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Abstract

We address the problem of selecting groups of jointly informative, continuous, features in
the context of classification and propose several novel criteria for performing this selection.
The proposed class of methods is based on combining a Gaussian modeling of the feature
responses with derived bounds on and approximations to their mutual information with
the class label. Furthermore, specific algorithmic implementations of these criteria are
presented which reduce the computational complexity of the proposed feature selection
algorithms by up to two-orders of magnitude. Consequently we show that feature selection
based on the joint mutual information of features and class label is in fact tractable; this
runs contrary to prior works that largely depend on marginal quantities. An empirical
evaluation using several types of classifiers on multiple data sets show that this class of
methods outperforms state-of-the-art baselines, both in terms of speed and classification
accuracy.

Keywords: feature selection, mutual information, entropy, mixture of Gaussians

1. Introduction

Given a collection of data in RD it is often advantageous to reduce its dimensionality by
either extracting (Hinton and Salakhutdinov, 2006) or selecting (Guyon and Elisseeff, 2003)
a subset of d� D features, which carry “as much information as possible”. The motivation
behind this dimensionality reduction can be either to control over-fitting by reducing the
capacity of the classifier space or to improve the computational overhead by reducing the
optimization domain. It can also be used as a tool to facilitate the understanding or the
graphical representation of high-dimensional data.

In the present work we focus on the selection, rather than extraction, of features. In
general feature selection methods can be divided into two large families: Techniques from
the first group, filters, are predictor agnostic as they do not optimize the selection of features
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for a specific prediction method. They are usually based on classical statistics or informa-
tion theoretic tools; the novel methods we propose in this article belong to this category.
Techniques from the second group, wrappers, choose features to optimize the performance
of a certain predictor. They usually require the retraining of the predictor at each step
of a greedy search. Consequently they are typically computationally more expensive than
filters. Furthermore, as the selected features are tailored to a specific predictor, they often
do not work well with other families of predictors.

In the following we present a filter approach to feature selection in the context of classi-
fication based on the maximization of the mutual information between the selected features
and the class to predict. The use of mutual information as a criterion for feature selec-
tion has been extensively studied in the literature, and can be motivated in the context of
classification by Fano’s inequality

H(Y |Ŷ ) ≤ 1 + P (e) log (|Y|-1)

where Y, Ŷ are the true and predicted labels respectively, while e is the event that Y 6= Ŷ .
Combining the above with the data processing inequality (specifically the chain Y → X →
Ŷ ) results in the following lower bound on the probability of an incorrect classification PE
by

P (e) ≥ H(Y )− I(X;Y )− 1

(|Y|-1)

where H(Y ) is the entropy of the class prior and I(X;Y ) is the mutual information between
the output (Y ) and input (X) features.

An important issue that arises in this context, is that of the joint “informativeness”
of the selected features. Though wrappers by their very nature tend to select features
which are jointly informative, this issue is only partially addressed for filters due to the
resulting computational complexity and need for very large training sets. Most existing
methods (Peng et al., 2005; Fleuret, 2004; Hall and Smith, 1999; Liu and Yu, 2003) typically
compromise by relying on the mutual information between individual features or very small
groups of features (pairs, triplets) and the class. We argue however, that rather than
compromising on the joint behavior of the selected features, it is preferable to accept a
compromise on the density model, which will allow to analyze this joint behavior in an
efficient manner.

In a classification task with continuous features context, if we aim at taking into account
the joint behavior of features, a Gaussian model is a natural choice. This unfortunately
leads to a technical difficulty: If such a model is used for the conditional distributions of
the features given the class then the non-conditioned distribution is a mixture of Gaussians
and its entropy has no simple analytical form. There is extensive prior work on the problem
of approximating the entropy of a mixture of Gaussians (Hershey and Olsen, 2007), but
most of the existing approximations are too computationally intensive to be used during an
iterative optimization process which requires the estimation of the mutual information of a
very large number of subsets of features with the class to predict.

We propose here an alternative approach wherein we derive both bounds on and ap-
proximations to the Mutual Information – and maximize these quantities in lieu of the
true mutual information. We also propose specific algorithmic implementations that rely
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on updating the inverses of covariance matrices iteratively instead of computing them from
scratch drastically reducing the computational cost during the optimization of the selected
feature set.

2. Related Works

When selecting d features from a pool of D candidates in the context of a classification
task, it does not suffice to select features independently informative with respect to the
class. When such greedy strategies are employed the risk of acquiring redundant, or even
identical, features increases. Thus, it is also important that these features exhibit low
redundancy between them: joint informativeness is at the core of feature selection.

As mentioned in the introduction, wrappers, due to their very nature, address this issue
by creating subsets of features that perform well when combined with a specific predictor.
Examples of such methods include iteratively training a SVM , removing at each itera-
tion the features with the smallest weights (Guyon et al., 2002) or employing Adaboost in
connection with decision stumps to perform feature selection (Das, 2001). Other wrapper
methods impose sparsity on the resulting predictor thus implicitly performing feature selec-
tion, for instance by using a Laplacian prior to perform sparse logistic regression (Cawley
et al., 2006), casting a l0 regularized SVM as a mixed integer programming problem (Tan
et al., 2010), or imposing sparsity via a l1-norm regularizer (Argyriou et al., 2008) or l1-
clipped norm (Xu et al., 2014). Such wrappers, that train predictors only once, tend to
be much faster, however like other wrappers they tend not to generalize well across predic-
tors.A wrapper approach that shares similarities with the algorithm proposed here, forward
regression (Das and Kempe, 2011) iteratively augments a subset of features to build a linear
regressor which is near-optimal in a least-squared error sense.

In the context of filters, the simplest methods are those that calculate statistics on indi-
vidual features and then rank these features based on these values, keeping the d features of
highest rank. Examples of such statistics are Fisher score, mutual information between the
feature and the class (information gain), χ2 etc. Though quick to compute, such approaches
typically result in large feature redundancy and sub-optimal performance.

A slightly more computationally complex approach, the RelieFF algorithm (Robnik-
Šikonja and Kononenko, 2003), looks at individual features assigning a score by randomly
selecting samples and calculating for that feature and for each sample the difference in
distance between the random sample and the nearest sample of the same class, dubbed
“nearest hit”, and the random sample and the nearest sample of a different class, dubbed
“nearest miss”. Despite looking at features in isolation, it has been shown to perform well
in practice.

In the work on mRMR feature selection (Peng et al., 2005) the authors attempt to
address the issue of redundancy by selecting feature of maximum relevance and minimum
redundancy, that is features with high mutual information with the class and low mutual
pairwise information with the remaining selected features, thus selecting features that are
not pairwise redundant. Quadratic programming feature selection (Rodriguez-Lujan et al.,
2010) casts the feature selection as an optimization task and can be used in conjunction
with a number of similarity measure. When combined with mutual information it resembles
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mRMR though it provides a ranking of features as opposed to the greedy selection process
of mRMR.

Another approach (Vasconcelos, 2003) based on mutual information attempts to di-
versify the conditional distributions pX|Y by greedily choosing features that maximize the
Kullback-Leibler divergence between the conditionals and the prior pX . However only the
marginal distributions pertaining to individual features are used and as such no joint infor-
mativeness of features is exploited.

The FCBF algorithm (Liu and Yu, 2003) uses symmetrical uncertainty I(X;Y )
H(X)+X(Y ) as a

quantitative criterion and adds features to a pool based on a novel concept of predominant
correlation, namely that the feature is more highly correlated with the class than any of
the features already in the pool. CFS (Hall and Smith, 1999) similarly combines symmetric
uncertainty with Pearson’s correlation to add features exhibiting low correlation with the
features already in the pool.

Redundancy may also be addressed via the concept of a Markov Blanket (Margaritis,
2009). The Markov blanket of a variable X is defined as the set of variables S such that
X is independent of the remaining variables D \ (S ∪X) given the values of the variables
in S. Based on this concept, the authors in (Fleuret, 2004) select features that have high
mutual information with the class when conditioned on one of the features already in the
pool. The resulting algorithm is suitable only for binary data. Here however we explicitly
address the problem of feature selection in a continuous domain.

Closely related, at least conceptually, to the work presented here is prior work (Torkkola,
2003) which similarly attempts to find features that are jointly informative by resorting to
a Gaussian modeling. In that work however the aim is feature extraction and the mutual
information is used as an objective to guide a gradient ascent algorithm.

Another promising line of work is that of (Song et al., 2012) which avoids density estima-
tion necessary in mutual information based approaches by considering the Hilbert-Schmidt
Independence Criterion. The authors show how to obtain unbiased estimates of the HSIC
quantity. Furthermore the method can be kernelized thus allowing for the discovery of
dependencies in high-(possibly infinite) dimensional feature space. The Hilbert-Schmidt
Independence Criterion has also been used in conjunction with l1-norm regularization (Ya-
mada et al., 2014).

