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Abstract

We consider the problem of supervised learning with convex loss functions and propose a
new form of iterative regularization based on the subgradient method. Unlike other regu-
larization approaches, in iterative regularization no constraint or penalization is considered,
and generalization is achieved by (early) stopping an empirical iteration. We consider a
nonparametric setting, in the framework of reproducing kernel Hilbert spaces, and prove
consistency and finite sample bounds on the excess risk under general regularity conditions.
Our study provides a new class of efficient regularized learning algorithms and gives insights
on the interplay between statistics and optimization in machine learning.

1. Introduction

Availability of large high-dimensional data sets has motivated an interest in the interplay be-
tween statistics and optimization, towards developing new and more efficient learning solu-
tions (Bousquet and Bottou, 2008). Indeed, while much theoretical work has been classically
devoted to study statistical properties of estimators defined by variational schemes (for ex-
ample Empirical Risk Minimization (Vapnik, 1998) or Tikhonov regularization (Tikhonov
and Arsenin, 1977)), and to the computational properties of optimization procedures to
solve the corresponding minimization problems (see for example Sra et al., 2011), much less
work has considered the integration of statistical and optimization aspects, see for example
Chandrasekaran and Jordan (2013); Wainwright (2014); Orabona (2014).

With the latter objective in mind, in this paper, we focus on iterative regularization.
This class of methods, originated in a series of work in the mid-eighties (Nemirovskii, 1986;
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Polyak, 1987), is based on the observation that early termination of an iterative optimiza-
tion scheme applied to empirical data has a regularization effect. A critical implication
of this fact is that the number of iterations serves as a regularization parameter, hence
linking modeling and computational aspects: computational resources are directly linked to
the generalization properties in the data, rather than their raw amount. Further, iterative
regularization algorithms have a built-in “warm restart” property which allows to compute
automatically a whole sequence of solutions corresponding to different levels of regular-
ization (the regularization path). This latter property is especially relevant to efficiently
determine the appropriate regularization level via model selection.

Iterative regularization techniques are well known in solving inverse problems, where
several variants have been studied, see Engl et al. (1996); Kaltenbacher et al. (2008) and
references therein. In machine learning, iterative regularization is often simply referred
to as early stopping and is a well known “trick”, for example in training neural networks
(LeCun et al., 1998). Theoretical studies of iterative regularization in machine learning
have mostly focused on the least square loss function (Buhlmann and Yu, 2003; Yao et
al., 2007; Bauer et al., 2007; Blanchard and Nicole, 2010; Raskutti et al., 2014). Indeed,
it is in this latter case that the connection to inverse problems can be made precise (De
Vito et al., 2005). Interestingly, early stopping with the square loss has been shown to be
related to boosting (Buhlmann and Yu, 2003) and also to be a special case of a large class
of regularization approaches based on spectral filtering (Gerfo et al., 2008; Bauer et al.,
2007). The regularizing effect of early stopping for loss functions other than the square loss
has hardly been studied. Indeed, to the best of our knowledge the only papers considering
related ideas are Bartlett and Traskin (2007); Bickel et al. (2006); Jiang (2004); Zhang and
Yu (2005), where early stopping is studied in the context of boosting algorithms.

This paper is a different step towards understanding how early stopping can be employed
with general convex loss functions. Within a statistical learning setting, we consider convex
loss functions and propose a new form of iterative regularization based on the subgradient
method, or the gradient descent if the loss is smooth. The resulting algorithms provide
iterative regularization alternatives to Support Vector Machines or regularized logistic re-
gression, and have built in the property of computing the whole regularization path. Our
primary contribution in this paper is theoretical. By integrating optimization and statistical
results, we establish consistency and non-asymptotic bounds quantifying the generalization
properties of the proposed method under standard regularity assumptions. Interestingly,
our study shows that considering the last iterate leads to essentially the same results as
considering averaging, or selecting of the “best” iterate, as typically done in subgradient
methods (Boyd and Vandenberghe, 2004). From a technical point of view, considering a
general convex loss requires different error decompositions than the square loss. Moreover,
operator theoretic techniques and matrix concentration inequalities need to be replaced by
convex analysis and empirical process results. The error decomposition we consider, ac-
counts for the contribution of both optimization and statistics to the error, and could be
useful also for other methods.

The rest of the paper is organized as follows. We begin in Section 2 by briefly recall-
ing the supervised learning problem, and then introduce our learning algorithm, discussing
its numerical realization. In Section 3, after discussing the assumptions that underlie our
analysis, we present and discuss our main theorems and illustrate the general error decom-
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position which is composed of three error terms: computational, sample and approximation
error. In Section 4, we will estimate the computational error, while in Section 5, we develop
sample error bounds, and finally prove our main results.

2. Learning Algorithm

After briefly recalling the supervised learning problem, we introduce the algorithm we pro-
pose and give some comments on its numerical realization.

2.1 Problem Statement

In this paper we consider the problem of supervised learning. Let X be a separable metric
space, Y ⊆ R and let ρ be a Borel probability measure on Z = X × Y. Moreover, let
V : R × R → R+ be a so-called loss function, measuring the local error V (y, f(x)) for
(x, y) ∈ Z and f : X → R. The generalization error (or expected risk) E = EV associated
with V is given by

E(f) =

∫
Z
V (y, f(x))dρ,

and is well defined for any measurable loss function V and measurable function f . We
assume throughout that there exists a function fVρ that minimizes the expected error E(f)
among all measurable functions f : X → Y . Roughly speaking, the goal of learning is
to find an approximation of fVρ when the measure ρ is known only through a sample z =
{zi = (xi, yi)}mi=1 of size m ∈ N independently and identically drawn according to ρ. More
precisely, given z the goal is to design a computational procedure to efficiently estimate a
function fz, an estimator, for which it is possible to derive an explicitly probabilistic bound
on the excess expected risk

E(fz)− E(fVρ ).

We end this section with a remark and an example.

Remark 1 For several loss functions, it is possible to show that fVρ exists, see the example
below. However, as will be seen in the following, the search for an estimator in practice is
often restricted to some hypothesis space H of measurable functions. In this case one should
replace E(fVρ ) by inff∈H E(f). Interestingly, examples of hypothesis spaces are known for

which E(fVρ ) = inff∈H E(f), namely universal hypothesis spaces (Steinwart and Christmann,

2008). In the following, we consider E(fVρ ), with the understanding that it should be replaced
by the infimum over H, if the latter is not universal.

Example 1 The most classical example of loss function is probably the square loss V (y, a) =
(y − a)2, y, a ∈ R. In this case, fVρ is the regression function, defined at every point as the
expectation of the conditional distribution of y given x (Cucker and Zhou, 2007; Steinwart
and Christmann, 2008). Further examples include the absolute value loss V (y, a) = |y − a|
for which fVρ is the median of the conditional distribution and more generally p-loss func-
tions V (y, a) = |y − a|p, p ∈ N 1. Vapnik’s ε-insensitive loss V (y, a) = max{|y − a| − ε, 0},
ε > 0 and its generalizations V (y, a) = max{|y − a|p − ε, 0}, ε > 0, p > 1 provide yet other

1. We denote the set of positive integers by N.
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examples. For classification, i.e., Y = {±1}, other examples of loss functions used include
the hinge loss V (y, a) = max{1 − ya, 0} , the logistic loss V (y, a) = log(1 + e−ya) and the
exponential loss V (y, a) = e−ya. For all these examples fVρ can be characterized, see for
example Steinwart and Christmann (2008), and its measurability is easy to check.

2.2 Learning via Subgradient Methods with Early Stopping

To present the proposed learning algorithm we need a few preliminary definitions. Consider
a reproducing kernel K : X ×X → R, that is a symmetric function, such that the matrix
(K(ui, uj))

`
i,j=1 is positive semidefinite for any finite set of points {ui}`i=1 in X. Recall that a

reproducing kernel K defines a reproducing kernel Hilbert space (RKHS) (HK , ‖·‖K) as the
completion of the linear span of the set {Kx(·) := K(x, ·) : x ∈ X} with respect to the inner
product 〈Kx,Ku〉K := K(x, u), x, u ∈ X (Aronszajn, 1950). Moreover, assume the loss
function V to be measurable and convex in its second argument, so that the corresponding
left derivative V ′− exists and is non-decreasing at every point.

For a stepsize sequence {ηt > 0}, a stopping iteration T > 2 and an initial value f1 = 0,
we consider the iteration

ft+1 = ft − ηt
1

m

m∑
j=1

V ′−(yj , ft(xj))Kxj , t = 1, . . . , T. (1)

The above iteration corresponds to the subgradient method (Bertsekas, 1999; Boyd et al.,
2003) for minimizing the empirical error Ez = EVz with respect to the loss V , which is given
by

Ez(f) =
1

m

m∑
j=1

V (yj , f(xj)).

Indeed, it is easy to see that 1
m

∑m
j=1 V

′
−(yj , f(xj))Kxj ∈ ∂Ez(f), the subgradient of the

empirical risk for f ∈ HK . In the special case where the loss function is smooth, then
(1) reduces to the gradient descent algorithm. Since the subgradient method is not a
descent algorithm, rather then the last iterate, the so-called Cesáro mean is often considered,
corresponding, for T ∈ N, to the following weighted average

aT =

T∑
t=1

ωtft, ωt =
ηt∑T
t=1 ηt

, t = 1, . . . , T. (2)

Alternatively, the best iterate is also often considered, which is defined for T ∈ N by

bT = arg min
ft:t=1,··· ,T

Ez(ft). (3)

In what follows, we will consider the learning algorithms obtained with these different
choices.

We note that, classical results (Bertsekas, 1999; Boyd et al., 2003; Boyd and Vanden-
berghe, 2004) on the subgradient method focus on how the iteration (1) can be used to
minimize Ez. Different to these studies, in the following we are interested in showing how
iteration (1) can be used to define a statistical estimator, hence a learning algorithm to
minimize the expected risk E , rather than the empirical risk Ez. We add two remarks.
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Remark 2 (Early Stopping SVM and Kernel Perceptron) If we consider the hinge
loss function in (1), the corresponding algorithm is closely related to a batch (kernel) version
of the perceptron (Rosenblatt, 1962; Aizerman et al., 1964), where an entire pass over the
data is done before updating the solution. Such an algorithm can also be seen as an early
stopping version of Support Vector Machines (Cortes and Vapnik, 1995). Interestingly, in
this case the whole regularization path is computed incrementally albeit sparsity could be
lost.

Remark 3 (Multiple Passes SGD) In practice stochastic/incremental approaches are
often used. The latter correspond to considering the iteration

ft+1 = ft − ηtV ′−(yjt , ft(xjt))Kxjt
, t = 1, . . . , T.

given some initialization. Compared to (1) in the above expression the “batch” gradient
is replaced by a point-wise gradient. The sequence (jt)t defines the order in which points
are visited and can be stochastic. The obtained iteration is a form of stochastic gradi-
ent/subgradient method. When T > n the algorithm visits the point multiple times. Each
full pass over the data is called an epoch, or a cycle, and the obtained iteration corresponds
to a form of incremental gradient/subgradient. The analysis in the paper can be modified
to account for these iterations. However, to keep the paper self-contained we defer such an
analysis to a future paper.

2.3 Numerical Realization

The simplest case to derive a numerical procedure from Algorithm 1 is when X = Rd for
some d ∈ N and K is the associated inner product. In this case it is straightforward to see
that ft+1(x) = w>t+1x for all x ∈ X, with w1 = 0d×1 ∈ Rd and

wt+1 = wt − ηt
1

m

m∑
j=1

V ′−(yj , w
>
t xj)xj , t = 1, . . . , T.

