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Abstract

We consider the recovery of a low rank real-valued matrix M given a subset of noisy dis-
crete (or quantized) measurements. Such problems arise in several applications such as
collaborative filtering, learning and content analytics, and sensor network localization. We
consider constrained maximum likelihood estimation of M , under a constraint on the entry-
wise infinity-norm of M and an exact rank constraint. We provide upper bounds on the
Frobenius norm of matrix estimation error under this model. Previous theoretical inves-
tigations have focused on binary (1-bit) quantizers, and been based on convex relaxation
of the rank. Compared to the existing binary results, our performance upper bound has
faster convergence rate with matrix dimensions when the fraction of revealed observations
is fixed. We also propose a globally convergent optimization algorithm based on low rank
factorization of M and validate the method on synthetic and real data, with improved
performance over previous methods.

Keywords: constrained maximum likelihood, quantization, matrix completion, collabo-
rative filtering, convex optimization

1. Introduction

Recovery of a low-rank matrix from a subset of its entries is known as the matrix completion
problem. This problem arises in many applications, including collaborative filtering (Rennie
and Srebro, 2005; Koren et al., 2009), sensor network localization (Shang et al., 2004; Kar-
basi and Oh, 2013), learning and content analytics (Lan et al., 2014c,b), rank aggregation
(Gleich and Lim, 2011), and manifold learning (Tenenbaum et al., 2000; Saul and Roweis,
2003). In many of these applications, the entries of the matrix are not real-valued, but
discrete or quantized, e.g., binary-valued or multiple-valued. For example, in the Netflix
problem where a subset of the users’ ratings is observed, the ratings take integer values
between 1 and 5. Classical matrix completion has treated these values as real-valued with
good results, however, performance improvement can be achieved when the observations
are treated as discrete (Davenport et al., 2014; Lan et al., 2014a).

We consider the problem of completing a matrix from a subset of its entries, but instead
of assuming the observed entries are real-valued, we observe subset of quantized measure-
ments. These observations are related to the underlying matrix M via a probabilistic model,
as follows. Given M ∈ Rm×n, a subset of indices Ω ⊆ [m] × [n], and a twice differentiable
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function f` : R→ [0, 1], with ` ∈ [K], K ≥ 2, we observe

Yij = ` with probability f`(Mij) for (i, j) ∈ Ω, (1)

where
∑K

`=1 f`(Mij) = 1. One important application of this model is the K-level quantiza-
tion of noisy Mij + Zij , where Yij is given by (Lan et al., 2014a)

Yij = Q(Mij + Zij), (i, j) ∈ Ω, (2)

where the noise matrix Z has i.i.d. entries with cumulative distribution function (CDF)
Φ(z), and the function Q : R → [K] corresponds to a scalar quantizer that maps a real
number to one of the K ordered labels according to

Q(x) = ` if ω`−1 < x ≤ ω`, ` ∈ [K], (3)

where ω0 < ω1 < · · · < ωK are the quantization bin boundaries. We will take ω0 = −∞ and
ωK =∞. This quantization model was first considered in McCullagh (1980) for regression
applications.

It then follows that

f`(Mij) = P (Yij = `|Mij)

= Φ(ω` −Mij)− Φ(ω`−1 −Mij). (4)

This observation model arises in many applications. In connectivity-based sensor net-
work localization (Shang et al., 2004; Karbasi and Oh, 2013), M is a matrix of distances be-
tween sensors, and Yij takes binary values based on whether sensor i and sensor j are within
a specified radius of each other. In learning and content analytics (Lan et al., 2014c,b), M
governs the learners’ responses to questions, and in recommender systems (Rennie and Sre-
bro, 2005; Koren et al., 2009), M can represent the true underlying preferences of users.
The matrix Y is then the matrix of ratings ` ∈ [K], which may represent quantization of
some underlying real-valued user preference. Hence, the model (1)-(3) accounts for finer
ordering of users’ true preferences which then are quantized to discrete values dictated by
the rating system. It is known that Netflix uses such real-valued predictions to order movie
recommendations when generating recommendations for a user.

The probabilistic model described in (1)-(3) was first introduced by Davenport et al.
(2014) for the case of binary (K = 2), or 1-bit, observations and has been studied in depth
in the literature. This case corresponds to (2) with ω1 = 0 when the quantization model is
considered. Under the assumption that M is low-rank, Davenport et al. (2014) and Lafond
et al. (2014) proposed a convex program using maximum likelihood estimation and a nuclear
(or trace) norm to promote a low-rank solution. Both works present theoretical recovery
guarantees for the estimate, with the latter improving the convergence rate of the upper
bound on the error. In Cai and Zhou (2013), a constrained maximum likelihood estimator
was also considered but with the max-norm in place of the nuclear norm. Upper and lower
bounds on the error norm of the solution to the resulting convex program were also given
of the same order as Davenport et al. (2014). The binary model is also investigated in Soni
et al. (2014) for sparse factor models using maximum likelihood estimation with an exact
low-rank constraint; their results apply to non-sparse models also.
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The theoretical recovery guarantee for the estimate given in Soni et al. (2014) is in the
form of an upper bound on the expectation of the error norm, in contrast to Davenport
et al. (2014), Lafond et al. (2014) and Cai and Zhou (2013), where the (high probability)
upper bounds on the error norm itself are given. The bounds presented in this paper are
also on the error norm, not on its expectation.

The extension to multi-level observations (K ≥ 2) was introduced in Lan et al. (2014a),
with a focus on the quantized observation model given in (2). A constrained maximum
likelihood estimator, similar to that of Davenport et al. (2014), was proposed and validated
through numerical experiments, but no theoretical results were given. An extension to multi-
level observations was also proposed in Lafond et al. (2014). In contrast to the quantization
observation model of Lan et al. (2014a), which involves just one M , the observation model
of Lafond et al. (2014) related the matrix Y of K level observations to a vector of K − 1
underlying matrices (M j)K−1

j=1 . An upper bound on the error norm was given for a penalized
maximum likelihood estimate of this vector of matrices, of the same order as established
for the binary case. Recently Cao and Xie (2015) also investigated matrix completion
for categorical data and extended the results of Davenport et al. (2014) to multi-level
observations. The error bounds of Cao and Xie (2015) are of the same order as that of
Davenport et al. (2014) for the binary case. The multi-level observation model of Cao and
Xie (2015) does not include the quantized observation model given in (2).

Generalized performance bounds for a generic regularized convex program with arbitrary
regularizer were given in Gunasekar et al. (2014) and Lafond (2015), which can be applied
to the observation model (1) for K ≥ 2 when the the link function f comes from the
exponential family. Hence, this theoretical guarantee does not apply when considering a
quantization observation model, given in (2) when K > 2. In this paper, we will allow
for an arbitrary log-concave link function in our observation model and theoretical results,
which will allow for applications such as noisy K-level quantization.

Another line of work in the context of collaborative filtering has been concerned with
probabilistic matrix factorization (PMF) models (Salakhutdinov and Mnih, 2008; Gopalan
et al., 2014), some of which can handle integer-valued observations. In an item ratings
context, for an m × n ratings matrix M , one writes M = UV > where the factors U ∈
Rm×d, V ∈ Rn×d represent latent users and item feature matrices. A Gaussian model
for the observations, parametrized by these factors, is used in Salakhutdinov and Mnih
(2008), and a Poisson model is used in Gopalan et al. (2014) allowing for integer-valued
observations. The item and user feature vectors are assigned priors, and hyperparameters
and feature vectors are estimated by maximizing the log-posterior in Salakhutdinov and
Mnih (2008) and minimizing the Kullback-Leibler divergence in Gopalan et al. (2014). To
our knowledge, there are no theoretical recovery guarantees regarding the performance of
these PMF models. Also in the context of collaborative filtering, Koren and Sill (2011,
2013) proposed an ordinal model for predicting missing rating distributions from revealed
multi-level numerical ratings. The model of Koren and Sill (2011, 2013) is a quantized
observation model similar to that in Lan et al. (2014a), and as in Lan et al. (2014a), no
theoretical results were given. Modeling of ordinal data with Gaussian restricted Boltzmann
machines for both vector-variates and matrix-variates has been investigated in Tran et al.
(2012), where a quantized observation model is also considered. No theoretical results were
given Tran et al. (2012).
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Aside from the PMF models, all prior works have considered convex programs which
use a convex relaxation of matrix rank as a surrogate for promoting low rank. While
this may be advantageous in cases where the matrix is approximately low rank and also
because it results in a convex problem, often in applications the rank is known (as in sensor
network localization), or can be reliably estimated. One question is, if we consider an exact
rank constraint, can performance guarantees be proved and performance improvement be
achieved, and can we find an algorithm to lead us to a global solution?

In this paper, we extend the theory of 1-bit matrix completion to that of multi-level
discrete measurements, with an emphasis on the application to quantization. We consider
maximum likelihood (ML) estimation of M from multi-level quantized observations, and
establish upper bounds on the estimation error norm for this problem, which has a faster rate
of convergence than previously established upper bounds for the binary case. In contrast to
Gunasekar et al. (2014) and Lafond (2015), we do not restrict the likelihood (i.e., the link
function f) to come from an exponential family distribution. We allow the likelihood to come
from any strictly log-concave distribution, which includes distributions of bounded discrete
random variables from the exponential family. We furthermore focus on the application to
a quantization observation model similar to that of Lan et al. (2014a), where the likelihood
is not from the exponential family when the number of levels is greater than two (that
is, when K > 2). Rather than using a convex relaxation to promote a low-rank solution
as in previous works, we use an exact rank constraint. We present several algorithms
based on matrix factorization for solving our optimization problem, one of which is globally
convergent. Our method outperforms some of the existing low-rank matrix completion
methods on both synthetic and real world data.

In a preliminary short version of this paper (Bhaskar, 2015), we presented Algorithms
1 and 2 (for known bin boundaries) and stated a preliminary version of our performance
upper bound without any proof. The present paper provides a more comprehensive upper
bound of the Frobenius norm of the error with the complete proof, an additional algorithm,
Algorithm 3, and more extensive numerical experiments which include validation on the
MovieLens 1M dataset.

The paper is organized as follows. In Section 2 we discuss the assumptions on the tar-
get matrix to make it identifiable and also discuss our sampling model on which we follow
Bhojanapalli and Jain (2014). In Section 3, we state our main results regarding theoretical
guarantees on matrix recovery. We first describe the proposed constrained ML estimation
of the target matrix M from multi-level quantized observations. We then establish upper
bounds on the estimation error norm for this problem, which yield a faster rate of conver-
gence than previously established upper bounds for the binary case. In Section 4 we present
several algorithms based on matrix factorization for solving our optimization problem, one
of which is globally convergent. We corroborate our results with numerical examples in
Section 5 where we test our methods on synthetic and real data, and also compare our
methods with that of Keshavan et al. (2009, 2010) (OptSpace), Cai et al. (2010) (SVT),
Cai and Zhou (2013) and Davenport et al. (2014). Proofs of technical claims are given in
the two appendices.

