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Abstract

Data in the form of pairwise comparisons arises in many domains, including preference
elicitation, sporting competitions, and peer grading among others. We consider parametric
ordinal models for such pairwise comparison data involving a latent vector w∗ ∈ Rd that
represents the “qualities” of the d items being compared; this class of models includes the
two most widely used parametric models—the Bradley-Terry-Luce (BTL) and the Thur-
stone models. Working within a standard minimax framework, we provide tight upper and
lower bounds on the optimal error in estimating the quality score vector w∗ under this class
of models. The bounds depend on the topology of the comparison graph induced by the
subset of pairs being compared, via the spectrum of the Laplacian of the comparison graph.
Thus, in settings where the subset of pairs may be chosen, our results provide principled
guidelines for making this choice. Finally, we compare these error rates to those under
cardinal measurement models and show that the error rates in the ordinal and cardinal
settings have identical scalings apart from constant pre-factors.

1. Introduction

In an increasing range of applications, it is of interest to elicit judgments from non-expert
humans. For instance, in marketing, elicitation of preferences of consumers about products,
either directly or indirectly, is a common practice (Green et al., 1981). The gathering of this
and related data types has been greatly facilitated by the emergence of “crowdsourcing”
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Figure 1: An example of eliciting judgments from people: rating the relevance of the result
of a search query.

platforms such as Amazon Mechanical Turk: they have become powerful, low-cost tools
for collecting human judgments (Khatib et al., 2011; Lang and Rio-Ross, 2011; von Ahn
et al., 2008). Crowdsourcing is employed not only for collection of consumer preferences,
but also for other types of data, including counting the number of malaria parasites in an
image of a blood smear (Luengo-Oroz et al., 2012); rating responses of an online search
engine to search queries (Kazai, 2011); or for labeling data for training machine learning
algorithms (Hinton et al., 2012; Raykar et al., 2010; Deng et al., 2009). In a different
domain, competitive sports can be understood as a mechanism for sequentially performing
comparisons between individuals or teams (Ross, 2007; Herbrich et al., 2007). Finally,
peer-grading in massive open online courses (MOOCs) (Piech et al., 2013) can be viewed
as another form of elicitation.

A common method of elicitation is through pairwise comparisons. For instance, the
decision of a consumer to choose one product over another constitutes a pairwise comparison
between the two products. Workers in a crowdsourcing setup are often asked to compare
pairs of items: for instance, they might be asked to identify the better of two possible results
of a search engine, as shown in Figure 1a. Competitive sports such as chess or basketball
also involve sequences of pairwise comparisons. From a modeling point of view, we can think
of pairwise comparisons as a means of estimating the underlying “qualities” or “weights”
of the items being compared (e.g., skill levels of chess players, relevance of search engine
results, etc.). Each pairwise comparison can be viewed as a noisy sample of some function
of the underlying pair of (real-valued) weights. Noise can arise from a variety of sources.
When objective questions are posed to human subjects, noise can arise from their differing
levels of expertise. In a sports competition, many sources of randomness can influence the
outcome of any particular match between a pair of competitors. Thus, one important goal
is to estimate the latent qualities based on noisy data in the form of pairwise comparisons.
A related problem is that of experimental design: assuming that we can choose the subset of
pairs to be compared (e.g., in designing a chess tournament), what choice leads to the most
accurate estimation? Characterizing the fundamental difficulty of estimating the weights
allow us to make this choice judiciously. These tasks are the primary focus of this paper.

In more detail, the focus of this paper is the aggregation from pairwise comparisons in
a fairly broad class of parametric models. This class includes as special cases the two most
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popular models for pairwise comparisons—namely, the Thurstone (Case V) (Thurstone,
1927) and the Bradley-Terry-Luce (BTL) (Bradley and Terry, 1952; Luce, 1959) models.
The Thurstone (Case V) model has been used in a variety of both applied (Swets, 1973; Ross,
2007; Herbrich et al., 2007) and theoretical papers (Bramley, 2005; Krabbe, 2008; Nosofsky,
1985). Similarly, the BTL model has been popular in both theory and practice (Nosofsky,
1985; Atkinson et al., 1998; Koehler and Ridpath, 1982; Heldsinger and Humphry, 2010;
Loewen et al., 2012; Green et al., 1981; Khairullah and Zionts, 1987).

1.1 Related work

There is a vast literature on the Thurstone and BTL models, and we focus on those most
closely related to our own work. Negahban et al. (2012) provide minimax bounds for the
BTL model in the special case where the comparisons are evenly distributed. They focus
on this case in order to complement their analysis of an algorithm based on a random
walk. In their analysis, there is a gap between the achievable rate of the MLE and the
lower bound. In contrast, our analysis eliminates this discrepancy and shows that MLE is
an optimal estimator (up to constant factors) and achieves the minimax rate. In a work
concurrent with our initial submission to arXiv (Shah et al., 2014), Hajek et al. (2014)
consider the problem of estimation in the Plackett-Luce model, which extends the BTL
model to comparisons of two or more items. They derive bounds on the minimax error
rates under this model which, under certain conditions on the comparison graphs, are tight
up to logarithmic factors. In general, their topology-dependent bounds rely on the degrees
of the vertices in the comparison graph which makes the bounds quite loose. In contrast,
our results are tight up to constants and, as we detail in the following sections, provide
deeper insights into the role of the topology of the comparison graph. We elaborate on
these differences in the appropriate sections in the sequel. We also note that the models
studied in the present paper as well as in the aforementioned works fall under the broader
paradigm of random utility models (Thurstone, 1927; Train, 2009; Azari Soufiani et al.,
2013).

In other related works, Jagabathula and Shah (2008) design an algorithm for aggregating
ordinal data when the underlying distribution over the permutations is assumed to be
sparse. Ammar and Shah (2011) employ a different, maximum entropy approach towards
parameterization and inference from partially ranked data. Rajkumar and Agarwal (2014)
study the statistical convergence properties of several rank aggregation algorithms.

Our work assumes a fixed design setup. In this setup, the choice of which pairs to
compare and the number of times to compare them is chosen ahead of time in a non-
adaptive fashion. There is a parallel line of literature on “sorting” or “active ranking”
from pairwise comparisons. For instance, Braverman and Mossel (2008) assume a noise
model where the outcome of a pairwise comparison depends only on the relative ranks of
the items being compared, and not on their actual ranks or values. On the other hand,
Jamieson and Nowak (2011) consider the problem of ranking a set of items assuming that
items can be embedded into a smaller-dimensional Euclidean space, and that the outcomes
of the pairwise comparisons are based on the relative distances of these items from a fixed
reference point in the Euclidean space.

3



Shah et al.

A recent line of work considers a variant of the BTL and the Thurstone models where
the comparisons may depend on some auxiliary unknown variable in addition to the items
being compared; for instance, the accuracy of the individual making the comparison in
an objective task. Chen et al. (2013) consider a crowdsourcing setup where the outcome
depends on the worker’s expertise. They present algorithms for inference under such a
model and present empirical evaluations. Yi et al. (2013) consider a problem in the spirit of
collaborative filtering where certain unknown preferences of a certain user must be predicted
based on the preferences of other users as well as of that user over other items. Lee et al.
(2011) consider the inverse problem of measuring the expertise of individuals based on the
rankings submitted by them, and the proposed algorithms assume an underlying Thurstone
model. Shah et al. (2013) make a case for ordinal evaluations in certain types of MOOC
homeworks/exams and study a variant of the BTL model.

1.2 Our contributions

Both the Thurstone (Case V) and BTL models involve an unknown vector w∗ ∈ Rd cor-
responding to the underlying qualities of d items, and in a pairwise comparison between
items j and k, the probability of j being ranked above k is some function F of the difference
w∗j − w∗k. The Thurstone (Case V) and BTL are based on different choices of F , and both
belong to the broader class of models analyzed in this paper, in which F is required only
to be strongly log-concave.

With this context, the main contributions of this paper are to provide some answers to
the following questions:

• How does the minimax error for estimating the weight vector w∗ in various norms scale
with the problem dimension (the number of items) and the number of observations?

– We derive upper and lower bounds on the minimax estimation rates under the model
described above. Our upper/lower bounds on the estimation error agree up to con-
stant factors: to the best of our knowledge, despite the voluminous literature on these
two models, this provides the first sharp characterization of the associated minimax
rates. Moreover, our error guarantees provide guidance to the practitioner in assessing
the number of pairwise comparisons to be made in order to guarantee a pre-specified
accuracy.

• Given a budget of n comparisons, which pairs of items should be compared?

– The bounds that we derive depend on the comparison graph induced by the subset of
pairs that are compared. Our theoretical analysis reveals that the spectral gap of a
certain scaled version of the graph Laplacian plays a fundamental role, and provides
guidelines for the practitioner on how to choose the subset of comparisons to be made.

• When is it better to elicit pairwise comparisons versus numeric scores?

– When eliciting data, one often has the liberty to ask for either cardinal values (Fig-
ure 1b) or for pairwise comparisons (Figure 1a) from the human subjects. One would
like to adopt the approach that would lead to a better estimate. One may be tempted to
think that cardinal elicitation methods are superior, since each cardinal measurement
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gives a real-valued number whereas an ordinal measurement provides at most one bit
of information. Our bounds show, however, that the scaling of the error in the cardinal
and ordinal settings is identical up to constant pre-factors. As we demonstrate, this
result allows for a comparison of cardinal and ordinal data elicitation methods in terms
of the per-measurement noise alone, independent of the number of measurements and
the number of items. A priori, there is no obvious reason for the relative performance
to be independent of the number of measurements and items.

Notation: For any symmetric matrix M of size (m×m), we let λ1(M) ≤ λ2(M) ≤ · · · ≤
λm(M) denote its ordered eigenvalues. We use the notation DKL(P1‖P2) to denote the
Kullback-Leibler divergence between the two distributions P1 and P2. For any integer m,
we let [m] denote the set {1, . . . ,m}. For any pair of vectors u and v of the same length,
we let 〈u, v〉 denote their inner product.

2. Problem formulation

We begin with some background followed by a precise formulation of the problem.

2.1 Generative models for ranking

Given a collection of d items to be evaluated, we suppose that each item has a certain
numeric quality score, and a comparison of any pair of items is generated via a comparison
of the two quality scores in the presence of noise. We represent the quality scores as a
vector w∗ ∈ Rd, so item j ∈ [d] has quality score w∗j . Now suppose that we make n pairwise
comparisons: if comparison i ∈ [n] pertains to comparing item ai with item bi, then it can
be described by a differencing vector xi ∈ Rd, with entry ai equal to one, entry bi equal to
−1, and the remaining entries set to 0.

With this notation, we study the problem of estimating the weight vector w∗ based on
observing a collection of n independent samples yi ∈ {−1, 1} drawn from the distribution

P
[
yi = 1|xi, w∗

]
= F

(〈xi, w∗〉
σ

)
for i ∈ [n], (Ordinal)

where F is a known function taking values in [0, 1]. Since the probability of item ai domi-
nating bi should be independent of the order of the two items being compared, we require
throughout that F (x) = 1− F (−x).

In any model of the general form (Ordinal), the parameter σ > 0, assumed to be known,
plays the role of a noise parameter, with a higher value of σ leading to more uncertainty in
the comparisons. Moreover, we assume that F is strongly log-concave in a neighborhood of
the origin, meaning that there is some curvature parameter γ > 0 such that

d2

dt2
(− logF (t)) ≥ γ for all t ∈ [−2B/σ, 2B/σ]. (1)

Here the known parameter B denotes a bound on the `∞-norm of the weight vector, namely

‖w∗‖∞ ≤ B.
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As our analysis shows, a bound of this form is fundamental: the minimax error for estimating
w∗ diverges to infinity if we are allowed to consider models in which B is arbitrarily large
(see Proposition 17 in Appendix G). Informally, this behavior is related to the difficulty
of estimating very small (or very large) probabilities that can arise in the two models for
large ‖w∗‖∞. Note that any model of the form (Ordinal) is invariant to shifts in w∗, that
is, it does not differentiate between the vector w∗ and the shifted vector w∗ + 1, where 1
denotes the vector of all ones. Therefore, in order to ensure identifiability of w∗, we assume
throughout that 〈1, w∗〉 = 0. We use the notation WB to denote the set of permissible
quality score vectors

WB : =
{
w ∈ Rd | ‖w‖∞ ≤ B, and 〈1, w〉 = 0

}
. (2)

Both the Thurstone (Case V) model with Gaussian noise (Thurstone, 1927) and Bradley-
Terry-Luce (BTL) models (Bradley and Terry, 1952; Luce, 1959) are special cases of this
general set-up, as we now describe.

Thurstone (Case V): This model is is a special case of the family (Ordinal), obtained
by setting

F (t) =

∫ t

−∞

1√
2π
e−u

2/2du, (3)

corresponding to the CDF of the standard normal distribution. Consequently, the Thurstone
model can alternatively be written as making n i.i.d. observations of the form

yi = sign

{
〈xi, w∗〉+ εi

}
, for i ∈ [n], (Thurstone)

where εi ∼ N(0, σ2) is observation noise. It can be verified that the Thurstone model is
strongly log-concave over the set WB (e.g., see Tsukida and Gupta (2011)).

Bradley-Terry-Luce: The Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 1959) is another special case in which

F (t) =
1

1 + e−t
,

and hence

P
[
yi = 1|xi, w∗

]
=

1

1 + exp
(
− 〈xi, w

∗〉
σ

) for i ∈ [n]. (BTL)

It can also be verified that the BTL model is strongly log-concave over the set WB.

Cardinal observation models: While our primary focus is on the pairwise-comparison
setting, for comparison purposes we also analyze analogous cardinal settings where each
observation is real valued. In particular, we consider the following two cardinal analogues
of the Thurstone model. In the Cardinal model we consider, each observation i ∈ [n]
consists of a numeric evaluation yi ∈ R of a single item,

yi = 〈ui, w∗〉+ εi for i ∈ [n], (Cardinal)
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where ui in this case is a coordinate vector with one of its entries equal to 1 and remaining
entries equal to 0, and εi is independent Gaussian noise N(0, σ2). One may alternatively
elicit cardinal values of the differences between pairs of items

yi = 〈xi, w∗〉+ εi for i ∈ [n], (Paired Cardinal)

where εi are i.i.d. N(0, σ2). We term this model the Paired Cardinal model.

