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Abstract
We introduce a family of adaptive estimators on graphs, based on penalizing the `1 norm of discrete
graph differences. This generalizes the idea of trend filtering (Kim et al., 2009; Tibshirani, 2014),
used for univariate nonparametric regression, to graphs. Analogous to the univariate case, graph
trend filtering exhibits a level of local adaptivity unmatched by the usual `2-based graph smoothers.
It is also defined by a convex minimization problem that is readily solved (e.g., by fast ADMM or
Newton algorithms). We demonstrate the merits of graph trend filtering through both examples and
theory.

Keywords: trend filtering, graph smoothing, total variation denoising, fused lasso, local adaptivity

1. Introduction

Nonparametric regression has a rich history in statistics, carrying well over 50 years of associated
literature. The goal of this paper is to port a successful idea in univariate nonparametric regression,
trend filtering (Steidl et al., 2006; Kim et al., 2009; Tibshirani, 2014; Wang et al., 2014), to the
setting of estimation on graphs. The proposed estimator, graph trend filtering, shares three key
properties of trend filtering in the univariate setting.

1. Local adaptivity: graph trend filtering can adapt to inhomogeneity in the level of smoothness
of an observed signal across nodes. This stands in contrast to the usual `2-based methods,
e.g., Laplacian regularization (Smola and Kondor, 2003), which enforce smoothness globally
with a much heavier hand, and tends to yield estimates that are either smooth or else wiggly
throughout.

2. Computational efficiency: graph trend filtering is defined by a regularized least squares
problem, in which the penalty term is nonsmooth, but convex and structured enough to permit
efficient large-scale computation.

3. Analysis regularization: the graph trend filtering problem directly penalizes (possibly higher
order) differences in the fitted signal across nodes. Therefore graph trend filtering falls into
what is called the analysis framework for defining estimators. Alternatively, in the synthesis
framework, we would first construct a suitable basis over the graph, and then regress the
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observed signal over this basis; e.g., Shuman et al. (2013) survey a number of such approaches
using wavelets; likewise, kernel methods regularize in terms of the eigenfunctions of the
graph Laplacian (Kondor and Lafferty, 2002). An advantage of analysis regularization is that
it easily yields complex extensions of the basic estimator by mixing penalties.

As a motivating example, consider a denoising problem on 402 census tracts of Allegheny
County, PA, arranged into a graph with 402 vertices and 2382 edges obtained by connecting spa-
tially adjacent tracts. To illustrate the adaptive property of graph trend filtering we generated an
artificial signal with inhomogeneous smoothness across the nodes, and two sharp peaks near the
center of the graph, as can be seen in the top left panel of Figure 1. (The signal was formed using
a mixture of five Gaussians, in the underlying spatial coordinates.) We drew noisy observations
around this signal, shown in the top right panel of the figure, and we fit graph trend filtering, graph
Laplacian smoothing, and wavelet smoothing to these observations. Graph trend filtering is to be
defined in Section 2 (here we used k = 2, quadratic order); the latter two, recall, are defined by the
optimization problems

min
β∈Rn

‖y − β‖22 + λβ>Lβ (Laplacian smoothing),

min
θ∈Rn

1

2
‖y −Wθ‖22 + λ‖θ‖1 (wavelet smoothing),

where y ∈ Rn the vector of observations measured over the n = 402 nodes in the graph, L ∈ Rn×n
is the graph Laplacian matrix, and W ∈ Rn×n is a wavelet basis built over the graph. The
wavelet smoothing problem displayed above is really an oversimplified representation of the class
of wavelets methods, since it only encapsulates estimators that employ an orthogonal wavelet ba-
sis W (and soft-threshold the wavelet coefficients). For the present experiment, we constructed
W according to the spanning tree wavelet design of Sharpnack et al. (2013a); we found this con-
struction performed best among the graph wavelet designs we considered for the data at hand. For
completeness, the results from alternative wavelet designs are given in the Appendix.

Graph trend filtering, Laplacian smoothing, and wavelet smoothing each have their own regu-
larization parameters λ, and these parameters are not generally on the same scale. Therefore, in our
comparisons we use effective degrees of freedom (df) as a common measure for the complexities of
the fitted models. The top right panel of Figure 1 shows the graph trend filtering estimate with 68
df. We see that it adaptively fits the sharp peaks in the center of the graph, and smooths out the sur-
rounding regions appropriately. The graph Laplacian estimate with 68 df (bottom left), substantially
oversmooths the high peaks in the center, while at 132 df (bottom middle), it begins to detect the
high peaks in the center, but undersmooths neighboring regions. Wavelet smoothing performs quite
poorly across all df values—it appears to be most affected by the level of noise in the observations.

As a more quantitative assessment, Figure 2 shows the mean squared errors between the es-
timates and the true underlying signal. The differences in performance here are analogous to the
univariate case, when comparing trend filtering to smoothing splines (Tibshirani, 2014). At smaller
df values, Laplacian smoothing, due to its global considerations, fails to adapt to local differences
across nodes. Trend filtering performs much better at low df values, and yet it matches Laplacian
smoothing when both are sufficiently complex, i.e., in the overfitting regime. This demonstrates that
the local flexibility of trend filtering estimates is a key attribute.

Here is an outline for the rest of this article. Section 2 defines graph trend filtering and gives
underlying motivation and intuition. Section 3 covers basic properties and extensions of the graph
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True signal Noisy observations Graph trend filtering, 68 df
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Figure 1: Color maps for the Allegheny County example.
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Figure 2: Mean squared errors for the Allegheny County example. Results were averaged over 10
simulations; the bars denote ±1 standard errors.
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trend filtering estimator. Section 4 examines computational approaches, and Section 5 looks at a
number of both real and simulated data examples. Section 6 presents asymptotic error bounds for
graph trend filtering. Section 7 concludes with a discussion. As for notation, we writeXA to extract
the rows of a matrixX ∈ Rm×n that correspond to a subsetA ⊆ {1, . . .m}, andX−A to extract the
complementary rows. We use a similar convention for vectors: xA and x−A denote the components
of a vector x ∈ Rm that correspond to the setA and its complement, respectively. We write row(X)
and null(X) for the row and null spaces of X , respectively, and X† for the pseudoinverse of X ,
with X† = (X>X)†X> when X is rectangular.

2. Trend Filtering on Graphs

In this section, we motivate and formally define graph trend filtering.

2.1 Review: Univariate Trend Filtering

We begin by reviewing trend filtering in the univariate setting, where discrete difference operators
play a central role. Suppose that we observe y = (y1, . . . yn) ∈ Rn across input locations x =
(x1, . . . xn) ∈ Rn; for simplicity, suppose that the inputs are evenly spaced, say, x = (1, . . . n).
Given an integer k ≥ 0, the kth order trend filtering estimate β̂ = (β̂1, . . . β̂n) is defined as

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖D(k+1)β‖1, (1)

where λ ≥ 0 is a tuning parameter, and D(k+1) is the discrete difference operator of order k + 1.
When k = 0, problem (1) employs the first difference operator,

D(1) =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . . . . .
0 0 . . . −1 1

 . (2)

Therefore ‖D(1)β‖1 =
∑n−1

i=1 |βi+1 − βi|, and the 0th order trend filtering estimate in (1) reduces
to the 1-dimensional fused lasso estimator (Tibshirani et al., 2005), also called 1-dimensional total
variation denoising (Rudin et al., 1992). For k ≥ 1 the operator D(k+1) is defined recursively by

D(k+1) = D(1)D(k), (3)

with D(1) above denoting the (n−k−1)× (n−k) version of the first difference operator in (2). In
words, D(k+1) is given by taking first differences of kth differences. The interpretation is hence that
problem (1) penalizes the changes in the kth discrete differences of the fitted trend. The estimated
components β̂1, . . . β̂n exhibit the form of a kth order piecewise polynomial function, evaluated over
the input locations x1, . . . xn. This can be formally verified (Tibshirani, 2014; Wang et al., 2014) by
examining a continuous-time analog of (1).

2.2 Trend Filtering over Graphs

Let G = (V,E) be an graph, with vertices V = {1, . . . n} and undirected edges E = {e1, . . . em},
and suppose that we observe y = (y1, . . . yn) ∈ Rn over the nodes. Following the univariate
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definition in (1), we define the kth order graph trend filtering (GTF) estimate β̂ = (β̂1, . . . β̂n) by

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)β‖1. (4)

In broad terms, this problem (like univariate trend filtering) is a type of generalized lasso problem
(Tibshirani and Taylor, 2011), in which the penalty matrix ∆(k+1) is a suitably defined graph differ-
ence operator, of order k + 1. In fact, the novelty in our proposal lies entirely within the definition
of this operator.

When k = 0, we define first order graph difference operator ∆(1) in such a way it yields the
graph-equivalent of a penalty on local differences:

‖∆(1)β‖1 =
∑

(i,j)∈E

|βi − βj |.

so that the penalty term in (4) sums the absolute differences across connected nodes inG. To achieve
this, we let ∆(1) ∈ {−1, 0, 1}m×n be the oriented incidence matrix of the graph G, containing one
row for each edge in the graph; specifically, if e` = (i, j), then ∆(1) has `th row

∆
(1)
` = (0, . . .−1

↑
i

, . . . 1
↑
j

, . . . 0), (5)

where the orientations of signs are arbitrary. Like trend filtering in the 1d setting, the 0th order graph
trend filtering estimate coincides with the fused lasso (total variation regularized) estimate over G
(Hoefling, 2010; Tibshirani and Taylor, 2011; Sharpnack et al., 2012).

For k ≥ 1, we use a recursion to define the higher order graph difference operators, in a manner
similar to the univariate case. The recursion alternates in multiplying by the first difference operator
∆(1) and its transpose (taking into account that this matrix not square):

∆(k+1) =

{
(∆(1))>∆(k) = L

k+1
2 for odd k

∆(1)∆(k) = DL
k
2 for even k.

(6)

Above, we abbreviated the oriented incidence matrix ∆(1) by D of G, and exploited the fact that
L = D>D is one representation for the graph Laplacian matrix. Note that ∆(k+1) ∈ Rn×n for odd
k, and ∆(k+1) ∈ Rm×n for even k.

An important point is that our defined graph difference operators (5), (6) reduce to the univariate
ones (2), (3) in the case of a chain graph (in which V = {1, . . . n} and E = {(i, i + 1) : i =
1, . . . n − 1}), modulo boundary terms. That is, when k is even, if one removes the first k/2 rows
and last k/2 rows of ∆(k+1) for the chain graph, then one recovers D(k+1); when k is odd, if one
removes the first and last (k + 1)/2 rows of ∆(k+1) for the chain graph, then one recovers D(k+1).
Further intuition for our graph difference operators is given next.

2.3 Piecewise Polynomials over Graphs

We give some insight for our definition of graph difference operators (5), (6), based on the idea of
piecewise polynomials over graphs. In the univariate case, as described in Section 2.1, sparsity of β
under the difference operatorD(k+1) implies a specific kth order piecewise polynomial structure for
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the components of β (Tibshirani, 2014; Wang et al., 2014). Since the components of β correspond to
(real-valued) input locations x = (x1, . . . xn), the interpretation of a piecewise polynomial here is
unambiguous. But for a graph, one might ask: does sparsity of ∆(k+1)β mean that the components
of β are piecewise polynomial? And what does the latter even mean, as the components of β are
defined over the nodes? To address these questions, we intuitively define a piecewise polynomial
over a graph, and show that it implies sparsity under our constructed graph difference operators.