Notation: We use capital letters, such as M , to denote a matrix, and Mij for its (i, j)th
entry. We let ‖M‖2, ‖M‖F , ‖M‖∗ and ‖M‖∞ denote the operator, Frobenius, nuclear (or
trace) and entry-wise infinity norm, respectively, of M . The notation M> denotes the
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transpose of M , |S| denotes the cardinality of the set S, [n] denotes the set of integers
{1, . . . , n}, 1n ∈ Rn is the vector of all ones, 1̃n = 1n/

√
n, and 1[A] denotes the indicator

function, i.e. 1[A] = 1 when A is true, and 1[A] = 0 otherwise. We use 〈A,B〉 to denote

tr(A>B) =
∑

ij AijBij . The abbreviations w.h.p. and w.p.1 stand for with high probability
and with probability one, respectively.

2. Preliminaries and Model Assumptions

In this section, we discuss the assumptions on the target matrix M to make it identifiable.
We also discuss our sampling model on which we follow Bhojanapalli and Jain (2014).

2.1 Low-rank Matrices

The problem of completing a matrix from a subset of its entries is ill-posed without imposing
structural assumptions on the matrix. Hence, some relationship between the entries must
be assumed to reconstruct M from a subset of its entries. The majority of the literature
on matrix completion assumes that the matrix M to be recovered is low rank, i.e., that it
spans a low-dimensional subspace. This assumption is reasonable in many applications.

We assume that M is a low-rank matrix with rank bounded by r. We note that in
many applications, such as sensor network localization, where M is known to exist in 2 or
3-dimensional grid, or DNA haplotype assembly, the rank r is known. In examples such as
collaborative filtering, where M is a matrix in which rows may represent users and columns
may represent their preferences for an item, M is low rank since the users’ preferences are
believed to be a function of just a few factors. In applications where the rank r is not
explicitly known, as in the former example, it can be reliably estimated (Keshavan et al.,
2010).

We furthermore assume that the true matrix M satisfies ‖M‖∞ ≤ α, which helps make
the recovery of M well-posed by preventing excessive “spikiness” of the matrix. In classical
matrix completion (Cai et al., 2010), the incoherence assumption is used to ensure that
the left and right singular vectors are not aligned with the standard basis vectors, and to
facilitate establishment of recovery guarantees. This assumption was made less stringent in
Negahban and Wainright (2012) by instead restricting the “spikiness” ratio of the matrix.
The assumption ‖M‖∞ ≤ α follows from this condition (Gunasekar et al., 2014). We refer
the reader to Davenport et al. (2014), Cai and Zhou (2013), Klopp (2014) and Negahban
and Wainright (2012) for further details.

2.2 Sampling Model

We now discuss our assumptions on the set Ω, on which we follow Bhojanapalli and Jain
(2014), where the classical matrix completion problem is considered. Consider a bipartite
graph G = ([m], [n], E), where the edge set E ⊆ [m] × [n] is related to the index set of
revealed entries Ω as (i, j) ∈ E iff (i, j) ∈ Ω. Abusing the notation, we use G for both the
graph and its bi-adjacency matrix where Gij = 1 if (i, j) ∈ E, Gij = 0 if (i, j) 6∈ E.

We denote the association of G to Ω by G\Ω. Without loss of generality we take m ≥ n.
We assume that each row of G has d nonzero entries (thus |Ω| = md) with the following
properties on its singular value decomposition (SVD):

5



Bhaskar

(A1) The left and right top singular vectors of G are 1m/
√
m and 1n/

√
n, respectively.

(A2) We have σ1(G) ≥ d and σ2(G) ≤ C
√
d, where C > 0 is some universal constant. Here

σ1(G) and σ2(G) respectively denote the largest and the second largest singular values
of G.

Thus we require G to have a large enough spectral gap.

Examples. We now discuss a few examples of graphs families which satisfy assumptions
(A1) and (A2).

(1) Ramanujan graphs, a class of regular expander graphs (Hoory et al., 2006).

(2) Erdös-Renyi random graphs with average degree d ≥ c log(m). These graphs satisfy this
spectral gap property with high probability (Feige and Ofek, 2005). More explicitly, if
G is an Erdös-Renyi bipartite random graph with probability p of an edge being placed,
then the ensemble average of the bi-adjacency matrix E[G] = p1m1

>
n =

√
nmp21̃m1̃

>
n

and G̃ = G−E[G] is a random matrix with zero-mean i.i.d. entries of variance p(1− p)
with the largest singular value having O(

√
m+ n) with high probability (and also with

probability 1) (Bolla et al., 2010). Thus, σ1(G) =
√
nmp2 is the dominant singular

value of G, and (A1) and (A2) hold with high probability (and also with probability
1) (Bolla et al., 2010). Note that the uniform sampling assumption used in Davenport
et al. (2014), Gunasekar et al. (2014), and Lan et al. (2014c), generates an Erdös-Renyi
random graph.

(3) Stochastic block models for certain choices of inter- and intra-cluster edge connection
probabilities. Consider the case of two clusters of the left and right vertices, with m/2
left vertices and n/2 right vertices of graph G belonging to the first cluster and the
remaining left and right vertices to second cluster. Suppose that each intra-cluster edge
is placed with probability p and an inter-cluster edge is placed with probability q. Then
the ensemble average of the bi-adjacency matrix E[G] consists of elements equal to p for
edges with both vertices in the same cluster and q for edges with vertices in different
clusters. This can be expressed as (see also Nadakuditi and Newman, 2012)

E[G] =

√
mn(p+ q)

2
1̃m1̃

>
n +

√
mn|p− q|

2
ũmũ

>
n (5)

where ũm = um/
√
m, the elements of um ∈ Rm are ±1, +1 if the left vertex is in

the first cluster, −1 otherwise; similarly for un and ũn. For even m and n (clusters of
equal size), (5) is an SVD of E[G] since {1̃m, ũm} and {1̃n, ũn} are sets of orthonormal
vectors representing the left and right singular vectors of non-zero singular values of
E[G], which is of rank 2. The matrix G̃ = G− E[G] is a random matrix with bounded
and independent entries, with the largest singular value having O(

√
m+ n) (Bolla et al.,

2010). Thus, the two largest singular values of G are
√
mn(p+q)

2 and
√
mn|p−q|

2 (perturbed

by random G̃). When p = q, we have an Erdös-Renyi random graph with the largest
spectral gap. As q becomes smaller, the spectral gap decreases. By (5), (A1) is true,
but for (A2) to be true, one should have |p − q| = O(1/

√
m). For fixed p and q,
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σ2(G) =
√
mn|p−q|

2 does not satisfy (A2) although the spectral gap can be made smaller
by making |p − q| smaller. As shown in Bhojanapalli and Jain (2014), the stochastic
block model is a useful device to study the effect of the spectral gap on the performance
of matrix recovery approaches. Such stochastic block models also apply to practical
settings such as modeling connectivity subnetworks in the brain (Ghanbari et al., 2013).

3. Main Results

In this section, we describe the rank-constrained ML estimation of the target matrix M from
multi-level quantized observations. We then establish upper bounds on the estimation error
norm for this problem, which yield a faster rate of convergence than previously established
upper bounds for the binary case.

3.1 Rank-Constrained Maximum Likelihood Estimation

We wish to estimate unknown M from the observed entries of Y using a constrained ML
approach. We assume Y is related to M via the probabilistic model given in (1)-(4). We
use X ∈ Rm×n to denote the optimization variable. The negative log-likelihood function is
given by

FΩ,Y (X) = −
∑

(i,j)∈Ω

[
K∑
`=1

log(f`(Xij))1[Yij=`]

]
(6)

which is a convex function in X when the function f` is log-concave in Xij , and can be an
implicit function of ω, where

ω = [ω1 ω2 · · · ωK−1]> ∈ RK−1 (7)

is the vector of bin boundaries.
Two common choices for which the function f`, and its associated CDFs and pdfs, are

log-concave, are:

(i) Logistic model with logistic CDF Φ(x) = Φlog(x/σ) = 1
1+e−x/σ

, σ > 0.

(ii) Probit model with Φ(x) = Φnorm(x/σ) where σ > 0 and Φnorm(x) is the CDF of the
standard normal distribution N (0, 1).

We consider two classes of problems. In the first, ω is known, and thus the distribution
in (4) is completely specified. We will assume that the bin boundaries ω`, ` ∈ [K], are
known for our theoretical results. In the other, ω is unknown and will be determined as
part of the optimization problem. By allowing the bin boundaries to be determined by the
optimization, we allow the distribution in (4) to be tuned to real data. For our numerical
results, we allow the ω`s to be unknown and estimate them (along with M), as in Lan et al.
(2014a).

When ω is known, we seek the solution to the optimization problem (P1): (s.t. stands
for subject to)

(P1) : M̂ = arg min
X

FΩ,Y (X)

s.t. ‖X‖∞ ≤ α, rank(X) ≤ r. (8)
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As a result of the rank constraint, (P1) is a nonconvex optimization problem. In Section 4,
we will discuss factorization methods for solving this problem which come with guarantees
of global convergence. In Section 3.2, we present performance upper bounds for problem
(P1).

When ω is unknown, the constrained ML estimate we wish to obtain is given by the
solution to the optimization problem (P2):

(P2) :
(
M̂, ω̂

)
= arg min

X,ω
FΩ,Y (X) s.t. ‖X‖∞ ≤ α,

rank(X) ≤ r and ω1 < ω2 < · · · < ωK−1. (9)

The negative log-likelihood FΩ,Y (X) is not jointly convex in X and ω. However, we
show in Lemma 3 in Appendix A that f` is log-concave in ωk for fixed X and ωis (i 6= k),
and in Section 3.3, that it is strictly log-concave in X for fixed ω whenever Φ(x) is log-
concave. Thus, FΩ,Y (X) is convex in ωk for fixed X and ωis (i 6= k), and convex in X for
fixed ω. Consequently, as seen later in Section 4, it will require an alternating minimization
procedure (block-coordinate descent).