2.2 Fixed design and the graph Laplacian

We analyze the estimation error when a fixed subset of pairs is chosen for comparison. Of
interest to us is the comparison graph defined by these chosen pairs, with each pair inducing
an edge in the graph. Edge weights are determined by the fraction of times a given pair
is compared. The analysis in the sequel reveals the central role played by the Laplacian of
this weighted graph. Note that we are operating in a fixed-design setup where the graph is
constructed offline and does not depend on the observations.

In the ordinal models, the ith measurement is related to the difference between the two
items being compared, as defined by the measurement vector xi ∈ Rd. We let X ∈ Rn×d
denote the measurement matrix with the vector xTi as its ith row. The Laplacian matrix L
associated with this differencing matrix is given by

L : =
1

n
XTX =

1

n

n∑
i=1

xix
T
i . (4)

By construction, for any vector v ∈ Rd, we have vTLv =
∑

j 6=k Ljk(vj − vk)2, where Ljk is
the fraction of the measurement vectors {xi}ni=1 in which items (j, k) are compared.

The Laplacian matrix is positive semidefinite, and has at least one zero-eigenvalue,
corresponding to the all-ones eigenvector. The Laplacian matrix induces a graph on the
vertex set {1, . . . , d}, in which a given pair (j, k) is included as an edge if and only if Ljk 6= 0,
and the weight on an edge (j, k) equals Ljk. We emphasize that throughout our analysis,
we assume that the comparison graph is connected, since otherwise, the quality score vector
w∗ is not identifiable. Note that the Laplacian matrix L induces a semi-norm1 on Rd, given
by

‖u− v‖L : =
√

(u− v)TL(u− v). (5)

We study optimal rates of estimation in this semi-norm, as well as the usual `2-norm. As
will be clearer in the sequel the L semi-norm is a natural metric in our setup, and estimation
in this induced metric can be done at a topology independent rate. The estimation error
in the L semi-norm is closely related to the prediction risk in generalized linear models. In
particular, for an estimate ŵ of w∗ from nij comparisons between each pair of items (i, j),

we have ‖ŵ − w∗‖2L =
∑

i<j nij
(
(ŵi − ŵj) − (w∗i − w∗j )

)2
. It arises naturally when one is

interested in predicting the probability of a certain outcome for a new comparison.

1. A semi-norm differs from a norm in that the semi-norm of a non-zero element is allowed to be zero.
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3. Bounds on the minimax risk

In this section, we state the main results of the paper, and discuss some of their conse-
quences.

3.1 Minimax rates in the squared L semi-norm

Our first main result provides bounds on the minimax risk under the squared L semi-
norm (5) in the pairwise comparison models introduced earlier. In all of the statements, we
use c1, c2, etc. to denote positive numerical constants, independent of the sample size n,
number of items d and other problem-dependent parameters.

Apart from the curvature parameter γ defined earlier in (1), the bounds presented
subsequently depend on F through a second parameter ζ, defined as

ζ : =

max
x∈[0,2B/σ]

F ′(x)

F (2B/σ)(1− F (2B/σ))
. (6)

In the BTL and the Thurstone models, we have ζ : = F ′(0)
F (2B/σ)(1−F (2B/σ)) . For instance,

when B = σ = 1, then under the BTL model we have γ = 0.25 and ζ = 1.43. As observed
in Negahban et al. (2015), the reader may consider the parameters B, σ, γ and ζ as having
O(1) values: a fixed value of B is the hardest regime, and furthermore, in situations of
practical interest, the problem dependent parameters σ, γ and ζ, are typically independent
of d and n. Consequently, in the sequel, we treat these parameters as fixed.

Theorem 1 (Bounds on minimax rates in L semi-norm)

(a) For a sample size n ≥ c1σ2tr(L†)
ζB2 , any estimator w̃ based on n samples from the Ordi-

nal model has Laplacian squared error lower bounded as

sup
w∗∈WB

E
[
‖w̃ − w∗‖2L

]
≥ c1`

ζ
σ2 d

n
. (7a)

(b) For any instance of the Ordinal model with γ-strong log-concavity and any w∗ ∈ WB,
the maximum likelihood estimator satisfies the bound

P
[
‖ŵML − w∗‖2L > t

cζ2σ2

γ2

d

n

]
≤ e−t for all t ≥ 1,

and consequently

sup
w∗∈WB

E
[
‖ŵML − w∗‖2L

]
≤ c1uζ

2

γ2
σ2 d

n
. (7b)

The results of Theorem 1 characterize the minimax risk in the squared L semi-norm up
to constant factors. The upper bounds follow from an analysis of the maximum likelihood
estimator, which turns out to be a convex optimization problem. On the other hand, the
lower bounds are based on a combination of information-theoretic techniques and carefully
constructed packings of the parameter set WB. The main technical difficulty is in con-
structing a packing in the semi-norm induced by the Laplacian L. See Appendix A for the
full proof.
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3.2 Minimax rates in the squared `2-norm

Let us now turn to optimizing the minimax risk under the squared Euclidean norm. Theo-
rem 2 below presents upper and lower bounds on this quantity.

Theorem 2 (Bounds on minimax rates in `2-norm)

(a) For a sample size n ≥ c2σ2tr(L†)
ζB2 , any estimator w̃ based on n samples from the Ordi-

nal model has squared Euclidean error lower bounded as

sup
w∗∈WB

E
[
‖w̃ − w∗‖22

]
≥ c2`

σ2

n
max

{
d2, max

d′∈{2,...,d}

d′∑
i=d0.99d′e

1

λi(L)

}
. (8a)

(b) For any instance of the Ordinal model with γ-strong log-concavity and any w∗ ∈ WB,
the maximum likelihood estimator satisfies the bound

P
[
‖ŵML − w∗‖22 > t

cζ2σ2

γ2

d

λ2(L)n

]
≤ e−t for all t ≥ 1, (8b)

and consequently

sup
w∗∈WB

E
[
‖ŵML − w∗‖22

]
≤ c2uζ

2

γ2
σ2 d

λ2(L)n
. (8c)

See Appendix B for the proof of this theorem. As we describe in the next section,
the upper and lower bounds on minimax risk from Theorem 2 to identify the comparison
graph(s) that lead to the best possible minimax risk over all possible graph topologies.

Figure 2 depicts results from simulations under the Thurstone model, depicting the
squared `2 error for the maximum likelihood estimator for various values of n and d. In the
simulations, the true vector w∗ is generated by first drawing a d-length vector uniformly at
random from [−1, 1]d, followed by a scale and shift to ensure w∗ ∈ WB. The n pairs are
chosen uniformly (with replacement) at random from the set of

(
d
2

)
possible pairs of items.

The value of σ and B are both fixed to be 1. Given the n samples, inference is performed
via the maximum likelihood estimator for the Thurstone model. Each point in the plots
is an average of 20 such trials.

The error in Figure 2 reduces linearly with n, exactly as predicted by our Theorem 2.
For the complete graph, 1

λ2(L) = d−1
2 . Theorem 2 thus predicts a quadratic increase in the

error with d. As predicted, the error when normalized by 1
d2

in Figure 2 converges to the
same curve for all values of d.

Detailed comparison with other work: Having stated our main theoretical results we
are now in a position to revisit the results of the earlier works of Negahban et al. (2012,
2015); Hajek et al. (2014). The papers by Negahban et al. (2012, 2015) consider the BTL
model under a restricted sampling setting in which every pair considered is compared the
same number of times. For the problem of recovering the vector w∗ (as considered in the
present paper), they derive upper bounds when the pairs considered for comparisons arise
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Figure 2: Simulation results under the Thurstone model. The comparison topology chosen
here is the complete graph.

from an Erdős-Rényi comparison graph; setting t = log d in equation (8b) in Theorem 2
above recovers their results. The two papers also provide results pertaining to inference
of a set of parameters that are an exponentiated form of w∗. Their upper bounds for
these parameters are derived in terms of the random-walk normalized Laplacian matrix of
the comparison graph, while our bounds for w∗ are derived in terms of the (combinato-
rial) Laplacian matrix. Their associated information-theoretic lower bounds also assume
an Erdős-Rényi comparison graph whereas our lower bounds apply to general comparison
graphs.

A concurrent paper by Hajek et al. (2014) also considers the specific BTL model, but
a general comparison topology. Their high-probability upper bounds can be recovered by
setting t = log d in equation (8b) of Theorem 2, while their upper bounds on the expected
error are loose by a logarithmic factor. On the other hand, the lower bounds of Hajek
et al. (2014), although dependent on topology, are quite loose due to their reliance on the
degrees of the vertices in the comparison graph. On the other hand, our results are derived
in terms of the graph Laplacian which better captures the critical aspects of the problem.
For instance, considering a disconnected graph where every node has at least one neighbor
as a sanity check, the degree-based lower bounds of Hajek et al. (2014) do not reflect the
non-identifiability of w∗ due to their reliance on only the degrees of the vertices, whereas
the presence of the spectral gap in our bound (8a) indicates non-identifiability. As another
example, the bounds of Hajek et al. (2014) cannot distinguish between a star graph and a
path graph, whereas our results establish the star graph as an optimal comparison graph
and the path graph as strictly suboptimal. In Section 4 below, we further describe deeper
insights on the graph topology derived from our analytical results.

The Paired Cardinal model: Before concluding this section, we also look at the Paired
Cardinal model (Section 2.1), the cardinal analogue of the Thurstone model.

10



Topology-dependent Estimation from Pairwise Comparisons

Theorem 3 (Bounds on minimax rates in `2-norm) For the Paired Cardinal model,
the minimax risk is sandwiched as

c3` σ
2 tr(L†)

n
≤ inf

ŵ
sup

w∗∈W∞
E
[
‖ŵ − w∗‖22

]
≤ c3u σ

2 tr(L†)

n
. (9)

The proof of Theorem 3 is available in Appendix C.

We conjecture that the dependence of the squared `2 minimax risk under the Ordinal
models on the problem parameters n, d and the graph topology is identical to that derived

in Theorem 3 for the Paired Cardinal model, i.e., is proportional to tr(L†)
n . Note that

the condition tr(L) = 2 implies that d2

9 ≤ tr(L†) ≤ d
λ2(L) .

3.3 Extension to m-ary comparisons

Suppose instead of eliciting pairwise comparisons, one can instead ask the workers to make
comparisons between more than two options. In particular, we assume that each sample is
a selection of the item with the largest perceived quality among some m presented items.
The setting of pairwise comparisons is a special case with m = 2. Recall from Theorem 2
that the minimum squared `2 minimax risk in the pairwise comparison setting is of the
order d2

n . Our goal in this section is to bring the concept of multiple-item comparison under
the same framework as the pairwise case, and via a generalization of our earlier theoretical
analysis, understand how the error exponent depends on m.

Consider d items, where every item j ∈ [d] has a certain underlying quality score w∗j ∈
[−B,B]. Suppose you have access to n samples, with each sample being a selection of the
item with the largest perceived value among some m presented items.

Consider (d ×m) matrices E1, . . . , En such that for each i ∈ [n], the m columns of Ei
are distinct unit vectors. The positions of the non-zero elements in the m columns of Ei
represent the identities of the m items compared in the ith sample. One can visualize the
choices of the items compared as a hyper-graph, with d vertices representing the d items
and hyper-edge i ∈ [n] containing the m items compared in observation i.

Let R1, . . . , Rm be (m × m) permutation matrices representing m cyclic shifts in an
arbitrary (but fixed) direction. Consider the observation model

P(yi = j|w∗, Ei) = F ((w∗)TEiRj)

for all j ∈ [m], where F : [−B,B]m → [0, 1] represents the probability of choosing the first
among the m items presented. We also assume that F does not depend on the order of
the last (m− 1) coordinates in its input, meaning that the likelihood of choosing an item is
independent of the ordering of the m items in the argument to F . For every x ∈ [−B,B]m,
F (x) is assumed to satisfy:

• Shift-invariance: the probabilities depend only on the differences in the weights of the
items presented, i.e, F (x) depends only on {xi − xj}i,j∈[m].

• Strong log-concavity: ∇2(− logF (x)) � H for some (m × m) symmetric matrix H
with λ2(H) > 0.

11
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Note that the shift-invariance assumption implies 1 ∈ nullspace(∇2(− logF (x))), thereby
necessitating nullspace(H) = span(1) and λ1(H) = 0. One can also verify that the model
proposed here reduces to the Ordinal model of Section 2.1 when m = 2.

For any hope of inferring the true weights w∗, we must ensure that the comparison
hyper-graph is “connected”, i.e., for every pair of items i, j ∈ [d], there must exist a path
connecting item i and item j in the comparison hyper-graph. We assume this condition is
satisfied. We also continue to assume that w∗ ∈ WB : = {w ∈ Rd | ‖w‖∞ ≤ B, 〈w, 1〉 = 0}.

The popular Plackett-Luce model falls in this class, as illustrated below.

Example 1 (Plackett-Luce model (Plackett, 1975; Luce, 1959)) The Plackett-Luce
model concerns the process of choosing an item from a given set. Specifically, given m items
with quality scores w∗1, . . . , w

∗
m respectively, the likelihood of choosing item ` ∈ [m] under

this model is given by

ew
∗
`∑m

j=1 e
w∗j

=: F ([w∗` , w
∗
1, . . . , w

∗
`−1, w

∗
`+1, . . . , w

∗
m]).

Every choice is made independent of all other choices.

It is easy to verify that the Plackett-Luce model satisfies shift invariance. Furthermore,
the function F does not depend on the ordering of the last (m− 1) coordinates in its argu-
ment. We now show that it also satisfies strong log-concavity. A little algebra gives

∇2(− logF (x)) =
〈ex, 1〉diag(ex)− ex(ex)T

(〈ex, 1〉)2
,

where ex : = [ex1 · · · exm ]T . We now derive a lower bound for the expression above. An
application of the Cauchy-Schwarz inequality yields that for any vector v ∈ Rm,

vT (ex(ex)T )v ≤ vTdiag(ex)〈ex, 1〉v,

with equality if and only if v ∈ span(1). It follows that λ2(∇2(− logF (x))) > 0 for all

x ∈ [−B,B]m. Defining the scalar β : = minx∈[−B,B]m λ2( 〈e
x, 1〉diag(ex)−ex(ex)T

(〈ex, 1〉)2 ), one can see

that setting H = β(I − 11T ) satisfies the strong log-concavity conditions.

