
Journal of Machine Learning Research 17 (2016) 1-51 Submitted 3/15; Revised 2/16; Published 2/16

On Lower and Upper Bounds in Smooth and Strongly
Convex Optimization

Yossi Arjevani yossi.arjevani@weizmann.ac.il
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot 7610001, Israel

Shai Shalev-Shwartz shais@cs.huji.ac.il
School of Computer Science and Engineering
The Hebrew University
Givat Ram, Jerusalem 9190401, Israel

Ohad Shamir ohad.shamir@weizmann.ac.il

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science

Rehovot 7610001, Israel

Editor: Mark Schmidt

Abstract

We develop a novel framework to study smooth and strongly convex optimization algo-
rithms. Focusing on quadratic functions we are able to examine optimization algorithms
as a recursive application of linear operators. This, in turn, reveals a powerful connection
between a class of optimization algorithms and the analytic theory of polynomials whereby
new lower and upper bounds are derived. Whereas existing lower bounds for this setting
are only valid when the dimensionality scales with the number of iterations, our lower
bound holds in the natural regime where the dimensionality is fixed. Lastly, expressing
it as an optimal solution for the corresponding optimization problem over polynomials,
as formulated by our framework, we present a novel systematic derivation of Nesterov’s
well-known Accelerated Gradient Descent method. This rather natural interpretation of
AGD contrasts with earlier ones which lacked a simple, yet solid, motivation.

Keywords: smooth and strongly convex optimization, full gradient descent, accelerated
gradient descent, heavy ball method

1. Introduction

In the field of mathematical optimization one is interested in efficiently solving a minimiza-
tion problem of the form

min
x∈X

f(x), (1)

where the objective function f is some real-valued function defined over the constraints
set X. Many core problems in the field of Computer Science, Economic, and Operations
Research can be readily expressed in this form, rendering this minimization problem far-
reaching. That being said, in its full generality this problem is just too hard to solve or
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even to approximate. As a consequence, various structural assumptions on the objective
function and the constraints set, along with better-suited optimization algorithms, have
been proposed so as to make this problem viable.

One such case is smooth and strongly convex functions over some d-dimensional Eu-
clidean space1. Formally, we consider continuously differentiable f : Rd → R which are
L-smooth, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ Rd,

and µ-strongly convex, that is,

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
µ

2
‖y − x‖2 , ∀x,y ∈ Rd.

A wide range of applications together with very efficient solvers have made this family of
problems very important. Naturally, an interesting question arises: how fast can these kind
of problems be solved? better said, what is the computational complexity of minimizing
smooth and strongly-convex functions to a given degree of accuracy?2 Prior to answering
these, otherwise ill-defined, questions, one must first address the exact nature of the under-
lying computational model.

Although being a widely accepted computational model in the theoretical computer
sciences, the Turing Machine Model presents many obstacles when analyzing optimization
algorithms. In their seminal work, Nemirovsky and Yudin (1983) evaded some of these
difficulties by proposing the black box computational model, according to which informa-
tion regarding the objective function is acquired iteratively by querying an oracle. This
model does not impose any computational resource constraints3. Nemirovsky and Yudin
showed that for any optimization algorithm which employs a first-order oracle, i.e. receives
(f(x),∇f(x)) upon querying at a point x ∈ Rd, there exists an L-smooth µ-strongly convex
quadratic function f : Rd → R, such that for any ε > 0 the number of oracle calls needed
for obtaining an ε-optimal solution x̃, i.e.,

f(x̃) < min
x∈Rd

f(x) + ε, (2)

must satisfy

# Oracle Calls ≥ Ω̃
(
min

{
d,
√
κ ln(1/ε

})
, (3)

where κ
M
= L/µ denotes the so-called condition number.

1. More generally, one may consider smooth and strongly convex functions over some Hilbert space.
2. Natural as these questions might look today, matters were quite different only few decades ago. In his

book ‘Introduction to Optimization’ which dates back to 87’, Polyak B.T devotes a whole section as to:
‘Why Are Convergence Theorems Necessary?’ (See section 1.6.2 in Polyak (1987)).

3. In a sense, this model is dual to the Turing Machine model where all the information regarding the
parameters of the problem is available prior to the execution of the algorithm, but the computational
resources are limited in time and space.
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The result of Nemirovsky and Yudin can be seen as the starting point of the present
paper. The restricted validity of this lower bound to the first O(d) iterations is not a
mere artifact of the analysis. Indeed, from an information point of view, a minimizer of
any convex quadratic function can be found using no more than O(d) first-order queries.
Noticing that this bound is attained by the Conjugate Gradient Descent method (CGD, see
Polyak 1987), it seems that one cannot get a non-trivial lower bound once the number of
queries exceeds the dimension d. Moreover, a similar situation can be shown to occur for
more general classes of convex functions. However, the known algorithms which attain such
behavior (such as CGD and the center-of-gravity method, e.g., Nemirovski 2005) require
computationally intensive iterations, and are quite different than many common algorithms
used for large-scale optimization problems, such as gradient descent and its variants. Thus,
to capture the attainable performance of such algorithms, we must make additional assump-
tions on their structure. This can be made more solid using the following simple observation.

When applied on quadratic functions, the update rule of many optimization algorithms
reduces to a recursive application of a linear transformation which depends, possibly ran-
domly, on the previous p query points.

Indeed, the update rule of CGD for quadratic functions is non-stationary, i.e. uses a different
transformation at each iteration, as opposed to other optimization algorithms which utilize
less complex update rules such as: stationary updates rule, e.g., Gradient Descent, Accel-
erated Gradient Descent, Newton’s method (see Nesterov 2004), The Heavy Ball method
Polyak (1987), SDCA (see Shalev-Shwartz and Zhang 2013) and SAG (see Roux et al. 2012);
cyclic update rules, e.g,. SVRG (see Johnson and Zhang 2013); and piecewise-stationary
update rules, e.g., Accelerated SDCA. Inspired by this observation, in the present work we
explore the boundaries of optimization algorithms which admit stationary update rules. We
call such algorithms p-Stationary Canonical Linear Iterative optimization algorithms (abbr.
p-SCLI), where p designates the number of previous points which are necessary to generate
new points. The quantity p may be instructively interpreted as a limit on the amount of
memory at the algorithm’s disposal.

Similar to the analysis of power iteration methods, the convergence properties of such
algorithms are intimately related to the eigenvalues of the corresponding linear transfor-
mation. Specifically, as the convergence rate of a recursive application of a linear trans-
formation is essentially characterized by its largest magnitude eigenvalue, the asymptotic
convergence rate of p-SCLI algorithms can be bounded from above and from below by an-
alyzing the spectrum of the corresponding linear transformation. It should be noted that
the technique of linearizing iterative procedures and analyzing their convergence behavior
accordingly, which dates back to the pioneering work of the Russian mathematician Lya-
punov, has been successfully applied in the field of mathematical optimization many times,
e.g., Polyak (1987) and more recently Lessard et al. (2014). However, whereas previous
works were primarily concerned with deriving upper bounds on the magnitude of the cor-
responding eigenvalues, in this work our reference point is lower bounds.
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As eigenvalues are merely roots of characteristic polynomials4, our approach involves
establishing a lower bound on the maximal modulus (absolute value) of the roots of poly-
nomials. Clearly, in order to find a meaningful lower bound, one must first find a condition
which is satisfied by all characteristic polynomials that correspond to p-SCLIs. We show
that such condition does exist by proving that characteristic polynomials of consistent p-
SCLIs, which correctly minimize the function at hand, must have a specific evaluation at
λ = 1. This in turn allows us to analyze the convergence rate purely in terms of the analytic
theory of polynomials, i.e.,

Find min {ρ(q(z)) | q(z) is a real monic polynomial of degree p and q(1) = r} , (4)

where r ∈ R and ρ(q(z)) denotes the maximum modulus over all roots of q(z). Although
a vast range of techniques have been developed for bounding the moduli of roots of poly-
nomials (e.g., Marden 1966; Rahman and Schmeisser 2002; Milovanovic et al. 1994; Walsh
1922; Milovanović and Rassias 2000; Fell 1980), to the best of our knowledge, few of them
address lower bounds (see Higham and Tisseur 2003). Minimization problem (4) is also
strongly connected with the question of bounding the spectral radius of ‘generalized’ com-
panion matrices from below. Unfortunately, this topic too lacks an adequate coverage in
the literature (see Wolkowicz and Styan 1980; Zhong and Huang 2008; Horne 1997; Huang
and Wang 2007). Consequently, we devote part of this work to establish new tools for tack-
ling (4). It is noteworthy that these tools are developed by using elementary arguments.
This sharply contrasts with previously proof techniques used for deriving lower bounds on
the convergence rate of optimization algorithms which employed heavy machinery from the
field of extremal polynomials, such as Chebyshev polynomials (e.g., Mason and Handscomb
2002).

Based on the technique described above we present a novel lower bound on the conver-
gence rate of p-SCLI optimization algorithms. More formally, we prove that any p-SCLI
optimization algorithm over Rd, whose iterations can be executed efficiently, requires

#Oracle Calls ≥ Ω̃
(
p
√
κ ln(1/ε)

)
(5)

in order to obtain an ε-optimal solution, regardless of the dimension of the problem. This
result partially complements the lower bound presented earlier in Inequality (3). More
specifically, for p = 1, we show that the runtime of algorithms whose update rules do not
depend on previous points (e.g. Gradient Descent) and can be computed efficiently scales
linearly with the condition number. For p = 2, we get the optimal result for smooth and
strongly convex functions. For p > 2, this lower bound is clearly weaker than the lower
bound shown in (3) at the first d iterations. However, we show that it can be indeed at-
tained by p-SCLI schemes, some of which can be executed efficiently for certain classes of
quadratic functions. Finally, we believe that a more refined analysis of problem (4) would
show that this technique is powerful enough to meet the classical lower bound

√
κ for any

p, in the worst-case over all quadratic problems.

4. In fact, we will use a polynomial matrix analogous of characteristic polynomials which will turns out to
be more useful for our purposes.
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The last part of this work concerns a cornerstone in the field of mathematical optimiza-
tion, i.e., Nesterov’s well-known Accelerated Gradient Descent method (AGD). Prior to the
work of Nemirovsky and Yudin, it was known that full Gradient Descent (FGD) obtains an
ε-optimal solution by issuing no more than

O(κ ln(1/ε))

first-order queries. The gap between this upper bound and the lower bound shown in (3)
has intrigued many researchers in the field. Eventually, it was this line of inquiry that led to
the discovery of AGD by Nesterov (see Nesterov 1983), a slight modification of the standard
GD algorithm, whose iteration complexity is

O
(√
κ ln(1/ε)

)
.

Unfortunately, AGD lacks the strong geometrical intuition which accompanies many opti-
mization algorithms, such as FGD and the Heavy Ball method. Primarily based on sophis-
ticated algebraic manipulations, its proof strives for a more intuitive derivation (e.g. Beck
and Teboulle 2009; Baes 2009; Tseng 2008; Sutskever et al. 2013; Allen-Zhu and Orecchia
2014). This downside has rendered the generalization of AGD to different optimization
scenarios, such as constrained optimization problems, a highly non-trivial task which up
to the present time does not admit a complete satisfactory solution. Surprisingly enough,
by designing optimization algorithms whose characteristic polynomials are optimal with re-
spect to a constrained version of (4), we have uncovered a novel simple derivation of AGD.
This reformulation as an optimal solution for a constrained optimization problem over poly-
nomials, shows that AGD and the Heavy Ball are essentially two sides of the same coin.

To summarize, our main contributions, in order of appearance, are the following:

• We define a class of algorithms (p-SCLI) in terms of linear operations on the last p
iterations, and show that they subsume some of the most interesting algorithms used
in practice.

• We prove that any p-SCLI optimization algorithm must use at least

Ω̃
(
p
√
κ ln(1/ε)

)
iterations in order to obtain an ε-optimal solution. As mentioned earlier, unlike ex-
isting lower bounds, our bound holds for every fixed dimensionality.

• We show that there exist matching p-SCLI optimization algorithms which attain the
convergence rates stated above for all p. Alas, for p ≥ 3, an expensive pre-calculation
task renders these algorithms inefficient.

• As a result, we focus on a restricted subclass of p-SCLI optimization algorithms which
can be executed efficiently. This yields a novel systematic derivation of Full Gradi-
ent Descent, Accelerated Gradient Descent, The Heavy-Ball method (and potentially
other efficient optimization algorithms), each of which corresponds to an optimal so-
lution of optimization problems on the moduli of polynomials’ roots.

5



Arjevani, Shalev-Shwartz and Shamir

• We present new schemes which offer better utilization of second-order information
by exploiting breaches in existing lower bounds. This leads to a new optimization
algorithm which obtains a rate of 3

√
κ ln(1/ε) in the presence of large enough spectral

gaps.

