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Abstract

We derive a second-order ordinary differential equation (ODE) which is the limit of Nes-
terov’s accelerated gradient method. This ODE exhibits approximate equivalence to Nes-
terov’s scheme and thus can serve as a tool for analysis. We show that the continuous time
ODE allows for a better understanding of Nesterov’s scheme. As a byproduct, we obtain
a family of schemes with similar convergence rates. The ODE interpretation also suggests
restarting Nesterov’s scheme leading to an algorithm, which can be rigorously proven to
converge at a linear rate whenever the objective is strongly convex.

Keywords: Nesterov’s accelerated scheme, convex optimization, first-order methods,
differential equation, restarting

1. Introduction

In many fields of machine learning, minimizing a convex function is at the core of efficient
model estimation. In the simplest and most standard form, we are interested in solving

minimize f(x),

where f is a convex function, smooth or non-smooth, and x ∈ Rn is the variable. Since
Newton, numerous algorithms and methods have been proposed to solve the minimization
problem, notably gradient and subgradient descent, Newton’s methods, trust region meth-
ods, conjugate gradient methods, and interior point methods (see e.g. Polyak, 1987; Boyd
and Vandenberghe, 2004; Nocedal and Wright, 2006; Ruszczyński, 2006; Boyd et al., 2011;
Shor, 2012; Beck, 2014, for expositions).

First-order methods have regained popularity as data sets and problems are ever in-
creasing in size and, consequently, there has been much research on the theory and practice
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of accelerated first-order schemes. Perhaps the earliest first-order method for minimizing
a convex function f is the gradient method, which dates back to Euler and Lagrange.
Thirty years ago, however, in a seminal paper Nesterov proposed an accelerated gradient
method (Nesterov, 1983), which may take the following form: starting with x0 and y0 = x0,
inductively define

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1).

(1)

For any fixed step size s ≤ 1/L, where L is the Lipschitz constant of ∇f , this scheme
exhibits the convergence rate

f(xk)− f? ≤ O
(
‖x0 − x?‖2

sk2

)
. (2)

Above, x? is any minimizer of f and f? = f(x?). It is well-known that this rate is op-
timal among all methods having only information about the gradient of f at consecutive
iterates (Nesterov, 2004). This is in contrast to vanilla gradient descent methods, which
have the same computational complexity but can only achieve a rate of O(1/k). This
improvement relies on the introduction of the momentum term xk − xk−1 as well as the
particularly tuned coefficient (k−1)/(k+2) ≈ 1−3/k. Since the introduction of Nesterov’s
scheme, there has been much work on the development of first-order accelerated methods,
see Nesterov (2004, 2005, 2013) for theoretical developments, and Tseng (2008) for a unified
analysis of these ideas. Notable applications can be found in sparse linear regression (Beck
and Teboulle, 2009; Qin and Goldfarb, 2012), compressed sensing (Becker et al., 2011) and,
deep and recurrent neural networks (Sutskever et al., 2013).

In a different direction, there is a long history relating ordinary differential equation
(ODEs) to optimization, see Helmke and Moore (1996), Schropp and Singer (2000), and
Fiori (2005) for example. The connection between ODEs and numerical optimization is often
established via taking step sizes to be very small so that the trajectory or solution path
converges to a curve modeled by an ODE. The conciseness and well-established theory of
ODEs provide deeper insights into optimization, which has led to many interesting findings.
Notable examples include linear regression via solving differential equations induced by
linearized Bregman iteration algorithm (Osher et al., 2014), a continuous-time Nesterov-like
algorithm in the context of control design (Dürr and Ebenbauer, 2012; Dürr et al., 2012), and
modeling design iterative optimization algorithms as nonlinear dynamical systems (Lessard
et al., 2014).

In this work, we derive a second-order ODE which is the exact limit of Nesterov’s
scheme by taking small step sizes in (1); to the best of our knowledge, this work is the first
to use ODEs to model Nesterov’s scheme or its variants in this limit. One surprising fact
in connection with this subject is that a first-order scheme is modeled by a second-order
ODE. This ODE takes the following form:

Ẍ +
3

t
Ẋ +∇f(X) = 0 (3)

for t > 0, with initial conditions X(0) = x0, Ẋ(0) = 0; here, x0 is the starting point
in Nesterov’s scheme, Ẋ ≡ dX/dt denotes the time derivative or velocity and similarly
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Ẍ ≡ d2X/dt2 denotes the acceleration. The time parameter in this ODE is related to the
step size in (1) via t ≈ k

√
s. Expectedly, it also enjoys inverse quadratic convergence rate

as its discrete analog,

f(X(t))− f? ≤ O
(
‖x0 − x?‖2

t2

)
.

Approximate equivalence between Nesterov’s scheme and the ODE is established later in
various perspectives, rigorous and intuitive. In the main body of this paper, examples and
case studies are provided to demonstrate that the homogeneous and conceptually simpler
ODE can serve as a tool for understanding, analyzing and generalizing Nesterov’s scheme.

In the following, two insights of Nesterov’s scheme are highlighted, the first one on
oscillations in the trajectories of this scheme, and the second on the peculiar constant 3
appearing in the ODE.

1.1 From Overdamping to Underdamping

In general, Nesterov’s scheme is not monotone in the objective function value due to the
introduction of the momentum term. Oscillations or overshoots along the trajectory of
iterates approaching the minimizer are often observed when running Nesterov’s scheme.
Figure 1 presents typical phenomena of this kind, where a two-dimensional convex function
is minimized by Nesterov’s scheme. Viewing the ODE as a damping system, we obtain
interpretations as follows.

Small t. In the beginning, the damping ratio 3/t is large. This leads the ODE to be an
overdamped system, returning to the equilibrium without oscillating;
Large t. As t increases, the ODE with a small 3/t behaves like an underdamped system,
oscillating with the amplitude gradually decreasing to zero.

As depicted in Figure 1a, in the beginning the ODE curve moves smoothly towards the
origin, the minimizer x?. The second interpretation “Large t’’ provides partial explanation
for the oscillations observed in Nesterov’s scheme at later stage. Although our analysis
extends farther, it is similar in spirit to that carried in O’Donoghue and Candès (2013).
In particular, the zoomed Figure 1b presents some butterfly-like oscillations for both the
scheme and ODE. There, we see that the trajectory constantly moves away from the origin
and returns back later. Each overshoot in Figure 1b causes a bump in the function values,
as shown in Figure 1c. We observe also from Figure 1c that the periodicity captured by the
bumps are very close to that of the ODE solution. In passing, it is worth mentioning that
the solution to the ODE in this case can be expressed via Bessel functions, hence enabling
quantitative characterizations of these overshoots and bumps, which are given in full detail
in Section 3.

1.2 A Phase Transition

The constant 3, derived from (k + 2) − (k − 1) in (3), is not haphazard. In fact, it is the
smallest constant that guarantees O(1/t2) convergence rate. Specifically, parameterized by
a constant r, the generalized ODE

Ẍ +
r

t
Ẋ +∇f(X) = 0
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Figure 1: Minimizing f = 2 × 10−2x2
1 + 5 × 10−3x2

2, starting from x0 = (1, 1). The black
and solid curves correspond to the solution to the ODE. In (c), for the x-axis we use the
identification between time and iterations, t = k

√
s.

can be translated into a generalized Nesterov’s scheme that is the same as the original
(1) except for (k − 1)/(k + 2) being replaced by (k − 1)/(k + r − 1). Surprisingly, for
both generalized ODEs and schemes, the inverse quadratic convergence is guaranteed if and
only if r ≥ 3. This phase transition suggests there might be deep causes for acceleration
among first-order methods. In particular, for r ≥ 3, the worst case constant in this inverse
quadratic convergence rate is minimized at r = 3.

Figure 2 illustrates the growth of t2(f(X(t)) − f?) and sk2(f(xk) − f?), respectively,
for the generalized ODE and scheme with r = 1, where the objective function is simply
f(x) = 1

2x
2. Inverse quadratic convergence fails to be observed in both Figures 2a and 2b,

where the scaled errors grow with t or iterations, for both the generalized ODE and scheme.
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(b) Scaled errors sk2(f(xk)− f?).

Figure 2: Minimizing f = 1
2x

2 by the generalized ODE and scheme with r = 1, starting
from x0 = 1. In (b), the step size s = 10−4.

1.3 Outline and Notation

The rest of the paper is organized as follows. In Section 2, the ODE is rigorously derived
from Nesterov’s scheme, and a generalization to composite optimization, where f may be
non-smooth, is also obtained. Connections between the ODE and the scheme, in terms
of trajectory behaviors and convergence rates, are summarized in Section 3. In Section
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4, we discuss the effect of replacing the constant 3 in (3) by an arbitrary constant on the
convergence rate. A new restarting scheme is suggested in Section 5, with linear convergence
rate established and empirically observed.

Some standard notations used throughout the paper are collected here. We denote by
FL the class of convex functions f with L–Lipschitz continuous gradients defined on Rn,
i.e., f is convex, continuously differentiable, and satisfies

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

for any x, y ∈ Rn, where ‖ · ‖ is the standard Euclidean norm and L > 0 is the Lipschitz
constant. Next, Sµ denotes the class of µ–strongly convex functions f on Rn with continuous
gradients, i.e., f is continuously differentiable and f(x)−µ‖x‖2/2 is convex. We set Sµ,L =
FL ∩ Sµ.

2. Derivation

First, we sketch an informal derivation of the ODE (3). Assume f ∈ FL for L > 0.
Combining the two equations of (1) and applying a rescaling gives

xk+1 − xk√
s

=
k − 1

k + 2

xk − xk−1√
s

−
√
s∇f(yk). (4)

Introduce the Ansatz xk ≈ X(k
√
s) for some smooth curve X(t) defined for t ≥ 0. Put

k = t/
√
s. Then as the step size s goes to zero, X(t) ≈ xt/

√
s = xk and X(t +

√
s) ≈

x(t+
√
s)/
√
s = xk+1, and Taylor expansion gives

(xk+1− xk)/
√
s = Ẋ(t) +

1

2
Ẍ(t)

√
s+ o(

√
s), (xk − xk−1)/

√
s = Ẋ(t)− 1

2
Ẍ(t)

√
s+ o(

√
s)

and
√
s∇f(yk) =

√
s∇f(X(t)) + o(

√
s). Thus (4) can be written as

Ẋ(t) +
1

2
Ẍ(t)

√
s+ o(

√
s)

=
(

1− 3
√
s

t

)(
Ẋ(t)− 1

2
Ẍ(t)

√
s+ o(

√
s)
)
−
√
s∇f(X(t)) + o(

√
s). (5)

By comparing the coefficients of
√
s in (5), we obtain

Ẍ +
3

t
Ẋ +∇f(X) = 0.

The first initial condition is X(0) = x0. Taking k = 1 in (4) yields

(x2 − x1)/
√
s = −

√
s∇f(y1) = o(1).

Hence, the second initial condition is simply Ẋ(0) = 0 (vanishing initial velocity).

One popular alternative momentum coefficient is θk(θ
−1
k−1 − 1), where θk are iteratively

defined as θk+1 =
(√

θ4
k + 4θ2

k − θ
2
k

)
/2, starting from θ0 = 1 (Nesterov, 1983; Beck and
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Teboulle, 2009). Simple analysis reveals that θk(θ
−1
k−1 − 1) asymptotically equals 1− 3/k +

O(1/k2), thus leading to the same ODE as (1).
Classical results in ODE theory do not directly imply the existence or uniqueness of the

solution to this ODE because the coefficient 3/t is singular at t = 0. In addition, ∇f is
typically not analytic at x0, which leads to the inapplicability of the power series method for
studying singular ODEs. Nevertheless, the ODE is well posed: the strategy we employ for
showing this constructs a series of ODEs approximating (3), and then chooses a convergent
subsequence by some compactness arguments such as the Arzelá-Ascoli theorem. Below,
C2((0,∞);Rn) denotes the class of twice continuously differentiable maps from (0,∞) to Rn;
similarly, C1([0,∞);Rn) denotes the class of continuously differentiable maps from [0,∞)
to Rn.

Theorem 1 For any f ∈ F∞ := ∪L>0FL and any x0 ∈ Rn, the ODE (3) with initial condi-
tions X(0) = x0, Ẋ(0) = 0 has a unique global solution X ∈ C2((0,∞);Rn)∩C1([0,∞);Rn).

The next theorem, in a rigorous way, guarantees the validity of the derivation of this ODE.
The proofs of both theorems are deferred to the appendices.

Theorem 2 For any f ∈ F∞, as the step size s → 0, Nesterov’s scheme (1) converges to
the ODE (3) in the sense that for all fixed T > 0,

lim
s→0

max
0≤k≤ T√

s

∥∥xk −X (k√s)∥∥ = 0.

2.1 Simple Properties

We collect some elementary properties that are helpful in understanding the ODE.
Time Invariance. If we adopt a linear time transformation, t̃ = ct for some c > 0, by the
chain rule it follows that

dX

dt̃
=

1

c

dX

dt
,

d2X

dt̃2
=

1

c2

d2X

dt2
.

