. Hence,

we expect the analysis of the integration error in PWb to provide provide a discrepancy measure
for integrating functions in F�b.

For PWb the discrepancy measure Dh,S in Proposition 6 can be written explicitly.

Theorem 9 (Discrepancy in PWb) Suppose that p(·) is a probability density function, and that we
can write p(x) =

∏d
j=1 pj(xj) where each pj(·) is a univariate probability density function as well.

Let ϕj(·) be the characteristic function associated with pj(·). Then,

Dsincb,p(S)2 = π−d
d∏
j=1

∫ bj

−bj
|ϕj(β)|2dβ −

2(2π)−d

s

s∑
l=1

d∏
j=1

∫ bj

−bj
ϕj(β)eiwljβdβ +

1

s2

s∑
l=1

s∑
j=1

sincb(wl,wj) . (11)

This naturally leads to the definition of the box discrepancy, analogous to the star discrepancy
described in Theorem 4.

11
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Definition 10 (Box Discrepancy) The box discrepancy of a sequence S with respect to p(·) is de-
fined as,

D�b
p (S) = Dsincb,p(S) .

For notational convenience, we generally omit the b from D�b
p (S) as long as it is clear from the

context.
The worse-case integration error bound for Paley-Wiener spaces is stated in the following as a

corollary of Proposition 6. As explained earlier, this result not yet apply to functions inF�b because
these functions are not part of PWb. Nevertheless, we state it here for completeness.

Corollary 11 (Integration Error in PWb) For f ∈ PWb we have

εS,p[f ] ≤ ‖f‖PWb
D�
p (S) .

Our main result shows that the expected square error of an integrand drawn from a uniform
distribution over F�b is proportional to the square discrepancy measure D�

p (S). This result is in
the spirit of similar average case analysis in the QMC literature (Wozniakowski, 1991; Traub and
Wozniakowski, 1994).

Theorem 12 (Average Case Error) Let U(F�b) denote the uniform distribution on F�b. That is,
f ∼ U(F�b) denotes f = fu where fu(x) = e−iu

Tx and u is randomly drawn from a uniform
distribution on �b. We have,

Ef∼U(F�b)

[
εS,p[f ]2

]
=

πd∏d
j=1 bj

D�
p (S)2 .

We now give an explicit formula for D�
p (S) for the case that p(·) is the density function of

the multivariate Gaussian distribution with zero mean and independent components. This is an
important special case since this is the density function that is relevant for the Gaussian kernel.

Corollary 13 (Discrepancy for Gaussian Distribution) Let p(·) be the d-dimensional multivari-
ate Gaussian density function with zero mean and covariance matrix equal to diag(σ−2

1 , . . . , σ−2
d ).

We have,

D�
p (S)2 =

1

s2

s∑
l=1

s∑
j=1

sincb(wl,wj)−

2

s

s∑
l=1

d∏
j=1

clj Re

(
erf

(
bj

σj
√

2
− i

σjwlj√
2

))
+

+

d∏
j=1

σj
2
√
π

erf

(
bj
σj

)
, (12)

where

clj =

(
σj√
2π

)
e−

σ2j w
2
lj

2 .

12
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Intuitively, the box discrepancy of the Gaussian kernel can be interpreted as follows. The func-
tion sinc(x) = sin(x)/x achieves its maximum at x = 0 and minimizes at discrete values of
x decaying to 0 as |x| goes to ∞. Hence the first term in (12) tends to be minimized when the
pairwise distance between wj are sufficiently separated. Due to the shape of cumulative distri-
bution function of Gaussian distribution, the values of tj = Φ(wj) (j = 1, . . . , s) are driven
to be close to the boundary of the unit cube. As for second term, the original expression is -
2
s

∑s
l=1

∫
Rd h(wl, ω)p(ω)dω. This term encourages the sequence {wl} to mimic samples from

p(ω). Since p(ω) concentrates its mass around ω = 0, the wj also concentrates around 0 to max-
imize the integral and therefore the values of tj = Φ(wj) (j = 1, . . . , s) are driven closer to the
center of the unit cube. Sequences with low box discrepancy therefore optimize a tradeoff between
these competing terms.

Two other shift-invariant kernel that have been mentioned in the machine learning literature is
the Laplacian kernel (Rahimi and Recht, 2008) and Matern kernel (Le et al., 2013). The distribution
associated with the Laplacian kernel can be written as a product p(x) =

∏d
j=1 pj(xj), where pj(·)

is density associated with the Cauchy distribution. The characteristic function is simple (φj(β) =
e−|β|/σj ) so analytic formulas like (12) can be derived. The distribution associated with the Matern
kernel, on the other hand, is the multivariate t-distribution, which cannot be written as a product
p(x) =

∏d
j=1 pj(xj), so the presented theory does not apply to it.

Discrepancy of Monte-Carlo Sequences.
We now derive an expression for the expected discrepancy of Monte-Carlo sequences, and show

that it decays as O(s−1/2). This is useful since via an averaging argument we are guaranteed that
there exists sets for which the discrepancy behaves O(s−1/2).

Corollary 14 Suppose t1, . . . , ts are chosen uniformly from [0, 1]d. Let wi = Φ−1(ti), for i =
1, . . . , s. Assume that κ = supx∈Rd h(x,x) <∞. Then

E
[
Dh,p(S)2

]
=

1

s

∫
Rd
h(ω, ω)p(ω)dω − 1

s

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ .

Again, we can derive specific formulas for the Gaussian density. The following is straightfor-
ward from Corollary 14. We omit the proof.

Corollary 15 Let p(·) be the d-dimensional multivariate Gaussian density function with zero mean
and covariance matrix equal to diag(σ−2

1 , . . . , σ−2
d ). Suppose t1, . . . , ts are chosen uniformly from

[0, 1]d. Let wi = Φ−1(ti), for i = 1, . . . , s. Then,

E
[
D�
p (S)2

]
=

1

s

π−d d∏
j=1

bj −
d∏
j=1

σj
2
√
π

erf

(
bj
σj

) . (13)

5. Learning Adaptive QMC Sequences

For simplicity, in this section we assume that p(·) is the density function of Gaussian distribution
with zero mean. We also omit the subscript p from D�

p . Similar analysis and equations can be
derived for other density functions.

Error characterization via discrepancy measures like (12) is typically used in the QMC literature
to prescribe sequences whose discrepancy behaves favorably. It is clear that for the box discrepancy,

13
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a meticulous design is needed for a high quality sequence and we leave this to future work. Instead,
in this work, we use the fact that unlike the star discrepancy (4), the box discrepancy is a smooth
function of the sequence with a closed-form formula. This allows us to both evaluate various can-
didate sequences, and select the one with the lowest discrepancy, as well as to adaptively learn a
QMC sequence that is specialized for our problem setting via numerical optimization. The basis is
the following proposition, which gives an expression for the gradient of D�(S).

Proposition 16 (Gradient of Box Discrepancy) Define the following scalar functions and vari-
ables,

sinc′(z) =
cos(z)

z
− sin(z)

z2
, sinc′b(z) =

b

π
sinc′(bz) ;

cj =

(
σj√
2π

)
, j = 1, . . . , d ;

gj(x) = cje
−
σ2j
2
x2 Re

(
erf

[
bj

σj
√

2
− iσjx√

2

])
;

g′j(x) = −σ2
jxgj(x) +

√
2

π
cjσje

−
b2j

2σ2
j sin(bjx) .