1.1 Notation

We denote scalars with lower case letters and vectors with bold face letters. We use R++

to denote the set of all positive real numbers. All functions in this paper are defined over
Euclidean spaces equipped with the standard Euclidean norm and all matrix-norms are
assumed to denote the spectral norm.

We denote a block-diagonal matrix whose blocks are A1, . . . , Ak by the conventional
direct sum notation, i.e., ⊕ki=1Ak. We devote a special operator symbol for scalar matrices
Diag (a1, . . . , ad) = ⊕di=1ai. The spectrum of a square matrix A and its spectral radius,
the maximum magnitude over its eigenvalues, are denoted by σ(A) and ρ(A), respectively.
Recall that the eigenvalues of a square matrix A ∈ Rd×d are exactly the roots of the
characteristic polynomial which is defined as follows

χA(λ) = det(A− λId),

where Id denotes the identity matrix. Since polynomials in this paper have their origins as
characteristic polynomials of some square matrices, by a slight abuse of notation, we will
denote the roots of a polynomial q(z) and its root radius, the maximum modulus over its
roots, by σ(q(z)) and ρ(q(z)), respectively, as well.

The following notation for quadratic functions and matrices will be of frequent use,

Sd(Σ)
M
=
{
A ∈ Rd×d

∣∣∣A is symmetric and σ(A) ⊆ Σ
}
,

Qd(Σ)
M
= {fA,b(x)

∣∣∣ A ∈ Sd(Σ) ,b ∈ Rd
}
,

where Σ denotes a non-empty set of positive reals, and where fA,b(x) denotes the following
quadratic function

fA,b(x)
M
=

1

2
x>Ax + b>x, A ∈ Sd(Σ) .

2. Framework

In the sequel we establish our framework for analyzing optimization algorithms for mini-
mizing smooth and strongly convex functions. First, to motivate this technique, we show
that the analysis of SDCA presented in Shalev-Shwartz and Zhang (2013) is tight by us-
ing a similar method. Next, we lay the foundations of the framework by generalizing and
formalizing various aspects of the SDCA case. We then examine some popular optimiza-
tion algorithms through this formulation. Apart from setting the boundaries for this work,
this inspection gives rise to, otherwise subtle, distinctions between different optimization
algorithms. Lastly, we discuss the computational complexity of p-SCLIs, as well as their
convergence properties.
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2.1 Case Study - Stochastic Dual Coordinate Ascent

We consider the optimization algorithm Stochastic Dual Coordinates Ascent (SDCA5) for
solving Regularized Loss Minimization (RLM) problems (6), which are of great significance
for the field of Machine Learning. It is shown that applying SDCA on quadratic loss func-
tions allows one to reformulate it as a recursive application of linear transformations. The
relative simplicity of such processes is then exploited to derive a lower bound on the con-
vergence rate.

A smooth-RLM problem is an optimization task of the following form:

min
w∈Rd

P (w)
M
=

1

n

n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2 , (6)

where φi are 1/γ-smooth and convex, x1, . . . ,xn are vectors in Rd and λ is a positive con-
stant. For ease of presentation, we further assume that φi are non-negative, φi(0) ≤ 1 and
‖xi‖ ≤ 1 for all i.

The optimization algorithm SDCA works by minimizing an equivalent optimization
problem

min
α∈Rn

D(α)
M
=

1

n

n∑
i=1

φ?i (αi) +
1

2λn2

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

,

where φ? denotes the Fenchel conjugate of φ, by repeatedly picking z ∼ U([n]) uniformly
and minimizing D(α) over the z’th coordinate. The latter optimization problem is referred
to as the dual problem, while the problem presented in (6) is called the primal problem. As
shown in Shalev-Shwartz and Zhang (2013), it is possible to convert a high quality solution
of the dual problem into a high quality solution of the primal problem. This allows one
to bound from above the number of iterations required for obtaining a prescribed level of
accuracy ε > 0 by

Õ
((

n+
1

λγ

)
ln(1/ε)

)
.

We now show that this analysis is indeed tight. First, let us define the following 2-smooth
functions:

φi(y) = y2, i = 1, . . . , n

and let us define x1 = x2 = · · · = xn = 1√
n
1. This yields

D(α) =
1

2
α>
(

1

2n
I +

1

λn2
11
>
)
α. (7)

5. For a detailed analysis of SDCA, please refer to Shalev-Shwartz and Zhang 2013.
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Clearly, the unique minimizer of D(α) is α∗
M
= 0. Now, given i ∈ [n] and α ∈ Rn, it is easy

to verify that

argmin
α′∈R

D(α1, . . . , αi−1, α
′, αi+1, . . . , αn) =

−2

2 + λn

∑
j 6=i

αj . (8)

Thus, the next test point α+, generated by taking a step along the i’th coordinate, is a
linear transformation of the previous point, i.e.,

α+ =
(
I − eiu

>
i

)
α, (9)

where

u>i
M
=

 2

2 + λn
, . . . ,

2

2 + λn
, 1︸︷︷︸
i’s entry

,
2

2 + λn
, . . . ,

2

2 + λn

 .

Let αk, k = 1, . . . ,K denote the k’th test point. The sequence of points (αk)Kk=1 is ran-
domly generated by minimizing D(α) over the zi’th coordinate at the i’th iteration, where
z1, z2, . . . , zK ∼ U([n]) is a sequence of K uniform distributed i.i.d random variables. Ap-
plying (9) over and over again starting from some initialization point α0 we obtain

αk =
(
I − ezKu>zK

)(
I − ezK−1u

>
zK−1

)
· · ·
(
I − ez1u

>
z1

)
α0.

To compute E[αK ] note that by the i.i.d hypothesis and by the linearity of the expectation
operator,

E
[
αK
]

= E
[(
I − ezKu>zK

)(
I − ezK−1u

>
zK−1

)
· · ·
(
I − ez1u

>
z1

)
α0
]

= E
[(
I − ezKu>zK

)]
E
[(
I − ezK−1u

>
zK−1

)]
· · ·E

[(
I − ez1u

>
z1

)]
α0

= E
[(
I − ezu

>
z

)]K
α0. (10)

The convergence rate of the latter is governed by the spectral radius of

E
M
= E

[
I − ezu

>
z

]
.

A straightforward calculation shows that the eigenvalues of E, ordered by magnitude, are

1− 1

2/λ+ n
, . . . , 1− 1

2/λ+ n︸ ︷︷ ︸
n−1 times

, 1− 2 + λ

2 + λn
. (11)

By choosing α0 to be the following normalized eigenvector which corresponds to the largest
eigenvalue

α0 =

(
1√
2
,− 1√

2
, 0, . . . , 0

)
,
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and plugging it into Equation (10), we can now bound from below the distance of E[αK ]
to the optimal point α∗ = 0,

∥∥E [αK
]
−α∗

∥∥ =

∥∥∥∥E [(I − ezu
>
z

)]K
α0

∥∥∥∥
=

(
1− 1

2/λ+ n

)K ∥∥α0
∥∥

=

(
1− 2

(4/λ+ 2n− 1) + 1

)K
≥
(

exp

(
−1

2/λ+ n− 1

))K
,

where the last inequality is due to the following inequality,

1− 2

x+ 1
≥ exp

(
−2

x− 1

)
, ∀x ≥ 1. (12)

We see that the minimal number of iterations required for obtaining a solution whose
distance from the α∗ is less than ε > 0 must be greater than

(2/λ+ n− 1) ln (1/ε) ,

thus showing that, up to logarithmic factors, the analysis of the convergence rate of SDCA
is tight.

2.2 Definitions

In the sequel we introduce the framework of p-SCLI optimization algorithms which gener-
alizes the analysis shown in the preceding section.

We denote the set of d × d symmetric matrices whose spectrum lies in Σ ⊆ R++ by
Sd(Σ) and denote the following set of quadratic functions

fA,b(x)
M
=

1

2
x>Ax + b>x, A ∈ Sd(Σ) ,

by Qd(Σ). Note that since twice continuous differentiable functions f(x) are L-smooth and
µ-strongly convex if and only if

σ
(
∇2(f(x))

)
⊆ [µ,L] ⊆ R++, x ∈ Rd,

we have that Qd([µ,L]) comprises L-smooth µ-strongly convex quadratic functions. Thus,
any optimization algorithm designed for minimizing smooth and strongly convex functions
can be used to minimize functions in Qd([µ,L]). The key observation here is that since the
gradient of fA,b(x) is linear in x, when applied to quadratic functions, the update rules of
many optimization algorithms also become linear in x. This formalizes as follows.
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Definition 1 (p-SCLI optimization algorithms) An optimization algorithm A is called
a p-stationary canonical linear iterative (abbr. p-SCLI) optimization algorithm over Rd if
there exist p + 1 mappings C0(X), C1(X), . . . , Cp−1(X), N(X) from Rd×d to Rd×d-valued
random variables, such that for any fA,b(x) ∈ Qd(Σ) the corresponding initialization and
update rules take the following form:

x0,x1, . . . ,xp−1 ∈ Rd (13)

xk =

p−1∑
j=0

Cj(A)xk−p+j +N(A)b, k = p, p+ 1, . . . (14)

We further assume that in each iteration Cj(A) and N(A) are drawn independently of
previous realizations6, and that ECi(A) are finite and simultaneously triangularizable7.

Let us introduce a few more definitions and terminology which will be used throughout
this paper. The number of previous points p by which new points are generated is called the
lifting factor. The matrix-valued random variables C0(X), C1(X), . . . , Cp−1(X) and N(X)
are called coefficient matrices and inversion matrix, respectively. The term inversion ma-
trix refers to the mapping N(X), as well as to a concrete evaluation of it. It will be clear
from the context which interpretation is being used. The same holds for coefficient matrices.

As demonstrated by the following definition, coefficients matrices of p-SCLIs can be
equivalently described in terms of polynomial matrices8. This correspondence will soon
play a pivotal role in the analysis of p-SCLIs.

Definition 2 The characteristic polynomial of a given p-SCLI optimization algorithm A is
defined by

LA(λ,X)
M
= Idλ

p −
p−1∑
j=0

ECj(X)λj , (15)

where Cj(X) denote the coefficient matrices. Moreover, given X ∈ Rd×d we define the root
radius of LA(λ,X) by

ρλ(LA(λ,X)) = ρ(detLA(λ,X)) = max
{
|λ′|

∣∣ detLA(λ′, X) = 0
}
.

For the sake of brevity, we sometimes specify a given p-SCLI optimization algorithm A
using an ordered pair of a characteristic polynomial and an inversion matrix as follows

A M
= (LA(λ,X), N(X)).

Furthermore, we may omit the subscript A, when it is clear from the context.

6. We shall refer to this assumption as stationarity.
7. Intuitively, having this technical requirement is somewhat similar to assuming that the coefficients ma-

trices commute (see Drazin et al. 1951 for a precise statement), and as such does not seem to restrict the
scope of this work. Indeed, it is common to have ECi(A) as polynomials in A or as diagonal matrices,
in which case the assumption holds true.

8. For a detailed cover of polynomial matrices see Gohberg et al. (2009).
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Lastly, note that nowhere in the definition of p-SCLIs did we assume that the optimiza-
tion process converges to the minimizer of the function under consideration - an assumption
which we refer to as consistency.

Definition 3 (Consistency of p-SCLI optimization algorithms) A p-SCLI optimiza-
tion algorithm A is said to be consistent with respect to a given A ∈ Sd(Σ) if for any b ∈ Rd,
A converges to the minimizer of fA,b(x), regardless of the initialization point. That is, for(
xk
)∞
k=1

as defined in (13,14) we have that

xk → −A−1b,

for any b ∈ Rd. Furthermore, if A is consistent with respect to all A ∈ Sd(Σ), then we say
that A is consistent with respect to Qd(Σ).

2.3 Specifications for Some Popular Optimization Algorithms

Having defined the framework of p-SCLI optimization algorithms, a natural question now
arises: how broad is the scope of this framework and what does characterize optimization
algorithms which it applies to? Loosely speaking, any optimization algorithm whose update
rules depend linearly on the first and the second order derivatives of the function under con-
sideration is eligible for this framework. Instead of providing a precise characterization for
such algorithms, we apply various popular optimization algorithms on a general quadratic
function fA,b(x) ∈ Qd([µ,L]) and then express them as p-SCLI optimization algorithms.

Full Gradient Descent (FGD) is a 1-SCLI optimization algorithm with

x0 ∈ Rd,
xk+1 = xk − β∇f(xk) = xk − β(Axk + b) = (I − βA)xk − βb,

β =
2

µ+ L
.

See Nesterov (2004) for more details.

Newton method is a 0-SCLI optimization algorithm with

x0 ∈ Rd,
xk+1 = xk − (∇2f(xk))−1∇f(xk) = xk −A−1(Axk + b)

= (I −A−1A)xk −A−1b = −A−1b.

