
Journal of Machine Learning Research 17 (2016) 1-87 Submitted 7/15; Revised 6/16; Published 8/16

String and Membrane Gaussian Processes

Yves-Laurent Kom Samo YLKS@ROBOTS.OX.AC.UK

Stephen J. Roberts SJROB@ROBOTS.OX.AC.UK

Department of Engineering Science and Oxford-Man Institute
University of Oxford
Eagle House, Walton Well Road,
OX2 6ED, Oxford, United Kingdom

Editor: Neil Lawrence

Abstract
In this paper we introduce a novel framework for making exact nonparametric Bayesian inference
on latent functions that is particularly suitable for Big Data tasks. Firstly, we introduce a class
of stochastic processes we refer to as string Gaussian processes (string GPs which are not to be
mistaken for Gaussian processes operating on text). We construct string GPs so that their finite-
dimensional marginals exhibit suitable local conditional independence structures, which allow for
scalable, distributed, and flexible nonparametric Bayesian inference, without resorting to approxi-
mations, and while ensuring some mild global regularity constraints. Furthermore, string GP priors
naturally cope with heterogeneous input data, and the gradient of the learned latent function is read-
ily available for explanatory analysis. Secondly, we provide some theoretical results relating our
approach to the standard GP paradigm. In particular, we prove that some string GPs are Gaussian
processes, which provides a complementary global perspective on our framework. Finally, we de-
rive a scalable and distributed MCMC scheme for supervised learning tasks under string GP priors.
The proposed MCMC scheme has computational time complexityO(N) and memory requirement
O(dN), where N is the data size and d the dimension of the input space. We illustrate the efficacy
of the proposed approach on several synthetic and real-world data sets, including a data set with 6
millions input points and 8 attributes.

Keywords: String Gaussian processes, scalable Bayesian nonparametrics, Gaussian processes,
nonstationary kernels, reversible-jump MCMC, point process priors

1. Introduction

Many problems in statistics and machine learning involve inferring a latent function from train-
ing data (for instance regression, classification, inverse reinforcement learning, inference on point
processes to name but a few). Real-valued stochastic processes, among which Gaussian processes
(GPs), are often used as functional priors for such problems, thereby allowing for a full Bayesian
nonparametric treatment. In the machine learning community, interest in GPs grew out of the ob-
servation that some Bayesian neural networks converge to GPs as the number of hidden units ap-
proaches infinity (Neal (1996)). Since then, other similarities have been established between GPs
and popular models such as Bayesian linear regression, Bayesian basis function regression, spline
models and support vector machines (Rasmussen and Williams (2006)). However, they often per-
form poorly on Big Data tasks primarily for two reasons. Firstly, large data sets are likely to exhibit
multiple types of local patterns that should appropriately be accounted for by flexible and possibly

c©2016 Yves-Laurent Kom Samo and Stephen J. Roberts.

KOM SAMO AND ROBERTS

nonstationary covariance functions, the development of which is still an active subject of research.
Secondly, inference under GP priors often consists of looking at the values of the GP at all input
points as a jointly Gaussian vector with fully dependent coordinates, which induces a memory re-
quirement and time complexity respectively squared and cubic in the training data size, and thus
is intractable for large data sets. We refer to this approach as the standard GP paradigm. The
framework we introduce in this paper addresses both of the above limitations.

Our work is rooted in the observation that, from a Bayesian nonparametric perspective, it is
inefficient to define a stochastic process through fully-dependent marginals, as it is the case for
Gaussian processes. Indeed, if a stochastic process (f(x))x∈Rd has fully dependent marginals and
exhibits no additional conditional independence structure then, when f is used as functional prior
and some observations related to (f(x1), . . . , f(xn)) are gathered, namely (y1, . . . , yn), the addi-
tional memory required to take into account an additional piece of information (yn+1, xn+1) grows
in O(n), as one has to keep track of the extent to which yn+1 informs us about f(xi) for every
i ≤ n, typically through a covariance matrix whose size will increase by 2n + 1 terms. Clearly,
this is inefficient, as yn+1 is unlikely to be informative about f(xi), unless xi is sufficiently close
to xn+1. More generally, the larger n, the less information a single additional pair (yn+1, xn+1)
will add to existing data, and yet the increase in memory requirement will be much higher than that
required while processing earlier and more informative data. This inefficiency in resource require-
ments extends to computational time, as the increase in computational time resulting from adding
(yn+1, xn+1) typically grows in O(n2), which is the difference between the numbers of operations
required to invert a n×n matrix and to invert a (n+ 1)× (n+ 1) matrix. A solution for addressing
this inefficiency is to appropriately limit the extent to which values f(x1), . . . , f(xn) are related
to each other. Existing approaches such as sparse Gaussian processes (see Quinonero-Candela and
Rasmussen (2005) for a review), resort to an ex-post approximation of fully-dependent Gaussian
marginals with multivariate Gaussians exhibiting conditional independence structures. Unfortu-
nately, these approximations trade-off accuracy for scalability through a control variable, namely
the number of inducing points, whose choice is often left to the user. The approach we adopt in
this paper consists of going back to stochastic analysis basics, and constructing stochastic processes
whose finite-dimensional marginals exhibit suitable conditional independence structures so that we
need not resorting to ex-post approximations. Incidentally, unlike sparse GP techniques, the condi-
tional independence structures we introduce also allow for flexible and principled learning of local
patterns, and this increased flexibility does not come at the expense of scalability.

The contributions of this paper are as follows. We introduce a novel class of stochastic pro-
cesses, string Gaussian processes (string GPs), that may be used as priors over latent functions
within a Bayesian nonparametric framework, especially for large scale problems and in the presence
of possibly multiple types of local patterns. We propose a framework for analysing the flexibility
of random functions and surfaces, and prove that our approach yields more flexible stochastic pro-
cesses than isotropic Gaussian processes. We demonstrate that exact inference under a string GP
prior scales considerably better than in the standard GP paradigm, and is amenable to distributed
computing. We illustrate that popular stationary kernels can be well approximated within our frame-
work, making string GPs a scalable alternative to commonly used GP models. We derive the joint
law of a string GP and its gradient, thereby allowing for explanatory analysis on the learned latent
function. We propose a reversible-jump Markov Chain Monte Carlo sampler for automatic learning
of model complexity and local patterns from data.

2

STRING AND MEMBRANE GAUSSIAN PROCESSES

The rest of the paper is structured as follows. In Section 2 we review recent advances on Gaus-
sian processes in relation to inference on large data sets. In Section 3 we formally construct string
GPs and derive some important results. In Section 4 we provide detailed illustrative and theoretical
comparisons between string GPs and the standard GP paradigm. In Section 5 we propose methods
for inferring latent functions under string GP priors with time complexity and memory requirement
that are linear in the size of the data set. The efficacy of our approach compared to competing
alternatives is illustrated in Section 6. Finally, we finish with a discussion in Section 7.

2. Related Work

The two primary drawbacks of the standard GP paradigm on large scale problems are the lack
of scalability resulting from postulating a full multivariate Gaussian prior on function values at
all training inputs, and the difficulty postulating a priori a class of covariance functions capable
of capturing intricate and often local patterns likely to occur in large data sets. A tremendous
amount of work has been published that attempt to address either of the aforementioned limitations.
However, scalability is often achieved either through approximations or for specific applications,
and nonstationarity is usually introduced at the expense of scalability, again for specific applications.

2.1 Scalability Through Structured Approximations

As far as scalability is concerned, sparse GP methods have been developed that approximate the
multivariate Gaussian probability density function (pdf) over training data with the marginal over
a smaller set of inducing points multiplied by an approximate conditional pdf (Smola and Bartlett
(2001); Lawrence et al. (2003); Seeger (2003b,a); Snelson and Ghahramani (2006)). This approx-
imation yields a time complexity linear—rather than cubic—in the data size and squared in the
number of inducing points. We refer to Quinonero-Candela and Rasmussen (2005) for a review
of sparse GP approximations. More recently, Hensman et al. (2013, 2015) combined sparse GP
methods with Stochastic Variational Inference (Hoffman et al. (2013)) for GP regression and GP
classification. However, none of these sparse GP methods addresses the selection of the number
of inducing points (and the size of the minibatch in the case of Hensman et al. (2013, 2015)), al-
though this may greatly affect scalability. More importantly, although these methods do not impose
strong restrictions on the covariance function of the GP model to approximate, they do not address
the need for flexible covariance functions inherent to large scale problems, which are more likely
to exhibit intricate and local patterns, and applications considered by the authors typically use the
vanilla squared exponential kernel.

Lazaro-Gredilla et al. (2010) proposed approximating stationary kernels with truncated Fourier
series in Gaussian process regression. An interpretation of the resulting sparse spectrum Gaussian
process model as Bayesian basis function regression with a finite number K of trigonometric basis
functions allows making inference in time complexity and memory requirement that are both lin-
ear in the size of the training sample. However, this model has two major drawbacks. Firstly, it
is prone to over-fitting. In effect, the learning machine will aim at inferring the K major spectral
frequencies evidenced in the training data. This will only lead to appropriate prediction out-of-
sample when the underlying latent phenomenon can be appropriately characterised by a finite dis-
crete spectral decomposition that is expected to be the same everywhere on the domain. Secondly,
this model implicitly postulates that the covariance between the values of the GP at two points does
not vanish as the distance between the points becomes arbitrarily large. This imposes a priori the

3

KOM SAMO AND ROBERTS

view that the underlying function is highly structured, which might be unrealistic in many real-life
non-periodic applications. This approach is generalised by the so-called random Fourier features
methods (Rahimi and Recht (2007); Le et al. (2013); Yang et al. (2015)). Unfortunately all existing
random Fourier features methods give rise to stationary covariance functions, which might not be
appropriate for data sets exhibiting local patterns.

The bottleneck of inference in the standard GP paradigm remains inverting and computing
the determinant of a covariance matrix, normally achieved through the Cholesky decomposition or
Singular Value Decomposition. Methods have been developed that speed-up these decompositions
through low rank approximations (Williams and Seeger (2001)) or by exploiting specific structures
in the covariance function and in the input data (Saatchi (2011); Wilson et al. (2014)), which typi-
cally give rise to Kronecker or Toeplitz covariance matrices. While the Kronecker method used by
Saatchi (2011) and Wilson et al. (2014) is restricted to inputs that form a Cartesian grid and to sepa-
rable kernels,1 low rank approximations such as the Nyström method used by Williams and Seeger
(2001) modify the covariance function and hence the functional prior in a non-trivial way. Methods
have also been proposed to interpolate the covariance matrix on a uniform or Cartesian grid in order
to benefit from some of the computational gains of Toeplitz and Kronecker techniques even when
the input space is not structured (Wilson and Nickisch (2015)). However, none of these solutions is
general as they require that either the covariance function be separable (Kronecker techniques), or
the covariance function be stationary and the input space be one-dimensional (Toeplitz techniques).