In the above ,we define sinc′(0) to be 0. Then, the elements of the gradient vector of D� are given
by,

∂D�

∂wlj
=

2

s2

s∑
m=1
m6=l

bj sinc′bj (wlj , wmj)
∏
q 6=j

sincbq(wlq, wmq)

−
2

s
g′j(wlj)

∏
q 6=j

gq(wlq)

 . (14)

We explore two possible approaches for finding sequences based on optimizing the box dis-
crepancy, namely global optimization and greedy optimization. The latter is closely connected to
herding algorithms (Welling, 2009).

5.1 Global Adaptive Sequences

The task is posed in terms minimization of the box discrepancy function (12) over the space of
sequences of s vectors in Rd:

S∗ = arg minS=(w1...ws)∈Rds D
�(S) .

The gradient can be plugged into any first order numerical solver for non-convex optimization. We
use non-linear conjugate gradient in our experiments (Section 6.2).

The above learning mechanism can be extended in various directions. For example, QMC se-
quences for n-point rank-one Lattice Rules (Dick et al., 2013) are integral fractions of a lattice
defined by a single generating vector v. This generating vector may be learnt via local minimiza-
tion of the box discrepancy.

14
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5.2 Greedy Adaptive Sequences

Starting with S0 = ∅, for t ≥ 1, let St = {w1, . . . ,wt}. At step t + 1, we solve the following
optimization problem,

wt+1 = arg minw∈Rd D
�(St ∪ {w}) . (15)

Set St+1 = St∪{wt+1} and repeat the above procedure. The gradient of the above objective is also
given in (14). Again, we use non-linear conjugate gradient in our experiments (Section 6.2).

The greedy adaptive procedure is closely related to the herding algorithm, recently presented
by Welling (2009). Applying the herding algorithm to PWb and p(·), and using our notation, the
points w1,w2, . . . are generated using the following iteration

wt+1 ∈ arg max
w∈Rd

〈zt(·), h(w, ·)〉PWb

zt+1(x) ≡ zt(x) + µh,p(x)− h(w,x) .

In the above, z0, z1, . . . is a series of functions in PWb. The literature is not specific on the initial
value of z0, with both z0 = 0 and z0 = µh,p suggested. Either way, it is always the case that
zt = z0 + t(µh,p − µ̂h,p,St) where St = {w1, . . . ,wt}.

Chen et al. (2010) showed that under some additional assumptions, the herding algorithm, when
applied to a RKHS H, greedily minimizes ‖µh,p − µ̂h,p,St‖

2
H, which, recall, is equal to Dh,p(St).

Thus, under certain assumptions, herding and (15) are equivalent. Chen et al. (2010) also showed
that under certain restrictions on the RKHS, herding will reduce the discrepancy in a ratio ofO(1/t).
However, it is unclear whether those restrictions hold for PWb and p(·). Indeed, Bach et al. (2012)
recently shown that these restrictions never hold for infinite-dimensional RKHS, as long as the
domain is compact. This result does not immediately apply to our case since Rd is not compact.

5.3 Weighted Sequences

Classically, Monte-Carlo and Quasi-Monte Carlo approximations of integrals are unweighted, or
more precisely, have a uniform weights. However, it is quite plausible to weight the approximations,
i.e. approximate Id[f ] =

∫
[0,1]d f(x)dx using

IS,Ξ[f ] =
n∑
i=1

ξif(wi) , (16)

where Ξ = {ξ1, . . . , ξs} ⊂ R is a set of weights. This lead to the feature map

Ψ̂S(x) =
[√

ξ1e
−ixTw1 . . .

√
ξse
−ixTws

]
.

This construction requires ξi ≥ 0 for i = 1, . . . , s, although we note that (16) itself does not
preclude negative weights. We do not require the weights to be normalized, that is it is possible that∑s

i=1 ξi 6= 1.

15



AVRON ET AL.

One can easily generalize the result of the previous section to derive the following discrepancy
measure that takes into consideration the weights

D�b
p (S,Ξ)2 = π−d

d∏
j=1

∫ bj

−bj
|ϕj(β)|2dβ −

2(2π)−d
s∑
l=1

ξl

d∏
j=1

∫ bj

−bj
ϕj(β)eiwljβdβ +

s∑
l=1

s∑
j=1

ξlξj sincb(wl,wj) .

Using this discrepancy measure, global adaptive and greedy adaptive sequences of points and
weights can be found.

However, we note that if we fix the points, then optimizing just the weights is a simple convex
optimization problem. The box discrepancy can be written as

D�b
p (S,Ξ)2 = π−d

d∏
j=1

∫ bj

−bj
|ϕj(β)|2dβ − 2vT ξ + ξTHξ ,

where ξ ∈ Rs has entry i equal to ξi, v ∈ Rs and H ∈ Rs×s are defined by

Hij = sincb(wl,wj)

vi = (2π)−d
d∏
j=1

∫ bj

−bj
ϕj(β)eiwljβdβ .

The ξ that minimizes D�b
p (S,Ξ)2 is equal to H−1v, but there is no guarantee that ξi ≥ 0 for all i.

We need to explicitly impose these conditions. Thus, the optimal weights can be found by solving
the following convex optimization problem

Ξ∗ = arg minξ∈Rs ξ
THξ − 2vT ξ s.t. ξ ≥ 0 . (17)

Selecting the weights in such a way is closely connected to the so-called Bayesian Monte Carlo
(BMC) method, originally suggested by Ghahramani and Rasmussen (2003). In BMC, a Bayesian
approach is utilized in which the function is a assumed to be random with a prior that is a Gaussian
Process. Combining with the observations, a posterior is obtained, which naturally leads to the se-
lection of weights. Huszár and Duvenaud (2012) subsequently pointed out the connection between
this approach and the herding algorithm discussed earlier.

We remark that as long as all the weights are positive, the hypothesis space of functions induced
by the feature map (that is, {gw(x) = Ψ̂T

S (x)w, w ∈ Rs}) will not change in terms of the set of
functions in it. However, the norms will be affected (that is, the norm of a function in that set also
depends on the weights), which in turn affects the regularization.

6. Experiments

In this section we report experiments with both classical QMC sequences and adaptive sequences
learnt from box discrepancy minimization.
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6.1 Experiments With Classical QMC Sequences

We examine the behavior of classical low-discrepancy sequences when compared to random Fourier
features (i.e., MC). We consider four sequences: Halton, Sobol’, Lattice Rules, and Digital Nets.
For Halton and Sobol’, we use the implementation available in MATLAB.3 For Lattice Rules and
Digital Nets, we use publicly available implementations.4 For all four low-discrepancy sequences,
we use scrambling and shifting techniques recommended in the QMC literature (see Dick et al.
(2013) for details). For Sobol’, Lattice Rules and Digital Nets, scrambling introduces randomization
and hence variance. For Halton sequence, scrambling is deterministic, and there is no variance. The
generation of these sequences is extremely fast, and quite negligible when compared to the time
for any reasonable downstream use. For example, for census data set with size 18,000 by 119,
if we choose the number of random features s = 2000, the running time for performing kernel
ridge regression model is more than 2 minutes, while the time of generating the QMC sequences is
only around 0.2 seconds (Digital Nets sequence takes longer, but not much longer) and that of MC
sequence is around 0.01 seconds. Therefore, we do not report running times as these are essentially
the same across methods.