Note that Newton method can be also formulated as a degenerate p-SCLI for some
p ∈ N, whose coefficients matrices vanish. See Nesterov (2004) for more details.
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The Heavy Ball Method is a 2-SCLI optimization algorithm with

xk+1 = xk − α∇f(xk) + β(xk − xk−1)

= xk − α(Axk + b) + β(xk − xk−1)

= ((1 + β)I − αA) xk − βIxk−1 − αb,

α =
4(√

L+
√
µ
)2 , β =

(√
L−√µ
√
L+
√
µ

)2

.

See Polyak (1987) for more details.

Accelerated Gradient Descent (AGD) is a 2-SCLI optimization algorithm with

x0 = y0 ∈ Rd,

yk+1 = xk − 1

L
∇f(xk),

xk+1 = (1 + α) yk+1 − αyk,

α =

√
L−√µ
√
L+
√
µ
,

which can be rewritten as follows:

x0 ∈ Rd,

xk+1 = (1 + α)

(
xk − 1

L
∇f(xk)

)
− α

(
xk−1 − 1

L
∇f(xk−1)

)
= (1 + α)

(
xk − 1

L
(Axk + b)

)
− α

(
xk−1 − 1

L
(Axk−1 + b)

)
= (1 + α)

(
I − 1

L
A

)
xk − α

(
I − 1

L
A

)
xk−1 − 1

L
b.

Note that here we employ a stationary variant of AGD. See Nesterov (2004) for more
details.

Stochastic Coordinate Descent (SCD) is a 1-SCLI optimization algorithm. This is a
generalization of the example shown in Section 2.1. SCD acts by repeatedly minimiz-
ing a uniformly randomly drawn coordinate in each iteration. That is,

x0 ∈ Rd,

Pick i ∼ U([d]) and set xk+1 =

(
I − 1

Ai,i
eia
>
i,?

)
xk − bi

Ai,i
ei,

where a>i,? denotes the i’th row of A and b
M
= (b1, b2, . . . , bd). Note that the expected

update rule of this method is equivalent to the well-known Jacobi’s iterative method.

We now describe some popular optimization algorithms which do not fit this framework,
mainly because the stationarity requirement fails to hold. The extension of this framework
to cyclic and piecewise stationary optimization algorithms is left to future work.

12
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Conjugate Gradient Descent (CGD) can be expressed as a non-stationary iterative
method

xk+1 = ((1 + βk)I − αkA) xk − βkIxk−1 − αkb,

where αk and βk are computed at each iteration based on xk,xk−1, A and b. Note
the similarity of CGD and the heavy ball method. See Polyak (1987); Nemirovski
(2005) for more details. In the context of this framework, CGD forms the ‘most non-
stationary’ kind of method in that its coefficients αk, βk are highly dependent on time
and the function at hand.

Stochastic Gradient Descent (SGD) A straightforward extension of the deterministic
FGD. Specifically, let (Ω,F ,P) be a probability space and let G(x, ω) : Rd ×Ω→ Rd
be an unbiased estimator of ∇f(x) for any x. That is,

E[G(x, ω)] = ∇f(x) = Ax + b, x ∈ Rd.

Equivalently, define e(x, ω) = G(x, ω)− (Ax + b) and assume E[e(x, ω)] = 0, x ∈ Rd.
SGD may be defined using a suitable sequence of step sizes (γi)

∞
i=1 as follows:

Generate ωk randomly and set xk+1 = xk − γiG(xk, ωk)

= (I − γiA) xk − γib− γie(x, ω).

Clearly, some types of noise may not form a p-SCLI optimization algorithm. However,
for some instances, e.g., quadratic learning problems, we have

e(x, ω) = Aωx + bω,

such that

E[Aω] = 0, E[bω] = 0.

If, in addition, the step size is fixed then we get a 1-SCLI optimization algorithm. See
Kushner and Yin (2003); Spall (2005); Nemirovski (2005) for more details.

2.4 Computational Complexity

The stationarity property of general p-SCLIs optimization algorithms implies that the com-
putational cost of minimizing a given quadratic function fA,b(x), assuming Θ (1) cost for
all arithmetic operations, is

# Iterations ×


Generating coefficient and inversion matrices randomly

+

Executing update rule (14) based on the previous p points

The computational cost of the execution of update rule (14) scales quadratically with d,
the dimension of the problem, and linearly with p, the lifting factor. Thus, the running
time of p-SCLIs is mainly affected by the iterations number and the computational cost of

13
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randomly generating coefficient and inversion matrices each time. Notice that for determin-
istic p-SCLIs one can save running time by computing the coefficient and inversion matrices
once, prior to the execution of the algorithm. Not surprisingly, but interesting nonethe-
less, there is a law of conservation which governs the total amount of computational cost
invested in both factors: the more demanding is the task of randomly generating coefficient
and inversion matrices, the less is the total number of iterations required for obtaining a
given level of accuracy, and vice versa. Before we can make this statement more rigorous,
we need to present a few more facts about p-SCLIs. For the time being, let us focus on
the iteration complexity, i.e., the total number iterations, which forms our analogy for black
box complexity.

The iteration complexity of a p-SCLI optimization algorithm A with respect to an ac-
curacy level ε, initialization points X 0 and a quadratic function fA,b(x), symbolized by

ICA
(
ε, fA,b(x),X 0

)
,

is defined to be the minimal number of iterations K such that∥∥∥E[xk − x∗]
∥∥∥ < ε, ∀k ≥ K,

where x∗ = −A−1b is the minimizer of fA,b(x), assuming A is initialized at X 0. We would
like to point out that although iteration complexity is usually measured through

E
∥∥∥xk − x∗

∥∥∥ ,
here we employ a different definition. We will discuss this issue shortly.

In addition to showing that the iteration complexity of p-SCLI algorithms scales log-
arithmically with 1/ε, the following theorem provides a characterization for the iteration
complexity in terms of the root radius of the characteristic polynomial.

Theorem 4 Let A be a p-SCLI optimization algorithm over Rd and let fA,b(x) ∈ Qd(Σ) , (Σ ⊆
R++) be a quadratic function. Then, there exists X 0 ∈ (Rd)p such that

ICA
(
ε, fA,b(x),X 0

)
= Ω̃

(
ρ

1− ρ
ln(1/ε)

)
,

and for all X 0 ∈ (Rd)p, it holds that

ICA
(
ε, fA,b(x),X 0

)
= Õ

(
1

1− ρ
ln(1/ε)

)
,

where ρ denotes the root radius of the characteristic polynomial evaluated at X = A.

The full proof for this theorem is somewhat long and thus provided in Section C.1.
Nevertheless, the intuition behind it is very simple and may be sketched as follows:

14
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• First, we express update rule (14) as a single step rule by introducing new variables
in some possibly higher-dimensional Euclidean space (Rd)p,

z0 =
(
x0,x1, . . . ,xp−1

)> ∈ Rpd, zk = M(X)zk−1 + UN(X)b, k = 1, 2, . . .

Recursively applying this rule and taking expectation w.r.t the coefficient matrices
and the inversion matrix yields

E
[
zk − z∗

]
= E[M ]k(z0 − z∗).

• Then, to derive the lower bound, we use the Jordan form of E[M ] to show that there
exists some non-zero vector r ∈ (Rd)p such that if 〈z0 − z∗, r〉 6= 0, then ‖E[M ]k(z0 −
z∗)‖ is asymptotically bounded from below by some geometric sequence. The upper
bound follows similarly.

• Finally, we express the bound on the convergence rate of (zk) in terms of the original
space.

Carefully inspecting the proof idea shown above reveals that the lower bound remains valid
even in cases where the initialization points are drawn randomly. The only condition for this
to hold is that the underlying distribution is reasonable, in the sense that it is absolutely
continuous w.r.t. the Lebesgue measure, which implies that Pr[〈z0 − z∗, r〉 6= 0] = 1.

We remark that the constants in the asymptotic behavior above may depend on the
quadratic function under consideration, and that the logarithmic terms depend on the dis-
tance of the initialization points from the minimizer, as well as the lifting factor and the
spectrum of the Hessian. For the sake of clarity, we omit the dependency on these quantities.

There are two, rather subtle, issues regarding the definition of iteration complexity which
we would like to address. First, observe that in many cases a given point x̃ ∈ Rd is said to
be ε-optimal w.r.t some real function f : Rd → R if

f(x̃) < min
x∈Rd

f(x) + ε.

However, here we employ a different measure for optimality. Fortunately, in our case either
can be used without essentially affecting the iteration complexity. That is, although in
general the gap between these two definitions can be made arbitrarily large, for L-smooth
µ-strongly convex functions we have

µ

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ L

2
‖x− x∗‖2 .

Combining these two inequalities with the fact that the iteration complexity of p-SCLIs
depends logarithmically on 1/ε implies that in this very setting these two distances are
interchangeable, up to logarithmic factors.
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Secondly, here we measure the sub-optimality of the k’th iteration by
∥∥E[xk − x∗]

∥∥,
whereas in many other stochastic settings it is common to derive upper and lower bounds
on E

[∥∥xk − x∗
∥∥]. That being the case, by

E
[∥∥∥xk − x∗

∥∥∥2
]

= E
[∥∥∥xk − Exk

∥∥∥2
]

+
∥∥∥E [xk − x∗

]∥∥∥2
,

we see that if the variance of the k’th point is of the same order of magnitude as the
norm of the expected distance from the optimal point, then both measures are equivalent.

Consequently, our upper bounds imply upper bounds on E
[∥∥xk − x∗

∥∥2
]

for deterministic

algorithms (where the variance term is zero), and our lower bounds imply lower bounds

on E
[∥∥xk − x∗

∥∥2
]
, for both deterministic and stochastic algorithms (since the variance is

non-negative). We defer a more adequate treatment for this matter to future work.

3. Deriving Bounds for p-SCLI Algorithms

The goal of the following section is to show how the framework of p-SCLI optimization
algorithms can be used to derive lower and upper bounds. Our presentation follows from
the simplest setting to the most general one. First, we present a useful characterization
of consistency (see Definition 3) of p-SCLIs using the characteristic polynomial. Next, we
demonstrate the importance of consistency through a simplified one dimensional case. This
line of argument is then generalized to any finite dimensional space and is used to explain
the role of the inversion matrix. Finally, we conclude this section by providing a schematic
description of this technique for the most general case which is used both in Section (4) to
establish lower bounds on the convergence rate of p-SCLIs with diagonal inversion matrices,
and in Section (5) to derive efficient p-SCLIs.

3.1 Consistency

Closely inspecting various specifications for p-SCLI optimization algorithms (see Section
(2.3)) reveals that the coefficient matrices always sum up to I + EN(X)X, where N(X)
denotes the inversion matrix. It turns out that this is not a mere coincidence, but an
extremely useful characterization for consistency of p-SCLIs. To see why this condition
must hold, suppose A is a deterministic p-SCLI algorithm over Rd whose coefficient matrices
and inversion matrix are C0(X), . . . , Cp−1(X) and N(X), respectively, and suppose that A
is consistent w.r.t some A ∈ Sd(Σ). Recall that every p + 1 consecutive points generated
by A are related by (14) as follows

xk =

p−1∑
j=0

Cj(A)xk−p+j +N(A)b, k = p, p+ 1, . . .

Taking limit of both sides of the equation above and noting that by consistency

xk → −A−1b
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for any b ∈ Rd, yields

−A−1b = −
p−1∑
j=0

Cj(A)A−1b +N(A)b.

Thus,

−A−1 = −
p−1∑
j=0

Cj(A)A−1 +N(A).

Multiplying by A and rearranging, we obtain

p−1∑
j=0

Cj(A) = Id +N(A)A. (16)

On the other hand, if instead of assuming consistency we assume that A generates a conver-
gent sequence of points and that Equation (16) holds, then the arguments used above show
that the limit point must be −A−1b. In terms of the characteristic polynomial of p-SCLIs,
this formalized as follows.

Theorem 5 (Consistency via Characteristic Polynomials) Suppose A M
= (L(λ,X)

, N(X)) is a p-SCLI optimization algorithm. Then, A is consistent with respect to A ∈
Sd(Σ) if and only if the following two conditions hold:

1. L(1, A) = −EN(A)A (17)

2. ρλ(L(λ,A)) < 1 (18)

The proof for the preceding theorem is provided in Section C.2. This result will be used
extensively throughout the reminder of this work.

3.2 Simplified One-Dimensional Case

To illustrate the significance of consistency in the framework of p-SCLIs, consider the fol-
lowing simplified case. Suppose A is a deterministic 2-SCLI optimization algorithm over
Q1([µ,L]), such that its inversion matrix N(x) is some constant scalar ν ∈ R and its co-
efficient matrices c0(x), c1(x) are free to take any form. The corresponding characteristic
polynomial is

L(λ, x) = λ2 − c1(x)λ− c0(x).