Our goal is to capture the scaling of the minimax error with respect to the number of
observations n, the dimension d of the problem, and the choice of the subsets compared
{Ei}i∈[n]. It is well understood (Miller, 1956; Kiger, 1984; Shiffrin and Nosofsky, 1994;
Saaty and Ozdemir, 2003) that humans have a limited information storage and processing
capacity, which makes it difficult to compare more than a small number of items. For
instance, Saaty and Ozdemir (2003) recommend eliciting preferences over no more than
seven options. Thus in this work we restrict our attention to m = O(1). Moreover, the
amount of noise in the selection process also depends on the number of items m presented
at a time: the higher the number, the greater the noise. We thus do not use a “noise
parameter σ”in this setting, and assume the noise to be incorporated in the function F ,
which itself is a function of m.

12
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Our results involve the Laplacian of the comparison graph, defined for the m-wise com-
parison setting as follows. Let L be an (d × d) matrix that depends on the choice of the
comparison topology as

L : =
1

n

n∑
i=1

Ei(mI − 11T )ETi . (10)

We call L the Laplacian of the comparison hyper-graph. One can verify that when applied
to the special case of m = 2, the matrix L defined in (10) reduces to the Laplacian of the
pairwise-comparison graph defined earlier in (4).

The following theorem presents our main results for the m-wise comparison setting.

Theorem 4 For the m-wise model, the minimax risk is sandwiched as

c3`
infz F (z)

m2λm(H) supz ‖∇F (z)‖2
H†

d

n
≤ inf

ŵ
sup

w∗∈WB

E
[
‖ŵ − w∗‖2L

]
≤ c3u

m2 supz ‖∇ logF (z)‖22
λ2(H)2

d

n
,

in the squared L semi-norm and as

c4`
infz F (z)

m2λm(H) supz ‖∇F (z)‖2
H†

d2

n
≤ inf

ŵ
sup

w∗∈WB

E
[
‖ŵ − w∗‖22

]
≤c4u

m2 supz ‖∇ logF (z)‖22
λ2(H)2

d

λ2(L)n
,

in the squared `2 norm. Here we assume n ≥ c5
tr(L†) infz F (z)

B2λm(H) supz ‖∇F (z)‖2
H†

for both the lower

bounds, and where the suprema and infima with respect to the parameter z are taken over
the set [−B,B]m.

The proof of Theorem 4 is provided in Appendix D. Our results establish that the
dependence of the squared L semi-norm and squared Euclidean minimax error on m occurs
only as multiplicative pre-factors, and the error exponent is independent of m. Thus,
if one follows the standard recommendation in the psychology literature Miller (1956);
Kiger (1984); Shiffrin and Nosofsky (1994); Saaty and Ozdemir (2003)—namely to choose
m = O(1)—then the best possible scaling of the squared L semi-norm minimax risk with
respect to d and n is always d

n , that of the squared Euclidean minimax risk is always
d2

n , and evenly spreading the samples across all possible choices of m items is optimal.
Nevertheless, a more refined modeling and analysis is required to understand the precise
tradeoffs governing the choice of the number m of items presented to the user.

Finally, when specialized to the case of m = 2, the upper bounds of Theorem 4 are
identical (up to constant factors) to those of Theorem 1 and Theorem 2. The lower bound
for the L semi-norm is identical to that of Theorem 1. The additional generality results in
a lower bound for the `2 norm that is weaker in general as compared to Theorem 2, but is
tight when the underlying hypergraph forms a complete graph.

4. Role of graph topology

We now return to the setting of pairwise comparisons. In certain applications, one may
have the liberty to decide which pairs are compared. The results of the previous section

13
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demonstrated the role played by the Laplacian of the comparison graph in the estimation
error. We now employ these results to derive guidelines towards designing the comparison
graph. Let us focus on the estimation error in the squared `2 norm in the ordinal setting.
As discussed earlier, we assume that the graph induced by the comparisons is connected.
An application of Theorem 2 lets us identify good topologies for pairwise comparisons in
the fixed-design setup.

A popular class of comparison topologies is that of evenly distributed samples on an
unweighted graph (e.g., Negahban et al. (2012)). Consider any fixed, unweighted graph
G = (V,E). We assume that the samples are distributed evenly along the edges E of
G, and that the sample size n is sufficiently large. Using standard matrix concentration
inequalities, it is straightforward to extend our analysis to the setting of random chosen
comparisons from a fixed graph (see, for instance, Oliveira (2009)). Let L′ denote the
Laplacian of G. We define the scaled Laplacian of G as

L : =
1

| E |
L′.

One can verify that the matrix L defined here is identical to what was defined in (4) in
a more general context. In order to differentiate from L, we refer to L′ as the regular
Laplacian of the graph G. For a given budget n on the number of samples, we say that a
comparison graph is optimal if the error under this graph is the smallest (up to constants)
among all graphs.

4.1 Analytical results

Consider the Ordinal model and the squared `2-norm as the metric of interest. We claim
that in order to determine whether a given comparison graph achieves minimax risk (up
to a constant pre-factor), it suffices to examine the eigen-spectrum of the scaled Laplacian
matrix. In particular, we claim that:

• If the scaled Laplacian has a second smallest eigenvalue that scales as 1
λ2(L) = Θ(d),

then the comparison graph is optimal, and leads to the smallest possible minimax
risk, in particular one that scales as d2

n .

• Conversely, if the scaled Laplacian matrix has an eigen-spectrum satisfying

d2 = o

 max
d′∈{2,...,d}

d′∑
i=b0.99d′c

1

λi(L)

 , (11)

then the associated estimation error is strictly larger than the minimax risk. In
particular, this sub-optimality holds whenever d2 = o( 1

λ2(L)).

In order to verify these claims, we note that by definition (4) of the Laplacian matrix, we
have

tr(L) =
1

n

n∑
i=1

tr(xix
T
i ) = 2.
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It follows that λ2(L) ≤ 2
d−1 , i.e., that 1

λ2(L) = Ω(d). As we will see shortly, several classes of

graphs satisfy 1
λ2(L) = Θ(d). Comparing the lower bound of Ω(d

2

n ) on the minimax risk (8a)

with the upper bound (8c) gives the sufficient condition of 1
λ2(L) = Θ(d) for optimality,

and the smallest minimax risk as Θ(d
2

n ). The lower bound (8a) now also gives the claimed
condition for strict sub-optimality.

In order to illustrate these claims, let us consider a few canonical classes of graphs, and
study how the estimation error under the squared Euclidean norm scales in the Ordinal
model. The spectra of the regular Laplacian matrices of these graphs can be found in
various standard texts on spectral graph theory (e.g., Brouwer and Haemers (2011)).

• Complete graph. A complete graph has one edge between every pair of nodes. The
spectrum of the regular Laplacian of the complete graph is 0, d, . . . , d, and hence the
spectrum of the scaled Laplacian L is 0, 2

d−1 , . . . ,
2
d−1 . Substituting λ2(L) = 2

d−1 in

Theorem 2b gives an upper bound of Θ(d
2

n ) on the minimax risk, and Theorem 2 gives a
matching lower bound. The sufficiency condition discussed above proves optimality.

• Constant-degree expander. The spectrum of the regular Laplacian of a constant-
degree expander graph is 0,Θ(d),Ω(d), . . . ,Ω(d). Since the number of edges is Θ(d),
the spectrum of the scaled Laplacian equals 0,Θ(1

d),Ω(1
d), . . . ,Ω(1

d). The evaluation of
this class of graphs with respect to the minimax risk is identical to that of complete
graphs, giving a lower and upper bound of Θ(d

2

n ) on the minimax risk, and guaranteeing
optimality.

• Complete bipartite. The d nodes are partitioned into two sets comprising, say, m1

and m2 nodes. There is an edge between every pair of nodes in different sets, and there
are no edges between any two nodes in the same set. The eigenvalues of the regular
Laplacian of this graph are 0,m2, . . . ,m2︸ ︷︷ ︸

m1−1

,m1, . . . ,m1︸ ︷︷ ︸
m2−1

,m1 + m2. Since the total number

of edges is m1m2, the scaled Laplacian L has a spectrum 0, 1
m1

,..., 1
m1︸ ︷︷ ︸

m1−1

, 1
m2

,..., 1
m2︸ ︷︷ ︸

m2−1

, 1
m1

+ 1
m2

.

Suppose without loss of generality that m1 ≥ m2. Also suppose that m2 > 1 (the case of
m2 = 1 is the star graph discussed below). Then we have 1

m1
≤ 1

m2
≤ 1

m1
+ 1

m2
and that

d > m1 ≥ d
2 . Furthermore since m2 > 1, the multiplicity of 1

m1
in the spectrum of the

scaled Laplacian is at least 1. Thus we have λ2(L) = Θ(1
d). Theorem 2 then gives lower

and upper bounds on the minimax risk as Θ(d
2

n ) and the sufficiency condition discussed
above guarantees its optimality.

• Star. A star graph has one central node with edges to every other node. It is a special
case of the complete bipartite graph with m1 = d− 1 and m2 = 1. The spectrum of the
regular Laplacian is 0, 1, . . . , 1, d. Since there are (d−1) edges, the spectrum of the scaled
Laplacian is 0, 1

d−1 , . . . ,
1
d−1 ,

d
d−1 . Theorem 2 and the sufficiency condition discussed above

imply that this class of graphs is optimal and is associated to a minimax risk of Θ(d
2

n ).

• Path. A path graph is associated to an arbitrary ordering of the d nodes with edges
between pairs j and (j + 1) for every j ∈ {1, . . . , d − 1}. The spectrum of the regular
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Laplacian is given by 2
(
1− cos

(
πi
d

))
, i ∈ {0, . . . , d− 1}, and that of the scaled Laplacian

is thus 2
d−1

(
1 − cos

(
πi
d

))
, i ∈ {0, . . . , d − 1}. The relation (1 − cosx) = sin2 x

2 and the

approximation sinx ≈ x for values of x close to zero gives λ2(L) = Θ( 1
d3

). The minimax

risk is thus upper bounded as O(d
4

n ) and lower bounded as Ω(d
3

n ). This class of graphs is
thus strictly suboptimal.

• Cycle. A cycle is identical to a path except for an additional edge between node d
and node 1. The spectrum of the regular Laplacian is given by 2

(
1 − cos

(
2πi
d

))
, i ∈

{0, . . . , d−1}, and that of the scaled Laplacian is thus 2
d

(
1−cos

(
2πi
d

))
, i ∈ {0, . . . , d−1}.

The relation (1− cosx) = sin2 x
2 and the approximation sinx ≈ x for values of x close to

zero gives λ2(L) = Θ( 1
d3

). The minimax risk is thus upper bounded as O(d
4

n ) and lower

bounded as Ω(d
3

n ). This class of graphs is thus strictly suboptimal.

• Barbell. The nodes are partitioned into two sets of d2 nodes each, and there is an edge be-
tween every pair of nodes within each set. In addition, there is exactly one edge across the
sets. The spectrum of the regular Laplacian can be computed as 0,Θ(1

d),Θ(d), . . . ,Θ(d).
Since there are Θ(d2) edges, the spectrum of the scaled Laplacian turns out to become
0,Θ( 1

d3
),Θ(1

d), . . . ,Θ(1
d),Ω(1

d). Applying the results derived earlier in the paper, we get

that a lower bound of Ω(d
3

n ) and an upper bound of O(d
4

n ) on the minimax risk, thereby
also establishing the sub-optimality of this class of graphs.

• 2D Lattice. An (m1 × m2) lattice has d = m1m2 vertices arranged as a (m1 × m2)
grid. Assume m1 = Θ(d) and m2 = Θ(d). This class of graphs can be written as a
Cartesian product of a path graph of length m1 and a second path graph of length m2.
As a result, the spectrum of the scaled Laplacian is 2

d

(
2 − cos

(
πi
m1

)
− cos

( πj
m2

))
, ...

i∈{0,...,m1−1},j∈{0,...,m2−1}. Again, using the small angle approximation of the sinusoid, one
can compute an upper bound on the minimax risk as O(d

3

n ) and a lower bound of Ω(d
2

n ).
We do not know at this point whether the 2D lattice minimizes the minimax risk.

• Hypercube. Assume d = 2m for some integer m. Representing each node as a distinct
m-length binary vector, an edge exists between the nodes corresponding to any pair of
vectors within a Hamming distance of one. The hypercube is an m-fold Cartesian product
of a path with two nodes, and hence the regular Laplacian has an eigenvalue of 2i with
multiplicity

(
m
i

)
, for i ∈ {0, . . . ,m}. The scaled Laplacian has an eigenvalue of 2i

d log d with

multiplicity
(
m
i

)
, for i ∈ {0, . . . ,m}. A lower bound on the minimax risk is Ω(d

2

n ) and an

upper bound is O(d
2 log d
n ). We do not know if the hypercube is optimal, our bounds do

tell us that any sub-optimality is bounded by at most a logarithmic factor.

Observe that the degree-k expander requires n ≥ kd samples while the complete graph
requires n ≥

(
d
2

)
samples, so in practical applications at least for small sample sizes we

should prefer a low-degree expander.
Finally, if the conjecture discussed at the end of Section 3.2 were true, namely that the

`2 minimax risk scales as σ2tr(L†)/n, then the condition tr(L†) = Θ(d2) would be necessary
and sufficient for optimality of a comparison graph with the scaled Laplacian L. Observe
that the graphs designated as ‘optimal’ in the discussion above indeed satisfy this condition.
On the other hand, the graphs established as strictly suboptimal have tr(L†) = Ω(d3).
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4.2 Experiments and simulations

This section evaluates the dependence of the squared `2-error on the topology of the com-
parison graph. We consider the following five topologies: path, barbell, complete, expander
and 2D-lattice. In order to form an expander graph, we used the construction due to Gab-
ber and Galil (1981). For any chosen graph topology, the n difference vectors are selected as
one edge each chosen uniformly at random (with replacement) from the comparison graph.
Recall that our theory predicts that the complete and expander graphs yield the best per-
formance, and that the line and dumbbell graphs fare the worst. Also recall that our theory
predicts the error scales as ‖w∗ − ŵ‖22 scales with n as 1/n in the complete and expander
topologies.

4.2.1 Experiments on synthetic data

This section describes simulations using data generated synthetically from the Thurstone
model. In the simulations, we first generate a quality score vector w∗ ∈ WB using one of
the procedures described below. Once w∗ is chosen, the n pairwise comparisons for any
given topology are generated as follows. An edge is selected uniformly (with replacement)
at random from the underlying graph, and the chosen edge determines the pair of items
compared. The outcome of the comparison is generated as per the Thurstone model with
the chosen w∗ as the underlying quality score. Finally, the maximum likelihood estimator
for the Thurstone model is employed to estimate w∗. Every point in the plots is an
average across 40 trials.