In all experiments, we work with a Gaussian kernel. For learning, we use regularized least
square classification on the feature mapped data set, which can be thought of as a form of approx-
imate kernel ridge regression. For each data set, we performed 5-fold cross-validation when using
random Fourier features (MC sequence) to set the bandwidth σ, and then used the same σ for all
other sequences.

6.1.1 QUALITY OF KERNEL APPROXIMATION

In our setting, the most natural and fundamental metric for comparison is the quality of approx-
imation of the Gram matrix. We examine how close K̃ (defined by K̃ij = k̃(xi,xj) where
k̃(·, ·) = 〈Ψ̂S(·), Ψ̂S(·)〉 is the kernel approximation) is to the Gram matrix K of the exact ker-
nel.

We examine four data sets: cpu (6554 examples, 21 dimensions), census (a subset chosen
randomly with 5,000 examples, 119 dimensions), USPST (1,506 examples, 250 dimensions after
PCA) and MNIST (a subset chosen randomly with 5,000 examples, 250 dimensions after PCA). The
reason we do subsampling on large data sets is to be able to compute the full exact Gram matrix for
comparison purposes. The reason we use dimensionality reduction on MNIST is that the maximum
dimension supported by the Lattice Rules implementation we use is 250.

To measure the quality of approximation we use both ‖K−K̃‖2/‖K‖2 and ‖K−K̃‖F /‖K‖F .
The plots are shown in Figure 2.

We can clearly see that except Sobol’ sequences classical low-discrepancy sequences consis-
tently produce better approximations to the Gram matrix than the approximations produced using
MC sequences. Among the four classical QMC sequences, the Digital Nets, Lattice Rules and Hal-
ton sequences yield much lower error. Similar results were observed for other data sets (not reported
here). Although using scrambled variants of QMC sequences may incur some variance, the variance
is quite small compared to that of the MC random features.

Scrambled (whether deterministic or randomized) QMC sequences tend to yield higher accura-
cies than non-scambled QMC sequences. In Figure 3, we show the ratio between the relative errors

3. http://www.mathworks.com/help/stats/quasi-random-numbers.html
4. http://people.cs.kuleuven.be/ dirk.nuyens/qmc-generators/
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(c) census, n = 5000
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Figure 2: Relative error on approximating the Gram matrix measured in Euclidean norm and Frobe-
nius norm, i.e., ‖K − K̃‖2/‖K‖2 and ‖K − K̃‖F /‖K‖F , for various s. For each kind
of random feature and s, 10 independent trials are executed, and the mean and standard
deviation are plotted.

achieved by using both scrambled and non-scrambled QMC sequences. As can be seen, scrambled
QMC sequences provide more accurate approximations in most cases as the ratio value tends to be
less than one. In particular, scrambled Lattice sequence outperforms the non-scrambled one across
all the cases for larger values of s. Therefore, in the rest of the experiments we use scrambled
sequences.

6.1.2 GENERALIZATION ERROR

We consider two regression data sets, cpu and census, and use (approximate) kernel ridge re-
gression to build a regression model. The ridge parameter is set by the optimal value we obtain
via 5-fold cross-validation on the training set by using the MC sequence. Table 1 summarizes the
results.
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Figure 3: Ratio between relative errors on approximating the Gram matrix using both the scrambled
and non-scambled version of the same QMC sequence for various s. The lower the ratio
value is, the more accurate the scrambled QMC approximation is. For each kind of QMC
sequences and s, 10 independent trails are executed, and the mean and standard deviation
are plotted.

s HALTON SOBOL’ LATTICE DIGIT MC

C
P

U

100
0.0367 0.0383 0.0374 0.0376 0.0383

(0) (0.0015) (0.0010) (0.0010) (0.0013)

500
0.0339 0.0344 0.0348 0.0343 0.0349

(0) (0.0005) (0.0007) (0.0005) (0.0009)

1000
0.0334 0.0339 0.0337 0.0335 0.0338

(0) (0.0007) (0.0004) (0.0003) (0.0005)

C
E

N
S

U
S

400
0.0529 0.0747 0.0801 0.0755 0.0791

(0) (0.0138) (0.0206) (0.0080) (0.0180)

1200
0.0553 0.0588 0.0694 0.0587 0.0670

(0) (0.0080) (0.0188) (0.0067) (0.0078)

1800
0.0498 0.0613 0.0608 0.0583 0.0600

(0) (0.0084) (0.0129) (0.0100) (0.0113)

Table 1: Regression error, i.e., ‖ŷ − y‖2/‖y‖2 where ŷ is the predicted value and y is the ground
truth. For each kind of random feature and s, 10 independent trials are executed, and the
mean and standard deviation are listed.
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As we see, for cpu, all the sequences behave similarly, with the Halton sequence yielding the
lowest test error. For census, the advantage of using Halton sequence is significant (almost 20%
reduction in generalization error) followed by Digital Nets and Sobol’. In addition, MC sequence
tends to generate higher variance across all the sampling size. Overall, QMC sequences, especially
Halton, outperform MC sequences on these data sets.

When performed on classification data sets by using the same learning model, with a moderate
range of s, e.g., less than 2000, the QMC sequences do not yield accuracy improvements over the
MC sequence with the same consistency as in the regression case. The connection between kernel
approximation and the performance in downstream applications is outside the scope of the current
paper. Worth mentioning in this regard, is the recent work by Bach (2013), which analyses the
connection between Nyström approximations of the Gram matrix, and the regression error, and the
work of El Alaoui and Mahoney (2014) on kernel methods with statistical guarantees.

6.1.3 BEHAVIOR OF BOX DISCREPANCY

Next, we examine if D� is predictive of the quality of approximation. We compute the normalized
square box discrepancy values (i.e., πd(

∏d
j=1 bj)

−1D�(S)2) as well as Gram matrix approximation
error for the different sequences with different sample sizes s. The expected normalized square box
discrepancy values for MC are computed using (13).

Our experiments revealed that using the full �b does not yield box discrepancy values that are
very useful. Either the values were not predictive of the kernel approximation, or they tended to
stay constant. Recall, that while the bounding box �b is set based on observed ranges of feature
values in the data set, the actual distribution of points X̄ encountered inside that box might be far
from uniform. This lead us to consider the discrepancy measure when measured on the central part
of the bounding box (i.e., �b/2 instead of �b), which is equal to the integration error averaged
over that part of the bounding box. Presumably, points from X̄ concentrate in that region, and they
may be more relevant for downstream predictive task.

The results are shown in Figure 4. In the top graphs we can see, as expected, increasing number
of features in the sequence leads to a lower box discrepancy value. In the bottom graphs, which
compare ‖K − K̃‖F /‖K‖F to D�b/2, we can see a strong correlation between the quality of
approximation and the discrepancy value.

6.2 Experiments With Adaptive QMC Sequences

The goal of this subsection is to provide a proof-of-concept for learning adaptive QMC sequences,
using the three schemes described in Section 5. We demonstrate that QMC sequences can be im-
proved to produce better approximation to the Gram matrix, and that can sometimes lead to im-
proved generalization error.