Finally, we note a family of feature selection algorithms, which have become very popular
in recent years, based on spectral clustering. In such approaches, features can be selected
based on their influence on the affinity graph Laplacian (Jiang and Ren, 2011), or by
analyzing the spectrum of the Laplacian matrix (Wolf and Shashua, 2005).

3. Feature Selection Criteria

We propose two novel criteria which characterize the informativeness of a set of features
in a classification context using their mutual information with the class under a Gaussian
model of the features given the class. While this approach is conceptually straight-forward,
it requires the evaluation of the entropy of a mixture of Gaussians for which no closed-form
expression is available.

Our first approach, dubbed “Gaussian compromise” and described in § 3.2.1, uses the
entropy of a single Gaussian of same expectation and variance as the mixture to obtain an
upper bound on, and subsequently an approximation to, the true entropy.
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Table 1: Notation

F = {X1, X2, . . . , XD} the set of candidate features
Xj a single feature
Y the class label
S a subset of F
Sn−1 the set of features selected up until iteration n
ΣS the covariance matrix of the features in S
Σj,S the covariance vector of feature Xj and the features in S
σ2
i,j the covariance of features Xj and Xi

σ2
i the variance of feature i

Σy
S the variance of the features in S conditioned on Y = y

σ2
j|S the variance of feature Xj conditioned on the value of the features in S
fy the density of a normal approximation of the class conditional distributions
f∗ the Gaussian approximation of the joint law

∑
y pyfy

py the prior on the class variable Y

Our second approach, described in § 3.2.2 is based on a decomposition of the mutual
information, in the binary class case, as a sum of Kullback-Leibler divergence terms, which
can be efficiently approximated. The n-class case is addressed by averaging the obtained
quantity over the one-vs-all sub-problems.

3.1 Mutual Information and the Gaussian Model

Given a continuous variable X and a finite variable Y , their mutual information is defined
as

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X)−
∑
y

H(X|Y = y)P (Y = y). (2)

Using a Gaussian density model for continuous variables is a natural strategy, due in part
to the simplicity of its parametrization, and to its ability to capture the joint behavior of its
components. Moreover, the entropy of a n-dimensional multivariate Gaussian X ∼ N (µ,Σ)
has a simple and direct expression, namely

H(X) =
1

2
log(|Σ|) +

n

2
(log 2π + 1) .

3.2 Bounds on the Mutual Information and the Entropy

Estimating the mutual information as defined in equation (2) requires the estimation of
the entropy of both the conditional distributions X|Y = y for all y, and that of X itself.
If we model the former with Gaussian distributions, the latter is a mixture of Gaussian
distributions, the entropy of which has no simple analytic form.
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We propose to mitigate this problem by deriving upper bounds and approximations
with tractable forms. Let fy, y = 1, . . . , C denote Gaussian densities on RD, py a discrete
distribution on {1, . . . , C}, and f∗ the Gaussian approximation of the joint law

f =
∑
y

fypy,

that is the Gaussian density of same expectation and covariance matrix as the mixture.
Let Y be a random variable of distribution py and X a continuous random variable with
conditional distributions µX|Y=y = fy.

3.2.1 Gaussian Compromise Criterion

As mentioned, we propose here to use an approximation of H(f) based on the entropy of
H (f∗). While modeling f as a Gaussian is not consistent with the Gaussian models of the
conditioned densities, estimating the mutual information with it still has all the important
properties one desires for continuous feature selection:

• It captures the information content of individual features, since adding a non infor-
mative feature would change by the same amount all the terms of equation (2).

• It accounts for redundancy, since linearly dependent features would induce a small
determinant of the covariance matrix and by extension small mutual information.
This can be seen if we consider that the determinant of a matrix which has rows (or
columns) which are linearly dependent is 0.

• It normalizes with respect to any affine transformation of the features, since such a
transformation changes by the same amount all the densities in equation (2). This
can be seen if we consider that translation has no effect on the covariance matrix and
that a linear transformation A gives

H(AX) =
1

2
log(|AΣAT |) +

n

2
(log 2π + 1) = H(X) + log(|A|).

However, this first-order approximation suffers from a core weakness, namely that the
entropy of f∗ can become arbitrarily larger than the entropy of

∑
y pyfy (see figure 1).

This leads to degenerated cases where families of features look “infinitely informative”.
This effect can be mitigated by considering the following upper bound on the true entropy
H(
∑

y pyfy).
We have by definition

I(X;Y ) = H

(∑
y

fypy

)
−
∑
y

H(fy)py.

Since f∗ is a Gaussian density, it has the highest entropy for a given variance, and thus
H(f∗) ≥ H(

∑
y fypy), hence

I(X;Y ) ≤ H (f∗)−
∑
y

H(fy)py. (3)
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Figure 1: This graph shows several estimates of the entropy of a mixture of two 1D Gaussian
densities of variance 1, as a function of the difference between their means. The
green curve is the true value of the entropy, estimated numerically. The blue
curve is the entropy of a single Gaussian fitted on the mixture. The black line
stands for the limit entropy when the two components are ’far apart’. Finally,
the red curve is the upper bound described in § 3.2.1.
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The mutual information between X and Y is upper bounded by the entropy of Y as Y is
discrete, hence

I(X;Y ) ≤ H(Y ) = −
∑
y

py log py,

from which we get

I(X;Y ) ≤
∑
y

(H(fy)− log py)py −
∑
y

H(fy)py. (4)

Taking the min of inequalities (3) and (4), we obtain the following upper bound

I(X;Y ) ≤ min

(
H(f∗),

∑
y

(H(fy)− log py)py

)
−
∑
y

H(fy)py. (5)

Figure 1 illustrates the behavior of this bound in the case of two 1D Gaussians. An upper
bound on H(X) follows directly.

From the concavity of the entropy function we obtain the following lower bound

H(X) ≥
∑
y

pyH(fy). (6)

Combining eq. (5),(6) gives

min

(
H(f∗),

∑
y

(H(fy)− log(py)) py

)
≥ H(f) ≥

∑
y

pyH(fy).

Note that the difference between upper and lower bound is itself bounded

−
∑
y

pylog(py) ≥ min

(
H(f∗),

∑
y

(H(fy)− log(py))py

)
−
∑
y

pyH(fy).

The proposed GC criterion is based on an approximation to H(X), namely

H̃(f) =
∑
y

py min (H(f∗), H(fy)− log(py)) .

We note that this approximation is also upper bounded by

min

(
H(f∗),

∑
y

(H(fy)− log(py))py

)
≥ H̃(f).

Furthermore, since ∀y
H(fy)− log(py) > H(fy),

it follows that if ∀y
H(f∗) ≥ H(fy) (7)
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then

H̃(f) ≥
∑
y

pyH(fy),

meaning the approximation H̃(f) also lies between the two bounds and by extension

−
∑
y

pylog(py) ≥
∣∣∣H̃(f)−H(f)

∣∣∣ .
For (7) to hold it suffices that

λ∗i ≥ λ
y
i , ∀i, y (8)

where λ∗i , λ
y
i are the ith (sorted by magnitude) eigenvalues of Σ∗ and Σy respectively, in

which case ∏
i

λ∗i ≥
∏
i

λyi .

That is to say a sufficient condition is that the variance of f∗ when projected along any of
the eigenvectors of the covariance matrix Σ∗ is at least as large as the variance of fy when
projected along the corresponding eigenvector of Σy, ∀y. Alternatively, for (7) to hold it
suffices that ∀x, y (and in particular ∀x which are eigenvectors of Σy)

xTΣ∗x ≥ xTΣyx.

Given that

Σ∗ =
∑
y

pyΣ
y +

∑
y

py(µy − µ∗)(µy − µ∗)T (9)

this translates to∑
y

pyx
TΣyx+

∑
y

pyx
T (µy − µ∗)(µy − µ∗)TxT ≥ xTΣyx.

That is to say that it suffices that the variance of fy along any direction can be accounted
for either by the variances of the mixture components along this direction or by the variance
of the mixture means in this direction. Note that in this case (8) also holds.

Based on the above, we use the following approximation to the mutual information to
perform feature selection

Ĩ(X;Y ) =
∑
y

min(H(f∗), H(fy)− log py)py −
∑
y

H(fy)py. (10)

In figure 2 we show a comparison of the GC-approximation and the true mutual infor-
mation. To compare the two we draw samples from a mixture of five Gaussians and use
these samples to estimate the mutual information. Specifically, we create this mixture by
sampling the expectations uniformly in [−5, 5], sampling the standard deviations uniformly
in [0.001, 2.001] and the priors in [0, 1] (which are then normalized). We observe that by
taking the minimum over two sub-optimal estimators (the prior and the fitted Gaussian f∗)
we obtain a very good estimator of the true mutual information.
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Figure 2: Comparison of the mutual information of a mixture of 5 Gaussians as estimated
using the GC-approximation, using the fitted Gaussian f∗, and using the prior
distribution (marked as disjoint), with the true mutual information calculated
numerically.
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3.2.2 KL-based Bound

We derive here a more general bound in the case of a distribution f which is a mixture of
two distributions f = p1f1 + p2f2. In this case we have:

H(f) =−
∫ ∞
−∞

p1f1(u) log (p1f1(u) + p2f2(u)) + p2f2(u) log (p1f1(u) + p2f2(u))du.