This yields the ODE parameterized by t̃,

d2X

dt̃2
+

3

t̃

dX

dt̃
+∇f(X)/c2 = 0.

Also note that minimizing f/c2 is equivalent to minimizing f . Hence, the ODE is invariant
under the time change. In fact, it is easy to see that time invariance holds if and only if the
coefficient of Ẋ has the form C/t for some constant C.
Rotational Invariance. Nesterov’s scheme and other gradient-based schemes are in-
variant under rotations. As expected, the ODE is also invariant under orthogonal trans-
formation. To see this, let Y = QX for some orthogonal matrix Q. This leads to
Ẏ = QẊ, Ÿ = QẌ and ∇Y f = Q∇Xf . Hence, denoting by QT the transpose of Q,
the ODE in the new coordinate system reads QT Ÿ + 3

tQ
T Ẏ +QT∇Y f = 0, which is of the

same form as (3) once multiplying Q on both sides.
Initial Asymptotic. Assume sufficient smoothness of X such that limt→0 Ẍ(t) exists.
The mean value theorem guarantees the existence of some ξ ∈ (0, t) that satisfies Ẋ(t)/t =
(Ẋ(t)− Ẋ(0))/t = Ẍ(ξ). Hence, from the ODE we deduce Ẍ(t) + 3Ẍ(ξ) +∇f(X(t)) = 0.
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Taking the limit t→ 0 gives Ẍ(0) = −∇f(x0)/4. Hence, for small t we have the asymptotic
form:

X(t) = −∇f(x0)t2

8
+ x0 + o(t2).

This asymptotic expansion is consistent with the empirical observation that Nesterov’s
scheme moves slowly in the beginning.

2.2 ODE for Composite Optimization

It is interesting and important to generalize the ODE to minimizing f in the composite
form f(x) = g(x) + h(x), where the smooth part g ∈ FL and the non-smooth part h :
Rn → (−∞,∞] is a structured general convex function. Both Nesterov (2013) and Beck
and Teboulle (2009) obtain O(1/k2) convergence rate by employing the proximal structure
of h. In analogy to the smooth case, an ODE for composite f is derived in the appendix.

3. Connections and Interpretations

In this section, we explore the approximate equivalence between the ODE and Nesterov’s
scheme, and provide evidence that the ODE can serve as an amenable tool for interpreting
and analyzing Nesterov’s scheme. The first subsection exhibits inverse quadratic conver-
gence rate for the ODE solution, the next two address the oscillation phenomenon discussed
in Section 1.1, and the last subsection is devoted to comparing Nesterov’s scheme with gra-
dient descent from a numerical perspective.

3.1 Analogous Convergence Rate

The original result from Nesterov (1983) states that, for any f ∈ FL, the sequence {xk}
given by (1) with step size s ≤ 1/L satisfies

f(xk)− f? ≤
2‖x0 − x?‖2

s(k + 1)2
. (6)

Our next result indicates that the trajectory of (3) closely resembles the sequence {xk} in
terms of the convergence rate to a minimizer x?. Compared with the discrete case, this
proof is shorter and simpler.

Theorem 3 For any f ∈ F∞, let X(t) be the unique global solution to (3) with initial
conditions X(0) = x0, Ẋ(0) = 0. Then, for any t > 0,

f(X(t))− f? ≤ 2‖x0 − x?‖2

t2
. (7)

Proof Consider the energy functional1 defined as E(t) = t2(f(X(t))− f?) + 2‖X+ tẊ/2−
x?‖2, whose time derivative is

Ė = 2t(f(X)− f?) + t2〈∇f, Ẋ〉+ 4

〈
X +

t

2
Ẋ − x?, 3

2
Ẋ +

t

2
Ẍ

〉
.

1. We may also view this functional as the negative entropy. Similarly, for the gradient flow Ẋ+∇f(X) = 0,
an energy function of form Egradient(t) = t(f(X(t)) − f?) + ‖X(t) − x?‖2/2 can be used to derive the

bound f(X(t))− f? ≤ ‖x0−x
?‖2

2t
.
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Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2, the above equation gives

Ė = 2t(f(X)− f?) + 4〈X − x?,−t∇f(X)/2〉 = 2t(f(X)− f?)− 2t〈X − x?,∇f(X)〉 ≤ 0,

where the inequality follows from the convexity of f . Hence by monotonicity of E and
non-negativity of 2‖X + tẊ/2− x?‖2, the gap satisfies

f(X(t))− f? ≤ E(t)

t2
≤ E(0)

t2
=

2‖x0 − x?‖2

t2
.

Making use of the approximation t ≈ k
√
s, we observe that the convergence rate in (6) is

essentially a discrete version of that in (7), providing yet another piece of evidence for the
approximate equivalence between the ODE and the scheme.

We finish this subsection by showing that the number 2 appearing in the numerator of
the error bound in (7) is optimal. Consider an arbitrary f ∈ F∞(R) such that f(x) = x for
x ≥ 0. Starting from some x0 > 0, the solution to (3) is X(t) = x0− t2/8 before hitting the
origin. Hence, t2(f(X(t))− f?) = t2(x0 − t2/8) has a maximum 2x2

0 = 2|x0 − 0|2 achieved
at t = 2

√
x0. Therefore, we cannot replace 2 by any smaller number, and we can expect

that this tightness also applies to the discrete analog (6).

3.2 Quadratic f and Bessel Functions

For quadratic f , the ODE (3) admits a solution in closed form. This closed form solution
turns out to be very useful in understanding the issues raised in the introduction.

Let f(x) = 1
2〈x,Ax〉+ 〈b, x〉, where A ∈ Rn×n is a positive semidefinite matrix and b is

in the column space of A because otherwise this function can attain −∞. Then a simple
translation in x can absorb the linear term 〈b, x〉 into the quadratic term. Since both the
ODE and the scheme move within the affine space perpendicular to the kernel of A, without
loss of generality, we assume that A is positive definite, admitting a spectral decomposition
A = QTΛQ, where Λ is a diagonal matrix formed by the eigenvalues. Replacing x with Qx,
we assume f = 1

2〈x,Λx〉 from now on. Now, the ODE for this function admits a simple
decomposition of form

Ẍi +
3

t
Ẋi + λiXi = 0, i = 1, . . . , n

with Xi(0) = x0,i, Ẋi(0) = 0. Introduce Yi(u) = uXi(u/
√
λi), which satisfies

u2Ÿi + uẎi + (u2 − 1)Yi = 0.

This is Bessel’s differential equation of order one. Since Yi vanishes at u = 0, we see that
Yi is a constant multiple of J1, the Bessel function of the first kind of order one.2 It has an
analytic expansion:

J1(u) =

∞∑
m=0

(−1)m

(2m)!!(2m+ 2)!!
u2m+1,

2. Up to a constant multiplier, J1 is the unique solution to the Bessel’s differential equation u2J̈1 + uJ̇1 +
(u2−1)J1 = 0 that is finite at the origin. In the analytic expansion of J1, m!! denotes the double factorial
defined as m!! = m× (m− 2)× · · · × 2 for even m, or m!! = m× (m− 2)× · · · × 1 for odd m.
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which gives the asymptotic expansion

J1(u) = (1 + o(1))
u

2

when u→ 0. Requiring Xi(0) = x0,i, hence, we obtain

Xi(t) =
2x0,i

t
√
λi
J1(t

√
λi). (8)

For large t, the Bessel function has the following asymptotic form (see e.g. Watson, 1995):

J1(t) =

√
2

πt

(
cos(t− 3π/4) +O(1/t)

)
. (9)

This asymptotic expansion yields (note that f? = 0)

f(X(t))− f? = f(X(t)) =
n∑
i=1

2x2
0,i

t2
J1

(
t
√
λi

)2
= O

(
‖x0 − x?‖2

t3
√

minλi

)
. (10)

On the other hand, (9) and (10) give a lower bound:

lim sup
t→∞

t3(f(X(t))− f?) ≥ lim
t→∞

1

t

∫ t

0
u3(f(X(u))− f?)du

= lim
t→∞

1

t

∫ t

0

n∑
i=1

2x2
0,iuJ1(u

√
λi)

2du

=
n∑
i=1

2x2
0,i

π
√
λi
≥ 2‖x0 − x?‖2

π
√
L

,

(11)

where L = ‖A‖2 is the spectral norm of A. The first inequality follows by interpreting
limt→∞

1
t

∫ t
0 u

3(f(X(u)) − f?)du as the mean of u3(f(X(u)) − f?) on (0,∞) in certain
sense.

In view of (10), Nesterov’s scheme might possibly exhibit O(1/k3) convergence rate for
strongly convex functions. This convergence rate is consistent with the second inequality
in Theorem 6. In Section 4.3, we prove the O(1/t3) rate for a generalized version of (3).
However, (11) rules out the possibility of a higher order convergence rate.

Recall that the function considered in Figure 1 is f(x) = 0.02x2
1 + 0.005x2

2, starting
from x0 = (1, 1). As the step size s becomes smaller, the trajectory of Nesterov’s scheme
converges to the solid curve represented via the Bessel function. While approaching the min-
imizer x?, each trajectory displays the oscillation pattern, as well-captured by the zoomed
Figure 1b. This prevents Nesterov’s scheme from achieving better convergence rate. The
representation (8) offers excellent explanation as follows. Denote by T1, T2, respectively,
the approximate periodicities of the first component |X1| in absolute value and the second
|X2|. By (9), we get T1 = π/

√
λ1 = 5π and T2 = π/

√
λ2 = 10π. Hence, as the amplitude

gradually decreases to zero, the function f = 2x2
0,1J1(

√
λ1t)

2/t2 + 2x2
0,2J1(

√
λ2t)

2/t2 has a
major cycle of 10π, the least common multiple of T1 and T2. A careful look at Figure 1c
reveals that within each major bump, roughly, there are 10π/T1 = 2 minor peaks.
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3.3 Fluctuations of Strongly Convex f

The analysis carried out in the previous subsection only applies to convex quadratic func-
tions. In this subsection, we extend the discussion to one-dimensional strongly convex
functions. The Sturm-Picone theory (see e.g. Hinton, 2005) is extensively used all along the
analysis.

Let f ∈ Sµ,L(R). Without loss of generality, assume f attains minimum at x? = 0.
Then, by definition µ ≤ f ′(x)/x ≤ L for any x 6= 0. Denoting by X the solution to the
ODE (3), we consider the self-adjoint equation,

(t3Y ′)′ +
t3f ′(X(t))

X(t)
Y = 0, (12)

which, apparently, admits a solution Y (t) = X(t). To apply the Sturm-Picone comparison
theorem, consider

(t3Y ′)′ + µt3Y = 0

for a comparison. This equation admits a solution Ỹ (t) = J1(
√
µt)/t. Denote by t̃1 < t̃2 <

· · · all the positive roots of J1(t), which satisfy (see e .g. Watson, 1995)

3.8317 = t̃1 − t̃0 > t̃2 − t̃3 > t̃3 − t̃4 > · · · > π,

where t̃0 = 0. Then, it follows that the positive roots of Ỹ are t̃1/
√
µ, t̃2/

√
µ, . . .. Since

t3f ′(X(t))/X(t) ≥ µt3, the Sturm-Picone comparison theorem asserts that X(t) has a root
in each interval [t̃i/

√
µ, t̃i+1/

√
µ].

To obtain a similar result in the opposite direction, consider

(t3Y ′)′ + Lt3Y = 0. (13)

Applying the Sturm-Picone comparison theorem to (12) and (13), we ensure that between
any two consecutive positive roots of X, there is at least one t̃i/

√
L. Now, we summarize

our findings in the following. Roughly speaking, this result concludes that the oscillation
frequency of the ODE solution is between O(

√
µ) and O(

√
L).

Theorem 4 Denote by 0 < t1 < t2 < · · · all the roots of X(t) − x?. Then these roots
satisfy, for all i ≥ 1,

t1 <
7.6635
√
µ

, ti+1 − ti <
7.6635
√
µ

, ti+2 − ti >
π√
L
.

3.4 Nesterov’s Scheme Compared with Gradient Descent

The ansatz t ≈ k
√
s in relating the ODE and Nesterov’s scheme is formally confirmed in

Theorem 2. Consequently, for any constant tc > 0, this implies that xk does not change
much for a range of step sizes s if k ≈ tc/

√
s. To empirically support this claim, we present

an example in Figure 3a, where the scheme minimizes f(x) = ‖y − Ax‖2/2 + ‖x‖1 with
y = (4, 2, 0) and A(:, 1) = (0, 2, 4), A(:, 2) = (1, 1, 1) starting from x0 = (2, 0) (here
A(:, j) is the jth column of A). From this figure, we are delighted to observe that xk with
the same tc are very close to each other.