Here, wt ∈ Rd for all t. Beyond the linear kernel, it can be easily seen that given a finite
dictionary

{φi : X → R, i = 1, . . . , p}, p ∈ N,

one can consider the kernel K(x, x′) =
∑p

i=1 φi(x
′)φi(x). In this case, it holds ft+1(x) =∑p

i=1w
i
t+1φi(x) = w>t+1Φ(x), Φ(x) = (φ1(x), . . . , φp(x))> for all x ∈ X, with w1 = 0p×1 ∈

Rp and

wt+1 = wt − ηt
1

m

m∑
j=1

V ′−(yj , w
>
t Φ(xj))Φ(xj), t = 1, . . . , T.

Finally, for a general kernel it is easy to prove by induction that ft+1(x) =
∑m

j=1 c
j
t+1K(x, xj)

for all x ∈ X, with

ct+1 = ct − ηt
1

m
gt, t = 1, . . . , T,

for c1 = 0m×1 ∈ Rm and gt ∈ Rm with its i-th component git = V ′−(yi,
∑m

j=1 c
j
tK(xi, xj)),∀i =

1, · · · ,m. Here, ct = (c1t , · · · , cmt )> for t ∈ N. Indeed, the base case is straightforward to
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check and moreover by the inductive hypothesis

ft+1 =

m∑
j=1

cjtKxj − ηt
1

m

m∑
j=1

V ′−(yj , ft(xj))Kxj =

m∑
j=1

Kxj

(
cjt − ηt

1

m
V ′−(yj , ft(xj))

)
.

3. Main Results with Discussions

After presenting our main assumptions, in this section we state and discuss our main results.

3.1 Assumptions

Our results will be stated under several conditions on the triplet (ρ, V,K), that we describe
and comment next. We begin with a basic assumption.

Assumption 1 We assume the kernel to be bounded, that is κ = supx∈X
√
K(x, x) < ∞.

Moreover ‖fVρ ‖∞ < ∞ and |V |0 := supy∈Y V (y, 0) < ∞. Furthermore, we consider the
following growth condition for the left derivative V ′−(y, ·). For some q ≥ 0 and constant
cq > 0, it holds, ∣∣V ′−(y, a)

∣∣ ≤ cq(1 + |a|q), ∀a ∈ R, y ∈ Y. (4)

The boundedness conditions on K, fVρ and V are fairly common (Cucker and Zhou, 2007;
Steinwart and Christmann, 2008). They could probably be weakened by considering a more
involved analysis which is outside the scope of this paper. Interestingly, the growth condition
on the left derivative of V is weaker than assuming the loss, or its gradient, to be Lipschitz
in its second entry which is standard both in learning theory (Cucker and Zhou, 2007;
Steinwart and Christmann, 2008) and in optimization (Boyd and Vandenberghe, 2004). We
note that the growth condition (4) is implied by the requirement for the loss function to
be Nemitski when Y is bounded, as introduced in De Vito et al. (2004) (see also Steinwart
and Christmann, 2008). This latter condition, which is satisfied by most loss functions, is
natural to provide variational characterizations of the learning problem.

The second assumption refines the above boundedness condition by considering a variance-
expectation bound which quantifies the noise (level) in the measure ρ with respect to balls
in the RKHS BR = {f ∈ HK : ‖f‖K ≤ R}, R > 0 (Cucker and Zhou, 2007; Steinwart and
Christmann, 2008).

Assumption 2 We assume that there exists an exponent τ ∈ [0, 1] and a positive constant
cτ such that for any R ≥ 1 and f ∈ BR, we have∫

Z

{(
V (y, f(x))− V (y, fVρ (x)

)2}
dρ ≤ cτR2+q−τ {E(f)− E(fVρ )

}τ
. (5)

Assumption 2 always holds true for the square loss with q = τ = 1, the hinge loss with
q = τ = 0, and more generally for Lipschitz loss functions with τ = 0 and cτ depending
on ‖fVρ ‖∞. In classification, the above condition can be related to the so-called Tsybakov
margin condition. The latter quantifies the intuition that a classification problem is hard if
the conditional probability of y given x is close to 1/2 for many input points. More precisely
if we denote by ρ(y|x) the conditional probability for all (x, y) ∈ Z and by ρX the marginal
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probability on X, then we say that ρ satisfies the Tsybakov margin condition with exponent
s if there exists a constant C > 0 such that for all δ > 0

ρX({x ∈ X : |ρ(1|x)− 1

2
| ≤ δ}) ≤ (Cδ)s.

Interestingly, under the Tsybakov margin condition, Assumption 2 holds for the hinge loss
with τ = s

s+1 and cτ depending only on C.
The third condition is about the decay of the approximation error (Smale and Zhou,

2003).

Assumption 3 Let λ > 0 and fλ be a minimizer of:

fλ := arg min
f∈HK

E(f) + λ‖f‖2K . (6)

The approximation error associated with the triplet (ρ, V,K) is defined by

D(λ) = E(fλ)− E(fVρ ) + λ‖fλ‖2K . (7)

We assume that for some β ∈ (0, 1] and cβ > 0, the approximation error satisfies

D(λ) ≤ cβλβ, ∀ λ > 0. (8)

The above assumption is standard when analyzing regularized empirical risk minimization
schemes and is related to the definition of interpolation spaces by means of K- functional
(Cucker and Zhou, 2007). Interestingly, we will see in the following that it is also important
when analyzing the approximation properties of the subgradient algorithm (1).

Finally, the last condition characterizes the capacity of a RKHSHK in terms of empirical
covering numbers, and plays an essential role in sample error estimates. Recall that for a
subset G of a metric space (H, d), the covering number N (G, ε, d) is defined by

N (G, ε, d) = inf

{
l ∈ N : ∃f1, f2, · · · , fl ⊂ H such that G ⊂

⋃̀
i=1

{f ∈ G : d(f, fi) ≤ ε}

}
.

Assumption 4 Let G be a set of functions on X. The metric d2,z is defined on G by

d2,z(f, g) =

{
1

m

m∑
i=1

(f(zi)− g(zi))
2

}1/2

, f, g ∈ G.

We assume that for some ζ ∈ (0, 2), cζ > 0, the covering number of the unit ball B1 in HK
with respect to d2,z satisfies

Ez [logN (B1, ε, d2,z))] ≤ cζ
(

1

ε

)ζ
, ∀ ε > 0. (9)

The smaller ζ, the more stringent is the capacity assumption. As ζ approaches 2 we are
essentially considering a capacity independent scenario, that is an arbitrary RKHS. In what
follows, we will briefly comment on the connection between the above assumption and

7



Lin, Rosasco and Zhou

other related assumptions. Recall that capacity of the RKHS may be measured by various
concepts: covering numbers of balls BR in HK , (dyadic) entropy numbers and decay of the
eigenvalues of the integral operator LK : L2

ρ → L2
ρ given by LK(f) =

∫
X f(x)KxdρX(x),

where L2
ρ = {f : X → R :

∫
|f(x)|2dρX(x) <∞}. For a subset G of a metric space (H, d),

the n-th entropy number is defined by

en(G, d) = inf

ε > 0 : ∃f1, f2, · · · , f2n−1 such that G ⊂
2n−1⋃
i=1

{f ∈ G : d(f, fi) ≤ ε}

 .

First, note that the covering and entropy numbers are equivalent (see for example Steinwart
and Christmann, 2008, Lemma 6.21). Indeed, for ζ > 0, the covering number N (G, ε, d)
satisfies

logN (G, ε, d) ≤ aζ
(

1

ε

)ζ
, ∀ε > 0,

for some aζ > 0, if and only if the entropy number en(G, d) satisfies

en(G, d) ≤ a′ζ
(

1

n

) 1
ζ

,

for some a′ζ > 0. Second, it is shown in Steinwart (2009) that if the eigenvalues of the
integral operator LK satisfy

λn ≤ ãζ
(

1

n

) 2
ζ

, n ≥ 1,

for some constants ãζ ≥ 1 and ζ ∈ (0, 2), then the expectation of the random entropy
number Ez[en (B1, d2,z)] satisfies

Ez[en (B1, d2,z)] ≤ aζ
(

1

n

) 1
ζ

, n ≥ 1,

for some constant aζ . Hence, using the equivalence of covering and entropy numbers,
Ez [logN (B1, ε, d2,z))] can be estimated from the eigenvalue decay of the integral opera-
tor LK . Finally, since d2,z(f, g) ≤ ‖f − g‖∞, one has that for any ε > 0, N (B1, ε, d2,z) is
bounded by N (B1, ε, ‖ · ‖∞) , the uniform covering number of B1 under the metric ‖ · ‖∞.
Thus, the covering number N (B1, ε, d2,z) can be also estimated given the uniform smooth-
ness of the kernel (Zhou, 2003).

3.2 Finite Sample Bounds for General Convex Loss Functions

Our main results, in Theorems 4, 7 and 8, provide general stopping rules and corresponding
upper bounds involving all the parameters defining the problem. These results are then
illustrated and discussed in a series of corollaries considering special cases that allow for
simpler statements, see in particular Corollary 6 in this subsection, Corollaries 9 and 10 in
Subsection 3.3, and Theorems 11 and 12 in Subsection 3.4.

The following is our main result providing a general finite sample bound for the iterative
regularization induced by the subgradient method for convex loss functions considering the
last iterate. Here, dxe denotes the smallest integer greater than or equal to x ∈ R.
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Theorem 4 Assume (4) with q ≥ 0, (5) with τ ∈ [0, 1], (8) with β ∈ (0, 1] and (9) with
ζ ∈ (0, 2). Let ηt = η1t

−θ with q
q+1 < θ < 1 and η1 satisfying

0 < η1 ≤ min

{ √
1− θ√

2cq(κ+ 1)q+1
,

1− θ
4|V |0

}
. (10)

If T = dmγe, then for any 0 < δ < 1, with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤

{
C̃m−α log 2

δ , when θ > q+1
q+2 ,

C̃m−α logm log 2
δ , when θ ≤ q+1

q+2 ,

where the power indices γ and α are defined as

γ =


2

1−θ
1

(1+2β)(2−τ+ζτ/2)+q(1+ζ/2) , when θ ≥ q+1
q+2 ,

2
1−θ

1(
1+

2β(θ(1+q)−q)
1−θ

)
(2−τ+ζτ/2)+q(1+ζ/2)

, when θ < q+1
q+2 ,

(11)

α =


β

β(2−τ+ζτ/2)+
{

2−τ+ζτ/2
2

+
q(1+ζ/2)

2

} , when θ ≥ q+1
q+2 ,

β

β(2−τ+ζτ/2)+ 1−θ
θ(1+q)−q

{
2−τ+ζτ/2

2
+
q(1+ζ/2)

2

} , when θ < q+1
q+2 ,

(12)

and C̃ is a positive constant independent of m or δ (given explicitly in the proof).

The proof is deferred to Section 5 and is based on a novel error decomposition, discussed
in Section 3.6, integrating statistical and optimization aspects. We begin illustrating the
above result for Lipschitz loss functions, that is considering q = 0, as follows.