The following six procedures are employed to generated the true quality score vector w∗

in the six respective subfigures of Figure 3.

(a) Gaussian: w∗ is drawn from the standard normal distribution N (0, I).

(b) Uniform: w∗ is drawn uniformly at random from the set [−1, 1]d.

(c) Packing set for the path graph: We first choose a vector z as by setting a value of 0
in the first coordinate, a value −1 in d

2 of the other coordinates chosen uniformly at
random, and a value 1 in the remaining coordinates. Letting L = UTΛU denote the
eigen-decomposition of the Laplacian matrix of the path graph, w∗ is set as UTΛ†z,
where Λ† is the Moore-Penrose pseudoinverse of Λ. This generation process mimics a
construction used to prove the lower bound in Theorem 2, and tailors the construction
for the path graph.

(d) Packing set for the barbell graph: The procedure is identical to that in (c), except
that the Laplacian matrix used is that of the barbell graph.

(e) Packing set for the complete graph: The procedure is identical to that in (c), except
that the Laplacian matrix used is that of the complete graph.

(f) Packing set for the star graph: The procedure is identical to that in (c), except that
the Laplacian matrix used is that of the star graph.

The vector w∗ generated in this procedure is then scaled and shifted to ensure w∗ ∈ WB.
The values of B and σ are set as 1.
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ŵ
−
w
∗
||2 2
n
/d

2

Complete graph

Star graph

Path graph

Barbell graph

(b) Uniform

0 10 20 30 40 50 60 70
Number of items d

0

5

10

15

20

25

30

R
e
sc

a
le

d
 e

rr
o
r

 ||
ŵ
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(c) Packing set for the path graph
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(d) Packing set for the barbell graph
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(e) Packing set for the complete graph
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(f) Packing set for the star graph

Figure 3: Estimation error under different topologies for different generative processes in
the synthetic simulations.
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Figure 3 plots the estimation error under various topologies of the comparison graph.
Observe in the figure that the error is the lowest under the complete and the star graphs,
and the highest under the barbell and the path graphs. In particular, the error consistently
varies as Θ(d2/n) for the complete and star graphs – this phenomenon holds even in plots
(e) and (f) where the procedure to choose w∗ forms the worst case for the complete and star
graphs respectively according to the proof of Theorem 2. On the other hand, the minimax
error varies as Ω(d3/n) in the worst case for the path and the barbell graphs. Finally,

observe that in the simulations, the (constant) multiplicative factors to the term d2

n in the
error turn out to be rather small, in the range of 0 to 9.

Although not the primary focus of this paper, we note that our implementation for com-
puting the maximum likelihood estimate under the Thurstone model requires several tens
of minutes for modest problem dimensions. Computing the MLE is a convex optimization
problem. Our implementation, which is not optimized for speed, employs the sequential
least squares programming subroutine of the Scipy package in the Python programming
language.

4.2.2 Experiments on MTurk

In this section, we describe the results of experiments conducted on the popular Amazon
Mechanical Turk (https://www.mturk.com/; henceforth referred to as “MTurk”) commer-
cial crowdsourcing platform, evaluating the effects of the choice of the topology. MTurk is
an online platform where individuals or businesses can put up a task, and any individual
can log in and complete the tasks in exchange for a payment that is specified along with the
task. In our experiments, each worker was offered 20 cents per completed task. A worker
was allowed to do no more than one task in an experiment. Workers were required to an-
swer all the questions in a task. Only those workers who had 100 or more prior approved
works and an approval rate of 95% or higher were allowed. Workers from any country were
allowed to participate, except for the task of estimating distances between cities (for which
only USA-based workers were permitted since all questions involved American cities).

We conducted three experiments that required the workers to make ordinal choices.

(a) Estimating areas of circles: In each question, the worker was shown a circle in a
bounding box (Figure 5a), and the worker was required to identify the fraction of the
box’s area that the circle occupied.

(b) Estimating age of people from photographs: The worker was shown photographs of
people (Figure 5b) and was asked to estimate their ages.

(c) Estimating distances between pairs of cities: Pairs of cities were listed (Figure 5c) and
for each pair, the worker had to estimate the distance between them.

For each experiment, we recruited 140 workers on MTurk, and assigned them to one of
the five topologies uniformly at random. In this experiment and others involving aggrega-
tion of ordinal data from MTurk, the aggregation procedure follows maximum likelihood
estimation under the Thurstone model, and the estimator is supplied the best-fitting value
of σ obtained via 3-fold cross-validation. Each run of the estimation procedure employs the
data provided by five randomly chosen workers from the pool of workers who performed
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(a) Area of circle (b) Age from photograph (c) City distances

Figure 4: Estimation error under different topologies in the experiments conducted on
MTurk. Also shown is the standard deviation across the estimates (The error bars are
smaller by a factor of

√
number of samples).

that task. (The number five is inspired by practical systems as in Wang et al. (2011); Piech
et al. (2013).) The complete dataset pertaining to these experiments is available on the first
author’s website.

Figure 4 plots the squared `2 estimation error for the three experiments under the five
topologies considered, and the associated standard deviation. We see that the relative errors
are generally consistent with our theory, with the complete graph exhibiting the best per-
formance and the path graph faring the worst. On real datasets, model misspecification can
in some cases cause the outcomes to differ from our theoretical predictions. Understanding
the effect of model misspecification, especially on topology considerations, is an important
question we hope to address in future work.

5. Cardinal versus ordinal measurements

In this section, we compare two approaches towards eliciting data: a score-based “cardinal”
approach and a comparison-based “ordinal” approach. In a cardinal approach, evaluators
directly enter numeric scores as their answers (Figure 1b), while an ordinal approach involves
comparing (pairs of) items (Figure 1a).

There are obvious advantages and disadvantages associated with either approach. On
one hand, the cardinal approach allows for very fine measurements. For instance, the
cardinal measurements in Figure 1 can take any value between 0 and 100, whereas an
ordinal measurement is binary. One might be tempted to go even further and argue that
ordinal measurements necessarily give less information, for one can always convert a set of
cardinal measurements into ordinal, simply by ordering the measurements by value. If this
conversion were valid, the data processing inequality (Cover and Thomas, 2012), would then
guarantee that estimators based on ordinal data can never outperform estimators based on
cardinal data. However, this conversion assumes that cardinal and ordinal measurements
suffer from the same type of statistical fluctuation. The following set of experiments show
this assumption is false.

5.1 Raw data from MTurk

We conducted seven different experiments on MTurk to investigate the possibility of a “data-
processing inequality” between the elicited cardinal and ordinal responses: Are responses
elicited in ordinal form equivalent to data obtained by first eliciting cardinal responses and
then subtracting pairs of items? Our experiments lead us to conclude that this is generally
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 Which circle is BIGGER?  

(a)

What%is%the%distance%between%%
the%following%pairs%of%ci4es?%

%

San$Francisco$and$Aus.n%%%
miles%

Who%do%you%think%is%OLDER?%

!% !%

%Which%image%is%more%relevant%
for%the%search%query%‘INTERNET’?%

!% !%

How%relevant%is%this%image%for%%
the%search%query%'INTERNET'?%

/%100%

How%many%words%are%misspelled%
in%this%paragraph?%%

words%are%misspelled%

But that is the beginning of a new story - the 
story of the gradual reneual of a man, the 
story of his gradual regeneration, of his pasing 
from one world into another, of his intiation into 
a new unknown life. That might be the subject 
of a new story, but our present story is ended. 

Which%tone%corresponds%to%a%%
HIGHER%number%on%a%phone%keypad?%

!% !%

!% !%

%Which%circle%is%BIGGER?%%

“Simple, fast but sure cure” 

Rate%this%tagline%for%a%
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(b)
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in%this%paragraph?%%

words%are%misspelled%
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words are misspelled 

But that is the beginning of a new story - the 
story of the gradual reneual of a man, the 
story of his gradual regeneration, of his pasing 
from one world into another, of his intiation into 
a new unknown life. That might be the subject 
of a new story, but our present story is ended. 

(d)
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between%these%ci.es?%

%

San$Francisco$and$Aus.n%%%
miles%

Who%do%you%think%is%OLDER?%

!% !%

%Which%image%is%more%relevant%
for%the%search%query%‘INTERNET’?%

!% !%

How%relevant%is%this%image%for%%
the%search%query%'INTERNET'?%

/%100%

How%many%words%are%misspelled%
in%this%paragraph?%%
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story of the gradual reneual of a man, the 
story of his gradual regeneration, of his pasing 
from one world into another, of his intiation into 
a new unknown life. That might be the subject 
of a new story, but our present story is ended. 

Which%sound%has%a%%
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!% !%
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%Which%circle%is%BIGGER?%%
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/%100%

How%many%words%are%misspelled%
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But that is the beginning of a new story - the 
story of the gradual reneual of a man, the 
story of his gradual regeneration, of his pasing 
from one world into another, of his intiation into 
a new unknown life. That might be the subject 
of a new story, but our present story is ended. 

Which%tone%corresponds%to%a%%
HIGHER%number%on%a%phone%keypad?%

!% !%

!% !%

%Which%circle%is%BIGGER?%%

“Simple, fast but sure cure” 

Rate%this%tagline%for%a%
healthcare%plaMorm%

/%10%

(f)

Figure 5: Screenshots of the tasks presented to the subjects. For each task, only one version
(cardinal or ordinal) is shown here.

not the case: converting cardinally collected data into ordinal (by subtracting pairs of
responses) often leads to a higher amount of noise as compared to that in data that is
elicited directly in ordinal form.

The tasks were selected to have a broad coverage of several important subjective judg-
ment paradigms such as preference elicitation, knowledge elicitation, audio and visual per-
ception and skill utilization.

In addition to the three experiments described in Section 4.2.2, we conducted the fol-
lowing four experiments.

(d) Finding spelling mistakes in text: The worker had to identify the number of words
that were misspelled in each paragraph shown (Figure 5d).

(e) Identifying sounds: The worker was presented with audio clips, each of which was
the sound of a single key on a piano (which corresponds to a single frequency). The
worker had to estimate the frequency of the sound in each audio clip (Figure 5e).

(f) Rating tag-lines for a product: A product was described and tag-lines for this product
were shown (Figure 5f). The worker had to rate each of these tag-lines in terms of its
originality, clarity and relevance to this product.

(g) Rating relevance of the results of a search query: Results for the query ‘Internet’ for
an image search were shown (Figure 1) and the worker had to rate the relevance of
these results with respect to the given query.

Note that the data collected for experiments (a)–(c) here was different and independent
of the data collected for these tasks in Section 4.2.2.

The number of items d in the experiments ranged from 10 to 25. For each of the seven
experiments, we recruited 100 workers, and assigned each worker to either the ordinal or
the cardinal version of the task at random. Upon obtaining the data, we first reduced the
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Task Circle Age Distance Spelling Audio Tagline Relevance

Error in Ordinal 6% 13% 17% 40% 20% 44% 31%
Std. dev. .23 .33 .38 .49 .40 .47 .44

Error in Cardinal 17% 17% 20% 42% 29% 42% 35%
Std. dev. .31 .38 .38 .46 .43 .46 .44

Time in Ordinal 98s 31s 84s 316s 66s 251s 105s
Std. dev. 21.1 14.3 62.1 33.2 11.1 28.1 13.1

Time in Cardinal 181s 70s 144s 525s 134s 342s 185s
Std. dev. 39.9 33.1 56.2 46.0 12.4 44.6 28.2

Table 1: Comparison of the average amount of error when ordinal data is collected directly
versus when cardinal data is collected and converted to ordinal. Also tabulated is the
median time (in seconds) taken to complete a task by a subject in either type of task.

cardinal data obtained from the experiments into ordinal form by comparing answers given
by the subjects to consecutive questions. For five of the experiments ((a) through (e)),
we had access to the “ground truth” solutions, using which we computed the fraction of
answers that were incorrect in the ordinal and the cardinal-converted-to-ordinal data (any
tie in the latter case was counted as half an error). For the two remaining experiments
((f) and (g)) for which there is no ground truth, we computed the ‘error’ as the fraction of
(ordinal or cardinal-converted-to-ordinal) answers provided by the subjects that disagreed
with each other. It is important to note that in the experiments in this section, we did not
run any estimation procedure on the data: we only measured the noise in the raw responses.
The entire data pertaining to these experiments, including the interface seen by the workers
and the data obtained from their work, is available on the first author’s website.

The results are summarized in Table 1. If the cardinal measurements could always be
converted to ordinal ones with the same noise level as directly eliciting ordinal responses,
then it would be unlikely for the amount of error in the ordinal setting to be smaller than
that in the cardinal setting. Table 1 shows that converting cardinal data to an ordinal
form very often results in a higher (and sometimes significantly higher) per-sample error
in the (raw) responses than direct elicitation of ordinal evaluations. Such an outcome may
be explained by the argument that the inherent evaluation process in humans is not the
same in the cardinal and ordinal cases: humans do not perform an ordinal evaluation by
first performing cardinal evaluations and then comparing them (Barnett, 2003; Stewart
et al., 2005). One can also see from Table 1 that the amount of time required for cardinal
evaluations was typically (much) higher than for ordinal evaluations. One can thus assume
that we typically have the per-observation error in the ordinal case lower than that in
the cardinal case. In particular, considering the Thurstone and the Cardinal models
(introduced in Section 2.1) with σ and σc denoting the standard deviations of the noise in
the Thurstone and the Cardinal models respectively, the above empirical results imply
that σ <

√
2σc.
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5.2 Analytical comparison of Cardinal versus Ordinal

As discussed earlier, while cardinal measurements allow more flexibility in the range of
responses, ordinal measurements contain a lower per-sample error. Ordinal measurements
have additional benefits in that they avoid calibration issues that are frequently encountered
in cardinal measurements (Tsukida and Gupta, 2011), such as the evaluators’ inherent (and
possibly time-varying) biases, or tendencies to give inflated or conservative evaluations. Or-
dinal measurements are also recognized to be easier or faster for humans to make (Barnett,
2003; Stewart et al., 2005), allowing for more evaluations with the same amount of time,
effort and cost.

The lack of clarity regarding when to use a cardinal versus an ordinal approach forms
the motivation of this section. Can we make as reliable estimates from paired comparisons
as from numeric scores? How much lower does the noise have to be for comparative mea-
surements to be preferred over cardinal measurements? The answers to these questions help
to determine how responses should be elicited.