2.2 Scalability Through Data Distribution

A family of methods have been proposed to scale-up inference in GP models that are based on the
observation that it is more computationally efficient to compute the pdf of K independent small
Gaussian vectors with size n than to compute the pdf of a single bigger Gaussian vector of size nK.
For instance, Kim et al. (2005) and Gramacy and Lee (2008) partitioned the input space, and put
independent stationary GP priors on the restrictions of the latent function to the subdomains forming
the partition, which can be regarded as independent local GP experts. Kim et al. (2005) partitioned
the domain using Voronoi tessellations, while Gramacy and Lee (2008) used tree based partitioning.
These two approaches are provably equivalent to postulating a (nonstationary) GP prior on the whole
domain that is discontinuous along the boundaries of the partition, which might not be desirable if
the latent function we would like to infer is continuous, and might affect predictive accuracy. The
more local experts there are, the more scalable the model will be, but the more discontinuities the
latent function will have, and subsequently the less accurate the approach will be.

Mixtures of Gaussian process experts models (MoE) (Tresp (2001); Rasmussen and Ghahramani
(2001); Meeds and Osindero (2006); Ross and Dy (2013)) provide another implementation of this
idea. MoE models assume that there are multiple latent functions to be inferred from the data,
on which it is placed independent GP priors, and each training input is associated to one latent
function. The number of latent functions and the repartition of data between latent functions can
then be performed in a full Bayesian nonparametric fashion (Rasmussen and Ghahramani (2001);
Ross and Dy (2013)). When there is a single continuous latent function to be inferred, as it is the
case for most regression models, the foregoing Bayesian nonparametric approach will learn a single
latent function, thereby leading to a time complexity and a memory requirement that are the same
as in the standard GP paradigm, which defies the scalability argument.

1. That is multivariate kernel that can be written as product of univariate kernels.

4

STRING AND MEMBRANE GAUSSIAN PROCESSES

The last implementation of the idea in this section consists of distributing the training data
over multiple independent but identical GP models. In regression problems, examples include the
Bayesian Committee Machines (BCM) of Tresp (2000), the generalized product of experts (gPoE)
model of Cao and Fleet (2014), and the robust Bayesian Committee Machines (rBCM) of Deisen-
roth and Ng (2015). These models propose splitting the training data in small subsets, each subset
being assigned to a different GP regression model—referred to as an expert—that has the same
hyper-parameters as the other experts, although experts are assumed to be mutually independent.
Training is performed by maximum marginal likelihood, with time complexity (resp. memory re-
quirement) linear in the number of experts and cubic (resp. squared) in the size of the largest
data set processed by an expert. Predictions are then obtained by aggregating the predictions of
all GP experts in a manner that is specific to the method used (that is the BCM, the gPoE or
the rBCM). However, these methods present major drawbacks in the training and testing proce-
dures. In effect, the assumption that experts have identical hyper-parameters is inappropriate for
data sets exhibiting local patterns. Even if one would allow GP experts to be driven by different
hyper-parameters as in Nguyen and Bonilla (2014) for instance, learned hyper-parameters would
lead to overly simplistic GP experts and poor aggregated predictions when the number of training
inputs assigned to each expert is small—this is a direct consequence of the (desirable) fact that
maximum marginal likelihood GP regression abides by Occam’s razor. Another critical pitfall of
BCM, gPoE and rBCM is that their methods for aggregating expert predictions are Kolmogorov
inconsistent. For instance, denoting p̂ the predictive distribution in the BCM, it can be easily
seen from Equations (2.4) and (2.5) in Tresp (2000) that the predictive distribution p̂(f(x∗1)|D)
(resp. p̂(f(x∗2)|D))2 provided by the aggregation procedure of the BCM is not the marginal over
f(x∗2) (resp. over f(x∗1)) of the multivariate predictive distribution p̂(f(x∗1), f(x∗2)|D) obtained
from experts multivariate predictions pk(f(x∗1), f(x∗2)|D) using the same aggregation procedure:
p̂(f(x∗1)|D) 6=

∫
p̂(f(x∗1), f(x∗2)|D)df(x∗2). Without Kolmogorov consistency, it is impossible to

make principled Bayesian inference of latent function values. A principled Bayesian nonparametric
model should not provide predictions about f(x∗1) that differ depending on whether or not one is
also interested in predicting other values f(x∗i) simultaneously. This pitfall might be the reason
why Cao and Fleet (2014) and Deisenroth and Ng (2015) restricted their expositions to predictive
distributions about a single function value at a time p̂(f(x∗)|D), although their procedures (Equa-
tion 4 in Cao and Fleet (2014) and Equation 20 in Deisenroth and Ng (2015)) are easily extended to
posterior distributions over multiple function values. These extensions would also be Kolmogorov
inconsistent, and restricting the predictions to be of exactly one function value is unsatisfactory as
it does not allow determining the posterior covariance between function values at two test inputs.

2.3 Expressive Stationary Kernels

In regards to flexibly handling complex patterns likely to occur in large data sets, Wilson and Adams
(2013) introduced a class of expressive stationary kernels obtained by summing up convolutions of
Gaussian basis functions with Dirac delta functions in the spectral domain. The sparse spectrum
kernel can be thought of as the special case where the convolving Gaussian is degenerate. Although
such kernels perform particularly well in the presence of globally repeated patterns in the data, their
stationarity limits their utility on data sets with local patterns. Moreover the proposed covariance

2. Here f is the latent function to be inferred, x∗1, x∗2 are test points and D denotes training data.

5

KOM SAMO AND ROBERTS

functions generate infinitely differentiable random functions, which might be too restrictive in some
applications.

2.4 Application-Specific Nonstationary Kernels

As for nonstationary kernels, Paciorek and Schervish (2004) proposed a method for constructing
nonstationary covariance functions from any stationary one that involves introducing n input de-
pendent d × d covariance matrices that will be inferred from the data. Plagemann et al. (2008)
proposed a faster approximation to the model of Paciorek and Schervish (2004). However, both
approaches scale poorly with the input dimension and the data size as they have time complexity
O
(
max(nd3, n3)

)
. MacKay (1998), Schmidt and O’Hagan (2003), and Calandra et al. (2014)

proposed kernels that can be regarded as stationary after a non-linear transformation d on the
input space: k(x, x′) = h (‖d(x)− d(x′)‖) , where h is positive semi-definite. Although for a
given deterministic function d the kernel k is nonstationary, Schmidt and O’Hagan (2003) put a
GP prior on d with mean function m(x) = x and covariance function invariant under translation,
which unfortunately leads to a kernel that is (unconditionally) stationary, albeit more flexible than
h (‖x− x′‖) . To model nonstationarity, Adams and Stegle (2008) introduced a functional prior of
the form y(x) = f(x) exp g(x) where f is a stationary GP and g is some scaling function on the
domain. For a given non-constant function g such a prior indeed yields a nonstationary Gaussian
process. However, when a stationary GP prior is placed on the function g as Adams and Stegle
(2008) did, the resulting functional prior y(x) = f(x) exp g(x) becomes stationary. The piece-
wise GP (Kim et al. (2005)) and treed GP (Gramacy and Lee (2008)) models previously discussed
also introduce nonstationarity. The authors’ premise is that heterogeneous patterns might be lo-
cally homogeneous. However, as previously discussed such models are inappropriate for modelling
continuous latent functions.

2.5 Our Approach

The approach we propose in this paper for inferring latent functions in large scale problems, possi-
bly exhibiting locally homogeneous patterns, consists of constructing a novel class of smooth, non-
stationary and flexible stochastic processes we refer to as string Gaussian processes (string GPs),
whose finite dimensional marginals are structured enough so that full Bayesian nonparametric in-
ference scales linearly with the sample size, without resorting to approximations. Our approach is
analogous to MoE models in that, when the input space is one-dimensional, a string GP can be re-
garded as a collaboration of local GP experts on non-overlapping supports, that implicitly exchange
messages with one another, and that are independent conditional on the aforementioned messages.
Each local GP expert only shares just enough information with adjacent local GP experts for the
whole stochastic process to be sufficiently smooth (for instance continuously differentiable), which
is an important improvement over MoE models as the latter generate discontinuous latent functions.
These messages will take the form of boundary conditions, conditional on which each local GP
expert will be independent from any other local GP expert. Crucially, unlike the BCM, the gPoE
and the rBCM, we do not assume that local GP experts share the same prior structure (that is mean
function, covariance function, or hyper-parameters). This allows each local GP expert to flexibly
learn local patterns from the data if there are any, while preserving global smoothness, which will
result in improved accuracy. Similarly to MoEs, the computational gain in our approach stems from
the fact that the conditional independence of the local GP experts conditional on shared boundary

6

STRING AND MEMBRANE GAUSSIAN PROCESSES

conditions will enable us to write the joint distribution over function and derivative values at a large
number of inputs as the product of pdfs of much smaller Gaussian vectors. The resulting effect on
time complexity is a decrease from O(N3) to O(max

k
n3
k), where N =

∑
k nk, nk � N . In fact,

in Section 5 we will propose Reversible-Jump Monte Carlo Markov Chain (RJ-MCMC) inference
methods that achieve memory requirement and time complexity O(N), without any loss of flexi-
bility. All these results are preserved by our extension of string GPs to multivariate input spaces,
which we will occasionally refer to as membrane Gaussian processes (or membrane GPs). Unlike
the BCM, the gPoE and the rBCM, the approach we propose in this paper, which we will refer to as
the string GP paradigm, is Kolmogorov consistent, and enables principled inference of the posterior
distribution over the values of the latent function at multiple test inputs.

3. Construction of String and Membrane Gaussian Processes

In this section we formally construct string Gaussian processes, and we provide some important
theoretical results including smoothness, and the joint law of string GPs and their gradients. We
construct string GPs indexed on R, before generalising to string GPs indexed on Rd, which we will
occasionally refer to as membrane GPs to stress that the input space is multivariate. We start by
considering the joint law of a differentiable GP on an interval and its derivative, and introducing
some related notions that we will use in the construction of string GPs.

Proposition 1 (Derivative Gaussian processes)
Let I be an interval, k : I × I → R a C2 symmetric positive semi-definite function,3 m : I → R a
C1 function.