Working with the first term in the above integral we have:

−
∫ ∞
−∞

p1f1(u) log (p1f1(u) + p2f2(u))du

= −
∫ ∞
−∞

p1f1(u) log

(
1 +

p2f2(u)

p1f1(u)

)
du

−
∫ ∞
−∞

p1f1(u) log (p1f1(u))du

= c−
∫ ∞
−∞

p1f1(u) log

(
1 +

p2f2(u)

p1f1(u)

)
du+ p1H(f1(u))

≤ c−
∫ ∞
−∞

p1f1(u) log

(
p2f2(u)

p1f1(u)

)
du+ p1H(f1(u))

= p1DKL(f1(u) ‖ f2(u)) + p1H(f1(u)) + c′,

where c, c′ are constants related to the mixture coefficients and the inequality comes from
the fact that log(1 + x) ≥ log(x). Similarly for the second term we have:

−
∫ ∞
−∞

p2f2(u) log (p1f1(u) + p2f2(u))du ≤ p2DKL(f2(u) ‖ f1(u)) + p2H(f2(u)) + c′′.

Based on this we have:

H(f) ≤ p2DKL(f2(u) ‖ f1(u)) + p2H(f2(u)) + p1DKL(f1(u) ‖ f2(u)) + p1H(f1(u)) + c′′′,

and by extension we have the following bound on the mutual information:

I(X;Y ) ≤ p2DKL(f2(u) ‖ f1(u)) + p1DKL(f1(u) ‖ f2(u)) + c′′′.

In the case where f1 = N(µ1,Σ1) and f2 = N(µ2,Σ2) are both multivariate Gaussian
distributions of dimensionality D, we have that:

DKL(f1 ‖ f2) =
1

2

(
tr
(
Σ2
−1Σ1

)
− ln

|Σ1|
|Σ2|

−D
)

+
1

2
(µ2 − µ1)TΣ2

−1(µ2 − µ1).

In the case of a binary classification problem, we can directly work with the above quantity
for our mixture of two Gaussians. In the case where |Y | > 2, we consider the resulting |Y |
one-against-all binary classification problems and attempt to maximize the average of the
upper bounds of the |Y | mutual information values.

For each class y we consider the following mixture model:

f = pyfy + (1− py)fY \y
where the fY \y is the conditional distribution of X|Y 6= y. We then calculate the upper
bound of the mutual information for all the possible mixtures f , one for each y.
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Table 2: Greedy Forward Subset Selection
S0 ← ∅
for n = 1 . . . N do
s∗ = 0
for Xj ∈ F \ Sn−1 do
S
′ ← Sn−1 ∪Xj

s← Ĩ(S′;Y )
if s > s∗ then
s∗ ← s
S∗ ← S′

end if
end for
Si ← S∗

end for
return SN

3.3 Greedy Forward Selection

The derived bounds and approximations provide measures for assessing the optimal set of
features S∗N of size N . However as there are F !

N !(F−N)! possible sets SN of size N finding the
optimal one by checking all the candidate sets is computationally intractable. Due to this
intractability we employ a greedy optimization process in order to find a good approximation
S̃N .

In particular, we use greedy forward selection (see table 2) to iteratively build a sequence
of sets Sn with n = 1, . . . , N where each set Sn is built by adding one feature Xj(n) to the
previous set Sn−1, i.e. Sn = Sn−1∪Xj(n). At a given iteration n, the greedy forward selection
algorithm calculates for every candidate feature Xj ∈ F \ Sn−1, the mutual information
between the set S′n = Sn−1 ∪ {Xj} and the label Y . It then creates the set Sn by adding
that feature which leads to the largest value of the optimization criterion.

3.4 Complexity of the Gaussian Compromise Method

Though forward selection leads to a computationally tractable feature selection algorithm,
it remains nonetheless very expensive. In the case of the Gaussian compromise approach,
at each iteration n and for each feature Xj not in Sn−1, forward selection requires the
estimation of an approximation of I(Sn−1∪{Xj};Y ), which in turn requires the estimation
of |Y |+1 determinants of the size n×n covariance matrices. A naive approach would be to
calculate these determinants from scratch, incurring a cubic cost of O(n3) for the calculation
of each determinant and a O(|Y ||F \ Sn−1|n3) cost per iteration with a O(|Y |n2) memory
requirement for storing the covariance matrices and their inverses.

As shown in previous work (Lefakis and Fleuret, 2014) however it is possible to de-
rive both an O(|Y ||F \ Sn−1|n2) algorithm with O(|Y |n2) memory requirements and an
O(|Y ||F \ Sn−1|n) algorithm with O(|Y |n2 + |Y ||F \ Sn−1|n) memory requirements. In the
following we expand upon those methods, in particular the O(|Y ||F \ Sn−1|n) one, and
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present an approach that allows for a O(|Y ||F \ Sn−1|n) with O(|Y |n2 + |Y ||F \ Sn−1|)
memory requirements.

In order to speed up computations, we first note that for three random variables X, Y ,
Z

I(X,Z;Y ) = I(Z;Y ) + I(X;Y | Z)

which in the context of our forward selection algorithm, ∀Xj ∈ F \ Sn−1, and with S′n =
Sn−1 ∪ {Xj}, translates to

I(S′n;Y ) = I(Sn−1;Y ) + I(Xj ;Y | Sn−1).

The first term in the above expression is common for all candidate features Xj , meaning
that finding the feature Xj that maximizes I(S′n;Y ) is equivalent to finding the feature that
maximizes I(Xj ;Y | Sn−1). If σ2

j|Sn−1
denotes the variance of feature j conditioned on the

features in Sn−1 and σ2
j|y,Sn−1

the variance conditioned on the features in Sn−1 and the class
Y = y, we have

argmax
Xj∈F\Sn−1

I(Xj ;Y | Sn−1) = argmax
Xj∈F\Sn−1

(H(Xj | Sn−1)−H(Xj | Y, Sn−1)) (11)

= argmax
Xj∈F\Sn−1

(
log σ2

j|Sn−1
−
∑
y

P (Y = y) log σ2
j|y,Sn−1

)
(12)

where here and in the following, we slightly abuse notation and use Sn to denote both
the set and its contents, which of the two is meant will in any case be clear from context.
To derive equation 12 we have exploited the fact that the conditional variance σj|Sn−1

is
independent of the specific values of the features in Sn−1 and thus the integrations of the
entropies over the conditioned values are straightforward. That is

H(Xj | Sn−1) =

∫
R|Sn−1|

H(Xj | Sn−1 = s)µSn−1(s)ds

=
1

2
log σ2

j|Sn−1
+

1

2
(log 2π + 1) .

Under the Gaussian assumption, we have

σ2
j|Sn−1

= σ2
j − ΣT

j,Sn−1
Σ−1
Sn−1

Σj,Sn−1 .

From the above we can derive an O(|Y ||F \Sn−1|n2) with O(|Y |n2) memory requirements
by noting that computing ΣT

j,Sn−1
Σ−1
Sn−1

Σj,Sn−1 incurs a cost of O(n2) and that this must
be done for every candidate feature j and every class y.

3.4.1 Efficient Computation of σ2
j|Sn−1

As stated, we can further speed-up the proposed algorithm by a factor of n by considering
more carefully the calculation of σ2

j|Sn−1
. If Sn−1 = Sn−2 ∪Xi, we have

ΣT
j,Sn−1

Σ−1
Sn−1

Σj,Sn−1 =
[
ΣT
j,Sn−2

σ2
ji

]
Σ−1
Sn−1

[
Σj,Sn−2 .
σ2
ij

]
(13)
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We note that ΣSn−1 differs from ΣSn−2 by the addition of a row and a column

ΣSn−1 =

[
ΣSn−2 Σi,Sn−2

ΣT
i,Sn−2

σ2
i .

]
Thus ΣSn−1 is the result of a rank-two update to the augmented matrix[

ΣSn−2 0n−2

0Tn−2 σ2
i

]
,

specifically a one rank-one update corresponding to changing the final row and a rank-one
update corresponding to changing the final column. By applying the Sherman-Morrison
formula twice to update Σ−1

Sn−2
to Σ−1

Sn−1
, we can obtain 1 an update formula of the form

Σ−1
Sn−1

=

[
Σ−1
Sn−2

− 1
βσ2

i
u

− 1
βσ2

i
uT 1

βσ2
i

]
+

1

βσ2
i

[
u
0

] [
uT 0

]
(14)

where
u = Σ−1

Sn−2
Σi,Sn−2

and

β = 1− 1

σ2
i

ΣT
i,Sn−2

Σ−1
Sn−2

Σi,Sn−2 .