10
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This interesting square-root scaling has the potential to shed light on the superiority
of Nesterov’s scheme over gradient descent. Roughly speaking, each iteration in Nesterov’s
scheme amounts to traveling

√
s in time along the integral curve of (3), whereas it is known

that the simple gradient descent xk+1 = xk − s∇f(xk) moves s along the integral curve
of Ẋ + ∇f(X) = 0. We expect that for small s Nesterov’s scheme moves more in each
iteration since

√
s is much larger than s. Figure 3b illustrates and supports this claim,

where the function minimized is f = |x1|3 + 5|x2|3 + 0.001(x1 +x2)2 with step size s = 0.05
(The coordinates are appropriately rotated to allow x0 and x? lie on the same horizontal
line). The circles are the iterates for k = 1, 10, 20, 30, 45, 60, 90, 120, 150, 190, 250, 300. For
Nesterov’s scheme, the seventh circle has already passed t = 15, while for gradient descent
the last point has merely arrived at t = 15.
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1.5
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(a) Square-root scaling of s.
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Gradient

t = 5
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(b) Race between Nesterov’s and gradient.

Figure 3: In (a), the circles, crosses and triangles are xk evaluated at k = d1/
√
se , d2/

√
se

and d3/
√
se, respectively. In (b), the circles are iterations given by Nesterov’s scheme or

gradient descent, depending on the color, and the stars are X(t) on the integral curves for
t = 5, 15.

A second look at Figure 3b suggests that Nesterov’s scheme allows a large deviation
from its limit curve, as compared with gradient descent. This raises the question of the
stable step size allowed for numerically solving the ODE (3) in the presence of accumulated
errors. The finite difference approximation by the forward Euler method is

X(t+ ∆t)− 2X(t) +X(t−∆t)

∆t2
+

3

t

X(t)−X(t−∆t)

∆t
+∇f(X(t)) = 0, (14)

which is equivalent to

X(t+ ∆t) =
(

2− 3∆t

t

)
X(t)−∆t2∇f(X(t))−

(
1− 3∆t

t

)
X(t−∆t). (15)

Assuming f is sufficiently smooth, we have ∇f(x + δx) ≈ ∇f(x) + ∇2f(x)δx for small
perturbations δx, where ∇2f(x) is the Hessian of f evaluated at x. Identifying k = t/∆t,

11
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the characteristic equation of this finite difference scheme is approximately

det

(
λ2 −

(
2−∆t2∇2f − 3∆t

t

)
λ+ 1− 3∆t

t

)
= 0. (16)

The numerical stability of (14) with respect to accumulated errors is equivalent to this: all
the roots of (16) lie in the unit circle (see e.g. Leader, 2004). When ∇2f � LIn (i.e. LIn −
∇2f is positive semidefinite), if ∆t/t small and ∆t < 2/

√
L, we see that all the roots of

(16) lie in the unit circle. On the other hand, if ∆t > 2/
√
L, (16) can possibly have a root

λ outside the unit circle, causing numerical instability. Under our identification s = ∆t2, a
step size of s = 1/L in Nesterov’s scheme (1) is approximately equivalent to a step size of
∆t = 1/

√
L in the forward Euler method, which is stable for numerically integrating (14).

As a comparison, note that the finite difference scheme of the ODE Ẋ(t)+∇f(X(t)) = 0,
which models gradient descent with updates xk+1 = xk − s∇f(xk), has the characteristic
equation det(λ − (1 −∆t∇2f)) = 0. Thus, to guarantee −In � 1 −∆t∇2f � In in worst
case analysis, one can only choose ∆t ≤ 2/L for a fixed step size, which is much smaller
than the step size 2/

√
L for (14) when ∇f is very variable, i.e., L is large.

4. The Magic Constant 3

Recall that the constant 3 appearing in the coefficient of Ẋ in (3) originates from (k +
2) − (k − 1) = 3. This number leads to the momentum coefficient in (1) taking the form
(k−1)/(k+ 2) = 1−3/k+O(1/k2). In this section, we demonstrate that 3 can be replaced
by any larger number, while maintaining the O(1/k2) convergence rate. To begin with, let
us consider the following ODE parameterized by a constant r:

Ẍ +
r

t
Ẋ +∇f(X) = 0 (17)

with initial conditions X(0) = x0, Ẋ(0) = 0. The proof of Theorem 1, which seamlessly
applies here, guarantees the existence and uniqueness of the solution X to this ODE.

Interpreting the damping ratio r/t as a measure of friction3 in the damping system,
our results say that more friction does not end the O(1/t2) and O(1/k2) convergence rate.
On the other hand, in the lower friction setting, where r is smaller than 3, we can no
longer expect inverse quadratic convergence rate, unless some additional structures of f are
imposed. We believe that this striking phase transition at 3 deserves more attention as an
interesting research challenge.

4.1 High Friction

Here, we study the convergence rate of (17) with r > 3 and f ∈ F∞. Compared with (3),
this new ODE as a damping suffers from higher friction. Following the strategy adopted in
the proof of Theorem 3, we consider a new energy functional defined as

E(t) =
2t2

r − 1
(f(X(t))− f?) + (r − 1)

∥∥∥∥X(t) +
t

r − 1
˙X(t)− x?

∥∥∥∥2

.

3. In physics and engineering, damping may be modeled as a force proportional to velocity but opposite in
direction, i.e. resisting motion; for instance, this force may be used as an approximation to the friction
caused by drag. In our model, this force would be proportional to − r

t
Ẋ where Ẋ is velocity and r

t
is

the damping coefficient.

12
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By studying the derivative of this functional, we get the following result.

Theorem 5 The solution X to (17) satisfies

f(X(t))− f? ≤ (r − 1)2‖x0 − x?‖2

2t2
,

∫ ∞
0

t(f(X(t))− f?)dt ≤ (r − 1)2‖x0 − x?‖2

2(r − 3)
.

Proof Noting rẊ + tẌ = −t∇f(X), we get Ė equal to

4t

r − 1
(f(X)− f?) +

2t2

r − 1
〈∇f, Ẋ〉+ 2〈X +

t

r − 1
Ẋ − x?, rẊ + tẌ〉

=
4t

r − 1
(f(X)− f?)− 2t〈X − x?,∇f(X)〉 ≤ −2(r − 3)t

r − 1
(f(X)− f?), (18)

where the inequality follows from the convexity of f . Since f(X) ≥ f?, the last display
implies that E is non-increasing. Hence

2t2

r − 1
(f(X(t))− f?) ≤ E(t) ≤ E(0) = (r − 1)‖x0 − x?‖2,

yielding the first inequality of this theorem. To complete the proof, from (18) it follows
that ∫ ∞

0

2(r − 3)t

r − 1
(f(X)− f?)dt ≤ −

∫ ∞
0

dE
dt

dt = E(0)− E(∞) ≤ (r − 1)‖x0 − x?‖2,

as desired for establishing the second inequality.

The first inequality is the same as (7) for the ODE (3), except for a larger constant (r−1)2/2.
The second inequality measures the error f(X(t))− f? in an average sense, and cannot be
deduced from the first inequality.

Now, it is tempting to obtain such analogs for the discrete Nesterov’s scheme as well.
Following the formulation of Beck and Teboulle (2009), we wish to minimize f in the
composite form f(x) = g(x) + h(x), where g ∈ FL for some L > 0 and h is convex on Rn
possibly assuming extended value ∞. Define the proximal subgradient

Gs(x) ,
x− argminz

(
‖z − (x− s∇g(x))‖2/(2s) + h(z)

)
s

.

Parametrizing by a constant r, we propose the generalized Nesterov’s scheme,

xk = yk−1 − sGs(yk−1)

yk = xk +
k − 1

k + r − 1
(xk − xk−1),

(19)

starting from y0 = x0. The discrete analog of Theorem 5 is below.

Theorem 6 The sequence {xk} given by (19) with 0 < s ≤ 1/L satisfies

f(xk)− f? ≤
(r − 1)2‖x0 − x?‖2

2s(k + r − 2)2
,

∞∑
k=1

(k + r − 1)(f(xk)− f?) ≤
(r − 1)2‖x0 − x?‖2

2s(r − 3)
.

13
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The first inequality suggests that the generalized Nesterov’s schemes still achieve O(1/k2)
convergence rate. However, if the error bound satisfies f(xk′) − f? ≥ c/k′2 for some arbi-
trarily small c > 0 and a dense subsequence {k′}, i.e., |{k′}∩{1, . . . ,m}| ≥ αm for all m ≥ 1
and some α > 0, then the second inequality of the theorem would be violated. To see this,
note that if it were the case, we would have (k′ + r − 1)(f(xk′)− f?) & 1

k′ ; the sum of the
harmonic series 1

k′ over a dense subset of {1, 2, . . .} is infinite. Hence, the second inequality
is not trivial because it implies the error bound is, in some sense, O(1/k2) suboptimal.

Now we turn to the proof of this theorem. It is worth pointing out that, though based
on the same idea, the proof below is much more complicated than that of Theorem 5.
Proof Consider the discrete energy functional,

E(k) =
2(k + r − 2)2s

r − 1
(f(xk)− f?) + (r − 1)‖zk − x?‖2,

where zk = (k + r − 1)yk/(r − 1)− kxk/(r − 1). If we have

E(k) +
2s[(r − 3)(k + r − 2) + 1]

r − 1
(f(xk−1)− f?) ≤ E(k − 1), (20)

then it would immediately yield the desired results by summing (20) over k. That is, by
recursively applying (20), we see

E(k) +
k∑
i=1

2s[(r − 3)(i+ r − 2) + 1]

r − 1
(f(xi−1)− f?)

≤ E(0) =
2(r − 2)2s

r − 1
(f(x0)− f?) + (r − 1)‖x0 − x?‖2,

which is equivalent to

E(k) +

k−1∑
i=1

2s[(r − 3)(i+ r − 1) + 1]

r − 1
(f(xi)− f?) ≤ (r − 1)‖x0 − x?‖2. (21)

Noting that the left-hand side of (21) is lower bounded by 2s(k+r−2)2(f(xk)−f?)/(r−1),
we thus obtain the first inequality of the theorem. Since E(k) ≥ 0, the second inequality
is verified via taking the limit k → ∞ in (21) and replacing (r − 3)(i + r − 1) + 1 by
(r − 3)(i+ r − 1).

We now establish (20). For s ≤ 1/L, we have the basic inequality,

f(y − sGs(y)) ≤ f(x) +Gs(y)T (y − x)− s

2
‖Gs(y)‖2, (22)

for any x and y. Note that yk−1 − sGs(yk−1) actually coincides with xk. Summing of
(k − 1)/(k + r − 2) × (22) with x = xk−1, y = yk−1 and (r − 1)/(k + r − 2) × (22) with
x = x?, y = yk−1 gives

f(xk) ≤
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f?

+
r − 1

k + r − 2
Gs(yk−1)T

(k + r − 2

r − 1
yk−1 −

k − 1

r − 1
xk−1 − x?

)
− s

2
‖Gs(yk−1)‖2

=
k − 1

k + r − 2
f(xk−1) +

r − 1

k + r − 2
f? +

(r − 1)2

2s(k + r − 2)2

(
‖zk−1 − x?‖2 − ‖zk − x?‖2

)
,
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where we use zk−1 − s(k + r − 2)Gs(yk−1)/(r − 1) = zk. Rearranging the above inequality
and multiplying by 2s(k + r − 2)2/(r − 1) gives the desired (20).

In closing, we would like to point out this new scheme is equivalent to setting θk =
(r−1)/(k+r−1) and letting θk(θ

−1
k−1−1) replace the momentum coefficient (k−1)/(k+r−1).

Then, the equal sign “ = ” in the update θk+1 = (
√
θ4
k + 4θ2

k − θ
2
k)/2 has to be replaced by

an inequality sign “ ≥ ”. In examining the proof of Theorem 1(b) in Tseng (2010), we can
get an alternative proof of Theorem 6.

4.2 Low Friction

Now we turn to the case r < 3. Then, unfortunately, the energy functional approach for
proving Theorem 5 is no longer valid, since the left-hand side of (18) is positive in general.
In fact, there are counterexamples that fail the desired O(1/t2) or O(1/k2) convergence
rate. We present such examples in continuous time. Equally, these examples would also
violate the O(1/k2) convergence rate in the discrete schemes, and we forego the details.

Let f(x) = 1
2‖x‖

2 and X be the solution to (17). Then, Y = t
r−1
2 X satisfies

t2Ÿ + tẎ + (t2 − (r − 1)2/4)Y = 0.

With the initial condition Y (t) ≈ t
r−1
2 x0 for small t, the solution to the above Bessel

equation in a vector form of order (r− 1)/2 is Y (t) = 2
r−1
2 Γ((r+ 1)/2)J(r−1)/2(t)x0. Thus,

X(t) =
2
r−1
2 Γ((r + 1)/2)J(r−1)/2(t)

t
r−1
2

x0.

For large t, the Bessel function J(r−1)/2(t) =
√

2/(πt)
(

cos(t− (r− 1)π/4− π/4) +O(1/t)
)
.

Hence,
f(X(t))− f? = O

(
‖x0 − x?‖2/tr

)
,

where the exponent r is tight. This rules out the possibility of inverse quadratic convergence
of the generalized ODE and scheme for all f ∈ FL if r < 2. An example with r = 1 is
plotted in Figure 2.