• Piecewise constant (k = 0): we say that a signal β is piecewise constant over a graph G if
many of the differences βi−βj are zero across edges (i, j) ∈ E inG. Note that this is exactly
the property associated with sparsity of ∆(1)β, since ∆(1) = D, the oriented incidence matrix
of G.

• Piecewise linear (k = 1): we say that a signal β has a piecewise linear structure over G if β
satisfies

βi −
1

ni

∑
(i,j)∈E

βj = 0,

for many nodes i ∈ V , where ni is the number of nodes adjacent to i. In words, we are
requiring that the signal components can be linearly interpolated from its neighboring values
at many nodes in the graph. This is quite a natural notion of (piecewise) linearity: requiring
that βi be equal to the average of its neighboring values would enforce linearity at βi under
an appropriate embedding of the points in Euclidean space. Again, this is precisely the same
as requiring ∆(2)β to be sparse, since ∆(2) = L, the graph Laplacian.

• Piecewise polynomial (k ≥ 2): We say that β has a piecewise quadratic structure over G if
the first differences αi−αj of the second differences α = ∆(2)β are mostly zero, over edges
(i, j) ∈ E. Likewise, β has a piecewise cubic structure over G if the second differences
αi − 1

ni

∑
(i,j)∈E αj of the second differences α = ∆(2)β are mostly zero, over nodes i ∈ V .

This argument extends, alternating between leading first and second differences for even and
odd k. Sparsity of ∆(k+1)β in either case exactly corresponds to many of these differences
being zero, by construction.

In Figure 3, we illustrate the graph trend filtering estimator on a 2d grid graph of dimension
20 × 20, i.e., a grid graph with 400 nodes and 740 edges. For each of the cases k = 0, 1, 2, we
generated synthetic measurements over the grid, and computed a GTF estimate of the corresponding
order. We chose the 2d grid setting so that the piecewise polynomial nature of GTF estimates could
be visualized. Below each plot, the utilized graph trend filtering penalty is displayed in more explicit
detail.

2.4 `1 versus `2 Regularization

It is instructive to compare the graph trend filtering estimator, as defined in (4), (5), (6) to Laplacian
smoothing (Smola and Kondor, 2003). Standard Laplacian smoothing uses the same least squares
loss as in (4), but replaces the penalty term with β>Lβ. A natural generalization would be to allow
for a power of the Laplacian matrix L, and define kth order graph Laplacian smoothing according
to

β̂ = argmin
β∈Rn

‖y − β‖22 + λβ>Lk+1β. (7)
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GTF with k = 0 GTF with k = 1
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Figure 3: Graph trend filtering estimates of orders k = 0, 1, 2 on a 2d grid. The utilized `1 graph
difference penalties are shown in elementwise detail below each plot (first, second, and third order
graph differences).

7



WANG, SHARPNACK, SMOLA AND TIBSHIRANI

The above penalty term can be written as ‖L(k+1)/2β‖22 for odd k, and ‖DLk/2β‖22 for even k; i.e.,
this penalty is exactly ‖∆(k+1)β‖22 for the graph difference operator ∆(k+1) defined previously.

As we can see, the critical difference between graph Laplacian smoothing (7) and graph trend
filtering (4) lies in the choice of penalty norm: `2 in the former, and `1 in the latter. The effect of the
`1 penalty is that the GTF program can set many (higher order) graph differences to zero exactly,
and leave others at large nonzero values; i.e., the GTF estimate can simultaneously be smooth in
some parts of the graph and wiggly in others. On the other hand, due to the (squared) `2 penalty, the
graph Laplacian smoother cannot set any graph differences to zero exactly, and roughly speaking,
must choose between making all graph differences small or large. The relevant analogy here is
the comparison between the lasso and ridge regression, or univariate trend filtering and smoothing
splines (Tibshirani, 2014), and the suggestion is that GTF can adapt to the proper local degree of
smoothness, while Laplacian smoothing cannot. This is strongly supported by the examples given
throughout this paper.

2.5 Related Work

Some authors from the signal processing community, e.g., Bredies et al. (2010); Setzer et al. (2011),
have studied total generalized variation (TGV), a higher order variant of total variation regulariza-
tion. Moreover, several discrete versions of these operators have been proposed. They are often
similar to the construction that we have. However, the focus of these works is mostly on how well
a discrete functional approximates its continuous counterpart. This is quite different from our con-
cern, as a signal on a graph (say a social network) may not have any meaningful continuous-space
embedding at all. In addition, we are not aware of any study on the statistical properties of these
regularizers. In fact, our theoretical analysis in Section 6 may be extended to these methods too.

3. Properties and Extensions

We first study the structure of graph trend filtering estimates, then discuss interpretations and exten-
sions.

3.1 Basic Structure and Degrees of Freedom

We describe the basic structure of graph trend filtering estimates and present an unbiased estimate
for their degrees of freedom. Let the tuning parameter λ be arbitrary but fixed. By virtue of the `1
penalty in (4), the solution β̂ satisfies supp(∆(k+1)β̂) = A for some active set A (typically A is
smaller when λ is larger). Trivially, we can reexpress this as ∆

(k+1)
−A β̂ = 0, or β̂ ∈ null(∆

(k+1)
−A ).

Therefore, the basic structure of GTF estimates is revealed by analyzing the null space of the sub-
operator ∆

(k+1)
−A .

Lemma 1 Assume without a loss of generality that G is connected (otherwise the results apply to
each connected component of G). Let D,L be the oriented incidence matrix and Laplacian matrix
of G. For even k, let A ⊆ {1, . . .m}, and let G−A denote the subgraph induced by removing the
edges indexed by A (i.e., removing edges e`, ` ∈ A). Let C1, . . . Cs be the connected components of
G−A. Then

null(∆
(k+1)
−A ) = span{1}+ (L†)

k
2 span{1C1 , . . .1Cs},

8
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where 1 = (1, . . . 1) ∈ Rn, and 1C1 , . . .1Cs ∈ Rn are the indicator vectors over connected
components. For odd k, let A ⊆ {1, . . . n}. Then

null(∆
(k+1)
−A ) = span{1}+ {(L†)

k+1
2 v : v−A = 0}.

The proof of Lemma 1 appears in the Appendix. The lemma is useful for a few reasons. First,
as motivated above, it describes the coarse structure of GTF solutions. When k = 0, we can
see (as (L†)0/2 = I) that β̂ will indeed be piecewise constant over groups of nodes C1, . . . Cs of
G. For k = 2, 4, . . ., this structure is smoothed by multiplying such piecewise constant levels by
(L†)k/2. Meanwhile, for k = 1, 3 . . ., the structure of the GTF estimate is based on assigning
nonzero values to a subset A of nodes, and then smoothing through multiplication by (L†)(k+1)/2.
Both of these smoothing operations, which depend on L†, have interesting interpretations in terms
of to the electrical network perspective for graphs. This is developed in the next subsection.

A second use of Lemma 1 is that it leads to a simple expression for the degrees of freedom, i.e.,
the effective number of parameters, of the GTF estimate β̂. From results on generalized lasso prob-
lems (Tibshirani and Taylor, 2011, 2012), we have df(β̂) = E[nullity(∆

(k+1)
−A )], with A denoting

the support of ∆(k+1)β̂, and nullity(X) the dimension of the null space of a matrix X . Applying
Lemma 1 then gives the following.

Lemma 2 Assume thatG is connected. Let β̂ denote the GTF estimate at a fixed but arbitrary value
of λ. Under the normal error model y ∼ N (β0, σ

2I), the GTF estimate β̂ has degrees of freedom
given by

df(β̂) =

{
E [max {|A|, 1}] odd k,
E [number of connected components of G−A] even k.

Here A = supp(∆(k+1)β̂) denotes the active set of β̂.

As a result of Lemma 2, we can form simple unbiased estimate for df(β̂); for k odd, this is
max{|A|, 1}, and for k even, this is the number of connected components of G−A, where A is the
support of ∆(k+1)β̂. When reporting degrees of freedom for graph trend filtering (as in the example
in the introduction), we use these unbiased estimates.

3.2 Electrical Network Interpretation

Lemma 1 reveals a mathematical structure for GTF estimates β̂, which satisfy β̂ ∈ null(∆
(k+1)
−A )

for some set A. It is interesting to interpret the results using the electrical network perspective for
graphs (Vishnoi, 2012). In this perspective, we imagine replacing each edge in the graph with a
resistor of value 1. If u ∈ Rn describes how much current is going in at each node in the graph,
then v = Lu describes the induced voltage at each node. Provided that 1>c = 0, which means that
the total accumulation of current in the network is 0, we can solve for the current values from the
voltage values: u = L†v.

The odd case in Lemma 1 asserts that

null(∆
(k+1)
−A ) = span{1}+ {(L†)

k+1
2 v : v−A = 0}.

For k = 1, this says that GTF estimates are formed by assigning a sparse number of nodes in the
graph a nonzero voltage v, then solving for the induced current L†v (and shifting this entire current

9
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vector by a constant amount). For k = 3, we assign a sparse number of nodes a nonzero voltage,
solve for the induced current, and then repeat this: we relabel the induced current as input voltages
to the nodes, and compute the new induced current. This process is again iterated for k = 5, 7, . . ..

The even case in Lemma 1 asserts that

null(∆
(k+1)
−A ) = span{1}+ (L†)

k
2 span{1C1 , . . .1Cs}.

For k = 2, this result says that GTF estimates are given by choosing a partition C1, . . . Cs of the
nodes, and assigning a constant input voltage to each element of the partition. We then solve for the
induced current (and potentially shift this by an overall constant amount). The process is iterated
for k = 4, 6, . . . by relabeling the induced current as input voltage.

The comparison between the structure of estimates for k = 2 and k = 3 is informative: in a
sense, the above tells us that 2nd order GTF estimates will be smoother than 3rd order estimates,
as a sparse input voltage vector need not induce a current that is piecewise constant over nodes in
the graph. For example, an input voltage vector that has only a few nodes with very large nonzero
values will induce a current that is peaked around these nodes, but not piecewise constant.

3.3 Extensions

Several extensions of the proposed graph trend filtering model are possible. Trend filtering over
a weighted graph, for example, could be performed by using a properly weighted version of the
edge incidence matrix in (5), and carrying forward the same recursion in (6) for the higher order
difference operators. As another example, the Gaussian regression loss in (4) could be changed to
another suitable likelihood-derived losses in order to accommodate a different data type for y, say,
logistic regression loss for binary data, or Poisson regression loss for count data.

In Section 5.2, we explore a modest extension of GTF, where we add a strongly convex prior
term to the criterion in (4) to assist in performing graph-based imputation from partially observed
data over the nodes. In Section 5.3, we investigate a modification of the proposed regularization
scheme, where we add a pure `1 penalty on β in (4), hence forming a sparse variant of GTF. Other
potentially interesting penalty extensions include: mixing graph difference penalties of various or-
ders, and tying together several denoising tasks with a group penalty. Extensions such as these are
easily built, recall, as a result of the analysis framework used by the GTF program, wherein the esti-
mate defined through direct regularization via an analyzing operator, the `1-based graph difference
penalty ‖∆(k+1)β‖1.

4. Computation

Graph trend filtering is defined by a convex optimization problem (4). In principle this means
that, at least for small or moderately sized problems, its solutions can be reliably computed using a
variety of standard algorithms. In order to handle larger scale problems, we describe two specialized
algorithms that improve on generic procedures by taking advantage of the structure of ∆(k+1).