(A) There exists a R2-valued stochastic process (Dt)t∈I , Dt = (zt, z
′
t), such that for all t1, . . . , tn ∈

I , (zt1 , . . . , ztn , z
′
t1 , . . . , z

′
tn) is a Gaussian vector with mean

(
m(t1), . . . ,m(tn), dm

dt (t1), . . . , dm
dt (tn)

)
and covariance matrix such that

cov(zti , ztj) = k(ti, tj), cov(zti , z
′
tj) =

∂k

∂y
(ti, tj), and cov(z′ti , z

′
tj) =

∂2k

∂x∂y
(ti, tj),

where ∂
∂x (resp. ∂

∂y) refers to the partial derivative with respect to the first (resp. second) variable
of k. We herein refer to (Dt)t∈I as a derivative Gaussian process.

(B) (zt)t∈I is a Gaussian process with mean function m, covariance function k and that is C1 in the
L2 (mean square) sense.

(C) (z′t)t∈I is a Gaussian process with mean function dm
dt and covariance function ∂2k

∂x∂y . Moreover,
(z′t)t∈I is the L2 derivative of the process (zt)t∈I .

Proof Although this result is known in the Gaussian process community, we provide a proof for
the curious reader in Appendix B.

We will say of a kernel k that it is degenerate at a when a derivative Gaussian process (zt, z
′
t)t∈I

3. C1 (resp. C2) functions denote functions that are once (resp. twice) continuously differentiable on their domains.

7

KOM SAMO AND ROBERTS

with kernel k is such that za and z′a are perfectly correlated,4 that is

|corr(za, z′a)| = 1.

As an example, the linear kernel k(u, v) = σ2(u − c)(v − c) is degenerate at 0. Moreover, we
will say of a kernel k that it is degenerate at b given a when it is not degenerate at a and when
the derivative Gaussian process (zt, z

′
t)t∈I with kernel k is such that the variances of zb and z′b

conditional on (za, z
′
a) are both zero.5 For instance, the periodic kernel proposed by MacKay (1998)

with period T is degenerate at u+ T given u.
An important subclass of derivative Gaussian processes in our construction are the processes

resulting from conditioning paths of a derivative Gaussian process to take specific values at certain
times (t1, . . . , tc). We herein refer to those processes as conditional derivative Gaussian process.
As an illustration, when k is C3 on I × I with I = [a, b], and neither degenerate at a nor degenerate
at b given a, the conditional derivative Gaussian process on I = [a, b] with unconditional mean
function m and unconditional covariance function k that is conditioned to start at (z̃a, z̃

′
a) is the

derivative Gaussian process with mean function

∀ t ∈ I, ma
c (t; z̃a, z̃

′
a) = m(t) + K̃t;aK−1

a;a

[
z̃a −m(a)

z̃′a − dm
dt (a)

]
, (1)

and covariance function kac that reads

∀ t, s ∈ I, kac (t, s) = k(t, s)− K̃t;aK−1
a;aK̃T

s;a (2)

where Ku;v =

[
k(u, v) ∂k

∂y (u, v)
∂k
∂x(u, v) ∂2k

∂x∂y (u, v)

]
, and K̃t;a =

[
k(t, a) ∂k

∂y (t, a)
]
. Similarly, when the

process is conditioned to start at (z̃a, z̃
′
a) and to end at (z̃b, z̃

′
b), the mean function reads

∀ t ∈ I, ma,b
c (t; z̃a, z̃

′
a, z̃b, z̃

′
b) = m(t) + K̃t;(a,b)K−1

(a,b);(a,b)

z̃a −m(a)

z̃′a − dm
dt (a)

z̃b −m(b)

z̃′b −
dm
dt (b)

 , (3)

and the covariance function ka,bc reads

∀ t, s ∈ I, ka,bc (t, s) = k(t, s)− K̃t;(a,b)K−1
(a,b);(a,b)K̃

T
s;(a,b), (4)

where K(a,b);(a,b) =

[
Ka;a Ka;b

Kb;a Kb;b

]
, and K̃t;(a,b) =

[
K̃t;a K̃t;b

]
. It is important to note that

both Ka;a and K(a,b);(a,b) are indeed invertible because the kernel is assumed to be neither degenerate
at a nor degenerate at b given a. Hence, the support of (za, z

′
a, zb, z

′
b) is R4, and any function and

derivative values can be used for conditioning. Figure 1 illustrates example independent draws from
a conditional derivative Gaussian process.

4. Or equivalently when the Gaussian vector (za, z′a) is degenerate.
5. Or equivalently when the Gaussian vector (za, z′a) is not degenerate but (za, z′a, zb, z′b) is.

8

STRING AND MEMBRANE GAUSSIAN PROCESSES

3.1 String Gaussian Processes on R

The intuition behind string Gaussian processes on an interval comes from the analogy of collab-
orative local GP experts we refer to as strings that are connected but independent of each other
conditional on some regularity boundary conditions. While each string is tasked with representing
local patterns in the data, a string only shares the states of its extremities (value and derivative)
with adjacent strings. Our aim is to preserve global smoothness and limit the amount of informa-
tion shared between strings, thus reducing computational complexity. Furthermore, the conditional
independence between strings will allow for distributed inference, greater flexibility and principled
nonstationarity construction.

The following theorem at the core of our framework establishes that it is possible to connect
together GPs on a partition of an interval I , in a manner consistent enough that the newly constructed
stochastic object will be a stochastic process on I and in a manner restrictive enough that any two
connected GPs will share just enough information to ensure that the constructed stochastic process
is continuously differentiable (C1) on I in the L2 sense.

Theorem 2 (String Gaussian process)
Let a0 < · · · < ak < · · · < aK , I = [a0, aK] and let pN (x;µ,Σ) be the multivariate Gaussian den-
sity with mean vector µ and covariance matrix Σ. Furthermore, let (mk : [ak−1, ak] → R)k∈[1..K]

be C1 functions, and (kk : [ak−1, ak] × [ak−1, ak] → R)k∈[1..K] be C3 symmetric positive semi-
definite functions, neither degenerate at ak−1, nor degenerate at ak given ak−1.

(A) There exists an R2-valued stochastic process (SDt)t∈I , SDt = (zt, z
′
t) satisfying the following

conditions:
1) The probability density of (SDa0 , . . . , SDaK) reads:

pb(x0, . . . , xK) :=
K∏
k=0

pN

(
xk;µ

b
k,Σ

b
k

)
(5)

where: Σb
0 = 1Ka0;a0 , ∀ k > 0 Σb

k = kKak;ak − kKak;ak−1 kK−1
ak−1;ak−1 k

KTak;ak−1
, (6)

µb0 = 1Ma0 , ∀ k > 0 µbk = kMak + kKak;ak−1 kK−1
ak−1;ak−1

(xk−1 − kMak−1
), (7)

with kKu;v =

[
kk(u, v) ∂kk

∂y (u, v)
∂kk
∂x (u, v) ∂2kk

∂x∂y (u, v)

]
, and kMu =

[
mk(u)
dmk
dt (u)

]
.

2) Conditional on (SDak = xk)k∈[0..K], the restrictions (SDt)t∈]ak−1,ak[, k ∈ [1..K] are indepen-
dent conditional derivative Gaussian processes, respectively with unconditional mean function mk

and unconditional covariance function kk and that are conditioned to take values xk−1 and xk at
ak−1 and ak respectively. We refer to (SDt)t∈I as a string derivative Gaussian process, and to its
first coordinate (zt)t∈I as a string Gaussian process namely,

(zt)t∈I ∼ SGP({ak}, {mk}, {kk}).

(B) The string Gaussian process (zt)t∈I defined in (A) is C1 in the L2 sense and its L2 derivative is
the process (z′t)t∈I defined in (A).

9

KOM SAMO AND ROBERTS

Proof See Appendix C.

In our collaborative local GP experts analogy, Theorem 2 stipulates that each local expert takes
as message from the previous expert its left hand side boundary conditions, conditional on which
it generates its right hand side boundary conditions, which it then passes on to the next expert.
Conditional on their boundary conditions local experts are independent of each other, and resemble
vibrating pieces of string on fixed extremities, hence the name string Gaussian process.

3.2 Pathwise Regularity

Thus far we have dealt with regularity only in the L2 sense. However, we note that a sufficient
condition for the process (z′t)t∈I in Theorem 2 to be almost surely continuous (i.e. sample paths are
continuous with probability 1) and to be the almost sure derivative of the string Gaussian process
(zt)t∈I , is that the Gaussian processes on Ik = [ak−1, ak] with mean and covariance functions
m
ak−1,ak
ck and kak−1,ak

ck (as per Equations 3 and 4 with m := mk and k := kk) are themselves almost
surely C1 for every boundary condition.6 We refer to (Adler and Taylor, 2011, Theorem 2.5.2) for a
sufficient condition under which a C1 in L2 Gaussian process is also almost surely C1. As the above
question is provably equivalent to that of the almost sure continuity of a Gaussian process (see Adler
and Taylor, 2011, p. 30), Kolmogorov’s continuity theorem (see Øksendal, 2003, Theorem 2.2.3)
provides a more intuitive, albeit stronger, sufficient condition than that of (Adler and Taylor, 2011,
Theorem 2.5.2).

3.3 Illustration

Algorithm 1 illustrates sampling jointly from a string Gaussian process and its derivative on an in-
terval I = [a0, aK]. We start off by sampling the string boundary conditions (zak , z

′
ak

) sequentially,
conditional on which we sample the values of the stochastic process on each string. This we may
do in parallel as the strings are independent of each other conditional on boundary conditions. The
resulting time complexity is the sum of O(max n3

k) for sampling values within strings, and O(n)
for sampling boundary conditions, where the sample size is n =

∑
k nk. The memory requirement

grows as the sum of O(
∑

k n
2
k), required to store conditional covariance matrices of the values

within strings, and O(K) corresponding to the storage of covariance matrices of boundary condi-
tions. In the special case where strings are all empty, that is inputs and boundary times are the same,
the resulting time complexity and memory requirement areO(n). Figure 2 illustrates a sample from
a string Gaussian process, drawn using this approach.

3.4 String Gaussian Processes on Rd

So far the input space has been assumed to be an interval. We generalise string GPs to hyper-
rectangles in Rd as stochastic processes of the form:

f(t1, . . . , td) = φ
(
z1
t1 , . . . , z

d
td

)
, (10)

where the link function φ : Rd → R is a C1 function and (zjt) are d independent (⊥) latent string
Gaussian processes on intervals. We will occasionally refer to string GPs indexed on Rd with d > 1
as membrane GPs to avoid any ambiguity. We note that when d = 1 and when the link function

6. The proof is provided in Appendix D.

10

STRING AND MEMBRANE GAUSSIAN PROCESSES

0.0 0.2 0.4 0.6 0.8 1.0
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5

z t

0.0 0.2 0.4 0.6 0.8 1.0
−15

−10

−5

0

5

10

15

z
′ t

Figure 1: Draws from a conditional derivative GP conditioned to start at 0 with derivative 0 and
to finish at 1.0 with derivative 0.0. The unconditional kernel is the squared exponential
kernel with variance 1.0 and input scale 0.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−4

−2

0

2

4

6

8

z t

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−100

−50

0

50

100

z
′ t

Figure 2: Draw from a string GP (zt) with 3 strings and its derivative (z′t), under squared expo-
nential kernels (green and yellow strings), and the periodic kernel of MacKay (1998) (red
string).