Next, we consider the case 2 ≤ r < 3 and let f(x) = |x| (this also applies to multivariate

f = ‖x‖).4 Starting from x0 > 0, we get X(t) = x0− t2

2(1+r) for t ≤
√

2(1 + r)x0. Requiring

continuity of X and Ẋ at the change point 0, we get

X(t) =
t2

2(1 + r)
+

2(2(1 + r)x0)
r+1
2

(r2 − 1)tr−1
− r + 3

r − 1
x0

for
√

2(1 + r)x0 < t ≤
√

2c?(1 + r)x0, where c? is the positive root other than 1 of (r −
1)c + 4c−

r−1
2 = r + 3. Repeating this process solves for X. Note that t1−r is in the null

4. This function does not have a Lipschitz continuous gradient. However, a similar pattern as in Figure 2
can be also observed if we smooth |x| at an arbitrarily small vicinity of 0.
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space of Ẍ + rẊ/t and satisfies t2 × t1−r → ∞ as t → ∞. For illustration, Figure 4 plots
t2(f(X(t)) − f?) and sk2(f(xk) − f?) with r = 2, 2.5, and r = 4 for comparison5. It is
clearly that inverse quadratic convergence does not hold for r = 2, 2.5, that is, (2) does not
hold for r < 3. Interestingly, in Figures 4a and 4d, the scaled errors at peaks grow linearly,
whereas for r = 2.5, the growth rate, though positive as well, seems sublinear.
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(a) ODE (17) with r = 2.
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(b) ODE (17) with r = 2.5.
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(c) ODE (17) with r = 4.
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(d) Scheme (19) with r = 2.
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(e) Scheme (19) with r = 2.5.
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(f) Scheme (19) with r = 4.

Figure 4: Scaled errors t2(f(X(t)) − f?) and sk2(f(xk) − f?) of generalized ODEs and
schemes for minimizing f = |x|. In (d), the step size s = 10−6, in (e), s = 10−7, and in (f),
s = 10−6.

However, if f possesses some additional property, inverse quadratic convergence is still
guaranteed, as stated below. In that theorem, f is assumed to be a continuously differen-
tiable convex function.

Theorem 7 Suppose 1 < r < 3 and let X be a solution to the ODE (17). If (f − f?)
r−1
2

is also convex, then

f(X(t))− f? ≤ (r − 1)2‖x0 − x?‖2

2t2
.

Proof Since (f − f?)
r−1
2 is convex, we obtain

(f(X(t))− f?)
r−1
2 ≤ 〈X − x?,∇(f(X)− f?)

r−1
2 〉 =

r − 1

2
(f(X)− f?)

r−3
2 〈X − x?,∇f(X)〉,

which can be simplified to 2
r−1(f(X) − f?) ≤ 〈X − x?,∇f(X)〉. This inequality com-

bined with (18) leads to the monotonically decreasing of E(t) defined for Theorem 5.
This completes the proof by noting f(X) − f? ≤ (r − 1)E(t)/(2t2) ≤ (r − 1)E(0)/(2t2) =
(r − 1)2‖x0 − x?‖2/(2t2).

5. For Figures 4d, 4e and 4f, if running generalized Nesterov’s schemes with too many iterations (e.g. 105),
the deviations from the ODE will grow. Taking a sufficiently small s can solve this issue.
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4.3 Strongly Convex f

Strong convexity is a desirable property for optimization. Making use of this property
carefully suggests a generalized Nesterov’s scheme that achieves optimal linear convergence
(Nesterov, 2004). In that case, even vanilla gradient descent has a linear convergence rate.
Unfortunately, the example given in the previous subsection simply rules out such possibility
for (1) and its generalizations (19). However, from a different perspective, this example
suggests that O(t−r) convergence rate can be expected for (17). In the next theorem, we

prove a slightly weaker statement of this kind, that is, a provable O(t−
2r
3 ) convergence rate

is established for strongly convex functions. Bridging this gap may require new tools and
more careful analysis.

Let f ∈ Sµ,L(Rn) and consider a new energy functional for α > 2 defined as

E(t;α) = tα(f(X(t))− f?) +
(2r − α)2tα−2

8

∥∥∥X(t) +
2t

2r − α
Ẋ − x?

∥∥∥2
.

When clear from the context, E(t;α) is simply denoted as E(t). For r > 3, taking α = 2r/3

in the theorem stated below gives f(X(t))− f? . ‖x0 − x?‖2/t
2r
3 .

Theorem 8 For any f ∈ Sµ,L(Rn), if 2 ≤ α ≤ 2r/3 we get

f(X(t))− f? ≤ C‖x0 − x?‖2

µ
α−2
2 tα

for any t > 0. Above, the constant C only depends on α and r.

Proof Note that Ė(t;α) equals

αtα−1(f(X)− f?)− (2r − α)tα−1

2
〈X − x?,∇f(X)〉+

(α− 2)(2r − α)2tα−3

8
‖X − x?‖2

+
(α− 2)(2r − α)tα−2

4
〈Ẋ,X − x?〉. (23)

By the strong convexity of f , the second term of the right-hand side of (23) is bounded
below as

(2r − α)tα−1

2
〈X − x?,∇f(X)〉 ≥ (2r − α)tα−1

2
(f(X)− f?) +

µ(2r − α)tα−1

4
‖X − x?‖2.

Substituting the last display into (23) with the awareness of r ≥ 3α/2 yields

Ė ≤ −(2µ(2r − α)t2 − (α− 2)(2r − α)2)tα−3

8
‖X−x?‖2+

(α− 2)(2r − α)tα−2

8

d‖X − x?‖2

dt
.

Hence, if t ≥ tα :=
√

(α− 2)(2r − α)/(2µ), we obtain

Ė(t) ≤ (α− 2)(2r − α)tα−2

8

d‖X − x?‖2

dt
.
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Integrating the last inequality on the interval (tα, t) gives

E(t) ≤ E(tα) +
(α− 2)(2r − α)tα−2

8
‖X(t)− x?‖2 − (α− 2)(2r − α)tα−2

α

8
‖X(tα)− x?‖2

− 1

8

∫ t

tα

(α− 2)2(2r − α)uα−3‖X(u)− x?‖2du ≤ E(tα) +
(α− 2)(2r − α)tα−2

8
‖X(t)− x?‖2

≤ E(tα) +
(α− 2)(2r − α)tα−2

4µ
(f(X(t))− f?). (24)

Making use of (24), we apply induction on α to finish the proof. First, consider 2 <
α ≤ 4. Applying Theorem 5, from (24) we get that E(t) is upper bounded by

E(tα) +
(α− 2)(r − 1)2(2r − α)‖x0 − x?‖2

8µt4−α
≤ E(tα) +

(α− 2)(r − 1)2(2r − α)‖x0 − x?‖2

8µt4−αα
.

(25)
Then, we bound E(tα) as follows.

E(tα) ≤ tαα(f(X(tα))− f?) +
(2r − α)2tα−2

α

4

∥∥∥ 2r − 2

2r − α
X(tα) +

2tα
2r − α

Ẋ(tα)− 2r − 2

2r − α
x?
∥∥∥2

+
(2r − α)2tα−2

α

4

∥∥∥ α− 2

2r − α
X(tα)− α− 2

2r − α
x?
∥∥∥2

≤ (r − 1)2tα−2
α ‖x0 − x?‖2 +

(α− 2)2(r − 1)2‖x0 − x?‖2

4µt4−αα
, (26)

where in the second inequality we use the decreasing property of the energy functional
defined for Theorem 5. Combining (25) and (26), we have

E(t) ≤ (r − 1)2tα−2
α ‖x0 − x?‖2 +

(α− 2)(r − 1)2(2r + α− 4)‖x0 − x?‖2

8µt4−αα
= O

(‖x0 − x?‖2

µ
α−2
2

)
.

For t ≥ tα, it suffices to apply f(X(t)) − f? ≤ E(t)/t3 to the last display. For t < tα, by
Theorem 5, f(X(t))− f? is upper bounded by

(r − 1)2‖x0 − x?‖2

2t2
≤ (r − 1)2µ

α−2
2 [(α− 2)(2r − α)/(2µ)]

α−2
2

2

‖x0 − x?‖2

µ
α−2
2 tα

= O
(‖x0 − x?‖2

µ
α−2
2 tα

)
.

(27)

Next, suppose that the theorem is valid for some α̃ > 2. We show below that this
theorem is still valid for α := α̃ + 1 if still r ≥ 3α/2. By the assumption, (24) further
induces

E(t) ≤ E(tα) +
(α− 2)(2r − α)tα−2

4µ

C̃‖x0 − x?‖2

µ
α̃−2
2 tα̃

≤ E(tα) +
C̃(α− 2)(2r − α)‖x0 − x?‖2

4µ
α−1
2 tα

18
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for some constant C̃ only depending on α̃ and r. This inequality with (26) implies

E(t) ≤ (r − 1)2tα−2
α ‖x0 − x?‖2 +

(α− 2)2(r − 1)2‖x0 − x?‖2

4µt4−αα
+
C̃(α− 2)(2r − α)‖x0 − x?‖2

4µ
α−1
2 tα

= O
(
‖x0 − x?‖2/µ

α−2
2

)
,

which verify the induction for t ≥ tα. As for t < tα, the validity of the induction follows
from Theorem 5, similarly to (27). Thus, combining the base and induction steps, the proof
is completed.

It should be pointed out that the constant C in the statement of Theorem 8 grows with
the parameter r. Hence, simply increasing r does not guarantee to give a better error bound.
While it is desirable to expect a discrete analogy of Theorem 8, i.e., O(1/kα) convergence
rate for (19), a complete proof can be notoriously complicated. That said, we mimic the
proof of Theorem 8 for α = 3 and succeed in obtaining a O(1/k3) convergence rate for the
generalized Nesterov’s schemes, as summarized in the theorem below.

Theorem 9 Suppose f is written as f = g+h, where g ∈ Sµ,L and h is convex with possible
extended value ∞. Then, the generalized Nesterov’s scheme (19) with r ≥ 9/2 and s = 1/L
satisfies

f(xk)− f? ≤
CL‖x0 − x?‖2

k2

√
L/µ

k
,

where C only depends on r.

This theorem states that the discrete scheme (19) enjoys the error bound O(1/k3) with-
out any knowledge of the condition number L/µ. In particular, this bound is much better
than that given in Theorem 6 if k �

√
L/µ. The strategy of the proof is fully inspired by

that of Theorem 8, though it is much more complicated and thus deferred to the Appendix.
The relevant energy functional E(k) for this Theorem 9 is equal to

s(2k + 3r − 5)(2k + 2r − 5)(4k + 4r − 9)

16
(f(xk)− f?)

+
2k + 3r − 5

16
‖2(k + r − 1)yk − (2k + 1)xk − (2r − 3)x?‖2. (28)

4.4 Numerical Examples

We study six synthetic examples to compare (19) with the step sizes are fixed to be 1/L, as
illustrated in Figure 5. The error rates exhibits similar patterns for all r, namely, decreasing
while suffering from local bumps. A smaller r introduces less friction, thus allowing xk moves
towards x? faster in the beginning. However, when sufficiently close to x?, more friction
is preferred in order to reduce overshoot. This point of view explains what we observe in
these examples. That is, across these six examples, (19) with a smaller r performs slightly
better in the beginning, but a larger r has advantage when k is large. It is an interesting
question how to choose a good r for different problems in practice.

19



Su, Boyd and Candès

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iterations

f 
−

 f
*

 

 

r = 3

r = 4

r = 5

(a) Lasso with fat design.
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(b) Lasso with square design.
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(c) NLS with fat design.
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(d) NLS with square design.

iterations

0 20 40 60 80 100 120 140 160

f 
- 

f
*

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

r = 3

r = 4

r = 5

(e) Logistic regression.
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(f) `1-regularized logistic regression.

Figure 5: Comparisons of generalized Nesterov’s schemes with different r.

Lasso with fat design. Minimize f(x) = 1
2‖Ax − b‖

2 + λ‖x‖1, in which A a 100 × 500
random matrix with i.i.d. standard Gaussian N (0, 1) entries, b generated independently has
i.i.d. N (0, 25) entries, and the penalty λ = 4. The plot is Figure 5a.

Lasso with square design. Minimize f(x) = 1
2‖Ax − b‖

2 + λ‖x‖1, where A a 500 ×
500 random matrix with i.i.d. standard Gaussian entries, b generated independently has
i.i.d. N (0, 9) entries, and the penalty λ = 4. The plot is Figure 5b.

Nonnegative least squares (NLS) with fat design. Minimize f(x) = ‖Ax − b‖2
subject to x � 0, with the same design A and b as in Figure 5a. The plot is Figure 5c.
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Nonnegative least squares with sparse design. Minimize f(x) = ‖Ax− b‖2 subject
to x � 0, in which A is a 1000× 10000 sparse matrix with nonzero probability 10% for each
entry and b is given as b = Ax0 +N (0, I1000). The nonzero entries of A are independently
Gaussian distributed before column normalization, and x0 has 100 nonzero entries that are
all equal to 4. The plot is Figure 5d.