Now, let fa,b(x) ∈ Q1([µ,L]) be a quadratic function. By Theorem 4, we know that A
converges to the minimizer of fa,b(x) with an asymptotic geometric rate of ρλ(L(λ, a)), the
maximal modulus root. Thus, ideally we would like to set cj(x) = 0, j = 0, 1. However,
this might violate the consistency condition (17), according to which, one must maintain

L(1, a) = −νa.
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That being the case, how little can ρλ (L(λ, a)) be over all possible choices for cj(a) which
satisfy L(1, a) = −νa? Formally, we seek to solve the following minimization problem

ρ∗ = min {ρλ(L(λ, a)) | L(λ, a) is a real monic quadratic polynomial in λ and L(1) = −νa} .

By consistency we also have that ρ∗ must be strictly less than one. This readily implies
that −νa > 0. In which case, Lemma 6 below gives

ρ∗ ≥ ρ
((
λ− 1−

√
−νa

)2)
=
∣∣√−νa− 1

∣∣ . (19)

The key observation here is that ν cannot be chosen so as to be optimal for all Q1([µ,L])
simultaneously. Indeed, the preceding inequality holds in particular for a = µ and a = L,
by which we conclude that

ρ∗ ≥ max
{∣∣√−νµ− 1

∣∣ , ∣∣∣√−νL− 1
∣∣∣} ≥ √κ− 1√

κ+ 1
, (20)

where κ
M
= L/µ. Plugging in Inequality (20) into Theorem 4 implies that there exists

fa,b(x) ∈ Q1([µ,L]) such that the iteration complexity of A for minimizing it is

Ω̃

(√
κ− 1

2
ln(1/ε)

)
.

To conclude, by applying this rather natural line of argument we have established a lower
bound on the convergence rate of any 2-SCLI optimization algorithms for smooth and
strongly convex function over R, e.g., AGD and HB.

3.3 The General Case and the Role of the Inversion Matrix

We now generalize the analysis shown in the previous simplified case to any deterministic
p-SCLI optimization algorithm over any finite dimensional space. This generalization relies
on a useful decomposability property of the characteristic polynomial, according to which
deriving a lower bound on the convergence rate of p-SCLIs over Rd is essentially equivalent
for deriving d lower bounds on the maximal modulus of the roots of d polynomials over R.

Let A M
= (L(λ,X), N(X)) be a consistent deterministic p-SCLI optimization algorithm

and let fA,b(x) ∈ Qd(Σ) be a quadratic function. By consistency (see Theorem 5) we have

L(1, A) = −NA

(for brevity we omit the functional dependency on X). Since coefficient matrices are as-
sumed to be simultaneously triangularizable, there exists an invertible matrix Q ∈ Rd×d
such that

Tj
M
= Q−1CjQ, j = 0, 1, . . . , p− 1

are upper triangular matrices. Thus, by the definition of the characteristic polynomial
(Definition 2) we have

detL(λ,X) = det
(
Q−1L(λ,X)Q

)
= det

Idλp − p−1∑
j=0

Tjλ
j

 =

d∏
j=1

`j(λ), (21)
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where

`j(λ) = λp −
p−1∑
k=0

σkj λ
k, (22)

and where σj1, . . . , σ
j
d, j = 0, . . . , p− 1 denote the elements on the diagonal of Tj , or equiv-

alently the eigenvalues of Cj ordered according to Q. Hence, the root radius of the charac-
teristic polynomial of A is

ρλ(L(λ,X)) = max {|λ | | `i(λ) = 0 for some i ∈ [d]}. (23)

On the other hand, by consistency condition (17) we get that for all i ∈ [d],

`i(1) = σi (L(1)) = σi (−NA) . (24)

It remains to derive a lower bound on the maximum modulus of the roots of `i(λ), subject
to constraint (24). To this end, we employ the following lemma whose proof can be found
in Section C.3.

Lemma 6 Suppose q(z) is a real monic polynomial of degree p. If q(1) < 0, then

ρ(q(z)) > 1.

Otherwise, if q(1) ≥ 0, then

ρ(q(z)) ≥
∣∣∣ p√q(1)− 1

∣∣∣ .
In which case, equality holds if and only if

q(z) =
(
z − (1− p

√
q(1))

)p
.

We remark that the second part of Lemma 6 implies that subject to constraint (24), the
lower bound stated above is unimprovable. This property is used in Section 5 where we
aim to obtain optimal p-SCLIs by designing `j(λ) accordingly. Clearly, in the presence of
additional constraints, one might be able to improve on this lower bound (see Section 4.2).

Since A is assumed to be consistent, Lemma 6 implies that σ(−N(A)A) ⊆ R++, as well
as the following lower bound on the root radius of the characteristic polynomial,

ρλ(L(λ,X)) ≥ max
i∈[d]

∣∣∣ p
√
σi(−N(A)A)− 1

∣∣∣ . (25)

Noticing that the reasoning above can be readily applied to stochastic p-SCLI optimization
algorithms, we arrive at the following corollary which combines Theorem 4 and Inequality
(25).

Corollary 7 Let A be a consistent p-SCLI optimization algorithm with respect to some
A ∈ Sd(Σ), let N(X) denote the corresponding inversion matrix and let

ρ∗ = max
i∈[d]

∣∣∣ p
√
σi(−EN(A)A)− 1

∣∣∣ ,
then the iteration complexity of A for any fA,b(x) ∈ Qd(Σ) is lower bounded by

Ω̃

(
ρ∗

1− ρ∗
ln(1/ε)

)
. (26)
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Using Corollary 7, we are now able to provide a concise ‘plug-and-play’ scheme for
deriving lower bounds on the iteration complexity of p-SCLI optimization algorithms. To
motivate this scheme, note that the effectiveness of the lower bound stated in Corollary 7
is directly related to the magnitude of the eigenvalues of −N(X)X. To exemplify this,
consider the inversion matrix of Newton method (see Section 2.3)

N(X) = −X−1.

Since
σ(−N(X)X) = {1},

the lower bound stated above is meaningless for this case. Nevertheless, the best computa-
tional cost for computing the inverse of d×d regular matrices known today is super-quadratic
in d. As a result, this method might become impractical in large scale scenarios where the
dimension of the problem space is large enough. A possible solution is to employ inversion
matrices whose dependence on X is simpler. On the other hand, if N(X) approximates
−X−1 very badly, then the root radius of the characteristic polynomial might get too large.
For instance, if N(X) = 0 then

σ(−N(X)X) = {0},

contradicting the consistency assumption, regardless of the choice of the coefficient matrices.

In light of the above, many optimization algorithms can be seen as strategies for bal-
ancing the computational cost of obtaining a good approximation for the inverse of X and
executing large number of iterations. Put differently, various structural restrictions on the
inversion matrix yield different σ(−N(X)X), which in turn lead to a lower bound on the
root radius of the corresponding characteristic polynomial. This gives rise to the following
scheme:

Scheme 1 Lower bounds

Parameters: • A family of quadratic functions Qd(Σ)
• An inversion matrix N(X)
• A lifting factor p ∈ N,

Choose S ′ ⊆ Sd(Σ)
Verify ∀A ∈ S ′, σ(−EN(A)A) ⊆ (0, 2p) to ensure consistency (Theorem 5)

Bound max
A∈S′,i∈[d]

∣∣∣ p
√
σi(−EN(A)A)− 1

∣∣∣ from below by some ρ∗ ∈ [0, 1)

Lower bound: Ω̃
(

ρ∗
1−ρ∗ ln(1/ε)

)
This scheme is implicitly used in the previous Section (3.2), where we established a lower

bound on the convergence rate of 2-SCLI optimization algorithms over R with constant
inversion matrix and the following parameters

Σ = [µ,L], S ′ = {µ,L}.

In Section 4 we will make this scheme concrete for scalar and diagonal inversion matrices.
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3.4 Bounds Schemes

In spite of the fact that Scheme 1 is expressive enough for producing meaningful lower
bounds under various structures of the inversion matrix, it does not allow one to incorpo-
rate other lower bounds on the root radius of characteristic polynomials whose coefficient
matrices admit certain forms, e.g., linear coefficient matrices (see 35 below). Abstracting
away from Scheme 1, we now formalize one of the main pillar of this work, i.e., the relation
between the amount of computational cost one is willing to invest in executing each itera-
tion and the total number of iterations needed for obtaining a given level of accuracy. We
use this relation to form two schemes for establishing lower and upper bounds for p-SCLIs.

Given a compatible set of parameters: a lifting factor p, an inversion matrix N(X), set of
quadratic functionsQd(Σ) and a set of coefficients matrices C, we denote by A(p,N(X),Qd(Σ) , C)
the set of consistent p-SCLI optimization algorithms for Qd(Σ) whose inversion matrix
are N(X) and whose coefficient matrices are taken from C. Furthermore, we denote by
L(p,N(X),Qd(Σ) , C) the following set of polynomial matricesL(λ,X)

M
= Idλ

p −
p−1∑
j=0

ECj(X)λj

∣∣∣∣∣∣ Cj(X) ∈ C, L(1, A) = −N(A)A, ∀A ∈ Sd(Σ)

 .

Since both sets are determined by the same set of parameters, the specifications of which
will be occasionally omitted for brevity. The natural one-to-one correspondence between
these two set, as manifested by Theorem 4 and Corollary 5, yields

min
A∈A

max
fA,b(x)∈Qd(Σ)

ρλ(LA(λ,A)) = min
L(λ,X)∈L

max
A∈Sd(Σ)

ρλ(L(λ,A)) (27)

The importance of Equation (27) stems from its ability to incorporate any bound on the
maximal modulus root of polynomial matrices into a general scheme for bounding the
iteration complexity of p-SCLIs. This is summarized by the following scheme.

Scheme 2 Lower bounds

Given a set of p-SCLI optimization algorithms A(p,N(X),Qd(Σ) , C)
Find ρ∗ ∈ [0, 1) such that

min
L(λ,X)∈L

max
A∈Sd(Σ)

ρλ (L(λ,A)) ≥ ρ∗

Lower bound: Ω̃
(

ρ∗
1−ρ∗ ln(1/ε)

)

Thus, Scheme 1 is in effect an instantiation of the scheme shown above using Lemma 6.
This correspondence of p-SCLI optimization algorithms and polynomial matrices can be
also used contrariwise to derive efficient algorithm optimization. Indeed, in Section 2.3 we
show how FGD, HB and AGD can be formed as optimal instantiations of the following dual
scheme.
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Scheme 3 Optimal p-SCLI Optimization Algorithms

Given a set of polynomial matrices L(p,N(X),Qd(Σ) , C)
Compute ρ∗ = min

L(λ,X)∈L
max

A∈Sd(Σ)
ρλ (L(λ,A))

and denote its minimizer by L∗ (λ,A)

Upper bound: The corresponding p-SCLI algorithm for L∗ (λ,A)

Convergence rate: O
(

1
1−ρ∗ ln(1/ε)

)

4. Lower Bounds

In the sequel we derive lower bounds on the convergence rate of p-SCLI optimization algo-
rithms whose inversion matrices are scalar or diagonal, and discuss the assumptions under
which these lower bounds meet matching upper bounds. It is likely that this approach can
be also effectively applied for block-diagonal inversion, as well as for a much wider set of
inversion matrices whose entries depend on a relatively small set of entries of the matrix to
be inverted.

4.1 Scalar and Diagonal Inversion Matrices

We derive a lower bound on the convergence rate of p-SCLI optimization algorithms for
L-smooth µ-strongly convex functions over Rd with a scalar inversion matrix N(X) by em-
ploying Scheme 1 (see Section 3.3). Note that since the one-dimensional case was already
proven in Section 3.2, we may assume that d ≥ 2.

First, we need to pick a ‘hard’ matrix in Sd([µ,L]). It turns out that any positive-definite
matrix A ∈ Sd([µ,L]) for which

{µ,L} ⊆ σ(A) , (28)

will meet this criterion. For the sake of concreteness, let us define

A
M
= Diag(L, µ, . . . , µ︸ ︷︷ ︸

d−1 times

).

In which case,

−ν{µ,L} = σ(−EN(A)A) ,

where νI = E[N(A)]. Thus, to maintain consistency, it must hold that9

ν ∈
(
−2p

L
, 0

)
. (29)

9. On a side note, this reasoning also implies that if the spectrum of a given matrix A contains both positive
and negative eigenvalues then A−1b cannot be computed using p-SCLIs with scalar inversion matrices.
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Next, to bound from below

ρ∗
M
= max

i∈[d]

∣∣∣ p
√
σi(−νA)− 1

∣∣∣ = max
{
| p
√
−νµ− 1|, | p

√
−νL− 1|

}
,

we split the feasible range of ν (29) into three different sub-ranges as follows:

p
√
−νµ− 1 < 0 p

√
−νµ− 1 ≥ 0

Case 1 N/A
p
√
−νL− 1 ≤ 0 Range: [−1/L, 0)

Minimizer: ν∗ = −1/L

Lower bounds: 1− p

√
µ
L

Case 2 Case 3 (requires: p ≥ log2 κ)
p
√
−νL− 1 > 0 Range: (−1/µ,−1/L) Range: (−2p/L,−1/µ]

Minimizer: −
(

2
p√L+ p

√
µ

)p
Minimizer: −1/µ

Lower bound:
p
√
L/µ−1

p
√
L/µ+1

Lower Bound: p

√
L
µ − 1

Table 1: Lower bound for ρ∗ by subranges of ν

Therefore,

ρ∗ ≥ min

{
1− p

√
µ

L
,
p
√
L/µ− 1

p
√
L/µ+ 1

, p

√
L

µ
− 1

}
=

p
√
κ− 1

p
√
κ+ 1

, (30)

where κ
M
= L/µ, upper bounds the condition number of functions in Qd([µ,L]). Thus, by

Scheme 1, we get the following lower bound on the worse-case iteration complexity,

Ω̃

(
p
√
κ− 1

2
ln(1/ε)

)
. (31)

As for the diagonal case, it turns out that for any quadratic fA,b(x) ∈ Qd([µ,L]) which has( L+µ
2

L−µ
2

L−µ
2

L+µ
2

)
(32)

as a principal sub-matrix of A, the best p-SCLI optimization algorithm with a diagonal
inversion matrix does not improve on the optimal asymptotic convergence rate achieved by
scalar inversion matrices (see Section C.4). Overall, we obtain the following theorem.