Corollary 5 Assume (4) with q = 0, (9) with ζ ∈ (0, 2) and (8) with β ∈ (0, 1]. Let

ηt = η1t
−θ with 0 < θ < 1 and η1 satisfying 0 < η1 ≤ min

{ √
1−θ√

2cq(κ+1)
, 1−θ
4|V |0

}
. If T = dmγe,

then for any 0 < δ < 1, with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤

{
C̃m−α log 2

δ , when θ > 1
2 ,

C̃m−α logm log 2
δ , when θ ≤ 1

2 ,

where the power indices γ and α are defined as

γ =

{
2

(1−θ)(2β+1)(2−τ+ζτ/2) , when θ ≥ 1
2 ,

2
(1−θ+2βθ)(2−τ+ζτ/2) , when θ < 1

2 ,

α =

{
2β

(2β+1)(2−τ+ζτ/2) , when θ ≥ 1
2 ,

2θβ
(1−θ+2βθ)(2−τ+ζτ/2) , when θ < 1

2 ,

and C̃ is a positive constant independent of m or δ.

For Lipschitz loss functions, Assumption 2 always holds true for τ = 0. Also, if fVρ ∈ HK ,
then Assumption 3 holds for β = 1 and cβ ≤ ‖fVρ ‖2K . In this case, γ and α from the above
theorem are given by

γ = max

{
1

3(1− θ)
,

1

1 + θ

}
and α = min

{
1

3
,

θ

1 + θ

}
.

Setting θ = 1/2, we get the following result.
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Corollary 6 Assume (4) with q = 0, (9) with ζ ∈ (0, 2) and fVρ ∈ HK . Let ηt = η1t
−1/2

with η1 satisfying 0 < η1 ≤ min
{

1
2cq(κ+1) ,

1
8|V |0

}
. If T = dm2/3e, then for any 0 < δ < 1,

with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤ C̃m−1/3 logm log
2

δ
.

The above results give finite sample bounds on the excess risk, provided that a suitable
stopping rule is considered. While the stopping rule in the above theorems is distribution
dependent, a data-driven stopping rule can be given by hold-out cross validation and adap-
tively achieves the same bounds. The proof of this latter result is straightforward using
the techniques in Caponnetto and Yao (2010) and is omitted. The above bounds directly
yield strong consistency (almost sure convergence) using standard arguments. Interestingly,
our analysis suggests that a decaying stepsize needs to be chosen to achieve meaningful er-
ror bounds. The stepsize choice can influence both the early stopping rule and the error
bounds. More precisely, if the stepsize decreases fast enough, i.e., θ ≥ q+1

q+2 , the stopping rule
depends on the decay speed but the error bound does not. In this case, the best possible
choice for the early stopping rule is θ = q+1

q+2 , that is ηt ∼ 1/
√
t in the case of Lipschitz

loss functions. With this choice, if for example we take the limit β → 1, τ → 0, we have
that the stopping rule scales as O(m2/3) whereas the corresponding finite sample bounds
are of order O(m−1/3). A slower stepsize decay given by θ < q+1

q+2 affects both the stopping
rule and the error bounds, but these results are worse. A more detailed discussion of the
obtained bounds in comparison to other learning algorithms is postponed to Section 3.5.

To see how the number of passes and the decaying rate θ of stepsize affects the perfor-
mances of our algorithms, we carry out simple numerical simulations that complement the
above result. In Fig. 1 we consider simulated data, i.e. simple binary classification problem
where the input space is two dimensional. The training and test error as a function of the
number of iterations are reported for different stepsize values. In Fig. 2 we consider a real
benchmark data-set and again report the training and test error for different stepsize values.
The same qualitative behavior can be observed in simulated and real data. The empirical
error decreases as a function of the number of iterations while the expected (test) error as
a minimum. The effect is more evident when the stepsize choice is more aggressive, that is
for θ close to zero.

Next we discuss the behavior of different variants of the proposed algorithm. As men-
tioned before, in the subgradient method, when the goal is empirical risk minimization, the
average or best iterates are often considered (see Equations (2), (3)). It is natural to ask
what are the properties of the estimator obtained with these latter choices, that is when
they are used as approximate minimizers of the expected, rather than the empirical risk.
The following theorem provides an answer.

Theorem 7 Under the assumptions of Theorem 4, if T = dmγe and gT = aT (or bT ) then
for any 0 < δ < 1, with confidence 1− δ, we have

E(gT )− E(fVρ ) ≤

{
Cm−α log 2

δ , when θ 6= q+1
q+2 ,

Cm−α logm log 2
δ , when θ = q+1

q+2 ,

where the power indices γ and α are defined as in Theorem 4 and C is a positive constant
independent of m or δ (can be given explicitly).

10
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Figure 1: Performance of Algorithm (1) for the last iterates applied to synthetic data in bi-
nary classification with different θ, setting η1 = 1, V (y, f) = max{1 − yf, 0}
and HK = R2. Samples for two classes are drawn from bivariate Gaussian
distributions. The parameters for the Gaussian distributions are µ1 = [2, 0]>,
Σ1 = [5, 3; 3, 5]/2 and µ−1 = −µ1, Σ−1 = Σ1. For each given θ, we run Algorithm
(1) 100 times for 100 independent training data, and calculate the correspond-
ing test errors for 100 independent test data. In each trial, both of the training
data and the test data are of 100. The errors averaged over these 100 trials are
depicted as the above.

The above result shows, perhaps surprisingly, that the behavior of the average or best
iterates is essentially the same as the last iterate. Indeed, there is only a subtle difference
between the upper bounds in Theorem 7 and those in Theorem 4, since the latter have an
extra logm factor when θ < q+1

q+2 .

In the next section, we consider the case where loss is not only convex but also smooth.

3.3 Finite Sample Bounds for Smooth Loss Functions

In this section, we additionally assume that V (y, ·) is differentiable and V ′(y, ·) is Lipschitz
continuous with constant L > 0, i.e., for any y ∈ Y and a, b ∈ R,

|V ′(y, b)− V ′(y, a)| ≤ L|b− a|.

For the logistic loss in binary classification (see Example 1), it is easy to prove that both
V (y, ·) and V ′(y, ·) are Lipschitz continuous with L = 1, for all y ∈ Y . With the above
smoothness assumption, we prove the following convergence result.

11
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Figure 2: Misclassification errors of Algorithm (1) for the last iterates applied to Adult
dataset with different values of θ, setting V (y, f) = max{1 − yf, 0}, K(x, x′) =

exp{−‖x−x
′‖22

2σ2 } and m = 1500. Here, σ is chosen as the median of the vector that
consists of all Euclidean distances between training input vectors with different
labels (Jaakkola et al., 1999). For each θ, η1 is tuned using a holdout method.

Theorem 8 Assume (4) with q ≥ 0, (5) with τ ∈ [0, 1], (8) with β ∈ (0, 1] and (9) with
ζ ∈ (0, 2). Assume that V (y, ·) is differentiable and V ′(y, ·) is Lipschitz continuous with
constant L > 0. Let ηt = η1t

−θ with 0 ≤ θ < 1 and 0 < η1 ≤ min( 1−θ
2|V |0 , (Lκ

2)−1). If

T = dmγe, then for any 0 < δ < 1, with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤ C̃m−α log
2

δ
,

where the power indices γ and α are defined as

γ =
2

1− θ
1

(1 + 2β) (2− τ + ζτ/2) + q(1 + ζ/2)
,

α =
β

β(2− τ + ζτ/2) +
{

2−τ+ζτ/2
2 + q(1+ζ/2)

2

} ,
and C̃ is a positive constant independent of m or δ.

The proof of this result will be given in Section 5. We can simplify the result by considering
Lipschitz loss function (q = 0) and setting τ = 0.

Corollary 9 Under the assumptions of Theorem 8, let q = 0. If T = dm
1

(1−θ)(2β+1) e, then
for any 0 < δ < 1, with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤ C̃m−
β

2β+1 log
2

δ
,

where C̃ is a positive constant independent of m or δ.

The finite sample bound obtained above is essentially the same as the best possible bound
obtained for general convex loss functions. However, the important difference is that for

12
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smooth loss functions, a constant stepsize can be chosen and allows to considerably improve
the stopping rule. Indeed, if for example we can consider the limit β → 1, τ → 0, we have
that the stopping is O(m1/3), rather than O(m2/3), whereas the corresponding finite sample
bound is again O(m−1/3).

A similar simplification can be done for the square loss. Here, as mentioned in Example
1, fVρ is the regression function fρ, and there holds E(f) − E(fρ) = ‖f − fρ‖2L2

ρX

. In this

case, Assumption 2 holds true for τ = 1 and cτ = 1, and condition (8) can be characterized

by requiring that fρ ∈ Lβ/2K (L2
ρX

) (Smale and Zhou, 2003; Caponnetto and De Vito, 2007),

where L
β/2
K is the β

2 -th power of the positive operator LK .

Corollary 10 Let V (y, a) = (y − a)2 and |y| ≤ |V |0 < ∞ almost surely. Assume fρ ∈
L
β/2
K (L2

ρX
) with β ∈ (0, 1] and (9) with ζ ∈ (0, 2). Let ηt = η1t

−θ with 0 ≤ θ < 1 and

0 < η1 ≤ min( 1−θ
2|V |0 , κ

−2). If T = dm
2

(1−θ)(β+1)(ζ+2) e, then for any 0 < δ < 1, with confidence
1− δ, we have

‖fT − fρ‖2L2
ρX
≤ C̃m−

2β
(β+1)(ζ+2) log

2

δ
.

In particular, if fρ ∈ HK ,

‖fT − fρ‖2L2
ρX
≤ C̃m−

1
ζ+2 log

2

δ
.

Before comparing our bounds with obtained with other algorithms we last specialize our
results to a binary classification setting.

3.4 Iterative Regularization for Classification: Surrogate Loss Functions and
Hinge Loss

We briefly discuss how the above results allow to derive error bounds in binary classification
problems. In this latter case Y = {1,−1} and a natural choice for the loss function is the
misclassification loss given by

V (y, b(x)) = Θ (−yb(x)) (13)

for b : X → Y and Θ(a) = 1, if a ≥ 0, and Θ(a) = 0 otherwise. The corresponding
generalization error, denoted byR, is called misclassification risk, since it can be shown to be
the probability of the event {(x, y) ∈ Z : y 6= b(x)}. The minimizer of the misclassification
error is the Bayes rule bρ : X → Y given by

bρ(x) =

{
1, if the conditional probability ρ(1|x) ≥ 1/2,
−1, otherwise.

The misclassification loss (13) is neither convex nor smooth and thus leads to computa-
tionally intractable problems. In practice, a convex (so-called surrogate) loss function is
typically considered and a classifier is obtained by estimating a real function f and then
taking its sign defined as

sign(f)(x) =

{
1, if f(x) ≥ 0,
−1, otherwise.

13
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The question arises of if, and how, error bounds on the excess risk E(f) − E(fVρ ) yields
results on R(signf) − R(bρ). Indeed, the so-called comparison results are known relating
these different error measures, see for example Cucker and Zhou (2007); Steinwart and
Christmann (2008) and references therein. We discuss in particular the case of the hinge
loss function (see Example 1). In this case for all measurable functions f it holds that

R(signf)−R(bρ) ≤ E(f)− E(fVρ ).

Indeed, the hinge loss satisfies Assumption (4) with q = 0 and, under Tsybakov noise
condition, Assumption (5). Misclassification error bound, for iterative regularization with
the hinge loss, can then be obtained as a corollary of Theorem 4.

Theorem 11 Let Y = {1,−1} and V be the hinge loss. Let 0 < ε < 1
3 and (8) be satisfied

with β ∈ (0, 1]. Let ηt = η1t
−θ with θ > 1/2 and 0 < η1 ≤ min

{√
(1−θ)√
2(κ+1)

, 1−θ4

}
. If (9) is

valid with ζ ∈ (0, 2) and T = dm
1

(1−θ)(2β+1) e, then with confidence 1− δ, we have

R (sign(fT ))−R(fc) ≤ C̃m−
β

2β+1 log
2

δ
. (14)

In particular, if β > 1−3ε
1+6ε with ε ∈ (0, 1/3), then with confidence 1− δ,

R (sign(fT ))−R(fc) ≤ C̃mε− 1
3 log

2

δ
.