Logistic regression. Minimize
∑n

i=1−yiaTi x+ log(1 + ea
T
i x), in which A = (a1, . . . , an)T

is a 500× 100 matrix with i.i.d. N (0, 1) entries. The labels yi ∈ {0, 1} are generated by the

logistic model: P(Yi = 1) = 1/(1 + e−a
T
i x

0
), where x0 is a realization of i.i.d. N (0, 1/100).

The plot is Figure 5e.

`1-regularized logistic regression. Minimize
∑n

i=1−yiaTi x+ log(1 + ea
T
i x) + λ‖x‖1, in

which A = (a1, . . . , an)T is a 200 × 1000 matrix with i.i.d. N (0, 1) entries and λ = 5. The
labels yi are generated similarly as in the previous example, except for the ground truth x0

here having 10 nonzero components given as i.i.d. N (0, 225). The plot is Figure 5f.

5. Restarting

The example discussed in Section 4.2 demonstrates that Nesterov’s scheme and its gener-
alizations (19) are not capable of fully exploiting strong convexity. That is, this example
suggests evidence that O(1/poly(k)) is the best rate achievable under strong convexity. In
contrast, the vanilla gradient method achieves linear convergence O((1−µ/L)k). This draw-
back results from too much momentum introduced when the objective function is strongly
convex. The derivative of a strongly convex function is generally more reliable than that
of non-strongly convex functions. In the language of ODEs, at later stage a too small 3/t
in (3) leads to a lack of friction, resulting in unnecessary overshoot along the trajectory.

Incorporating the optimal momentum coefficient
√
L−√µ√
L+
√
µ

(This is less than (k − 1)/(k + 2)

when k is large), Nesterov’s scheme has convergence rate of O((1 −
√
µ/L)k) (Nesterov,

2004), which, however, requires knowledge of the condition number µ/L. While it is rel-
atively easy to bound the Lipschitz constant L by the use of backtracking, estimating the
strong convexity parameter µ, if not impossible, is very challenging.

Among many approaches to gain acceleration via adaptively estimating µ/L (see Nes-
terov, 2013), O’Donoghue and Candès (2013) proposes a procedure termed as gradient
restarting for Nesterov’s scheme in which (1) is restarted with x0 = y0 := xk whenever
f(xk+1) > f(xk). In the language of ODEs, this restarting essentially keeps 〈∇f, Ẋ〉 nega-
tive, and resets 3/t each time to prevent this coefficient from steadily decreasing along the
trajectory. Although it has been empirically observed that this method significantly boosts
convergence, there is no general theory characterizing the convergence rate.

In this section, we propose a new restarting scheme we call the speed restarting scheme.
The underlying motivation is to maintain a relatively high velocity Ẋ along the trajectory,
similar in spirit to the gradient restarting. Specifically, our main result, Theorem 10, ensures
linear convergence of the continuous version of the speed restarting. More generally, our
contribution here is merely to provide a framework for analyzing restarting schemes rather
than competing with other schemes; it is beyond the scope of this paper to get optimal
constants in these results. Throughout this section, we assume f ∈ Sµ,L for some 0 < µ ≤ L.
Recall that function f ∈ Sµ,L if f ∈ FL and f(x)− µ‖x‖2/2 is convex.
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5.1 A New Restarting Scheme

We first define the speed restarting time. For the ODE (3), we call

T = T (x0; f) = sup

{
t > 0 : ∀u ∈ (0, t),

d‖Ẋ(u)‖2

du
> 0

}

the speed restarting time. In words, T is the first time the velocity ‖Ẋ‖ decreases. Back to
the discrete scheme, it is the first time when we observe ‖xk+1 − xk‖ < ‖xk − xk−1‖. This
definition itself does not directly imply that 0 < T < ∞, which is proven later in Lemmas
13 and 25. Indeed, f(X(t)) is a decreasing function before time T ; for t ≤ T ,

df(X(t))

dt
= 〈∇f(X), Ẋ〉 = −3

t
‖Ẋ‖2 − 1

2

d‖Ẋ‖2

dt
≤ 0.

The speed restarted ODE is thus

Ẍ(t) +
3

tsr
Ẋ(t) +∇f(X(t)) = 0, (29)

where tsr is set to zero whenever 〈Ẋ, Ẍ〉 = 0 and between two consecutive restarts, tsr grows
just as t. That is, tsr = t − τ , where τ is the latest restart time. In particular, tsr = 0 at
t = 0. Letting Xsr be the solution to (29), we have the following observations.

• Xsr(t) is continuous for t ≥ 0, with Xsr(0) = x0;

• Xsr(t) satisfies (3) for 0 < t < T1 := T (x0; f).

• Recursively define Ti+1 = T
(
Xsr

(∑i
j=1 Tj

)
; f
)

for i ≥ 1, and X̃(t) := Xsr
(∑i

j=1 Tj + t
)

satisfies the ODE (3), with X̃(0) = Xsr
(∑i

j=1 Tj

)
, for 0 < t < Ti+1.

The theorem below guarantees linear convergence of Xsr. This is a new result in the
literature (O’Donoghue and Candès, 2013; Monteiro et al., 2012). The proof of Theorem 10
is based on Lemmas 12 and 13, where the first guarantees the rate f(Xsr)− f? decays by a
constant factor for each restarting, and the second confirms that restartings are adequate.
In these lemmas we all make a convention that the uninteresting case x0 = x? is excluded.

Theorem 10 There exist positive constants c1 and c2, which only depend on the condition
number L/µ, such that for any f ∈ Sµ,L, we have

f(Xsr(t))− f? ≤ c1L‖x0 − x?‖2

2
e−c2t

√
L.

Before turning to the proof, we make a remark that this linear convergence of Xsr

remains to hold for the generalized ODE (17) with r > 3. Only minor modifications in the
proof below are needed, such as replacing u3 by ur in the definition of I(t) in Lemma 25.
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5.2 Proof of Linear Convergence

First, we collect some useful estimates. Denote by M(t) the supremum of ‖Ẋ(u)‖/u over
u ∈ (0, t] and let

I(t) :=

∫ t

0
u3(∇f(X(u))−∇f(x0))du.

It is guaranteed that M defined above is finite, for example, see the proof of Lemma 18.
The definition of M gives a bound on the gradient of f ,

‖∇f(X(t))−∇f(x0)‖ ≤ L
∥∥∥∫ t

0
Ẋ(u)du

∥∥∥ ≤ L∫ t

0
u
‖Ẋ(u)‖

u
du ≤ LM(t)t2

2
.

Hence, it is easy to see that I can also be bounded via M ,

‖I(t)‖ ≤
∫ t

0
u3‖∇f(X(u))−∇f(x0)‖du ≤

∫ t

0

LM(u)u5

2
du ≤ LM(t)t6

12
.

To fully facilitate these estimates, we need the following lemma that gives an upper bound
of M , whose proof is deferred to the appendix.

Lemma 11 For t <
√

12/L, we have

M(t) ≤ ‖∇f(x0)‖
4(1− Lt2/12)

.

Next we give a lemma which claims that the objective function decays by a constant
through each speed restarting.

Lemma 12 There is a universal constant C > 0 such that

f(X(T ))− f? ≤
(

1− Cµ

L

)
(f(x0)− f?).

Proof By Lemma 11, for t <
√

12/L we have∥∥∥∥Ẋ(t) +
t

4
∇f(x0)

∥∥∥∥ =
1

t3
‖I(t)‖ ≤ LM(t)t3

12
≤ L‖∇f(x0)‖t3

48(1− Lt2/12)
,

which yields

0 ≤ t

4
‖∇f(x0)‖ − L‖∇f(x0)‖t3

48(1− Lt2/12)
≤ ‖Ẋ(t)‖ ≤ t

4
‖∇f(x0)‖+

L‖∇f(x0)‖t3

48(1− Lt2/12)
. (30)

Hence, for 0 < t < 4/(5
√
L) we get

df(X)

dt
= −3

t
‖Ẋ‖2 − 1

2

d

dt
‖Ẋ‖2 ≤ −3

t
‖Ẋ‖2

≤ −3

t

(
t

4
‖∇f(x0)‖ − L‖∇f(x0)‖t3

48(1− Lt2/12)

)2

≤ −C1t‖∇f(x0)‖2,
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where C1 > 0 is an absolute constant and the second inequality follows from Lemma 25 in
the appendix. Consequently,

f
(
X(4/(5

√
L))
)
− f(x0) ≤

∫ 4

5
√
L

0
−C1u‖∇f(x0)‖2du ≤ −Cµ

L
(f(x0)− f?),

where C = 16C1/25 and in the last inequality we use the µ-strong convexity of f . Thus we
have

f

(
X

(
4

5
√
L

))
− f? ≤

(
1− Cµ

L

)
(f(x0)− f?).

To complete the proof, note that f(X(T )) ≤ f(X(4/(5
√
L))) by Lemma 25.

With each restarting reducing the error f − f? by a constant a factor, we still need the
following lemma to ensure sufficiently many restartings.

Lemma 13 There is a universal constant C̃ such that

T ≤
4 exp

(
C̃L/µ

)
5
√
L

.

Proof For 4/(5
√
L) ≤ t ≤ T , we have df(X)

dt ≤ −3
t ‖Ẋ(t)‖2 ≤ −3

t ‖Ẋ(4/(5
√
L))‖2, which

implies

f(X(T ))− f(x0) ≤ −
∫ T

4

5
√
L

3

t
‖Ẋ(4/(5

√
L))‖2dt = −3‖Ẋ(4/(5

√
L))‖2 log

5T
√
L

4
.

Hence, we get an upper bound for T ,

T ≤ 4

5
√
L

exp
(f(x0)− f(X(T ))

3‖Ẋ(4/(5
√
L))‖2

)
≤ 4

5
√
L

exp
( f(x0)− f?

3‖Ẋ(4/(5
√
L))‖2

)
.

Plugging t = 4/(5
√
L) into (30) gives ‖Ẋ(4/(5

√
L))‖ ≥ C1√

L
‖∇f(x0)‖ for some universal

constant C1 > 0. Hence, from the last display we get

T ≤ 4

5
√
L

exp

(
L(f(x0)− f?)
3C2

1‖∇f(x0)‖2

)
≤ 4

5
√
L

exp
L

6C2
1µ
.

Now, we are ready to prove Theorem 10 by applying Lemmas 12 and 13.
Proof Note that Lemma 13 asserts, by time t at least m := b5t

√
Le−C̃L/µ/4c restartings

have occurred for Xsr. Hence, recursively applying Lemma 12, we have

f(Xsr(t))− f? ≤ f (Xsr(T1 + · · ·+ Tm))− f?

≤ (1− Cµ/L) (f (Xsr(T1 + · · ·+ Tm−1))− f?)
≤ · · · ≤ · · ·
≤ (1− Cµ/L)m(f(x0)− f?) ≤ e−Cµm/L(f(x0)− f?)

≤ c1e−c2t
√
L(f(x0)− f?) ≤ c1L‖x0 − x?‖2

2
e−c2t

√
L,
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where c1 = exp(Cµ/L) and c2 = 5Cµe−C̃µ/L/(4L).

In closing, we remark that we believe that estimate in Lemma 12 is tight, while not for
Lemma 13. Thus we conjecture that for a large class of f ∈ Sµ,L, if not all, T = O(

√
L/µ).

If this is true, the exponent constant c2 in Theorem 10 can be significantly improved.

5.3 Numerical Examples

Below we present a discrete analog to the restarted scheme. There, kmin is introduced to
avoid having consecutive restarts that are too close. To compare the performance of the
restarted scheme with the original (1), we conduct four simulation studies, including both
smooth and non-smooth objective functions. Note that the computational costs of the
restarted and non-restarted schemes are the same.

Algorithm 1 Speed Restarting Nesterov’s Scheme

input: x0 ∈ Rn, y0 = x0, x−1 = x0, 0 < s ≤ 1/L, kmax ∈ N+ and kmin ∈ N+

j ← 1
for k = 1 to kmax do
xk ← argminx( 1

2s‖x− yk−1 + s∇g(yk−1)‖2 + h(x))

yk ← xk + j−1
j+2(xk − xk−1)

if ‖xk − xk−1‖ < ‖xk−1 − xk−2‖ and j ≥ kmin then
j ← 1

else
j ← j + 1

end if
end for

Quadratic. f(x) = 1
2x

TAx+ bTx is a strongly convex function, in which A is a 500× 500
random positive definite matrix and b a random vector. The eigenvalues of A are between
0.001 and 1. The vector b is generated as i.i.d. Gaussian random variables with mean 0 and
variance 25.

Log-sum-exp.

f(x) = ρ log
[ m∑
i=1

exp((aTi x− bi)/ρ)
]
,

where n = 50,m = 200, ρ = 20. The matrix A = (aij) is a random matrix with i.i.d. stan-
dard Gaussian entries, and b = (bi) has i.i.d. Gaussian entries with mean 0 and variance 2.
This function is not strongly convex.