3.2 Performance Upper Bounds

We now present performance upper bounds for M̂ in (8), i.e., problem (P1) where ω, the
vector of true bin boundaries, is assumed to be known. We first define some constants
which appear in the bound, involving functions of f`(x) and its first two derivatives. With
ḟ(x) := (df(x)/dx), define

γα ≤ min
`∈[K]

inf
|x|≤α

{
ḟ2
` (x)

f2
` (x)

− f̈`(x)

f`(x)

}
, (10)

Lα ≥ max
`∈[K]

sup
|x|≤α

{∣∣∣ḟ`(x)
∣∣∣ /f`(x)

}
, (11)

where α is the bound on the entry-wise infinity-norm of M̂ (see Equation 8). For further
reference, define the constraint set

C :=
{
X ∈ Rm×n : ‖X‖∞ ≤ α, rank(X) ≤ r

}
. (12)

Theorem 1 Suppose that M ∈ C, and G\Ω satisfies assumptions (A1) and (A2). Without
loss of generality, assume m ≥ n. Further, suppose Y is generated according to (1) where
f`(x) is log-concave in x ∀` ∈ [K]. Then, provided γα > 0, with probability at least 1 −
2(9α

√
mn)−r(m+n+1) − C1 exp(−C2m), any global minimizer M̂ of (8) satisfies

1√
mn
‖M̂ −M‖F ≤ min (2α, U1, U2) (13)

where

U1 = max

(
C1αrσ2(G)

σ1(G)
,
C2αm

√
r3n

σ2
1(G)

)
≤ max

(
C1αCr

√
m√

|Ω|
,
C2αm

3
√
r3n

|Ω|2

)
, (14)
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U2 = max

(
C1αrσ2(G)

σ1(G)
,
C3αr

0.75 (|Ω|(m+ n+ 1) log(9α
√
mn))

0.25

σ1(G)

)
(15)

≤ max

(
C1αCr

√
m√

|Ω|
, C3α

(
r

|Ω|

)0.75

m
(
(m+ n+ 1) log(9α

√
mn)

)0.25

)
. (16)

Here, C1α = 4
√

2α, C2α = 32.16
√

2Lα/γα, C3α = 8
√

(1+α)Lα
γα

, C1, C2, C > 0 are universal

constants, and γα and Lα are given by (10), (11).

A proof of Theorem 1 is given in Appendix B. In the binary case (K = 2) the link function
f in (4) belongs to the exponential family for a large class of CDFs Φ(x) (e.g., logistic or
Gaussian), but not for K > 3. The bounding approaches in Gunasekar et al. (2014), Lafond
(2015) and Cao and Xie (2015) for K > 3 require f to come from the exponential family
whereas our approach based on a Taylor series approximation and some concentration in-
equalities applies to the quantization model (4). One of the novelties in our proof compared
to existing works is how we bound the gradient of the cost function in two different ways
(see Lemmas 5 and 6 in Appendix B).

Of some interest is the case where the fraction of revealed entries p = |Ω|
mn is fixed and

we let m and n become large, with m/n ≡ δ ≥ 1 fixed. In this case we have the following
Corollary.

Corollary 2 Assume the conditions of Theorem 1. Let p = |Ω|
mn be fixed independent of m

and n. Then

U1 ≤ O

(
δ

p2

√
r3

n

)
, U2 ≤ O

((
r3δ2 log(n)

p3n

)1/4
)
.

Then with probability at least 1− C1 exp(−C2m)− 2/(9αn
√
δ)2rn, any global minimum M̂

to (8) satisfies

1√
mn
‖M̂ −M‖F ≤ min

(
O

(
δ

p2

√
r3

n

)
, O

((
r3δ2 log(n)

p3n

)1/4
))

. (17)

Corollary 2 suggests that for “larger” fixed values of p, U1 dominates, signifying a conver-
gence rate of at least 1/

√
n for 1√

mn
‖M̂ −M‖F whereas for “small” values of p, U2 is likely

to dominate signifying convergence rate of at least (log(n)/n)1/4. In our simulation results
shown later in Figure 5 for m = n = 100, 200, or 400, and p = 0.2, 0.4, or 0.6, we find that

1
mn‖M̂ −M‖

2
F decays approximately as O(1/n).

3.3 Constants γα and Lα for the logistic and probit models

It is known that f`(x) is log-concave iff f̈`(x)f`(x) ≤ (ḟ`(x))2 (Boyd and Vandenberghe,
2004). Thus γα ≥ 0 for log-concave f`(x) and γα > 0 for strictly log-concave f`(x). For the
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logistic model, i.e., when Φ(x) = Φlog(x/σ), some tedious calculations show that

ḟ2
` (x)

f2
` (x)

− f̈`(x)

f`(x)
=

1

σ2

[
Φlog

(
ω` − x
σ

)(
1− Φlog

(
ω` − x
σ

))
+ Φlog

(
ω`−1 − x

σ

)(
1− Φlog

(
ω`−1 − x

σ

))]
> 0 ∀x ∈ R, ∀` ∈ [K]. (18)

Therefore, by (10), γα > 0 for the logistic model. Similarly one can verify numerically that
γα > 0 for the probit model when Φ(x) = Φnorm(x/σ). For the logistic model, it turns out
that Lα = 1/(2σβασ) where

βασ := min
`∈[K]

inf
|x|≤α

{
Φlog(

ω` − x
σ

)− Φlog(
ω`−1 − x

σ
)

}
> 0. (19)

For the probit model, we have Lα =
√

2/(
√
πσβnασ) where

βnασ := min
`∈[K]

inf
|x|≤α

{
Φnorm(

ω` − x
σ

)− Φnorm(
ω`−1 − x

σ
)

}
> 0. (20)

3.4 Comparison of Convergence Rates

We first provide a comparison of our bounds with those of Davenport et al. (2014) and
Cai and Zhou (2013), who have established bounds for only the binary (K = 2) level
case. Consider M ∈ Rn×n, with p fraction of its entries sampled. Then m = n, and
|Ω| = pn2. The bounds proposed in Davenport et al. (2014) and Cai and Zhou (2013) yield
(for |Ω| ≥ 4n log(n))

1

n2
‖M̂ −M‖2F ≤ O

(√
r

pn

)
. (21)

Our bound (Corollary 2) yields

1

n2
‖M̂ −M‖2F ≤ min

(
O
(
r3

p4n

)
, O

(√
r3 log(n)

p3n

))
. (22)

For K = 2, the results of Lafond et al. (2014), Gunasekar et al. (2014) and Lafond (2015)
apply to our model but not for K > 2. The bound of Lafond et al. (2014) and Lafond
(2015) yields

1

n2
‖M̂ −M‖2F ≤ O

(
r log(n)

pn

)
(23)

and the bound of (Gunasekar et al., 2014, Corollary 1) yields

1

n2
‖M̂ −M‖2F ≤ O

(
α∗2

r log(n)

pn

)
= O

(
rm log(n)

p

)
(24)

since in Gunasekar et al. (2014), α∗ ≥
√
mn‖M‖∞. The bound in Soni et al. (2014) as

applied to non-sparse models and K = 2, yields

1

n2
E
[
‖M̂ −M‖2F

]
≤ O

(
r log(n)

pn

)
(25)
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where the expectation is over the noise (Zij in Equation 2) and sampling distributions of
the revealed matrix entries. Thus, (25) is similar to (23) but is averaged over the noise and
sampling distributions. The multi-level observation model of Cao and Xie (2015) does not
include the quantized observation model given in (2) but applies to a multinomial logistic
model. The bound in Cao and Xie (2015) yields

1

n2
‖M̂ −M‖2F ≤ O

(√
r

pn

)
. (26)

In (21)-(26) the omitted constants do not depend on r, p or n.
Comparing (21)-(26) for the case K = 2, we see our method has faster convergence

rate in n for fixed rank r and fraction of revealed entries p, compared to Davenport et al.
(2014), Cai and Zhou (2013), Lafond et al. (2014), Gunasekar et al. (2014), Lafond (2015)
and Soni et al. (2014); the same comment applies for K > 2 when comparing with Cao and
Xie (2015). On the other hand, for fixed n, our bound is inferior to these other bounds in
p or r. One may notice if the revealed entries scale with n according to p ∼ O(log(n)/n)
then Davenport et al. (2014) and Cao and Xie (2015) yield bounded error while our bound
grows with n; in our case we need p ≥ O(1/n1/3). We believe this to be an artifact of our
proof, as our numerical results in Figure 1 show our method outperforms Cai and Zhou
(2013) and Davenport et al. (2014), especially for low values of p and higher values of rank
r.

4. Optimization

In this section, we describe the algorithms used to solve problems (P1) and (P2). We use
the matrix factorization technique (Bach et al., 2008; Burer and Monteiro, 2003; Lee et al.,
2010) where instead of optimizing with respect to X, it is factorized into two matrices
U ∈ Rm×k and V ∈ Rn×k such that X = UV >. One then optimizes with respect to the
factors U, V . This method is non-convex, however, it is known (Bach et al., 2008; Burer
and Monteiro, 2003; Lee et al., 2010) that if k is chosen to be large enough, it is guaranteed
that the local minimum of the problem is also the global minimum of the non-factorized
problem.

4.1 Known Bin Boundaries

We have the following approximate projected gradient method for solving problem (P1)
following the algorithm of Cai and Zhou (2013), where the case of K = 2 was considered.

4.1.1 Algorithm 1: Approximate Projected Gradient Method

Given initial estimates U0, V 0, one updates[
U t+1

V t+1

]
= Pα

([
U t − τ√

t
∇XFΩ,Y (U tV t>)V t

V t − τ√
t
∇XFΩ,Y (U tV t>)>U t

])
(27)

where U t, V t are the estimates at iteration t, and

Pα
(

[U> V >]>
)

=

{ √
α/‖UV >‖∞[U> V >]> if ‖UV >‖∞ > α[
U> V >

]>
if ‖UV >‖∞ ≤ α.

(28)

11
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In (27) the stepsize τ is selected via a backtracking line search using Armijo’s rule, to

minimize the cost FΩ,Y (U t+1V t+1>).

In addition to the approximate projection Pα in (28), Cai and Zhou (2013) (for K = 2)
also uses another projection to enforce a max-norm constraint. In Cai and Zhou (2013),
for K = 2, the negative log-likelihood cost is minimized w.r.t. X subject to the constraints
‖X‖∞ ≤ α and ‖X‖max ≤ R for some α > 0 and R > 0. The operator Pα enforces
the constraint ‖X‖∞ ≤ α. The factored form definition of the max norm (Lee et al.,

2010) is given by ‖X‖max = inf
{

max(‖Ū‖22,∞, ‖V̄ ‖22,∞) : X = Ū V̄ >
}

where ‖Ū‖2,∞ =

maxi
√∑

j Ū
2
ij , Ū ∈ Rm×k, V̄ ∈ Rn×k, k = 1, 2, . . . ,min(m,n) = n. For fixed k and

X = UV >, Cai and Zhou (2013) enforce the constraint set ‖X‖max ≤ R by requiring
max(‖U‖22,∞, ‖V ‖22,∞) ≤ R. As stated in Cai and Zhou (2013), the global minimum of
the cost over the constraints ‖X‖∞ ≤ α and ‖X‖max ≤ R is the same as that over the
constraints ‖X‖∞ ≤ α, ‖U‖22,∞ ≤ R and ‖V ‖22,∞ ≤ R if rank(X) ≤ k. If a matrix A has
rank r and ‖A‖∞ ≤ α, then ‖A‖max ≤

√
rα (Cai and Zhou, 2013). Therefore, in our case

the max-norm constraint is unnecessary as it is automatically satisfied for any R ≥
√
rα.