The proof of the above result is given in Section 5, and comments on the obtained rates are
given in the next section.

We end noting that, as illustrated by the next result where the stopping rule is kept
fixed while the stepsize is chosen in a distribution dependent way. This observation is made
precise by the following result.

Theorem 12 Let Y = {1,−1} and V be the hinge loss. Let 0 < ε < 1
3 and (8) is

satisfied with 1 > β > 4−3ε
4+6ε . Let ηt = η1t

−θ with θ = 4β−1+3ε(2β+1)
(2β+1)(2+3ε) and 0 < η1 ≤

min

{√
2(1−θ)
κ+1 , 1−θ4

}
. If (9) is valid with ζ ∈ (0, 2) and T = dm

2
3
+εe, then with confidence

1− δ, we have

R (sign(fT ))−R(fc) ≤ C̃m
ε
4
− 1

3 log
2

δ
.

3.5 Comparison with Other Learning Algorithms

As mentioned before iterative regularization has nice computational properties. The algo-
rithm reduces to a simple first order method with low iteration cost and allows to easily
compute the estimators corresponding to different regularization level (the regularization
path), a crucial fact since model selection needs to be performed. In this view, the proposed
procedure can be compared with standard approaches for example based on considering
Support Vector Machines (SVM) or online variants such as Pegasos. In the former case,
in principle a quadratic programming problem need to be solved for each regularization
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parameter values. Our approach can be compared to more sophisticated approaches to
compute the full SVM regularization path. In the latter case, the main difference is that in
iterative regularization the early stopping rule is explicitly linked to the regularization level
and in practice can be chosen by cross validation.

It is natural to compare the obtained statistical bounds with those for other learning
algorithms. For general convex loss functions, the methods for which sharp bounds are
available, are penalized empirical risk minimization (Tikhonov regularization), i.e.

fz,λ = arg min
f∈HK

{
Ez(f) + λ‖f‖2K

}
, λ > 0,

see for example Cucker and Zhou (2007); Steinwart and Christmann (2008) and references
therein. The best error bounds for Tikhonov regularization with Lipschitz loss functions,
see for example Steinwart and Christmann (2008, Chapter 7), are of order O(m−α

′
) with

α′ = min

{
2β

β + 1
,

β

(2− ζ/2− τ + τζ/2)β + ζ/2

}
,

which reduces to

α′ =
β

β + 1

in the capacity independent limit (ζ → 2). From Corollary 5 for Lipschitz loss functions,
we see that the bounds we obtain are of order O(m−α) with the exponent

α =
2β

(2β + 1)(2− τ + ζτ/2)
,

reducing to

α =
β

2β + 1

in the capacity independent limit. Hence, the obtained bounds are worse than the best
ones available for Tikhonov regularization. However, the analysis of the latter does not
take into account the optimization error and it is still an open question whether the best
rate is preserved when such an error is incorporated. At this point we believe this gap to
be a byproduct of our analysis rather than a fundamental fact, and addressing this point
should be a subject of further work. Moreover, we note that our analysis allows to derive
error bound for all Nemitski loss functions rather than only Lipschiz loss functions.

Beyond Tikhnov regularization, we can compare with the online regularization scheme
for the hinge loss. The online learning algorithms with a regularization sequence {λt > 0}t
defined by

ft+1 =

{
(1− ηtλt)ft, if ytft(xt) > 1,
(1− ηtλt)ft + ηtytKxt , if ytft(xt) ≤ 1.

(15)

were studied in Ying and Zhou (2006); Ye and Zhou (2007). Our results improve the results
in Ying and Zhou (2006); Ye and Zhou (2007) in two aspects. The bound obtained in

Ying and Zhou (2006) is of the form O(T ε−
1
4 ) while the bound in Theorem 12 is of type

O(T
9
8
ε− 1

2 ) by substituting the expression m
2
3
+ε for T . Moreover, our results are with high

probability and promptly yield almost sure convergence whereas the results in Ying and
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Zhou (2006) are only in expectation. We note that, interestingly, sharp bounds for Lipschitz
loss functions are derived in Orabona (2014), although the obtained results do not take into
account the capacity and variance assumptions that could lead to large improvements.

We next compare with the previous results on iterative regularization. The main results
available thus far have been obtained for the square loss, for which bounds have been first de-
rived for gradient descent in Buhlmann and Yu (2003), but only for a fixed design regression
setting, and in Yao et al. (2007) for a general statistical learning setting. While the bounds
in Yao et al. (2007) are suboptimal, they have later been improved in Bauer et al. (2007);
Caponnetto and Yao (2010); Raskutti et al. (2014). Interestingly, sharp error bounds have
also been proved for iterative regularization induced by other, potentially faster, iterative
techniques, including incremental gradient (Rosasco and Villa, 2014), conjugate gradient
(Blanchard and Nicole, 2010) and the so-called ν-method (Bauer et al., 2007; Caponnetto
and Yao, 2010), an accelerated gradient descent technique related to Chebyshev method

(Engl et al., 1996). The best obtained bounds are of order O(m
− 2β

2β+ζ ) and can be shown
to be optimal since they match the corresponding minimax lower bound (Caponnetto and
De Vito, 2007). The bound obtained in Corollary 10 holds for all smooth Nemitski loss

functions but is of order O(m
− 2β

(2+ζ)(β+1) ), which is worse. In the capacity independent limit,

the best available bound we obtain is of order O(m
− β

2(β+1) ), whereas the optimal bound is

of order O(m
− β
β+1 ). Also, in this case, the reason for the gap appears to be of technical

reason and should be further studied.

Finally, before giving the detailed proofs, in the next subsection, we discuss the gen-
eral error decomposition underlying our approach, which highlights the interplay between
statistics and optimization and could be also useful in other contexts.

3.6 Error Decomposition

Theorems 4 and 8 rely on a natural error decomposition that we derive next. The goal is
to estimate the excess risk E(fT ) − E(fVρ ), and the starting point is to split the error by
introducing a reference function f∗ ∈ HK ,

E(fT )− E(fVρ ) = E(fT )− E(f∗) + E(f∗)− E(fVρ ). (16)

The above equation can be further developed by considering

E(fT )−E(fVρ ) = (Ez(fT )− Ez(f∗)) + (E(fT )− Ez(fT ) + Ez(f∗)− E(f∗)) +
(
E(f∗)− E(fVρ )

)
.

(17)
Inspection of the above expression provides several insights. The first term is a compu-
tational error related to optimization. It quantifies the discrepancy between the empirical
errors of the iterate defined by the subgradient method and that of the reference function.
The second term is a sample error and can be studied using empirical process theory, pro-
vided that a bound on the norm of the iterates (and of the reference function) is available.
Indeed, to get a sharper concentration estimate recentering can be considered (Cucker and
Zhou, 2007; Steinwart and Christmann, 2008){(

E(fT )− E(fVρ )
)
−
(
Ez(fT )− Ez(fVρ )

)}
+
{(
Ez(f∗)− Ez(fVρ )

)
−
(
E(f∗)− E(fVρ )

)}
.
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Note that the second addend can be negative so that we effectively only need to control

Fz(f∗) = max
{

(Ez(f∗)− Ez(fVρ ))− (E(f∗)− E(fVρ )), 0
}
. (18)

Finally the last term suggests that a natural choice for the reference function is an almost
minimizer of the expected risk, having bounded norm, and for which the approximation
level can be quantified. While there is a certain degree of freedom in the latter choice, in
the following we will consider f∗ = fλ, the minimizer of (6). With this latter choice we can
control

A(f∗) = E(f∗)− E(fVρ )

by D(λ) given in Assumption 3.

Collecting some of the above observations, we have the following lemma.

Lemma 13 For f∗ ∈ HK , we have

E(fT )− E(fVρ )

≤
{(
E(fT )− E(fVρ )

)
−
(
Ez(fT )− Ez(fVρ )

)
+ Fz(f∗)

}
+ (Ez(fT )− Ez(f∗)) +A(f∗).

(19)

In the next sections, we proceed estimating the various error terms in the above error
decomposition. We will first deal with the computational error, the analysis of which is
the main technical contribution of the paper and then proceed to consider the sample and
approximation error terms. The best stopping criterion and corresponding rates are derived
by suitably balancing these different error terms.

4. Computational Error

In this section, we will bound the iterates and estimate the computational error from
Lemma 13.

4.1 Bounds on Iterates

We introduce the following key lemma, which will be used several times in our analysis.

Lemma 14 For any fixed f ∈ HK and t = 1, . . . , T ,

‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t + 2ηt[Ez(f)− Ez(ft)], (20)

where

G2
t =

∥∥∥∥∥∥ 1

m

m∑
j=1

V ′−(yj , ft(xj))Kxj

∥∥∥∥∥∥
2

K

≤ c2q(κ+ 1)2q+2 max
{

1, ‖ft‖2qK
}
. (21)

Proof Computing inner product 〈ft+1 − f, ft+1 − f〉K with ft+1 given by (1) yields

‖ft+1 − f‖2K = ‖ft − f‖2K + η2tG
2
t +

2ηt
m

m∑
j=1

V ′−(yj , ft(xj))
〈
Kxj , f − ft

〉
K
.

17
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Using the reproducing property

f(x) = 〈f,Kx〉K , ∀f ∈ HK , x ∈ X, (22)

and Assumption 1, we get

‖f‖∞ ≤ κ‖f‖K , ∀f ∈ HK , (23)

and

‖ft+1 − f‖2K = ‖ft − f‖2K + η2tG
2
t +

2ηt
m

m∑
j=1

V ′−(yj , ft(xj))(f(xj)− ft(xj)). (24)

Since V (yj , ·) is a convex function, we have

V ′−(yj , a)(b− a) ≤ V (yj , b)− V (yj , a), ∀a, b ∈ R.

Using this expression to (24) gives

‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t +

2ηt
m

m∑
j=1

[V (yj , f(xj))− V (yj , ft(xj))] ,

where the last term is exactly 2ηt[Ez(f)− Ez(ft)].
By (4), (23), and the observation ‖Kxj‖K =

√
K(xj , xj) ≤ κ, we find

Gt =

∥∥∥∥∥∥ 1

m

m∑
j=1

V ′−(yj , ft(xj))Kxj

∥∥∥∥∥∥
K

≤ κ

m

m∑
j=1

∣∣V ′−(yj , ft(xj))
∣∣

≤ κ

m

m∑
j=1

cq(1 + |ft(xj)|q) ≤ κcq(1 + κq‖ft‖qK),

and the desired bound follows.

Using the above lemma, we can bound the iterated sequence as follows.

Lemma 15 Let 0 ≤ θ < 1 satisfying θ ≥ q
q+1 and ηt = η1t

−θ with η1 satisfying (10). Then
for t = 1, . . . , T ,

‖ft+1‖K ≤ t
1−θ
2 . (25)

Proof We prove our statement by induction. Taking f = 0 in Lemma 14, we know that

‖ft+1‖2K ≤ ‖ft‖2K + η2tG
2
t + 2ηt[Ez(0)− Ez(ft)] ≤ ‖ft‖2K + η2tG

2
t + 2ηt|V |0.

This verifies (25) for the case t = 1 since f1 = 0 and η21c
2
q(κ+ 1)2q+2 + 2η1|V |0 ≤ 1.