Matrix completion. f(X) = 1
2‖Xobs−Mobs‖2F +λ‖X‖∗, in which the ground truth M is

a rank-5 random matrix of size 300× 300. The regularization parameter is set to λ = 0.05.
The 5 singular values of M are 1, . . . , 5. The observed set is independently sampled among
the 300× 300 entries so that 10% of the entries are actually observed.

Lasso in `1–constrained form with large sparse design. f(x) = 1
2‖Ax−b‖

2 s.t. ‖x‖1 ≤
δ, where A is a 5000× 50000 random sparse matrix with nonzero probability 0.5% for each
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(c) min 1
2‖Xobs −Mobs‖2F + λ‖X‖∗.
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Figure 6: Numerical performance of speed restarting (srN), gradient restarting (grN), the
original Nesterov’s scheme (oN) and the proximal gradient (PG).
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entry and b is generated as b = Ax0 + z. The nonzero entries of A independently follow the
Gaussian distribution with mean 0 and variance 0.04. The signal x0 is a vector with 250
nonzeros and z is i.i.d. standard Gaussian noise. The parameter δ is set to ‖x0‖1.

Sorted `1 penalized estimation. f(x) = 1
2‖Ax−b‖

2 +
∑p

i=1 λi|x|(i), where |x|(1) ≥ · · · ≥
|x|(p) are the order statistics of |x|. This is a recently introduced testing and estimation
procedure (Bogdan et al., 2015). The design A is a 1000× 10000 Gaussian random matrix,
and b is generated as b = Ax0 + z for 20-sparse x0 and Gaussian noise z. The penalty
sequence is set to λi = 1.1Φ−1(1− 0.05i/(2p)).

Lasso. f(x) = 1
2‖Ax− b‖

2 +λ‖x‖1, where A is a 1000× 500 random matrix and b is given
as b = Ax0 + z for 20-sparse x0 and Gaussian noise z. We set λ = 1.5

√
2 log p.

`1-regularized logistic regression. f(x) =
∑n

i=1−yiaTi x+ log(1 + ea
T
i x) +λ‖x‖1, where

the setting is the same as in Figure 5f. The results are presented in Figure 6g.

Logistic regression with large sparse design. f(x) =
∑n

i=1−yiaTi x + log(1 + ea
T
i x),

in which A = (a1, . . . , an)T is a 107× 20000 sparse random matrix with nonzero probability
0.1% for each entry, so there are roughly 2× 108 nonzero entries in total. To generate the
labels y, we set x0 to be i.i.d. N (0, 1/4). The plot is Figure 6h.

In these examples, kmin is set to be 10 and the step sizes are fixed to be 1/L. If the
objective is in composite form, the Lipschitz bound applies to the smooth part. Figure 6
presents the performance of the speed restarting scheme, the gradient restarting scheme,
the original Nesterov’s scheme and the proximal gradient method. The objective functions
include strongly convex, non-strongly convex and non-smooth functions, violating the as-
sumptions in Theorem 10. Among all the examples, it is interesting to note that both speed
restarting scheme empirically exhibit linear convergence by significantly reducing bumps in
the objective values. This leaves us an open problem of whether there exists provable
linear convergence rate for the gradient restarting scheme as in Theorem 10. It is also
worth pointing out that compared with gradient restarting, the speed restarting scheme
empirically exhibits more stable linear convergence rate.

6. Discussion

This paper introduces a second-order ODE and accompanying tools for characterizing Nes-
terov’s accelerated gradient method. This ODE is applied to study variants of Nesterov’s
scheme and is capable of interpreting some empirically observed phenomena, such as oscil-
lations along the trajectories. Our approach suggests (1) a large family of generalized Nes-
terov’s schemes that are all guaranteed to converge at the rate O(1/k2), and (2) a restarting
scheme provably achieving a linear convergence rate whenever f is strongly convex.

In this paper, we often utilize ideas from continuous-time ODEs, and then apply these
ideas to discrete schemes. The translation, however, involves parameter tuning and tedious
calculations. This is the reason why a general theory mapping properties of ODEs into
corresponding properties for discrete updates would be a welcome advance. Indeed, this
would allow researchers to only study the simpler and more user-friendly ODEs.

As evidenced by many examples, the viewpoint of regarding the ODE as a surrogate
for Nesterov’s scheme would allow a new perspective for studying accelerated methods
in optimization. The discrete scheme and the ODE are closely connected by the exact
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mapping between the coefficients of momentum (e.g. (k−1)/(k+2)) and velocity (e.g. 3/t).
The derivations of generalized Nesterov’s schemes and the speed restarting scheme are
both motivated by trying a different velocity coefficient, in which the surprising phase
transition at 3 is observed. Clearly, such alternatives are endless, and we expect this will
lead to findings of many discrete accelerated schemes. In a different direction, a better
understanding of the trajectory of the ODEs, such as curvature, has the potential to be
helpful in deriving appropriate stopping criteria for termination, and choosing step size by
backtracking.
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Appendix A. Proof of Theorem 1

The proof is divided into two parts, namely, existence and uniqueness.

Lemma 14 For any f ∈ F∞ and any x0 ∈ Rn, the ODE (3) has at least one solution X
in C2(0,∞) ∩ C1[0,∞).

Below, some preparatory lemmas are given before turning to the proof of this lemma. To
begin with, for any δ > 0 consider the smoothed ODE

Ẍ +
3

max(δ, t)
Ẋ +∇f(X) = 0 (31)

with X(0) = x0, Ẋ(0) = 0. Denoting by Z = Ẋ, then (31) is equivalent to

d

dt

(
X
Z

)
=

(
Z

− 3
max(δ,t)Z −∇f(X)

)
with X(0) = x0, Z(0) = 0. As functions of (X,Z), both Z and −3Z/max(δ, t)−∇f(X)) are
max(1, L) + 3/δ-Lipschitz continuous. Hence by standard ODE theory, (31) has a unique
global solution in C2[0,∞), denoted by Xδ. Note that Ẍδ is also well defined at t = 0.
Next, introduce Mδ(t) to be the supremum of ‖Ẋδ(u)‖/u over u ∈ (0, t]. It is easy to see
that Mδ(t) is finite because ‖Ẋδ(u)‖/u = (‖Ẋδ(u)− Ẋδ(0)‖)/u = ‖Ẍδ(0)‖+ o(1) for small
u. We give an upper bound for Mδ(t) in the following lemma.

Lemma 15 For δ <
√

6/L, we have

Mδ(δ) ≤
‖∇f(x0)‖
1− Lδ2/6

.
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The proof of Lemma 15 relies on a simple lemma.

Lemma 16 For any u > 0, the following inequality holds

‖∇f(Xδ(u))−∇f(x0)‖ ≤ 1

2
LMδ(u)u2.

Proof By Lipschitz continuity,

‖∇f(Xδ(u))−∇f(x0)‖ ≤ L‖Xδ(u)−x0‖ =
∥∥∥∫ u

0
Ẋδ(v)dv

∥∥∥ ≤ ∫ u

0
v
‖Ẋδ(v)‖

v
dv ≤ 1

2
LMδ(u)u2.

Next, we prove Lemma 15.

Proof For 0 < t ≤ δ, the smoothed ODE takes the form

Ẍδ +
3

δ
Ẋδ +∇f(Xδ) = 0,

which yields

Ẋδe
3t/δ = −

∫ t

0
∇f(Xδ(u))e3u/δdu = −∇f(x0)

∫ t

0
e3u/δdu−

∫ t

0
(∇f(Xδ(u))−∇f(x0))e3u/δdu.

Hence, by Lemma 16

‖Ẋδ(t)‖
t

≤ 1

t
e−3t/δ‖∇f(x0)‖

∫ t

0
e3u/δdu+

1

t
e−3t/δ

∫ t

0

1

2
LMδ(u)u2e3u/δdu

≤ ‖∇f(x0)‖+
LMδ(δ)δ

2

6
.

Taking the supremum of ‖Ẋδ(t)‖/t over 0 < t ≤ δ and rearranging the inequality give the
desired result.

Next, we give an upper bound for Mδ(t) when t > δ.

Lemma 17 For δ <
√

6/L and δ < t <
√

12/L, we have

Mδ(t) ≤
(5− Lδ2/6)‖∇f(x0)‖

4(1− Lδ2/6)(1− Lt2/12)
.

Proof For t > δ, the smoothed ODE takes the form

Ẍδ +
3

t
Ẋδ +∇f(Xδ) = 0,

which is equivalent to

dt3Ẋδ(t)

dt
= −t3∇f(Xδ(t)).
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Hence, by integration, t3Ẋδ(t) is equal to

−
∫ t

δ
u3∇f(Xδ(u))du+δ3Ẋδ(δ) = −

∫ t

δ
u3∇f(x0)du−

∫ t

δ
u3(∇f(Xδ(u))−∇f(x0))du+δ3Ẋδ(δ).

Therefore by Lemmas 16 and 15, we get

‖Ẋδ(t)‖
t

≤ t4 − δ4

4t4
‖∇f(x0)‖+

1

t4

∫ t

δ

1

2
LMδ(u)u5du+

δ4

t4
‖Ẋδ(δ)‖

δ

≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

,

where the last expression is an increasing function of t. So for any δ < t′ < t, it follows that

‖Ẋδ(t
′)‖

t′
≤ 1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(x0)‖
1− Lδ2/6

,

which also holds for t′ ≤ δ. Taking the supremum over t′ ∈ (0, t) gives

Mδ(t) ≤
1

4
‖∇f(x0)‖+

1

12
LMδ(t)t

2 +
‖∇f(X0)‖
1− Lδ2/6

.

The desired result follows from rearranging the inequality.

Lemma 18 The function class F = {Xδ :
[
0,
√

6/L
]
→ Rn

∣∣δ =
√

3/L/2m,m = 0, 1, . . .}
is uniformly bounded and equicontinuous.

Proof By Lemmas 15 and 17, for any t ∈ [0,
√

6/L], δ ∈ (0,
√

3/L) the gradient is uniformly
bounded as

‖Ẋδ(t)‖ ≤
√

6/LMδ(
√

6/L) ≤
√

6/Lmax
{‖∇f(x0)‖

1− 1
2

,
5‖∇f(x0)‖

4(1− 1
2)(1− 1

2)

}
= 5
√

6/L‖∇f(x0)‖.

Thus it immediately implies that F is equicontinuous. To establish the uniform bounded-
ness, note that

‖Xδ(t)‖ ≤ ‖Xδ(0)‖+

∫ t

0
‖Ẋδ(u)‖du ≤ ‖x0‖+ 30‖∇f(x0)‖/L.

We are now ready for the proof of Lemma 14.
Proof By the Arzelá-Ascoli theorem and Lemma 18, F contains a subsequence converging
uniformly on [0,

√
6/L]. Denote by {Xδmi

}i∈N the convergent subsequence and X̆ the limit.

Above, δmi =
√

3/L/2mi decreases as i increases. We will prove that X̆ satisfies (3) and

the initial conditions X̆(0) = x0,
˙̆
X(0) = 0.
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Fix an arbitrary t0 ∈ (0,
√

6/L). Since ‖Ẋδmi
(t0)‖ is bounded, we can pick a subsequence

of Ẋδmi
(t0) which converges to a limit, denoted by XD

t0 . Without loss of generality, assume

the subsequence is the original sequence. Denote by X̃ the local solution to (3) with X(t0) =
X̆(t0) and Ẋ(t0) = XD

t0 . Now recall that Xδmi
is the solution to (3) with X(t0) = Xδmi

(t0)

and Ẋ(t0) = Ẋδmi
(t0) when δmi < t0. Since both Xδmi

(t0) and Ẋδmi
(t0) approach X̆(t0)

and XD
t0 , respectively, there exists ε0 > 0 such that

sup
t0−ε0<t<t0+ε0

‖Xδmi
(t)− X̃(t)‖ → 0

as i→∞. However, by definition we have

sup
t0−ε0<t<t0+ε0

‖Xδmi
(t)− X̆(t)‖ → 0.

Therefore X̆ and X̃ have to be identical on (t0−ε0, t0 +ε0). So X̆ satisfies (3) at t0. Since t0
is arbitrary, we conclude that X̆ is a solution to (3) on (0,

√
6/L). By extension, X̆ can be

a global solution to (3) on (0,∞). It only leaves to verify the initial conditions to complete
the proof.

The first condition X̆(0) = x0 is a direct consequence of Xδmi
(0) = x0. To check the

second, pick a small t > 0 and note that

‖X̆(t)− X̆(0)‖
t

= lim
i→∞

‖Xδmi
(t)−Xδmi

(0)‖
t

= lim
i→∞
‖Ẋδmi

(ξi)‖

≤ lim sup
i→∞

tMδmi
(t) ≤ 5t

√
6/L‖∇f(x0)‖,

where ξi ∈ (0, t) is given by the mean value theorem. The desired result follows from taking
t→ 0.

Next, we aim to prove the uniqueness of the solution to (3).

Lemma 19 For any f ∈ F∞, the ODE (3) has at most one local solution in a neighborhood
of t = 0.