Note that the running time of learning the adaptive sequences is less relevant in our experimental
setting for the following reasons. Given the values of s, d, b and σ the optimization of a sequence
needs only to be done once. There is some flexibility in these parameters: d can be adjusted by
adding zero features or by doing PCA on the input; one can use longer or shorter sequences; and
the data can be forced to a fit a particular bounding box using (possibly non-equal) scaling of the
features (this, in turn, affects the choice of the σ) . Since designing adaptive QMC sequences is
data-independent with applicability to a variety of downstream applications of kernel methods, it is
quite conceivable to generate many point sets in advance and to use them for many learning tasks.
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Figure 4: Discrepancy values (D�b/2) for the different sequences on cpu and census. We mea-
sure the discrepancy on the central part of the bounding box (we use �b/2 instead of �b
as the domain in the box discrepancy).
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Figure 5: Integration error.

Furthermore, the total size of the sequences (s × d) is independent of the number of examples n,
which is the dominant term in large scale learning settings.

We name the three sequences as Global Adaptive, Greedy Adaptive and Weighted respectively.
For Global Adaptive, the Halton sequence is used as the initial setting of the optimization variables
S. For Greedy Adaptive, when optimizing for wt, the t-th point in the Halton sequence is used as the
initial point. In both cases, we use non-linear conjugate gradient to perform numerical optimization.
For Weighted, the initial features are generated using the Halton sequence and we optimize for the
weights. We used CVX (Grant and Boyd, 2014, 2008) to compute the sequence (solve (17)).

6.2.1 INTEGRAL APPROXIMATION

We begin by examining the integration error over the unit square by using three different se-
quences, namely, MC, Halton and global adaptive QMC sequences. The integral is of the form∫

[0,1]2 e
−iuT tdt where u spans the unit square. The error is plotted in Figure 5. We see that MC

sequences concentrate most of the error reduction near the origin. The Halton sequence gives signif-
icant improvement expanding the region of low integration error. Global adaptive QMC sequences
give another order of magnitude improvement in integration error which is now diffused over the
entire unit square; the estimation of such sequences is “aware” of the full integration region. In
fact, by controlling the box size (see plot labeled b/2), adaptive sequences can be made to focus
in a specified sub-box which can help with generalization if the actual data distribution is better
represented by this sub-box.
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Figure 6: Examining the behavior of learning Global Adaptive sequences. Various metrics on the
Gram matrix approximation are plotted.
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Figure 7: Examining the behavior of learning Greedy Adaptive sequences. Various metrics on the
Gram matrix approximation are plotted.

6.2.2 QUALITY OF KERNEL APPROXIMATION

In Figure 6 and Figure 7 we examine how various metrics (discrepancy, maximum squared error,
mean squared error, norm of the error) on the Gram matrix approximation evolve during the op-
timization process for both adaptive sequences. Since learning the adaptive sequences on data set
with low dimensional features is more affordable, the experiment is performed on two such data
sets, namely, cpu and housing.

For Global Adaptive, we fixed s = 100 and examine how the performance evolves as the
number of iterations grows. In Figure 6 (a) we examine the behavior on cpu. We see that all
metrics go down as the iteration progresses. This supports our hypothesis that by optimizing the box
discrepancy we can improve the approximation of the Gram matrix. Figure 6 (b), which examines
the same metrics on the scaled version of the housing data set, has some interesting behaviors.
Initially all metrics go down, but eventually all the metrics except the box-discrepancy start to go
up; the box-discrepancy continues to go down. One plausible explanation is that the integrands are
not uniformly distributed in the bounding box, and that by optimizing the expectation over the entire
box we start to overfit it, thereby increasing the error in those regions of the box where integrands
actually concentrate. One possible way to handle this is to optimize closer to the center of the box
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(e.g., on �b/2), under the assumption that integrands concentrate there. In Figure 6 (c) we try this
on the housing data set. We see that now the mean error and the norm error are much improved,
which supports the interpretation above. But the maximum error eventually goes up. This is quite
reasonable as the outer parts of the bounding box are harder to approximate, so the maximum error
is likely to originate from there. Subsequently, we stop the adaptive learning of the QMC sequences
early, to avoid the actual error from going up due to averaging.

For Greedy Adaptive, we examine its behavior as the number of points increases. In Figure 7 (a)
and (b), as expected, as the number of points in the sequence increases, the box discrepancy goes
down. This is also translated to non-monotonic decrease in the other metrics of Gram matrix ap-
proximation. However, unlike the global case, we see in Figure 7 (c), when the points are generated
by optimizing on a smaller box �b/2, the resulting metrics become higher for a fixed number of
points. Although the Greedy Adaptive sequence can be computed faster than the adaptive sequence,
potentially it might need a large number of points to achieve certain low magnitude of discrepancy.
Hence, as shown in the plots, when the number of points is below 500, the quality of the optimiza-
tion is not good enough to provide a good approximation the Gram matrix. For example, one can
check when the number of points is 100, the discrepancy value of the Greedy Adaptive sequence is
higher than that of the Global Adaptive sequence with more than 10 iterations.

D�b D�b/4

s HALTON GLOBALb GREEDYb WEIGHTEDb HALTON GLOBALb/4 GREEDYb/4 WEIGHTEDb/4

C
P

U

100 3.41E-3 1.29E-6 3.02E-4 7.84E-5 9.44E-5 5.57E-8 2.62E-5 1.67E-8
300 8.09E-4 5.14E-6 5.85E-5 1.45E-6 2.57E-5 1.06E-7 3.08E-6 2.93E-9
500 2.39E-4 2.83E-6 1.86E-5 3.39E-7 7.91E-6 2.62E-8 1.04E-6 2.43E-9

C
E

N
S

U
S

400 2.61E-3 9.32E-4 7.47E-4 8.83E-4 5.73E-4 2.79E-5 2.20E-5 2.45E-5
800 1.21E-3 5.02E-4 3.33E-4 4.91E-4 2.21E-4 1.12E-5 8.04E-6 5.46E-6

1200 8.27E-4 3.41E-4 2.06E-4 3.39E-4 1.39E-4 8.15E-6 4.23E-6 2.29E-6
1800 5.31E-4 2.17E-4 1.27E-4 2.31E-4 3.79E-5 5.59E-6 2.63E-6 8.37E-7
2200 4.33E-4 1.73E-4 1.01E-4 1.87E-4 2.34E-5 3.35E-6 1.95E-6 4.93E-7

Table 2: Discrepancy values, measured on the full bounding box and its central part, i.e., D�b and
D�b/4.

Table 2 also shows the discrepancy values of various sequences on cpu and census. Using
adaptive sequences improves the discrepancy values by orders-of-magnitude. We note that a sig-
nificant reduction in terms of discrepancy values can be achieved using only weights, sometimes
yielding discrepancy values that are better than the hard-to-compute global or greedy sequences.

6.2.3 GENERALIZATION ERROR

We use the three algorithms for learning adaptive sequences as described in the previous subsections,
and use them for doing approximate kernel ridge regression. The ridge parameter is set by the value
which is near-optimal for both sequences in 5-fold cross-validation on the training set. Table 3
summarizes the results.