4.1 A Fast ADMM Algorithm

We reparametrize (4) by introducing auxiliary variables, so that we can apply ADMM. For even k,
we use a special transformation that is critical for fast computation (following Ramdas and Tibshi-
rani (2015) in univariate trend filtering); for odd k, this is not possible. The reparametrizations for
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even and odd k are

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖Dz‖1 s.t. z = L

k
2 x,

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖z‖1 s.t. z = L

k+1
2 x,

respectively. Recall that D is the oriented incidence matrix and L is the graph Laplacian. The
augmented Lagrangian is

1

2
‖y − β‖22 + λ‖Sz‖1 +

ρ

2
‖z − Lqβ + u‖22 −

ρ

2
‖u‖22,

where S = D or S = I depending on whether k is even or odd, and likewise q = k/2 or q =
(k + 1)/2. ADMM then proceeds by iteratively minimizing the augmented Lagrangian over β,
minimizing over z, and performing a dual update over u. The β and z updates are of the form, for
some b,

β ← (I + ρL2q)−1b, (8)

z ← argmin
x∈Rn

1

2
‖b− x‖22 +

λ

ρ
‖Sx‖1, (9)

The linear system in (8) is well-conditioned, sparse, and can be solved efficiently using the pre-
conditioned conjugate gradient method. This involves only multiplication with Laplacian matrices.
For a small enough choices of ρ > 0 (the augmented Lagrangian parameter), the system in (8) is
diagonally dominant, special Laplacian/SDD solvers can be applied, which run in almost linear time
(Spielman and Teng, 2004; Koutis et al., 2011; Kelner et al., 2013).

For S = I , the update in (9) is simply given by soft-thresholding, and for S = D, it is given by
graph TV denoising, i.e., given by solving a graph fused lasso problem. Note that this subproblem
has the exact structure of the graph trend filtering problem (4) with k = 0. A direct approach for
graph TV denoising is available based on parametric max-flow (Chambolle and Darbon, 2009), and
this algorithm is empirically much faster than its worst-case complexity (Boykov and Kolmogorov,
2004). In the special case that the underlying graph is a grid, a promising alternative method em-
ploys proximal stacking techniques (Barbero and Sra, 2014).

4.2 A Fast Newton Method

As an alternative to ADMM, a projected Newton-type method (Bertsekas, 1982; Barbero and Sra,
2011) can be used to solve (4) via its dual problem:

v̂ = argmin
v∈Rr

‖y − (∆(k+1))>v‖22 s.t. ‖v‖∞ ≤ λ.

The solution of (4) is then given by β̂ = y − (∆(k+1))>v̂. (For univariate trend filtering, Kim et al.
(2009) adopt a similar strategy, but instead use an interior point method.) The projected Newton
method performs updates using a reduced Hessian, so abbreviating ∆ = ∆(k+1), each iteration
boils down to

v ← a+ (∆>I )†b, (10)

11
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for some a, b and set of indices I . The linear system in (10) is always sparse, but conditioning
becomes an issue as k grows (note that the same problem does not occur in (8) because of the addi-
tion of the identity matrix I). We have found empirically that a preconditioned conjugate gradient
method works quite well for (10) for k = 1, but struggles for larger k.

4.3 Computation Summary

In our experience, the following algorithms work well for the various order k of graph trend filtering.
We remark that orders k = 0, 1, 2 are of most practical interest (and solutions of polynomial order
k ≥ 3 are less likely to be sought in practice).1

Order Algorithm
k = 0 Parametric max-flow
k = 1 Projected Newton method
k = 2, 4, . . . ADMM with parametric max-flow
k = 3, 5, . . . ADMM with soft-thresholding

Figure 4 compares performances of the described algorithms on a moderately large simulated
example, using a 2d grid graph. We see that when k = 1, the projected Newton method converges
faster than ADMM (superlinear versus at best linear convergence). When k = 2, the story is
reversed, as the projected Newton iterations quickly become stagnant, and the ADMM enjoys better
convergence.

5. Examples

In this section, we present a variety of examples of running graph trend filtering on real graphs.

5.1 Trend Filtering over the Facebook Graph

In the Introduction, we examined the denoising power of graph trend filtering in a spatial setting.
Here we examine the behavior of graph trend filtering on a nonplanar graph: the Facebook graph
from the Stanford Network Analysis Project (http://snap.stanford.edu). This is com-
posed of 4039 nodes representing Facebook users, and 88,234 edges representing friendships, col-
lected from real survey participants; the graph has one connected component, but the observed
degree sequence is very mixed, ranging from 1 to 1045 (refer to McAuley and Leskovec (2012) for
more details).

We generated synthetic measurements over the Facebook nodes (users) based on three different
ground truth models, so that we can precisely evaluate and compare the estimation accuracy of
GTF, Laplacian smoothing, and wavelet smoothing. For the latter, we again used the spanning
tree wavelet design of Sharpnack et al. (2013a), because it performed among the best of wavelets
designs in all data settings considered here. Results from other wavelet designs are presented in

1. Loosely speaking, each order k = 0, 1, 2 provides solutions that exhibit a different class of structure: k = 0 gives
piecewise constant solutions, k = 1 gives piecewise linear, and k = 2 gives piecewise smooth. All orders k ≥ 3
continue to give piecewise smooth fits, with less and less transparent differences (the practical differences between
piecewise quadratic versus piecewise linear fits is greater than piecewise cubic versus piecewise quadratic, etc.). Since
the conditioning of the graph trend filtering operator ∆(k+1) worsens as k increases, which makes computation more
difficult, it makes most practical sense to simply choose k = 2 whenever a piecewise smooth fit is desired.

12
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GTF with k = 1 GTF with k = 2
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Figure 4: Convergence plots for projected Newton method and ADMM for solving GTF with k = 1
and k = 2. The algorithms are all run on a 2d grid graph (an 512× 512 image) with 262,144 nodes
and 523,264 edges. For projected Newton, we plot the duality gap across iterations; for ADMM, we
plot the average of the primal and dual residuals (which also serves as a valid suboptimality bound
in the ADMM framework).

the Appendix. The three ground truth models represent very different scenarios for the underlying
signal x, each one favorable to different estimation methods. These are:

1. Dense Poisson equation: we solved the Poisson equation Lx = b for x, where b is arbitrary
and dense (its entries were i.i.d. normal draws).

2. Sparse Poisson equation: we solved the Poisson equation Lx = b for x, where b is sparse
and has 30 nonzero entries (again i.i.d. normal draws).

3. Inhomogeneous random walk: we ran a set of decaying random walks at different starter
nodes in the graph, and recorded in x the total number of visits at each node. Specifically, we
chose 10 nodes as starter nodes, and assigned each starter node a decay probability uniformly
at random between 0 and 1 (this is the probability that the walk terminates at each step instead
of travelling to a neighboring node). At each starter node, we also sent out a varying number
of random walks, chosen uniformly between 0 and 1000.

In each case, the synthetic measurements were formed by adding noise to x. We note that model
1 is designed to be favorable for Laplace smoothing; model 2 is designed to be favorable for GTF;
and in the inhomogeneity in model 3 is designed to be challenging for Laplacian smoothing, and
favorable for the more adaptive GTF and wavelet methods.

Figure 5 shows the performance of the three estimation methods, over a wide range of noise
levels in the synthetic measurements; performance here is measured by the best achieved mean
squared error, allowing each method to be tuned optimally at each noise level. The summary: GTF
estimates are (expectedly) superior when the Laplacian-based sparsity pattern is in effect (model 2),
but are nonetheless highly competitive in both other settings—the dense case, in which Laplacian
smoothing thrives, and the inhomogeneous random walk case, in which wavelets thrive.
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Dense Poisson equation Sparse Poisson equation
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Inhomogeneous random walk
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Figure 5: Performance of GTF and others for three generative models on the Facebook graph. The
x-axis shows the negative SnR: 10 log10(nσ2/‖x‖22), where n = 4039, x is the underlying signal,
and σ2 is the noise variance. Hence the noise level is increasing from left to right. The y-axis shows
the denoised negative SnR: 10 log10(MSE/‖x‖22), where MSE denotes mean squared error, so the
achieved MSE is increasing from bottom to top.
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5.2 Graph-Based Transductive Learning over UCI Data

Graph trend filtering can used for graph-based transductive learning, as motivated by the work of
Talukdar and Crammer (2009); Talukdar and Pereira (2010), who rely on Laplacian regulariza-
tion. Consider a semi-supervised learning setting, where we are given only a small number of
seed labels over nodes of a graph, and the goal is to impute the labels on the remaining nodes.
Write O ⊆ {1, . . . n} for the set of observed nodes, and assume that each observed label falls
into {1, . . .K}. Then we can define the modified absorption problem under graph trend filtering
regularization (MAD-GTF) by

B̂ = argmin
B∈Rn×K

K∑
j=1

∑
i∈O

(Yij −Bij)2 + λ

K∑
j=1

‖∆(k+1)Bj‖1 + ε

K∑
j=1

‖Rj −Bj‖22. (11)

The matrix Y ∈ Rn×K is an indicator matrix: each observed row i ∈ O is described by Yij = 1
if class j is observed and Yij = 0 otherwise. The matrix B ∈ Rn×K contains fitted probabilities,
with Bij giving the probability that node i is of class j. We write Bj for its jth column, and hence
the middle term in the above criterion encourages each set of class probabilities to behave smoothly
over the graph. The last term in the above criterion ties the fitted probabilities to some given prior
weights R ∈ Rn×K . In principle ε could act as a second tuning parameter, but for simplicity we
take ε to be small and fixed, with any ε > 0 guaranteeing that the criterion in (11) is strictly convex,
and thus has a unique solution B̂. The entries of B̂ need not be probabilites in any strict sense, but
we can still interpret them as relative probabilities, and imputation can be performed by assigning
each unobserved node i /∈ O a class label j such that B̂ij is largest.
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Figure 6: Ratio of the misclassification rate of MAD-GTF to MAD-Laplacian, for graph-based
imputation, on the 11 most popular UCI classification data sets.