Suppose on the contrary that there are two solutions, namely, X and Y , both defined on
(0, α) for some α > 0. Define M̃(t) to be the supremum of ‖Ẋ(u) − Ẏ (u)‖ over u ∈ [0, t).
To proceed, we need a simple auxiliary lemma.

Lemma 20 For any t ∈ (0, α), we have

‖∇f(X(t))−∇f(Y (t))‖ ≤ LtM̃(t).

Proof By Lipschitz continuity of the gradient, one has

‖∇f(X(t))−∇f(Y (t))‖ ≤ L‖X(t)− Y (t)‖ = L
∥∥∥∫ t

0
Ẋ(u)− Ẏ (u)du+X(0)− Y (0)

∥∥∥
≤ L

∫ t

0
‖Ẋ(u)− Ẏ (u)‖du ≤ LtM̃(t).
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Now we prove Lemma 19.
Proof Similar to the proof of Lemma 17, we get

t3(Ẋ(t)− Ẏ (t)) = −
∫ t

0
u3(∇f(X(u))−∇f(Y (u)))du.

Applying Lemma 20 gives

t3‖Ẋ(t)− Ẏ (t)‖ ≤
∫ t

0
Lu4M̃(u)du ≤ 1

5
Lt5M̃(t),

which can be simplified as ‖Ẋ(t)− Ẏ (t)‖ ≤ Lt2M̃(t)/5. Thus, for any t′ ≤ t it is true
that ‖Ẋ(t′)− Ẏ (t′)‖ ≤ Lt2M̃(t)/5. Taking the supremum of ‖Ẋ(t′)− Ẏ (t′)‖ over t′ ∈ (0, t)
gives M̃(t) ≤ Lt2M̃(t)/5. Therefore M̃(t) = 0 for t < min(α,

√
5/L), which is equivalent

to saying Ẋ = Ẏ on [0,min(α,
√

5/L)). With the same initial value X(0) = Y (0) = x0

and the same gradient, we conclude that X and Y are identical on (0,min(α,
√

5/L)), a
contradiction.

Given all of the aforementioned lemmas, Theorem 1 follows from a combination of
Lemmas 14 and 19.

Appendix B. Proof of Theorem 2

Identifying
√
s = ∆t, the comparison between (4) and (15) reveals that Nesterov’s scheme

is a discrete scheme for numerically integrating the ODE (3). However, its singularity of the
damping coefficient at t = 0 leads to the nonexistence of off-the-shelf ODE theory for proving
Theorem 2. To address this difficulty, we use the smoothed ODE (31) to approximate the
original one; then bound the difference between Nesterov’s scheme and the forward Euler
scheme of (31), which may take the following form:

Xδ
k+1 = Xδ

k + ∆tZδk

Zδk+1 =
(

1− 3∆t

max{δ, k∆t}

)
Zδk −∆t∇f(Xδ

k)
(32)

with Xδ
0 = x0 and Zδ0 = 0.

Lemma 21 With step size ∆t =
√
s, for any T > 0 we have

max
1≤k≤ T√

s

‖Xδ
k − xk‖ ≤ Cδ2 + os(1)

for some constant C.

Proof Let zk = (xk+1 − xk)/
√
s. Then Nesterov’s scheme is equivalent to

xk+1 = xk +
√
szk

zk+1 =
(

1− 3

k + 3

)
zk −

√
s∇f

(
xk +

2k + 3

k + 3

√
szk

)
.

(33)
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Denote by ak = ‖Xδ
k − xk‖, bk = ‖Zδk − zk‖, whose initial values are a0 = 0 and b0 =

‖∇f(x0)‖
√
s. The idea of this proof is to bound ak via simultaneously estimating ak and

bk. By comparing (32) and (33), we get the iterative relationship for ak: ak+1 ≤ ak +
√
sbk.

Denoting by Sk = b0 + b1 + · · ·+ bk, this yields

ak ≤
√
sSk−1. (34)

Similarly, for sufficiently small s we get

bk+1 ≤
∣∣∣1− 3

max{δ/
√
s, k}

∣∣∣bk + L
√
sak +

(∣∣∣ 3

k + 3
− 3

max{δ/
√
s, k}

∣∣∣+ 2Ls
)
‖zk‖

≤ bk + L
√
sak +

(∣∣∣ 3

k + 3
− 3

max{δ/
√
s, k}

∣∣∣+ 2Ls
)
‖zk‖.

To upper bound ‖zk‖, denoting by C1 the supremum of
√

2L(f(yk)− f?) over all k and s,
we have

‖zk‖ ≤
k − 1

k + 2
‖zk−1‖+

√
s‖∇f(yk)‖ ≤ ‖zk−1‖+ C1

√
s,

which gives ‖zk‖ ≤ C1(k + 1)
√
s. Hence,

(∣∣∣ 3

k + 3
− 3

max{δ/
√
s, k}

∣∣∣+ 2Ls
)
‖zk‖ ≤

{
C2
√
s, k ≤ δ√

s
C2
√
s

k < C2s
δ , k > δ√

s
.

Making use of (34) gives

bk+1 ≤

{
bk + LsSk−1 + C2

√
s, k ≤ δ/

√
s

bk + LsSk−1 + C2s
δ , k > δ/

√
s.

(35)

By induction on k, for k ≤ δ/
√
s it holds that

bk ≤
C1Ls+ C2 + (C1 + C2)

√
Ls

2
√
L

(1+
√
Ls)k−1−C1Ls+ C2 − (C1 + C2)

√
Ls

2
√
L

(1−
√
Ls)k−1.

Hence,

Sk ≤
C1Ls+ C2 + (C1 + C2)

√
Ls

2L
√
s

(1+
√
Ls)k+

C1Ls+ C2 − (C1 + C2)
√
Ls

2L
√
s

(1−
√
Ls)k− C2

L
√
s
.

Letting k? = bδ/
√
sc, we get

lim sup
s→0

√
sSk?−1 ≤

C2eδ
√
L + C2e−δ

√
L − 2C2

2L
= O(δ2),

which allows us to conclude that

ak ≤
√
sSk−1 = O(δ2) + os(1) (36)

for all k ≤ δ/
√
s.
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Next, we bound bk for k > k? = bδ/
√
sc. To this end, we consider the worst case of

(35), that is,

bk+1 = bk + LsSk−1 +
C2s

δ

for k > k? and Sk? = Sk?+1 = C3δ
2/
√
s + os(1/

√
s) for some sufficiently large C3. In this

case, C2s/δ < sSk−1 for sufficiently small s. Hence, the last display gives

bk+1 ≤ bk + (L+ 1)sSk−1.

By induction, we get

Sk ≤
C3δ

2/
√
s+ os(1/

√
s)

2

(
(1 +

√
(L+ 1)s)k−k

?
+ (1−

√
(L+ 1)s)k−k

?
)
.

Letting k� = bT/
√
sc, we further get

lim sup
s→0

√
sSk� ≤

C3δ
2(e(T−δ)

√
L+1 + e−(T−δ)

√
L+1)

2
= O(δ2),

which yields
ak ≤

√
sSk−1 = O(δ2) + os(1)

for k? < k ≤ k�. Last, combining (36) and the last display, we get the desired result.

Now we turn to the proof of Theorem 2.
Proof Note the triangular inequality

‖xk −X(k
√
s)‖ ≤ ‖xk −Xδ

k‖+ ‖Xδ
k −Xδ(k

√
s)‖+ ‖Xδ(k

√
s)−X(k

√
s)‖,

where Xδ(·) is the solution to the smoothed ODE (31). The proof of Lemma 14 implies
that, we can choose a sequence δm → 0 such that

sup
0≤t≤T

‖Xδm(t)−X(t)‖ → 0.

The second term ‖Xδm
k −Xδm(k

√
s)‖ will uniformly vanish as s → 0 and so does the first

term ‖xk −Xδm
k ‖ if first s→ 0 and then δm → 0. This completes the proof.

Appendix C. ODE for Composite Optimization

In analogy to (3) for smooth f in Section 2, we develop an ODE for composite optimization,

minimize f(x) = g(x) + h(x), (37)

where g ∈ FL and h is a general convex function possibly taking on the value +∞. Provided
it is easy to evaluate the proximal of h, Beck and Teboulle (2009) propose a proximal
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gradient version of Nesterov’s scheme for solving (37). It is to repeat the following recursion
for k ≥ 1,

xk = yk−1 − sGt(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1),

where the proximal subgradient Gs has been defined in Section 4.1. If the constant step
size s ≤ 1/L, it is guaranteed that (Beck and Teboulle, 2009)

f(xk)− f? ≤
2‖x0 − x?‖2

s(k + 1)2
,

which in fact is a special case of Theorem 6.
Compared to the smooth case, it is not as clear to define the driving force as ∇f in (3).

At first, it might be a good try to define

G(x) = lim
s→0

Gs(x) = lim
s→0

x− argminz
(
‖z − (x− s∇g(x))‖2/(2s) + h(z)

)
s

,

if it exists. However, as implied in the proof of Theorem 24 stated below, this definition fails
to capture the directional aspect of the subgradient. To this end, we define the subgradients
through the following lemma.

Lemma 22 (Rockafellar, 1997) For any convex function f and any x, p ∈ Rn, the direc-
tional derivative limt→0+(f(x+ sp)− f(x))/s exists, and can be evaluated as

lim
s→0+

f(x+ sp)− f(x)

s
= sup

ξ∈∂f(x)
〈ξ, p〉.

Note that the directional derivative is semilinear in p because

sup
ξ∈∂f(x)

〈ξ, cp〉 = c sup
ξ∈∂f(x)

〈ξ, p〉

for any c > 0.

Definition 23 A Borel measurable function G(x, p; f) defined on Rn × Rn is said to be a
directional subgradient of f if

G(x, p) ∈ ∂f(x),

〈G(x, p), p〉 = sup
ξ∈∂f(x)

〈ξ, p〉

for all x, p.

Convex functions are naturally locally Lipschitz, so ∂f(x) is compact for any x. Con-
sequently there exists ξ ∈ ∂f(x) which maximizes 〈ξ, p〉. So Lemma 22 guarantees the
existence of a directional subgradient. The function G is essentially a function defined on
Rn × Sn−1 in that we can define

G(x, p) = G(x, p/‖p‖),

and G(x, 0) to be any element in ∂f(x). Now we give the main theorem. However, note
that we do not guarantee the existence of solution to (38).
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Theorem 24 Given a convex function f(x) with directional subgradient G(x, p; f), assume
that the second order ODE

Ẍ +
3

t
Ẋ +G(X, Ẋ) = 0, X(0) = x0, Ẋ(0) = 0 (38)

admits a solution X(t) on [0, α) for some α > 0. Then for any 0 < t < α, we have

f(X(t))− f? ≤ 2‖x0 − x?‖22
t2

.

Proof It suffices to establish that E , first defined in the proof of Theorem 3, is monotonically
decreasing. The difficulty comes from that E may not be differentiable in this setting.
Instead, we study (E(t + ∆t) − E(t))/∆t for small ∆t > 0. In E , the second term 2‖X +
tẊ/2− x?‖2 is differentiable, with derivative 4〈X + t

2Ẋ − x
?, 3

2Ẋ + t
2Ẍ〉. Hence,

2‖X(t+ ∆t) +
t

2
Ẋ(t+ ∆t)− x?‖2 − 2‖X(t) +

t

2
Ẋ(t)− x?‖2

= 4〈X +
t

2
Ẋ − x?, 3

2
Ẋ +

t

2
Ẍ〉∆t+ o(∆t)

= −t2〈Ẋ,G(X, Ẋ)〉∆t− 2t〈X − x?, G(X, Ẋ)〉∆t+ o(∆t).

(39)

For the first term, note that

(t+ ∆t)2(f(X(t+ ∆t))− f?)− t2(f(X(t))− f?) = 2t(f(X(t+ ∆t))− f?)∆t+
t2(f(X(t+ ∆t))− f(X(t))) + o(∆t).

Since f is locally Lipschitz, o(∆t) term does not affect the function in the limit,

f(X(t+ ∆t)) = f(X + ∆tẊ + o(∆t)) = f(X + ∆tẊ) + o(∆t). (40)

By Lemma 22, we have the approximation

f(X + ∆tẊ) = f(X) + 〈Ẋ,G(X, Ẋ)〉∆t+ o(∆t). (41)

Combining all of (39), (40) and (41), we obtain

E(t+ ∆t)− E(t) = 2t(f(X(t+ ∆t))− f?)∆t+ t2〈Ẋ,G(X, Ẋ)〉∆t− t2〈Ẋ,G(X, Ẋ)〉∆t
−2t〈X − x?, G(X, Ẋ)〉∆t+ o(∆t)

= 2t(f(X)− f?)∆t− 2t〈X − x?, G(X, Ẋ)〉∆t+ o(∆t) ≤ o(∆t),

where the last inequality follows from the convexity of f . Thus,

lim sup
∆t→0+

E(t+ ∆t)− E(t)

∆t
≤ 0,

which along with the continuity of E , concludes that E(t) is a non-increasing function of t.
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We give a simple example as follows. Consider the Lasso problem

minimize
1

2
‖y −Ax‖2 + λ‖x‖1.