For both cpu and census, at least one of the adaptive sequences sequences can yield lower test
error for each sampling size (since the test error is already low, around 3% or 5%, such improvement
in accuracy is not trivial). For cpu, greedy approach seems to give slightly better results. When
s = 500 or even larger (not reported here), the performance of the sequences are very close. For
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s HALTON GLOBALb GLOBALb/4 GREEDYb GREEDYb/4 WEIGHTEDb WEIGHTEDb/4

C
P

U
100 0.0304 0.0315 0.0296 0.0307 0.0296 0.0366 0.0305
300 0.0303 0.0278 0.0293 0.0274 0.0269 0.0290 0.0302
500 0.0348 0.0347 0.0348 0.0328 0.0291 0.0342 0.0347

C
E

N
S

U
S

400 0.0529 0.1034 0.0997 0.0598 0.0655 0.0512 0.0926
800 0.0545 0.0702 0.0581 0.0522 0.0501 0.0476 0.0487

1200 0.0553 0.0639 0.0481 0.0525 0.0498 0.0496 0.0501
1800 0.0498 0.0568 0.0476 0.0685 0.0548 0.0498 0.0491
2200 0.0519 0.0487 0.0515 0.0694 0.0504 0.0529 0.0499

Table 3: Regression error, i.e., ‖ŷ − y‖2/‖y‖2 where ŷ is the predicted value and y is the ground
truth.

census, the weighted sequence yields the lowest generalization error when s = 400, 800. After-
wards we can see global adaptive sequence outperforms the rest of the sequences, even though it
has better discrepancy values. In some cases, adaptive sequences sometimes produce errors that are
bigger than the unoptimized sequences.

In most cases, the adaptive sequence on the central part of the bounding box outperforms the
adaptive sequence on the entire box. This is likely due to the non-uniformity phenomena discussed
earlier.

7. Conclusion and Future Work

Recent work on applying kernel methods to very large data sets, has shown their ability to achieve
state-of-the-art accuracies that sometimes match those attained by Deep Neural Networks (DNN)
(Huang et al., 2014). Key to these results is the ability to apply kernel method to such data sets.
The random features approach, originally due to Rahimi and Recht (2008), as emerged as a key
technology for scaling up kernel methods (Sindhwani and Avron, 2014).

Close examination of those empirical results reveals that to achieve state-of-the-art accura-
cies, a very large number of random features was needed. For example, on TIMIT, a classical
speech recognition data set, over 200,000 random features were used in order to match DNN per-
formance (Huang et al., 2014). It is clear that improving the efficiency of random features can
have a significant impact on our ability to scale up kernel methods, and potentially get even higher
accuracies.

This paper is the first to exploit high-dimensional approximate integration techniques from the
QMC literature in this context, with promising empirical results backed by rigorous theoretical
analyses. Avenues for future work include incorporating stronger data-dependence in the estima-
tion of adaptive sequences and analyzing how resulting Gram matrix approximations translate into
downstream performance improvements for a variety of large-scale learning tasks.
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Appendix A. Technical Details

In this section we give detailed proofs of the assertions made in Section 4 and 5.

A.1 Proof of Proposition 5

Recall, for any t ∈ Rd, for Φ−1(t), we mean
(
Φ−1

1 (t1), . . . ,Φ−1
d (td)

)
∈ Rd, where Φj(·) is the

CDF of pj(·).
From fu(t) = e−iu

TΦ−1(t), for any j = 1, . . . , d, we have

∂f(t)

∂tj
= (−i) uj

pj(Φ
−1
j (tj))

e−iu
TΦ−1

j (t) .

Thus,
∂df(t)

∂t1 · · · ∂td
=

d∏
j=1

(
(−i) uj

pj(Φ
−1
j (tj))

)
e−iu

TΦ−1
j (t) .

In (6), when I = [d],∫
[0,1]|I|

∣∣∣∣ ∂f∂uI
∣∣∣∣ dtI =

∫
[0,1]d

∣∣∣∣ ∂df(t)

∂t1 · · · ∂td

∣∣∣∣ dt1 · · · dtd
=

∫
[0,1]d

∣∣∣∣∣∣
d∏
j=1

(
(−i) uj

pj(Φ
−1
j (tj))

)
e−iu

TΦ−1
j (t)

∣∣∣∣∣∣ dt1 · · · dtd
=

∫
[0,1]d

d∏
j=1

∣∣∣∣∣ uj

pj(Φ
−1
j (tj))

∣∣∣∣∣ dt1 · · · dtd
=

d∏
j=1

(∫
[0,1]

∣∣∣∣∣ uj

pj(Φ
−1
j (tj))

∣∣∣∣∣ dtj
)
. (18)

With a change of variable, Φj(tj) = vj , for j = 1, . . . , d, (18) becomes

d∏
j=1

(∫
[0,1]

∣∣∣∣∣
(

uj

pj(Φ
−1
j (tj))

)∣∣∣∣∣ dtj
)

=

d∏
j=1

(∫
R
|uj |dvj

)
=∞ .

As this is a term in (6), we know that VHK [fu(t)] is unbounded. �

A.2 Proof of Proposition 6

We need the following lemmas, across which we share some notation.
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Lemma 17 Assuming that κ = supx∈Rd h(x,x) <∞, if f ∈ H, where H is an RKHS with kernel
h(·, ·), the integral

∫
Rd f(x)p(x)dx is finite.

Proof For notational convenience, we note that∫
Rd
f(x)p(x)dx = E [f(X)] ,

where E [·] denotes expectation and X is a random variable distributed according to the probability
density p(·) on Rd.

Now consider a linear functional T that maps f to E [f(X)], i.e.,

T [f ] = E [f(X)] . (19)

The linear functional T is a bounded linear functional on the RKHSH. To see this:

|E [f(X)] | ≤ E [|f(X)|] (Jensen’s Inequality)

= E [|〈f, h(X, ·)〉H|] (Reproducing Property)

≤ ‖f‖HE [‖h(X, ·)‖H] (Cauchy-Schwartz)

≤ ‖f‖HE
[√

h(X,X)
]

= ‖f‖H
√
κ <∞ .

This shows that the integral
∫
Rd f(x)p(x)dx exists.

Lemma 18 The mean µh,p(u) =
∫
Rd h(u,x)p(x)dx is inH. In addition, for any f ∈ H,

E [f(X)] =

∫
Rd
f(x)p(x)dx = 〈f, µh,p〉H . (20)

Proof From the Riesz Representation Theorem, every bounded linear functional on H admits an
inner product representation. Therefore, for T defined in (19), there exists µh,p ∈ H such that,

T [f ] = E [f(X)] = 〈f, µh,p〉H .

Therefore we have, 〈f, µh,p〉H =
∫
f(x)p(x)dx for all f ∈ H. For any z, choosing f(·) = h(z, ·),

where h(·, ·) is the kernel associated withH, and invoking the reproducing property we see that,

µh,p(z) = 〈h(z, ·), µh,p〉H =

∫
Rd
h(z,x)p(x)dx .