11

KOM SAMO AND ROBERTS

Algorithm 1 Simulation of a string derivative Gaussian process
Inputs: boundary times a0 < · · · < aK , string times {tkj ∈]ak−1, ak[}j∈[1..nk],k∈[1..K], uncondi-
tional mean (resp. covariance) functions mk (resp. kk)
Output: {. . . , zak , z′ak , . . . , ztkj , z

′
tkj
, . . . }.

Step 1: sample the boundary conditions sequentially.
for k = 0 to K do

Sample (zak , z
′
ak

) ∼ N
(
µbk,Σ

b
k

)
, with µbk and Σb

k as per Equations (7) and (6).
end for
Step 2: sample the values on each string conditional on the boundary conditions in parallel.
parfor k = 1 to K do

Let kMu and kKu;v be as in Theorem 2,

kΛ =

 kKtk1 ;ak−1 kKtk1 ;ak

.

kKtknk
;ak−1 kKtknk

;ak

[kKak−1;ak−1 kKak−1;ak

kKak;ak−1 kKak;ak

]−1

,

µsk =

 kMtk1
. . .

kMtknk

+ kΛ

zak−1

−mk(ak−1)

z′ak−1
− dmk

dt (ak−1)

zak −mk(ak)

z′ak −
dmk
dt (ak)

 , (8)

Σs
k =

 kKtk1 ;tk1
. . . kKtk1 ;tknk

.

kKtknk
;tk1

. . . kKtknk
;tknk

− kΛ

 kKtk1 ;ak−1 kKtk1 ;ak

.

kKtknk
;ak−1 kKtknk

;ak

T

. (9)

Sample
(
ztk1
, z′
tk1
. . . , ztknk

, z′
tknk

)
∼ N (µsk,Σ

s
k).

end parfor

12

STRING AND MEMBRANE GAUSSIAN PROCESSES

is φ(x) = x, we recover string GPs indexed on an interval as previously defined. When the string
GPs (zjt) are a.s. C1, the membrane GP f in Equation (10) is also a.s. C1, and the partial derivative
with respect to the j-th coordinate reads:

∂f

∂tj
(t1, . . . , td) = zj′tj

∂φ

∂tj

(
z1
t1 , . . . , z

d
td

)
. (11)

Thus in high dimensions, string GPs easily allow an explanation of the sensitivity of the learned
latent function to inputs.

3.5 Choice of Link Function

Our extension of string GPs to Rd departs from the standard GP paradigm in that we did not
postulate a covariance function on Rd × Rd directly. Doing so usually requires using a metric on
Rd, which is often problematic for heterogeneous input dimensions, as it introduces an arbitrary
comparison between distances in each input dimension. This problem has been partially addressed
by approaches such as Automatic Relevance Determination (ARD) kernels, that allow for a lin-
ear rescaling of input dimensions to be learned jointly with kernel hyper-parameters. However,
inference under a string GP prior can be thought of as learning a coordinate system in which the
latent function f resembles the link function φ through non-linear rescaling of input dimensions.
In particular, when φ is symmetric, the learned univariate string GPs (being interchangeable in φ)
implicitly aim at normalizing input data across dimensions, making string GPs naturally cope with
heterogeneous data sets.

An important question arising from our extension is whether or not the link function φ needs to
be learned to achieve a flexible functional prior. The flexibility of a string GP as a functional prior
depends on both the link function and the covariance structures of the underlying string GP building
blocks (zjt). To address the impact of the choice of φ on flexibility, we constrain the string GP
building blocks by restricting them to be independent identically distributed string GPs with one
string each (i.e. (zjt) are i.i.d Gaussian processes). Furthermore, we restrict ourselves to isotropic
kernels as they provide a consistent basis for putting the same covariance structure in R and Rd.
One question we might then ask, for a given link function φ0, is whether or not an isotropic GP
indexed on Rd with covariance function k yields more flexible random surfaces than the stationary
string GP f(t1, . . . , td) = φ0(z1

t1 , . . . , z
d
td

), where (zjtj) are stationary GPs indexed on R with the
same covariance function k. If we find a link function φ0 generating more flexible random surfaces
than isotropic GP counterparts it would suggest φ need not to be inferred in dimension d > 1 to
be more flexible than any GP using one of the large number of commonly used isotropic kernels,
among which squared exponential kernels, rational quadratic kernels, and Matérn kernels to name
but a few.

Before discussing whether such a φ0 exists, we need to introduce a rigorous meaning to ‘flexi-
bility’. An intuitive qualitative definition of the flexibility of a stochastic process indexed on Rd is
the ease with which it can generate surfaces with varying shapes from one random sample to another
independent one. We recall that the tangent hyperplane to a C1 surface y − f(x) = 0, x ∈ Rd at
some point x0 = (t01, . . . , t

0
d) has equation∇f(x0)T (x−x0)− (y− f(x0)) = 0 and admits as nor-

mal vector (∂f∂t1 (t01), . . . , ∂f∂td (t0d),−1). As tangent hyperplanes approximate a surface locally, a first
criterion of flexibility for a random surface y − f(x) = 0, x ∈ Rd is the proclivity of the (random)
direction of its tangent hyperplane at any point x—and hence the proclivity of ∇f(x)—to vary.

13

KOM SAMO AND ROBERTS

This criterion alone, however, does not capture the difference between the local shapes of the ran-
dom surface at two distinct points. A complementary second criterion of flexibility is the proclivity
of the (random) directions of the tangent hyperplanes at any two distinct points x0, x1 ∈ Rd—and
hence the proclivity of∇f(x0) and∇f(x1)—to be independent. The first criterion can be measured
using the entropy of the gradient at a point, while the second criterion can be measured through the
mutual information between the two gradients. The more flexible a stochastic process, the higher
the entropy of its gradient at any point, and the lower the mutual information between its gradients
at any two distinct points. This is formalised in the definition below.

Definition 3 (Flexibility of stochastic processes)
Let f and g be two real valued, almost surely C1 stochastic processes indexed on Rd, and whose
gradients have a finite entropy everywhere (i.e. ∀ x, H(∇f(x)), H(∇g(x)) < ∞). We say that f
is more flexible than g if the following conditions are met:
1) ∀ x, H(∇f(x)) ≥ H(∇g(x)),
2) ∀ x 6= y, I(∇f(x);∇f(y)) ≤ I(∇g(x);∇g(y)),
where H is the entropy operator, and I(X;Y) = H(X) +H(Y)−H(X,Y) stands for the mutual
information between X and Y .

The following proposition establishes that the link function φs (x1, . . . , xd) =
∑d

i=j xj yields more
flexible stationary string GPs than their isotropic GP counterparts, thereby providing a theoretical
underpinning for not inferring φ.

Proposition 4 (Additively separable string GPs are flexible)
Let k(x, y) := ρ

(
||x− y||2L2

)
be a stationary covariance function generating a.s. C1 GP paths in-

dexed on Rd, d > 0, and ρ a function that is C2 on]0,+∞[and continuous at 0. Let φs(x1, . . . , xd) =∑d
j=1 xj , let (zjt)t∈Ij , j∈[1..d] be independent stationary Gaussian processes with mean 0 and co-

variance function k (where the L2 norm is on R), and let f(t1, . . . , td) = φs(z
1
t1 , . . . , z

d
td

) be the
corresponding stationary string GP. Finally, let g be an isotropic Gaussian process indexed on
I1 × · · · × Id with mean 0 and covariance function k (where the L2 norm is on Rd). Then:

1) ∀ x ∈ I1 × · · · × Id, H(∇f(x)) = H(∇g(x)),
2) ∀ x 6= y ∈ I1 × · · · × Id, I(∇f(x);∇f(y)) ≤ I(∇g(x);∇g(y)).

Proof See Appendix E.

Although the link function need not be inferred in a full nonparametric fashion to yield compara-
ble if not better results than most isotropic kernels used in the standard GP paradigm, for some
problems certain link functions might outperform others. In Section 4.2 we analyse a broad family
of link functions, and argue that they extend successful anisotropic approaches such as the Au-
tomatic Relevance Determination (MacKay (1998)) and the additive kernels of Duvenaud et al.
(2011). Moreover, in Section 5 we propose a scalable inference scheme applicable to any link
function.

4. Comparison with the Standard GP Paradigm

We have already established that sampling string GPs scales better than sampling GPs under the
standard GP paradigm and is amenable to distributed computing. We have also established that

14

STRING AND MEMBRANE GAUSSIAN PROCESSES

stationary additively separable string GPs are more flexible than their isotropic counterparts in the
standard GP paradigm. In this section, we provide further theoretical results relating the string
GP paradigm to the standard GP paradigm. Firstly we establish that string GPs with link function
φs (x1, . . . , xd) =

∑d
i=j xj are GPs. Secondly, we derive the global mean and covariance functions

induced by the string GP construction for a variety of link functions. Thirdly, we provide a sense
in which the string GP paradigm can be thought of as extending the standard GP paradigm. And
finally, we show that the string GP paradigm may serve as a scalable approximation of commonly
used stationary kernels.

4.1 Some String GPs are GPs

On one hand we note from Theorem 2 that the restriction of a string GP defined on an interval to
the support of the first string—in other words the first local GP expert—is a Gaussian process. On
the other hand, the messages passed on from one local GP expert to the next are not necessarily
consistent with the unconditional law of the receiving local expert, so that overall a string GP
defined on an interval, that is when looked at globally and unconditionally, might not be a Gaussian
process. However, the following proposition establishes that some string GPs are indeed Gaussian
processes.

Proposition 5 (Additively separable string GPs are GPs)
String Gaussian processes on R are Gaussian processes. Moreover, string Gaussian processes on
Rd with link function φs(x1, . . . , xd) =

∑d
j=1 xj are also Gaussian processes.

Proof The intuition behind this proof lies in the fact that if X is a multivariate Gaussian, and if
conditional on X , Y is a multivariate Gaussian, providing that the conditional mean of Y depends
linearly on X and the conditional covariance matrix of Y does not depend on X , the vector (X,Y)
is jointly Gaussian. This will indeed be the case for our collaboration of local GP experts as the
boundary conditions picked up by an expert from the previous will not influence the conditional co-
variance structure of the expert (the conditional covariance strucuture depends only on the partition
of the domain, not the values of the boundary conditions) and will affect the mean linearly. See
Appendix H for the full proof.