Theorem 8 Let A be a consistent p-SCLI optimization algorithm for L-smooth µ-strongly
convex functions over Rd. If the inversion matrix of A is diagonal, then there exists a
quadratic function fA,b(x) ∈ Qd([µ,L]) such that

ICA (ε, fA,b(x)) = Ω̃

(
p
√
κ− 1

2
ln(1/ε)

)
, (33)

where κ = L/µ.
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4.2 Is This Lower Bound Tight?

A natural question now arises: is the lower bound stated in Theorem 8 tight? In short,
it turns out that for p = 1 and p = 2 the answer is positive. For p > 2, the answer
heavily depends on whether a suitable spectral decomposition is within reach. Obviously,
computing the spectral decomposition for a given positive definite matrix A is at least
as hard as finding the minimizer of a quadratic function whose Hessian is A. To avoid
this, we will later restrict our attention to linear coefficients matrices which allow efficient
implementation.

A matching upper bound for p = 1 In this case the lower bound stated in Theorem 8
is simply attained by FGD (see Section 2.3).

A matching upper bound for p = 2 In this case there are two 2-SCLI optimization al-
gorithm which attain this bound, namely, Accelerated Gradient Descent and The
Heavy Ball method (see Section 2.3), whose inversion matrices are scalar and corre-
spond to Case 1 and Case 2 in Table 1, i.e.,

NHB = −

(
2√

L+
√
µ

)2

Id, NAGD =
−1

L
Id.

Although HB obtains the best possible convergence rate in the class of 2-SCLIs with
diagonal inversion matrices, it has a major disadvantage. When applied to general
smooth and strongly-convex functions, one cannot guarantee global convergence. That
is, in order to converge to the corresponding minimizer, HB must be initialized close
enough to the minimizer (see Section 3.2.1 in Polyak 1987). Indeed, if the initialization
point is too far from the minimizer then HB may diverge as shown in Section 4.5 in
Lessard et al. (2014). In contrast to this, AGD attains a global linear convergence with
a slightly worse factor. Put differently, the fact HB is highly adapted to quadratic
functions prevents it from converging globally to the minimizers of general smooth
and strongly convex functions.

A matching upper bound for p > 2 In Subsection A we show that when no restriction
on the coefficient matrices is imposed, the lower bound shown in Theorem 8 is tight,
i.e., for any p ∈ N there exists a matching p-SCLI optimization algorithm with scalar
inversion matrix whose iteration complexity is

Õ
(
p
√
κ ln(1/ε)

)
. (34)

In light of the existing lower bound which scales according to
√
κ, this result may seem

surprising at first. However, there is a major flaw in implementing these seemingly
ideal p-SCLIs. In order to compute the corresponding coefficients matrices one has
to obtain a very good approximation for the spectral decomposition of the positive
definite matrix which defines the optimization problem. Clearly, this approach is
rarely practical. To remedy this situation we focus on linear coefficient matrices
which admit a relatively low computational cost per iteration. That is, we assume
that there exist real scalars α1, . . . , αp−1 and β1, . . . , βp−1 such that

Cj(X) = αjX + βjId, j = 0, 1, . . . , p− 1, (35)
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We believe that for these type of coefficient matrices the lower bound derived in
Theorem 8 is not tight. Precisely, we conjecture that for any 0 < µ < L and for any
consistent p-SCLI optimization algorithm A with diagonal inversion matrix and linear
coefficients matrices, there exists fA,b(x) ∈ Qd([µ,L]) such that

ρλ(LA(λ,X)) ≥
√
κ− 1√
κ+ 1

,

where κ
M
= L/µ. Proving this may allow to derive tight lower bounds for many

optimization algorithm in the field of machine learning. Using Scheme 2, which allows
to incorporate various lower bounds on the root radius of polynomials, one is able to
equivalently express this conjecture as follows: suppose q(z) is a p-degree monic real
polynomial such that q(1) = 0. Then, for any polynomial r(z) of degree p− 1 and for
any 0 < µ < L, there exists η ∈ [µ,L] such that

ρ(q(z)− ηr(z)) ≥
√
L/µ− 1√
L/µ+ 1

.

That being so, can we do better if we allow families of quadratic functions Qd(Σ)
where Σ are not necessarily continuous intervals? It turns out that the answer is
positive. Indeed, in Section B we present a 3-SCLI optimization algorithm with linear
coefficient matrices which, by being intimately adjusted to quadratic functions whose
Hessian admits large enough spectral gap, beats the lower bound of Nemirovsky and
Yudin (3). This apparently contradicting result is also discussed in Section B, where
we show that lower bound (3) is established by employing quadratic functions whose
Hessian admits spectrum which densely populates [µ,L].

5. Upper Bounds

Up to this point we have projected various optimization algorithms on the framework of
p-SCLI optimization algorithms, thereby converting questions on convergence properties
into questions on moduli of roots of polynomials. In what follows, we shall head in the
opposite direction. That is, first we define a polynomial (see Definition (2)) which meets
a prescribed set of constraints, and then we form the corresponding p-SCLI optimization
algorithm. As stressed in Section 4.2, we will focus exclusively on linear coefficient matrices
which admit low per-iteration computational cost and allow a straightforward extension to
general smooth and strongly convex functions. Surprisingly enough, this allows a systematic
recovering of FGD, HB, AGD, as well as establishing new optimization algorithms which
allow better utilization of second-order information. This line of inquiry is particularly
important due to the obscure nature of AGD, and further emphasizes its algebraic char-
acteristic. We defer stochastic coefficient matrices, as in SDCA, (Section 2.1) to future work.

This section is organized as follows. First we apply Scheme 3 to derive general p-SCLIs
with linear coefficients matrices. Next, we recover AGD and HB as optimal instantiations
under this setting. Finally, although general p-SCLI algorithms are exclusively specified for
quadratic functions, we show how p-SCLIs with linear coefficient matrices can be extended
to general smooth and strongly convex functions.
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5.1 Linear Coefficient Matrices

In the sequel we instantiate Scheme 3 (see Section 3.4) for CLinear, the family of deterministic
linear coefficient matrices.

First, note that due to consistency constraints, inversion matrices of constant p-SCLIs
with linear coefficient matrices must be either constant scalar matrices or else be com-
putationally equivalent to A−1. Therefore, since our motivation for resorting to linear
coefficient matrices was efficiency, we can safely assume that N(X) = νId for some ν ∈
(−2p/L, 0). Following Scheme 3, we now seek the optimal characteristic polynomial in

LLinear
M
= L(p, νId,Qd([µ,L]) , CLinear) with a compatible set of parameters (see Section 3.4).

In the presence of linearity, the characteristic polynomials takes the following simplified
form

L(λ,X) = λp −
p−1∑
j=0

(ajX + bjId)λ
j , aj , bj ∈ R.

By (23) we have

ρλ(L(λ,X)) = max {|λ| | ∃i ∈ [d], `i(λ) = 0} ,

where `i(λ) denote the factors of the characteristic polynomial as in (22). That is, denoting
the eigenvalues of X by σ1, . . . , σd we have

`i(λ) = λp −
p−1∑
j=0

(ajσi + bj)λ
j = λp − σi

p−1∑
j=0

ajλ
j +

p−1∑
j=0

bjλ
j .

Thus, we can express the maximal root radius of the characteristic polynomial overQd([µ,L])
in terms of the following polynomial

`(λ, η) = λp − (ηa(λ) + b(λ)), (36)

for some real univariate p− 1 degree polynomials a(λ) and b(λ), whereby

max
A∈Sd(Σ)

ρλ (L(λ,A)) = max
η∈[µ,L]

ρ (`(λ, η)) .

That being the case, finding the optimal characteristic polynomial in LLinear translates to
the following minimization problem,

minimize
`(λ,η)∈LLinear

max
η∈[µ,L]

ρλ(`(λ, η))

s.t. `(1, η) = −νη, η ∈ [µ,L] (37)

ρλ(`(λ, η)) < 1 (38)

(Note that in this case we think of LLinear as a set of polynomials whose variable assumes
scalars).
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This optimization task can be readily solved for the setting where the lifting factor is
p = 1, the family of quadratic functions under considerations is Qd([µ,L]) and the inversion
matrix is N(X) = νId, ν ∈ (−2/L, 0). In which case (36) takes the following form

`(λ, η) = λ− ηa0 − b0,

where a0, b0 are some real scalars. In order to satisfy (37) for all η ∈ [µ,L], we have no
other choice but to set

a0 = ν, b0 = 1,

which implies

ρλ(`(λ, η)) = 1 + νη.

Since ν ∈ (−2/L, 0), condition 38 follows, as well. The corresponding 1-SCLI optimization
algorithm is

xk+1 = (I + νA)xk + νb,

and its first-order extension (see Section 5.3 below) is precisely FGD (see Section 2.3).
Finally, note that the corresponding root radius is bounded from above by

κ− 1

κ

for ν = −1/L, the minimizer in Case 2 of Table 1, and by

κ− 1

κ+ 1

for ν = −2
µ+L , the minimizer in Case 3 of Table 1. This proves that FGD is optimal for

the class of 1-SCLIs with linear coefficient matrices. Figure 5.1 shows how the root radius
of the characteristic polynomial of FGD is related to the eigenvalues of the Hessian of the
quadratic function under consideration.

5.2 Recovering AGD and HB

Let us now calculate the optimal characteristic polynomial for the setting where the lifting
factor is p = 2, the family of quadratic functions under considerations is Qd([µ,L]) and the
inversion matrix is N(X) = νId, ν ∈ (−4/L, 0) (recall that the restricted range of ν is due
to consistency). In which case (36) takes the following form

`(λ, η) = λ2 − η(a1λ+ a0)− (b1λ+ b0), (39)

for some real scalars a0, a1, b0, b1. Our goal is to choose a0, a1, b0, b1 so as to minimize

max
η∈[µ,L]

ρλ(`(λ, η))
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Eigenvalues of A
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Figure 1: The root radius of FGD vs. various eigenvalues of the corresponding Hessian.

while preserving conditions (37) and (38). Note that `(λ, η), when seen as a function of
η, forms a linear path of quadratic functions. Thus, a natural way to achieve this goal is
to choose `(λ, η) so that `(λ, µ) and `(λ, L) take the form of the ‘economic’ polynomials
introduced in Lemma 6, namely (

λ− (1−
√
r)
)2

for r = −νµ and r = −νL, respectively, and hope that for others η ∈ (µ,L), the roots of
`(λ, η) would still be of small magnitude. Note that due to the fact that `(λ, η) is linear in
η, condition (37) readily holds for any η ∈ (µ,L). This yields the following two equations

`(λ, µ) =
(
λ− (1−

√
−νµ)

)2
,

`(λ, L) =
(
λ− (1−

√
−νL)

)2
.

Substituting (39) for `(λ, η) and expanding the r.h.s. of the equations above we get

λ2 − (a1µ+ b1)λ− (a0µ+ b0) = λ2 − 2(1−
√
−νµ)λ+ (1−

√
−νµ)2,

λ2 − (a1L+ b1)λ− (a0L+ b0) = λ2 − 2(1−
√
−νL)λ+ (1−

√
−νL)2.

Which can be equivalently expressed as the following system of linear equations

−(a1µ+ b1) = −2(1−
√
−νµ), (40)

−(a0µ+ b0) = (1−
√
−νµ)2, (41)

−(a1L+ b1) = −2(1−
√
−νL), (42)

−(a0L+ b0) = (1−
√
−νL)2. (43)

28



On Lower and Upper Bounds in Smooth and Strongly Convex Optimization

Eigenvalues of A
2 3 4 5 6 7 8 9 10

;
6

0

0.1

0.2

0.3

0.4

0.5

0.6
AGD (7=2,L=10)

Lower bound
AGD
( 5-1)/ 5

Eigenvalues of A
2 3 4 5 6 7 8 9 10

;
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
HB (7=2,L=10)

Lower bound
Heavy-Ball
( 5-1)/( 5+1)

Figure 2: The root radius of AGD and HB vs. various eigenvalues of the corresponding
Hessian.