The proof of Proposition 6 follows from the existence Lemmas above, and the following steps.
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εS,p[f ] =

∣∣∣∣∣
∫
Rd
f(x)p(x)dx− 1

s

s∑
l=1

f(wl)

∣∣∣∣∣
=

∣∣∣∣∣〈f, µh,p〉H − 1

s

s∑
l=1

〈f, h(wl, ·)〉H

∣∣∣∣∣
=

∣∣∣∣∣〈f, µh,p − 1

s

s∑
l=1

h(wl, ·)〉H

∣∣∣∣∣
≤ ‖f‖H

∥∥∥∥∥µh,p − 1

s

s∑
l=1

h(wl, ·)

∥∥∥∥∥
H

= ‖f‖HDh,p(S) ,

where Dh,p(S) is given as follows,

Dh,p(S)2 =

∥∥∥∥∥µh,p − 1

s

s∑
l=1

h(wl, ·)

∥∥∥∥∥
2

H

= 〈µh,p, µh,p〉H −
2

s

s∑
l=1

〈µh,p, h(wl, ·)〉H +
1

s2

s∑
l=1

s∑
j=1

〈h(wl, ·), h(wj , ·)〉H

= E [µh,p(X)]− 2

s

s∑
l=1

E [h(wl, ·)] +
1

s2

s∑
l=1

s∑
j=1

h(wl,wj)

=

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ− 2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω

+
1

s2

s∑
l=1

s∑
j=1

h(wl,wj) .

�

A.3 Proof of Theorem 9

We apply (9) to the particular case of h = sincb. We have∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ = π−d

∫
Rd

∫
Rd

d∏
j=1

sin(bj(ωj − φj))
ωj − φj

pj(ωj)pj(φj)dωdφ

= π−d
d∏
j=1

∫
R

∫
R

sin(bj(ωj − φj))
ωj − φj

pj(ωj)pj(φj)dωjdφj ,

and
s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω = π−d

s∑
l=1

∫
Rd

d∏
j=1

sin(bj(wlj − ωj))
wlj − ωj

pj(ωj)dω

= π−d
s∑
l=1

d∏
j=1

∫
Rd

sin(bj(wlj − ωj))
wlj − ωj

pj(ωj)dωj .
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So we can consider each coordinate on its own.
Fix j. We have

∫
R

sin(bjx)

x
pj(x)dx =

∫
R

∫ bj

0
cos(βx)pj(x)dβdx

=
1

2

∫ bj

−bj

∫
R
eiβxp(x)dxdβ

=
1

2

∫ bj

−bj
ϕj(β)dβ .

The interchange in the second line is allowed since the pj(x) makes the function integrable (with
respect to x).

Now fix w ∈ R as well. Let hj(x, y) = sin(bj(x− y))/π(x− y). We have

∫
R
hj(ω,w)pj(ω)dω = π−1

∫
R

sin(bj(ω − w))

ω − w
pj(ω)dω

= π−1

∫
R

sin(bjx)

x
pj(x+ w)dx

= (2π)−1

∫ bj

−bj
ϕj(β)eiwβdβ ,

where the last equality follows from first noticing that the characteristic function associated with the
density function x 7→ pj(x+ w) is β 7→ ϕ(β)eiwβ , and then applying the previous inequality.

We also have,

∫
R

∫
R

sin(bj(x− y))

x− y
pj(x)pj(y)dxdy =

∫
R

∫
R

∫ bj

0
cos(β(x− y))pj(x)pj(y)dβdxdy

=
1

2

∫
R

∫
R

∫ bj

−bj
eiβ(x−y)pj(x)pj(y)dβdxdy

=
1

2

∫ bj

−bj

∫
R

∫
R
eiβ(x−y)pj(x)pj(y)dxdydβ

=
1

2

∫ bj

−bj

(∫
R
eiβxpj(x)dx

)(∫
R
e−iβypj(y)dy

)
dβ

=
1

2

∫ bj

−bj
ϕj(β)ϕj(β)∗dβ

=
1

2

∫ bj

−bj
|ϕj(β)|2dβ .

The interchange at the third line is allowed because of pj(x)pj(y). In the last line we use the fact
that the ϕj(·) is Hermitian. �
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A.4 Proof of Theorem 12

Let b > 0 be a scalar, and let u ∈ [−b, b] and z ∈ R. We have,

∫ ∞
−∞

e−iux
sin(b(x− z))
π(x− z)

dx = e−iuz
∫ ∞
−∞

e−i2π
u
2b
y sin(πy)

πy
dy

= e−iuz rect(u/2b)

= e−iuz .

In the above, rect is the function that is 1 on [−1/2, 1/2] and zero elsewhere.

The last equality implies that for every u ∈ �b and every x ∈ Rd we have

fu(x) =

∫
Rd
fu(y) sincb(y,x)dy .

We now have for every u ∈ �b,

εS,p[fu] =

∣∣∣∣∣
∫
Rd
fu(x)p(x)dx− 1

s

s∑
i=1

f(wi)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

∫
Rd
fu(y) sincb(y,x)dyp(x)dx− 1

s

s∑
i=1

∫
Rd
fu(y) sincb(y,wi)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd
fu(y)

[∫
Rd

sincb(y,x)p(x)dx− 1

s

s∑
i=1

sincb(y,wi)

]
dy

∣∣∣∣∣ .
Let us denote

rS(y) =

∫
Rd

sincb(y,x)p(x)dx− 1

s

s∑
i=1

sincb(y,wi) .

So,

εS,p[fu] =

∣∣∣∣∫
Rd
fu(y)rS(y)dy

∣∣∣∣ .
The function rS(·) is square-integrable, so it has a Fourier transform r̂S(·). The above formula

is exactly the value of r̂S(u). That is,

εS,p[fu] = |r̂S(u)| .
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Now,

Ef∼U(F�b)

[
εS,p[f ]2

]
= Eu∼U(�b)

[
εS,p[fu]2

]
=

∫
u∈�b

|r̂S(u)|2
 d∏
j=1

2bj

−1

du

=

 d∏
j=1

2bj

−1

‖r̂S‖2L2

=
(2π)d∏d
j=1 2bj

‖rS‖2PWb

=
πd∏d
j=1 bj

D�
p (S)2 .

The equality before the last follows from Plancherel formula and the equality of the norm in PWb

to the L2-norm. The last equality follows from the fact that rS is exactly the expression used in the
proof of Proposition 6 to derive D�

p . �

A.5 Proof of Corollary 13

In this case, p(x) =
∏d
j=1 pj(xj) where pj(·) is the density function ofN (0, 1/σj). The character-

istic function associated with pj(·) is ϕj(β) = e
− β2

2σ2
j . We apply (11) directly.