The above result guarantees that commonly used closed form predictive equations under GP
priors are still applicable under some string GP priors, providing the global mean and covariance
functions, which we derive in the following section, are available. Proposition 5 also guarantees
stability of the corresponding string GPs in the GP family under addition of independent Gaussian
noise terms as in regression settings. Moreover, it follows from Proposition 5 that inference tech-
niques developed for Gaussian processes can be readily used under string GP priors. In Section 5
we provide an additional MCMC scheme that exploits the conditional independence between strings
to yield greater scalability and distributed inference.

4.2 String GP Kernels and String GP Mean Functions

The approach we have adopted in the construction of string GPs and membrane GPs did not re-
quire explicitly postulating a global mean function or covariance function. In Appendix I we derive
the global mean and covariance functions that result from our construction. The global covariance
function could be used for instance as a stand-alone kernel in any kernel method, for instance GP

15

KOM SAMO AND ROBERTS

models under the standard GP paradigm, which would provide a flexible and nonstationary al-
ternative to commonly used kernels that may be used to learn local patterns in data sets—some
successful example applications are provided in Section 5. That being said, adopting such a global
approach should be limited to small scale problems as the conditional independence structure of
string GPs does not easily translate into structures in covariance matrices over string GP values
(without derivative information) that can be exploited to speed-up SVD or Cholesky decomposi-
tion. Crucially, marginalising out all derivative information in the distribution of derivative string
GP values at some inputs would destroy any conditional independence structure, thereby limiting
opportunities for scalable inference. In Section 5 we will provide a RJ-MCMC inference scheme
that fully exploits the conditional independence structure in string GPs and scales to very large data
sets.

4.3 Connection Between Multivariate String GP Kernels and Existing Approaches

We recall that for n ≤ d, the n-th order elementary symmetric polynomial (Macdonald (1995)) is
given by

e0(x1, . . . , xd) := 1, ∀1 ≤ n ≤ d en(x1, . . . , xd) =
∑

1≤j1<j2<···<jn≤d

n∏
k=1

xjk . (12)

As an illustration,

e1(x1, . . . , xd) =
d∑
j=1

xj = φs(x1, . . . , xd),

e2(x1, . . . , xd) = x1x2 + x1x3 + · · ·+ x1xd + · · ·+ xd−1xd,

. . .

ed(x1, . . . , xd) =

d∏
j=1

xj = φp(x1, . . . , xd).

Covariance kernels of string GPs, using as link functions elementary symmetric polynomials en,
extend most popular approaches that combine unidimensional kernels over features for greater flex-
ibility or cheaper design experiments.

The first-order polynomial e1 gives rise to additively separable Gaussian processes, that can be
regarded as Bayesian nonparametric generalised additive models (GAM), particularly popular for
their interpretability. Moreover, as noted by Durrande et al. (2012), additively separable Gaussian
processes are considerably cheaper than alternate transformations in design experiments with high-
dimensional input spaces. In addition to the above, additively separable string GPs also allow
postulating the existence of local properties in the experimental design process at no extra cost.

The d-th order polynomial ed corresponds to a product of unidimensional kernels, also known
as separable kernels. For instance, the popular squared exponential kernel is separable. Separable
kernels have been successfully used on large scale inference problems where the inputs form a grid
(Saatchi, 2011; Wilson et al., 2014), as they yield covariance matrices that are Kronecker products,
leading to maximum likelihood inference in linear time complexity and with linear memory require-
ment. Separable kernels are often used in conjunction with the automatic relevance determination
(ARD) model, to learn the relevance of features through global linear rescaling. However, ARD

16

STRING AND MEMBRANE GAUSSIAN PROCESSES

kernels might be limited in that we might want the relevance of a feature to depend on its value. As
an illustration, the market value of a watch can be expected to be a stronger indicator of its owner’s
wealth when it is in the top 1 percentile, than when it is in the bottom 1 percentile; the rationale
being that possessing a luxurious watch is an indication that one can afford it, whereas possessing
a cheap watch might be either an indication of lifestyle or an indication that one cannot afford a
more expensive one. Separable string GP kernels extend ARD kernels, in that strings between input
dimensions and within an input dimension may have unconditional kernels with different hyper-
parameters, and possibly different functional forms, thereby allowing for automatic local relevance
determination (ALRD).

More generally, using as link function the n-th order elementary symmetric polynomial en
corresponds to the n-th order interaction of the additive kernels of Duvenaud et al. (2011). We
also note that the class of link functions φ(x1, . . . , xd) =

∑d
i=1 σiei(x1, . . . , xd) yield full additive

kernels. Duvenaud et al. (2011) noted that such kernels are ‘exceptionally well-suited’ to learn non-
local structures in data. String GPs complement additive kernels by allowing them to learn local
structures as well.

4.4 String GPs as Extension of the Standard GP Paradigm

The following proposition provides a perspective from which string GPs may be considered as
extending Gaussian processes on an interval.

Proposition 6 (Extension of the standard GP paradigm)
Let K ∈ N∗, let I = [a0, aK] and Ik = [ak−1, ak] be intervals with a0 < · · · < aK . Furthermore,
let m : I → R be a C1 function, mk the restriction of m to Ik, h : I × I → R a C3 symmetric
positive semi-definite function, and hk the restriction of h to Ik × Ik. If

(zt)t∈I ∼ SGP({ak}, {mk}, {hk}),

then
∀ k ∈ [1..K], (zt)t∈Ik ∼ GP(m,h).

Proof See Appendix F.

We refer to the case where unconditional string mean and kernel functions are restrictions of
the same functions as in Proposition 6 as uniform string GPs. Although uniform string GPs are
not guaranteed to be as much regular at boundary times as their counterparts in the standard GP
paradigm, we would like to stress that they may well generate paths that are. In other words, the
functional space induced by a uniform string GP on an interval extends the functional space of the
GP with the same mean and covariance functions m and h taken globally and unconditionally on
the whole interval as in the standard GP paradigm. This allows for (but does not enforce) less
regularity at the boundary times. When string GPs are used as functional prior, the posterior mean
can in fact have more regularity at the boundary times than the continuous differentiability enforced
in the string GP paradigm, providing such regularity is evidenced in the data.

We note from Proposition 6 that when m is constant and h is stationary, the restriction of the
uniform string GP (zt)t∈I to any interval whose interior does not contain a boundary time, the
largest of which being the intervals [ak−1, ak], is a stationary GP. We refer to such cases as partition
stationary string GPs.

17

KOM SAMO AND ROBERTS

4.5 Commonly Used Covariance Functions and their String GP Counterparts

Considering the superior scalability of the string GP paradigm, which we may anticipate from the
scalability of sampling string GPs, and which we will confirm empirically in Section 5, a natural
question that comes to mind is whether or not kernels commonly used in the standard GP paradigm
can be well approximated by string GP kernels, so as to take advantage of the improved scalability
of the string GP paradigm. We examine the distortions to commonly used covariance structures
resulting from restricting strings to share only C1 boundary conditions, and from increasing the
number of strings.

Figure 3 compares some popular stationary kernels on [0, 1]× [0, 1] (first column) to their uni-
form string GP kernel counterparts with 2, 4, 8 and 16 strings of equal length. The popular ker-
nels considered are the squared exponential kernel (SE), the rational quadratic kernel kRQ(u, v) =(

1 + 2(u−v)2

α

)−α
with α = 1 (RQ 1) and α = 5 (RQ 5), the Matérn 3/2 kernel (MA 3/2), and the

Matérn 5/2 kernel (MA 5/2), each with output scale (variance) 1 and input scale 0.5. Firstly, we ob-
serve that each of the popular kernels considered coincides with its uniform string GP counterparts
regardless of the number of strings, so long as the arguments of the covariance function are less
than an input scale apart. Except for the Matérn 3/2, the loss of information induced by restricting
strings to share only C1 boundary conditions becomes noticeable when the arguments of the co-
variance function are more than 1.5 input scales apart, and the effect is amplified as the number of
strings increases. As for the Matérn 3/2, no loss of information can been noticed, as further attests
Table 1. In fact, this comes as no surprise given that stationary Matérn 3/2 GP are 1-Markov, that is
the corresponding derivative Gaussian process is a Markov process so that the vector (zt, z

′
t) con-

tains as much information as all string GP or derivative values prior to t (see Doob (1944)). Table 1
provides some statistics on the absolute errors between each of the popular kernels considered and
uniform string GP counterparts.

18

STRING AND MEMBRANE GAUSSIAN PROCESSES

Figure 3: Commonly used covariance functions on [0, 1] × [0, 1] with the same input and output
scales (first column) and their uniform string GP counterparts with K > 1 strings of
equal length.

19

KOM SAMO AND ROBERTS

K
=

2
K

=
4

K
=

8
K

=
1
6

m
in

av
g

m
ax

m
in

av
g

m
ax

m
in

av
g

m
ax

m
in

av
g

m
ax

SE
0

0.
01

0.
13

0
0.

02
0.

25
0

0.
03

0.
37

0
0.

04
0.

44
R

Q
1

0
0.

01
0.

09
0

0.
03

0.
20

0
0.

05
0.

37
0

0.
07

0.
52

R
Q

5
0

0.
01

0.
12

0
0.

02
0.

24
0

0.
04

0.
37

0
0.

05
0.

47
M

A
3/

2
0

0
0

0
0

0
0

0
0

0
0

0
M

A
5/

2
0

0.
01

0.
07

0
0.

03
0.

15
0

0.
05

0.
29

0
0.

08
0.

48

Ta
bl

e
1:

M
in

im
um

,a
ve

ra
ge

,a
nd

m
ax

im
um

ab
so

lu
te

er
ro

rs
be

tw
ee

n
so

m
e

co
m

m
on

ly
us

ed
st

at
io

na
ry

co
va

ri
an

ce
fu

nc
tio

ns
on

[0
,1

]
×

[0
,1

]
(w

ith
un

it
va

ri
an

ce
an

d
in

pu
ts

ca
le

0.
5)

an
d

th
ei

ru
ni

fo
rm

st
ri

ng
G

P
co

un
te

rp
ar

ts
w

ith
K
>

1
st

ri
ng

s
of

eq
ua

ll
en

gt
h.

20

STRING AND MEMBRANE GAUSSIAN PROCESSES

5. Inference under String and Membrane GP Priors

In this section we move on to developing inference techniques for Bayesian nonparametric inference
of latent functions under string GP priors. We begin with marginal likelihood inference in regression
problems. We then propose a novel reversible-jump MCMC sampler that enables automatic learning
of model complexity (that is the number of different unconditional kernel configurations) from the
data, with a time complexity and memory requirement both linear in the number of training inputs.