Our specification of MAD-GTF only deviates from the MAD proposal of Talukdar and Cram-
mer (2009) in that these authors used the Laplacian regularization term

∑K
j=1B

>
j LBj , in place

of `1-based graph difference regularizer in (11). If the underlying class probabilities are thought
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iris adult wine car breast abalone wine-qual. poker heart ads yeast
# of classes 3 2 3 4 2 29 6 10 2 2 10
# of samples 150 32,561 178 1,728 569 4,177 1,599 3,000 303 3,279 1,484

Laplacian 0.085 0.270 0.060 0.316 0.064 0.872 0.712 0.814 0.208 0.306 0.566
GTF, k = 0 0.102 0.293 0.055 0.294 0.500 0.888 0.709 0.801 0.472 0.212 0.726

p-value 0.254 0.648 0.406 0.091 0.000 0.090 0.953 0.732 0.000 0.006 0.000
GTF, k = 1 0.087 0.275 0.055 0.293 0.063 0.874 0.713 0.813 0.175 0.218 0.563

p-value 0.443 0.413 0.025 0.012 0.498 0.699 0.920 0.801 0.134 0.054 0.636
GTF, k = 2 0.084 0.259 0.052 0.309 0.059 0.865 0.738 0.774 0.175 0.244 0.552

p-value 0.798 0.482 0.024 0.523 0.073 0.144 0.479 0.138 0.301 0.212 0.100

Table 1: Misclassification rates of MAD-Laplacian and MAD-GTF for imputation in the UCI data
sets. We also compute p-values over the 10 repetitions for each data set (10 draws of nodes to serve
as seed labels) via paired t-tests. Cases where MAD-GTF achieves significantly better misclassifica-
tion rate, at the 0.1 level, are highlighted in green; cases where MAD-GTF achieves a significantly
worse miclassification rate, at the 0.1 level, are highlighted in red.

to have heterogeneous smoothness over the graph, then replacing the Laplacian regularizer with
the GTF-designed one might lead to better performance. As a broad comparison of the two meth-
ods, we ran them on the 11 most popular classification data sets from the UCI Machine Learning
repository (http://archive.ics.uci.edu/ml/).2 For each data set, we constructed a 5-
nearest-neighbor graph based on the Euclidean distance between provided features, and randomly
selected 5 seeds per class to serve as the observed class labels. Then we set ε = 0.01, used prior
weights Rij = 1/K for all i and j, and chose the tuning parameter λ over a wide grid of values
to represent the best achievable performance by each method, on each experiment. Figure 6 and
Table 1 summarize the misclassification rates from imputation using MAD-Laplacian and MAD-
GTF, averaged over 10 repetitions of the randomly selected seed labels. We see that MAD-GTF
with k = 0 (basically a graph partition akin to MRF-based graph cut, using an Ising model) does
not seem to work as well as the smoother alternatives. Importantly, MAD-GTF with k = 1 and
k = 2 both perform at least as well, and sometimes better, than MAD-Laplacian on each one of the
UCI data sets. Recall that these data sets were selected entirely based on their popularity, and not
at all on the belief that they might represent favorable scenarios for GTF (i.e., not on the prospect
that they might exhibit some heterogeneity in the distribution of class labels over their respective
graphs). Therefore, the fact that MAD-GTF nonetheless performs competitively in such a broad
range of experiments is convincing evidence for the utility of the GTF regularizer.

5.3 Event Detection with NYC Taxi Trips Data

We illustrate a sparse variant of our proposed regularizers, given by adding a pure `1 penalty to the
coefficients in (4), as in

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ1‖∆(k+1)β‖1 + λ2‖β‖1. (12)

We call this sparse graph trend filtering, now with two tuning parameters λ1, λ2 ≥ 0. Under the
proper tuning, the sparse GTF estimate will be zero at many nodes in the graph, and will otherwise

2. We used all data sets here, except the “forest-fires” data set, which is a regression problem. Also, we zero-filled the
missing data in “internet-ads” data set and used a random one third of the data in the “poker” data set.
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deviate smoothly from zero. This can be useful in situations where the observed signal represents
a difference between two smooth processes that are mostly similar, but exhibit (perhaps significant)
differences over a few regions of the graph. Here we apply it to the problem of detecting events
based on abnormalities in the number of taxi trips at different locations of New York city. This
data set was kindly provided by authors of Doraiswamy et al. (2014), who obtained the data from
NYC Taxi & Limosine Commission.3 Specifically, we consider the graph to be the road network of
Manhattan, which contains 3874 nodes (junctions) and 7070 edges (sections of roads that connect
two junctions). For measurements over the nodes, we used the number of taxi pickups and dropoffs
over a particular time period of interest: 12:00–2:00 pm on June 26, 2011, corresponding to the
Gay Pride parade. As pickups and dropoffs do not generically occur at road junctions, we used
interpolation to form counts over the graph nodes. A baseline seasonal average was calculated by
considering data from the same time block 12:00–2:00 pm on the same day of the week across the
nearest eight weeks. Thus the measurements y were then taken to be the difference between the
counts observed during the Gay Pride parade and the seasonal averages.

Note that the nonzero node estimates from sparse GTF applied to y, after proper tuning, mark
events of interest, because they convey substantial differences between the observed and expected
taxi counts. According to descriptions in the news, we know that the Gay Pride parade was a
giant march down at noon from 36th St. and Fifth Ave. all the way to Christopher St. in Greenwich
Village, and traffic was blocked over the entire route for two hours (meaning no pickups and dropoffs
could occur). We therefore hand-labeled this route as a crude “ground truth” for the event of interest,
illustrated in the left panel of Figure 7.

In the bottom two panels of Figure 7, we compare sparse GTF with k = 0 (i.e., the sparse
graph fused lasso) and a sparse variant of Laplacian smoothing, obtained by replacing the first
regularization term in (12) by β>Lβ. For a qualitative visual comparison, the smoothing parameter
λ1 was chosen so that both methods have 200 degrees of freedom (without any sparsity imposed).
The sparsity parameter was then set as λ2 = 0.2. Similar to what we have seen already, GTF is able
to better localize its estimates around strong inhomogenous spikes in the measurements, and is able
to better capture the event of interest. The result of sparse Laplacian smoothing is far from localized
around the ground truth event, and displays many nonzero node estimates throughout distant regions
of the graph. If we were to decrease its flexibility (increase the smoothing parameter λ1 in its
problem formulation), then the sparse Laplacian output would display more smoothness over the
graph, but the node estimates around the ground truth region would also be grossly shrunken.

6. Estimation Error Bounds

In this section, we assume that y ∼ N (β0, σ
2I), and study asymptotic error rates for graph trend

filtering. (The assumption of a normal error model could be relaxed, but is used for simplicity). Our
analysis actually focuses more broadly on the generalized lasso problem

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖1, (13)

3. These authors also considered event detection, but their topological definition of an “event” is very different from
what we considered here, and hence our results not directly comparable.
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True parade route Unfiltered signal

Sparse trend filtering Sparse Laplacian smoothing

Figure 7: Comparison of sparse GTF and sparse Laplacian smoothing. We can see qualitatively
that sparse GTF delivers better event detection with fewer false positives (zoomed-in, the sparse
Laplacian plot shows a scattering of many non-zero colors).
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where ∆ ∈ Rr×n is an arbitrary linear operator, and r denotes its number of rows. Throughout,
we specialize the derived results to the graph difference operator ∆ = ∆(k+1), to obtain concrete
statements about GTF over particular graphs. All proofs are deferred to the Appendix.

6.1 Basic Error Bounds

Using similar arguments to the basic inequality for the lasso (Buhlmann and van de Geer, 2011), we
have the following preliminary bound.

Theorem 3 LetM denote the maximum `2 norm of the columns of ∆†. Then for a tuning parameter
value λ = Θ(M

√
log r), the generalized lasso estimate β̂ in (13) has average squared error

‖β̂ − β0‖22
n

= OP

(
nullity(∆)

n
+
M
√

log r

n
· ‖∆β0‖1

)
.

Recall that nullity(∆) denotes the dimension of the null space of ∆. For the GTF operator
∆(k+1) of any order k, note that nullity(∆(k+1)) is the number of connected components in the
underlying graph.

When both ‖∆β0‖1 = O(1) and nullity(∆) = O(1), Theorem 3 says that the estimate β̂
converges in average squared error at the rate M

√
log r/n, in probability. This theorem is quite

general, as it applies to any linear operator ∆, and one might therefore think that it cannot yield fast
rates. Still, as we show next, it does imply consistency for graph trend filtering in certain cases.

Corollary 4 Consider the trend filtering estimator β̂ of order k, and the choice of the tuning pa-
rameter λ as in Theorem 3. Then:

1. for univariate trend filtering (i.e., essentially GTF on a chain graph),

‖β̂ − β0‖22
n

= OP

(√
log n

n
· nk‖D(k+1)β0‖1

)
;

2. for GTF on an Erdos-Renyi random graph, with edge probability p, and expected degree
d = np ≥ 1,

‖β̂ − β0‖22
n

= OP

(√
log(nd)

nd
k+1

2

· ‖∆(k+1)β0‖1

)
;

3. for GTF on a Ramanujan d-regular graph, and d ≥ 1,

‖β̂ − β0‖22
n

= OP

(√
log(nd)

nd
k+1

2

· ‖∆(k+1)β0‖1

)
.

Cases 2 and 3 of Corollary 4 stem from the simple inequality M ≤ ‖∆†‖2, the largest singular
value of ∆†. When ∆ = ∆(k+1), the GTF operator of order k + 1, we have

‖(∆(k+1))†‖2 ≤ 1/λmin(L)(k+1)/2,

where λmin(L) is the smallest nonzero eigenvalue of the Laplacian L (also known as the Fiedler
eigenvalue (Fiedler, 1973)). In general, λmin(L) can be very small, leading to loose error bounds,
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but for the particular graphs in question, it is well-controlled. When ‖∆(k+1)β0‖1 is bounded,
cases 2 and 3 of the corollary show that the average squared error of GTF converges at the rate√

log(nd)/(nd(k+1)/2). As k increases, this rate is stronger, but so is the assumption that ‖∆(k+1)β0‖1
is bounded.

Case 1 in Corollary 4 covers univariate trend filtering (which, recall, is basically the same as
GTF over a chain graph; the only differences between the two are boundary terms in the construction
of the difference operators). The result in case 1 is based on direct calculation of M , using specific
facts that are known about the univariate difference operators. It is natural in the univariate setting to
assume that nk‖D(k+1)β0‖1 is bounded (this is the scaling that would link β0 to the evaluations of a
piecewise polynomial function f0 over [0, 1], with TV(f

(k)
0 ) bounded). Under such an assumption,

the above corollary yields a convergence rate of
√

log n/n for univariate trend filtering, which is
not tight. A more refined analysis shows the univariate trend filtering estimator to converge at the
minimax optimal rate n−(2k+2)/(2k+3), proved in Tibshirani (2014) by using a connection between
univariate trend filtering and locally adaptive regression splines, and relying on sharp entropy-based
rates for locally adaptive regression splines from Mammen and van de Geer (1997). We note that in
a pure graph-centric setting, the latter strategy is not generally applicable, as the notion of a spline
function does not obviously extend to the nodes of an arbitrary graph structure.

In the next subsections, we develop more advanced strategies for deriving fast GTF error rates,
based on incoherence, and entropy. These can provide substantial improvements over the basic error
bound established in this subsection, but are only applicable to certain graph models. Fortunately,
this includes common graphs of interest, such as regular grids. To verify the sharpness of these
alternative strategies, we will show that they can be used to recover optimal rates of convergence
for trend filtering in the 1d setting.

6.2 Strong Error Bounds Based on Incoherence

A key step in the proof of Theorem 3 argues, roughly speaking, that

ε>∆†∆x ≤ ‖(∆†)>ε‖∞‖∆x‖1 = OP(M
√

log r‖∆x‖1), (14)

where ε ∼ N (0, σ2I). The second bound holds by a standard result on maxima of Gaussians (recall
that M is largest `2 norm of the columns of ∆†). The first bound above uses Holder’s inequality;
note that this applies to any ε,∆, i.e., it does not use any information about the distribution of ε, or
the properties of ∆. The next lemma reveals a potential advantage that can be gained from replacing
the bound (14), stemming from Holder’s inequality, with a “linearized” bound.

Lemma 5 Denote ε ∼ N (0, σ2I), and assume that

max
x∈S∆(1)

ε>x−A
‖x‖2

= OP(B), (15)

where S∆(1) = {x ∈ row(∆) : ‖∆x‖1 ≤ 1}. With λ = Θ(A), the generalized lasso estimate β̂
satisfies

‖β̂ − β0‖22
n

= OP

(
nullity(∆)

n
+
B2

n
+
A

n
· ‖∆β0‖1

)
.