For the first term, since

∫ bj

0
|ϕj(β)|2dβ =

∫ bj

0
e
−β

2

σ2
j dβ

= σj

∫ bj/σj

0
e−y

2
dy

=
σj
√
π

2
erf

(
bj
σj

)
,

we have

π−d
d∏
j=1

∫ bj

0
|ϕj(β)|2dβ =

d∏
j=1

σj
2
√
π

erf

(
bj
σj

)
. (21)
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For the second term, since∫ bj

−bj
ϕj(β)eiwljβdβ =

∫ bj

−bj
e−

β2j

2σ2
+iwljβdβ

= e−
σjwlj

2

∫ bj

−bj
e
−
(

β√
2σj
−i

σjwlj√
2

)2

dβ

=
√

2σje
−
σ2j w

2
lj

2

∫ bj√
2σj

−
bj√
2σj

e
−
(
y−i

σjwlj√
2

)2

dy

=
√

2σje
−
σ2j w

2
lj

2

∫ bj√
2σj
−i

σjwlj√
2

−
bj√
2σj
−i

σjwlj√
2

e−z
2
dz

=

√
πσj√
2
e−

σ2j w
2
lj

2

(
erf

(
− bj√

2σj
− i

σjwlj√
2

)
− erf

(
bj√
2σj
− i

σjwlj√
2

))

=
√

2πσje
−
σ2j w

2
lj

2 Re

(
erf

(
− bj√

2σj
− i

σjwlj√
2

))
,

we have

2

s
(2π)−d

s∑
l=1

d∏
j=1

∫ bj

−bj
ϕj(β)eiwljβdβ =

2

s

s∑
l=1

d∏
j=1

σj√
2π
e−

σ2j w
2
lj

2 Re

(
erf

(
− bj√

2σj
− i

σjwlj√
2

))
.

(22)
Combining (21), (22) and (11), (12) follows. �

A.6 Proof of Corollary 14

The proof is similar to the proof of Theorem 3.6 of Dick et al. (2013). Notice that since supx∈Rd h(x,x) <
∞, we have

∫
Rd h(x,x)p(x)dx < ∞. From Lemma 18 we know that

∫
Rd h(·,y)p(y)dy ∈ H,

hence from Lemma 17, we have
∫
Rd
∫
Rd h(x,y)p(x)p(y)dxdy <∞.

By (9), we have

Dh,p(S)2 =

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ

−2

s

s∑
l=1

∫
Rd
h(wl, ω)p(ω)dω

+
1

s2

s∑
l=1

h(wl,wl) +
1

s2

s∑
l,j=1,l 6=j

h(wl,wj) .

Then,

E
[
Dh,p(S)2

]
=

∫
[0,1]d

· · ·
∫

[0,1]d

(∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ− 2

s

s∑
l=1

∫
Rd
h(Φ−1(tl), ω)p(ω)dω

+
1

s2

s∑
l=1

h(Φ−1(tl),Φ
−1(tl)) +

1

s2

s∑
l,j=1,l 6=j

h(Φ−1(tl),Φ
−1(tj))

 dt1 · · · dts .
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Obviously, the first is a constant which is independent to t1, . . . , ts. Since all the terms are
finite, we can interchange the integral and the sum among rest terms. In the second term, for each l,
the only dependence on t1, . . . , ts is tl, hence all the other tj can be integrated out. That is,∫

[0,1]d
· · ·
∫

[0,1]d

∫
Rd
h(Φ−1(tl), ω)p(ω)dωdt1 · · · dts =

∫
[0,1]d

∫
Rd
h(Φ−1(tl), ω)p(ω)dωdtl

=

∫
Rd

∫
Rd
h(φ, ω)p(φ)p(ω)dφdω.

Above, the last equality comes from a change of variable, i.e., tl = (Φ1(φ1), . . . ,Φd(φd)).
Similar operations can be done for the third and fourth term. Combining all of these, we have

the following,

E
[
Dh,p(S)2

]
=

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ− 2

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ

+
1

s

∫
Rd
h(ω, ω)p(ω)dω +

s− 1

s

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ

=
1

s

∫
Rd
h(ω, ω)p(ω)dω − 1

s

∫
Rd

∫
Rd
h(ω, φ)p(ω)p(φ)dωdφ .

�

A.7 Proof of Proposition 16

Before we compute the derivative, we prove two auxiliary lemmas.

Lemma 19 Let x ∈ Rd be a variable and z ∈ Rd be fixed vector. Then,

∂ sincb(x, z)

∂xj
= bj sinc′bj (xj , zj)

∏
q 6=j

sincbq(xq, zq) . (23)

We omit the proof as it is a simple computation that follows from the definition of sincb.

Lemma 20 The derivative of the scalar function f(x) = Re
[
e−ax

2
erf (c+ idx)

]
, for real scalars

a, c, d is given by,

∂f

∂x
= −2axe−ax

2
Re [erf (c+ idx)] +

2d√
π
e−ax

2
ed

2x2−c2 sin(2cdx) .

Proof Since

f(x) =
1

2

(
e−ax

2
erf(c+ idx) +

(
e−ax

2
erf(c+ idx)

)∗)
=

1

2

(
e−ax

2
erf(c+ idx) + e−ax

2
erf(c− idx)

)
, (24)

it suffices to compute the the derivative g(x) = e−ax
2

erf(c+ idx).
Let k(x) = erf(c+ idx). We have

g′(x) = −2axe−ax
2
k(x) + e−ax

2
k′(x) . (25)
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Since

k(x) = erf(c+ idx)

=
2√
π

∫ c+idx

0
e−z

2
dz

=
2√
π

(∫ c

0
e−z

2
dz +

∫ c+idx

c
e−z

2
dz

)
=

2√
π

(∫ c

0
e−y

2
dy + (id)

∫ x

0
e−(c+idt)2dt

)
, (26)

we have
k′(x) =

2√
π
e−(c+idx)2 =

2d√
π
ed

2x2−c2(sin(2cdx) + i cos(2cdx)) . (27)

We now have

f ′(x) =
1

2

(
g′(x) + (g∗(x))′

)
=

1

2

(
g′(x) + (g′(x))∗

)
=

1

2

(
−2axe−ax

2
(k(x) + k∗(x)) + e−ax

2
(k′(x) + (k′(x))∗)

)
=

1

2

(
−4axe−ax

2
Re [erf (c+ idx)] + e−ax

2 4d√
π
ed

2x2−c2 sin(2cdx)

)
= −2axe−ax

2
Re [erf (c+ idx)] +

2d√
π
e−ax

2
ed

2x2−c2 sin(2cdx) . (28)

Proof [Proof of Proposition 16] For the first term in (12), that is 1
s2
∑s

m=1

∑s
r=1 sincb(wm,wr),

to compute the partial derivative of wlj , we only have to consider when at least m or r is equal to l.
If m = j = l, by definition, the corresponding term in the summation is one. Hence, we only have
to consider the case when m 6= r. By symmetry, it is equivalent to compute the partial derivative of
the following function 2

s2
∑s

m=1,m 6=l sincb(wl,wm). Applying Lemma 19, we get the first term in
(14).

Next, for the last term in (12), we only have consider the term associated with one in the summa-

tion and the term associated with j in the product. Since
(

σj√
2π

)
e−

σ2j w
2
lj

2 Re
(

erf
(

bj
σj
√

2
− iσjwlj√

2

))
satisfies the formulation in Lemma 20, we can simply apply Lemma 20 and get its derivative with
respect to wlj .

Equation (14) follows by combining these terms.

References

H. Avron, H. Nguyen, and D. Woodruff. Subspace embeddings for the polynomial kernel. In
Advances in Neural Information Processing Systems (NIPS). 2014.

34



QUASI-MONTE CARLO FEATURE MAPS FOR SHIFT-INVARIANT KERNELS

F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning
Theory (COLT), 2013.

F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding and conditional
gradient algorithms. In International Conference in Machine Learning (ICML), 2012.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434, 2006.