In this sense, our Algorithm 1 is the same as the approach of Cai and Zhou (2013) when
K = 2 and one picks R ≥

√
rα.

Remark 1 The hard rank constraint results in a nonconvex constraint set. Thus, (8) is a
nonconvex optimization problem; similarly for Algorithm 1 for which the rank constraint is
implicit in the factorization of X. However, the following result is shown in (Bach et al.,
2008, Proposition 4), based on Burer and Monteiro (2003), for nonconvex problems of
this form. If (U∗, V ∗) is a local minimum of the reformulated (i.e., factored) problem, then
X∗ = U∗V ∗> is the global minimum of problem (8), so long as U∗ and V ∗ are rank-deficient.
(Rank deficiency of (U∗, V ∗) is a sufficient condition, not necessary.) This result is invoked
in Recht and Re (2013), Lee et al. (2010) and Cai and Zhou (2013) for problems of this
form. Thus one would expect to achieve global convergence for the problem of (8) provided
iterations (27)-(28) converge to a local minimum. These iterations represent a projected
gradient method which converges to a stationary point if one has orthogonal projection onto
a convex constraint set (Bertsekas, 1999, Prop. 2.3.1). However, the “projection” Pα in
(28) is not an orthogonal projection and the set {‖UV >‖∞ ≤ α} is not convex in U, V
(although {‖X‖∞ ≤ α} is convex in X), therefore, convergence to even a local minimum
is not ensured. However, numerically, this method has still provided good results (similarly
reported in Cai and Zhou (2013)). In Cai and Zhou (2013), for the K = 2 case, there are
two additional constraints ‖U‖22,∞ ≤ R and ‖V ‖22,∞ ≤ R which are convex sets in U and
V , and the corresponding projections are orthogonal projections. However, the projection
corresponding to our Pα in Cai and Zhou (2013) is not orthogonal.

Thus, for problems of this form, one can choose k = r+ 1 to achieve global convergence
if an upper bound r on the rank of M is known.

The convergence deficiency discussed in Remark 1 motivates the following log-barrier
penalty function approach.

12
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4.1.2 Algorithm 2: Logarithmic Barrier Gradient Method

The constraint maxi,j |Xij | ≤ α translates to Xij − α ≤ 0 and −Xij − α ≤ 0 ∀(i, j), which
motivates the log-barrier penalty function − log

(
1− (Xij/α)2

)
, which is finite for |Xij | < α,

and is infinite otherwise. This leads to the objective function

F̃Ω,Y (X) = FΩ,Y (X)− λ
∑
(i,j)

log
(
1− (Xij/α)2

)
(29)

and the optimization problem

M̂ = arg min
X

F̃Ω,Y (X) s.t. rank(X) ≤ r. (30)

The parameter λ > 0 in (29) sets the accuracy of approximation of maxi,j |Xij | ≤ α via the
log-barrier function (which is twice-differentiable and convex in X, hence so is F̃Ω,Y (X)).
Now, however, the factorization approach X = UV > is well-justified, per Remark 1, and
convergence is guaranteed.

The log-barrier method is ill-conditioned and solving the problem for a fixed value of
λ generally only works well for small problems or good choices of initialization (Boyd and
Vandenberghe, 2004). The above problem is typically solved via a sequence of central path
following solutions (Boyd and Vandenberghe, 2004) where one gradually reduces λ toward
0. In our approach we initialize it with the solution to Algorithm 1, providing a good
initialization, and then either use a single “small” value of λ, or select λ via 5-fold cross-
validation. One may therefore view augmentation with the log-barrier cost as regularization
of FΩ,Y (X).

We solve the factored version X = UV > of problem (30) for a fixed λ using a gradient
method as follows. Given initial estimates U0, V 0, one updates[

U t+1

V t+1

]
=

[
U t − τ√

t
∇X F̃Ω,Y (U tV t>)V t

V t − τ√
t
∇X F̃Ω,Y (U tV t>)>U t

]
(31)

where U t, V t are the estimates at iteration t and ∇X F̃Ω,Y (U tV t>) = ∇X F̃Ω,Y (X)
∣∣
X=UtV t>

.
In (31) the stepsize τ is selected via a backtracking line search using Armijo’s rule, to

minimize the cost F̃Ω,Y (U t+1V t+1>).

Define Z = [U> V >]> ∈ R(m+n)×k and let F̄Ω,Y (Zt) = F̃Ω,Y (U tV t>). Then (31) can be
rewritten as

Zt+1 = Zt − τ√
t
∇Z F̄Ω,Y (Zt), ∇Z F̄Ω,Y (Zt) =

[
∇X F̃Ω,Y (U tV t>)V t

∇X F̃Ω,Y (U tV t>)>U t

]
. (32)

Thus, (31) is a gradient descent method using Armijo’s rule for stepsize selection, for uncon-
strained minimization of the continuously differentiable cost F̃Ω,Y (UV >) = F̄Ω,Y (Z) w.r.t.
Z. By (Bertsekas, 1999, Prop. 1.2.1), the iterations given in (31) converge to a stationary
point of F̃Ω,Y (UV >). Since the cost is non-increasing at every iteration, the stationary point
is either a local minimum or a saddle point. In theory, convergence to saddle points can
not be excluded for gradient descent algorithms for continuously differentiable functions.
However, we assume that we escape saddle points in practice as saddle points are generally
unstable from a numerical point of view, i.e., a perturbation always exists at the saddle
point which will decrease the cost function.
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4.2 Unknown Bin Boundaries

As noted earlier FΩ,Y (X) is convex in ωk for fixed X and ωis (i 6= k), and convex in X
for fixed ω, however, FΩ,Y (X) is not jointly convex in X and ω. Thus the problem (P2)
specified in (9) is multi-convex in X and ω1, ω2, · · · , ωK−1, and one approach to solve it
is via block-coordinate descent (Xu and Yin, 2013), for which there are no convergence
guarantees, in general. In order to detail this approach, with an abuse of notation, we now
explicitly denote the dependence of FΩ,Y (X) on the ωis as FΩ,Y (X,ω1, · · · , ωK−1), and that
of F̃Ω,Y (X) as F̃Ω,Y (X,ω1, · · · , ωK−1). Following Xu and Yin (2013) and our Algorithms
1 and 2, our optimization algorithm for the case of unknown bin boundaries is given in
Algorithm 3 where, in Step 5, δ0 makes the constraint set for ωi convex.

Algorithm 3 Block-Coordinate Descent Method for Solving (9)

Input: Set of observed entries Yij for (i, j) ∈ Ω, initialization U0 ∈ Rm×k, V 0 ∈ Rm×k,
ω0

1, ω
0
2, · · · , ω0

K−1 ∈ R, ω0
1 < ω0

2 < · · · < ω0
K−1, parameters α, λ

Output: Solution X∗ = U∗V ∗>, ω∗

1: for ` = 1, 2, · · · , until convergence, do
2:

(
L`, R`

)
← arg min

U,V
FΩ,Y (UV >, ω`−1

1 , · · · , ω`−1
K−1) subject to ‖UV >‖∞ ≤ α. Solve

using approximate projected gradient method (27) initialized with U `−1, V `−1.
3:

(
U `, V `

)
← arg min

U,V
F̃Ω,Y (UV >, ω`−1

1 , · · · , ω`−1
K−1). Solve using log-barrier gradient

method (31) initialized with L`, R`.
4: for i = 1, 2, · · · ,K − 1, do
5: ω`i ← arg min

ωi
FΩ,Y (U `V `>, ω`1, · · · , ω`i−1, ωi, ω

`−1
i+1 , · · · , ω

`−1
K−1) subject to ω`i−1 +δ0 ≤

ωi ≤ ω`−1
i+1 − δ0 for some “small” δ0 > 0 . Solve using a gradient descent method

initialized with ωi = ω`−1
i .

6: end for
7: end for
8: return X∗ = U∗V ∗>, ω∗

In Step 2 of Algorithm 3, we have used the solution of the approximate projected gradient
method (27), to provide a good initialization to the log-barrier algorithm in Step 3, since
we are not using central path following, for the reasons aforementioned in Section 4.1.2.

5. Numerical Experiments

In this section, we test our methods on synthetic and real data, and also compare our
methods with that of Keshavan et al. (2009, 2010) (OptSpace), Cai et al. (2010) (SVT),
Cai and Zhou (2013) and Davenport et al. (2014).

5.1 Synthetic Data

In this section, we report the results of evaluating our method on synthetic data. We set
m = n and construct M ∈ Rn×n as M = M1M

>
2 where M1 and M2 are n× r matrices with

14
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(b) r = 5
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(c) r = 10

Figure 1: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of p = q, n = 200, α = 1,
Gaussian noise with σ = 0.18, K=2: binary case, w1 = 0, known bin boundaries,
“trace-norm” refers to Davenport et al. (2014), the proposed Alg. 1 (proj-grad)
coincides with the algorithm of Cai and Zhou (2013) when K = 2 and one picks
R ≥

√
rα in Cai and Zhou (2013).
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Figure 2: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of p = q, n = 200, α = 1,
Gaussian noise with σ = 0.18, K=5: w1 = −0.4, w2 = −0.15, w3 = 0.15,
w4 = 0.4, known bin boundaries.

i.i.d. entries drawn from a uniform distribution on [−0.5, 0.5]. Then we scaled M to achieve
‖M‖∞ = 1 = α. We pick r = 3, 5 or 10, and vary matrix sizes n = 100, 200, or 400. We
used the model (2) with Zij as a zero-mean Gaussian with standard deviation σ = 0.18.
These choices follow the numerical experiments of Cai and Zhou (2013) and Davenport et al.
(2014), which dealt with the case of binary observations (i.e., in which K = 2). We generate
the set Ω of revealed indices via a stochastic block model as in Bhojanapalli and Jain (2014).
In the basic stochastic block model, we divide the set of nodes [n] into two clusters, where
each intra-cluster edge is sampled uniformly with probability p and an inter-cluster edge is
sampled with probability q. For our simulations, initially we chose p = q which corresponds
to the Bernoulli sampling model of Davenport et al. (2014). Then we change the fraction of
revealed 1-bit entries as p = 0.05, 0.1, 0.15, 0.2, 0.4, 0.6 or 1. Algorithm 1 was implemented
with random initialization and its result was used to initialize Algorithm 2 where we either
picked λ via 5-fold cross-validation (how well the label values of revealed Yij in the test
set are matched), or simply used a small fixed λ. We assumed the bin boundaries to be

known. The resulting relative mean-square error (MSE) ‖M̂ −M‖2F /‖M‖2F , averaged over
20 Monte Carlo runs, is shown for n = 200 in Figure 1 for K = 2, and Figure 2 for K = 5.
As expected, the performance improves with increasing n and increasing p. For comparison,
Figure 1 also shows the MSE for Davenport et al. (2014) and Cai and Zhou (2013), and it
is seen that Algorithm 2 (log-barrier) significantly outperforms Davenport et al. (2014) and
Cai and Zhou (2013) for low values of p and high values of r (e.g., r = 10 and p < 0.4), and
the performances are comparable for higher values of p and lower values of r (e.g., r = 3
and p > 0.1). Note that as aforementioned, Algorithm 1 (proj-grad) coincides with the
algorithm of Cai and Zhou (2013) when K = 2 and one picks R ≥