In order to compare the cardinal and ordinal methods of data elicitation, we focus on
a setting with evenly budgeted measurements. In accordance with the fixed-design setup
assumed throughout the paper, we choose the vectors xi a priori. Suppose that n is large
enough, and that in the ordinal case we compare each pair n/

(
d
2

)
times. In the cardinal case

suppose that we evaluate the quality of each item n/d times. We consider the Gaussian-
noise models Thurstone and Cardinal introduced earlier in Section 2.1. In order to
capture the fact that the amount of noise is different in the cardinal and ordinal settings,
we denote the standard deviation of the noise in the cardinal setting as σc, and retain our
notation of σ for the noise in the ordinal setting. In order to bring the two models on the
same footing, we measure the error in terms of the squared `2-norm.

Let γG and ζG denote the parameters γ and ζ (defined in (1) and (6) respectively)

specialized to the Gaussian distribution. Define b`(σ,B) : = c2`
ζG(B,σ) , bu(σ,B) : = c2uζG(B,σ)

γG(B,σ)

and b(σ,B) : =
⌈
c2σ2

ζGB2

⌉
. Observe that b`, bu and b are independent of the parameters n and

d.
With these preliminaries in place, we now compare the minimax error in the estimation

under the cardinal and ordinal settings.

Proposition 5 Given a sample size n that is a multiple of d(d− 1)b(σ,B), suppose that
we observe each coordinate n/d times under the Cardinal model. Then the minimax risk
is given by

inf
ŵ

sup
w∗∈WB

E
[
‖ŵ − w∗‖22

]
= σ2

c

d

n
. (12a)

Similarly, if we observe each pair n/
(
d
2

)
times in the Thurstone model, then the minimax

risk is sandwiched as

σ2b`(σ,B)
d

n
≤ inf

ŵ
sup

w∗∈WB

E
[
‖ŵ − w∗‖22

]
≤ σ2bu(σ,B)

d

n
. (12b)

In the cardinal case, when each coordinate is measured the same number of times, the
Cardinal model reduces to the well-studied normal location model, for which the MLE
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is known to be the minimax estimator and its risk is straightforward to characterize (see
Lehmann and Casella (1998) for instance). In the ordinal case, the result follows from the
general treatment in Section 3.

Let us now return to the question deciding between the cardinal and the ordinal methods
of data elicitation. Suppose that we believe the Gaussian-noise models to be reasonably
correct, and the per-observation errors σ and σc under the two settings are known or can
be separately measured. Proposition 5 shows that the scaling of the minimax error in the
cardinal and ordinal settings is identical in terms of the problem parameters n and d. As
an important consequence, our result thus allows for the choice to be made based only on
the parameters (σ, σc, B), and independent of n and d: the ordinal approach incurs a lower
minimax error when bu(σ,B)σ2 < σ2

c while the cardinal approach is better off in terms of
minimax error whenever b`(σ,B)σ2 > σ2

c . Establishing the exact decision boundary would
require tightening the constants in the bounds, a task we leave for future work.

5.3 Aggregate estimation error in experiments on MTurk

For the sake of completeness, we also computed the estimation error in the cardinal and or-
dinal settings. We consider data from the three experiments (c), (d) and (e).2 We normalize
the true vector to have ‖w∗‖∞ = 1 and set B = 1. For each of the three experiments, we
execute 100 iterations of the following procedure. Select five workers from the cardinal and
five from the ordinal pool of workers uniformly at random. (The number five is inspired
by practical systems as in Wang et al. (2011); Piech et al. (2013).) We run the maximum-
likelihood estimator of the Cardinal model on the data from the five workers selected from
the cardinal pool, and the maximum-likelihood estimator of the Thurstone model on the
data from the five workers of the ordinal pool. Note that unlike Section 5.1, the cardinal
data here is not converted to ordinal.

Task Spelling Distance Audio
‖w∗−ŵ‖22

d in Ordinal 0.358 ± 0.035 0.168 ± 0.026 0.444 ± 0.055
‖w∗−ŵ‖22

d in Cardinal 0.350 ± 0.045 0.330 ± 0.028 0.508 ± 0.053

Kendall’s tau coefficient in Ordinal 0.277 ± 0.049 0.547 ± 0.034 0.513 ± 0.047

Kendall’s tau coefficient in Cardinal 0.129 ± 0.046 0.085 ± 0.038 0.304 ± 0.049

Table 2: Evaluation of the inferred solution from the data received from multiple workers
(mean and standard deviation shown).

The results are tabulated in Table 2. To put the results in perspective of the rest
of the paper, let us also recall the per-sample errors in these experiments from Table 1.
Observe that among these three experiments, the per-sample noise in the cardinal data was
closest to that in the ordinal data in the experiment on identifying the number of spelling
mistakes. The gap was larger in the two remaining experiments. This fact is reflected in

2. We restrict attention to these three experiments for the following reasons. There is no ground truth for
experiments (f) and (g). In experiment (a), the size of each circle in each question is chosen independently
from a continuous distribution, making all questions different and preventing aggregation. Experiment
(b) employs a disconnected topology.
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the results of Table 2 where the estimator on the cardinal data incurs a lower `2-error than
the estimator on the ordinal data in the experiment on identifying the number of spelling
mistakes, whereas the outcome goes the other way in the two remaining experiments. Our
theory needs to tighten the constants in order to address this regime. With respect to the
Kendall’s tau correlation coefficient—a particular type of ordinal metric—the estimator on
the ordinal data consistently gives a higher accuracy as compared to the cardinal case.

6. Conclusions

In this paper, we presented topology-aware minimax error bounds under a broad class of
preference-elicitation models. We demonstrated the utility of these results in guiding the
selection of comparisons and in guiding the choice of the elicitation paradigm (cardinal
versus ordinal) when these options are available. A direction for future work would be to
characterize the precise thresholds for making the choice between the cardinal and ordinal
approaches. Secondly, the Thurstone and BTL models are parametric idealizations that
have proved useful in a wide variety of applications. In future work we would like to
investigate more flexible semi-parametric and non-parametric pairwise comparison models
(see, for instance, Chatterjee (2014); Braverman and Mossel (2008)).
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Appendix A. Proof of Theorem 1

The following two sections prove the lower and upper bounds (respectively) on the minimax
risk of Ordinal model under the squared L semi-norm.

A.1 Lower bound

Our lower bounds are based on the Fano argument, which is a standard method in minimax
analysis (see for instance Tsybakov (2008)). Suppose that our goal is to bound the minimax
risk of estimating a parameter w over an indexed class of distributions P = {Pw | w ∈ W}
in the square of a pseudo-metric ρ. Consider a collection of vectors {w1, . . . , wM} contained
within W such that

min
j,k∈[M ]

j 6=k

ρ
(
wj , wk

)
≥ δ and

1(
M
2

) ∑
j,k∈[M ]

j 6=k

DKL(Pwj‖Pwk) ≤ β.

We refer to any such subset as an (δ, β)-packing set.
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Lemma 6 (Pairwise Fano minimax lower bound) Suppose that we can construct a
(δ, β)-packing with cardinality M . Then the minimax risk is lower bounded as

inf
ŵ

sup
w∗∈W

E
[
ρ(ŵ, w∗)2

]
≥ δ2

2

(
1− β + log 2

logM

)
. (13)

The main difficulty in deriving the lower bound is the construction of a suitable packing
set for application in Lemma 6. To this end, given a scalar α ∈ (0, 1

4) whose value will be
specified later, define the integer

M(α) : =

⌊
exp

{d
2

(
log 2 + 2α log 2α+ (1− 2α) log(1− 2α)

)}⌋
. (14)

The following two lemmas aid in our construction of a packing set. The first lemma is a
straightforward consequence of the Gilbert-Varshamov bound (Gilbert, 1952; Varshamov,
1957).

Lemma 7 For any α ∈ (0, 1
4), there exists a set of M(α) binary vectors {z1, . . . , zM(α)} ⊂

{0, 1}d such that

αd ≤ ‖zj − zk‖22 ≤ d for all j 6= k ∈ [M(α)], and (15a)

〈e1, z
j〉 = 0 for all j ∈ [M(α)], (15b)

where e1 denotes the first canonical basis vector.

The next lemma derives an upper bound on the Kullback-Leibler divergence between
the probability distributions induced by any pair of quality score vectors.

Lemma 8 For any pair of quality score vectors wj and wk, and for

ζ : =

max
x∈[0,2B/σ]

F ′(x)

F (2B/σ)(1− F (2B/σ))
,

we have

DKL(Pwj‖Pwk) ≤ nζ

σ2
(wj − wk)TL(wj − wk). (16)

We prove these two lemmas at the end of this section.

Taking these two lemmas as given for the moment, consider the set {z1, . . . , zM(α)} of
d-dimensional binary vectors given by Lemma 7. The Laplacian L of the comparison graph
is symmetric and positive-semidefinite, and so has a diagonalization of the form L = UTΛU
where U ∈ Rd×d is an orthonormal matrix, and Λ is a diagonal matrix of nonnegative
eigenvalues.

Letting matrix Λ† denote the Moore-Penrose pseudo-inverse of Λ, consider the collection
{w1, . . . , wM(α)} of vectors given by wj : = δ√

d
UT
√

Λ†zj for each j ∈ [M(α)]. Since 1 ∈
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nullspace(L), we are guaranteed that 〈1, wj〉 = δ√
d
1TUT

√
Λ†zj = 0. On the other hand,

(wj − wk)TL(wj − wk) ≤ δ2

d
(zj − zk)T

√
Λ†ULUT

√
Λ†(zj − zk)

=
δ2

d
(zj − zk)

√
Λ†Λ
√

Λ†(zj − zk)

=
δ2

d
‖zj − zk‖22,

Here the last step makes use of the fact that the first coordinate of each vector zj and zk

is zero. It follows that αδ2 ≤ ‖wj − wk‖2L ≤ δ2.

Setting δ2 : = 0.01σ
2d
nζ , we find that

‖wj‖∞ ≤
δ√
d
‖
√

Λ†zj‖2
(i)

≤ δ√
d

√
tr(Λ†)

(ii)
=

δ√
d

√
tr(L†)

(iii)

≤ B,

where inequality (i) follows from the fact that zj has entries in {0, 1}; equation (ii) follows
since L† = UTΛ†U by definition; and inequality (iii) follows from our choice of δ and our

assumption n ≥ cσ2tr(L†)
ζB2 on the sample size with c = 0.01. We have thus verified that each

vector wj also satisfies the boundedness constraint ‖wj‖∞ ≤ B required for membership in
WB. Finally, observe that

max
j 6=k

DKL(Pwj‖Pwk) ≤ nζδ2

σ2
, and min

j 6=k
‖wj − wk‖2L ≥ αδ2.

We have thus constructed a suitable packing set for applying Lemma 6, which yields the
lower bound

E[‖ŵ − w∗‖2L] ≥ α

2
δ2
{

1−
δ2ζn
σ2 + log 2

logM(α)

}
.

Substituting our choice of δ and setting α = 0.01 proves the claim for d > 9.
In order to handle the case d ≤ 9, we consider the set of the three d-length vectors given

by z1 = [0 · · · 0 − 1], z2 = [0 · · · 0 1] and z3 = [0 · · · 0 0]. Construct the packing
set {w1, w2, w3} from these three vectors {z1, z2, z3} as done above for the case of d > 9.
From the calculations made for the general case above, we have for all pairs minj 6=k ‖wj −
wk‖2L ≥

δ2

9 and maxj,k ‖wj − wk‖2L ≤ 4δ2, and as a result maxj,kDKL(Pwj‖Pwk) ≤ 4nζδ2

σ2 .

Choosing δ2 = σ2 log 2
8nζ and applying Lemma 6 proves the theorem.

The only remaining detail is to prove and Lemma 7 and Lemma 8.

Proof of Lemma 7: The Gilbert-Varshamov bound Gilbert (1952); Varshamov (1957)
guarantees the existence of a binary code {z̃1, . . . , z̃N} in dimension (d − 1), minimum
Hamming distance dαde, and the number of code words N at least

N ≥ 2d−1∑dαde−1
`=0

(
d−1
`

) .
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Since d ≥ 2 and α ∈ (0, 1
4), we have

dαde − 1

d− 1
≤ 2α ≤ 1

2
.

Applying standard bounds on the tail of the binomial distribution gives

1

2d−1

dαde−1∑
`=0

(
d− 1

`

)
≤ exp

(
− (d− 1)DKL(

dαde − 1

d− 1
‖1

2
)
)

≤ exp
(
− (d− 1)DKL(2α‖1

2
)
)
,

and hence N ≥M(α).

We now define the set of vectors {z1, . . . , zM(α)} as (zi)T = [0 (z̃i)T ] for every i ∈ [M(α)].
Given this condition, it is easy to see that 〈e1, z

j〉 = 0 for every vector zj in this set. Finally,
the minimum distance condition gives the desired constraints on the difference between any
pair of vectors in this set under the squared `2 metric.

Proof of Lemma 8: For any pair of quality score vectors wj and wk, the KL divergence
between the distributions Pwj and Pwk is given by

DKL(Pwj‖Pwk)=
n∑
i=1

F (〈wj , xi〉/σ) log
F (〈wj , xi〉/σ)

F (〈wk, xi〉/σ)
+(1−F (〈wj , xi〉/σ)) log

1−F (〈wj , xi〉/σ)

1−F (〈wk, xi〉/σ)
.

For any a, b ∈ (0, 1), we have the elementary inequality a log a
b ≤ (a − b)ab . Applying this

inequality to our expression above gives

DKL(Pwj‖Pwk) ≤
n∑
i=1

(F (〈wj , xi〉/σ)− F (〈wk, xi〉/σ))
F (〈wj , xi〉/σ)

F (〈wk, xi〉/σ)

−
{
F (〈wj , xi〉/σ))− F (〈wk, xi〉/σ)

}1− F (〈wj , xi〉/σ)

1− F (〈wk, xi〉/σ)

≤
n∑
i=1

(F (〈wj , xi〉/σ)− F (〈wk, xi〉/σ))2

F (〈wk, xi〉/σ)(1− F (〈wk, xi〉/σ))
.

Since max{‖wj‖∞, ‖wk‖∞} ≤ B, and since F is a non-decreasing function, we have

DKL(Pwj‖Pwk) ≤
n∑
i=1

(F (〈wj , xi〉/σ)− F (〈wk, xi〉/σ))2

F (2B/σ)(1− F (2B/σ))
.