From equation (13) and (14) we have

σ2
j|Sn−1

= σ2
j − ΣT

j,Sn−1

([
Σ−1
Sn−2

− 1
βσ2

i
u

− 1
βσ2

i
uT 1

βσ2
i

]
+

1

βσ2
i

[
u
0

] [
uT 0

])
Σj,Sn−1

= σ2
j − ΣT

j,Sn−2
Σ−1
Sn−2

Σj,Sn−2 +
σ2
ji

βσ2
i

uTΣj,Sn−2

−ΣT
j,Sn−1

[
− 1
βσ2

i
u

1
βσ2

i

]
σ2
ji

− 1

βσ2
i

(
ΣT
j,Sn−1

[
u
0

]) ([
uT 0

]
ΣjSn−1

)
(15)

In eq (15) the main computational cost is incurred by the calculation of ΣT
j,Sn−2

Σ−1
Sn−2

Σj,Sn−2

which costsO(n2). However this quantity has been already calculated ∀j during the previous
iteration of the algorithm since this involves calculating

σ2
j|Sn−2

= σ2
j − ΣT

j,Sn−2
Σ−1
Sn−2

Σj,Sn−2 .

Thus we only need carry this result over from the previous iteration incurring an additional
memory load of O(|Y ||F \ Sn−1|).

The remaining terms in equation (15) can be calculated in O(n) given β and u. As β
and u depend only on the feature i selected in the previous iteration, remaining constant
throughout iteration n, they can be pre-computed once at the beginning of each iteration.
Thus the cost of calculating σ2

j|Sn−2
can be reduced to O(n) and the overall computational

cost per iteration to O(|Y ||F \ Sn−1|n).

1. The proof follows from simple verification.
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3.5 Complexity of the KL-based Algorithms

In the case of the KL-based algorithms, similarly with the Gaussian compromise approach,
a naive implementation would incur a cost of O(|Y ||F \Sn−1|n3). In previous work(Lefakis
and Fleuret, 2014) an algorithm was sketched which had a O(|Y |n2) memory footprint.
Here we expand on this analysis and furthermore present an alternative algorithm with a
O(|Y ||F \Sn−1|n) complexity, which however has an increased memory footprint (specifically
O(|Y ||F \ Sn−1|n2)).

Working with the value:

P (Y = y)DKL (p(S|Y = y) ‖ p(S|Y 6= y)) + P (Y = y)H(S | Y = y)

+P (Y 6= y)DKL (p(S|Y 6= y) ‖ p(S|Y = y)) + P (Y 6= y)H(S | Y 6= y) + c′′′

we note that the entropy values H(S | Y = y) can be computed efficiently as in the previous
subsection. What remains is to efficiently compute the Kullback-Leibler divergences for each
of the |Y | binary classification problems.

As both distributions are assumed to be Gaussians, DKL (p(S|Y 6= y) ‖ p(S|Y = y)) is
equal to

1

2

tr
(

Σy
S′n
−1

Σ
Y \y
S′n

)
− log

|ΣY \y
S′n
|

|Σy

S′n
|

+
(
µ
Y \y
S′n
− µy

S′n

)T
Σy

S′n

−1
(
µ
Y \y
S′n
− µy

S′n

)
− |S|

 .

In the following we show how each of these terms can be computed in time O(n).

3.5.1 The Term log
|ΣY \y

S
′
n
|

|Σy

S
′
n
|

From the chain rule,

H(Sn−1 ∪Xj) = H(Sn−1) +H(Xj | Sn−1)

we have

log |ΣS′n
|+ n

2
(1 + log 2π) = log |ΣSn−1 |+

n− 1

2
(1 + log 2π) + log σ2

j|Sn−1
+

1

2
(1 + log 2π)

log |ΣS′n
| = log |ΣSn−1 |+ log σ2

j|Sn−1

|ΣS′n
| = σ2

j|Sn−1
|ΣSn−1 |.

As shown in the previous section, the term σ2
j|Sn−1

can be computed in O(n) time. The

term |ΣSn−1 | is independent of j and can be efficiently pre-computed from |ΣSn−2 | prior
to iteration n using the matrix determinant lemma. By extension, the cost of calculating

log
|ΣY \y

S
′
n
|

|Σy

S
′
n
| is itself O(n).
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3.5.2 Calculating Σy

S′n

−1

Setting, here and in the rest of this section, ΣS = Σy
S for ease of exposition2 , we have

similar to section 3.4 that

Σ−1
S′n

=

[
Σ−1
Sn−1

− 1
βσ2

j
u

− 1
βσ2

j
uT 1

βσ2
j

]
+

1

βσ2
j

[
u
0

] [
uT 0

]
(16)

where

u = Σ−1
Sn−1

Σj,Sn−1

and

β = 1− 1

σ2
j

ΣT
j,Sn−1

Σ−1
Sn−1

Σj,Sn−1 .

Here u and β cannot be pre-computed as they are different ∀j. They can either be
calculated from scratch in O(n2) or, if we are willing to incur a memory overhead of O(n),
with O(n) complexity from the product Σ−1

Sn−2
Σj,Sn−2 which has been computed during the

previous iteration (as in section 3.4.1).

3.5.3 The Term
(
µ
Y \y
S′n
− µy

S′n

)T
Σy

S′n

−1
(
µ
Y \y
S′n
− µy

S′n

)
Having computed u and β as defined above, we can efficiently calculate the product

M =
(
µ
Y \y
S′n
− µy

S′n

)T
Σ−1
S′n

(
µ
Y \y
S′n
− µy

S′n

)

given that µy
S′n

=

[
µySn−1

µyj

]
by decomposing it as follows

M =
(
µ
Y \y
Sn−1

− µySn−1

)T
Σ−1
Sn−1

(
µ
Y \y
Sn−1

− µySn−1

)
−

(
µ
Y \y
j − µyj

)
βσ2

j

uT
(
µ
Y \y
Sn−1

− µySn−1

)
+
(
µ
Y \y
Sn−1

− µySn−1

)T [ − 1
βσ2

j
u

1
βσ2

j

](
µ
Y \y
j − µyj

)
+

1

βσ2
j

((
µ
Y \y
Sn−1

− µySn−1

)T [ u
0

])([
uT 0

] (
µ
Y \y
Sn−1

− µySn−1

))
Of these four terms, the final three involving the vectors u and β can be calculated in O(n)
as they only involve inner products. The first term requires O(n2), however as the term is
independent of j it can be calculated once at the beginning of each iteration. Consequently

the complexity of calculating
(
µ
Y \y
S′n
− µy

S′n

)T
ΣS′n

−1
(
µ
Y \y
S′n
− µy

S′n

)
given u and β is O(n).

2. That is when a superscript is missing, y is implied.
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3.5.4 The Term tr
(

Σy
S′n
−1

Σ
Y \y
S′n

)
The term tr

(
Σy
S′n
−1

Σ
Y \y
S′n

)
involves calculating, and summing, the main diagonal elements

of the matrix product
(

Σy
S′n
−1

Σ
Y \y
S′n

)
. We have that

Σ
Y \y
S′n

=

 Σ
Y \y
Sn−1

Σ
Y \y
j,Sn−1

Σ
Y \y
j,Sn−1

T
σ
Y \y
j

2

 . (17)

From equations (16) and (17) we see that the product can be decomposed into two parts.
For the first [

Σ−1
Sn−1

− 1
βσ2

j
u

− 1
βσ2

j
uT 1

βσ2
j

] Σ
Y \y
Sn−1

Σ
Y \y
j,Sn−1

Σ
Y \y
j,Sn−1

T
σ
Y \y
j

2


it is straightforward to show that the main diagonal elements can be calculated in O(n)

provided we have pre-computed the main diagonal elements of Σ−1
Sn−1

Σ
Y \y
Sn−1

. As this product
does not depend on j this can be done prior to the beginning of the iteration. For the second
we have

1

βσ2
j

[
Σ−1
Sn−1

Σj,Sn−1

0

] [
ΣT
j,Sn−1

Σ−1
Sn−1

0
] Σ

Y \y
Sn−1

Σ
Y \y
j,Sn−1

Σ
Y \y
j,Sn−1

T
σ
Y \y
j

2


which, given that tr(wTwA) = tr(wAwT ), is equal to the product of 1

βσ2
j

and the trace of

ΣT
j,Sn−1

Σ−1
Sn−1

Σ
Y \y
Sn−1

Σ−1
Sn−1

Σj,Sn−1 .

As we have already calculated the vector Σ−1
Sn−1

Σj,Sn−1 when calculating Σ−1
S′n

we concentrate

here on calculating the vector ΣT
j,Sn−1

Σ−1
Sn−1

Σ
Y \y
Sn−1

.

As shown, the matrix Σ−1
Sn−1

can be written in the form

Σ−1
Sn−1

=

[
Σ−1
Sn−2

γv

γvT −γ

]
− γ

[
v
0

] [
vT 0

]
where

v = Σ−1
Sn−2

Σi,Sn−2

and

γ = − 1

βσ2
j

.