√
rα in Cai and Zhou

(2013).
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In Figure 3 we show the results for the case of r = 5 and m = n = 200 for both known
and estimated bin boundaries. As before, the results were averaged over 20 Monte Carlo
runs, and the missing entries were set via the stochastic block model with p = q. For
the case of unknown bin boundaries, we used Algorithm 3 with initialization ω0

1 = −0.3,
ω0

2 = −0.1, ω0
3 = 0.1 and ω0

4 = 0.3, and α = 1, λ = 0.5. Also shown are the results of the
algorithm OptSpace of Keshavan et al. (2010) which is a matrix completion algorithm that
assumes a real-valued low-rank matrix. The results using OptSpace were obtained for two
cases: the case labeled “quantized noisy M” refers to the case where OptSpace is provided
with revealed Yij ’s, and the case labeled “unquantized noisy M” refers to the case where
OptSpace works on revealed noisy Mijs (i.e., Mij + Zijs). For OptSpace, we scaled the

estimate M̂ to have the same Frobenius norm as the true M before computing the MSE. It
is seen that for p ≥ 0.2, there is no loss in performance when bin boundaries are estimated,
using the proposed approach. The algorithm OptSpace performs poorly for quantized data.
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Figure 3: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of p = q, n = 200, α = 1,
Gaussian noise with σ = 0.18, K=5: true bin boundaries w1 = −0.4, w2 = −0.15,
w3 = 0.15, w4 = 0.4, known and estimated bin boundaries. OptSpace is the
method of Keshavan et al. (2010).

In Figure 4, we show the results for varying number of quantization levels K, with
r = 3, 5, 10, p = 0.2, m = n = 200 and known bin boundaries. The matrix M is constructed
as for Figure 1. The results were over 20 Monte Carlo runs, and the missing entries were
set via the stochastic block model with p = q. With α = 1, the bin boundaries were picked
as w1 = 0 for K = 2, w1 = −0.2, w2 = 0.2 for K = 3, w1 = −0.25, w2 = 0, w3 = 0.25
for K = 4, w1 = −0.4, w2 = −0.15, w3 = 0.15, w4 = 0.4 for K = 5 and w1 = −0.4,
w2 = −0.2, w3 = −0.05, w4 = 0.05, w5 = 0.2, w6 = 0.4 for K = 7. These choices yield
a comparable number of entries in each bin. It is seen from Figure 4 that performance
improves with increasing K. This is not surprising since with increasing K, bin intervals
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shrink and the quantization error becomes smaller. For the considered model there are two
sources of error/noise: additive noise and quantization error.
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Figure 4: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of K, p = 0.2, n = 200, α = 1,
Gaussian noise with σ = 0.18.

In Figure 5 we show the relative MSE for r = 3, 5 and 10, respectively, and n =
100, 200, 400, p = q = 0.2, 0.4, 0.6. In Section 3.2 (see Equation 22), the upper bound on

MSE was established as min

(
O
(
r3

p4n

)
, O

(√
r3 log(n)
p3n

))
. Therefore, for fixed r and p, the

bound is O
(

1
n

)
, whereas for fixed n and p, the bound is O

(
r1.5
)
, and for fixed n and r, the

bound is O
(
p−1.5

)
. We also plot the lines 1/n in Figure 5 to show the scale of the upper

bound O (1/n) for fixed r and p. As we can see, the empirical estimation errors follow
approximately the same scaling, suggesting that our analysis is tight with respect to n, up
to some constant. In Figures 6 and 7 we show the relative MSE as a function of r and p,
respectively, for p = q = 0.2 and n = 100, 200, 400. We also plot the lines r1.5 and 1/p1.5 in
Figures 6 and 7, respectively, to show the scale of the upper bound O

(
r1.5
)

for fixed n and
p, and the upper bound O

(
1/p1.5

)
for fixed n and r. Now we see that these bounds are not

tight. The empirical MSE results are approximately O (r) for fixed n and p and O (1/p) for
fixed n and r.

In Figure 8 we additionally plot the relative MSE for n = 200 and rank r = 5, via the
same method described above, but with varying p and keeping p+q = 0.7, under the probit
model. This enables us to study the performance of the model under nonuniform sampling.
Note that when p = q = 0.35, then the spectral gap is largest (Bhojanapalli and Jain, 2014)
and the MSE is the smallest, and as p gets larger, the spectral gap decreases, leading to
larger MSE.
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(b) r = 5
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Figure 5: Relative MSE: K = 5, p = q, r = 3, 5 or 10, n = 100, 200, 400, known bin
boundaries, α = 1, Gaussian noise σ = 0.18 .
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Figure 6: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of r, p = 0.2, K = 5, α = 1,
Gaussian noise with σ = 0.18.
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Figure 7: Relative MSE ‖M̂ −M‖2F /‖M‖2F for varied values of p, n = 200, K = 5, α = 1,
Gaussian noise with σ = 0.18.

5.2 MovieLens Dataset

Now we consider the MovieLens 1M dataset (available from http://www.grouplens.org)
consisting of 1,000,000 movie ratings on a scale from 1 to 5, from 6040 users on 3952
movies (95.8% missing entries). A given set of ratings has a matrix representation with
rows representing the users and columns representing the movies, and the (i, j)th entry
of the matrix is non-zero if user i has given a rating for movie j. Thus estimating the
remaining ratings in the matrix corresponds to a matrix completion problem. We consider
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Figure 8: Relative MSE versus p, known bin boundaries, fixed p+ q = 0.7, K = 5, n = 200,
Gaussian noise σ = 0.18 .

20 independent realizations of 80%/20% training/test splits of the 1 million revealed entries.
For each data split, we train the proposed Algorithms 1 and 3, and the approaches OptSpace
(Keshavan et al., 2009, 2010) and SVT (Cai et al., 2010), on the training set and compare
their performance on the corresponding test set in predicting the revealed matrix entries in
the test set. For implementation of OptSpace and SVT, we used the code made available
by the authors online. Let ΩT denote the test set, Yij the original rating in the data set

and Ŷij the predicted rating of user i for movie j. For performance assessment, we use
the normalized mean absolute error (NMAE) and the root mean-square error (RMSE) in
prediction on test set, defined as

RMSE =

√√√√ 1

|ΩT |
∑

(i,j)∈ΩT

(
Yij − Ŷij

)2
,

NMAE =
1

|ΩT |(Ymax − Ymin)

∑
(i,j)∈ΩT

|Yij − Ŷij |,

where Ymax and Ymin are the upper and lower bounds, respectively, on the ratings (5
and 1, respectively). Both metrics are widely used for evaluation of prediction accuracy
(Gunawardana and Shani, 2009); for instance, RMSE has been used in Salakhutdinov and
Mnih (2008) and NMAE in Keshavan et al. (2009).

Remark 2 Estimation of missing entries of Y . In many applications such as this one, one
may wish to estimate missing discrete Yijs instead of (or in addition to) the continuous-

valued M . We will use the model (1). If one wishes to pick the estimate Ŷij of Yij given

Mij, to minimize the MSE E{[Ŷij−Yij ]2}, then Ŷij = E{Yij |Mij} =
∑K

`=1 ` f`(Mij). If, on

the other hand, the optimality criterion is the MAE E{|Ŷij − Yij |}, then given Mij, Ŷij is a
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MovieLens 1M

Approach RMSE NMAE

Alg. 1 (proj-grad): logistic 0.8698 ± 0.0029 0.1590 ± 0.0004

Alg. 3 (log-barrier + unknown bins): logistic 0.8568 ± 0.0014 0.1559 ± 0.0004

Alg. 3 (log-barrier + unknown bins): probit 0.8580 ± 0.0027 0.1561 ± 0.0005

OptSpace 0.8947 ± 0.0033 0.1767 ± 0.0006

SVT 0.9023 ± 0.0014 0.1754 ± 0.0003

Table 1: Test data RMSE and NMAE (± one standard deviation) averaged over 20 real-
izations of 80%/20% training/test splits drawn from MovieLens 1M data

median of conditional distribution f`(Mij). For the model (1)-(4), if Φ(0) = 0.5 (true for
the logistic and probit models considered in this paper), then a median of f`(Mij) is given

by Q(Mij). These estimators are used with Mij replaced with the estimated M̂ij.

For Algorithm 1 we used α = 1, rank(M) = 7, the logistic model with σ = 1/16, and
considered fixed bin boundaries ω0

1 = −0.6, ω0
2 = −0.2, ω0

3 = 0.2 and ω0
4 = 0.6 spaced

(arbitrarily) uniformly over [−α, α] to get equal width bins. An alternative initialization
would be to pick the bin boundaries to match the distribution of the revealed entries. Let
p` denote the fraction of revealed entries with Yij = `. Then a reasonable choice is to

satisfy Φ(ω`) − Φ(ω`−1) = p`, leading to ω0
0 = −∞, ω0

L = ∞, and ω0
` = Φ−1(

∑`
i=1 pi) for

` = 1, · · · , L− 1. For a given choice of α, this requires a proper choice of σ to ensure that
ω`, ` = 1, · · · , L− 1, are within [−α, α]. Note that scaling the variables, M , α, σ, and the
bin boundaries by the same factor will lead to the same likelihood for observed data. Since
we fixed (arbitrarily) α = 1, different values of σ, the bin boundaries, and X will lead to a
different likelihood for the observed data.