Finally, applying the mean value theorem and recalling the definition of ζ (from (6)) yields

DKL(Pwj‖Pwk) ≤
n∑
i=1

ζ(〈wj , xi〉/σ − 〈wk, xi〉/σ)2 =
nζ

σ2
(wj − wk)TL(wj − wk),

as claimed.
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A.2 Upper bound

For the Ordinal model, the MLE is given by ŵ ∈ arg min
w∈WB

`(w), where

`(w) = − 1

n

n∑
i=1

{
1[yi = 1] logF

(〈xi, w〉
σ

)
+ 1[yi = −1] log

(
1− F

(〈xi, w〉
σ

))}
, and

(17a)

WB : =
{
w ∈ Rd | 〈1, w〉 = 0, and ‖w‖∞ ≤ B

}
. (17b)

Our goal is to bound the estimation error of the MLE in the squared semi-norm ‖v‖2L =
vTLv.

For the purposes of this proof (as well as subsequent ones), let us state and prove an
auxiliary lemma that applies more generally to M -estimators that are based on minimizing
an arbitrary convex and differentiable function over some subset W of the set W∞ : =
{w ∈ Rd | 〈1, w〉 = 0}. The MLE under consideration here is a special case. This lemma
requires that ` is differentiable and strongly convex at w∗ with respect to the semi-norm
‖ · ‖L, meaning that there is some constant κ > 0 such that

`(w∗ + ∆)− `(w∗)− 〈∇`(w∗), ∆〉 ≥ κ‖∆‖2L (18)

for all perturbations ∆ ∈ Rd such that (w∗ + ∆) ∈ W. Finally, it is also convenient to
introduce the semi-norm ‖u‖L† =

√
uTL†u, where L† is the Moore-Penrose pseudo-inverse

of L.

Lemma 9 (Upper bound for M-estimators) Consider the M -estimator

ŵ ∈ arg min
w∈W

`(w), where W is any subset of W∞, (19)

and ` is a differentiable cost function satisfying the κ-strong convexity condition (18) at
some w∗ ∈ W. Then

‖ŵ − w∗‖L ≤
1

κ
‖∇`(w∗)‖L† . (20)

Proof Since ŵ and w∗ are optimal and feasible, respectively, for the original optimization
problem, we have `(ŵ) ≤ `(w∗). Defining the error vector ∆ = ŵ − w∗, adding and
subtracting the quantity 〈∇`(w∗), ∆〉 yields the bound

`(w∗ + ∆)− `(w∗)− 〈∇`(w∗), ∆〉 ≤ −〈∇`(w∗), ∆〉.

By the κ-convexity condition, the left-hand side is lower bounded by κ‖∆‖2L. As for the
right-hand side, note that ∆ satisfies the constraint 〈1, ∆〉 = 0, and thus is orthogonal to
the nullspace of the Laplacian matrix L. Therefore, by Lemma 16 (in Appendix F), we
have |〈∇`(w∗), ∆〉| ≤ ‖∇`(w∗)‖L† ‖∆‖L. Combining the pieces yields the claimed inequal-
ity (20).

In order to apply Lemma 9 to the MLE for the Ordinal model, we need to verify that
the negative log likelihood (17a) satisfies the strong convexity condition, and we need to
bound the random variable ‖∇`(w∗)‖L† defined in the dual norm ‖ · ‖L† .

29



Shah et al.

Verifying strong convexity: By chain rule, the Hessian of ` is given by

∇2`(w) =
1

nσ2

n∑
i=1

{
1[yi = 1]Ti1 + 1[yi = −1]Ti2

}
xix

T
i ,

where

Ti1 : =
F ′( 〈w, xi〉σ )2 − F ( 〈w, xi〉σ )F ′′( 〈w, xi〉σ )

F ( 〈w, xi〉σ )2
, and Ti2 : =

F ′( 〈w, xi〉σ )2 + (1− F ( 〈w, xi〉σ ))F ′′( 〈w, xi〉σ )

(1− F ( 〈w, xi〉σ ))2
.

Observe that the term Ti1 is simply the second derivative of logF evaluated at 〈w, xi〉σ , and
hence the strong log-concavity of F implies Ti1 ≥ γ. On the other hand, the term Ti2 is
the second derivative of log(1 − F ). Since F (−x) = 1 − F (x) for all x, it follows that the
function x 7→ 1 − F (x) is also strongly log-concave with parameter γ and hence Ti2 ≥ γ.
Putting together the pieces, we conclude that

vT∇2`(w)v ≥ γ

nσ2
‖Xv‖22 for all v, w ∈ WB,

where X ∈ Rn×d has the differencing vector xi ∈ Rd as its ith row.

Thus, if we introduce the error vector ∆ : = ŵ − w∗, then we may conclude that

`(w∗ + ∆)− `(w∗)− 〈∇`(w∗), ∆〉 ≥ γ

nσ2
‖X∆‖22 =

γ

σ2
‖∆‖2L,

showing that ` is strongly convex around w∗ with parameter κ = γ
σ2 . An application of

Lemma 9 then gives ‖∆‖2L ≤
σ4

γ2
‖∇`(w∗)‖2

L†
.

Bounding the dual norm: In order to obtain a concrete bound, it remains to control
the quantity ∇`(w∗)TL†∇`(w∗). Observe that the gradient takes the form

∇`(w∗) =
−1

nσ

n∑
i=1

[
1[yi = 1]

F ′(〈w∗, xi〉/σ)

F (〈w∗, xi〉/σ)
− 1[yi = −1]

F ′(〈w∗, xi〉/σ)

1− F (〈w∗, xi〉/σ)

]
xi.

Define a random vector V ∈ Rn with independent components as

Vi =

{
F ′(〈w∗, xi〉/σ)
F (〈w∗, xi〉/σ) w.p. F (〈w∗, xi〉/σ)
−F ′(〈w∗, xi〉/σ)
1−F (〈w∗, xi〉/σ) w.p. 1− F (〈w∗, xi〉/σ).

With this notation, we have ∇`(w∗) = − 1
nσ X

TV . One can verify that E[V ] = 0 and

|Vi| ≤ sup
z∈[−2B/σ,2B/σ]

max
{F ′(z)
F (z)

,
F ′(z)

1− F (z)

}
≤ sup

z∈[−2B/σ,2B/σ]

F ′(z)

F (z)(1− F (z))
≤ ζ, (21)

where ζ is as defined in (6). Defining the n-dimensional square matrix M : = σ2

γ2n2XL
†XT ,

our definitions and previous bounds imply that ‖∆‖2L ≤ V TMV .
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Consequently, our problem has been reduced to controlling the fluctuations of the
quadratic form V TMV ; in order to do so, we apply the Hanson-Wright inequality (see
Lemma 13 in Appendix E). A straightforward calculation yields

|||M |||2fro = (d− 1)
σ4

γ4n2
and |||M |||op =

σ2

γ2n
,

where we have used the fact that L = 1
nX

TX. Moreover, since the components of V
are independent and of zero mean, a straightforward calculation yields that E[V TMV ] ≤
E[‖V ‖2∞tr(M)] ≤ ζ2σ2d

γ2n
.

Since |Vi| ≤ ζ, the variables are ζ-sub-Gaussian, and hence the Hanson-Wright inequality
implies that

P
[
V TMV − ζ2σ2d

γ2n
> t
]
≤ 2exp

(
− cmin{ t2γ4n2

ζ4(d− 1)σ4
,
tγ2n

ζ2σ2
}
)

for all t > 0.

Consequently, after some simple algebra, we conclude that

P
(
‖∆‖2L > t

cζ2σ2

γ2

d

n

)
≤ e−t for all t ≥ 1,

for some universal constant c. Integrating this tail bound yields the bound on the expecta-
tion.

Appendix B. Proof of Theorem 2

The following two sections prove the upper and lower bounds (respectively) on the minimax
risk in the squared Euclidean norm for Ordinal model. We prove the lower bound in two
parts corresponding to the two components of the “max” in the statement of the theorem.

B.1 Upper bound

The proof of the upper bound under the Euclidean norm follows directly from the upper
bound under the L semi-norm proved in Theorem 1. From the setting described in Section 2,
we have that the nullspace of the matrix L is given by the span of the all ones vector.
Furthermore, we have 〈w∗ − ŵ, 1〉 = 0, and ‖w∗ − ŵ‖2L ≥ λ2(L)‖w∗ − ŵ‖22. Substituting
this inequality into the upper bound (7b) gives the desired result.

B.2 Lower bound: Part I

Since the Laplacian L of the comparison graph is symmetric and positive-semidefinite. By
diagonalization, we can write L = UTΛU where U ∈ Rd×d is an orthonormal matrix, and
Λ is a diagonal matrix of nonnegative eigenvalues with Λjj = λj(L).

We first use the Fano method (Lemma 6) to prove that the minimax risk is lower bounded

as cσ2 d2

n . For scalars α ∈ (0, 1
4) and δ > 0 whose values will be specified later, recall the

set {z1, . . . , zM(α)} of vectors in the Boolean hypercube {0, 1}d given by Lemma 7. We
then define a second set {wj , j ∈ [M(α)]} via wj : = δ√

d
UTPzj , where P is a permutation

matrix to be specified momentarily. At this point, the only constraint imposed on P is
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that it keeps the first coordinate constant. By construction, for each j 6= k, we have
‖wj −wk‖22 = δ2

d ‖z
j − zk‖22 ≥ αδ2, where the final inequality follows from the fact that the

set {z1, . . . , zM(α)} comprises binary vectors with a minimum Hamming distance at least
αd.

Consider any distinct j, k ∈ [M(α)]. Then, for some {i1, . . . , ir} ⊆ {2, . . . , d} with
αd ≤ r ≤ d, it must be that

‖wj − wk‖2L =
δ2

d
‖UTPzj − UTPzk‖2L =

δ2

d
‖zj − zk‖2Λ =

δ2

d

r∑
m=1

λim(L).

It follows that for some non-negative numbers a2, . . . , ad such that αd ≤
∑d

i=2 ai ≤ d,

1(
M(α)

2

)∑
j 6=k
‖wj − wk‖2L =

δ2

d

d∑
i=2

aiλi(L).

We choose the permutation matrix P such that the last (d − 1) coordinates are permuted
to have a2 ≥ · · · ≥ ad and the dth coordinate remains fixed. With this choice, we get

1(
M(α)

2

)∑
j 6=k
‖wj − wk‖2L ≤

δ2

d

d

d− 1
tr(L) ≤ 2δ2

d
tr(L).

Lemma (14) (Appendix F) gives the trace constraint tr(L) = 2, which in turn guarantees

that 1

(M(α)
2 )

∑
j 6=k ‖wj −wk‖2L ≤

4δ2

d . For the choice of P specified above, we have for every

j ∈ [M(α)],

〈1, wj〉 =
δ√
d
eT1 Pz

j = eT1 z
j = 0,

where the final equation employed the property (15b).

Setting δ2 = 0.01σ
2d2

4nζ , we have ‖wj‖∞ ≤ δ√
d
‖zj‖2

(i)

≤ δ
(ii)

≤ B, where inequality (i)

follows from the fact that zj has entries in {0, 1}; inequality (ii) follows from our choice of δ

and our assumption n ≥ cσ2tr(L†)
ζB2 on the sample size with c = 0.002, where Lemma 14 guar-

antees n ≥ cσ2d2

4ζB2 . We have thus verified that each vector wj also satisfies the boundedness

constraint ‖wj‖∞ ≤ B required for membership in WB.
From the proof of Theorem 1, we have that for any distinct DKL(Pwj‖Pwk) ≤ nζ

σ2 ‖wj −
wk‖2L, and hence

1(
M(α)

2

)∑
j 6=k

DKL(Pwj‖Pwk) ≤ nζ

σ2

4δ2

d
= 0.01 d,

where we have substituted our previous choice of δ.
Applying Lemma 6 with the packing set {w1, . . . , wM(α)} gives that any estimator w̃

must incur an error lower bounded as

sup
w∗∈WB

E
[
‖w̃ − w∗‖22

]
≥ αδ2

2

(
1− 0.01d+ log 2

logM(α)

)
.
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Substituting our choice of δ and setting α = 0.01 proves the claim for d > 9.
For the case of d ≤ 9, consider the set of the three d-length vectors z1 = [0 · · · 0 −1],

z2 = [0 · · · 0 1] and z3 = [0 · · · 0 0]. Construct the packing set {w1, w2, w3} from these
three vectors {z1, z2, z3} as done above for the case of d > 9. From the calculations made for

the general case above, we have for all pairs minj 6=k ‖wj−wk‖22 ≥ δ2

9 and maxj,k ‖wj−wk‖2L ≤
4δ2, and as a result maxj,kDKL(Pwj‖Pwk) ≤ 4nζδ2

σ2 . Choosing δ2 = σ2 log 2
8nζ and applying

Lemma 6 yields the claim.

B.3 Lower bound: Part II

Given an integer d′ ∈ {2, . . . , d}, and scalars α ∈ (0, 1
4) and δ > 0, define the integer

M ′(α) : =

⌊
exp

{d′
2

(
log 2 + 2α log 2α+ (1− 2α) log(1− 2α)

)}⌋
. (22)

Applying Lemma 7 with d′ as the dimension yields a subset {z1, . . . , zM
′(α)} of the Boolean

hypercube {0, 1}d′ with the stated properties. We then define a set of d-length vectors
{w̃1, . . . , w̃M

′(α)} via

w̃j = [0 (zj)T 0 · · · 0]T for each j ∈ [M(α)].

For each j ∈ [M(α)], let us define wj : = δ√
d′
UT
√

Λ†w̃j . Now, letting e1 ∈ Rd denote the

first standard basis vector, we have 〈1, wj〉 = δ√
d′

1TUT
√

Λ†w̃j = 0. where we have used

the fact that 1 ∈ nullspace(L). Furthermore, for any j 6= k, we have

‖wj − wk‖22 =
δ2

d′
(w̃j − w̃k)TΛ†(w̃j − w̃k) ≥ δ2

d′

d′∑
i=d(1−α)d′e

1

λi
.