Multiplying Equation (40) by -1 and add to it Equation (42). Next, multiply Equation (41)
by -1 and add to it Equation (43) yields

a1(µ− L) = 2
√
−ν(
√
L−√µ),

a0(µ− L) = (1−
√
−νL)2 − (1−

√
−νµ)2.

Thus,

a1 =
−2
√
−ν

√
µ+
√
L
, a0 =

2
√
−ν

√
µ+
√
L

+ ν.

Plugging in ν = −1/L (see Table 1) into the equations above and solving for b1 and b0
yields a 2-SCLI optimization algorithm whose extension (see Section 5.3 below) is precisely
AGD. Following the same derivation only this time by setting (see again Table 1)

ν = −

(
2√

L+
√
µ

)2

yields the Heavy-Ball method .
Moreover, using standard formulae for roots of quadratic polynomials one can easily verify

that

ρλ (`(λ, η)) ≤
√
κ− 1√
κ

, η ∈ [µ,L],

for AGD, and

ρλ (`(λ, η)) ≤
√
κ− 1√
κ+ 1

, η ∈ [µ,L],
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for HB. In particular, Condition 38 holds. Figure 5.2 shows how the root radii of the char-
acteristic polynomials of AGD and HB are related to the eigenvalues of the Hessian of the
quadratic function under consideration.

Unfortunately, finding the optimal p-SCLIs for p > 2 is open and is closely related to
the conjecture presented in the end of Section 4.2.

5.3 First-Order Extension for p-SCLIs with Linear Coefficient Matrices

As mentioned before, since the coefficient matrices of p-SCLIs can take any form, it is not
clear how to use a given p-SCLI algorithm, efficient as it may be, for minimizing general
smooth and strongly convex functions. That being the case, one could argue that recov-
ering the specifications of, say, AGD for quadratic functions does not necessarily imply
how to recover AGD itself. Fortunately, consistent p-SCLIs with linear coefficients can be
reformulated as optimization algorithms for general smooth and strongly convex functions
in a natural way by substituting ∇f(x) for Ax + b, while preserving the original conver-
gence properties to a large extent. In the sequel we briefly discuss this appealing property,
namely, canonical first-order extension, which completes the path from the world of polyno-
mials to the world optimization algorithm for general smooth and strongly convex functions.

Let A M
= (LA(λ,X), N(X)) be a consistent p-SCLI optimization algorithm with a scalar

inversion matrix, i.e., N(X)
M
= νId, ν ∈ (−2p/L, 0), and linear coefficient matrices

Cj(X) = ajX + bjId, j = 0, . . . , p− 1, (44)

where a0, . . . , ap−1 ∈ R and b0, . . . , bp−1 ∈ R denote real scalars. Recall that by consistency,
for any fA,b(x) ∈ Qd(Σ), it holds that

p−1∑
j=0

Cj(A) =I + νA.

Thus,

p−1∑
j=0

bj = 1 and

p−1∑
j=0

aj = ν. (45)

By the definition of p-SCLIs (Definition 1), we have that

xk = C0(A)xk−p + C1(A)xk−(p−1) + · · ·+ Cp−1(A)xk−1 + νb.

Substituting Cj(A) for (44), gives

xk = (a0A+ b0)xk−p + (a1A+ b1)xk−(p−1) + · · ·+ (ap−1A+ bp−1)xk−1 + νb.

Rearranging and plugging in 45, we get

xk = a0(Axk−p + b) + a1(Axk−(p−1) + b) + · · ·+ ap−1(Axk−1 + b)

+ b0x
k−p + b1x

k−(p−1) + · · ·+ bp−1x
k−1.

30



On Lower and Upper Bounds in Smooth and Strongly Convex Optimization

Finally, by substituting Ax + b for its analog ∇f(x), we arrive at the following canonical
first-order extension of A

xk =

p−1∑
j=0

bjx
k−(p−j) +

p−1∑
j=0

aj∇f(xk−(p−j)). (46)

Being applicable to a much wider collection of functions, how well should we expect the
canonical extensions to behave? The answer is that when initialized close enough to the
minimizer, one should expect a linear convergence of essentially the same rate. A formal
statement is given by the theorem below which easily follows from Theorem 1 in Section
2.1, Polyak (1987) for

g(xk−p,xk−(p−1), . . . ,xk−1) =

p−1∑
j=0

bjx
k−(p−j) +

p−1∑
j=0

aj∇f(xk−(p−j)).

Theorem 9 Suppose f : Rd → R is an L-smooth µ-strongly convex function and let x∗

denotes its minimizer. Then, for every ε > 0, there exist δ > 0 and C > 0 such that if∥∥xj − x∗
∥∥ ≤ δ, j = 0, . . . , p− 1,

then ∥∥∥xk − x0
∥∥∥ ≤ C(ρ∗ + ε)k, k = p, p+ 1, . . . ,

where

ρ∗ = sup
η∈Σ

ρ

λp − p−1∑
j=0

(ajη + bj)λ
j

 .

Unlike general p-SCLIs with linear coefficient matrices which are guaranteed to converge
only when initialized close enough to the minimizer, AGD converges linearly, regardless of
the initialization points, for any smooth and strongly convex function. This fact merits
further investigation as to the precise principles which underlie p-SCLIs of this kind.

Appendix A. Optimal p-SCLI for Unconstrained Coefficient Matrices

In the sequel we use Scheme 3 (see Section 3.4) to show that, when no constraints are
imposed on the functional dependency of the coefficient matrices, the lower bound shown
in Theorem 8 is tight. To this end, recall that in Lemma 6 we showed that the lower bound
on the maximal modulus of roots of a polynomials which evaluate at z = 1 to some r ≥ 0
is uniquely attained by the following polynomial

q∗r (z)
M
=
(
z − (1− p

√
r)
)p

Thus, by choosing coefficients matrices which admit the same form, we obtain the optimal
convergence rate as stated in Theorem 8.
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Concretely, let p ∈ N be some lifting factor, let N(X) = νId, ν ∈ (−2p/L, 0) be a fixed
scalar matrix and let fA,b(x) ∈ Qd(Σ) be some quadratic function. Lemma 6 implies that
for each η ∈ σ(−νA) we need the corresponding factor of the characteristic polynomial to
be

`j(λ) = (λ− (1− p
√
η))p

=

p∑
k=0

(
p

k

)(
p
√
−νη − 1

)p−k
λk (47)

This is easily accomplished using the spectral decomposition of A by

Λ
M
= U>AU

where U is an orthogonal matrix and Λ is a diagonal matrix. Note that since A is a positive
definite matrix such a decomposition must always exist. We define p coefficient matrices
C0, C1, . . . , Cp−1 in accordance with Equation (47) as follows

Ck = U


−
(
p
k

) (
p
√
−νΛ11 − 1

)p−k
−
(
p
k

) (
p
√
−νΛ22 − 1

)p−k
. . .

−
(
p
k

) (
p
√
−νΛdd − 1

)p−k

U>.

By using Theorem 5, it can be easily verified that these coefficient matrices form a consistent
p-SCLI optimization algorithm whose characteristic polynomial’s root radius is

max
j=1,...,d

∣∣ p
√
−νµj − 1

∣∣ .
Choosing

ν = −

(
2

p
√
L+ p
√
µ

)p

according to Table 1, produces an optimal p-SCLI optimization algorithm for this set of
parameters. It is noteworthy that other suitable decompositions can be used for deriving
optimal p-SCLIs, as well.

As a side note, since the cost of computing each iteration in ∈ Rpd grows linearly with
the lifting factor p, the optimal choice of p with respect to the condition number κ yields
a p-SCLI optimization algorithm whose iteration complexity is Θ(ln(κ) ln(1/ε)). Clearly,
this result is of theoretical interest only, as this would require a spectral decomposition
of A, which, if no other structural assumptions are imposed, is an even harder task than
computing the minimizer of fA,b(x).
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Appendix B. Lifting Factor ≥ 3

In Section 4.2 we conjecture that for any p-SCLI optimization algorithmA M
= (L(λ,X), N(X)),

with diagonal inversion matrix and linear coefficient matrices there exists someA ∈ Qd([µ,L])
such that

ρλ(L(λ,X)) ≥
√
κ− 1√
κ+ 1

, (48)

where κ
M
= L/µ. However, it may be possible to overcome this barrier by focusing on a

subclass of Qd([µ,L]). Indeed, recall that the polynomial analogy of this conjecture states
that for any monic real p degree polynomial q(z) such that q(1) = 0 and for any polynomial
r(z) of degree p− 1, there exists η ∈ [µ,L] such that

ρ(q(z)− ηr(z)) ≥
√
κ− 1√
κ+ 1

.

This implies that we may be able to tune q(z) and r(z) so as to obtain a convergence rate,
which breaks Inequality (48), for quadratic function whose Hessian’s spectrum does not
spread uniformly across [µ,L].

Let us demonstrate this idea for p = 3, µ = 2 and L = 100. Following the exact same
derivation used in the last section, let us pick

q(z, η)
M
= zp − (ηa(z) + b(z))

numerically, so that

q(z, µ) =
(
z − (1− 3

√
−νµ)

)3

q(z, L) =
(
z − (1− 3

√
−νµ)

)3

where

ν = −

(
2

3
√
L+ 3
√
µ

)3

The resulting 3-CLI optimization algorithm A3 is

xk = C2(X)xk−1 + C1(X)xk−2 + C0(X)xk−3 +N(X)b

where

C0(X) ≈ 0.1958Id − 0.0038X

C1(X) ≈ −0.9850Id

C2(X) ≈ 1.7892Id − 0.0351X

N(X) ≈ −0.0389Id
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Figure 3: The convergence rate of AGD and A3 vs. the eigenvalues of the second-order
derivatives. It can be seen that the asymptotic convergence rate of A3 for
quadratic functions whose second-order derivative comprises eigenvalues which
are close to the edges of [2, 100], is faster than AGD and goes below the theoret-

ical lower bound for first-order optimization algorithm
√
κ−1√
κ+1

.

As opposed to the algorithm described in Section A, when employing linear coefficient
matrices no knowledge regarding the eigenvectors of A is required. As each eigenvalue of
the second-order derivative corresponds to a bound on the convergence rate, one can verify
by Figure 3 that

ρλ (LA3(λ,X)) ≤
3
√
κ− 1
3
√
κ

for any X ∈ Qd([2, 100]) which satisfies

σ(A) ⊆ Σ̂
M
= [2, 2 + ε] ∪ [100− ε, 100], ε ≈ 1.5.

Thus, A3 outperforms AGD for this family of quadratic functions.

Let us demonstrate the gain in the performance allowed by A3 in a very simple setting.
Define A to be Diag (µ,L) rotated counter-clockwise by 45◦, that is

A = µ

(
1√
2

1√
2

)(
1√
2

1√
2

)>
+ L

(
1√
2
−1√

2

)(
1√
2
−1√

2

)>
=

( µ+L
2

µ−L
2

µ−L
2

µ+L
2

)
.
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Iteration number
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Figure 4: The error rate of A3, AGD and HB vs. # iterations for solving a simple quadratic

minimization task. The convergence rate of A3 is bounded from above by
3√κ−1
3√κ

as implied by theory.

Furthermore, define b = −A (100, 100)>. Note that fA,b(x) ∈ Q2
(

Σ̂
)

and that its mini-

mizer is simply (100, 100)>. Figure 4 shows the error of A3, AGD and HB vs. iteration
number. All algorithms are initialized at x0 = 0. Since A3 is a first-order optimization
algorithm, by the lower bound shown in (3) there must exist some quadratic function
fAlb,blb

(x) ∈ Q2([µ,L]) such that

ICA3 (ε, fAlb,blb
(x)) ≥ Ω̃

(√
κ ln(1/ε)

)
. (49)

But, since

ICA3 (ε, fA,b(x)) ≤ O
(

3
√
κ ln(1/ε)

)
(50)

for every fA,b(x) ∈ Q2
(

Σ̂
)

, we must have fAlb,blb
(x) ∈ Q2([µ,L]) \ Q2

(
Σ̂
)

. Indeed, in the

somewhat simpler form of the general lower bound for first-order optimization algorithms,
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Figure 5: The spectrum of Alb, as used in the derivation of Nesterov’s lower bound, for
problem space of various dimensions.

Nesterov (see Nesterov 2004) considers the following 1-smooth 0-strongly convex function10

Alb =
1

4



2 −1 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0

. . .

0 . . . 0 −1 2 −1
0 . . . 0 −1 2


, blb = −


1
0
...
0

 .

As demonstrated by Figure 5, σ(Alb) densely fills [µ,L].