Assume ‖ft‖K ≤ (t− 1)
1−θ
2 with t ≥ 2. Then

G2
t ≤ c2q(κ+ 1)2q+2(t− 1)(1−θ)q.
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Hence,

‖ft+1‖2K ≤ (t− 1)1−θ + η21t
−2θc2q(κ+ 1)2q+2t(1−θ)q + 2η1t

−θ|V |0

≤ t1−θ

{(
1− 1

t

)1−θ
+
η21c

2
q(κ+ 1)2q+2

t(q+1)θ+1−q +
2η1|V |0

t

}
.

Since
(
1− 1

t

)1−θ ≤ 1− 1−θ
t and the condition θ ≥ q

q+1 implies (q+ 1)θ+ 1− q ≥ 1, we have

‖ft+1‖2K ≤ t1−θ
{

1− 1− θ
t

+
η21c

2
q(κ+ 1)2q+2

t
+

2η1|V |0
t

}
.

Finally we use the restriction (10) for η1 and find ‖ft+1‖2K ≤ t1−θ. This completes the
induction procedure and proves our conclusion.

By taking f = ft in (20), we see the following estimate for ‖ft+1 − ft‖K from Lemmas
14 and 15.

Corollary 16 Under the assumptions of Lemma 15, we have for t = 1, . . . , T ,

‖ft+1 − ft‖K ≤ η1cq(κ+ 1)q+1t
(1−θ)q

2
−θ. (26)

Observe from the restriction θ ≥ q
q+1 in Lemma 15 that the power index in (26) satisfies

(1−θ)q
2 − θ ≤ − q

2(q+1) ≤ 0.

4.2 Computational Error for the Last Iterate

In this subsection, we estimate the computational error Ez(fT ) − Ez(f∗) for an arbitrary
f∗ ∈ HK . Some ideas for estimating the average error in our proof are taken from Boyd et
al. (2003); Shamir and Zhang (2013).

Lemma 17 Assume (4) with q ≥ 0. Let f∗ ∈ HK . If ηt = η1t
−θ with 0 < θ < 1 satisfying

θ > q
q+1 and η1 satisfying (10), then we have

Ez(fT )− Ez(f∗) ≤
(
‖f∗‖2K

2η1
+ C̃1

)
ΛT,θ

+
T θ

2η1

T−1∑
k=1

1

k + 1

[
1

k

T∑
t=T−k+1

2ηt − 2ηT−k

]
{Ez(fT−k)− Ez(f∗)} , (27)

where ΛT,θ is defined by

ΛT,θ =


1

(q+2)θ−(q+1)T
−(1−θ), when θ > q+1

q+2 ,

(log T )T−(1−θ), when θ = q+1
q+2 ,

1
(q+1)−(q+2)θ (log T )T−(θ(1+q)−q), when θ < q+1

q+2 ,

(28)

and C̃1 is a positive constant depending on q, κ, θ (independent of T,m or f∗ and given
explicitly in the proof).
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Proof Lemma 14 plays a key role in our proof. In particular, we shall apply the following
equivalent form of inequality (20) from Lemma 14 several times with various choices of
f ∈ HK :

2ηt [Ez(ft)− Ez(f)] ≤
{
‖ft − f‖2K − ‖ft+1 − f‖2K

}
+ η2tG

2
t . (29)

Step 1: Error decomposition. Decompose the weighted empirical error 2ηTEz(fT ) as

2ηTEz(fT ) =
1

2
{2ηTEz(fT ) + 2ηT−1Ez(fT−1)}

+
1

2
2ηT {Ez(fT )− Ez(fT−1)}+

1

2
{2ηT − 2ηT−1} Ez(fT−1)

=
1

3
{2ηTEz(fT ) + 2ηT−1Ez(fT−1) + 2ηT−2Ez(fT−2)}

+
1

2× 3
{2ηT [Ez(fT )− Ez(fT−2)] + 2ηT−1 [Ez(fT−1)− Ez(fT−2)]}

+
1

2
2ηT {Ez(fT )− Ez(fT−1)}+

1

2
{2ηT − 2ηT−1} Ez(fT−1)

+
1

2× 3
{[2ηT − 2ηT−2] + [2ηT−1 − 2ηT−2]} Ez(fT−2).

Repeating the above process by means of the decomposition

1

k

k−1∑
j=0

2ηT−jEz(fT−j) =
1

k + 1

k∑
j=0

2ηT−jEz(fT−j)

+
1

k(k + 1)

k−1∑
j=0

2ηT−j {Ez(fT−j)− Ez(fT−k)}+
1

k(k + 1)

k−1∑
j=0

{2ηT−j − 2ηT−k} Ez(fT−k)

with k = 3, . . . , T − 1, we know that

2ηTEz(fT ) =
1

T

T−1∑
j=0

2ηT−jEz(fT−j) +
T−1∑
k=1

1

k(k + 1)

k−1∑
j=0

2ηT−j {Ez(fT−j)− Ez(fT−k)}

+
T−1∑
k=1

1

k(k + 1)

k−1∑
j=0

{2ηT−j − 2ηT−k} Ez(fT−k).

Applying the same process to the sequence {2ηtEz(f∗)}Tt=1 yields

2ηTEz(f∗) =
1

T

T−1∑
j=0

2ηT−jEz(f∗) +

T−1∑
k=1

1

k(k + 1)

k−1∑
j=0

{2ηT−j − 2ηT−k} Ez(f∗).
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Hence the following error decomposition holds true:

2ηT {Ez(fT )− Ez(f∗)} =
1

T

T∑
t=1

2ηt {Ez(ft)− Ez(f∗)}

+
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)}

+
T−1∑
k=1

1

k + 1

[
1

k

T∑
t=T−k+1

2ηt − 2ηT−k

]
{Ez(fT−k)− Ez(f∗)} .

(30)

Step 2: Average error in the first term of (30). Choosing f = f∗ in (29) and taking
summation over t = 1, . . . , T together with (21) and Lemma 15 yield

T∑
t=1

2ηt {Ez(ft)− Ez(f∗)} ≤ ‖f1 − f∗‖2K − ‖fT+1 − f∗‖2K +
T∑
t=1

η2tG
2
t

≤ ‖f∗‖2K +
T∑
t=1

η21c
2
q(κ+ 1)2q+2tq(1−θ)−2θ.

Since 1 > θ > q
q+1 , we find −2 < q(1 − θ) − 2θ < 0. Moreover, q(1 − θ) − 2θ < −1 if and

only if θ > q+1
q+2 . The following bound for the first term of (30) then follows

1

T

T∑
t=1

2ηt {Ez(ft)− Ez(f∗)}

≤


(
‖f∗‖2K + Cq,κ

(2+q)θ−q
(2+q)θ−q−1

)
T−1, when θ > q+1

q+2 ,(
‖f∗‖2K + 2Cq,κ

)
(log T )T−1, when θ = q+1

q+2 ,(
‖f∗‖2K + Cq,κ

2
q+1−(2+q)θ

)
T q−(2+q)θ, when θ < q+1

q+2 ,

where Cq,κ is the constant given by

Cq,κ = η21c
2
q(κ+ 1)2q+2.

Step 3: Moving average error in the second term of (30). Let k ∈ {1, . . . , T − 1}.
Choosing f = fT−k in (29) and taking summation over t = T − k + 1, . . . , T yield

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)} ≤ ‖fT−k+1 − fT−k‖2K +
T∑

t=T−k+1

η2tG
2
t

By Corollary 16,

‖fT−k+1 − fT−k‖2K ≤ η21c2q(κ+ 1)2(q+1)(T − k)(1−θ)q−2θ.

This bound is the term with t = T − k+ 1 of the following estimate which is a consequence
of Lemma 15

T∑
t=T−k+1

η2tG
2
t ≤

T∑
t=T−k+1

η21c
2
q(κ+ 1)2q+2tq(1−θ)−2θ.
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Hence

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)} ≤ Cq,κ
T∑

t=T−k
tq(1−θ)−2θ = Cq,κ

T∑
t=T−k

t−q
∗
,

where we denote q∗ = 2θ − q(1 − θ). We know that 0 < q∗ < 2 and q∗ = 1 when θ = q+1
q+2 .

So
T∑

t=T−k+1

t−q
∗ ≤

∫ T

T−k
x−q

∗
dx ≤

{
T 1−q∗−(T−k)1−q∗

1−q∗ , when θ 6= q+1
q+2 ,

log T
T−k , when θ = q+1

q+2 .

When θ < q+1
q+2 , we have q∗ < 1 and for k ≤ T

2 , we see from the mean value theorem that

T 1−q∗ − (T − k)1−q
∗

1− q∗
= T 1−q∗ 1− (1− k

T )1−q
∗

1− q∗
≤ T 1−q∗ (1− q∗)(1− k

T )−q
∗ k
T

1− q∗

which is exactly (T − k)−q
∗
k. Thus,

T∑
t=T−k

t−q
∗ ≤ (T − k)−q

∗
k + (T − k)−q

∗ ≤ 2k(T − k)−q
∗ ≤ 2 · 2q∗T−q∗k.

For k ≥ T
2 ,

T∑
t=T−k

t−q
∗ ≤ T 1−q∗ − (T − k)1−q

∗

1− q∗
+ (T − k)−q

∗ ≤ T 1−q∗

1− q∗
.

It follows that

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)}

≤ Cq,κ
∑
k≤T/2

1

k(k + 1)

T∑
t=T−k

t−q
∗

+ Cq,κ
∑

T−1≥k>T/2

1

k(k + 1)

T∑
t=T−k

t−q
∗

≤ 2Cq,κ
∑
k≤T/2

1

k(k + 1)
2q
∗
T−q

∗
k + 2Cq,κ

∑
T−1≥k>T/2

1

k(k + 1)

T 1−q∗

1− q∗

≤ 2Cq,κ

(
2q
∗

+
2

1− q∗

)
(log T )T q(1−θ)−2θ.

When θ = q+1
q+2 , we see from the mean value theorem that

log
T

T − k
= − log

(
1− k

T

)
≤ k

T

1

1− k
T

=
k

T − k
.
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It follows that
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)}

≤ Cq,κ
T−1∑
k=1

1

(T − k)k
= Cq,κ

1

T

T−1∑
k=1

{
1

k
+

1

T − k

}
≤ 4Cq,κ

log T

T
.

When θ > q+1
q+2 , we have q∗ > 1 and for k ≤ T

2 ,

T 1−q∗ − (T − k)1−q
∗

1− q∗
= T 1−q∗ (1− k

T )1−q
∗ − 1

q∗ − 1
≤ 2q

∗
T−q

∗
k.

For k > T
2 ,
∑T

t=T−k t
−q∗ ≤ (k + 1)2q

∗
T−q

∗
. Then,

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)}

≤ 2q
∗+1Cq,κT

−q∗
T−1∑
k=1

1

k + 1
≤ 2q

∗+1Cq,κT
−q∗ log T

≤ 2q
∗+1Cq,κ

1

e(q∗ − 1)
T−1.

Thus the second term of (30) can also be bounded as

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt {Ez(ft)− Ez(fT−k)}

≤


2q
∗+1Cq,κ
e(q∗−1) T

−1, when θ > q+1
q+2 ,

4Cq,κ(log T )T−1, when θ = q+1
q+2 ,

2Cq,κ

(
2q
∗

+ 2
1−q∗

)
(log T )T q−(2+q)θ, when θ < q+1

q+2 .