The inequality in (15) is referred to as a “linearized” bound because it implies that for x ∈
S∆(1),

ε>x = OP(A+B‖x‖2),
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and the right-hand side is a linear function of ‖x‖2. Indeed, for A = M
√

2 log r and B = 0,
this encompasses the bound in (14) as a special case, and the result of Lemma 5 reduces to that of
Theorem 3. But the result in Lemma 5 can be much stronger, if A,B can be adjusted so that A is
smaller than M

√
2 log r, and B is also small. Such an arrangement is possible for certain operators

∆; e.g., it is possible under an incoherence-type assumption on ∆.

Theorem 6 Let q = rank(∆), and let ξ1 ≤ . . . ≤ ξq denote the singular values of ∆, in increasing
order. Also let u1, . . . uq be the corresponding left singular vectors. Assume that these vectors are
incoherent:

‖ui‖∞ ≤ µ/
√
n, i = 1, . . . q,

for some constant µ ≥ 1. For i0 ∈ {1, . . . q}, let

λ = Θ

µ
√√√√ log r

n

q∑
i=i0+1

1

ξ2
i

 .

Then the generalized lasso estimate β̂ has average squared error

‖β̂ − β0‖22
n

= OP

nullity(∆)

n
+
i0
n

+
µ

n

√√√√ log r

n

q∑
i=i0+1

1

ξ2
i

· ‖∆β0‖1

 .

Theorem 6 is proved by leveraging the linearized bound (15), which holds under the incoherence
condition on the singular vectors of ∆. Compared to the basic result in Theorem 3, the result in
Theorem 6 is clearly stronger as it allows us to replace M—which can grow like the reciprocal
of the minimum nonzero singular value of ∆—with something akin to the average reciprocal of
larger singular values. But it does, of course, also make stronger assumptions (incoherence). It is
interesting to note that the functional in the theorem,

∑q
i=i0+1 ξ

−2
i , was also determined to play

a leading role in error bounds for a graph Fourier based scan statistic in the hypothesis testing
framework (Sharpnack et al., 2013b).

Applying the above theorem to the GTF estimator requires knowledge of the singular vectors of
∆ = ∆(k+1), the (k+ 1)st order graph difference operator. The validity of an incoherence assump-
tion on these singular vectors depend on the graph G in question. When k is odd, these singular
vectors are eigenvectors of the Laplacian L; when k is even, they are left singular vectors of the
edge incidence matrix D. Loosely speaking, these vectors will be incoherent when neighborhoods
of different vertices look roughly the same. Most social networks will have this property for the bulk
of their vertices (i.e., with the exception of a small number of high degree vertices). Grid graphs
also have this property. First, we consider trend filtering over a 1d grid, i.e., a chain (which, recall,
is essentially equivalent to univariate trend filtering).

Corollary 7 Consider the GTF estimator β̂ of order k, over a chain graph, i.e., a 1d grid graph.
Letting

λ = Θ

(
n

2k+1
2k+3 (log n)

1
2k+3 ‖∆(k+1)β0‖

− 2k+1
2k+3

1

)
,

the estimator β̂ (here, essentially, the univariate trend filtering estimator) satisfies

‖β̂ − β0‖22
n

= OP

(
n−

2k+2
2k+3 (log n)

1
2k+3 ·

(
nk‖∆(k+1)β0‖1

) 2
2k+3

)
.
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We note that the above corollary essentially recovers the optimal rate of convergence for the
univariate trend filtering estimator, for all orders k. (To be precise, it studies GTF on a chain graph
instead, but this is basically the same problem.) When nk‖∆(k+1)β0‖1 is assumed to be bounded,
a natural assumption in the univariate setting, the corollary shows the estimator to converge at the
rate n−(2k+2)/(2k+3)(log n)1/(2k+3). Ignoring the log factor, this matches the minimax optimal
rate as established in Tibshirani (2014); Wang et al. (2014). Importantly, the proof of Corollary 7,
unlike that used in previous works, is free from any dependence on univariate spline functions; it is
completely graph-theoretic, and only uses on the incoherence properties of the 1d grid graph. The
strength of this approach is its wider applicability, which we demonstrate by moving up to 2d grids.

Corollary 8 Consider the GTF estimator β̂ of order k, over a 2d grid graph, of size
√
n×
√
n.

Letting

λ = Θ

(
n

2k+1
2k+5 (log n)

1
2k+5 ‖∆(k+1)β0‖

− 2k+1
2k+5

1

)
,

the estimator β̂ satisfies

‖β̂ − β0‖22
n

= OP

(
n−

2k+4
2k+5 (log n)

1
2k+5 ·

(
n
k
2 ‖∆(k+1)β0‖1

) 4
2k+5

)
.

The 2d result in Corollary 8 is written in a form that mimics the 1d result in Corollary 7, as we
claim that the analog of boundedness of nk‖∆(k+1)β0‖1 in 1d is boundedness of nk/2‖∆(k+1)β0‖1
in 2d.4 Thus, under the appropriate boundedness condition, the 2d rate shows improvement over
the 1d rate, which makes sense, since regularization here is being enforced in a richer manner. It is
worthwhile highlighting the result for k = 0 in particular: this says that, when the sum of absolute
discrete differences ‖∆(1)β0‖1 is bounded over a 2d grid, the 2d fused lasso (i.e., 2d total variation
denoising) has error rate n−4/5. This is faster than the n−2/3 rate for the 1d fused lasso, when the
sum of absolute differences ‖D(1)β0‖1 is bounded. Rates for higher dimensional grid graphs (for
all k) follow from analogous arguments, but we omit the details.

6.3 Strong Error Bounds Based on Entropy

A different “fractional” bound on the Gaussian contrast ε>x, over x ∈ S∆(1), provides an alternate
route to deriving sharper rates. This style of bound is inspired by the seminal work of van de Geer
(1990).

Lemma 9 Denote ε ∼ N (0, σ2I), and assume that for a constant w < 2,

max
x∈S∆(1)

ε>x

‖x‖1−w/22

= OP(K), (16)

where recall S∆(1) = {x ∈ row(∆) : ‖∆x‖1 ≤ 1}. Then with

λ = Θ

(
K

2
1+w/2 · ‖∆β0‖

− 1−w/2
1+w/2

1

)
,

4. This is because 1/
√
n is the distance between adjacent 2d grid points, when viewed as a 2d lattice over [0, 1]2.

22



TREND FILTERING ON GRAPHS

the generalized lasso estimate β̂ satisfies

‖β̂ − β0‖22
n

= OP

(
nullity(∆)

n
+
K

2
1+w/2

n
· ‖∆β0‖

w
1+w/2

1

)
.

The main motivation for bounds of the form (16) is that they follow from entropy bounds on
the set S∆(1). Recall that for a set S, the covering number N(δ, S, ‖ · ‖) is the fewest number of
balls of radius δ that cover S, with respect to the norm ‖ · ‖. The log covering or entropy number is
logN(δ, S, ‖·‖). In the next result, we make the connection between between entropy and fractional
bounds precise; this follows closely from Lemma 3.5 of van de Geer (1990).

Theorem 10 Suppose that there exist a constant w < 2 such that for n large enough,

logN(δ,S∆(1), ‖ · ‖2) ≤ E
(√n
δ

)w
, (17)

for δ > 0, where E can depend on n. Then the fractional bound in (16) holds with K =
√
Enw/4,

and as a result, for

λ = Θ

(
E

1
1+w/2n

w/2
1+w/2 ‖∆β0‖

− 1−w/2
1+w/2

1

)
,

the generalized lasso estimate β̂ has average squared error

‖β̂ − β0‖22
n

= OP

(
nullity(∆)

n
+ E

1
1+w/2n

− 1
1+w/2 · ‖∆β0‖

w
1+w/2

1

)
.

To make use of the result in Theorem 10, we must obtain an entropy bound as in (17), on the
set S∆(1). The literature on entropy numbers is rich, and there are various methods for computing
entropy bounds, any of which can be used for these purposes as long as the bounds fit the form
of (17), as required by the theorem. For bounding the entropy of a set like S∆(1), two common
techniques are to use a characterization of the spectral decay of ∆†, or an analysis of the correlations
between columns of ∆†. For a nice review of such strategies and their applications, we refer the
reader to Section 6 of van de Geer and Lederer (2013) and Section 14.12 of Buhlmann and van de
Geer (2011). We do not pursue either of these two strategies in the current paper. We instead
consider a third, somewhat more transparent strategy, based on a covering number bound of the
columns of ∆†.

Lemma 11 Let g1, . . . gr denote the “atoms” associated with the operator ∆, i.e., the columns of
∆†, and let G = {±gi : i = 1, . . . r} denote the symmetrized set of atoms. Suppose that there exists
constants ζ, C0 with the following property: for each j = 1, . . . 2r, there is an arrangement of j
balls having radius at most

C0

√
nj−1/ζ ,

with respect to the norm ‖ · ‖2, that covers G. Then the entropy bound in (17) is met with w =
2ζ/(2 + ζ) and E = O(1). Therefore, the generalized lasso estimate β̂, with

λ = Θ

(
n

ζ
2+2ζ ‖∆β0‖

− 1
1+ζ

1

)
,

satisfies
‖β̂ − β0‖22

n
= OP

(
nullity(∆)

n
+ n

− 2+ζ
2+2ζ · ‖∆β0‖

ζ
1+ζ

1

)
.
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The entropy-based results in this subsection (Lemma 9, Theorem 10, and Lemma 11) may
appear more complex than those involving incoherence in the previous subsection (Lemma 5 and
Theorem 6). Indeed, the same can be said of their proofs, which can be found in the Appendix. But
after all this entropy machinery has all been established, it can actually be remarkably easy to use,
say, Lemma 11 to produce sharp results. We conclude by giving an example.

Corollary 12 Consider the 1d fused lasso, i.e., the GTF estimator with k = 0 over a chain graph.
In this case, we have ∆ = D(1), the univariate difference operator, and the symmetrized set G of
atoms can be covered by j balls with radius at most

√
2n/j, for j = 1, . . . 2(n − 1). Hence, with

λ = Θ(n1/3‖D(1)β0‖−1/3
1 ), the 1d fused lasso estimate β̂ satisfies

‖β̂ − β0‖22
n

= OP

(
n−2/3 · ‖D(1)β0‖2/31

)
.

This corollary rederives the optimal convergence rate of n−2/3 for the univariate fused lasso,
assuming boundedness of ‖D(1)β0‖1, as has been already shown in Mammen and van de Geer
(1997); Tibshirani (2014). Like Corollary 7 (but unlike previous works), its proof does not rely on
any special facts about 1d functions of bounded variation. It only uses a covering number bound
on the columns of the operator (D(1))+, a strategy that, in principle, extends to many other settings
(graphs). It is worth emphasizing just how simple this covering number construction is, compared
to the incoherence-based arguments that lead to the same result; we invite the curious reader to
compare the proofs of Corollaries 7 and 12.

7. Discussion

In this work, we proposed graph trend filtering as a useful alternative to Laplacian and wavelet
smoothers on graphs. This is analogous to the usefulness of univariate trend filtering in nonpara-
metric regression, as an alternative to smoothing splines and wavelets (Tibshirani, 2014). We have
documented empirical evidence for the superior local adaptivity of the `1-based GTF over the `2-
based graph Laplacian smoother, and the superior robustness of GTF over wavelet smoothing in
high-noise scenarios. Our theoretical analysis provides a basis for a deeper understanding of the
estimation properties of GTF. More precise theoretical characterizations involving entropy will be
the topic of future work, as will comparisons between the error rates achieved by GTF and other
common estimators, such as Laplacian smoothing. These extensions, and many others, are well
within reach.
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Appendix A. Additional Analysis from Alternative Wavelet Designs

We provide detailed comparisons to a few recently proposed wavelet approaches for graph smooth-
ing.