Thus, setting δ2 = 0.01σ
2d′

nζ yields

‖wj‖∞ ≤
δ√
d′
‖
√

Λ†w̃j‖2
(i)

≤ δ√
d′

√
tr(Λ†)

(ii)
=

δ√
d′

√
tr(L†)

(iii)

≤ B,

where inequality (i) follows from the fact that zj has entries in {0, 1}; step (ii) follows
because the matrices

√
Λ† and

√
L† have the same eigenvalues; and inequality (iii) follows

from our choice of δ and our assumption n ≥ cσ2tr(L†)
ζB2 on the sample size with c = 0.01. We

have thus verified that each vector wj also satisfies the boundedness constraint ‖wj‖∞ ≤ B
required for membership in WB. Furthermore, for any pair of distinct vectors in this set,
we have

‖wj − wk‖2L =
δ2

d′
‖zj − zk‖22 ≤ δ2.

From the proof of Theorem 1, we DKL(Pwj‖Pwk) ≤ nζ
σ2 ‖wj − wk‖2L ≤ 0.01d′. Applying

Lemma 6 with the packing set {w1, . . . , wM
′(α)} gives that any estimator w̃ must incur an

error lower bounded as

sup
w∗∈WB

E
[
‖w̃ − w∗‖22

]
≥

δ2

d′
∑d′

i=d(1−α)d′e
1
λi

2

(
1− 0.01d′ + log 2

logM ′(α)

)
.
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Substituting our choice of δ and setting α = 0.01 proves the claim for d′ > 9.
For the case of d′ ≤ 9, we now prove a lower bound of cσ2

n
9

λ2(L) for a universal constant
c > 0. This quantity is at least as large as the claimed lower bound. Consider the packing set
of three d-length vectors w1 = δU

√
Λ†[0 1 0 · · · 0]T , w2 = −w1 and w3 = [0 · · · 0]T for

some δ > 0. Then for every j 6= k, one can verify that ‖wj−wk‖2L ≤ 4δ2, ‖wj−wk‖22 ≥ δ2

λ2(L) .

Choosing δ2 = σ2 log 2
8nζ and applying Lemma 6 proves the claim for d′ ≤ 9.

Finally, taking the maximum over all values of d′ ∈ {2, . . . , d} gives the claimed lower
bound.

Appendix C. Proof of Theorem 3

We now turn to the proof of Theorem 3 on the minimax rate for the Paired Cardinal
model. Recall that this observation model takes the standard linear model, y = Xw∗ + ε,
where y ∈ Rn, w ∈ Rd and ε ∼ N(0, σ2I).

C.1 Upper bound under the squared L semi-norm

The maximum likelihood estimate in the Paired Cardinal model is a special case of the
general M -estimator (19) with `(w) : = 1

2n

∑n
i=1

(
yi−〈xi, w〉

)2
. For this quadratic objective

function, it is easy to verify that the γ-convexity condition holds with γ = 1. (In particular,
note that the Hessian of ` is given by L = XTX/n.)

Given the result of Lemma 9, it remains to upper bound ‖∇`(w∗)‖L† . A straightforward

computation yields ‖∇`(w∗)‖2
L†

= ε
σ
TQ ε

σ where Q : = σ2

n2XL
†XT . Consequently, the ran-

dom variable ‖∇`(w∗)‖2
L†

is quadratic form in the standard Gaussian random vector ε
σ . An

application of Lemma 15 (Appendix F) gives tr(Q) = σ2

n

(
d− 1

)
and |||Q|||op = σ2

n , and then
applying a known tail bound on Gaussian quadratic forms (see Lemma 12 in Appendix E)
yields

P

[
‖∇`(w∗)‖2

L†

σ2
≥
(√d

n
+

δ√
n

)2
]
≤ e−

δ2

2 for all δ ≥ 0.

Since d ≥ 2, we have
(
σ
√

d
n + σ√

n
δ
)2 ≤ 2σ2dδ2

n for all δ ≥ 4, which yields

P
[
‖∇`(w∗)‖2L† ≥ t

4σ2d

n

]
≤ e−t for all t ≥ 8.

Integrating this tail bound yields that E
[
‖∇`(w∗)‖2

L†

]
≤ cσ2 d

n , from which the claim follows.

C.2 Lower bound under the squared L semi-norm

Based on the pairwise Fano lower bound previously stated in Lemma 6, we need to construct
a suitable (δ, β)-packing, where the semi-norm ρ(wj , wk) = ‖wj − wk‖L is defined by the
Laplacian. Given the additive Gaussian noise observation model, we also have

DKL(Pwj‖Pwk) =
n

2σ2
‖wj − wk‖2L, (23)
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The construction of the packing and the remainder of the proof proceeds in a manner
identical to the proof of the lower bound in Theorem 1, except for the absence of the
requirement of ‖wj‖∞ ≤ B on the elements {wj} of the packing set.

C.3 Upper bound under the squared Euclidean norm

The upper bound follows by direct analysis of the (unconstrained) least-squares estimate,
which has the explicit form ŵ = 1

nL
†XT y, and thus

E‖ŵ − w∗‖22 = E‖ 1

n
L†XT ε‖22 = σ2tr(

1

n2
L†XTXL†)

where we have used the fact that ε ∼ N(0, σ2In). Since L = XTX/n by definition, we

conclude that E‖ŵ − w∗‖22 = σ2tr(L†)
n as claimed.

C.4 Lower bound under the squared Euclidean norm

We obtain the lower bound by computing the Bayes risk with respect to a suitably defined
(proper) prior distribution over the weight vector w∗. In particular, if we impose the prior

w∗ ∼ N(0, σ
2

n L
†), Bayes’ rule then leads to the posterior distribution

P
(
w | y;X

)
∝ exp

(
−1

2σ2
‖y −Xw‖22

)
exp

(
−n
2σ2

wTLw

)
1{〈w, 1〉 = 0}.

Thus conditioned on y, w is distributed as N
(

(XTX + nL)−1XT y, σ
2

2 L
†
)
. By applying

iterated expectations, the Bayes risk is given by E‖w − 1
2L
†XT y‖22 = σ2

2 tr(L†), which
completes the proof.

Appendix D. Proof of Theorem 4

This section presents the proof of Theorem 4 for the setting of m-wise comparisons. We
first state some simple properties of the model introduced in Section 3.3, which we use
subsequently in the proofs of the results.

Lemma 10 The Laplacian of the underlying pairwise-comparison graph satisfies the trace
constraints nullspace(L) = 1, λ2(L) > 0 and tr(L) = m(m− 1).

Lemma 11 For any j ∈ [m], i ∈ [n] and any vector v ∈ Rm, we have

λ2(H)

m
vT (mI − 11T )v ≤ vTRjHRTj v ≤

λmax(H)

m
vT (mI − 11T )v.

See Section D.2 for the proof of these auxiliary lemmas.

D.1 Upper bound under the squared L semi-norm

We prove this upper bound by applying Lemma 9. In this case, the rescaled negative log
likelihood takes the form

`(w) = − 1

n

n∑
i=1

m∑
j=1

1[yi = j] logF
(
wTEiRj

)
,
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and the MLE is obtained by constrained minimization over the set WB : =
{
w ∈ Rd |

〈1, w〉 = 0, and ‖w‖∞ ≤ B
}

. As in our proof of the upper bound in Theorem 1, we
need to verify the κ-strong convexity condition, and to control the dual norm ‖∇`(w∗)‖L† .

Verifying strong convexity: The gradient of the negative log likelihood is

∇`(w) = − 1

n

n∑
i=1

m∑
j=1

1[yi = j]EiRj∇ logF (v)
∣∣
v=wTEiRj

.

The Hessian of the negative log likelihood can be written as

∇2`(w) =
1

n

n∑
i=1

m∑
j=1

1[yi = j]EiRj∇2 logF (v)
∣∣
v=wTEiRj

RTj E
T
i .

Using our strongly log-concave assumption on F , we have that for any vector z ∈ Rd,

zT∇2`(w)z = − 1

n

n∑
i=1

m∑
j=1

1[yi = j]zTEiRj∇2 logF (v)
∣∣
v=wTEiRj

RTj E
T
i z

≥ 1

n

n∑
i=1

m∑
j=1

1[yi = j]zTEiRjHR
T
j E

T
i z

≥ λ2(H)

m

1

n

n∑
i=1

m∑
j=1

1[yi = j]zTEi(mI − 11T )ETi z,

where the last step follows from Lemma 11. The definition (10) of L implies that

zT∇2`(w)z ≥ λ2(H)

m
zTLz =

λ2(H)

m
‖z‖2L.

Consequently, the κ-convexity condition holds around w∗ with κ = λ2(H)
m . An application

of Lemma 9 then yields

‖ŵML − w∗‖2L ≤
m2

λ2(H)2
‖∇`(w∗)‖2L† =

m2

λ2(H)2
∇`(w∗)TL†∇`(w∗). (24)

Controlling the dual norm: The gradient of the negative log likelihood can then be
rewritten as ∇`(w∗) = − 1

n

∑n
i=1EiVi, where each index i ∈ [n], the random vector vector

Vi ∈ Rm is given by Vi : =
∑m

j=1 1[yi = j] Rj ∇ logF (〈w∗, Ei〉Rj). Now observe that the

matrixM : = I− 1
m11T is symmetric and positive semi-definite with rank (m−1), eigenvalues

{1, . . . , 1, 0}, its nullspace equals the span of the all-ones vector, and that M † = M . Using

this matrix, we define the transformed vector Ṽi : = (M †)
1
2Vi for each i ∈ [n].

Consider a vector x and its shifted version x+t1, where t ∈ R and 1 denotes the vector of
all ones. By the shift invariance property, the function g(t) = F (x+ t1)−F (x) is constant,
and hence

g′(0) = 〈∇F (x), 1〉 = 0, and g′′(0) = 〈1,
(
∇2F (x)

)
1〉 = 0, (25)
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which implies that 1 ∈ nullspace(∇2F (x)). Continuing on, we also have that 〈∇ logF (x), 1〉 =
1

F (x)〈∇F (x), 1〉 = 0. Consequently, 〈Vi, 1〉 = 0 = 〈Vi, nullspace(M)〉. This allows us to
write

∇`(w∗) = − 1

n

n∑
i=1

EiM
1
2 Ṽi, and ∇`(w∗)TL†∇`(w∗) =

1

n2

n∑
i=1

n∑
`=1

Ṽ T
i M

1
2ETi L

†E`M
1
2 Ṽ`.

By definition, for every pair i 6= ` ∈ [n], Ṽi is independent of Ṽ`. Moreover, for every i ∈ [n],

E[Ṽi] = E[(M †)
1
2

m∑
j=1

1[yi = j]Rj∇ logF (v)
∣∣
v=(w∗)TEiRj

]

= (M †)
1
2

m∑
j=1

F ((w∗)TEiRj)Rj∇ logF (v)
∣∣
v=(w∗)TEiRj

= (M †)
1
2

m∑
j=1

Rj∇F (v)
∣∣
v=(w∗)TEiRj

.

In order to further evaluate this expression, define a function g : Rm → R as g(z) =∑m
j=1 F (zTRj). Then by definition we have g(z) = 1. Taking derivatives, we get 0 =

∇g(z) =
∑m

j=1Rj∇F (zTRj). It follows that E[Ṽi] = 0, and hence that

E[∇`(w∗)TL†∇`(w∗)] =
1

n2
E[

n∑
i=1

n∑
`=1

Ṽ T
i M

1
2ETi L

†E`M
1
2 Ṽ`]

=
1

n2
E[

n∑
i=1

Ṽ T
i M

1
2ETi L

†EiM
1
2 Ṽi]

≤ 1

n
E[ sup
`∈[n]
‖Ṽ`‖22]tr(

1

n

n∑
i=1

M
1
2ETi L

†EiM
1
2 ).

Since L = m
n

∑n
i=1EiMETi , we have tr( 1

n

∑n
i=1M

1
2ETi L

†EiM
1
2 ) = d−1

m , as well as

‖Ṽ`‖22 =

m∑
j=1

1[yi = j](∇ logF (v)
∣∣
v=(w∗)TEiRj

)TRTj MRj∇ logF (v)
∣∣
v=(w∗)TEiRj

.

Recalling the previously defined matrix M , observe that since Rj is simply a permutation
matrix, we have RTj MRj = M for every j ∈ [m]. By chain rule, we have 〈∇ logF (v), 1〉 =

1
F (v)〈∇F (v), 1〉 = 0, where the last step follows from our previous calculation. It follows
that

E
[
〈∇`(w∗), L†∇`(w∗)〉

]
≤ d

n
sup

v∈[−B,B]m
‖∇ logF (v)‖22.

Substituting this bound into equation (24) yields the claim.
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D.1.1 Lower bound under the squared L semi-norm

For any pair of quality score vectors wj and wk, the KL divergence between the distributions
Pwj and Pwk is given by

DKL(Pwj‖Pwk) =
n∑
i=1

m∑
l=1

F (wj
T
EiRl) log

F (wj
T
EiRl)

F (wk
T
EiRl)

.

Applying the inequality log x ≤ x− 1, valid for x > 0, we find that

DKL(Pwj‖Pwk) ≤
n∑
i=1

m∑
l=1

F (wj
T
EiRl)

(F (wj
T
EiRl)

F (wk
T
EiRl)

− 1
)
.

Now employing the fact that
∑m

l=1 F (wj
T
EiRl) =

∑m
l=1 F (wk

T
EiRl) = 1 gives

DKL(Pwj‖Pwk) ≤
n∑
i=1

m∑
l=1

(F (wj
T
EiRl)

2

F (wk
T
EiRl)

− 2F (wj
T
EiRl) + F (wk

T
EiRl)

)
.

=

n∑
i=1

m∑
l=1

(F (wj
T
EiRl)− F (wk

T
EiRl))

2

F (wk
T
EiRl)

≤ 1

F (−B,B, . . . , B)

n∑
i=1

m∑
l=1

(F (wj
T
EiRl)− F (wk

T
EiRl))

2

≤ 1

F (−B,B, . . . , B)

n∑
i=1

m∑
l=1

(〈∇F (zil), w
jTEiRl − wk

T
EiRl〉)2,

for some zil ∈ [−B,B]m. Letting ζ =
supz∈[−B,B]m ‖∇F (z)‖2

H†
F (−B,B,...,B) and applying Lemma 16 (noting

that 〈wjTEiRl, nullspace(H)〉 = 0 for all i, j, l) gives

DKL(Pwj‖Pwk) ≤
n∑
i=1

m∑
l=1

ζ‖wjTEiRl − wk
T
EiRl‖2H

≤ ζ(wj − wk)T
( n∑
i=1

m∑
l=1

EiRlHR
T
l E

T
i

)
(wj − wk)

≤ ζλm(H)n‖wj − wk‖2L, (26)

where the final step is a result of Lemma 11.
Consider the pair of scalars α ∈ (0, 1

4) and δ > 0 whose values will be specified later.