Putting all the above estimates for the first two terms into (30), we see that the desired
bound (27) holds true with the constant C̃1 given by

C̃1 =


η1c

2
q(κ+ 1)2q+2

(
(2 + q)θ − q + 2(2+q)θ−q

)
, when θ > q+1

q+2 ,

6η1c
2
q(κ+ 1)2q+2, when θ = q+1

q+2 ,

η1c
2
q(κ+ 1)2q+2

(
2(2+q)θ−q + 3

)
, when θ < q+1

q+2 .

The proof of Lemma 17 is complete.

Lemma 17 is useful and can be used in a stochastic convex optimization problem, other
than learning. In what follows, we shall see that how it can be used in our specified learning
problems. For notational simplicity, with R̃ > 0 we denote

Mz(R̃) = sup
f∈B

R̃

max
{
Ez(fVρ )− Ez(f), 0

}
. (31)
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Proposition 18 Under the assumptions of Lemma 17, we have

Ez(fT )− Ez(f∗) ≤
3

1− θ

{
Mz

(
T

1−θ
2

)
+ Fz(f∗) +A(f∗)

}
+
‖f∗‖2K

2η1
ΛT,θ + C̃1ΛT,θ, (32)

where ΛT,θ and C̃1 are defined in Lemma 17.

Proof Note that by Lemma 17, we have (27). We only need to estimate the second term
of (27) denoted as

JT,z :=
T θ

2η1

T−1∑
k=1

1

k + 1

[
2ηT−k −

1

k

T∑
t=T−k+1

2ηt

]
{Ez(f∗)− Ez(fT−k)} .

Denote R̃ = T
1−θ
2 . Lemma 15 tells us that fk ∈ BR̃ for each k = 1, · · · , T . It follows that

for k = 1, · · · , T − 1,

Ez(f∗)− Ez(fT−k) =
{(
Ez(f∗)− Ez(fVρ )

)
−
(
E(f∗)− E(fVρ )

)}
+
(
E(f∗)− E(fVρ )

)
+ Ez(fVρ )− Ez(fT−k)

≤ Fz(f∗) +A(f∗) +Mz(R̃).

By the choice of the stepsizes, 2ηT−k − 1
k

∑T
t=T−k+1 2ηt ≥ 0 for any k ∈ {1, . . . , T − 1}.

Therefore, JT,z can be bounded by

JT,z ≤
T θ

2η1

T−1∑
k=1

1

k + 1

[
2ηT−k −

1

k

T∑
t=T−k+1

2ηt

]{
Fz(f∗) +A(f∗) +Mz(R̃)

}
.

Now we need to bound the above summation. Note that, for each k,

2ηT−k −
1

k

T∑
t=T−k+1

2ηt =
2η1
k

T∑
t=T−k+1

(
(T − k)−θ − t−θ

)
.

Applying the mean value theorem to the function g(x) = −x−θ on [T − k, t] with t ∈
{T − k + 1, . . . , T}, we find that for some c ∈ [T − k, t],

(T − k)−θ − t−θ = g(t)− g(T − k) = (t− (T − k))g′(c) ≤ (t− (T − k))θ(T − k)−θ−1.

Hence

T−1∑
k=1

1

k + 1

[
2ηT−k −

1

k

T∑
t=T−k+1

2ηt

]

≤ 2η1θ
∑
k<T/2

(T − k)−θ−1

k(k + 1)

T∑
t=T−k+1

(t− T + k) +
∑
k≥T/2

1

k + 1
2ηT−k

≤ 2η1θ
∑
k<T/2

(T − k)−θ−1

k(k + 1)

k(k + 1)

2
+
∑
k≥T/2

2

T
2ηT−k

≤ η1θ
∑
k<T/2

(T − k)−θ−1 +
4η1
T

∑
k≥T/2

(T − k)−θ ≤ 6η1
1− θ

T−θ.
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Thus

JT,z ≤
3

1− θ

{
Fz(f∗) +A(f∗) +Mz(R̃)

}
.

Then the desired bound follows from Lemma 17.

4.3 Computational Errors for Weighted Average and Best Iterate

Lemma 19 Under the assumptions of Lemma 17, let gT = aT (or gT = bT ). Then

Ez(gT )− Ez(f∗) ≤
(

2‖f∗‖2K
η1

+ C1

)
ΛT,θ,

where ΛT,θ is given by

ΛT,θ =


1

(2+q)θ−(q+1)T
−(1−θ), when θ > q+1

q+2 ,

(log T )T−(1−θ), when θ = q+1
q+2 ,

1
(q+1)−(2+q)θT

−(θ(1+q)−q), when θ < q+1
q+2 ,

(33)

and C1 is a positive constant depending on q, κ and θ (independent of T,m or f∗ and given
explicitly in the proof.)

Note that there is a subtle difference between ΛT,θ and ΛT,θ defined by (39), where the
latter term has an extra log T for θ < q+1

q+2 .

Proof For any u ∈ R, we have

T∑
t=1

ηt(Ez(ft)− u) ≥

(
T∑
t=1

ηt

)
min

t=1,...,T
Ez(ft)−

(
T∑
t=1

ηt

)
u,

and by convexity of Ez,

Ez(aT ) = Ez

(
T∑
t=1

ωtft

)
≤

T∑
t=1

ωtEz(fT ) =
1∑T
t=1 ηt

T∑
t=1

ηtEz(ft).

Therefor, we have

Ez(bT )− u ≤ 1∑T
t=1 ηt

T∑
t=1

ηt(Ez(ft)− u)

and

Ez(aT )− u ≤ 1∑T
t=1 ηt

T∑
t=1

ηt(Ez(ft)− u).

We thus get

Ez(gT )− Ez(f∗) ≤ 1∑T
t=1 ηt

T∑
t=1

ηt(Ez(ft)− Ez(f∗)). (34)
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Following Step 2 of the proof of Lemma 17, we have

T∑
t=1

2ηt {Ez(ft)− Ez(f∗)}

≤


(
‖f∗‖2K + Cq,κ

(2+q)θ−q
(2+q)θ−q−1

)
, when θ > q+1

q+2 ,(
‖f∗‖2K + 2Cq,κ

)
(log T ), when θ = q+1

q+2 ,(
‖f∗‖2K + Cq,κ

2
q+1−(2+q)θ

)
T (1+q)−(2+q)θ, when θ < q+1

q+2 .

Introducing the above inequality into (34), and using
∑T

t=1 ηt ≥ η1
∫ T+1
t=1 u−θdu ≥ η1T 1−θ/e,

we get our desired result with C1 given by

C1 =


3η1c

2
q(κ+ 1)2q+2 ((2 + q)θ − q) , when θ > q+1

q+2 ,

3η1c
2
q(κ+ 1)2q+2, when θ = q+1

q+2 ,

3η1c
2
q(κ+ 1)2q+2, when θ < q+1

q+2 .

While the above proof is shorter and easier than the proof of Lemma 17, it is surprising
that the computational error bounds for the last iterate and the average (or the best one)
are roughly of the same order.

4.4 Iterate Bound and Computational Error for Smooth Loss Functions

The following result can be proved by using the fact that V ′(y, ·) is Lipschitz. Its proof is a
simple modification to RKHS of that in Nesterov (2004, Theorem 2.1.14), where the cases
of Euclidean spaces are studied. For completeness, we provide the proof in Appendix A.

Lemma 20 Assume that V (y, ·) is differentiable and V ′(y, ·) is Lipschitz continuous with
constant L > 0. Let 0 < ηt ≤ (Lκ2)−1 for all t ∈ N. Then we have

Ez(fT )− Ez(f∗) ≤
‖f∗‖2K∑T
k=1 2ηk

.

In particular, if ηt = η1t
−θ with θ ∈ [0, 1) satisfying η1 ≤ (Lκ2)−1, then

Ez(fT )− Ez(f∗) ≤
2‖f∗‖2K
η1

T θ−1.

Using the above lemma, we can bound the iterates as follows.

Lemma 21 Under the assumptions of Lemma 20, we have for t = 1, · · · , T,

‖ft+1‖K ≤

√√√√2|V |0
t∑

k=1

ηk.

In particular, if ηt = η1t
−θ with θ ∈ [0, 1) satisfying η1 ≤ 1−θ

2|V |0 , then

‖ft+1‖K ≤ t
1−θ
2 .
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Proof Choosing f∗ = 0 in (46) (see Appendix A), we get for k = 1, · · · , t,

‖fk+1‖2K ≤ ‖fk‖2K + 2ηk(Ez(0)− Ez(fk+1)) ≤ ‖fk‖2K + 2ηk|V |0.

Applying this relationship iteratively for k = t, · · · , 1, with f1 = 0, we get

‖ft+1‖2K ≤ 2|V |0
t∑

k=1

ηk,

which leads to the first conclusion. The second inequality can be proved by noting that

t∑
k=1

ηk = η1

t∑
k=1

k−θ ≤ η1
(

1 +
t1−θ − 1

1− θ

)
≤ η1

t1−θ

1− θ
.

5. Sample Error and Finite Sample Bounds

In this subsection, we will estimate sample errors and then prove our main results.

5.1 Sample Error

We first bound the sample error term Fz(f∗) for some fixed f∗ ∈ HK as follows. This is
done by applying Bernstein inequality, see Appendix B for the proof.

Lemma 22 Assume conditions (4) and (5) hold. For any f∗ ∈ HK with ‖f∗‖K ≤ R, where
R ≥ 1, with confidence at least 1− δ

2 ,

Fz(f∗) ≤ (C ′1 + 2
√
cτ ) log

2

δ
max

{
Rq+1

m
,

(
R2+q−τ

m

) 1
2−τ

, A(f∗)

}
, (35)

where C ′1 is a positive constant independent of T,m, δ, given explicitly in the proof.

We next bound the empirical process over the ball B
R̃

for some R̃ > 0 in the following
lemma. It is essentially contained in Wu et al. (2007). We provide a short proof in Appendix
B for the sake of completeness.

Lemma 23 Assume (4) with q ≥ 0, (5) with τ ∈ [0, 1], (8) with β ∈ (0, 1] and (9) with
ζ ∈ (0, 2). Let R̃ > 1. Then with confidence at least 1− δ

2 , there holds for every g ∈ B
R̃
,(

E(g)− E(fVρ )
)
−
(
Ez(g)− Ez(fVρ )

)
≤1

2

(
E(g)− E(fVρ )

)
+ C ′3 log

2

δ
max


(
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

,
R̃q+1

m
2

2+ζ

,
(R̃2+q−τ

m

) 1
2−τ

 ,

(36)
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and

Mz(R̃) ≤ C ′3 log
2

δ
max


(
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

,
R̃q+1

m
2

2+ζ

,
(R̃2+q−τ

m

) 1
2−τ

 . (37)

Here C ′3 is a positive constant independent of T,m, δ, given explicitly in the proof.

5.2 Deriving the Finite Sample Bounds

We have the following result, which will be used for the proof of Theorem 4.

Proposition 24 Assume (4) with q ≥ 0, (5) with τ ∈ [0, 1], (8) with β ∈ (0, 1] and (9)
with ζ ∈ (0, 2). Let ηt = η1t

−θ with 0 < θ < 1 satisfying θ > q
q+1 and η1 satisfying (10). Let

f∗ ∈ HK be such that ‖f∗‖K ≤ R, where R ≥ 1. If 1 ≤ R ≤ T
1−θ
2 and T

q(1−θ)
2 m

− 2
2+ζ ≤ 1,

then with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤ C̃3 log
2

δ
max


(
T

(1−θ)(q(2+ζ)+(4−2τ+ζτ))
4

m

) 2
4−2τ+ζτ

, R2ΛT , A(f∗)

 , (38)

where ΛT is defined by

ΛT =


T−(1−θ), when θ > q+1

q+2 ,

(log T )T−(1−θ), when θ = q+1
q+2 ,

(log T )T−(θ(1+q)−q), when θ < q+1
q+2 ,

(39)

and C̃3 is a positive constant independent of T,m, δ, given explicitly in the proof.