Thus the vector ΣT
j,Sn−1

Σ−1
Sn−1

Σ
Y \y
Sn−1

can be decomposed into

ΣT
j,Sn−1

[
Σ−1
Sn−2

γv

γvT −γ

]
Σ
Y \y
Sn−1

− γΣT
j,Sn−1

[
v
0

] [
vT 0

]
Σ
Y \y
Sn−1

.
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As v does not depend on j the product
[
vT 0

]
Σ
Y \y
Sn−1

can be computed prior to the

iteration and by extension the product γΣT
j,Sn−1

[
v
0

] [
vT 0

]
Σ
Y \y
Sn−1

can be computed in

O(n). This leaves the final term

ΣT
j,Sn−1

[
Σ−1
Sn−2

γv

γvT −γ

]
Σ
Y \y
Sn−1

.

We note that the vector ΣT
j,Sn−1

[
Σ−1
Sn−2

γv

γvT −γ

]
has the form

[
Σj,Sn−2Σ−1

Sn−2
+ γσ2

jiv
T

γΣT
j,Sn−2

v − γσ2
ji

]T
.

Thus we have[
Σj,Sn−2Σ−1

Sn−2
Σ
Y \y
Sn−2

0
]

+ γσ2
ji

[
vT 0

]
Σ
Y \y
Sn−1

+
(
γΣT

j,Sn−2
v − γσ2

ji

)
Σ
Y \y
i,Sn−1

.

During the previous iteration we have already computed the vector Σj,Sn−2Σ−1
Sn−2

Σ
Y \y
Sn−2

and

thus if we use O(n) memory to store it between iterations, we can also compute this final
term in O(n).

4. Using the Eigen-decomposition to Bound Computations

The fast implementation of the GC-approximation method presented in 3.4 requires at
iteration n the calculation, for each feature Xj ∈ F \ Sn−1, of the conditioned variance

σ2
j|Sn−1

= σ2
j − ΣT

jSn−1
Σ−1
Sn−1

ΣjSn−1 .

As shown, each such computation can be done in O(n). The main computational cost comes
from the calculation of ΣT

jSn−1
Σ−1
Sn−1

ΣjSn−1 . Thus it would be advantageous to acquire a

“cheap” (independent of n) bound which will allow us to skip the calculation of this quantity
for certain non-promising features.

We note that Σ−1
Sn−1

is positive definite and symmetric and thus can be decomposed as

Σ−1
Sn−1

= UΛUT ,

where U is orthonormal and Λ is a diagonal matrix with positive elements. Thus

ΣT
jSn−1

Σ−1
Sn−1

ΣjSn−1 = ΣT
jSn−1

UΛUTΣjSn−1 .

As U is orthonormal we have

‖ΣjSn−1‖2 = ‖ΣT
jSn−1

U‖2 = ‖UTΣjSn−1‖2.

Symbolizing the eigenvalues as λ1, λ2, . . . , λn−1 and the elements of the vector ΣT
jSn−1

U as
x1, x2, . . . , xn−1, we have that

‖ΣT
jSn−1

‖22 min
i
λi ≤ ΣT

jSn−1
Σ−1
Sn−1

ΣjSn−1 ≤ ‖ΣT
jSn−1

‖22 max
i
λi. (18)
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Equation 18 gives us a bound, computable in O(|Y |), which we can use to avoid unnec-
essary computations. Specifically, during iteration n of the algorithm, after having already
calculated the scores of a subset of features, we have a candidate for best feature which has
a score of s∗; for each subsequent candidate feature Xj we can compute the following upper
bound on the feature’s score

ub1(Xj) = log

(
σ2
j − ‖ΣT

jSn−1
‖22 max

i
λi

)
−
|Y |−1∑
y=0

(
log

(
σy

2

j − ‖Σ
yT

jSn−1
‖22 min

i
λyi

))
, (19)

where λi, λ
y
i are the eigenvalues of Σ−1

Sn−1
and Σy−1

Sn−1
respectively. Then if ub(s) ≤ s∗, we

can avoid the O(|Y |n) computations required to estimate the feature’s score s.
Furthermore should ub1(Xj) > s∗ we can still proceed with the computations in a greedy

manner. That is instead of calculating the exact score

log
(
σ2
j|Sn−1

)
−
|Y |−1∑
y=0

(
log
(
σy

2

j|Sn−1

))
incurring O(|Y |n) cost, we can compute the conditional variances one at a time and then
reassess the upper bound. That is we first calculate σ2

j|Sn−1
which costs us O(n) and then

re-estimate the upper bound as

ub2(Xj) = log
(
σ2
j|Sn−1

)
−
|Y |−1∑
y=0

(
log

(
σy

2

j − ‖Σ
yT

jSn−1
‖22 min

i
λyi

))

re-checking whether ub(s) ≤ s∗. We can then continue, if necessary, by calculating

ub3(Xj) = log
(
σ2
j|Sn−1

)
− log

(
σ
y20
j|Sn−1

)
−
|Y |−1∑
y=1

(
log

(
σy

2

j − ‖Σ
yT

jSn−1
‖22 min

i
λyi

))
and so forth. Thus we can avoid estimating a number of conditional variances, incurring a
smaller cost. This process can continue greedily by computing ub1...|Y |+1(Xj).

We note that the upper bound 19 involves |Y | lower bounds

log

(
σy

2

j − ‖Σ
yT

jSn−1
‖22 min

i
λyi

)
on the conditional variances σy

2

j|Sn−1
. As such the bound can become quite loose if the

number of classes |Y | is large. In order to empirically evaluate the usefulness of this bound
in pruning computations, we considered 3 binary classification tasks; the binary task of the
INRIA data set, and two tasks resulting from the CIFAR and STL data sets by a random
partitioning of the classes (i.e. that is in each case 5 classes were randomly chosen to be
labeled as positive and the rest as negative).

In figure 3 we can see for each of the three data sets, the number of features at each
round for which we can skip a certain amount of computations. In the case ub1 ≤ s∗ we
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Figure 3: Number of features for which the upper bound ubx allows us to skip computations
for the top) INRIA, middle) STL, and bottom) CIFAR data sets.
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can avoid all computations concerning the conditional variances. In the case ub2 ≤ s∗ only
one conditional variance need be calculated, while in the case of ub3 ≤ s∗ two (out of a
possible three). As can be seen, the bound can prove quite useful in pruning computations,
as is the case in the INRIA data set. For the CIFAR data set, we see that the bound can
still prove useful, especially early on. On the contrary in the case of the STL data set, the
bound seems to provide little help in ways of avoiding computations.

Pruning computations using the above bounds requires access to the eigenvalues of

the matrices Σy−1

Sn−1
which are the reciprocals of the eigenvalues of the matrices Σy

Sn−1
.

As computing the eigen-decomposition of a matrix, from scratch, can be expensive we
present in the following a novel algorithm for efficiently calculating these eigenvalues, and

the corresponding eigenvectors, of Σy−1

Sn−1
from the eigen-decomposition of Σy−1

Sn−2
.

4.1 Eigen-system Update

The matrices Σy−1

Sn−1
results from the matrices Σy−1

Sn−2
by the addition of a row and a column.

We are faced thus with the problem of updating the eigen-system of a symmetric and
positive definite matrix Σ when a vector is inserted as an extra row and column.

More specifically, we shall present a method for efficiently computing the eigen-system
Un+1,Λn+1 of a (n+ 1)× (n+ 1) matrix Σn+1 when the eigen-system Un,Λn of the n× n
matrix Σn is known and Σn+1 is related to Σn as follows:

Σn+1 =

[
Σn v
vT c

]
,

where v and c are such that the matrix Σn+1 is positive definite. Without loss of generality,
we will consider in the following the special case c = 1.

If un1 , . . . ,u
n
n and λn1 , . . . , λ

n
n are the eigenvectors and respective eigenvalues of Σn, then[

uni
0

]
is obviously an eigenvector of

Σ′ =

[
Σn 0
0T 1

]
,

with associated eigenvalue λ′i = λni . Also, if ∀i ∈ {1, . . . , n+ 1}, ei is the ith standard basis
vector of Rn+1, then Σ′en+1 = en+1 and en+1 is an eigenvector of Σ′ with a corresponding
eigenvalue of λ′n+1 = 1.

The matrix Σn+1 can be expressed as the result of a rank-two update to Σ′

Σn+1 = Σ′ + en+1

[
v
0

]T
+

[
v
0

]
eTn+1.