Consequently, we expect that whenever adjacent eigenvalues of the second-order deriva-
tives are relatively distant, one should able be to minimize the corresponding quadratic
function faster than the lower bound stated in 3. This technique can be further generalized
to p > 3 using the same ideas. Also, a different approach is to use quadratic (or even higher
degree) coefficient matrices to exploit other shapes of spectra. Clearly, the applicability of
both approaches heavily depends the existence of spectra of this type in real applications.

10. Although fAlb,blb(x) is not strongly convex, the lower bound for strongly convex function is obtained by
shifting the spectrum using a regularization term µ/2 ‖x‖2. In which case, the shape of the spectrum is
preserved.
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Appendix C. Proofs

C.1 Proof of Theorem 4

The simple idea behind proof of Theorem 4 is to express the dynamic of a given p-SCLI
optimization algorithm as a recurrent application of linear operator. To analyze the latter,
we employ the Jordan form which allows us to bind together the maximal magnitude eigen-
value and the convergence rate. Prior to proving this theorem, we first need to introduce
some elementary results in linear algebra.

C.1.1 Linear Algebra Preliminaries

We prove two basic lemmas which allow to determine under what conditions does a recur-
rence application of linear operators over finite dimensional spaces converge, as well as to
compute the limit of matrices powers series. It is worth noting that despite of being a very
elementary result in Matrix theory and in the theory of power methods, the lower bound
part of the first lemma does not seem to appear in this form in standard linear algebra
literature.

Lemma 10 Let A be a d× d square matrix.

• If ρ(A) > 0 then there exists CA > 0 such that for any u ∈ Rd and for any k ∈ N we
have ∥∥∥Aku∥∥∥ ≤ CAkm−1ρ(A)k ‖u‖ ,

where m denotes the maximal index of eigenvalues whose modulus is maximal.
In addition, there exists cA > 0 and r ∈ Rd such that for any u ∈ Rd which satisfies
〈u, r〉 6= 0 we have ∥∥∥Aku∥∥∥ ≥ cAkm−1ρ(A)k ‖u‖ ,

for sufficiently large k ∈ N.

• If ρ(A) = 0 then A is a nilpotent matrix. In which case, both lower and upper bounds
mentioned above hold trivially for any u ∈ Rd for sufficiently large k.

Proof Let P be a d× d invertible matrix such that

P−1AP = J,

where J is a Jordan form of A, namely, J is a block-diagonal matrix such that J =
⊕si=1Jki(λi) where λ1, λ2, . . . , λs are eigenvalues of A in a non-increasing order, whose in-
dices are k1, . . . , ks, respectively. w.l.o.g. we may assume that |λ1 | = ρ(A) and that the
corresponding index, which we denote by m, is maximal over all eigenvalues of maximal
magnitude. Let Q1, Q2, · · · , Qs and R1, R2, · · · , Rs denote partitioning of the columns of P
and the rows of P−1, respectively, which conform with the Jordan blocks of A.
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Note that for all i ∈ [d], Jki(0) is a nilpotent matrix of an order ki. Therefore, for any
(λi, ki) and k ≥ ki − 1 we have

Jki(λi)
k = (λiIki + Jki(0))k

=
k∑
j=0

(
k

j

)
λk−ji Jki(0)j

=

ki−1∑
j=0

(
k

j

)
λk−ji Jki(0)j .

Thus, for non-zero eigenvalues we have

Jki(λi)
k/(km−1λk1) =

ki−1∑
j=0

(
k
j

)
λk−ji Jki(0)j

km−1λk1

=

ki−1∑
j=0

(
k
j

)
km−1

(
λi
λ1

)k Jki(0)j

λji
. (51)

The rest of the proof pivots around the following equality which holds for any u ∈ Rpd,∥∥∥Aku∥∥∥ =
∥∥∥PJkP−1u

∥∥∥
=

∥∥∥∥∥
s′∑
i=1

QiJki(λi)
kRiu

∥∥∥∥∥
= km−1ρ(A)k

∥∥∥∥∥
s′∑
i=1

Qi

(
Jki(λi)/(k

m−1λk1)
)
Riu

∥∥∥∥∥ , (52)

where s′ denotes the smallest index such that λi = 0 for i > s′, in case there are zero
eigenvalues. Plugging in 51 yields,

∥∥∥Aku∥∥∥ = km−1ρ(A)k

∥∥∥∥∥∥∥∥∥∥∥
s′∑
i=1

Qi

ki−1∑
j=0

(
k
j

)
km−1

(
λi
λ1

)k Jki(0)j

λji

Riu︸ ︷︷ ︸
wk

∥∥∥∥∥∥∥∥∥∥∥
. (53)

Let us denote the sequence of vectors in the r.h.s of the preceding inequality by {wk}∞k=1.
Showing that the norm of {wk}∞k=1 is bounded from above and away from zero will conclude
the proof. Deriving an upper bound is straightforward.

‖wk‖ ≤
s′∑
i=1

∥∥∥∥∥∥Qi
ki−1∑

j=0

(
k
j

)
km−1

(
λi
λ1

)k Jki(0)j

λji

Riu

∥∥∥∥∥∥
≤ ‖u‖

s′∑
i=1

‖Qi‖ ‖Ri‖
ki−1∑
j=0

∥∥∥∥∥
(
k
j

)
km−1

(
λi
λ1

)k Jki(0)j

λji

∥∥∥∥∥ . (54)
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Since for all i ∈ [d] we have(
k
j

)
km−1

(
λi
λ1

)k
→ 0 or

∣∣∣∣∣
(
k
j

)
km−1

(
λi
λ1

)k ∣∣∣∣∣→ 1

it holds that Inequality (54) can be bounded from above by some positive scalar CA. Plug-
ging it in into 53 yields ∥∥∥Aku∥∥∥ ≤ CAkm−1ρ(A)k ‖u‖ .

Deriving a lower bound on the norm of {wk} is a bit more involved. First, we define the
following set of Jordan blocks which govern the asymptotic behavior of ‖wk‖

I M
= {i ∈ [s] | |λi| = ρ(A) and ki = m} .

Equation (51) implies that for all i /∈ I

Jki(λi)
k/(km−1λk1)→ 0 as k →∞.

As for i ∈ I, the first ki − 1 terms in Equation (51) tend to zero. The last term is a matrix
whose entries are all zeros, except for the last entry in the first row which equals(

k
m−1

)
km−1

(
λi
λ1

)k
1/(λm−1

i ) ∼
(
λi
λ1

)k
1/(λm−1

i )

(here, two positive sequences ak, bk are asymptotic equivalence, i.e., ak ∼ bk, if ak/bk → 1).
By denoting the first column of each Qi by qi and the last row in each Ri by r>i , we get

‖wk‖ ∼

∥∥∥∥∥∑
i∈I

(
λi
λ1

)k 1

λm−1
i

QiJm(0)m−1Riu

∥∥∥∥∥
=

∥∥∥∥∥∑
i∈I

(
λi
λ1

)k qir>i u

λm−1
i

∥∥∥∥∥ .
Now, if u satisfies r>1 u 6= 0 then since q1, q2, · · · , q|I| are linearly independent, we see that
the preceding can be bounded from below by some positive constant cA > 0 which does
not depend on k. That is, there exists cA > 0 such that ‖wk‖ > cA for sufficiently large k.
Plugging it in into Equation (53) yields

‖Au‖ ≥ cAkm−1ρ(A)k ‖u‖

for any u ∈ Rd such that 〈u, r1〉 6= 0 and for sufficiently large k.

The following is a well-known fact regarding Neuman series, sum of powers of square
matrices, which follows easily from Lemma 10.
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Lemma 11 Suppose A is a square matrix. Then, the following statements are equivalent:

1. ρ(A) < 1.

2. limk→∞A
k = 0.

3.
∑∞

k=0A
k converges.

In which case, (I −A)−1 exists and (I −A)−1 =
∑∞

k=0A
k.

Proof First, note that all norms on a finite-dimensional space are equivalent. Thus, the
claims stated in (2) and (3) are well-defined.
The fact that (1) and (2) are equivalent is a direct implication of Lemma 10. Finally, the
equivalence of (2) and (3) may be established using the following identity

(I −A)
m−1∑
k=0

Ak = I −Am, m ∈ N.

C.1.2 Convergence Properties

Let us now analyze the convergence properties of p-SCLI optimization algorithms. First,
note that update rule (14) can be equivalently expressed as a single step rule by introducing
new variables in some possibly higher-dimensional Euclidean space Rpd,

z0 =
(
x0,x1, . . . ,xp−1

)> ∈ Rpd, zk = M(X)zk−1 + UN(X)b, k = 1, 2, . . . (55)

where

U
M
= (0d, . . . , 0d︸ ︷︷ ︸

p−1 times

, Id)
> ∈ Rpd×d, (56)

and where M(X) is a mapping from Rd×d to Rpd×pd-valued random variables which admits
the following generalized form of companion matrices

0d Id
0d Id

. . .
. . .

0d Id
C0(X) . . . Cp−2(X) Cp−1(X)

 . (57)

Following the convention in the field of linear iterative methods, we call M(X) the iteration
matrix. Note that in terms of the formulation given in (55), consistency w.r.t A ∈ Sd(Σ) is
equivalent to

Ezk →
(
−A−1b, . . . ,−A−1b

)>︸ ︷︷ ︸
p times

(58)
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regardless of the initialization points and for any b ∈ Rd and z0 ∈ Rpd.

To improve readability, we shall omit the functional dependency of the iteration, inver-
sion and coefficient matrices on X in the following discussion. Furthermore, Equation (55)
can be used to derive a simple expression of zk, in terms of previous iterations as follows

z1 = M (0)z0 + UN (0)b,

z2 = M (1)z1 + UN (1)b = M (1)M (0)z0 +M (1)UN (0)b + UN (1)b,

z3 = M (2)z2 + UN (2)b = M (2)M (1)M (0)z0 +M (2)M (1)UN (0)b +M (2)UN (1)b + UN (2)b,

...

zk =

k−1∏
j=0

M (j)z0 +

k−1∑
m=1

k−1∏
j=m

M (j)UN (m−1)b + UN (k−1)b,

=
k−1∏
j=0

M (j)z0 +
k∑

m=1

k−1∏
j=m

M (j)

UN (m−1)b.

where
(
M (0), N (0)

)
, . . . ,

(
M (k−1), N (k−1)

)
are k i.i.d realizations of the corresponding iter-

ation matrix and inversion matrix, respectively. We follow the convention of defining an
empty product as the identity matrix and defining the multiplication order of factors of
abbreviated product notation as multiplication from the highest index to the lowest, i.e.,∏k
j=1M

(j) = M (k) · · ·M (1). Taking the expectation of both sides yields

Ezk = E[M ]kz0 +

k−1∑
j=0

E[M ]j

E[UNb]. (59)

By Lemma 11, if ρ(EM) < 1 then the first term in the r.h.s of Equation (59) vanishes for
any initialization point z0, whereas the second term converges to

(I − EM)−1E[UNb],

the fixed point of the update rule. On the other hand, suppose that
(
Ezk

)∞
k=0

converges

for any z0 ∈ Rd. Then, this is also true for z0 = 0. Thus, the second summand in the r.h.s
of Equation (59) must converge. Consequently, the sequence E[M ]kz0, being a difference of
two convergent sequences, converges for all z0, which implies ρ(E[M ]) < 1. This proves the
following theorem.

Theorem 12 With the notation above,
(
Ezk

)∞
k=0

converges for any z0 ∈ Rd if and only if

ρ(E[M ]) < 1. In which case, for any initialization point z0 ∈ Rd, the limit is

z∗
M
= (I − EM)−1 E[UNb]. (60)
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We now address the more delicate question as to how fast do p-SCLIs converge. To this
end, note that by Equation (59) and Theorem 12 we have

E
[
zk − z∗

]
= E[M ]kz0 +

(
k−1∑
l=0

E[M ]i

)
E[UNb]− (I − EM)−1 E[UNb]

= E[M ]kz0 + (I − EM)−1

(
(I − EM)

k−1∑
l=0

E[M ]i − I

)
E[UNb]

= E[M ]kz0 − (I − EM)−1 (EM)kE[UNb]

= E[M ]k(z0 − z∗). (61)

Hence, to obtain a full characterization of the convergence rate of
∥∥E [zk − z∗

]∥∥ in terms of
ρ(EM), all we need is to simply apply Lemma 10 with EM .

C.1.3 Proof

We are now in position to prove Theorem 4. Let A M
= (L(λ,X), N(X)) be a p-SCLI

algorithm over Rd, let M(X) denote its iteration matrix and let fA,b(x) be some quadratic
function. According to the previous discussion, there exist m ∈ N and C(A), c(A) > 0 such
that the following hold:

1. For any initialization point z0 ∈ Rpd, we have that (Ezk)∞k=1 converges to

z∗
M
= (I − EM(A))−1 E [UN(A)b] . (62)

2. For any initialization point z0 ∈ Rpd and for any h ∈ N,∥∥∥E [zk − z∗
]∥∥∥ ≤ CAkm−1ρ(M(A))k

∥∥z0 − z∗
∥∥ . (63)

3. There exists r ∈ Rpd such that for any initialization point z0 ∈ Rpd which satisfies〈
z0 − z∗, r

〉
6= 0 and sufficiently large k ∈ N,∥∥∥E [zk − z∗

]∥∥∥ ≥ cAkm−1ρ(M(A))k
∥∥z0 − z∗

∥∥ . (64)

Since iteration complexity is defined over the problem space, we need to derive the same
inequalities in terms of

xk = U>zk.