For Algorithm 3, based on additional optimization w.r.t. ω, we used α = 1, rank(M) = 7,
initialization ω0

1 = −0.6, ω0
2 = −0.2, ω0

3 = 0.2 and ω0
4 = 0.6, and either the logistic model

with σ = 1/16, or the probit model with σ = 1/13. The results (RMSE and NMAE)
averaged over 20 runs are shown in Table 1. It is seen that our methods outperform
OptSpace and SVT under both performance measures, and fixed bin boundaries also yield
useful and improved predictions. Tran et al. (2012) reported the results shown in Table 2
for their Matrix Cumulative RBM (restricted Boltzmann machines) based method and the
OrdRec method of Koren and Sill (2011, 2013) when tested on the MovieLens 1M dataset;
both these approaches are based on a quantization observation model. Comparing Tables
1 and 2 we see that our methods outperform OrdRec and Matrix Cumulative RBM under
both performance measures.
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MovieLens 1M: Results from Tran et al. (2012)

r=50 r=100 r=200

Approach RMSE NMAE RMSE NMAE RMSE NMAE

OrdRec 0.904 0.1705 0.902 0.1705 0.902 0.1700

Matrix Cumulative RBM 0.904 0.1665 0.904 0.1655 0.906 0.1660

Table 2: RMSE and NMAE results from Tran et al. (2012) for MovieLens 1M data for
various values of r=rank(M). OrdRec is the method of Koren and Sill (2011,
2013) and Matrix Cumulative RBM is the restricted Boltzman machines based
method of Tran et al. (2012)

Appendix A. Proof of a Technical Lemma

Here we provide a proof of the assertion made in Section 3.1 (after Equation 9) that f`(Xij)
is log-concave in ωk for fixed X and ωis (i 6= k) for log-concave Φ(x).

Lemma 3 The probability f`(Xij) defined in (4) is log-concave in ωk for fixed X and ωis
(i 6= k) for log-concave Φ(x).

Proof We have f`(x) = Φ(ω` − x) − Φ(ω`−1 − x). Therefore, it is obviously log-concave
in ωi, i ∈ [K − 1], i 6= ` or ` − 1. By p. 121, Problem 3.48, of Boyd and Vandenberghe
(2004) Φ(ω` − x) − Φ(ω`−1 − x) is log-concave in ω` for fixed x and ω`−1. To show that
Φ(ω` − x) − Φ(ω`−1 − x) is log-concave in ω`−1 for fixed x and ω`, we will modify a proof

given in Prop. 1 of An (1995) to prove log-concavity of 1−Φ(x) in x. Let φ(x) = dΦ(x)
dx ≥ 0.

Then with y0 = ω` − x and y = ω`−1 − x, we have y0 > y for every x,

s(y) := Φ(ω` − x)− Φ(ω`−1 − x) =

∫ y0

y
φ(u) du ≥ 0

and

h(y) := −d log s(y)

dy
=
φ(y)

s(y)
.

By Prop. 1 of An (1995), s(y) is log-concave iff h(y) is non-decreasing is y. For y1 < y2, we
have

h(y2)− h(y1) ≥ 0

⇐⇒ φ(y2)s(y1)− φ(y1)s(y2)

= φ(y2)

∫ y0

y1

φ(u) du− φ(y1)

∫ y0

y2

φ(u) du

=

∫ y0−y2

0
[φ(y2)φ(y1 + v)− φ(y1)φ(y2 + v)] dv +

∫ y0−y1

y0−y2
φ(y2)φ(y1 + v)dv

≥ 0
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where we have used the fact that
∫ y0−y1
y0−y2 φ(y2)φ(y1 + v)dv ≥ 0 since the integrand is non-

negative and y1 < y2, and since φ(x) is log-concave, by Lemma 1 of An (1995)∫ y0−y2

0
[φ(y2)φ(y1 + v)− φ(y1)φ(y2 + v)] dv ≥ 0.

Thus, for fixed x and ω`, s(y) is log-concave in y, hence, in ω`−1.

Appendix B. Proof of Theorem 1

Our proof is based on a second-order Taylor series expansion and a matrix concentration
inequality. Let θ = vec(X) ∈ Rmn and F̃Ω,Y (θ) = FΩ,Y (X). The objective function FΩ,Y (X)
is continuous in X and the set C is compact, therefore, FΩ,Y (X) achieves a minimum in

C. If θ̂ = vec(M̂) minimizes F̃Ω,Y (θ) subject to the constraints, then F̃Ω,Y (θ̂) ≤ F̃Ω,Y (θ∗)
where θ∗ = vec(M). By the second-order Taylor’s theorem, expanding around θ∗ we have

F̃Ω,Y (θ) =F̃Ω,Y (θ∗) + 〈∇θF̃Ω,Y (θ∗), θ − θ∗〉+
1

2
〈θ − θ∗,

(
∇2
θθF̃Ω,Y (θ̃)

)
(θ − θ∗)〉 (33)

where θ̃ = θ∗+γ(θ−θ∗) for some γ ∈ [0, 1], with corresponding matrices X̃ = M+γ(X−M).
We need several auxiliary results before we can prove Theorem 1.

We need the following result from Chatterjee (2013) concerning spectral norms of ran-
dom matrices for Lemma 5.

Lemma 4 (Theorem 8.4 of Chatterjee (2013)) Take any two numbers m and n such that
1 ≤ n ≤ m. Suppose that A = [aij ]1≤i≤m,1≤j≤n is a matrix whose entries are independent
random variables that satisfy, for some σ2 ∈ [0, 1],

E[aij ] = 0, E[a2
ij ] ≤ σ2, and |aij | ≤ 1 a.s.

Suppose that σ2 ≥ m−1+ε for some ε > 0. Then

P
(
‖A‖2 ≥ 2.01σ

√
m
)
≤ C1(ε)e−C2σ2m,

where C1(ε) is a constant that depends only on ε and C2 is a positive universal constant. The
same result is true when m = n and A is symmetric or skew-symmetric, with independent
entries on and above the diagonal, all other assumptions remaining the same. Lastly, all
results remain true if the assumption σ2 ≥ m−1+ε is changed to σ2 ≥ m−1(log(m))6+ε.

Using (6), it follows that

∂FΩ,Y (X)

∂Xij
= −

(
K∑
`=1

ḟ`(Xij)

f`(Xij)
1[Yij=`]

)
1[(i,j)∈Ω], (34)

∂2FΩ,Y (X)

∂X2
ij

=

K∑
`=1

(
ḟ2
` (Xij)

f2
` (Xij)

− f̈`(Xij)

f`(Xij)

)
1[Yij=`]1[(i,j)∈Ω] (35)
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and
∂2FΩ,Y (X)

∂Xi1j1∂Xi2j2

= 0 if (i1, j1) 6= (i2, j2). (36)

Let w = vec(X(1) −M) = θ(1) − θ∗; for later use, we would like θ(1) in w to be not
necessarily equal to θ in the gradient or the Hessian of the objective function. Using (34)
and the notation

∇θF̃Ω,Y (θ∗) = vec

([
∂FΩ,Y (X)

∂Xij

] ∣∣∣
X=M

)
= vec

([
∂FΩ,Y (M)

∂Xij

])
,

we have
〈∇θF̃Ω,Y (θ∗), w〉 = 〈∇XFΩ,Y (M), X(1) −M〉 (37)

where 〈A,B〉 := tr(A>B), |〈A,B〉| ≤ ‖A‖2‖B‖∗, ‖B‖∗ is the nuclear (or Schatten) norm of
B, and

[∇XFΩ,Y (M)]ij =: zij = −

(
K∑
`=1

ḟ`(Mij)

f`(Mij)
1[Yij=`]

)
1[(i,j)∈Ω] . (38)

Using (1), (11), and the fact that
∑K

`=1 f`(Xij) = 1, we have

E[zij ] = −

(
K∑
`=1

ḟ`(Mij)

)
1[(i,j)∈Ω] = 0, (39)

and
|zij | ≤ Lα =⇒ E[z2

ij ] ≤ L2
α . (40)

Lemma 5 Let w = vec(X(1) −M) = θ(1) − θ∗ and X(1),M ∈ C. Then with probability at
least 1− C1(ε) exp(−C2m), we have∣∣∣〈∇θF̃Ω,Y (θ∗), w〉

∣∣∣ ≤ 2.01Lα
√

2rm‖X(1) −M‖F ,

where ε ∈ (0, 1), C1(ε) is a constant that depends only on ε and C2 is a positive universal
constant.

Proof Using (37), we have

|〈∇θF̃Ω,Y (θ∗), w〉| = |〈∇XFΩ,Y (M), X(1) −M〉|
≤ ‖∇XFΩ,Y (M)‖2‖X(1) −M‖∗. (41)

Consider z̃ij :=
[
L−1
α ∇XFΩ,Y (M)

]
ij

. Then we have E[z̃ij ] = 0, |z̃ij | ≤ 1 and E[z̃2
ij ] ≤ 1.

We will apply Lemma 4 to L−1
α ∇XFΩ,Y (M), for which we have to ensure that E[z̃2

ij ] ≤ σ2

and m−1+ε ≤ σ2 for some ε > 0. Therefore, we pick σ2 = 1 = max
(

1, 1
m1−ε

)
. Hence, by

Lemma 4, ‖L−1
α ∇XFΩ,Y (M)‖2 ≤ 2.01

√
m with probability at least 1 − C1(ε) exp(−C2m)

for some positive constants C1(ε) and C2. Since for any rank r matrix A, ‖A‖∗ ≤
√
r‖A‖F ,

we have ‖X(1) −M‖∗ ≤
√

2r‖X(1) −M‖F , yielding the desired result.
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Lemma 6 Let w = vec(X −M) = θ − θ∗ and X,M ∈ C. Then with probability at least
1− 2(9α

√
mn)−r(m+n+1) − C1 exp(−C2m), we have∣∣∣〈∇θF̃Ω,Y (θ∗), w〉

∣∣∣ ≤ 4(1 + α)Lα

√
|Ω|r(m+ n+ 1) log(9α

√
mn) .

Proof Define the set SrK = {X ∈ Rm×n : rank(X) ≤ r, ‖X‖F ≤ K} for some K > 0.
By Lemma A.2 in the supplementary material of Wang and Xu (2012) (which is based
on Lemma 3.1 in Candes and Plan (2011)), there exists a 1-net for the Frobenius norm,
SrK(1) = {Q ∈ Rm×n : rank(Q) ≤ r, ‖X − Q‖F ≤ 1} ⊂ SrK with its cardinality

|SrK(1)| ≤ (9K)(m+n+1)r. That is, given any X ∈ SrK , there exists Q ∈ SrK(1) ⊂ SrK
such that ‖X − Q‖F ≤ 1. Suppose that X ∈ SrK is such that ‖X‖∞ ≤ α. Then for
Q ∈ SrK(1), we have

‖Q‖∞ ≤ ‖Q−X‖∞ + ‖X‖∞ ≤ ‖Q−X‖F + ‖X‖∞ ≤ 1 + α. (42)

Also, ‖X‖F ≤
√
mn‖X‖∞ ≤ α

√
mn. For X,M ∈ SrK and Q ∈ SrK(1), consider

uX := 〈∇θF̃Ω,Y (θ∗), w〉 = 〈∇XFΩ,Y (M), X −M〉
= 〈∇XFΩ,Y (M), Q−M〉+ 〈∇XFΩ,Y (M), X −Q〉 = uQ + 〈∇XFΩ,Y (M), X −Q〉.