If U ′,Λ′ denote the eigen-system of Σ′, by multiplying

Σn+1un+1 = λn+1un+1,

on the left by U ′T , we have

U ′
T

(
Σ′ + en+1

[
v
0

]T
+

[
v
0

]
eTn+1

)
un+1 = λn+1U ′

T
un+1
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Given that Σ′ is positive definite and symmetric it follows that U ′U ′T = I and

U ′
T

(
Σ′ + en+1

[
v
0

]T
+

[
v
0

]
eTn+1

)
U ′U ′

T
un+1 = λn+1U ′

T
un+1

and since U ′TΣ′U ′ = Λ′ we have(
Λ′ + en+1q

T + qeTn+1

)
U ′

T
un+1 = λn+1U ′

T
un+1

where q = U ′T
[
v
0

]
, note eTn+1U

′ = eTn+1.

Thus Σn+1 and the matrix Σ′′ =
(
Λ′ + en+1q

T + qeTn+1

)
share eigenvalues. Furthermore

the eigenvectors Un+1 are related to the eigenvectors U ′′ of Σ′′ by Un+1 = U ′U ′′.

4.1.1 Computing the Eigenvalues and Eigenvectors of Σ′′

The matrix Σ′′ has non-zero elements only on its main diagonal and on its last row and
column. By developing the determinant |Σ′′ − λI| along the final row we have

|Σ′′ − λI| =
∏
j

(λ
′
j − λ) +

∑
i<n+1

−q2
i

∏
j 6=i,j<n+1

(λ
′
j − λ)

 ,

where qi is the ith element of vector q. The determinant thus has the same roots as the
function

f(λ) =
|Σ′′ − λI|∏

j<n+1(λ
′
j − λ)

(20)

= λ′n+1 − λ+
∑
i

−q2
i

(λ′i − λ)
. (21)

We have ∀i, lim
λ

>−→λ′i
f(λ) = +∞ and lim

λ
<−→λ′i

f(λ) = −∞. Furthermore we have

∂f(λ)

∂λ
= −1 +

∑
i

−q2
i

(λ′i − λ)2
≤ 0

meaning the function f is strictly decreasing between its poles. From this and from the
positive definiteness of Σ′′ we have that

0 < λn+1
1 < λ′1 < λn+1

1 < · · · < λ′n+1 < λn+1
n+1

i.e. the eigenvalues of Σ′ and Σ′′ are interlaced.
Though there is no analytical solution for finding the roots of f(λ), given the above

relationship they can be computed efficiently using a Householder method. We also note
that tr(Λ′) = tr(Σ′′) and consequently

λn+1
n+1 =

∑
i

λ′i −
∑
i<n+1

λn+1
i .
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Once we have computed the eigenvalues λ
′′
, we can compute the eigenvectors U ′′ as

follows: we first note that ∀k the system of linear equations

Σ′′x = λn+1
k x

where

x =
[
x1 x2 . . . xn+1

]T
involves n equations of the form

λ′ixi + qixn+1 = λn+1
k xi.

Given that λn+1
k 6= λ′i it follows that if xn+1 = 0 then ∀i, xi = 0 and thus it must be

that xn+1 6= 0. As the system has one degree of freedom, we can set xn+1 = 1. We then
have from the equations

λ′ixi + qixn+1 = λn+1
k xi

that

xi =
qi

λn+1
k − λ′i

,

and by normalizing x we obtain the kth column of U ′′. Finally we can obtain the eigen-
decomposition of Σn+1

Σn+1 = (U ′U ′′)Λ′′(U ′U ′′)T .

4.1.2 Computational Efficiency

In order to empirically evaluate the derived eigen-decomposition update algorithm, we com-
pare a C++ implementation against the LAPACK library’s eigen-decomposition implemen-
tation. In figure 4.1.2 we see such a comparison of the CPU time required to compute Σn+1,
from scratch, using the LAPACK library and using the proposed update algorithm, as a
function of n.

4.1.3 Numerical Precision

In order to test the numerical precision of the proposed update method, we consider two
experimental setups. In the first setup, results on which are shown in figures 5,6, we it-
eratively augment a symmetric positive definite matrix by inserting a vector as an extra
row and an extra column and at each iteration update its eigen-decomposition using the
proposed method; that is to say at each iteration the eigen-decomposition is an updated
version of previously updated decompositions. Figure 5 shows the maximum relative eigen-
value error as compared to the decomposition estimated by LAPACK which is assumed to
be accurate. Similarly figure 6 shows the maximum angle between corresponding eigenvec-
tors of the proposed method and the ones computed by the LAPACK library. As can be
seen, after 2000 iterations the maximum relative eigenvalue error is of the order of magni-
tude of ∼ 1%, while the maximum angle between corresponding eigenvectors is less than
0.001 degrees.

In figure 7 we show the maximum relative eigenvalue when the eigen-decomposition
is updated from the decomposition computed at the previous iteration using LAPACK.

23



Lefakis and Fleuret

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

C
P

U
 ti

m
e 

in
 s

ec
s

Matrix size

 

 
Lapack
Update

Figure 4: Comparison of computation time of the proposed update method and of comput-
ing the eigen-decomposition from scratch using the LAPACK library.
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As can be seen the maximum relative error is of the order of magnitude of 10−10. this
value is related to the tolerance of the Newton method which was used to find the roots of
equation 20 (which in these experiments we set to 10−10). The maximum angle between
corresponding eigenvectors was found to be 0, i.e. beneath double precision, in every case.

5. Experiments

In this section we present an empirical evaluation of the proposed algorithms. We first
show on a synthetic controlled experiment that they behave as expected regarding groups
of jointly informative features, and then provide results obtained on three popular real-world
computer vision data sets.

5.1 Synthetic Examples

In order to show the importance of joint informativeness and the ability of the proposed
algorithm to capture it we construct a simple synthetic experiment with a set of candidate
features F = {X1, X2, X3, X4, X5} defined as follows:

X1 ∼ N(0, 1) + 10−1Y

X2 ∼ (2Y − 1)X1 +N(0, 1)

X3 ∼ N(0, 1)

X4 ∼ N(0, 1) + 10−1Y

X5 ∼ (2Y − 1)X4 +N(0, 1)

where Y is a classification label, Y ∼ B(0.5). Looking at the above marginals it can be
seen that only X1 and X4 carry information regarding Y individually, X2 and X5 are very
informative but only in conjunction with X1 and X4 respectively. X3 is simply noise.

We generate 1, 000 synthetic data sets of 25, 000 data points each from the above distri-
butions, and use the GC-approximation on the mutual information to select the features.
In 49.2% of the experiments the algorithm ranks X1 as the most informative feature. Even
though X4 would be the second most informative feature marginally, in every one of these
experiments in the second iteration the algorithm chose the X2 feature as it is jointly more
informative when combined with X1. Similarly, in 47.1% of the experiments the algorithm
ranked X4 first and in each of these experiments selected X5 second. In every one of the
runs X3 was ranked as the least informative of the 5 features.

5.2 Data Sets

We report results on three standard computer vision data-sets which we used for our ex-
periments:

CIFAR-10 contains images of size 32×32 of 10 distinct classes depicting vehicles and
animals. The training data consists of 5, 000 images of each class. We pre-process the data
as in (Coates and Ng, 2011) using the code provided by the authors. The original pool F
of features consists of 2, 048 candidates.
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Figure 5: Numerical precision of the proposed update method when updating the decom-
position iteratively. Maximum relative eigenvalue error.
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Figure 6: Numerical precision of the proposed update method when updating the decom-
position iteratively. Maximum angle between corresponding eigenvectors.
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Figure 7: Maximum relative eigenvalue error when the eigen-decomposition is updated from
the eigen-decomposition computed by LAPACK.
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INRIA is a pedestrian detection data set. There are 12, 180 training images of size
64×128 of pedestrians and background images. We use 3, 780 HoG features that have been
shown to perform well in practice (Dalal and Triggs, 2005).

STL-10 consists of images of size 96× 96 belonging to 10 classes, each represented by
500 training images. As for CIFAR we pre-process the data as in (Coates and Ng, 2011),
resulting in a pool F of 4, 096 features.

5.3 Baselines

We compare the proposed feature selection methods against a number of baselines. The
Fisher, T-test, χ2, and InfoGain methods all compute statistics on individual features.
In particular InfoGain calculates the mutual information of the individual features to the
class, without taking into account their joint informativeness. As such, its comparison with
our approaches is a very good indicator of the merit of joint informativeness and its effect
on classification performance.

As noted in section 2, the FCBF (Liu and Yu, 2003) and CFS (Hall and Smith,
1999) baselines employ symmetric uncertainty criteria and check for pairwise redundancy of
features. Similarly MRMR (Peng et al., 2005), uses mutual information to select features
that have high relevance to the class while having low mutual information with the other
selected features, thus checking for pairwise informativeness. Comparison with the proposed
methods proves the importance of going beyond pairwise redundancy.

The RelieFF baseline (Robnik-Šikonja and Kononenko, 2003) looks at the nearest
neighbors of random samples along the individual features. In order to compare with
spectral clustering approaches we show results for (Wolf and Shashua, 2005), marked as
Spectral in the tables, which we found to outperform (Zhao and Liu, 2007) in practice.
Finally, we also show results for three wrapper methods, namely SBMLR (Cawley et al.,
2006), which employs a logistic regression predictor, CMTF (Argyriou et al., 2008) which
uses a sparsity inducing l1-norm, and GBFS (Xu et al., 2014) which uses gradient boosted
trees.