Let M(α) be as defined in (14). Consider the packing set {w1, . . . , wM(α)} constructed in
Appendix A.1. Each of these vectors is of length d, satisfies 〈wj , 1〉 = 0, and furthermore,
each pair from this set satisfies αδ2 ≤ ‖wj − wk‖2L ≤ δ2. Setting δ2 = 0.01 d

nζλm(H) yields

DKL(Pwj‖Pwk) ≤ 0.01d.

Every element from the packing set also satisfies ‖wj‖∞ ≤ B when n ≥ 0.01σ2tr(L†)
ζB2λm(H)

, and

thus belongs to the class WB.
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Applying Lemma 6 yields the lower bound

‖ŵ − w∗‖2L ≥
α

2
0.01

d

nζλm(H)

{
1− 0.01d+ log 2

logM(α)

}
.

Setting α = 0.01 proves the claim for d > 9.

For the case of d ≤ 9, consider the set of the three d-length vectors z1 = [0 · · · 0 −1],
z2 = [0 · · · 0 1] and z3 = [0 · · · 0 0]. Construct the packing set {w1, w2, w3} from these
three vectors {z1, z2, z3} as done above for the case of d > 9. From the calculations made

for the general case above, we have for all pairs minj 6=k ‖wj −wk‖2L ≥
δ2

9 and maxj,k ‖wj −
wk‖2L ≤ 4δ2, and as a result maxj,kDKL(Pwj‖Pwk) ≤ 4nζλm(H)δ2. Choosing δ2 = log 2

8nζλm(H)
and applying Lemma 6 proves the claim.

D.1.2 Upper bound under the squared Euclidean norm

The upper bound under the squared `2-norm follows directly from the upper bound under
the squared L semi-norm in Theorem 4: noting that (w∗ − ŵ) ⊥ nullspace(L), we get that

(w∗ − ŵ)TL(w∗ − ŵ) ≥ λ2(L)‖w∗ − ŵ‖22.

Substituting this inequality in the upper bound on the minimax risk under the squared L
semi-norm in Theorem 4 gives the desired result.

D.1.3 Lower bound under the squared Euclidean norm

Define ζ =
supz∈[−B,B]m ‖∇F (z)‖2

H†
F (−B,B,...,B) . Equation (26) in Appendix D.1.1 shows that for any

vectors wj , wk ∈ WB,

DKL(Pwj‖Pwk) ≤ ζλm(H)n‖wj − wk‖2L,

Consider the pair of scalars α ∈ (0, 1
4) and δ > 0 whose values will be specified later.

Let M(α) be as defined in (14). In Appendix B.2 we constructed a set {w1, . . . , wM(α)}
of vectors of length d that satisfy 〈wj , 1〉 = 0 for every j ∈ [M(α)], and for every pair of

vectors in this set, ‖wj − wk‖22 ≥ αδ2 and 1

(M(α)
2 )

∑
j 6=k ‖w̃j − w̃k‖2L ≤

2δ2

d tr(L). Applying

Lemma 10 gives

1(
M(α)

2

)∑
j 6=k
‖w̃j − w̃k‖2L ≤

2δ2

d
m(m− 1).

Setting δ2 = 0.005 d2

nζλm(H)m(m−1) yields

DKL(Pwj‖Pwk) ≤ 0.01d.

In a manner similar to Lemma 14 in the pairwise comparison case, one can show that
in the general setting of this section, tr(L†) ≥ d2

4m(m−1) . Then, every element from the

packing set also satisfies ‖wj‖∞ ≤ B when δ ≤ B, which holds true under our assumption
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of n ≥ cσ2tr(L†)
ζB2λm(H)

≥ cσ2d2

4m(m−1)ζB2λm(H)
with c = 0.01. Each element of our packing set thus

belongs to the class WB. Applying Lemma 6 yields the lower bound

‖ŵ − w∗‖2L ≥
α

2
0.01

d2

nζλm(H)m(m− 1)

{
1− 0.01d+ log 2

logM(α)

}
.

Setting α = 0.01 proves the claim for d > 9.

For the case of d ≤ 9, consider the set of the three d-length vectors z1 = [0 · · · 0 −1],
z2 = [0 · · · 0 1] and z3 = [0 · · · 0 0]. Construct the packing set {w1, w2, w3} from these
three vectors {z1, z2, z3} as done above for the case of d > 9. From the calculations made for

the general case above, we have for all pairs minj 6=k ‖wj−wk‖22 ≥ δ2

9 and maxj,k ‖wj−wk‖2L ≤
4δ2, and as a result maxj,kDKL(Pwj‖Pwk) ≤ 4nζλm(H)δ2. Choosing δ2 = log 2

8nζλm(H) and
applying Lemma 6 proves the claim.

D.2 Some implied properties of the model

In this section, we prove the two auxiliary lemmas stated at the start of this appendix.

D.2.1 Proof of Lemma 10

From the definition (10) of L, have

L1 =
1

n

n∑
i=1

Ei(mI − 11T )ETi 1 =
1

n

n∑
i=1

Ei(mI − 11T )1 = 0,

showing that 1 ∈ nullspace(L).

Now consider any non-zero vector v : = [v1, . . . , vd]
T ∈ Rd such that v /∈ span(1). Then

there must exist some i, j ∈ [d] such that vi 6= vj . We know that there exists some path from
item i to j in the comparison hyper-graph. Thus there must exist some hyper-edge in this
path with two items, say i′, j′, such that vi′ 6= vj′ . Suppose that hyper-edge corresponds
to sample ` ∈ [n]. Let v′ : = ET` v. Then v′ /∈ span(1). The Cauchy-Schwarz inequality
〈v′, v′〉〈1, 1〉 > (〈v′, 1〉)2 thus implies

vTE`(mI − 11T )ET` v > 0.

Furthermore, for any v′′ ∈ Rm, the Cauchy-Schwarz inequality 〈v′′, v′′〉〈1, 1〉 > (〈v′′, 1〉)2

implies that for any i ∈ [n], we have vTEi(mI − 11T )ETi v ≥ 0. Overall we conclude that
have vTLv > 0 for every v /∈ span(1), and hence, nullspace(L) = 1 and λ2(L) > 0.

Finally, we have

tr(L) =
1

n

n∑
i=1

tr(Ei(mI − 11T )ETi ) =
1

n

n∑
i=1

(
mtr(EiE

T
i )− tr(Ei11TETi )

)
. (27)

By the definition of the matrices {Ei}i∈[n], tr(EiE
T
i ) = m and tr(Ei11TETi ) = m. Substi-

tuting these values in (27) gives the desired result tr(L) = m(m− 1). �
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D.2.2 Proof of Lemma 11

Let h1, . . . , hm denote the m eigenvectors of H, with h1 = 1√
m

1. Then for any vector

v′ ∈ Rm,

v′THv′ =

m∑
i=2

λi(H)〈v′, hi〉2 ≥ λ2(H)

m∑
i=2

〈v′, hi〉2 = λ2(H)
( m∑
i=1

〈v′, hi〉2 −
1

m
〈v′, 1〉2

)
= λ2(H)v′T (I − 1

m
11T )v′,

where the final step employed the property
∑m

i=1 hih
T
i = I of the eigenvectors h1, . . . , hm

of H. A similar argument gives

v′THv′ =
m∑
i=2

λi(H)〈v′, hi〉2 ≤ λmax(H)
m∑
i=2

〈v′, hi〉2 = λmax(H)
( m∑
i=1

〈v′, hi〉2 −
1

m
〈v′, 1〉2

)
= λmax(H)v′T (I − 1

m
11T )v′.

Setting v′ = RTj v gives

λ2(H)vTRj(I −
1

m
11T )RTj v ≤ vTRjHRTj v ≤ λmax(H)vTRj(I −

1

m
11T )RTj v.

Observe that the matrix I− 1
m11T is invariant to permutation of the coordinates, and hence

Rj(I − 1
m11T )RTj = I − 1

m11T . This gives

λ2(H)

m
vT (mI − 11T )v ≤ vTRjHRTj v ≤

λmax(H)

m
vT (mI − 11T )v.

�

Appendix E. Some useful tail bounds

In this appendix, we collect a few useful tail bounds for quadratic forms in Gaussian and
sub-Gaussian random variables.

Lemma 12 (Tail bound for Gaussian quadratic form) For any positive semidefinite
matrix Q and standard Gaussian vector g ∼ N(0, Id), we have

P
[
gTQg ≥

(√
tr(Q) +

√
|||Q|||op δ

)2] ≤ e−δ/2. (28)

valid for all δ ≥ 0.

Proof Note that the function g 7→ ‖
√
Qg‖2 is Lipschitz with constant |||

√
Q|||op. Conse-

quently, by concentration for Lipschitz functions of Gaussian vectors (Ledoux, 2001), the
random variable Z = ‖

√
Qg‖2 satisfies the upper bound

P
[
Z ≥ E[Z] + t

]
≤ exp

(
− t2

2|||
√
Q|||2op

)
= exp

(
− t2

2|||Q|||op
)
.
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By Jensen’s inequality, we have E[Z] = E[‖
√
Qg‖2] ≤

√
E[gTQg] =

√
tr(Q). Setting

t =
√
|||Q|||op δ completes the proof.

Lemma 13 ((Hanson and Wright, 1971; Rudelson and Vershynin, 2013)) Let V ∈
Rd be a random vector with independent zero-mean components that are sub-Gaussian with
parameter K, and let M ∈ Rd×d be an arbitrary matrix. Then there is a universal constant
c > 0 such that

P
[∣∣V TMV − E[V TMV ]

∣∣ > t
)
≤ 2 exp

(
−cmin

{
t2

K4|||M |||2fro
,

t

K2|||M |||op

})
for all t > 0.

(29)

Appendix F. Properties of Laplacian matrices

By construction, the Laplacian L of the comparison graph is symmetric and positive-
semidefinite. By the singular value decomposition, we can write L = UTΛU where U ∈ Rd×d
is an orthonormal matrix, and Λ is a diagonal matrix of nonnegative eigenvalues with
Λjj = λj(L) for every j ∈ [d]. Given our assumption of λ1(L) ≤ · · · ≤ λd(L), we also
have Λ11 ≤ · · · ≤ Λdd. Also recall that L† denotes the Moore-Penrose pseudo-inverse of
L. In terms of the notation introduced, the Moore-Penrose pseudo-inverse is then given by
L† = UTΛ†U , where Λ† is a diagonal matrix with entries

Λ†jj =

{
(Λ−1

jj ) if Λjj > 0

0 otherwise.

The following pair of lemmas establish some useful properties about L.

Lemma 14 The Laplacian matrix (4) satisfies the trace constraints

tr(L) = 2, and tr(L†) ≥ d2

4
.

Proof From the definition (4) of the matrix L, we have tr(L) = 1
n

∑n
i=1 tr(xix

T
i ) = 2. We

also know that λ1(L) = 0, and hence
∑d

j=2 λj(L) = 2. Given the latter constraint, the sum∑d
j=2

1
λj(L) is minimized when λ2(L) = · · · = λd(L). Some simple algebra now gives the

claimed result.

Lemma 15 For the matrix L defined in (4), and for a (n× d) matrix X with xTi as its ith

row,

tr(
1

n
xTL†x) = d− 1, ||| 1

n
xTL†x|||fro = d− 1, and ||| 1

n
xTL†x|||op = 1.
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Proof Let Q = 1
nx

TL†x. Since L = 1
nX

TX = UTΛU , the diagonal entries of Λ are the
squared singular values of X/

√
n. Consequently, there must exist an orthonormal matrix

V such that X/
√
n = V

√
ΛUT , and thus we can write Q = V

√
Λ Λ†

√
ΛV T . By definition

of the Moore-Penrose pseudo-inverse, the matrix
√

Λ Λ†
√

Λ is a diagonal matrix; since the
Laplacian graph is connected, its diagonal contains (d − 1) ones and a single zero. Noting
that V is an orthonormal matrix gives the claimed result.

For future reference, we state and prove a lemma showing that these two semi-norms
satisfy a restricted form of the Cauchy-Schwarz inequality:

Lemma 16 For any two vectors u and v such that u ⊥ nullspace(L) or/and v ⊥ nullspace(L),
we have

|〈u, v〉| ≤ ‖u‖L† ‖v‖L. (30)

Proof Since L = UTΛU and L† = UTΛ†U , we have
√
vTLv

√
uTL†u =

√
vTUTΛUv

√
uTUTΛ†Uu = ‖ṽ‖2‖ũ‖2 ≥ |〈ṽ, ũ〉|,

where we have defined ṽ : =
√

ΛUv and ũ : =
√

Λ†Uu. Continuing on,

〈ṽ, ũ〉 = vTUT
√

Λ
√

Λ†Uu = vTUUTu,

where we have used the fact that u or/and v are orthogonal to the null space of L. Since
U is orthonormal, we conclude that 〈ṽ, ũ〉 = 〈v, u〉, which completes the proof.

Appendix G. Minimax risk without assumptions on quality scores

The setting considered throughout the paper imposes two restrictions (2) on the quality
score vector w∗. The first condition is that of shift invariance, that is, 〈w∗, 1〉 = 0. The
necessity of this condition for identifiability under the Ordinal model is easy to verify.
The second condition is that the quality score vectors are B-bounded, that is, ‖w∗‖∞ ≤ B
for some finite B. In this section, for the sake of completeness, we show that the minimax
risk is infinite in the absence of this condition.

Proposition 17 Any estimator w̃ based on n samples from the Ordinal model (with un-
bounded quality score vectors) has error lower bounded as

sup
w∗∈W∞

E
[
‖w̃ − w∗‖22

]
= sup

w∗∈W∞
E
[
‖w̃ − w∗‖2L

]
=∞.

The remainder of this section is devoted to the formal proof of Proposition 17. Consider
the event where for every comparison, the item with the higher quality score in w∗ wins.
For any w∗ ∈ W∞\{0}, this event occurs with a probability at least 1

2n . Under this event,
the true w∗ is indistinguishable from the quality score vector cw∗ ∈ W∞ for every c ≥ 0,
and the error is also unbounded. Since the probability of this event is strictly bounded away
from zero, the expected error is also unbounded.
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