A.1 Allegheny County Example

In addition to considering the wavelet design of Sharpnack et al. (2013a) for the Allegheny County
example, we also considered designs of Coiman and Maggioni (2006)—a classic method that builds
diffusion wavelets on a graph, and Irion (2015)—a more recent graph wavelet construction. In con-
trast to Sharpnack et al. (2013a), which produces a single signal-independent orthogonal basis for
a graph, both Coiman and Maggioni (2006); Irion (2015) build wavelet packets from a given graph
structure. A wavelet packet is an overcomplete basis indexed by a hierarchical data structure that
can be used to generate an exponential number of orthogonal bases. This construction is computa-
tionally expensive as it typically involves computing eigendecompositions of large matrices. Once
the wavelet packet has been constructed, for each input signal that one observes over the graph in
question, one runs a “best basis” algorithm to choose a particular orthogonal basis from the wavelet
packet by optimizing a particular cost function of the eventual wavelet coefficients. This is based
on a message-passing-like dynamic programming algorithm, and can be quite efficient. Lastly, the
denoising procedure is defined as usual (e.g., as in Donoho and Johnstone (1995)), namely, one
performs the basis transformation, soft-thresholds (or hard-thresholds) the coefficients, and then
reconstructs the denoised signal.

In our experiments, we used the wavelet implementations released by the authors of Coiman and
Maggioni (2006); Irion (2015) with their default settings. In particular, the former implementation
of Coiman and Maggioni (2006) builds wavelets from a diffusion operator constructed from the
adjacency matrix of a graph, and the cost function for the best basis is defined by the `1 norm of
the wavelet coefficients. The latter implementation of Irion (2015) uses a more exhaustive search,
building wavelet packets through a hierarchical partitioning and eigentransform of three different
Laplacian matrices and a fourth generalized Haar-Walsh transform (GHWT), then choosing the
best basis from all four collections by optimizing a meta cost function of the `p norm of wavelet
coefficients over p ∈ {0.1, 0.2, . . . 2}. This is the “cumulative relative error” defined in equation
(7.5) of Irion (2015).

In the left panel of Figure 8, we plot the mean squared errors for these new wavelet methods
over the same 10 simulations from the Allegheny County example in Figure 2 of Section A.1. The
middle and right panels of the figure show the denoised signals from the new methods fit to the
data in Figure 1, at their optimal degrees of freedom (df) values (in terms of the achieved MSE).
We can see that the spanning tree wavelet design of Sharpnack et al. (2013a) is the best performer
among the three candidate wavelet designs. In a rough sense, the construction of Irion (2015)
seems to perform similarly to that of Sharpnack et al. (2013a), in that the MSE is best for larger df
values (corresponding to more nonzero wavelet coefficients, i.e., complex fitted models), whereas
the construction of Coiman and Maggioni (2006) performs best for smaller df values (fewer nonzero
wavelet coefficients, i.e., simpler fitted models).
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MSE comparison Irion wavelets, 194 df Coifman wavelets, 78 df
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Figure 8: Additional wavelet analysis of the Allegheny County example.

A.2 Facebook Graph Example

Again, we consider the designs of Coiman and Maggioni (2006); Irion (2015) for the Facebook
graph example of Section 5.1. Due to practical reasons, we had to change some of the default
settings in the implementations provided by the authors of these wavelet methods; in the wavelet
implementation of Coiman and Maggioni (2006), we took the power of the diffusion operator to
be 1 instead of 4 (since the latter choice threw an error in the provided code); and in the wavelet
implementation of Irion (2015), we used another “best basis” algorithm that only searches within
the basis collection from the GHWT eigendecomposition, as the original algorithm was too slow
due to the larger scale considered in this example. (In most examples in Irion (2015), the chosen
bases come from the GHWT eigendecomposition.) We view these changes as minor, because when
the same changes were applied to the methods of Coiman and Maggioni (2006); Irion (2015) on the
smaller Allegheny County example, there are no obvious differences in the results.

Figure 9 shows the results for the two new wavelet methods on the Facebook graph simulation,
using the same setup as in Figure 5. Once again, we find that the spanning tree wavelets of Sharp-
nack et al. (2013a) perform better or on par with the other two wavelet methods across essentially
all scenarios.

Appendix B. Proofs of Theoretical Results

Here we present proofs of our theoretical results presented in Sections 3 and 6.

B.1 Proof of Lemma 1

For even k, we have ∆(k+1) = DLk/2, so if A denotes a subset of edges, then ∆
(k+1)
−A = D−AL

k/2.
Recall that for a connected graph, null(L) = span{1}, and the same is true for any power of L.
This means that we can write

null(∆(k+1)) = span{1}+ span{1}⊥ ∩ {u : DL
k
2 u = 0}.
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Inhomogeneous random walk

Noise Level: Negative SnR in (dB)
-30 -25 -20 -15 -10 -5 0 5 10

D
en

oi
se

d 
N

eg
at

iv
e 

S
nR

 in
 d

B

-40

-35

-30

-25

-20

-15

-10

-5

0

Trend filtering k=0
Trend filtering k=1
Trend filtering k=2
Laplacian smoothing
Sharpnack wavelets
Coifman wavelets
Irion wavelets

Figure 9: Additional wavelet analysis of the Facebook graph example.

Note that if 1>u = 0, then v = L
k
2 u ⇐⇒ u = (L†)

k
2 u. Moreover, if G−A has connected compo-

nents C1, . . . Cs, then null(D−A) = span{1C1 , . . .1Cs}. Putting these statements together proves
the result for even k. For k odd, the arguments are similar.

B.2 Proof of Theorem 3

By assumption we can write

y = β0 + ε, ε ∼ N (0, σ2I).
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Denote R = row(∆), the row space of ∆, and R⊥ = null(∆), the null space of ∆. Also let PR be
the projection onto R, and PR⊥ the projection onto R⊥. Consider

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖1,

β̃ = argmin
β∈Rn

1

2
‖PRy − β‖22 + λ‖∆β‖1.

The first quantity β̂ ∈ Rn is the estimate of interest, the second one β̃ ∈ R is easier to analyze. Note
that

β̂ = PR⊥y + β̃,

and write ‖x‖R = ‖PRx‖2, ‖x‖R⊥ = ‖PR⊥x‖2. Then

‖β̂ − β0‖22 = ‖ε‖2R⊥ + ‖β̃ − β0‖2R.

The first term is on the order dim(R⊥) = nullity(∆), and it suffices to bound the second term.
Now we establish a basic inequality for β̃. By optimality of β̃, we have

1

2
‖y − β̃‖2R + λ‖∆β̃‖1 ≤

1

2
‖y − β0‖2R + λ‖∆β0‖1,

and after rearranging terms,

‖β̃ − β0‖2R ≤ 2ε>PR(β̃ − β0) + 2λ‖∆β0‖1 − 2λ‖∆β̃‖1. (18)

This is our basic inequality. In the first term above, we use PR = ∆†∆, and apply Holder’s inequal-
ity:

ε>∆†∆(β̃ − β0) ≤ ‖(∆†)>ε‖∞‖∆(β̃ − β0)‖1. (19)

If λ ≥ ‖(∆†)>ε‖∞, then from (18), (19), and the triangle inequality, we see that

‖β̃ − β0‖2R ≤ 4λ‖∆β0‖1.

Well, ‖(∆†)>ε‖∞ = OP(M
√

log r) by a standard result on the maximum of Gaussians (derived
using the union bound, and Mills’ bound on the Gaussian tail), where recall M is the maximum `2
norm of the columns of ∆†. Thus with λ = Θ(M

√
log r), we have from the above that

‖β̃ − β0‖2R = OP
(
M
√

log r‖∆β0‖1
)
,

as desired.

B.3 Proof of Corollary 4

Case 1. When β̂ is the univariate trend filtering estimator of order k, we are considering a penalty
matrix ∆ = D(k+1), the univariate difference operator of order k + 1. Note that D(k+1) ∈
R(n−k−1)×n, and its null space has constant dimension k + 1. We show in Lemma 13 of Appendix
B.4 that (D(k+1))† = PRH

(k)
2 /k!, where R = row(D(k+1)), and H(k)

2 ∈ Rn×(n−k−1) contains the
last n − k − 1 columns of the order k falling factorial basis matrix (Wang et al., 2014), evaluated
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over the input points x1 = 1, . . . xn = n. The largest column norm of PRH
(k)
2 /k! is on the order of

nk+1/2, which proves the result.

Cases 2 and 3. When G is the Ramanujan d-regular graph, the number of edges in the graph is
O(nd). The operator ∆ = ∆(k+1) has number of rows r = n when k is odd and r = O(nd) when k
is even; overall this is O(nd). The dimension of the null space of ∆ is constant (it is in fact 1, since
the graph is connected). When G is the Erdos-Renyi random graph, the same bounds apply to the
number of rows and the dimension of the null space, except that the bounds become probabilistic
ones.

Now we apply the crude inequality, with ei, i = 1, . . . r denoting the standard basis vectors,

M = max
i=1,...r

∆†ei ≤ max
‖x‖2≤1

∆†x = ‖∆†‖2,

the right-hand side being the maximum singular value of ∆†. As ∆ = ∆(k+1), the graph difference
operator of order k + 1, we claim that

‖∆†‖2 ≤ 1/λmin(L)
k+1

2 , (20)

where λmin(L) denotes the smallest nonzero eigenvalue of the graph Laplacian L. To see this, note
first that ‖∆†‖2 = 1/σmin(∆), where the denominator is the smallest nonzero singular value of ∆.
Now for odd k, we have ∆(k+1) = L(k+1)/2, and the claim follows as

σmin(L
k+1

2 ) = min
x∈R:‖x‖2≤1

‖L
k+1

2 x‖2 ≥
(
σmin(L)

) k+1
2 ,

and σmin(L) = λmin(L), since L is symmetric. Above, R denotes the row space of L (the space
orthogonal to the vector 1 of all 1s). For even k, we have ∆(k+1) = DLk/2, and again

σmin(DL
k
2 ) = min

x∈R:‖x‖2≤1
‖DL

k+1
2 x‖2 ≥ σmin(D)

(
σmin(L)

) k
2 ,

where σmin(D) =
√
λmin(L), since D>D = L. This verifies the claim.

Having established (20), it suffices to lower bound λmin(L) for the two graphs in question.
Indeed, for both graphs, we have the lower bound

λmin(L) = Ω(d−
√
d).

e.g., see Lubotzky et al. (1988); Marcus et al. (2014) for the Ramanujan graph and Feige and Ofek
(2005); Chung and Radcliffe (2011) for the Erdos-Renyi graph. This completes the proof.