A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer Academic Publishers, 2004.

S. Bochner. Monotone funktionen, Stieltjes integrale und harmonische analyse. Math. Ann., 108:
378–410, 1933.

B. Boots, A. Gretton, and G. J. Gordon. Hilbert space embeddings of predictive state representa-
tions. In Conference Uncertainty in Artificial Intelligence (UAI), 2013.

L. Bottou, O. Chapelle, D. DeCoste, and J. Weston (Editors). Large-scale Kernel Machines. MIT
Press, 2007.

R. E. Caflisch. Monte Carlo and Quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1 1998.

Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding. In Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2010.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:
1–49, 2001.

B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. Balcan, and L. Song. Scalable kernel methods
via doubly stochastic gradients. In Advances in Neural Information Processing Systems (NIPS).
2014.

J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The Quasi-Monte Carlo way.
Acta Numerica, 22:133–288, 2013.

A. El Alaoui and M. W. Mahoney. Fast Randomized Kernel Methods With Statistical Guarantees.
ArXiv e-prints, November 2014.

Z. Ghahramani and C. E. Rasmussen. Bayesian Monte Carlo. In Advances in Neural Information
Processing Systems (NIPS). 2003.

A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved large-scale machine
learning. In International Conference on Machine Learning (ICML), 2013. To appear in the
Journal of Machine Learning Research.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1.
http://cvxr.com/cvx, March 2014.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in
Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.

35

http://cvxr.com/cvx


AVRON ET AL.

R. Hamid, A. Gittens, Y. Xiao, and D. DeCoste. Compact random feature maps. In International
Conference on Machine Learning (ICML), 2014.

Z. Harchaoui, F. Bach, O. Cappe, and E. Moulines. Kernel-based methods for hypothesis testing:
A unified view. IEEE Signal Processing Magazine, 30(4):87–97, July 2013.

P. Huang, H. Avron, T. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel methods match Deep
Neural Networks on TIMIT. In International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2014.

F. Huszár and D. Duvenaud. Optimally-weighted herding is Bayesian quadrature. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2012.

P. Kar and H. Karnick. Random feature maps for dot product kernels. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2012.

S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classi-
fier complexity. J. Mach. Learn. Res., 7:1493–1515, 2006.

Q. Le, T. Sarlós, and A. Smola. Fastfood – Approximating kernel expansions in loglinear time. In
International Conference on Machine Learning (ICML), 2013.

G. Leobacher and F. Pillichschammer. Introduction to Quasi-Monte Carlo Integration and Appli-
cations. Springer International Publishing, 2014.

F. Li, C. Ionescu, and C. Sminchisescu. Random Fourier approximations for skewed multiplicative
histogram kernels. Pattern Recognition, 6376:262–271, 2010.

Z. Lu, A. May, K. Liu, A. Bagheri Garakani, D. Guo, A. Bellet, L. Fan, M. Collins, B. Kingsbury,
M. Picheny, and F. Sha. How to scale up kernel methods to be as good as deep neural net. ArXiv
e-prints, November 2014.

S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In International Conference
on Computer Vision (ICCV), 2009.

M. Mori. A method for evaluation of the error function of real and complex variable with high
relative accuracy. Publ. RIMS, Kyoto Univ., 19:1081–1094, 1983.

H. Niederreiter. Random number generation and Quasi-Monte Carlo methods. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1992.

E. Parzen. Statistical inference on time series by RKHS methods. In Biennial Seminar Canadian
Mathematical Congress on Time Series and Stochastic Processes: convexity and combinatorics,
1970.

M. M. Peloso. Classical spaces of holomorphic functions. Technical report, Universit‘ di Milano,
2011.

N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2013.

36



QUASI-MONTE CARLO FEATURE MAPS FOR SHIFT-INVARIANT KERNELS

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS). 2008.

V. C. Raykar and R. Duraiswami. Fast large scale gaussian process regression using approximate
matrix-vector products, 2007.

I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96–108,
03 1942.

B. Schölkopf and A. Smola, editors. Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization and Beyond. MIT Press, 2002.

V. Sindhwani and H. Avron. High-performance kernel machines with implicit distributed opti-
mization and randomization. In JSM Proceedings, Tradeoffs in Big Data Modeling - Section on
Statistical Computing, 2014. To appear in Technometrics.

I. H. Sloan and H. Wozniakowski. When are Quasi-Monte Carlo algorithms efficient for high
dimensional integrals. Journal of Complexity, 14(1):1–33, 1998.

A. Smola, A. Gretton, L. Song, and B. Schlkopf. A Hilbert space embedding for distributions. In
Algorithmic Learning Theory, volume 4754 of Lecture Notes in Computer Science, pages 13–31.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75224-0.

L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. Smola. Hilbert space embeddings of Hidden
Markov Models. In International Conference in Machine Learning (ICML), 2010.

V. Sreekanth, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Generalized RBF feature maps for
efficient detection. In British Machine Vision Conference (BMVC), 2010.

B. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G. Lanckriet. Hilbert space embed-
dings and metrics on probability measures. J. Mach. Learn. Res., 11:1517–1561, 2010.

J. F. Traub and H. Wozniakowski. Breaking intractability. Scientific American, pages 102–107,
1994.

I. W. Tsang, J. T. Kwok, and P. Cheung. Core vector machines: Fast svm training on very large data
sets. J. Mach. Learn. Res., 6:363–392, December 2005.

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(3):480–492, March 2012.

G. Wahba, editor. Spline Models for Observational Data. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1990.

J. A. C. Weideman. Computation of the complex error function. SIAM Journal of Numerical
Analysis, 31(5):1497–1518, 10 1994.

M. Welling. Herding dynamical weights to learn. In International Conference on Machine Learning
(ICML), 2009.

37



AVRON ET AL.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems (NIPS). 2001.

H. Wozniakowski. Average case complexity of multivariate integration. Bull. Amer. Math. Soc., 24:
185–194, 1991.

J. Yang, V. Sindhwani, Q. Fan, H. Avron, and M. Mahoney. Random Laplace feature maps for semi-
group kernels on histograms. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

K. Yao. Applications of Reproducing Kernel Hilbert Spaces - bandlimited signal models. Inform.
Control, 11:429–444, 1967.

K. Zhang, J. Peters, D. Janzing, and B. Scholkopf. Kernel based conditional independence test and
application in causal discovery. In Confernece on Uncertainty in Artificial Intelligence (UAI),
2011.

38


	Introduction
	Preliminaries
	Notation
	Related Work
	Quasi-Monte Carlo Techniques: an Overview

	QMC Feature Maps: Our Algorithm
	Theoretical Analysis and Average Case Error Bounds
	Learning Adaptive QMC Sequences
	Global Adaptive Sequences
	Greedy Adaptive Sequences
	Weighted Sequences

	Experiments
	Experiments With Classical QMC Sequences
	Quality of Kernel Approximation
	Generalization Error
	Behavior of Box Discrepancy

	Experiments With Adaptive QMC Sequences
	Integral Approximation
	Quality of Kernel Approximation
	Generalization Error


	Conclusion and Future Work
	Technical Details
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Theorem 9
	Proof of Theorem 12
	Proof of Corollary 13
	Proof of Corollary 14
	Proof of Proposition 16