(43)

Therefore, for any X ∈ SrK and corresponding Q ∈ SrK(1), we have

|uX | ≤ |uQ|+ |〈∇XFΩ,Y (M), X −Q〉|
≤ |uQ|+ ‖∇XFΩ,Y (M)‖2‖X −Q‖∗
≤ |uQ|+ 2.01Lα

√
2rm with probability ≥ 1− C1 exp(−C2m) (44)

where in the last inequality we have used Lemma 5 with C1 = C1(1/2), and the fact that
‖X −Q‖F ≤ 1 and both X and Q are of rank r. Now consider uQ and rewrite it as

uQ =
∑

(i,j)∈Ω

hij where hij =
∂FΩ,Y (M)

∂Xij
(Qij −Mij) .

We have E[hij ] = 0 (see Equations 38 and 39), and

|hij | ≤ |
∂FΩ,Y (M)

∂Xij
| × |Qij −Mij |

≤ Lα(|Qij |+ |Mij |) ≤ Lα(1 + 2α) =: βα. (45)

Apply the Hoeffding inequality to uQ to obtain

P (|uQ| > t) ≤ 2 exp

(
−2

t2

|Ω|β2
α

)
.

Set K = α
√
mn (since ‖X‖F ≤ α

√
mn) and apply the union bound over all Q ∈ SrK(1) to

obtain

P
(
∪Q∈SrK(1) {|uQ| > t}

)
≤ 2

(
9α
√
mn
)(m+n+1)r

exp

(
−2

t2

|Ω|β2
α

)
≤ 2 exp

(
− 2t2

|Ω|β2
α

+ (m+ n+ 1)r log
(
9α
√
mn
))

.
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We pick

t = βα

√
|Ω|(m+ n+ 1)r log

(
9α
√
mn
)

(46)

to achieve

P
(
∪Q∈SrK(1) {|uQ| > t}

)
≤ 2 exp

(
−(m+ n+ 1)r log

(
9α
√
mn
))

=
2

(9α
√
mn)r(m+n+1)

. (47)

Now using (44)-(47), the union bound and the fact that the chosen t > 2.01Lα
√

2rm, we
have the desired result.

Lemma 7 Let w = vec(X(1) −M) = θ(1) − θ∗ and X(1), X,M ∈ C. Then for any θ̃ =
θ∗ + γ(θ − θ∗) and any γ ∈ [0, 1], we have

〈w,
[
∇2
θθF̃Ω,Y (θ̃)

]
w〉 ≥ γα

∥∥∥(X(1) −M
)

Ω

∥∥∥2

F

where XΩ = Xij if (i, j) ∈ Ω, and = 0 otherwise.

Proof Using (10), (35) and (36), we have

〈w,
[
∇2
θθF̃Ω,Y (θ̃)

]
w〉 =

∑
(i,j)∈Ω

(
∂2FΩ,Y (X̃)

∂X2
ij

)
(X

(1)
ij −Mij)

2

≥ γα
∑

(i,j)∈Ω

(X
(1)
ij −Mij)

2 = γα

∥∥∥(X(1) −M
)

Ω

∥∥∥2

F
. (48)

We need a result similar to Theorem 4.1 of Bhojanapalli and Jain (2014) regarding
closeness of a fixed matrix to its sampled version, which is proved therein for square matrices
M under an incoherence assumption on M . In Lemma 8 we prove a similar result for
rectangular Z with bounded ‖Z‖∞. Take Z ∈ Rm×n, m ≥ n, and as in Lemma 7, define
the operator RΩ as ZΩ := RΩ(Z) = Zij if (i, j) ∈ Ω, and = 0 otherwise.

Lemma 8 Let G\Ω satisfy assumptions (A1) and (A2) in Section 2. Let Z ∈ Rm×n have
rank ≤ r. Then we have∥∥∥∥(√mnσ1(G)

RΩ − I
)

(Z)

∥∥∥∥
2

≤
√
mnσ2(G)

σ1(G)
‖Z‖max (49)

≤
√
rmnσ2(G)

σ1(G)
‖Z‖∞ ≤ Cm

√
nr

|Ω|
‖Z‖∞. (50)
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Proof Normalize 1m to unit norm as 1̃m = 1m/
√
m, and similarly for 1̃n. It then follows

from the properties (A1)-(A2) that

G = σ1(G)1̃m1̃
>
n +

n∑
i=2

σi(G)UiV
>
i (51)

where the SVD ofG isG = UΣGV
> and Ui is the i-th column of U . First some preliminaries.

If rank(Z) ≤ r, then we have ‖Z‖max ≤
√
r‖Z‖∞. By the factored form definition of the

max norm (Lee et al., 2010), we have ‖Z‖max = inf
{

max(‖Ū‖22,∞, ‖V̄ ‖22,∞) : Z = Ū V̄ T
}

where ‖Ū‖2,∞ = maxi
√∑

j Ū
2
ij , Ū ∈ Rm×k, V̄ ∈ Rn×k, k = 1, 2, · · · ,min(m,n) = n.

Hence, there exist UZ ∈ Rm×k and VZ ∈ Rn×k for some 1 ≤ k ≤ min(m,n) such that
Z = UZV

>
Z , ‖UZ‖22,∞ ≤ ‖Z‖max and ‖VZ‖22,∞ ≤ ‖Z‖max. For Z of rank ≤ r, one should

have k ≤ r, but this fact is not needed in our proof. We now follow the proof of Theorem
4.1 of Bhojanapalli and Jain (2014) with Z =

∑k
i=1 UZiV

>
Zi. Note that

‖
√
mn

σ1(G)
RΩ(Z)− Z‖2 = max

x,y: ‖x‖2=1=‖y‖2
y>
(√

mn

σ1(G)
RΩ(Z)− Z

)
x.

As in the proof of Theorem 4.1 of Bhojanapalli and Jain (2014), noting that RΩ(Z) = Z ◦G
where ◦ denotes the Hadamard (elementwise) product, we have

y>
(√

mn

σ1(G)
RΩ(Z)− Z

)
x =

k∑
i=1

(√
mn

σ1(G)
(y ◦ UZi)>G(x ◦ VZi)− (y>UZi)(x

>VZi)

)
. (52)

Let y ◦ UZi = αi1̃m + βi1̃
i
m⊥ where 1̃im⊥ is a unit norm vector orthogonal to 1̃m. Then

αi = 1̃>m(y ◦ UZi) = y>UZi/
√
m. Using the fact that 1̃>mG = σ1(G)1̃>n , we have

y>
(√

mn

σ1(G)
RΩ(Z)− Z

)
x

=
k∑
i=1

(√mn
σ1(G)

[
(1/
√
m)y>UZi1̃

>
mG(x ◦ VZi) + βi1̃

i>
m⊥G(x ◦ VZi)

]
− (y>UZi)(x

>VZi)
)

=

k∑
i=1

(√
mn

σ1(G)
βi1̃

i>
m⊥G(x ◦ VZi)

)
(53)

where we have also used 1̃>n (x ◦ VZi) = x>VZi/
√
n. Using the SVD (51) of G, we have

1̃i>m⊥G =
n∑
`=2

σ`(G)(1̃i>m⊥U`)V
>
`

=⇒ |1̃i>m⊥Gz| ≤ σ2(G)‖z‖2 for any z ∈ Rn.
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Using the above inequality in (53) we obtain

y>
(√

mn

σ1(G)
RΩ(Z)− Z

)
x ≤

√
mn

σ1(G)
σ2(G)

k∑
i=1

|βi|‖x ◦ VZi‖2

≤
√
mn

σ1(G)
σ2(G)

√√√√ k∑
i=1

β2
i

√√√√ k∑
i=1

‖x ◦ VZi‖22 . (54)

We have βi = 1̃i>m⊥(y ◦ UZi), hence, |βi| ≤ ‖(y ◦ UZi)‖2. Therefore,

k∑
i=1

β2
i ≤

k∑
i=1

‖(y ◦ UZi)‖22 =
m∑
j=1

k∑
i=1

y2
jU

2
Zji

≤
m∑
j=1

y2
j ‖U

j
Z‖

2
2 ≤ ‖UZ‖22,∞

m∑
j=1

y2
j ≤ ‖Z‖max (55)

where U jZ denotes the jth row of UZ and
∑m

j=1 y
2
j = 1. Similarly, we have

k∑
i=1

‖x ◦ VZi‖22 =
n∑
j=1

k∑
i=1

x2
jV

2
Zji ≤

n∑
j=1

x2
j‖Ṽ

j
Z‖

2
2

≤ ‖ṼZ‖22,∞
n∑
j=1

x2
j ≤ ‖Z‖max . (56)

It then follows from (54)-(56) that

y>
(√

mn

σ1(G)
RΩ(Z)− Z

)
x ≤

√
mnσ2(G)

σ1(G)
‖Z‖max

=⇒ ‖
√
mn

σ1(G)
RΩ(Z)− Z‖2 ≤

√
mnσ2(G)

σ1(G)
‖Z‖max. (57)

This establishes (49). Now use the facts ‖Z‖max ≤
√
r‖Z‖∞ and |Ω| = md to establish

(50).

Lemma 9 Let X,M ∈ C. Then we have

‖(X −M)Ω‖F ≥
σ1(G)√
2rmn

‖X −M‖F − 2α
√
rσ2(G).

Proof Let Z = X −M , a =
√
mn/σ1(G), and b = (σ2(G)/σ1(G))

√
rmn. Then by Lemma

8 and the fact that rank(Z) ≤ rank(X) + rank(M) ≤ 2r, we have

|a‖ZΩ‖2 − ‖Z‖2| ≤ ‖aZΩ − Z‖2 ≤ b‖Z‖∞. (58)
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Using ‖Z‖∞ = ‖X − M‖∞ ≤ ‖X‖∞ + ‖M‖∞ ≤ 2α, (58) can be expressed as
‖Z‖2 ≤ a‖ZΩ‖2 + 2αb. Since ‖A‖2 ≤ ‖A‖F ∀A, we then have ‖Z‖2 ≤ a‖ZΩ‖F + 2αb. Since
‖A‖F ≤

√
rank(A)‖A‖2 ∀A, we have ‖Z‖F ≤

√
2r‖Z‖2 ≤ (

√
2ra)‖ZΩ‖F +

√
2r2αb, leading

to the desired result.

We now turn to the proof of Theorem 1.