B.4 Calculation of (D(k+1))†

Lemma 13 The (k + 1)st order discrete difference operator has pseudoinverse

(D(k+1))† = PRH
(k)
2 /k!,

where we denote R = row(D(k+1)), and H(k)
2 ∈ Rn×(n−k−1) the last n− k− 1 columns of the kth

order falling factorial basis matrix.
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Proof We abbreviate D = D(k+1), and consider the linear system

DD>x = Db (21)

in x, where b ∈ Rn is arbitrary. We seek an expression for x = (DD>)−1D> = (D†)>b, and this
will tell us the form of D†. Define

D̃ =

[
C
D

]
∈ Rn×n,

where C ∈ R(k+1)×n is the matrix that collects the first row of each lower order difference operator,
defined in Lemma 2 of Wang et al. (2014). From this same lemma, we know that

D̃−1 = H/k!,

where H = H(k) is falling factorial basis matrix of order k, evaluated over x1, . . . xn. With this in
mind, consider the expanded linear system[

CC> CD>

DC> DD>

] [
w
x

]
=

[
a
Db

]
. (22)

The second equation reads
DC>w +DD>x = Db,

and so if we can choose a in (22) so that at the solution we have w = 0, then x is the solution in
(21). The first equation in (22) reads

CC>w + CD>x = a,

i.e.,
w = (CC>)−1(a− CD>x).

That is, we want to choose

a = CD>x = CD>(DD>)−1Db = CPRb,

where PR is the projection onto row space of D. Thus we can reexpress (22) as

D̃D̃>
[
w
x

]
=

[
CPRb
Db

]
= D̃PRb

and, using D̃−1 = H/k!, [
w
x

]
= H>PRb/k!.

Finally, writing H2 for the last n− k − 1 columns of H , we have x = H>2 PRb/k!, as desired.

Remark. The above proof did not rely on the input points x1, . . . xn; indeed, the result holds true
for any sequence of inputs used to define the discrete difference matrix and falling factorial basis
matrix.

30



TREND FILTERING ON GRAPHS

B.5 Proof of Lemma 5

We follow the proof of Theorem 3, up until the application of Holder’s inequality in (19). In place
of this step, we use the linearized bound in (15), which we claim implies that

ε>PR(β̃ − β0) ≤ B̃‖β̃ − β0‖R +A‖∆(β̃ − β0)‖1,

where B̃ = OP(B). This simply follows from applying (15) to x = PR(β̃ − β0)/‖∆(β̃ − β0)‖1,
which is easily seen to be an element of S∆(1). Hence we can take take λ = Θ(A), and argue as in
the proof of Theorem 3 to arrive at

‖β̃ − β0‖2R ≤ B̃‖β̃ − β0‖R + Ã‖∆β0‖1,

where Ã = OP(A). Note that the above is a quadratic inequality of the form ax2 − bx − c ≤ 0
with x = ‖β̃ − β0‖R. As a > 0, the larger of its two roots serves as a bound for x, i.e., x ≤
(b+

√
b2 + 4ac)/(2a) ≤ b/a+

√
c/a, or x2 ≤ 2b2/a2 + 2c/a, which means that

‖β̃ − β0‖2R ≤ 2B̃2 + 2Ã‖∆β0‖1 = OP
(
B2 +A‖∆β0‖1

)
,

completing the proof.

B.6 Proof of Theorem 6

For an index i0 ∈ {1, . . . q}, let

C = µ

√√√√2 log 2r

n

q∑
i=i0+1

1

ξ2
i

.

We will show that

max
x∈S∆(1)

ε>x− 1.001σC

‖x‖2
= OP(

√
i0).

Invoking Lemma 5 with A = 1.001σC and b =
√
i0 would then give the result.

Henceforth we denote [i] = {1, . . . i}. Recall that q = rank(∆). Let the singular value decom-
position of ∆ be

∆ = UΣV >,

where U ∈ Rr×q, V ∈ Rn×q are orthogonal, and Σ ∈ Rq×q has diagonal elements (Σ)ii = ξi > 0
for i ∈ [q]. First, let us establish that

∆† = V Σ−1U>.

Consider an arbitrary point x = PRz ∈ S∆(1). Denote the projection P[i0] = V[i0]V
>

[i0] where V[i0]

contains the first i0 right singular vectors. We can decompose

ε>PRz = ε>P[i0]PRz + ε>(I − P[i0])PRz.

The first term can be bounded by

ε>P[i0]PRz ≤ ‖P[i0]ε‖2‖z‖R = OP(
√
i0‖z‖R),
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using the fact that ‖P[i0]ε‖22
d
=
∑i0

i=1 ε
2
i . We can bound the second term by

ε>(I − P[i0])PRz = ε>(I − P[i0])∆
†∆z ≤ ‖(∆†)>(I − P[i0])ε‖∞,

using PR = ∆†∆, Holder’s inequality, and the fact that ‖∆z‖1 ≤ 1. Define gj = (I − P[i0])∆
†ej

for j ∈ [r] with ej the jth canonical basis vector. So,

‖gj‖22 = ‖[ 0 V[n]\[i0] ] · Σ−1U>ej‖22 ≤
µ2

n

q∑
i=i0+1

1

ξ2
i

,

by rotational invariance of ‖·‖2 and the incoherence assumption on the columns of U . By a standard
result on maxima of Gaussians,

‖(∆†)>(I − P[i0])ε‖∞ = max
j∈[r]

|g>j ε| ≤ 1.001σ

√√√√2 log(2r)
µ2

n

q∑
i=i0+1

1

ξ2
i

= 1.001σC,

with probability approaching 1. Putting these two terms together completes the proof, as we have
shown that

ε>PRz − 1.001σC

‖z‖R
= OP(

√
i0),

with the probability bound on the right-hand side not depending on z.

B.7 Proof of Corollary 7

We focus on the k odd and k even cases separately.

Case for k odd. When k is odd, we have ∆ = ∆(k+1) = L(k+1)/2, where L the graph Laplacian of
a chain graph (i.e., 1d grid graph), to be perfectly explicit,

L =



1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

. . . . . . . . .
0 0 . . . −1 2 −1
0 0 . . . 0 −1 1


.

In numerical methods for differential equations, this matrix L is called the finite difference operator
for the 1d Laplace equation with Neumann boundary conditions (e.g., Conte and de Boor, 1980;
Godunov and Ryabenkii, 1987), and is known to have eigenvalues and eigenvectors

ξi = 4 sin2
(π(i− 1)

2n

)
, for i = 1, . . . n,

uij =


1√
n

if i = 1√
2
n cos

(
π(i−1)(j−1/2)

n

)
otherwise

, for i, j = 1, . . . n.
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Therefore, the eigenvectors of L are incoherent with constant µ =
√

2. This of course implies the
same of L(k+1)/2, which shares the eigenvectors of L. Meanwhile, the eigenvalues of L(k+1)/2 are
just given by raising those of L to the power of (k + 1)/2, and for i0 ∈ {1, . . . n}, we compute the
partial sum of their squared reciprocals, as in

1

n

n∑
i=i0+1

1

ξk+1
i

=
1

n

n∑
i=i0+1

1

4k+1 sin2k+2(π(i− 1)/(2n))
≤
∫ (n−2)/n

(i0−1)/n

1

4k+1 sin2k+2(πx/2)
dx,

where we have used the fact that the right-endpoint Riemann sum, for a monotone nonincreasing
function, is an underestimate of its integral. Continuing on, the above integral can be bounded by

1

4k+1 sin2k(πi0/(2n))

∫ 1

(i0−1)/n

1

sin2(πx/2)
dx =

2 cot(πi0/(2n))

4k+1π sin2k(πi0/(2n))
≤ 1

4k+1π

(
2n

πi0

)2k+1

,

the last step using a Taylor expansion around 0. Hence to choose a tight a bound as possible in
Theorem 6, we seek to balance i0 with

√
(n/i0)2k+1 log n · ‖∆(k+1)β0‖1. This is accomplished by

choosing

i0 = n
2k+1
2k+3 (log n)

1
2k+3 ‖∆(k+1)β0‖

2
2k+3

1 ,

and applying Theorem 6 gives the result for k odd.

Case for k even. When k is even, we instead have ∆ = ∆(k+1) = DLk/2, where D is the edge
incidence matrix of a 1d chain, and L = D>D. It is clear that the left singular vectors of DLk/2

are simply the left singular vectors of D, or equivalently, the eigenvectors of DD>. To be explicit,

DD> =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

. . . . . . . . .
0 0 . . . −1 2 −1
0 0 . . . 0 −1 2


,

which is called the finite difference operator associated with the 1d Laplace equation under Dirichlet
boundary conditions in numerical methods (e.g., Conte and de Boor, 1980; Godunov and Ryabenkii,
1987), and is known to have eigenvectors

uij =

√
2

n
sin
(πij
n

)
, for i, j = 1, . . . n− 1.

It is evident that these vectors are incoherent, with constant µ =
√

2. Furthermore, the singular
values ofDLk/2 are exactly the eigenvalues of L raised to the power of (k+1)/2, and the remainder
of the proof goes through as in the k odd case.

B.8 Proof of Corollary 8

Again we treat the k odd and even cases separately.
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Case for k odd. As k is odd, the GTF operator is ∆ = ∆(k+1) = L(k+1)/2, where the L is the
Laplacian matrix of a 2d grid graph. Writing L1d ∈ R`×` for the Laplacian matrix over a 1d grid of
size ` =

√
n (and I ∈ R`×` for the identity matrix), we note that

L = I ⊗ L1d + L1d ⊗ I,

i.e., the 2d grid Laplacian L is the Kronecker sum of the 1d grid Laplacian L1d, so its eigenvectors
are given by all pairwise Kronecker products of eigenvectors of L1d, of the form ui⊗uj . Moreover,
it is not hard to see that each ui⊗uj has unit norm (since ui, uj do) and ‖ui⊗uj‖∞ ≤ 2/

√
n. This

allows us to conclude that the eigenvectors of L obey the incoherence property with µ = 2.
The eigenvalues of L are given by all pairwise sums of eigenvalues in the 1d case. Indexing by

2d grid coordinates, we may write these as

ξj1,j2 = 4 sin2
(π(j1 − 1)

2`

)
+ 4 sin2

(π(j2 − 1)

2`

)
, for j1, j2 = 1, . . . `.

Eigenvalues of L(k+1)/2 are just given by raising the above to the power of (k + 1)/2, and for
j0 ∈ {1, . . . `}, we let i0 = j2

0 , and compute the sum

1

n

∑
max{j1j2}>j0

1

ξk+1
j1,j2

≤ 2

n

∑̀
j1=j0+1

∑̀
j2=1

1

ξk+1
j1,j2

≤ 2

`

∑̀
j1=j0+1

1

4k+1 sin2k+2(π(j1 − 1)/(2`))
.

Just as we argued in the 1d case (for k odd), the above is bounded by

2

4k+1π

(
2`

πj0

)2k+1

,

and thus we seek to balance i0 = j2
0 with

√
(`/j0)2k+1 log n · ‖∆(k+1)β0‖1. This yields

j0 = `
2k+1
2k+5 (log n)

1
2k+5 ‖∆(k+1)β0‖

2
2k+5

1 ,

i.e.,

i0 = n
2k+1
2k+5 (log n)

2
2k+5 ‖∆(k+1)β0‖

4
2k+5

1 ,

and applying Theorem 6 gives the result for k odd.