5.1 Maximum Marginal Likelihood for Small Scale Regression Problems

Firstly, we leverage the fact that additively separable string GPs are Gaussian processes to perform
Bayesian nonparametric regressions in the presence of local patterns in the data, using standard
Gaussian process techniques (see Rasmussen and Williams, 2006, p.112 §5.4.1). We use as genera-
tive model

yi = f(xi) + εi, εi ∼ N
(
0, σ2

ki

)
, σ2

ki
> 0, xi ∈ I1 × · · · × Id, yi, εi ∈ R

we are given the training data set D = {x̃i, ỹi}i∈[1..N], and we place a mean-zero additively separa-
ble string GP prior on f , namely

f(x) =
d∑
j=1

zjx[j], (zjt) ∼ SGP
(
{ajk}, {0}, {k

j
k}
)
, ∀j < l, (zjt) ⊥ (zlt),

which we assume to be independent of the measurement noise process. Moreover, the noise terms
are assumed to be independent, and the noise variance σ2

ki
affecting f(xi) is assumed to be the

same for any two inputs whose coordinates lie on the same string intervals. Such a heteroskedastic
noise model fits nicely within the string GP paradigm, can be very useful when the dimension of
the input space is small, and may be replaced by the typical constant noise variance assumption in
high-dimensional input spaces.

Let us define y = (ỹ1, . . . , ỹN), X = (x̃1, . . . , x̃N), f = (f(x̃1), . . . , f(x̃N)) and let K̄X;X de-
note the auto-covariance matrix of f (which we have derived in Section 4.2), and let D = diag({σ2

ki
})

denote the diagonal matrix of noise variances. It follows that y is a Gaussian vector with mean 0
and auto-covariance matrix Ky := K̄X;X + D and that the log marginal likelihood reads:

log p
(

y
∣∣∣X, {σki}, {θjk}, {ajk}) = −1

2
yTK−1

y y− 1

2
log det (Ky)− n

2
log 2π. (13)

We obtain estimates of the string measurement noise standard deviations {σ̂ki} and estimates of the
string hyper-parameters {θ̂jk} by maximising the marginal likelihood for a given domain partition
{ajk}, using gradient-based methods. We deduce the predictive mean and covariance matrix of the
latent function values f∗ at test points X∗, from the estimates {θ̂jk}, {σ̂ki} as

E(f∗|y) = K̄X∗;XK−1
y y and cov(f∗|y) = K̄X∗;X∗ − K̄X∗;XK−1

y K̄X;X∗ , (14)

using the fact that (f∗, y) is jointly Gaussian, and that the cross-covariance matrix between f∗ and
y is K̄X∗;X as the additive measurement noise is assumed to be independent from the latent process f .

21

KOM SAMO AND ROBERTS

5.1.1 REMARKS

The above analysis and equations still hold when a GP prior is placed on f with one of the multi-
variate string GP kernels derived in Section 4.2 as covariance function.

It is also worth noting from the derivation of string GP kernels in Appendix I that the marginal
likelihood Equation (13) is continuously differentiable in the locations of boundary times. Thus, for
a given number of boundary times, the positions of the boundary times can be determined as part
of the marginal likelihood maximisation. The derivatives of the marginal log-likelihood (Equation
13) with respect to the aforementioned locations {ajk} can be determined from the recursions of
Appendix I, or approximated numerically by finite differences. The number of boundary times
in each input dimension can then be learned by trading off model fit (the maximum marginal log
likelihood) and model simplicity (the number of boundary times or model parameters), for instance
using information criteria such as AIC and BIC. When the input dimension is large, it might be
advantageous to further constrain the hypothesis space of boundary times before using information
criteria, for instance by assuming that the number of boundary times is the same in each dimension.
An alternative Bayesian nonparametric approach to learning the number of boundary times will be
discussed in section 5.4.

This method of inference cannot exploit the structure of string GPs to speed-up inference, and as
a result it scales like the standard GP paradigm. In fact, any attempt to marginalize out univariate
derivative processes, including in the prior, will inevitably destroy the conditional independence
structure. Another perspective to this observation is found by noting from the derivation of global
string GP covariance functions in Appendix I that the conditional independence structure does not
easily translate in a matrix structure that may be exploited to speed-up matrix inversion, and that
marginalizing out terms relating to derivatives processes as in Equation (13) can only make things
worse.

5.2 Generic Reversible-Jump MCMC Sampler for Large Scale Inference

More generally, we consider learning a smooth real-valued latent function f , defined on a d-
dimensional hyper-rectangle, under a generative model with likelihood p (D|f ,u), where f denotes
values of f at training inputs points and u denotes other likelihood parameters that are not re-
lated to f . A large class of machine learning problems aiming at inferring a latent function have a
likelihood model of this form. Examples include celebrated applications such as nonparametric re-
gression and nonparametric binary classification problems, but also more recent applications such as
learning a profitable portfolio generating-function in stochastic portfolio theory (Karatzas and Fern-
holz (2009)) from the data. In particular, we do not assume that p (D|f ,u) factorizes over training
inputs. Extensions to likelihood models that depend on the values of multiple latent functions are
straight-forward and will be discussed in Section 5.3.

5.2.1 PRIOR SPECIFICATION

We place a prior p(u) on other likelihood parameters. For instance, in regression problems under
a Gaussian noise model, u can be the noise variance and we may choose p(u) to be the inverse-
Gamma distribution for conjugacy. We place a mean-zero string GP prior on f

f(x) = φ
(
z1
x[1], . . . , z

d
x[d]

)
, (zjt) ∼ SGP

(
{ajk}, {0}, {k

j
k}
)
, ∀j < l, (zjt) ⊥ (zlt). (15)

22

STRING AND MEMBRANE GAUSSIAN PROCESSES

As discussed in Section 3.5, the link function φ need not be inferred as the symmetric sum was
found to yield a sufficiently flexible functional prior. Nonetheless, in this section we do not impose
any restriction on the link function φ other than continuous differentiability. Denoting z the vector
of univariate string GP processes and their derivatives, evaluated at all distinct input coordinate
values, we may re-parametrize the likelihood as p (D|z,u), with the understanding that f can be
recovered from z through the link function φ. To complete our prior specification, we need to
discuss the choice of boundary times {ajk} and the choice of the corresponding unconditional kernel
structures {kjk}. Before doing so, we would like to stress that key requirements of our sampler are
that i) it should decouple the need for scalability from the need for flexibility, ii) it should scale
linearly with the number of training and test inputs, and iii) the user should be able to express
prior views on model complexity/flexibility in an intuitive way, but the sampler should be able to
validate or invalidate the prior model complexity from the data. While the motivations for the last
two requirements are obvious, the first requirement is motivated by the fact that a massive data set
may well be more homogeneous than a much smaller data set.

5.2.2 SCALABLE CHOICE OF BOUNDARY TIMES

To motivate our choice of boundary times that achieves great scalability, we first note that the
evaluation of the likelihood, which will naturally be needed by the MCMC sampler, will typically
have at least linear time complexity and linear memory requirement, as it will require performing
computations that use each training sample at least once. Thus, the best we can hope to achieve
overall is linear time complexity and linear memory requirement. Second, in MCMC schemes with
functional priors, the time complexity and memory requirements for sampling from the posterior

p (f |D) ∝ p (D|f) p(f)

are often the same as the resource requirements for sampling from the prior p (f), as evaluating
the model likelihood is rarely the bottleneck. Finally, we note from Algorithm 1 that, when each
input coordinate in each dimension is a boundary time, the sampling scheme has time complexity
and memory requirement that are linear in the maximum number of unique input coordinates across
dimensions, which is at most the number of training samples. In effect, each univariate derivative
string GP is sampled in parallel at as many times as there are unique input coordinates in that di-
mension, before being combined through the link function. In a given input dimension, univariate
derivative string GP values are sampled sequentially, one boundary time conditional on the previ-
ous. The foregoing sampling operation is very scalable not only asymptotically but also in absolute
terms; it merely requires storing and inverting at most as many 2 × 2 matrices as the number of
input points. We will evaluate the actual overall time complexity and memory requirement when
we discuss our MCMC sampler in greater details. For now, we would like to stress that i) choosing
each distinct input coordinate value as a boundary time in the corresponding input dimension before
training is a perfectly valid choice, ii) we expect this choice to result in resource requirements that
grow linearly with the sample size and iii) in the string GP theory we have developed thus far there
is no requirement that two adjacent strings be driven by different kernel hyper-parameters.

5.2.3 MODEL COMPLEXITY LEARNING AS A CHANGE-POINT PROBLEM

The remark iii) above pertains to model complexity. In the simplest case, all strings are driven by the
same kernel and hyper-parameters as it was the case in Section 4.5, where we discussed how this

23

KOM SAMO AND ROBERTS

setup departs from postulating the unconditional string covariance function kjk globally similarly
to the standard GP paradigm. The more distinct unconditional covariance structures there are,
the more complex the model is, as it may account for more types of local patterns. Thus, we may
identify model complexity to the number of different kernel configurations across input dimensions.
In order to learn model complexity, we require that some (but not necessarily all) strings share their
kernel configuration.7 Moreover, we require kernel membership to be dimension-specific in that
two strings in different input dimensions may not explicitly share a kernel configuration in the prior
specification, although the posterior distribution over their hyper-parameters might be similar if the
data support it.

In each input dimension j, kernel membership is defined by a partition of the corresponding
domain operated by a (possibly empty) set of change-points,8 as illustrated in Figure 4. When there
is no change-point as in Figure 4-(a), all strings are driven by the same kernel and hyper-parameters.
Each change-point cjp induces a new kernel configuration θjp that is shared by all strings whose
boundary times ajk and ajk+1 both lie in [cjp, c

j
p+1[. When one or multiple change-points cjp occur

between two adjacent boundary times as illustrated in Figures 4-(b-d), for instance ajk ≤ c
j
p ≤ ajk+1,

the kernel configuration of the string defined on [ajk, a
j
k+1] is that of the largest change-point that lies

in [ajk, a
j
k+1] (see for instance Figure 4-(d)). For consistency, we denote θj0 the kernel configuration

driving the first string in the j-th dimension; it also drives strings that come before the first change-
point, and all strings when there is no change-point.