Proof of Theorem 1 The bound 2α follows from the fact that M̂,M ∈ C. To establish
bound U1, we will use Lemma 5 and to establish U2, we will use Lemma 6. We first prove
U1. Consider F̃Ω,Y (θ) = FΩ,Y (X). The objective function FΩ,Y (X) is continuous in X
and the set C is compact, therefore, FΩ,Y (X) achieves a minimum in C. Now suppose that

M̂ ∈ C minimizes FΩ,Y (X). Then FΩ,Y (M̂) ≤ FΩ,Y (X) ∀X ∈ C, including X = M . Define

cg = 2.01Lα
√

2rm, ch =
σ2

1(G)γα
4rmn

, c̄h =
γα
2
. (59)

Using (33) and Lemmas 5 and 7, we have w.h.p. (specified in Lemma 5)

FΩ,Y (M̂) ≥FΩ,Y (M)− cg‖M̂ −M‖F + c̄h

∥∥∥(M̂ −M)
Ω

∥∥∥2

F
. (60)

Since M̂ minimizes FΩ,Y (X), we have

0 ≥ FΩ,Y (M̂)− FΩ,Y (M)

≥ −cg‖M̂ −M‖F + c̄h

∥∥∥(M̂ −M)
Ω

∥∥∥2

F
. (61)

Set

η = 2αr(σ2(G)/σ1(G))
√

2mn and a0 = σ1(G)/
√

2rmn .

Then Lemma 9 implies ‖(X −M)Ω‖F ≥ a0 [‖X −M‖F − η]. Now consider two cases: (i)

‖M̂ −M‖F < 2η, (ii) ‖M̂ −M‖F ≥ 2η. In case (i), we clearly have an obvious upper bound

on ‖M̂ −M‖F . Turning to case (ii), we have

‖M̂ −M‖F − η ≥ ‖M̂ −M‖F −
1

2
‖M̂ −M‖F

=
1

2
‖M̂ −M‖F . (62)

Using (61), (62) and Lemma 9 with X = M̂ , we have

0 ≥ FΩ,Y (M̂)− FΩ,Y (M)

≥ −cg‖M̂ −M‖F +
ch
4
‖M̂ −M‖2F

= ‖M̂ −M‖F
[
−cg +

ch
4
‖M̂ −M‖F

]
. (63)
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In order for (63) to be true, we must have ‖M̂ −M‖F ≤ 4cg/ch otherwise the right-side of
(63) is positive violating (63). Combining the two cases, we obtain

‖M̂ −M‖F ≤ max

(
2η,

4cg
ch

)
= max

(
4αr
√

2mn
σ2(G)

σ1(G)
,
32.16

√
2Lα(rm)1.5n

γασ2
1(G)

)
. (64)

This is the bound U1 stated in (13)-14) of the theorem after division by
√
mn. The high

probability stated in the theorem follows from Lemma 5 after setting ε = 0.5. Finally, we
use (σ2(G)/σ1(G)) ≤ (C/

√
d) = C

√
m/
√
|Ω| and (1/σ2

1(G)) ≤ (1/d2) = m2/|Ω|2 to derive
(14).

Finally we turn to proving U2. Define

c̄g = 4(1 + α)Lα

√
|Ω|r(m+ n+ 1) log(9α

√
mn). (65)

Using (33) and Lemmas 6 and 7, we have w.h.p. (specified in Lemma 6)

FΩ,Y (M̂) ≥ FΩ,Y (M)− c̄g + c̄h

∥∥∥(M̂ −M)
Ω

∥∥∥2

F
. (66)

Arguing as earlier, we then have∥∥∥(M̂ −M)
Ω

∥∥∥
F
≤
√

2c̄g
γα

. (67)

As before, we have either ‖M̂−M‖F < 2η or ‖M̂−M‖F ≥ 2η; the former yields an obvious
upper bound while the latter case yields∥∥∥M̂ −M∥∥∥

F
≤ 2

a0

∥∥∥(M̂ −M)
Ω

∥∥∥
F
≤ 2

a0

√
2c̄g
γα

. (68)

The stated bound U2 in (15)-16) then follows just as U1. This completes the proof.

References

M.Y. An. Log-concave probability distributions: Theory and statistical testing. Working
Paper No. 95-03, Department of Economics, Duke University, Durham, North Carolina,
1995.

F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. arXiv preprint
arXiv:0812.1869v1, 2008.

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd edition,
1999.

31



Bhaskar

S.A. Bhaskar. Quantized matrix completion for low rank matrices. In Proceedings of the
2015 IEEE International Conference on Acoustics, Speech and Signal Processing, pages
3741–3745, Brisbane, Queensland, Australia, 2015.

S. Bhojanapalli and P. Jain. Universal matrix completion. In Proceedings of the 31st
International Conference on Machine Learning, 2014.

M. Bolla, K. Friedl, and A. Kramli. Singular value decomposition of large random matrices
(for two-way classification of microarrays). Journal Multivariate Analysis, 101:434–446,
2010.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (series B), 95:329–357,
2003.

J.F. Cai, E.J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM J. Optimization, 20(4):1956–1982, 2010.

T. Cai and W.-X. Zhou. A Max-Norm Constrained Minimization Approach to 1-Bit Matrix
Completion. Journal of Machine Learning Research, 14:3619–3647, 2013.

E.J. Candes and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a
minimal number of noisy random measurements. IEEE Transactions on Information
Theory, 57:2342–2359, 2011.

Y. Cao and Y. Xie. Categorical matrix completion. arXiv preprint arXiv:1507.00421v1,
2015.

S. Chatterjee. Matrix estimation by universal singular value thresholding. arXiv preprint
arXiv:1212.1247v5, 2013.

M.A. Davenport, Y. Plan, E. van den Berg, and M. Wootters. 1-bit matrix completion.
Information and Inference, 3:189–223, 2014.

U. Feige and E. Ofek. Spectral techniques applied to sparse random graphs. Random
Structures & Algorithms, 27:251–275, 2005.

Y. Ghanbari, A.R. Smith, R.T. Schultz, and R. Verma. Connectivity subnetwork learning
for pathology and developmental variations. In K. Mori, I. Sakuma, Y. Sato, C. Barillot,
and N. Navab, editors, Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2013, pages 90–97. Springer, 2013.

D.F. Gleich and L.-H. Lim. Rank aggregation via nuclear norm minimization. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 60–68, 2011.

P. Gopalan, F.J.R. Ruiz, R. Ranganath, and D.M. Blei. Bayesian nonparametric pois-
son factorization for recommendation systems. In Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics, 2014.

32



Probabilistic Low-Rank Matrix Completion

S. Gunasekar, P. Ravikumar, and J. Ghosh. Exponential family matrix completion under
structural constraints. In Proceedings of the 31st International Conference on Machine
Learning, pages 1917–1925, 2014.

A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of recommendation
tasks. Journal of Machine Learning Research, 10:2935–2962, 2009.

S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of American Mathematical Society, 43(4):439–561, 2006.

A. Karbasi and S. Oh. Robust localization from incomplete local information. IEEE/ACM
Transactions on Networking, 21:1131–1144, August 2013.

R.H. Keshavan, A. Montanari, and S. Oh. Low-rank matrix completion with noisy observa-
tions: a quantitative comparison. In Proceedings of the 47th Annual Allerton Conference
on Communication, Control, and Computing, Urbana, Illinois, 2009.

R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE
Transactions on Information Theory, 56(6):2980–2998, 2010.

O. Klopp. Noisy low-rank matrix completion with general sampling distribution. Bernoulli,
20(1):282–303, 2014.

Y. Koren and J. Sill. OrdRec: An ordinal method for predicting personalized item rating
distributions. In Proceedings of the Fifth ACM Conference on Recommender Systems,
pages 117–124, Chicago, Illinois, 2011.

Y. Koren and J. Sill. Collaborative filtering on ordinal user feedback. In Proceedings of the
23rd International Joint Conference on Artificial Intelligence, pages 3022–3026, Beijing,
China, 2013.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

J. Lafond. Low rank matrix completion with exponential family noise. arXiv preprint
arXiv:1502.06919v2, 2015.

J. Lafond, O. Klopp, E. Moulines, and J. Salmon. Probabilistic low-rank matrix completion
on finite alphabets. In Advances in Neural Information Processing Systems, pages 1727–
1735, 2014.

A.S. Lan, C. Studer, and R.G. Baraniuk. Matrix recovery from quantized and corrupted
measurements. In Proceedings of the 2014 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Florence, Italy, 2014a.

A.S. Lan, C. Studer, and R.G. Baraniuk. Quantized matrix completion for personalized
learning. In Proceedings of the 7th International Conference on Educational Data Mining,
London, UK, 2014b.

A.S. Lan, A.E. Waters, C. Studer, and R.G. Baraniuk. Sparse factor analysis for learning
and content analytics. Journal of Machine Learning Research, 15:1959–2008, 2014c.

33



Bhaskar

J.D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J.A. Tropp. Practical large-scale
optimization for max-norm regularization. In Advances in Neural Information Processing
Systems, pages 1297–1305, 2010.

P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society,
Series B (Methodological), 42(2):109–142, 1980.

R.R. Nadakuditi and M.E.J. Newman. Graph spectra and the detectability of community
structure in networks. Physical Review Letters, 108(18):188701–5, 2012.

S. Negahban and M.J. Wainright. Restricted strong convexity and weighted matrix comple-
tion: Optimal bounds with noise. Journal of Machine Learning Research, 13:1665–1697,
2012.

B. Recht and C. Re. Parallel stochastic gradient algorithms for large-scale matrix comple-
tion. Math. Program. Comput., 5(2):201–226, 2013.

J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd International Conference on Machine Learning,
pages 713–719, 2005.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural
Information Processing Systems, 2008.

L.K. Saul and S.T. Roweis. Think globally, fit locally: Unsupervised learning of low dimen-
sional manifolds. Journal of Machine Learning Research, 4:119–155, 2003.

Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from connectivity in sensor
networks. IEEE Transactions on Parallel and Distributed Systems, 15(11):961–974, 2004.

A. Soni, S. Jain, J. Haupt, and S. Gonella. Noisy matrix completion under sparse factor
models. arXiv preprint arXiv:1411.0282v1, 2014.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

T. Tran, D. Phung, and S. Venkatesh. Cumulative restricted Boltzmann machines for ordinal
matrix data analysis. In Proceedings of the 4th Asian Conference on Machine Learning,
volume 25 of JMLR Workshop and Conference Proceedings, pages 411–426, 2012.

Y.-X. Wang and H. Xu. Stability of matrix factorization in collaborative filtering. In
Proceedings of the 29th International Conference on Machine Learning, 2012.

Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex opti-
mization with applications to nonnegative tensor factorization and completion. SIAM J.
Imaging Sciences, 6(3):1758–1789, 2013.

34


	Introduction
	Preliminaries and Model Assumptions
	Low-rank Matrices
	Sampling Model

	Main Results
	Rank-Constrained Maximum Likelihood Estimation
	Performance Upper Bounds
	Constants  and L for the logistic and probit models
	Comparison of Convergence Rates

	Optimization
	Known Bin Boundaries
	Algorithm 1: Approximate Projected Gradient Method
	Algorithm 2: Logarithmic Barrier Gradient Method

	Unknown Bin Boundaries

	Numerical Experiments
	Synthetic Data
	MovieLens Dataset

	Proof of a Technical Lemma
	Proof of Theorem 1