Case for k even. For k even, we have the GTF operator being ∆ = ∆(k+1) = DLk/2, where D is
the edge incidence matrix of a 2d grid, and L = D>D. It will be helpful to write

D =

[
I ⊗D1d

D1d ⊗ I

]
,

where D1d ∈ R(`−1)×` is the difference operator for a 1d grid of size ` =
√
n (and I ∈ R`×` is the

identity matrix). It suffices to check the incoherence of the left singular vectors of DLk/2, since the
eigenvalues of DLk/2 are those of L raised to the power of (k + 1)/2, and so the rest of the proof
then follows precisely as in the case when k is odd. The left singular vectors of DLk/2 are the same
as the left singular vectors of D, which are the eigenvectors of DD>. Observe that

DD> =

[
I ⊗D1dD

>
1d D>1d ⊗D1d

D1d ⊗D>1d D1dD
>
1d ⊗ I

]
.
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Let ui, i = 1, . . . ` − 1 be the eigenvectors of D1dD
>
1d, corresponding to eigenvalues λi, i =

1, . . . `− 1. Define vi = D>1dui/
√
λi, i = 1, . . . `− 1, and e = 1/

√
`, where 1 = (1, . . . 1) ∈ R` is

the vector of all 1s. A straightforward calculation verifies that

DD>
[
vi ⊗ ui
ui ⊗ vi

]
= 2λi

[
vi ⊗ ui
ui ⊗ vi

]
, for i = 1, . . . `− 1,

DD>
[
e⊗ ui

0

]
= λi

[
e⊗ ui

0

]
, for i = 1, . . . `− 1,

DD>
[

0
ui ⊗ e

]
= λi

[
0

ui ⊗ e

]
, for i = 1, . . . `− 1.

Hence we have derived 3(`− 1) eigenvectors of DD>. Note that the vectors vi, i = 1, . . . `− 1 are
actually the eigenvectors of L1d = D>1dD1d (corresponding to the ` − 1 nonzero eigenvalues), and
from our work in the 1d case, recall, both vi, i = 1, . . . `−1 (studied for k odd) and ui, i = 1, . . . `−1
(studied for k even) are unit vectors satisfying the incoherence property with µ =

√
2. This means

that the above eigenvectors are all unit norm, and are also incoherent, with constant µ = 2.
There are (`− 1)(`− 2) more eigenvectors of DD>, as the rank of DD> is n− 1 = `2 − 1. A

somewhat longer but still straightforward calculation verifies that

DD>

 vi ⊗ uj + vj ⊗ ui√
λi
λj
ui ⊗ vj +

√
λj
λi
uj ⊗ vi

 = (λi + λj)

 vi ⊗ uj + vj ⊗ ui√
λi
λj
ui ⊗ vj +

√
λj
λi
uj ⊗ vi

 , for i < j,

DD>

 √λj
λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi

 = (λi + λj)

 √λj
λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi

 , for i < j.

Modulo the appropriate normalization, we have derived the remaining (`−1)(`−2) eigenvectors of
DD>. It remains to check their incoherence, once we have normalized them (to have unit norm). As
the eigenvectors in the first and second expressions above are simply (block) rearrangements of each
other, it does not matter which form we study; consider, say, those in the second expression, and fix
i < j. The entrywise absolute maximum of the eigenvector in question is at most

√
λj/λi(4/

√
n).

Thus it suffices show that the normalization constant for this eigenvector is on the order of
√
λj/λi.

Observe that∥∥∥∥∥∥
 √λj

λi
vi ⊗ uj +

√
λi
λj
vj ⊗ ui

ui ⊗ vj + uj ⊗ vi

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
 √λj

λi
vi ⊗ uj

ui ⊗ vj

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥
 √ λi

λj
vj ⊗ ui

uj ⊗ vi

∥∥∥∥∥∥
2

2

.

Here the cross-term is (v>i ⊗ u>j )(vj ⊗ ui) = (v>i vj)(u
>
i uj) = 0, as v>i vj = 0 and u>i uj = 0. This

means that the normalization constant lies within [
√
λj/λi + 2,

√
2λj/λi + 2]. In particular, the

lower bound shows that the incoherence property holds with µ = 4. This completes the proof.

B.9 Proof of Lemma 9

As before, we follow the proof of Theorem 3 up until the application of Holder’s inequality in (19),
but we use the fractional bound in (16) instead. We claim that this implies

ε>PR(β̃ − β0) ≤ K̃‖β̃ − β0‖1−w/2R (‖∆β̃‖1 + ‖∆β0‖1)w/2,
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where K̃ = OP(K). This is verified by noting that x = PR(β̃ − β0)/(‖∆β̃‖1 + ‖∆β0‖1) ∈ S∆(1),
applying (16) to x, and then rearranging. Therefore, as in the proof of Theorem 3, we have

‖β̃ − β0‖2R ≤ 2K̃‖β̃ − β0‖1−w/2R (‖∆β̃‖1 + ‖∆β0‖1)w/2 + 2λ(‖∆β0‖1 − ‖∆β̃‖1), (23)

We now set

λ = Θ

(
K

2
1+w/2 ‖∆β0‖

− 1−w/2
1+w/2

1

)
,

and in the spirit of van de Geer (1990); Mammen and van de Geer (1997), we proceed to argue in
cases.

Case 1. Suppose that 1
2‖∆β̃‖1 ≥ ‖∆β0‖1. Then we see that (23) implies

0 ≤ ‖β̃ − β0‖2R ≤ K̃‖β̃ − β0‖1−w/2R

(3

2

)w/2
‖∆β̃‖w/21 − λ‖∆β̃‖1, (24)

so that
λ‖∆β̃‖1 ≤ K̃‖β̃ − β0‖1−w/2R ‖∆β̃‖w/21 ,

where for simplicity have absorbed a constant factor 2(3/2)w/2 into K̃ (since this does not change
the fact that K̃ = OP(K)), and thus

‖∆β̃‖1 ≤
(K̃
λ

) 1
1−w/2 ‖β̃ − β0‖R.

Plugging this back into (24) gives

‖β̃ − β0‖2R ≤ K̃‖β̃ − β0‖1−w/2R

(K̃
λ

) w/2
1−w/2 ‖β̃ − β0‖w/2R ,

or

‖β̃ − β0‖R ≤ K̃
1

1+w/2

( 1

λ

) w/2
1−w/2

= OP

(
K

1
1+w/2 ‖∆β0‖

w/2
1+w/2

1

)
,

as desired.

Case 2. Suppose that 1
2‖∆β̃‖1 ≤ ‖∆β0‖1. Then from (23),

‖β̃ − β0‖2R ≤ 2λ‖∆β0‖1︸ ︷︷ ︸
a

+ 2K̃‖β̃ − β0‖1−w/2R 3w/2‖∆β0‖w/21︸ ︷︷ ︸
b

,

and hence either ‖β̃ − β0‖2R ≤ 2a, or ‖β̃ − β0‖2R ≤ 2b, and a ≤ b. The first subcase is straightfor-
ward and leads to

‖β̃ − β0‖R ≤ 2
√
λ‖∆β0‖1 = OP

(
K

1
1+w/2 ‖∆β0‖

w/2
1+w/2

1

)
,

as desired. In the second subcase, we have by assumption

‖β̃ − β0‖2R ≤ 2K̃‖β̃ − β0‖1−w/2R ‖∆β0‖w/21 , (25)

2λ‖∆β0‖1 ≤ K̃‖β̃ − β0‖1−w/2R ‖∆β0‖w/21 , (26)
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where again we have absorbed a constant factor 2(3w/2) into K̃. Working from (26), we derive

‖∆β0‖1 ≤
( K̃

2λ

) 1
1−w/2 ‖β̃ − β0‖R,

and plugging this back into (25), we see

‖β̃ − β0‖2R ≤ 2K̃‖β̃ − β0‖1−w/2R

( K̃
2λ

) w/2
1−w/2 ‖β̃ − β0‖w/2R ,

and finally

‖β̃ − β0‖R ≤ 2K̃
1

1+w/2

( 1

λ

) w/2
1−w/2

= OP

(
K

1
1+w/2 ‖∆β0‖

w/2
1+w/2

1

)
.

This completes the second case, and the proof.

B.10 Proof of Theorem 10

The proof follows closely from Lemma 3.5 of van de Geer (1990). However, this author uses a
different problem scaling than ours, so some care must be taken in applying the lemma. First we
abbreviate S = S∆(1), and define S̃ = S ·

√
n/M , where recall M is the maximum column norm

of ∆†. Now it is not hard to check that

S = {x ∈ row(∆) : ‖∆x‖1 ≤ 1} = ∆†{α ∈ col(∆) : ‖α‖1 ≤ 1},

so that maxx∈S ‖x‖2 ≤M , and maxx∈S̃ ‖x‖2 ≤
√
n. This is important because Lemma 3.5 of

van de Geer (1990) concerns a form of “local” entropy that allows for deviations on the order of
√
n

in the norm ‖ · ‖2, or equivalently, constant order in the scaled metric ‖ · ‖n = ‖ · ‖2/
√
n. Hence,

the entropy bound in (17) translates into

logN(δ, S̃, ‖ · ‖2) ≤ E
(√n
M

)w(√n
δ

)w
,

that is,

logN(δ, S̃, ‖ · ‖n) ≤ E
(√n
M

)w
δ−w.

Now we apply Lemma 3.5 of van de Geer (1990): in the scaled metric used by this author,

max
x∈S̃

ε>x
√
n‖x‖1−w/2n

= OP

(√
E
(√n
M

)w/2)
,

that is,

max
x∈S̃

ε>x

‖x‖1−w/22

= OP

(√
E
(√
n
)w/2(√n

M

)w/2)
,

and finally,

max
x∈S

ε>x

‖x‖1−w/22

= OP

(√
E
(√
n
)w/2)

,

as desired.
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B.11 Proof of Corollary 11

For each j = 1, . . . 2r, if G is covered by j balls having radius at most C0
√
nj−1/ζ , with respect to

the norm ‖·‖2, then it is covered by j balls having radius at most C0j
−1/ζ , with respect to the scaled

norm ‖ · ‖n = ‖ · ‖2/
√
n. By Theorem 1 of Carl (1997), this implies that for each j = 1, 2, 3, . . .,

the convex hull conv(G) is covered by 2j balls having radius at most C ′0j
−(1/2+1/ζ), with respect

to ‖ · ‖n, for another constant C ′0. Converting this back to an entropy bound in our original metric,
and noting that conv(G) = S∆(1), we have

log(δ,S∆(1), ‖ · ‖2) ≤ C ′′0
(√n
δ

) 1
1/2+1/ζ

,

for a constant C ′′0 , as needed. This proves the lemma.

B.12 Proof of Corollary 12

According to Lemma 13, we know that (D(1))† = P⊥1 H , whereH is an n×(n−1) lower triangular
matrix with Hij = 1 if i > j and 0 otherwise, and P⊥1 is the projection map orthogonal to the all
1s vector. Thus gi = P⊥1 hi, i = 1, . . . n − 1, with h1, . . . hn−1 denoting the columns of H . It is
immediately apparent that

‖gi − g`‖2 ≤ ‖hi − h`‖2 ≤
√
i− `,

for all i > `. Now, given 2j balls at our disposal, consider centering the first j balls at

gd, g2d, . . . gjd,

where d = bn/jc. Also let these balls have radius
√
n/j. By construction, then, we see that

‖g1 − gd‖2 ≤
√
n/j, ‖gd − g2d‖2 ≤

√
n/j, . . . ‖gjd − gn−1‖2 ≤

√
n/j,

which means that we have covered g1, . . . gn−1 with j balls of radius
√
n/j.

We can cover −g1, . . . ,−gn−1 with the remaining j balls analogously. Therefore, we have
shown that 2j balls require a radius of

√
n/j, or in other words, j balls require a radius of

√
2n/j.
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