We compare these baselines against the four methods proposed here, namely maximizing
the entropy (GC.E) or the mutual information (GC.MI) under the Gaussian compromise
approximation, and maximizing the KL-based entropy (GKL.E) and mutual information
(GKL.MI). In the case of the GC methods, when an iteration is reached where for all
candidate features and for all classes the prior over the class variable is lower than the
entropy of f∗, we halt the GC-approximation feature selection procedure and randomly
select the remaining features.

5.4 Results

In tables 4, 5, 6, and 7, we show experimental results for the three data sets. In order to
show the general applicability of the proposed methods, we combined the selected features
with four different classifiers: AdaBoost with classification stumps, linear SVM, RBF-kernel
SVM, and quadratic discriminant analysis (QDA). We show results for several numbers of
selected features {10, 25, 50, 100}.

In each of these tables, for each data set and classifier we highlight the best three
performing methods in bold, while underlining the best performing method. As can be seen
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from these tables, GC.MI and GKL.E consistently rank amongst the top three methods,
with GC.MI ranking in the top three 24 out of 48 times and first 8 times, and GKL.E
being in the top three 27 out of 48 times and first 11 times. The only other comparable
methods are SBMLR which ranks in the top three 17 out of 48 times and first 10 times
and GBFS which ranks in the top three 20 out of 48 times and first 5 times. We note that
both of these methods are wrapper methods.

Furthermore as can be seen in table 3, the running time of the proposed methods3

is very competitive with respect to the more complex feature selection algorithms. The
Gaussian Compromise algorithms are especially fast as they are two orders of magnitude
faster than practically all other methods. We especially note that the SBMLR method
which performs comparably in terms of accuracy is very slow when compared to GC.MI.
Though the MRMR algorithm is faster than GC.MI on the INRIA data set, it performs
considerably worse accuracy-wise on that data set; on the data sets where it does perform
well (e.g. CIFAR) it is considerably slower than GC.MI. We also note that the GBFS
method is quite slower than GC.MI.

The computation times provided were obtained with C++ implementations of the pro-
posed methods. The MRMR algorithm is also implemented in C++, while the Spectral
and CMTF baselines are implemented in MATLAB, as both these algorithms mainly use
matrix algebra we believe these timings to be indicative. The remaining algorithms were
implemented in Java. As noted in (Bouckaert et al., 2010) these implementations should
be competitive in speed with C++ implementations.

FCBF MRMR SBMLR Spectral GBFS CFS CMTF RelieFF GC.MI GKL.E
CIFAR 621 56 1449 1379 95 4262 394 1652 20 486

STL 68 20 1002 367 41 409 208 2089 5 887
INRIA 247 32 88 1072 233 2516 459 2413 43 135

Table 3: (Approximate) Cost in CPU time of running the more sophisticated feature selec-
tion algorithms in order to select 100 features on the three data sets. We highlight
in bold the fastest algorithm for each data set.

5.5 Finite Sample Analysis

The proposed methods all depend on the covariance matrices Σ, Σy. Of course, in practice,
one rarely has access to the true covariance matrices of the underlying distributions but
rather estimates based on using finite sets of samples. Given a N ×D matrix P where each
row is a sample from the underlying D-dimensional distribution, we symbolize

Σ̂N =
1

N
P TP

the empirical estimation Σ̂N of matrix Σ, computed from these N samples. The accuracy
of this approximation is important to the success of the proposed methods. It can be shown

3. We note that for the GKL.E/MI methods we used an O(n2) (per feature per iteration) implementation,
in practice and assuming access to adequate memory the method should be even faster.
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CIFAR STL INRIA

AdaBoost 10 25 50 100 10 25 50 100 10 25 50 100

Fisher 29.23 36.96 42.07 49.06 31.86 35.78 39.72 41.81 86.90 89.83 90.38 91.45

FCBF 37.77 44.42 51.15 54.83 33.25 38.05 39.87 42.81 90.87 94.02 95.44 94.67

MRMR 39.42 45.84 49.76 54.85 32.24 39.61 40.61 43.00 81.53 88.48 93.48 94.91

χ2 28.13 35.54 43.68 49.46 29.61 36.88 39.39 41.89 92.81 93.11 93.94 94.91

SBMLR 34.87 45.08 52.17 56.70 34.22 41.26 44.65 47.15 86.40 87.50 88.04 88.06

tTest 25.74 31.30 36.57 43.16 31.74 34.75 39.31 42.34 85.01 88.41 88.84 91.70

InfoGain 29.01 35.90 40.20 48.34 31.13 36.60 38.62 42.03 92.58 93.29 93.96 94.93

Spectral 19.90 25.13 33.18 40.44 19.06 26.30 33.52 38.51 92.78 93.69 93.92 94.83

RelieFF 28.13 34.64 40.85 47.70 33.91 37.46 42.79 45.22 91.79 95.44 95.83 96.43

CFS 33.50 38.96 44.58 54.22 30.75 38.40 41.85 44.39 89.69 92.60 96.41 97.69

CMTF 21.79 31.98 39.43 45.23 28.70 33.55 34.71 36.86 80.01 83.72 92.55 95.58

GBFS 32.02 40.20 48.87 54.34 30.96 38.56 42.30 45.57 93.90 95.87 96.90 97.66

GC.E 32.45 42.54 50.15 55.06 31.86 37.41 42.19 46.99 89.54 90.09 94.30 95.81

GC.MI 36.47 44.55 51.44 55.39 36.50 40.79 43.82 44.39 95.04 95.87 96.68 97.30

GKL.E 37.51 46.41 52.11 56.41 34.76 39.71 43.49 46.46 89.92 91.84 94.14 96.63

GKL.MI 33.71 40.04 47.17 51.12 33.00 38.80 42.13 43.58 92.18 93.09 95.21 96.15

Table 4: Test accuracy of an AdaBoost classifier trained on a different number of selected
features {10, 25, 50, 100} on the three data sets.

CIFAR STL INRIA

SVMLin 10 25 50 100 10 25 50 100 10 25 50 100

Fisher 25.19 33.53 39.47 48.12 26.09 30.79 34.63 38.02 92.55 93.73 94.03 94.68

FCBF 33.65 42.02 47.77 54.97 31.74 34.85 38.11 40.66 94.14 96.03 96.03 96.03

MRMR 35.48 42.53 46.02 52.64 32.50 39.06 43.69 49.36 79.85 84.18 91.73 93.91

χ2 21.77 32.06 40.65 48.58 22.61 31.82 34.29 37.96 92.94 93.27 93.50 94.61

SBMLR 30.43 42.60 51.41 56.81 32.29 38.26 43.29 47.15 85.92 87.95 88.57 88.64

tTest 25.69 32.56 40.17 45.12 26.72 29.95 36.23 39.14 80.01 87.21 87.64 89.23

InfoGain 24.79 32.32 37.98 47.37 27.17 31.82 33.70 37.84 92.35 93.08 93.75 94.68

Spectral 17.19 23.14 32.78 42.60 18.91 26.55 32.65 38.24 92.67 93.57 93.64 94.44

RelieFF 24.56 30.60 38.17 46.51 29.16 32.40 38.05 42.94 90.99 95.04 95.97 96.36

CFS 31.49 36.46 42.17 51.70 28.63 34.45 38.54 41.88 88.64 91.68 96.11 97.53

CMTF 21.10 31.64 40.39 47.71 27.61 34.81 38.99 42.32 79.09 80.29 89.49 93.01

GBFS 28.37 38.18 45.89 52.36 30.78 39.29 45.06 50.39 76.79 92.55 95.38 97.03

GC.E 28.76 41.14 48.70 55.16 31.20 37.60 43.31 49.75 87.73 87.67 91.96 93.13

GC. MI 34.02 42.14 49.16 55.07 32.50 39.75 44.15 48.88 89.76 93.09 95.71 96.45

GKL.E 32.39 43.26 50.12 55.02 33.44 38.62 44.27 50.54 85.31 89.46 92.05 96.36

GKL. MI 28.67 34.65 43.30 48.69 32.16 39.35 44.87 47.96 85.66 90.99 92.14 95.16

Table 5: Test accuracy of a linear SVM trained on a different number of selected features
{10, 25, 50, 100} on the three data sets.
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CIFAR STL INRIA