Any directional subgradients admits the form G(x, p) = −AT (y −Ax) + λ sgn(x, p), where

sgn(x, p)i =


sgn(xi), xi 6= 0

sgn(pi), xi = 0, pi 6= 0

∈ [−1, 1], xi = 0, pi = 0.

To encourage sparsity, for any index i with xi = 0, pi = 0, we let

G(x, p)i = sgn
(
ATi (Ax− y)

) (
|ATi (Ax− y)| − λ

)
+
.

Appendix D. Proof of Theorem 9

Proof Let g be µ–strongly convex and h be convex. For f = g+ h, we show that (22) can
be strengthened to

f(y − sGs(y)) ≤ f(x) +Gs(y)T (y − x)− s

2
‖Gs(y)‖2 − µ

2
‖y − x‖2. (42)

Summing (4k− 3)× (42) with x = xk−1, y = yk−1 and (4r− 6)× (42) with x = x?, y = yk−1

yields

(4k + 4r − 9)f(xk) ≤ (4k − 3)f(xk−1) + (4r − 6)f?

+Gs(yk−1)T [(4k + 4r − 9)yk−1 − (4k − 3)xk−1 − (4r − 6)x?]

− s(4k + 4r − 9)

2
‖Gs(yk−1)‖2 − µ(4k − 3)

2
‖yk−1 − xk−1‖2 − µ(2r − 3)‖yk−1 − x?‖2

≤ (4k − 3)f(xk−1) + (4r − 6)f? − µ(2r − 3)‖yk−1 − x?‖2

+Gs(yk−1)T [(4k + 4r − 9)(yk−1 − x?)− (4k − 3)(xk−1 − x?)] , (43)

which gives a lower bound on Gs(yk−1)T [(4k + 4r − 9)yk−1 − (4k − 3)xk−1 − (4r − 6)x?].
Denote by ∆k the second term of Ẽ(k) in (28), namely,

∆k ,
k + d

8
‖(2k + 2r − 2)(yk − x?)− (2k + 1)(xk − x?)‖2,
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where d := 3r/2− 5/2. Then by (43), we get

∆k−∆k−1 = −k + d

8

〈
s(2r+2k−5)Gs(yk−1)+

k − 2

k + r − 2
(xk−1−xk−2), (4k+4r−9)(yk−1−x?)

− (4k − 3)(xk−1 − x?)
〉

+
1

8
‖(2k + 2r − 4)(yk−1 − x?)− (2k − 1)(xk−1 − x?)‖2

≤ −s(k + d)(2k + 2r − 5)

8

[
(4k + 4r − 9)(f(xk)− f?)

− (4k − 3)(f(xk−1)− f?) + µ(2r − 3)‖yk−1 − x?‖2
]

− (k + d)(k − 2)

8(k + r − 2)
〈xk−1 − xk−2, (4k + 4r − 9)(yk−1 − x?)− (4k − 3)(xk−1 − x?)〉

+
1

8
‖2(k + r − 2)(yk−1 − x?)− (2k − 1)(xk−1 − x?)‖2.

Hence,

∆k +
s(k + d)(2k + 2r − 5)(4k + 4r − 9)

8
(f(xk)− f?)

≤ ∆k−1 +
s(k + d)(2k + 2r − 5)(4k − 3)

8
(f(xk−1)− f?)

− sµ(2r − 3)(k + d)(2k + 2r − 5)

8
‖yk−1 − x?‖2 + Π1 + Π2, (44)

where

Π1 , −(k + d)(k − 2)

8(k + r − 2)
〈xk−1 − xk−2, (4k + 4r − 9)(yk−1 − x?)− (4k − 3)(xk−1 − x?)〉,

Π2 ,
1

8
‖2(k + r − 2)(yk−1 − x?)− (2k − 1)(xk−1 − x?)‖2.

By the iterations defined in (19), one can show that

Π1 = −(2r − 3)(k + d)(k − 2)

8(k + r − 2)
(‖xk−1 − x?‖2 − ‖xk−2 − x?‖2)

− (k − 2)2(4k + 4r − 9)(k + d) + (2r − 3)(k − 2)(k + r − 2)(k + d)

8(k + r − 2)2
‖xk−1 − xk−2‖2,

Π2 =
(2r − 3)2

8
‖yk−1 − x?‖2 +

(2r − 3)(2k − 1)(k − 2)

8(k + r − 2)
(‖xk−1 − x?‖2 − ‖xk−2 − x?‖2)

+
(k − 2)2(2k − 1)(2k + 4r − 7) + (2r − 3)(2k − 1)(k − 2)(k + r − 2)

8(k + r − 2)2
‖xk−1 − xk−2‖2.

Although this is a little tedious, it is straightforward to check that (k−2)2(4k+4r−9)(k+d)+
(2r−3)(k−2)(k+r−2)(k+d) ≥ (k−2)2(2k−1)(2k+4r−7)+(2r−3)(2k−1)(k−2)(k+r−2)
for any k. Therefore, Π1 + Π2 is bounded as

Π1 +Π2 ≤
(2r − 3)2

8
‖yk−1−x?‖2 +

(2r − 3)(k − d− 1)(k − 2)

8(k + r − 2)
(‖xk−1−x?‖2−‖xk−2−x?‖2),

38



An ODE for Modeling Nesterov’s Scheme

which, together with the fact that sµ(2r − 3)(k + d)(2k + 2r − 5) ≥ (2r − 3)2 when k ≥√
(2r − 3)/(2sµ), reduces (44) to

∆k +
s(k + d)(2k + 2r − 5)(4k + 4r − 9)

8
(f(xk)− f?)

≤ ∆k−1 +
s(k + d)(2k + 2r − 5)(4k − 3)

8
(f(xk−1)− f?)

+
(2r − 3)(k − d− 1)(k − 2)

8(k + r − 2)
(‖xk−1 − x?‖2 − ‖xk−2 − x?‖2).

This can be further simplified as

Ẽ(k) +Ak(f(xk−1)− f?) ≤ Ẽ(k − 1) +Bk(‖xk−1 − x?‖2 − ‖xk−2 − x?‖2) (45)

for k ≥
√

(2r − 3)/(2sµ), where Ak = (8r− 36)k2 + (20r2 − 126r+ 200)k+ 12r3 − 100r2 +
288r − 281 > 0 since r ≥ 9/2 and Bk = (2r − 3)(k − d − 1)(k − 2)/(8(k + r − 2)). Denote
by k? = dmax{

√
(2r − 3)/(2sµ), 3r/2 − 3/2}e � 1/

√
sµ. Then Bk is a positive increasing

sequence if k > k?. Summing (45) from k to k? + 1, we obtain

E(k) +
k∑

i=k?+1

Ai(f(xi−1)− f?) ≤ E(k?) +
k∑

i=k?+1

Bi(‖xi−1 − x?‖2 − ‖xi−2 − x?‖2)

= E(k?) +Bk‖xk−1 − x?‖2 −Bk?+1‖xk?−1 − x?‖2 +

k−1∑
i=k?+1

(Bj −Bj+1)‖xj−1 − x?‖2

≤ E(k?) +Bk‖xk−1 − x?‖2.

Similarly, as in the proof of Theorem 8, we can bound E(k?) via another energy functional
defined from Theorem 5,

E(k?) ≤ s(2k? + 3r − 5)(k? + r − 2)2

2
(f(xk?)− f?)

+
2k? + 3r − 5

16
‖2(k? + r − 1)yk? − 2k?xk? − 2(r − 1)x? − (xk? − x?)‖2

≤ s(2k? + 3r − 5)(k? + r − 2)2

2
(f(xk?)− f?)

+
2k? + 3r − 5

8
‖2(k? + r − 1)yk? − 2k?xk? − 2(r − 1)x?‖2

+
2k? + 3r − 5

8
‖xk? − x?‖2 ≤

(r − 1)2(2k? + 3r − 5)

2
‖x0 − x?‖2

+
(r − 1)2(2k? + 3r − 5)

8sµ(k? + r − 2)2
‖x0 − x?‖2 .

‖x0 − x?‖2√
sµ

. (46)
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For the second term, it follows from Theorem 6 that

Bk‖xk−1 − x?‖2 ≤
(2r − 3)(2k − 3r + 3)(k − 2)

8µ(k + r − 2)
(f(xk−1)− x?)

≤ (2r − 3)(2k − 3r + 3)(k − 2)

8µ(k + r − 2)

(r − 1)2‖x0 − x?‖2

2s(k + r − 3)2

≤ (2r − 3)(r − 1)2(2k? − 3r + 3)(k? − 2)

16sµ(k? + r − 2)(k? + r − 3)2
‖x0 − x?‖2 .

‖x0 − x?‖2√
sµ

.

(47)

For k > k?, (46) together with (47) this gives

f(xk)− f? ≤
16E(k)

s(2k + 3r − 5)(2k + 2r − 5)(4k + 4r − 9)

≤ 16(E(k?) +Bk‖xk−1 − x?‖2)

s(2k + 3r − 5)(2k + 2r − 5)(4k + 4r − 9)
.
‖x0 − x?‖2

s
3
2µ

1
2k3

.

To conclusion, note that by Theorem 6 the gap f(xk)− f? for k ≤ k? is bounded by

(r − 1)2‖x0 − x?‖2

2s(k + r − 2)2
=

(r − 1)2√sµk3

2(k + r − 2)2

‖x0 − x?‖2

s
3
2µ

1
2k3

.
√
sµk?

‖x0 − x?‖2

s
3
2µ

1
2k3

.
‖x0 − x?‖2

s
3
2µ

1
2k3

.

Appendix E. Proof of Lemmas in Section 5

First, we prove Lemma 11.
Proof To begin with, note that the ODE (3) is equivalent to d(t3Ẋ(t))/dt = −t3∇f(X(t)),
which by integration leads to

t3Ẋ(t) = − t
4

4
∇f(x0)−

∫ t

0
u3(∇f(X(u))−∇f(x0))du = − t

4

4
∇f(x0)− I(t). (48)

Dividing (48) by t4 and applying the bound on I(t), we obtain

‖Ẋ(t)‖
t

≤ ‖∇f(x0)‖
4

+
‖I(t)‖
t4

≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
.

Note that the right-hand side of the last display is monotonically increasing in t. Hence, by
taking the supremum of the left-hand side over (0, t], we get

M(t) ≤ ‖∇f(x0)‖
4

+
LM(t)t2

12
,

which completes the proof by rearrangement.

Next, we prove the lemma used in the proof of Lemma 12.
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Lemma 25 The speed restarting time T satisfies

T (x0, f) ≥ 4

5
√
L
.

Proof The proof is based on studying 〈Ẋ(t), Ẍ(t)〉. Dividing (48) by t3, we get an expres-
sion for Ẋ,

Ẋ(t) = − t
4
∇f(x0)− 1

t3

∫ t

0
u3(∇f(X(u))−∇f(x0))du. (49)

Differentiating the above, we also obtain an expression for Ẍ:

Ẍ(t) = −∇f(X(t)) +
3

4
∇f(x0) +

3

t4

∫ t

0
u3(∇f(X(u))−∇f(x0))du. (50)

Using the two equations we can show that d‖Ẋ‖2/dt = 2〈Ẋ(t), Ẍ(t)〉 > 0 for 0 < t <
4/(5
√
L). Continue by observing that (49) and (50) yield

〈Ẋ(t), Ẍ(t)〉 =
〈
− t

4
∇f(x0)− 1

t3
I(t), −∇f(X(t)) +

3

4
∇f(x0) +

3

t4
I(t)

〉
≥ t

4
〈∇f(x0),∇f(X(t))〉 − 3t

16
‖∇f(x0)‖2 − 1

t3
‖I(t)‖

(
‖∇f(X(t))‖+

3

2
‖∇f(x0)‖

)
− 3

t7
‖I(t)‖2

≥ t

4
‖∇f(x0)‖2 − t

4
‖∇f(x0)‖‖∇f(X(t))−∇f(x0)‖ − 3t

16
‖∇f(x0)‖2

− LM(t)t3

12

(
‖∇f(X(t))−∇f(x0)‖+

5

2
‖∇f(x0)‖

)
− L2M(t)2t5

48

≥ t

16
‖∇f(x0)‖2 − LM(t)t3‖∇f(x0)‖

8
− LM(t)t3

12

(LM(t)t2

2
+

5

2
‖∇f(x0)‖

)
− L2M(t)2t5

48

=
t

16
‖∇f(x0)‖2 − LM(t)t3

3
‖∇f(x0)‖ − L2M(t)2t5

16
.

To complete the proof, applying Lemma 11, the last inequality yields

〈Ẋ(t), Ẍ(t)〉 ≥
( 1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2

)
‖∇f(x0)‖2t ≥ 0

for t < min{
√

12/L, 4/(5
√
L)} = 4/(5

√
L), where the positivity follows from

1

16
− Lt2

12(1− Lt2/12)
− L2t4

256(1− Lt2/12)2
> 0,

which is valid for 0 < t ≤ 4/(5
√
L).
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