Proof Recall Lemma 13. Let R̃ = T
1−θ
2 . Introducing with (32), we have

E(fT )− E(fVρ ) ≤
{(
E(fT )− E(fVρ )

)
−
(
Ez(fT )− Ez(fVρ )

)}
+

3

1− θ
Mz

(
R̃
)

+
4− θ
1− θ

(Fz(f∗) +A(f∗)) +
R2

2η1
ΛT,θ + C̃1ΛT,θ.

Applying Lemmas 22 and 23 with g = fT , with R ∈ [1, R̃] and the notation ΛT defined by
(39), we know that with confidence at least 1− δ,

E(fT )− E(fVρ ) ≤ C ′4 log
2

δ
max

{(
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

,
R̃q+1

m
2

2+ζ

,

R̃
2+q−τ
2−τ

m
1

2−τ
, R2ΛT , A(f∗)

}
+

1

2

(
E(fT )− E(fVρ )

)
, (40)

where C ′4 is the constant given by

C ′4 =
4− θ
1− θ

C ′3 +
4− θ
1− θ

(
1 + C ′1 + 2

√
cτ
)

+

(
1

2η1
+ C̃1

)
cθ,q.
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Here cθ,q is given by

cθ,q =

{
1

|(q+2)θ−(q+1)| , when θ 6= q+1
q+2 ,

1, when θ = q+1
q+2 .

Since R̃qm−2/(2+ζ) ≤ 1, τ ∈ [0, 1] and ζ ∈ (0, 2), one finds

(
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

· m
2

2+ζ

R̃q+1
=

{
R̃q

m
2

2+ζ

}−(1−τ)(2−ζ)
4−2τ+ζτ

≥ 1,

and (
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

· m
1

2−τ

R̃
2+q−τ
2−τ

=
(
R̃2q(1−τ)mτ

) ζ
(2−τ)(4−2τ+ζτ) ≥ 1.

Subtracting 1
2

(
E(fT )− E(fVρ )

)
from both sides of (40), and setting C̃3 = 2C ′4, we get the

desired results.

Now we are in a position to prove the probabilistic upper bounds stated in Theorem 4.

Proof of Theorem 4 We use Proposition 24 with f∗ = fλ to prove our result. Define a
power index θ̃ as

θ̃ =

{
1− θ, when θ ≥ q+1

q+2 ,

θ(1 + q)− q, when θ < q+1
q+2 .

(41)

Comparing this with the definition (39) for ΛT , we see that

ΛT =

{
T−θ̃, when θ > q+1

q+2 ,

T−θ̃ log T, when θ ≤ q+1
q+2 .

From the definition of D(λ), we have

A(fλ) ≤ D(λ) and λ‖fλ‖2K ≤ D(λ), (42)

which imply ‖fλ‖K ≤
√
D(λ)/λ = R. Balancing the orders of the last two terms of (38) by

setting

λ = ΛT , (43)

we find that the last two terms of (38) can be bounded as

max
{
R2ΛT , A(fλ)

}
≤ D(λ) ≤ cβλβ ≤

{
cβT

−βθ̃, when θ > q+1
q+2 ,

cβT
−βθ̃ log T, when θ ≤ q+1

q+2 .

Then we balance the above main part with the first term of (38) by setting

(
T

(1−θ)(q(2+ζ)+(4−2τ+ζτ))
4

m

) 2
4−2τ+ζτ

= T−βθ̃.
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This leads us to choose T to be the integer part of

dmγe, where γ :=
2(

1−θ
2 + βθ̃

)
(4− 2τ + ζτ) + q(2+ζ)(1−θ)

2

. (44)

With this choice, the main part of (38) can be bounded as

max


(
T

(1−θ)(q(2+ζ)+(4−2τ+ζτ))
4

m

) 2
4−2τ+ζτ

, R2ΛT , A(f∗)


≤

{
2cβm

−βθ̃γ , when θ > q+1
q+2 ,

2γcβm
−βθ̃γ logm, when θ ≤ q+1

q+2 .

Noticing from the definition of θ̃, one can easily prove that θ̃ ≤ 1 − θ. Then R/
√
cβ ≤

√
λβ−1 ≤ Λ

β−1
2

T ≤ T
1−θ
2 and the restriction for R in Theorem 24 is satisfied up to constants.

The restriction T
q(1−θ)

2 m
− 2

2+ζ ≤ 1 is also satisfied (up to a constant), because

T
q(1−θ)

2 . m
q(1−θ)γ

2 . m
2

2+ζ .

Observe that γ ≤ 2
1−θ . So by Proposition 24, with confidence 1− δ, we have

E(fT )− E(fVρ ) ≤

{
2cβC̃3m

−βθ̃γ log 2
δ , when θ > q+1

q+2 ,
4cβC̃3

1−θ m
−βθ̃γ logm log 2

δ , when θ ≤ q+1
q+2 .

Observe that the power index βθ̃γ is

βθ̃γ =


β

β(2−τ+ζτ/2)+
{

2−τ+ζτ/2
2

+
q(1+ζ/2)

2

} , when θ ≥ q+1
q+2 ,

β

β(2−τ+ζτ/2)+ 1−θ
θ(1+q)−q

{
2−τ+ζτ/2

2
+
q(1+ζ/2)

2

} , when θ < q+1
q+2 ,

while the index γ can be expressed by (11). Then our desired learning rates are verified by

setting the constant C̃ = 2cβC̃3 when θ > q+1
q+2 while C̃ =

4cβC̃3

1−θ when θ ≤ q+1
q+2 . The proof

of Theorem 4 is complete.

Proof of Theorem 7 We only sketch the proof for the case gT = aT . By applying Lemma
15, it is easy to prove that

‖aT ‖K ≤ T
1−θ
2 .

With the upper bound on aT and Lemma 19, a similar argument as that for Theorem 4,
one can prove the results. We omit the details.

Proof of Theorem 8 With Lemmas 20, 21, and a similar approach as that for Theorem
4, we can prove the convergence results for smooth loss functions. We omit the details.
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Proof of Theorem 11 We use Theorem 4 to prove the results. The hinge loss satisfies (4)
with q = 0 and cq = 1

2 , |V |0 = 1 and ‖fVρ ‖∞ = 1 where fVρ is the Bayes rule fc. Condition
(5) is valid with τ = 0 and cτ = 1. Since θ > 1/2, by simple calculations, one finds that
γ = 1

(1−θ)(2β+1) and α = β
2β+1 .

Using the comparison theorem from Zhang (2004), we have

R (sign(fT ))−R(fc) ≤ E(fT )− E(fVρ ).

So the desired probabilistic upper bound (14) for the hinge loss follows from the above
inequality and Theorem 4.

It remains to prove the second part of the theorem. Since 0 < ε < 1
3 , the restriction

β > 1−3ε
1+6ε for the approximation order tells us that

α =
β

2β + 1
=

1

2 + 1/β
≥ 1

3
− ε.

The proof of Theorem 11 is complete.

Proof of Theorem 12 Since 0 < ε < 1
3 , the restriction β > 4−3ε

4+6ε for the approximation

order tells us that the parameter θ satisfies 1
2 < θ < 1 and the index

γ =
1

(1− θ)(2β + 1)
=

2

3
+ ε.

Finally we find that the index

α =
β

2β + 1
=

1

2 + 1/β
≥ 1

3
− ε

4
.

So the desired probabilistic upper bound follows from the first conclusion of Theorem 11.
The proof of Theorem 12 is complete.

6. Conclusions

This paper proposes and studies iterative regularization approaches for learning with convex
loss functions. More precisely, we study how regularization can be achieved by early stopping
an empirical iteration induced by the subgradient method, or gradient descent in the case
that the loss is also smooth. Finite sample bounds are established providing indications
on how to suitably choose the stepsize and the stopping rule. Different to classical results
on the subgradient method, we analyze the behavior of the last iterate showing that it has
essentially the same properties of the average, to the best, iterate. These results provide a
theoretical foundation for early stopping with convex losses.

Beyond the analysis in the paper our error decomposition provides an approach to
incorporating statistics and optimization aspects in the analysis of learning algorithms.
While a natural development will be to sharpen the bounds and perform extensive empirical
tests, we hope the study in the paper can help deriving novel and faster algorithms, for
example analyzing accelerations (Nesterov, 2004), or distributed approaches, within the
framework we propose.
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G. Blanchard and N. Krämer. Optimal learning rates for kernel conjugate gradient regres-
sion. Advances in Neural Information Processing Systems, 226–234, 2010.

O. Bousquet and L. Bottou. The tradeoffs of large scale learning. Advances in Neural In-
formation Processing Systems, 161–168, 2008.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Boyd, L. Xiao and A. Mutapcic. Subgradient Methods. Lecture notes of EE392o, Stanford
University, Autumn Quarter, 2004 (2003).

P. Buhlmann and B. Yu. Boosting with the L2 loss: regression and classification. Journal
of the American Statistical Association, 462:324–339, 2003.

A. Caponnetto and E. De Vito. Optimal rates for regularized least-squares algorithm. Foun-
dations of Computational Mathematics, 7:331–368, 2007.

A. Caponnetto and Y. Yao. Cross-validation based adaptation for regularization operators
in learning theory. Analysis and Applications, 8:161–183, 2010.

32



Iterative Regularization for Learning with Convex Loss Functions

V. Chandrasekaran and M. I. Jordan. Computational and statistical tradeoffs via convex
relaxation. Proceedings of the National Academy of Sciences, 110:E1181–E1190, 2013.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.

F. Cucker and D.-X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cam-
bridge University Press, 2007.

E. De Vito, L. Rosasco, A. Caponnetto, M. Piana and A. Verri. Some properties of regu-
larized kernel methods. Journal of Machine Learning Research, 5:1363–1390, 2004.

E. De Vito, L. Rosasco, A. Caponnetto, U. Giovannini and F. Odone. Learning from exam-
ples as an inverse problem. Journal of Machine Learning Research, 6:1532–4435, 2005.

H. W. Engl, M. Hanke and A. Neubauer. Regularization of Inverse Problems. Kluwer, 1996.

L. Gerfo, L. Rosasco, F. Odone, E. De Vito and A. Verri. Spectral algorithms for supervised
learning. Neural Computation, 20:1873–1897, 2008.

T. Hu, J. Fan, Q. Wu and D.-X. Zhou. Regularization schemes for minimum error entropy
principle. Analysis and Applications, 13:437–455, 2015.

T. Jaakkola, M. Diekhaus and D. Haussler. Using the Fisher kernel method to detect remote
protein homologies. Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology, 99:149–158, 1999.

W. Jiang. Process consistency for adaboost. Annals of Statistics, 32:13–29, 2004.

B. Kaltenbacher, A. Neubauer and O. Scherzer. Iterative Regularization Methods for Non-
linear Ill-posed Problems. Radon Series on Computational and Applied Mathematics, de
Gruyter, Berlin, 2008.

Y. LeCun, L. Bottou, G. Orr and K. Muller. Efficient Backprop. Neural Networks: Tricks
of the Trade, Springer, 1998.

A. Nemirovskii. The regularization properties of adjoint gradient method in ill-posed prob-
lems.USSR Computational Mathematics and Mathematical Physics, 26:7–16, 1986.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer,
2004.