Note that by linearity we have x∗ = U>z∗. For bounding (xk)
∞
k=1 from above we use (63),∥∥∥E [xk − x∗

]∥∥∥ =
∥∥∥E [U>zk − U>z∗

]∥∥∥
≤
∥∥∥U>∥∥∥∥∥∥E [zk − z∗

]∥∥∥
≤
∥∥∥U>∥∥∥CAkm−1ρ(M)k

∥∥z0 − z∗
∥∥

=
∥∥∥U>∥∥∥CAkm−1ρ(M)k

∥∥Ux0 − Ux∗
∥∥

≤
∥∥∥U>∥∥∥ ‖U‖CAkm−1ρ(M)k

∥∥x0 − x∗
∥∥ . (65)
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Thus, the same rate as in (63), with a different constant, holds in the problem space.
Although the corresponding lower bound takes a slightly different form, it proof is done
similarly. Pick x0,x1, . . . ,xp−1 such that the corresponding z0 is satisfied the condition in
(64). For sufficiently large k ∈ N, it holds that

max
k=0,...,p−1

∥∥∥Exk+j − Ex∗
∥∥∥ ≥ 1
√
p

√√√√p−1∑
j=0

‖Exk+j − Ex∗‖2

=
1
√
p

∥∥∥E [zk]− z∗
∥∥∥

≥ cA√
p
km−1ρ(M)k

∥∥z0 − z∗
∥∥

=
cA√
p
km−1ρ(M)k

√√√√p−1∑
j=0

‖xj − x∗‖2. (66)

We arrived at the following corollary which states that the asymptotic convergence rate
of any p-SCLI optimization algorithm is governed by the spectral radius of its iteration
matrix.

Theorem 13 Suppose A is a p-SCLI optimization algorithm over Qd(Σ) and let M(X)
denotes its iteration matrix. Then, there exists m ∈ N such that for any quadratic function
fA,b(x) ∈ Qd(Σ) it holds that∥∥∥E [xk − x∗

]∥∥∥ = O
(
km−1ρ(M(X))k

∥∥x0 − x∗
∥∥),

where x∗ denotes the minimizer of fA,b(x). Furthermore, there exists an initialization point
x0 ∈ Rd, such that

max
k=0,...,p−1

∥∥∥Exk+j − Ex∗
∥∥∥ = Ω

(
km−1

√
p
ρ(M(X))k

∥∥x0 − x∗
∥∥) .

Finally, in the next section we prove that the spectral radius of the iteration matrix
equals the root radius of the determinant of the characteristic of polynomial by showing
that

det(λI −M(X)) = det(L(λ,X)).

Combining this with the corollary above and by applying Inequality (12) and the like,
concludes the proof for Theorem 4.

C.1.4 The Characteristic Polynomial of the Iteration Matrix

The following lemma provides an explicit expression for the characteristic polynomial of iter-
ation matrices. The proof is carried out by applying elementary determinant manipulation
rules.
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Lemma 14 Let M(X) be the matrix defined in (57) and let A be a given d × d square
matrix. Then, the characteristic polynomial of EM(A) can be expressed as the following
matrix polynomial

χEM(A)(λ) = (−1)pd det

(
λpId −

p−1∑
k=0

λkECk(A)

)
. (67)

Proof As usual, for the sake of readability we omit the functional dependency on A, as
well as the expectation operator symbol. For λ 6= 0 we get,

χM(λ) = det(M − λIpd)

= det



−λId Id
−λId Id

. . .
. . .

−λId Id
C0 . . . Cp−2 Cp−1 − λId



= det



−λId Id
−λId Id

. . .
. . .

−λId Id
0d C1 + λ−1C0 . . . Cp−2 Cp−1 − λId



= det



−λId Id
−λId Id

. . .
. . .

−λId Id
0d 0d C2 + λ−1C1 + λ−2C0 . . . Cp−2 Cp−1 − λId



= det



−λId Id
−λId Id

. . .
. . .

−λId Id
0d . . . 0d

∑p
k=1 λ

k−pCk−1 − λId


= det(−λId)p−1 det

(
p∑

k=1

λk−pCk−1 − λId

)
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= (−1)(p−1)d det

(
p∑

k=1

λk−1Ck−1 − λpId

)

= (−1)pd det

(
λpId −

p−1∑
k=0

λkCk

)
.

By continuity we have that the preceding equality holds for λ = 0 as well.

C.2 Proof of Theorem 5

We prove that consistent p-SCLI optimization algorithms must satisfy conditions (17) and
(18). The reverse implication is proven by reversing the steps of the proof.

First, note that (18) is an immediate consequence of Corollary 13, according to which
p-SCLIs converge if and only if the the root radius of the characteristic polynomial is strictly

smaller than 1. As for (18), let A M
= (L(λ,X), N(X)) be a consistent p-SCLI optimization

algorithm over Qd(Σ) and let fA,b(x) ∈ Qd(Σ) be a quadratic function. Furthermore, let
us denote the corresponding iteration matrix by M(X) as in (57). By Theorem 12, for any
initialization point we have

Ezk → (I − EM(A))−1 UE[N(A)]b,

where U is as defined in (56), i.e.,

U
M
= (0d, . . . , 0d︸ ︷︷ ︸

p−1 times

, Id)
> ∈ Rpd×d.

For the sake of readability we omit the functional dependency on A, as well as the expec-
tation operator symbol. Combining this with Equation (58) yields

U> (I −M)−1 UNb = −A−1b.

Since this holds for any b ∈ Rd, we get

U> (I −M)−1 UN = −A−1.

Evidently, N is an invertible matrix. Therefore,

U> (I −M)−1 U = −(NA)−1. (68)

Now, recall that

M =



0d Id
0d Id

. . .
. . .

0d Id
C0 . . . Cp−2 Cp−1


,
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where Cj denote the coefficient matrices. We partition M as follows

(
M11 M12

M21 M22

)
M
=



0d Id
0d Id

. . .
. . .

0d Id
C0 . . . Cp−2 Cp−1


.

The l.h.s of Equation (68) is in fact the inverse of the Schur Complement of I −M11 in
I −M , i.e.,

(I −M22 −M21(I −M11)−1M12)−1 = −(NA)−1

I −M22 −M21(I −M11)−1M12 = −NA
M22 +M21(I −M11)−1M12 = I +NA. (69)

Moreover, it is straightforward to verify that

(I −M11)−1 =


Id Id Id

Id Id
. . .

Id


Plugging in this into (69) yields

p−1∑
i=0

Ci = I +NA,

or equivalently,

L(1, A) = −NA (70)

Thus concludes the proof.

C.3 Proof of Lemma 6

First, we prove the following Lemma. Let us denote

q∗r (z)
M
=
(
z − (1− p

√
r)
)p
,

where r is some non-negative constant.

Lemma 15 Suppose q(z) is a monic polynomial of degree p with complex coefficients. Then,

ρ(q(z)) ≤
∣∣∣ p
√
| q(1) | − 1

∣∣∣ ⇐⇒ q(z) = q∗| q(1) |(z).
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Proof As the ⇐ statement is clear, we prove here only the ⇒ part.
By the fundamental theorem of algebra q(z) has p roots. Let us denote these roots by
ζ1, ζ2, . . . , ζp ∈ C . Equivalently,

q(z) =

p∏
i=1

(z − ζi).

Let us denote r
M
= | q(1) |. If r ≥ 1 we get

r =

∣∣∣∣∣
p∏
i=1

(1− ζi)

∣∣∣∣∣ =

p∏
i=1

| 1− ζi | ≤
p∏
i=1

(1 + | ζi |)

≤
p∏
i=1

(1 +
∣∣ p
√
r − 1

∣∣) =

p∏
i=1

(1 + p
√
r − 1) = r. (71)

Consequently, Inequality (71) becomes an equality. Therefore,

| 1− ζi | = 1 + | ζi | = p
√
r, ∀i ∈ [p]. (72)

Now, for any two complex numbers w, z ∈ C it holds that

|w + z | = |w |+ | z | ⇐⇒ Arg(w) = Arg(z).

Using this fact in the first equality of Equation (72), we get that Arg(−ζi) = Arg(1) = 0,
i.e., ζi are negative real numbers. Writing −ζi in the second equality of Equation (72)
instead of | ζi |, yields 1− ζi = p

√
r, concluding this part of the proof.

The proof for r ∈ [0, 1) follows along the same lines, only this time we use the reverse
triangle inequality,

r =

p∏
i=1

| 1− ζi | ≥
p∏
i=1

(1− | ζi |) ≥
p∏
i=1

(
1−

∣∣ p
√
r − 1

∣∣)
=

p∏
i=1

(
1− (1− p

√
r)
)

= r.

Note that in the first inequality, we used the fact that r ∈ [0, 1) =⇒ | ζi | ≤ 1 for all i.

The proof for Lemma 6 now follows easily. In case q(1) ≥ 0, if q(z) = (z − (1− p
√
r))

p

then, clearly,

ρ(q(z)) = ρ
(
(z − (1− p

√
r)p)

)
=
∣∣ 1− p

√
r
∣∣ .

Otherwise, according to Lemma 15

ρ(q(z)) >
∣∣ 1− p

√
r
∣∣ .
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In case q(1) ≤ 0, we must use the assumption that the coefficients are reals (see Remark
16), in which case the mere fact that

lim
z∈R,z→∞

q(z) =∞

combined with the Mean-Value theorem implies ρ(q(z)) ≥ 1. This concludes the proof.

Remark 16 The requirement that the coefficients of q(z) should be real is inevitable. To
see why, consider the following polynomial,

u(z) =
(
z −

(
1− 0.5e

iπ
3

))3
.

Although u(1) =
(

1−
(

1− 1/2e
iπ
3

))3
= −1/8 ≤ 0, it holds that ρ(u(z)) < 1. Indeed, not

all the coefficients of u(z) are real. Notice that the claim does hold for degree ≤ 3, regardless
of the additional assumption on the coefficients of u(z).

C.4 Bounding the Spectral Radius of Diagonal Inversion Matrices from below
Using Scalar Inversion Matrices

We prove a lower bound on the convergence rate of p-SCLI optimization algorithm with
diagonal inversion matrices. In particular, we show that for any p-SCLI optimization algo-
rithm whose inversion matrix is diagonal there exists a quadratic function for which it does
not perform better than p-SCLI optimization algorithms with scalar inversion matrix. We
prove the claim for d = 2. The general case follows by embedding the 2-dimensional case
as a principal sub-matrix in some higher dimensional matrix in Sd([µ,L]). Also, although
here we prove for deterministic p-SCLIs, the stochastic case is straightforward.

Let A be a p-SCLI optimization algorithm with iteration matrix M(X) (defined in (57))
and diagonal inversion matrix N(X). Define the following positive definite matrix

B =

( L+µ
2

L−µ
2

L−µ
2

L+µ
2

)
, (73)

and note that σ(B) = {µ,L}. As usual, we wish to derive a lower bound on ρ(M(B)). To
this end, denote

N
M
= N(B) =

(
α 0
0 β

)
,

where α, β ∈ R. By a straightforward calculation we get that the eigenvalues of −NB are

σ1,2(α, β) =
−(α+ β)(L+ µ)

4
±

√(
(α+ β)(L+ µ)

4

)2

− αβLµ

=
−(α+ β)(L+ µ)

4
±
√

(α+ β)2
(L− µ)2

16
+

1

4
(α− β)2Lµ. (74)
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Using similar arguments to the ones which were applied in the scalar case, we get that both
eigenvalues of −NB must be strictly positive as well as satisfy

ρ(M) ≥ min
α,β

max
{∣∣∣ p
√
σ1(α, β)− 1

∣∣∣ , ∣∣∣ p
√
σ2(α, β)− 1

∣∣∣} . (75)

Equation (74) shows that the minimum of the preceding is obtained for ν = α+β
2 , which

simplifies to

max
{∣∣∣ p
√
σ1(α, β)− 1

∣∣∣ , ∣∣∣ p
√
σ2(α, β)− 1

∣∣∣} ≥ max
{∣∣∣ p
√
σ1(ν, ν)− 1

∣∣∣ , ∣∣∣ p
√
σ2(ν, ν)− 1

∣∣∣}
= max

{∣∣ p
√
−νµ− 1

∣∣ , ∣∣∣ p
√
−νL− 1

∣∣∣} .
The rest of the analysis is carried out similarly to the scalar case, resulting in

ρ(M(B)) ≥
p
√
κ− 1

p
√
κ+ 1

.
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