To place a prior on model complexity, it suffices to define a joint probability measure on the
set of change-points and the corresponding kernel configurations. As kernel configurations are
not shared across input dimensions, we choose these priors to be independent across input dimen-
sions. Moreover, {cjp} being a random collection of points on an interval whose number and po-
sitions are both random, it is de facto a point process (Daley and Vere-Jones (2008)). To keep the
prior specification of change-points uninformative, it is desirable that conditional on the number of
change-points, the positions of change-points be i.i.d. uniform on the domain. As for the number
of change-points, it is important that the support of its distribution not be bounded, so as to allow
for an arbitrarily large model complexity if warranted. The two requirements above are satisfied by
a homogeneous Poisson process or HPP (Daley and Vere-Jones (2008)) with constant intensity λj .
More precisely, the prior probability measure on

(
{cjp, θjp}, λj

)
is constructed as follows:

λj ∼ Γ(αj , βj),

{cjp}
∣∣λj ∼ HPP(λj)

θjp[i]
∣∣{cjp}, λj i.i.d∼ logN (0, ρj)

∀(j, p) 6= (l, q) θjp ⊥ θlq,

, (16)

where we choose the Gamma distribution Γ as prior on the intensity λj for conjugacy, we assume all
kernel hyper-parameters are positive as is often the case in practice,9 the coordinates of the hyper-
parameters of a kernel configuration are assumed i.i.d., and kernel hyper-parameters are assumed

7. That is, the functional form of the unconditional kernel kjk and its hyper-parameters.
8. We would like to stress that change-points do not introduce new input points or boundary times, but solely define a

partition of the domain of each input dimension.
9. This may easily be relaxed if needed, for instance by putting normal priors on parameters that may be negative and

log-normal priors on positive parameters.

24

STRING AND MEMBRANE GAUSSIAN PROCESSES

(a)

(b)

(c)

(d)

Figure 4: Effects of domain partition through change-points (coloured circles), on kernel member-
ship. Each vertical bar corresponds to a distinct boundary time ajk. For the same collection
of boundary times, we consider four scenarios: (a) no partition, (b) partition of the domain
in two by a single change-point that does not coincide with any existing boundary time,
(c) partition of the domain in three by two change-points, one of which coincides with
an existing boundary time, and (d) partition of the domain in two by two distinct change-
points. In each scenario, kernel membership is illustrated by colour-coding. The colour
of the interval between two consecutive boundary times ajk and ajk+1 reflects what ker-
nel configuration drives the corresponding string; in particular, the colour of the vertical
bar corresponding to boundary time ajk+1 determines what kernel configuration should
be used to compute the conditional distribution of the value of the derivative string GP
(zjt , z

j′
t) at ajk+1, given its value at ajk.

25

KOM SAMO AND ROBERTS

independent between kernel configurations. Denoting the domain of the j-th input [aj , bj], it follows
from applying the laws of total expectation and total variance on Equation (16) that the expected
number of change-points in the j-th dimension under our prior is

E
(
#{cjp}

)
=
(
bj − aj

) αj
βj
, (17)

and the variance of the number of change-points in the j-dimension under our prior is

Var
(
#{cjp}

)
=
(
bj − aj

) αj
βj

(
1 +

(
bj − aj

)
βj

)
. (18)

The two equations above may guide the user when setting the parameters αj and βj . For instance,
these values may be set so that the expected number of change-points in a given input dimension be a
fixed fraction of the number of boundary times in that input dimension, and so that the prior variance
over the number of change-points be large enough that overall the prior isn’t too informative.

We could have taken a different approach to construct our prior on change-points. In effect,
assuming for the sake of the argument that the boundaries of the domain of the j-th input, namely
aj and bj , are the first and last change-point in that input dimension, we note that the mapping

(
. . . , cjp, . . .

)
→
(
. . . , pjp, . . .

)
:=

(
. . . ,

cjp+1 − c
j
p

bj − aj
, . . .

)
defines a bijection between the set of possible change-points in the j-th dimension and the set
of all discrete probability distributions. Thus, we could have placed as prior on

(
. . . , pjp, . . .

)
a

Dirichlet process (Ferguson (1973)), a Pitman-Yor process (Pitman and Yor (1997)), more generally
normalized completely random measures (Kingman (1967)) or any other probability distribution
over partitions. We prefer the point process approach primarily because it provides an easier way
of expressing prior belief about model complexity through the expected number of change-points
#{cjp}, while remaining uninformative about positions thereof.

One might also be tempted to regard change-points in an input dimension j as inducing a par-
tition, not of the domain [aj , bj], but of the set of boundary times ajk in the same dimension, so
that one may define a prior over kernel memberships through a prior over partitions of the set of
boundary times. However, this approach would be inconsistent with the aim to learn local patterns
in the data if the corresponding random measure is exchangeable. In effect, as boundary times are
all input coordinates, local patterns may only arise in the data as a result of adjacent strings sharing
kernel configurations. An exchangeable random measure would postulate a priori that two kernel
membership assignments that have the same kernel configurations (i.e. the same number of configu-
rations and the same set of hyper-parameters) and the same number of boundary times in each kernel
cluster (although not exactly the same boundary times), are equally likely to occur, thereby possibly
putting more probability mass on kernel membership assignments that do not respect boundary time
adjacency. Unfortunately, exchangeable random measures (among which the Dirichlet process and
the Pitman-Yor process) are by far more widely adopted by the machine learning community than
non-exchangeable random measures. Thus, this approach might be perceived as overly complex.
That being said, as noted by Foti and Williamson (2015), non-exchangeable normalized random
measures may be regarded as Poisson point processes (with varying intensity functions) on some

26

STRING AND MEMBRANE GAUSSIAN PROCESSES

augmented spaces, which makes this choice of prior specification somewhat similar, but stronger
(that is more informative) than the one we adopt in this paper.

Before deriving the sampling algorithm, it is worth noting that the prior defined in Equation (16)
does not admit a density with respect to the same base measure,10 as the number of change-points
#{cjp}, and subsequently the number of kernel configurations, may vary from one sample to another.
Nevertheless, the joint distribution over the data D and all other model parameters is well defined
and, as we will see later, we may leverage reversible-jump MCMC techniques (Green (1995); Green
and Hastie (2009)) to construct a Markov chain that converges to the posterior distribution.

5.2.4 OVERALL STRUCTURE OF THE MCMC SAMPLER

To ease notations, we denote c the set of all change-points in all input dimensions, we denote
n =

(
. . . ,#{cjp}, . . .

)
∈ Nd the vector of the numbers of change-points in each input dimension,

we denote θ the set of kernel hyper-parameters,11 and ρ := (. . . , ρj , . . .) the vector of variances of
the independent log-normal priors on θ. We denote λ := (. . . , λj , . . .) the vector of change-points
intensities, we denote α := (. . . , αj , . . .) and β := (. . . , βj , . . .) the vectors of parameters of the
Gamma priors we placed on the change-points intensities across the d input dimensions, and we
recall that u denotes the vector of likelihood parameters other than the values of the latent function
f .

We would like to sample from the posterior distribution p(f , f∗,∇f ,∇f∗|D,α,β,ρ), where f
and f∗ are the vectors of values of the latent function f at training and test inputs respectively, and
∇f ,∇f∗ the corresponding gradients. Denoting z the vector of univariate string GP processes and
their derivatives, evaluated at all distinct training and test input coordinate values, we note that to
sample from p(f , f∗,∇f ,∇f∗|D,α,β,ρ), it suffices to sample from p(z|D,α,β,ρ), compute f
and f∗ using the link function, and compute the gradients using Equation (11). To sample from
p(z|D,α,β,ρ), we may sample from the target distribution

π(n, c,θ,λ, z,u) := p(n, c,θ,λ, z,u|D,α,β,ρ), (19)

and discard variables that are not of interest. As previously discussed, π is not absolutely continuous
with respect to the same base measure, though we may still decompose it as

π(n, c,θ,λ, z,u) =
1

p(D|α,β,ρ)
p(n|λ)p(λ|α,β)p(c|n)p(θ|n,ρ)p(u)p(z|c,θ)p(D|z,u),

(20)
where we use the notation p(.) and p(.|.) to denote probability measures rather than probability
density functions or probability mass functions, and where product and scaling operations are usual
measure operations. Before proceeding any further, we will introduce a slight re-parametrization of
Equation (20) that will improve the inference scheme.

Let na = (. . . ,#{ajk}k, . . .) be the vector of the numbers of unique boundary times in all d
input dimensions. We recall from our prior on f that

p(z|c,θ) =

d∏
j=1

p

(
zj
aj0
, zj′
aj0

)na[j]−1∏
k=1

p

(
zj
ajk
, zj′
ajk

∣∣∣zj
ajk−1

, zj′
ajk−1

)
, (21)

10. That is the joint prior probability measure is neither discrete, nor continuous.
11. To simplify the exposition, we assume without loss of generality that each kernel configuration has the same kernel

functional form, so that configurations are defined by kernel hyper-parameters.

27

KOM SAMO AND ROBERTS

where each factor in the decomposition above is a bivariate Gaussian density whose mean vector and
covariance matrix is obtained from the partitions c, the kernel hyper-parameters θ, and the kernel
membership scheme described in Section 5.2.3 and illustrated in Figure 4, and using Equations
(6-7). Let jkKu;v be the unconditional covariance matrix between

(
zju, z

j′
u

)
and

(
zjv, z

j′
v

)
as per

the unconditional kernel structure driving the string defined on the interval [ajk, a
j
k+1[. Let Σj

0 :=

j
0K

aj0;aj0
be the auto-covariance matrix of

(
zj
aj0
, zj′
aj0

)
. Let

Σj
k := j

kK
ajk;ajk

− j
kK

ajk;ajk−1

j
kK−1

ajk−1;ajk−1

j
kKT

ajk;ajk−1

be the covariance matrix of
(
zj
ajk
, zj′
ajk

)
given

(
zj
ajk−1

, zj′
ajk−1

)
, and

M j
k = j

kK
ajk;ajk−1

j
kK−1

ajk−1;ajk−1

.