F. Orabona. Simultaneous model selection and optimization through parameter-free
stochastic learning. Advances in Neural Information Processing Systems, 1116–1124,
2014.

B. Polyak. Introduction to Optimization. Optimization Software, 1987.

G. Raskutti, M. J. Wainwright and B. Yu. Early stopping and non-parametric regression:
an optimal data-dependent stopping rule. Journal of Machine Learning Research, 15:335–
366, 2014.

33



Lin, Rosasco and Zhou

L. Rosasco and S. Villa. Learning with incremental iterative regularization. Advances in
Neural Information Processing Systems, 1621–1629, 2015.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mecha-
nisms. Washington DC: Spartan Books, 1962.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: con-
vergence results and optimal averaging schemes. International Conference on Machine
Learning, 71–79, 2013.

S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory. Analysis
and Applications, 1:17–41, 2003.

S. Sra, S. Nowozin and S. J. Wright. Optimization for Machine Learning, Neural Information
Processing Series. MIT Press, 2011.

I. Steinwart. Oracle inequailities for support vector machines that are based on random
entropy numbers. Journal of Complexity, 25:437–454, 2009.

I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.

A. N. Tikhonov and V. Y. Arsenin. Solution of Ill-posed Problems. Winston & Sons, 1977.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

M. J. Wainwright. Structured regularizers for high-dimensional problems: statistical and
computational issues. Annual Review of Statistics and Its Application, 1:233–253, 2014.

Q. Wu, Y. Ying and D.-X. Zhou. Multi-kernel regularized classifiers. Journal of Complexity,
23:108–134, 2007.

Y. Yao, L. Rosasco and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26:289–315, 2007.

G. B. Ye and D.-X. Zhou. Fully online classification by regularization. Applied and Compu-
tational Harmonic Analysis, 23:198–214, 2007.

Y. Ying and D.-X. Zhou. Online regularized classification algorithms. IEEE Transaction on
Information Theory, 52:4775–4788, 2006.

T. Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, 32:56-85, 2004.

T. Zhang and B. Yu. Boosting with early stopping: convergence and consistency. Annals of
Statistics, 33:1538–1579, 2005.

D.-X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transaction on
Information Theory, 49:1743–1752, 2003.

34



Iterative Regularization for Learning with Convex Loss Functions

Appendix A. Proof of Lemma 20

Proof Since V ′(y, ·) is Lipschitz with constant L for any y ∈ Y, we have for any a, b ∈ R,

V (y, b) ≤ V (y, a) + V ′(y, a)(b− a) +
L

2
(b− a)2.

Choosing y = yj , b = ft+1(xj) and a = ft(xj), according to the properties (22) and (23),
we get for j = 1, · · · ,m and t ∈ N,

V (yj , ft+1(xj)) ≤ V (yj , ft(xj)) + V ′(yj , ft(xj))〈ft+1 − ft,Kxj 〉K +
Lκ2

2
‖ft+1 − ft‖2K .

Summing up over j = 1, · · · ,m, with gt = 1
m

∑m
j=1 V

′(yj , ft(xj))Kxj , we get

Ez(ft+1) ≤ Ez(ft) + 〈ft+1 − ft, gt〉K +
Lκ2

2
‖ft+1 − ft‖2K .

Introducing with (1) and noting that ηt ≤ (Lκ2)−1, we get

Ez(ft+1) ≤ Ez(ft)−
ηt
2
‖gt‖2K . (45)

By the convexity of V (y, ·), it is easy to prove that

Ez(ft) ≤ Ez(f∗) + 〈ft − f∗, gt〉K .

Introducing this inequality into (45), we get

Ez(ft+1) ≤ Ez(f∗) +
1

2ηt

(
2ηt〈ft − f∗, gt〉K − η2t ‖gt‖2K

)
= Ez(f∗) +

1

2ηt

(
‖ft − f∗‖2K − ‖ft − f∗ − ηtgt‖2K

)
= Ez(f∗) +

1

2ηt

(
‖ft − f∗‖2K − ‖ft+1 − f∗‖2K

)
,

so that,
2ηt(Ez(ft+1)− Ez(f∗)) ≤ ‖ft − f∗‖2K − ‖ft+1 − f∗‖2K . (46)

Summing up over t = 1 · · · , T, with f1 = 0, we have

T∑
t=1

2ηt(Ez(ft+1)− Ez(f∗)) ≤ ‖f1 − f∗‖2K − ‖fT+1 − f∗‖2K ≤ ‖f∗‖2K .

By (45), we have Ez(fT+1) ≤ Ez(ft+1) for all t ≤ T. It thus follows that

T∑
t=1

2ηt(Ez(fT+1)− Ez(f∗)) ≤
T∑
t=1

2ηt(Ez(ft+1)− Ez(f∗)) ≤ ‖f∗‖2K ,

which leads to the first argument of the lemma. The rest of the proof can be finished by
noting that

T∑
t=1

ηt ≥ η1
∫ T+1

1
u−θdu ≥ η1

T 1−θ

e
.
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Appendix B. Proofs for the Sample Error

Proof of Lemma 22 We apply Bernstein inequality which asserts that, for a random
variable ξ bounded by M̃ > 0 and for any ε > 0,

Prob

{
1

m

m∑
i=1

ξ(zi)− E(ξ) > ε

}
≤ exp

{
− mε2

2
(
σ2(ξ) + 1

3M̃ε
)}. (47)

Here the random variable ξ on Z is given by ξ(x, y) = V (y, f∗(x)) − V (y, fVρ (x)). The
increment condition (4) implies that ξ is bounded by M := C ′1R

q+1, where C ′1 is the
constant given by

C ′1 := cq
(
κ+ κq+1 + ‖fVρ ‖∞ + ‖fVρ ‖q+1

∞
)
. (48)

By condition (5), its variance σ2(ξ) is bounded by

cτR
2+q−τ {E(f∗)− E(fVρ )

}τ ≤ cτR2+q−τ (A(f∗))
τ .

Solving the quadratic equation from Bernstein inequality (47), we see that with confidence
at least 1− δ

2 , there holds

Fz(f∗) ≤
2M log 2

δ

3m
+

√
2 log 2

δ

m
σ2(ξ)

≤ (C ′1 + 2
√
cτ ) log

2

δ
max

{
Rq+1

m
,
R1+ q−τ

2 (A(f∗))
τ
2

√
m

}
.

Applying the elementary inequality

xτy1−τ ≤ τx+ (1− τ)y, ∀ τ ∈ [0, 1], x, y ≥ 0, (49)

yields

R1+ q−τ
2 (A(f∗))

τ
2

√
m

=

[(
R2+q−τ

m

) 1
2−τ
]1− τ

2

(A(f∗))
τ
2

≤
(

1− τ

2

)(R2+q−τ

m

) 1
2−τ

+
τ

2
A(f∗).

Then the desired result follows.

To bound the empirical process over the ball B
R̃

for some R̃ > 0, we need the following
concentration inequality. Its proof is similar to that of Proposition 6 in Wu et al. (2007),
as well as applying Theorem 3.5 from Steinwart (2009) and Exercise 6.8 in Steinwart and
Christmann (2008). We omit the proof.

Lemma 25 Let G be a set of measurable functions on Z, and B, c > 0, τ ∈ [0, 1] be con-
stants such that each function f ∈ G satisfies ‖f‖∞ ≤ B and E(f2) ≤ c(Ef)τ . If for some
a ≥ Bζ and ζ ∈ (0, 2),

Ez[logN (G, ε, d2,z)] ≤ aε−ζ , ∀ε > 0,
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then there exists a positive constant c′ζ depending only on ζ such that for any b > 0, with

probability at least 1− e−b, there holds

Ef − 1

m

m∑
i=1

f(zi) ≤
1

2
η1−τ (Ef)τ + c′ζη + 2

(cb
m

)1/(2−τ)
+

18Bb

m
, ∀f ∈ G,

where

η := max

{
c

2−ζ
4−2τ+ζτ

( a
m

) 2
4−2τ+ζτ

, B
2−ζ
2+ζ

( a
m

) 2
2+ζ

}
.

Now, we are ready to prove Lemma 23.

Proof of Lemma 23 We first apply Lemma 25 to the function set

G =
{
f(x, y) = V (y, g(x))− V (y, fVρ (x)) : g ∈ B

R̃

}
.

Condition (5) tells us that with c = cτ R̃
2+q−τ , each function f ∈ G satisfies E(f2) ≤ c(Ef)τ .

Also, condition (4) implies that ‖f‖∞ is upper bounded by M̃ := C ′1R̃
q+1, with C ′1 given

by (48). Noticing from (4) that for f, f ′ ∈ G,

|f(x, y)− f ′(x, y)| = |V (y, g(x))− V (y, g′(x))| ≤ cq(1 + κq)R̃q|g(x)− g′(x)|,

there holds

N (G, ε, d2,z) ≤ N

(
B
R̃
,

ε

cq(1 + κq)R̃q
, d2,z

)
≤ N

(
B1,

ε

cq(1 + κq)R̃q+1
, d2,z

)
.

Hence, condition (9) yields the covering number condition in Lemma 25 with a = C ′′R̃(q+1)ζ ,
where

C ′′ = max{cζcζq(1 + κq)ζ , (C ′1)
ζ}

So we apply Lemma 25 and find that with confidence at least 1 − δ
2 , there holds for every

f ∈ G,

E(f)− 1

m

m∑
i=1

f(zi) ≤
1

2
η1−τ (Ef)τ + c′ζη + 2

(cτ R̃2+q−τ log 2
δ

m

) 1
2−τ

+
18M̃ log 2

δ

m
,

where

η = max

(cτ R̃2+q−τ
) 2−ζ

4−2τ+ζτ

(
C ′′R̃(q+1)ζ

m

) 2
4−2τ+ζτ

,

M̃
2−ζ
2+ζ

(
C ′′R̃(q+1)ζ

m

) 2
2+ζ


≤ C ′2 max


(
R̃
q(2+ζ)+(4−2τ+ζτ)

2

m

) 2
4−2τ+ζτ

,
R̃q+1

m
2

2+ζ

 ,
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where C ′2 is the constant given by(
c
2−ζ
2

τ C ′′
) 2

4−2τ+ζτ

+ C ′1
2−ζ
2+ζ
(
C ′′
) 2

2+ζ .

Apply the elementary inequality (49) which yields η1−τ (Ef)τ ≤ η + Ef, and notice that
E(f) = E(g)−E(fVρ ) while 1

m

∑m
i=1 f(zi) = Ez(g)−Ez(fVρ ). We get that with confidence at

least 1− δ
2 , there holds for every g ∈ B

R̃
,(

E(g)− E(fVρ )
)
−
(
Ez(g)− Ez(fVρ )

)
≤
(

1

2
+ c′ζ

)
η +

1

2

(
E(g)− E(fVρ )

)
+ 2
(cτ R̃2+q−τ

m

) 1
2−τ

log
2

δ
+

18M̃ log 2
δ

m
,

which leads to (36) with

C ′3 =

(
1

2
+ c′ζ

)
C ′2 + 2cτ

1
2−τ + 18M̃.

Now, introducing (36) into the equality

Ez(fVρ )− Ez(g) =
{(
E(g)− E(fVρ )

)
−
(
Ez(g)− Ez(fVρ )

)}
−
(
E(g)− E(fVρ )

)
,

with E(g) − E(fVρ ) ≥ 0 and by recalling that Mz(R̃) is given by (31), we can derive (37).
The proof is completed.
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