SVM-RBF 10 25 50 100 10 25 50 100 10 25 50 100

Fisher 29.11 39.22 46.05 54.68 34.71 40.13 43.87 45.77 92.44 93.55 93.38 92.97

FCBF 40.48 51.15 57.73 64.26 38.86 43.35 46.06 47.20 88.29 93.91 92.60 95.66

MRMR 41.80 51.97 57.31 62.14 38.39 44.87 47.02 48.92 80.07 79.99 88.89 90.48

χ2 27.16 38.23 47.60 54.70 32.53 41.27 43.22 44.88 92.78 93.16 93.02 93.25

SBMLR 36.06 49.83 60.32 64.97 32.29 38.26 43.29 47.15 82.82 86.05 87.39 87.14

tTest 28.68 35.75 41.89 49.13 34.30 38.73 44.30 45.90 80.01 87.00 87.11 87.32

InfoGain 29.21 38.68 43.92 53.94 35.57 41.23 42.92 45.12 92.28 92.71 93.01 93.38

Spectral 22.89 30.92 40.41 49.75 24.80 32.91 40.11 43.70 92.67 93.09 92.85 93.29

RelieFF 29.49 37.08 45.39 53.96 38.22 42.36 47.27 50.35 90.62 94.56 95.05 95.20

CFS 35.50 43.74 50.98 61.01 35.32 42.72 47.46 49.82 88.34 91.31 95.44 97.14

CMTF 23.90 36.74 45.51 52.86 31.80 36.94 38.06 39.65 80.01 83.72 92.55 93.68

GBFS 34.98 45.07 54.70 61.27 33.65 43.99 49.04 51.52 93.00 95.25 95.83 96.48

GC.E 35.29 51.12 60.34 65.76 36.16 42.64 45.37 47.79 87.73 87.67 91.96 93.13

GC. MI 39.57 49.91 57.79 64.32 35.86 43.35 45.80 47.81 94.26 94.17 94.44 95.76

GKL.E 39.84 52.80 60.94 65.64 39.67 46.31 50.06 52.89‘ 86.01 88.94 92.79 95.43

GKL. MI 34.49 43.09 51.48 56.54 35.95 41.65 45.27 45.86 91.03 91.91 93.36 93.98

Table 6: Test accuracy of a SVM with a RBF kernel when trained on a different number of
selected features {10, 25, 50, 100} on the three data sets.

CIFAR STL INRIA

QDA 10 25 50 100 10 25 50 100 10 25 50 100

Fisher 25.41 33.31 39.67 47.53 34.73 39.91 44.24 48.35 87.41 88.63 89.17 91.31

FCBF 35.02 43.97 52.32 58.99 37.44 41.89 45.70 48.89 89.95 94.00 94.00 94.00

MRMR 36.19 44.54 48.22 53.88 36.89 42.84 46.44 49.90 62.98 76.56 86.84 90.60

χ2 21.81 31.85 39.39 47.75 32.71 40.45 43.64 47.25 87.85 88.20 89.30 91.75

SBMLR 31.71 43.46 53.31 58.86 36.89 45.26 49.58 51.65 76.30 80.36 81.00 81.49

tTest 26.34 33.39 39.16 45.33 33.92 40.09 45.05 47.63 76.16 82.50 82.85 85.23

InfoGain 22.38 31.61 37.65 46.47 34.17 40.94 44.51 47.81 87.99 88.08 89.49 91.77

Spectral 17.97 24.80 34.99 44.25 25.39 35.45 44.39 49.68 87.99 88.26 89.07 91.26

RelieFF 24.61 29.67 38.20 47.18 37.57 42.59 47.60 50.92 83.38 92.14 93.16 94.24

CFS 31.50 36.18 42.93 52.92 34.06 42.29 48.45 51.09 83.79 88.31 94.00 96.66

CMTF 20.61 31.98 41.04 48.60 33.76 43.04 47.51 51.02 61.04 72.31 89.23 92.67

GBFS 29.48 38.39 46.86 53.84 34.92 42.83 47.89 51.26 91.19 91.35 94.15 96.02

GC.E 31.01 44.10 53.21 58.41 33.76 43.04 47.51 51.02 85.06 86.31 91.22 94.10

GC. MI 33.68 43.02 51.84 58.43 35.31 42.24 47.21 49.88 92.14 94.08 95.07 96.31

GKL.E 34.06 44.21 53.29 57.98 37.39 43.30 47.39 51.82 79.30 86.21 90.83 95.74

GKL. MI 29.06 35.10 42.50 46.24 33.56 40.02 45.07 46.44 85.09 88.03 91.72 94.84

Table 7: Test accuracy using Quadratic Discriminant Analysis on a different number of
selected features {10, 25, 50, 100} on the three data sets.
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(see theorem 5.39 in (Vershynin, 2012)) that in the case of a matrix with (sub)-Gaussian
generated rows, we have ∀t ≥ 0 with probability at least 1− 2e−ct

2

‖Σ̂N − Σ‖ ≤ max(δ, δ2),

where

δ =
C
√
D + t√
N

and c, C are constants related to the sub-Gaussian norm of the rows of P . Replacing t with
C
′
t
√
D in the above (see Corollary 5.50 in Vershynin (2012)), we have, for sufficiently large

C
′
, ∀ε ∈ (0, 1), and ∀t ≥ 1 with probability at least 1− 2e−ct

2

If N ≥ C(t/ε)2D then ‖Σ̂N − Σ‖ ≤ ε.

Thus N = O(D) samples are needed to sufficiently approximate the covariance matrix
by the finite sample covariance matrix when the underlying distribution is sub-Gaussian,
compared to O(D logD) for an arbitrary distribution (Corollary 5.52 (Vershynin, 2012)).

Based in this, in order to select d features, the proposed methods theoretically require
O(d) samples. This however assumes that the feature selection methods depend solely on
the covariance matrices Σ. This holds true only for the GC-approximation in section 3.2.1,
the KL-based bound depends both on Σ and Σ−1. Furthermore, as shown in section 3.4,
the more efficient implementation of the GC-approximation also depends on Σ−1.

Unfortunately, estimating the precision matrix by taking the inverse of the sample co-
variance matrix is known to be unstable (Cai et al., 2016). Though a number of methods
have been proposed to address this issue (Cai et al., 2011), their complexity makes them
unsuitable in the present setting. To investigate whether this instability affects the perfor-
mance of the proposed methods, we present in the following an empirical analysis of the
effect of sample size on prediction performance.

5.5.1 Empirical Evaluation

In order to assess the influence of sample set size on performance, we consider the accuracy
on the test set of a linear SVM. Specifically we perform feature selection using a subset of
the training data by selecting uniformly at random without replacement. Thus the relevant
sample covariance matrices are estimated using these smaller sets. We then train a linear
SVM using the selected subset of features but using the entire set of samples; this is done
to avoid any influence of sample size on the training of the SVM and by extension on the
final results.

In figure 8 we show the empirical results on the three data sets (STL, CIFAR, INRIA) in
the case where feature selection is performed using the GC-approximation. As can be seen,
in the case of the STL and CIFAR data sets the feature selection method proves to be very
robust with regards to sample set size; performance degrades only slightly when the sample
set size is very small (50 samples per class). On the contrary, in the case of the INRIA data
set, we see that the method does not prove to be so robust and the performance suffers.
We note that in the plot for the INRIA data set, the x-axis relates the number of samples
in the positive class, the number of samples sampled from the negative class was chosen to
preserve the class ratio (∼ 6/1).
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Similarly in figure 9 we show results for the KL-bound case. Here we see that sample
size is more influential. A possible explanation is that though the feature selection method
arising from the GC-approximation involves the estimation of |Y | + 1 inverse covariance
matrices, in the case of the KL-bound feature selection method involves 2|Y | inverses.
Examining the plots in figure 9, we see that in the case of the STL and CIFAR data sets
there is some degradation of performance for small sample set sizes, though the performance
quickly reaches that of the full set as the subset size increases. In the case of the INRIA
data set however we see that the method performs considerably worse when only a subset
of the data set is used to perform feature selection.

6. Conclusion

The present work concentrates on developing tractable algorithms to exploit information
theoretic criteria for feature selection. The proposed methods focus on feature selection in
the context of classification and demonstrate that it is possible to choose features that are
jointly informative by careful density modeling and algorithmic implementation. Thus the
joint mutual information of variables can in fact be employed efficiently for feature selection
as opposed to using only the mutual information of marginal or pairwise distributions as
has typically been used in the literature.

The proposed methods rely on modeling the conditional joint distributions of the fea-
tures given the class to predict and subsequently maximizing either upper bounds on the
information theoretic measures or relevant approximations. To reduce the computational
cost of a forward feature selection scheme incorporating these criteria, we have proposed
efficient implementations for both approaches, so that they are competitive with other
state-of-the-art methods in terms of speed. We have also presented a novel method for
updating the eigen-decompositions of a specific family of matrices (and updates) which our
GC-approximation feature selection algorithm exploits.

Empirical results show the methods to be competitive with current state-of-the-art with
respect to prediction accuracy. Furthermore, an empirical analysis of the performance of
these methods in connection with the number of samples in the data sets has shown them
to be relatively robust in this respect.
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STL, middle) CIFAR, and bottom) INRIA data sets.The green circles mark the
performance of the method when the entire data set is used.
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