Finally, let Ljk := U jk(Dj
k)

1
2 with Σj

k = U jkD
j
k(U

j
k)T the singular value decomposition (SVD) of

Σj
k. We may choose to represent

(
zj
aj0
, zj′
aj0

)
as

zjaj0
zj′
aj0

 = Lj0x
j
0, (22)

and for k > 0 we may also choose to represent
(
zj
ajk
, zj′
ajk

)
as

zjajk
zj′
ajk

 = M j
k

zjajk−1

zj′
ajk−1

+ Ljkx
j
k, (23)

where {xjk} are independent bivariate standard normal vectors. Equations (22-23) provide an equiv-
alent representation. In effect, we recall that if Z = M + LX, where X ∼ N (0, I) is a standard
multivariate Gaussian, M is a real vector, and L is a real matrix, then Z ∼ N (M,LLT). Equations

(22-23) result from applying this result to
(
zj
aj0
, zj′
aj0

)
and

(
zj
ajk
, zj′
ajk

) ∣∣∣(zj
ajk−1

, zj′
ajk−1

)
. We note

that at training time, M j
k and Ljk only depend on kernel hyper-parameters. Denoting x the vector of

all xjk, x is a so-called ‘whitened’ representation of z, which we prefer for reasons we will discuss
shortly. In the whitened representation, the target distribution π is re-parameterized as

π(n, c,θ,λ,x,u) =
1

p(D|α,β,ρ)
p(n|λ)p(λ|α,β)p(c|n)p(θ|n,ρ)p(u)p(x)p(D|x, c,θ,u),

(24)
where the dependency of the likelihood term on the partitions and the hyper-parameters stems from
the need to recover z and subsequently f from x through Equations (22) and (23). The whitened
representation Equation (24) has two primary advantages. Firstly, it is robust to ill-conditioning of

28

STRING AND MEMBRANE GAUSSIAN PROCESSES

Σj
k, which would typically occur when two adjacent boundary times are too close to each other. In

the representation of Equation (20), as one needs to evaluate the density p(z|c,θ), ill-conditioning
of Σj

k would result in numerical instabilities. In contrast, in the whitened representation, one needs
to evaluate the density p(x), which is that of i.i.d. standard Gaussians and as such can be evaluated
robustly. Moreover, the SVD required to evaluate Ljk is also robust to ill-conditioning of Σj

k, so
that Equations (22) and (23) hold and can be robustly evaluated for degenerate Gaussians too. The
second advantage of the whitened representation is that it improves mixing by establishing a link
between kernel hyper-parameters and the likelihood.

Equation (24) allows us to cast our inference problem as a Bayesian model selection problem
under a countable family of models indexed by n ∈ Nd, each defined on a different parameter
subspace Cn, with cross-model normalizing constant p(D|α,β,ρ), model probability driven by
p(n|λ)p(λ|α,β), model-specific prior p(c|n)p(θ|n,ρ)p(u)p(x), and likelihood p(D|x, c,θ,u).
Critically, it can be seen from Equation (24) that the conditional probability distribution

π(c,θ,λ,x,u|n)

admits a density with respect to Lebesgue’s measure on Cn.
Our setup is therefore analogous to that which motivated the seminal paper Green (1995), so

that to sample from the posterior π(c,θ,λ,x,u,n) we may use any Reversible-Jump Metropolis-
Hastings (RJ-MH) scheme satisfying detailed balance and dimension-matching as described in sec-
tion 3.3 of Green (1995). To improve mixing of the Markov chain, we will alternate between
a between-models RJ-MH update with target distribution π(n, c,θ,λ,x,u), and a within-model
MCMC-within-Gibbs sampler with target distribution π(c,θ,λ,x,u|n). Constructing reversible-
jump samplers by alternating between within-model sampling and between-models sampling is
standard practice, and it is well-known that doing so yields a Markov chain that converges to the
target distribution of interest (see Brooks et al., 2011, p. 50).

In a slight abuse of notation, in the following we might use the notations p(.|.) and p(.), which
we previously used to denote probability measures, to refer to the corresponding probability density
functions or probability mass functions.

5.2.5 WITHIN-MODEL UPDATES

We recall from Equation (24) that c,θ,λ,x,u|D,α,β,ρ,n has probability density function

p(n|λ)p(λ|α,β)p(c|n)p(θ|n,ρ)p(u)p(x)p(D|x, c,θ,u), (25)

up to a normalizing constant.
Updating λ: By independence of the priors over (λ[j],n[j]), the distributions λ[j]

∣∣ n[j] are
also independent, so that the updates may be performed in parallel. Moreover, recalling that the
prior number of change-points in the j-th input dimension is Poisson distributed with intensity
λ[j]

(
bj − aj

)
, and by conjugacy of the Gamma distribution to the Poisson likelihood, it follows

that

λ[j]
∣∣ n[j] ∼ Γ

(
n[j]

bj − aj
+α[j], 1 + β[j]

)
. (26)

This update step has memory requirement and time complexity both constant in the number of
training and test samples.

29

KOM SAMO AND ROBERTS

Updating u: When the likelihood has additional parameters u, they may be updated with a
Metropolis-Hastings step. Denoting q(u → u′) the proposal probability density function, the ac-
ceptance ratio reads

ru = min

(
1,
p(u′)p (D|x, c,θ,u′) q(u′ → u)

p(u)p (D|x, c,θ,u) q(u→ u′)

)
. (27)

In some cases however, it might be possible and more convenient to choose p(u) to be conjugate to
the likelihood p (D|x, c,θ,u). For instance, in regression problems under a Gaussian noise model,
we may take u to be the noise variance on which we may place an inverse-gamma prior. Either way,
the computational bottleneck of this step is the evaluation of the likelihood p (D|x, c,θ,u′), which
in most cases can be done with a time complexity and memory requirement that are both linear in
the number of training samples.

Updating c: We update the positions of change-points sequentially using the Metropolis-
Hastings algorithm, one input dimension j at a time, and for each input dimension we proceed
in increasing order of change-points. The proposal new position for the change-point cjp is sampled
uniformly at random on the interval]cjp−1, c

j
p+1[, where cjp−1 (resp. cjp+1) is replaced by aj (resp.

bj) for the first (resp. last) change-point. The acceptance probability of this proposal is easily found
to be

r
cjp

= min

(
1,
p (D|x, c′,θ,u)

p (D|x, c,θ,u)

)
, (28)

where c′ is identical to c except for the change-point to update. This step requires computing
the factors {Ljk,M

j
k} corresponding to inputs in j-th dimension whose kernel configuration would

change if the proposal were to be accepted, the corresponding vector of derivative string GP values
z, and the observation likelihood under the proposal p (D|x, c′,θ,u). The computational bottleneck
of this step is therefore once again the evaluation of the new likelihood p (D|x, c′,θ,u).

Updating x: The target conditional density of x is proportional to

p(x)p(D|x, c,θ,u). (29)

Recalling that p(x) is a multivariate standard normal, it follows that the form of Equation (29)
makes it convenient to use elliptical slice sampling (Murray et al. (2010)) to sample from the un-
ormalized conditional p(x)p(D|x, c,θ,u). The two bottlenecks of this update step are sampling a
new proposal from p(x) and evaluating the likelihood p(D|x, c,θ,u). Sampling from the multi-
variate standard normal p(x) may be massively parallelized, for instance by using GPU Gaussian
random number generators. When no parallelism is available, the overall time complexity reads
O
(∑d

j=1 na[j]
)

, where we recall that na[j] denotes the number of distinct training and testing
input coordinates in the j-th dimension. In particular, if we denote N the total number of training
and testing d-dimensional input samples, then

∑d
j=1 na[j] ≤ dN , although for many classes of

data sets with sparse input values such as images, where each input (single-colour pixel value) may
have at most 256 distinct values, we might have

∑d
j=1 na[j]� dN . As for the memory required to

sample from p(x), it grows proportionally to the size of x, that is inO
(∑d

j=1 na[j]
)

. In regards to
the evaluation of the likelihood p(D|x, c,θ,u), as previously discussed its resource requirements
are application-specific, but it will typically have time complexity that grows inO (N) and memory
requirement that grows in O (dN). For instance, the foregoing resource requirements always hold

30

STRING AND MEMBRANE GAUSSIAN PROCESSES

for i.i.d. observation models such as in nonparametric regression and nonparametric classification
problems.

Updating θ: We note from Equation (25) that the conditional distribution of θ given everything
else has unormalized density

p(θ|n,ρ)p(D|x, c,θ,u), (30)

which we may choose to represent as

p(log θ|n,ρ)p(D|x, c, log θ,u). (31)

As we have put independent log-normal priors on the coordinates of θ (see Equation 16), we may
once again use elliptical slice sampling to sample from log θ before taking the exponential. The time
complexity of generating a new sample from p(log θ|n,ρ) will typically be at most linear in the total
number of distinct kernel hyper-parameters. Overall, the bottleneck of this update is the evaluation
of the likelihood p(D|x, c, log θ,u). In this update, the latter operation requires recomputing the
factors M j

k and Ljk of Equations (22) and (23), which requires computing and taking the SVD of
unrelated 2×2 matrices, computations we may perform in parallel. Once the foregoing factors have
been computed, we evaluate z, the derivative string GP values at boundary times, parallelizing over
input dimensions, and running a sequential update within an input dimension using Equations (22)
and (23). Updating z therefore has time complexity that is, in the worst case where no distributed
computing is available,O (dN), andO (N) when there are up to d computing cores. The foregoing
time complexity will also be that of this update step, unless the observation likelihood is more
expensive to evaluate. The memory requirement, as in previous updates, is O (dN).

Overall resource requirement: To summarize previous remarks, the overall computational
bottleneck of a within-model iteration is the evaluation of the likelihood p(D|x, c,θ,u). For i.i.d.
observation models such as classification and regression problems for instance, the corresponding
time complexity grows in O(N) when d computing cores are available, or O(dN) otherwise, and
the memory requirement grows in O(dN).

5.2.6 BETWEEN-MODELS UPDATES

Our reversible-jump Metropolis-Hastings update proceeds as follows. We choose an input dimen-
sion, say j, uniformly at random. If j has no change-points, that is n[j] = 0, we randomly choose
between not doing anything, and adding a change-point, each outcome having the same probabil-
ity. If n[j] > 0, we either do nothing, add a change-point, or delete a change-point, each outcome
having the same probability of occurrence.

Whenever we choose not to do anything, the acceptance ratio is easily found to be one:

rj0 = 1. (32)

Whenever we choose to add a change-point, we sample the position cj∗ of the proposal new
change-point uniformly at random on the domain [aj , bj] of the j-th input dimension. This proposal
will almost surely break an existing kernel membership cluster, say the p-th, into two; that is cjp <
cj∗ < cjp+1 where we may have aj = cjp and/or bj = cjp+1. In the event cj∗ coincides with an existing
change-point, which should happen with probability 0, we do nothing. When adding a change-point,
we sample a new vector of hyper-parameters θj∗ from the log-normal prior of Equation (16), and we

31

KOM SAMO AND ROBERTS

propose as hyper-parameters for the tentative new clusters [cjp, c
j
∗[and [cj∗, c

j
p+1[the vectors θjadd-left

and θjadd-right defined as

log θjadd-left := cos(α) log θjp − sin(α) log θj∗ (33)

and
log θjadd-right := sin(α) log θjp + cos(α) log θj∗ (34)

respectively, where α ∈ [0, π2] and θjp is the vector of hyper-parameters currently driving the kernel
membership defined by the cluster [cjp, c

j
p+1[. We note that if θjp is distributed as per the prior

in Equation (16) then θjadd-left and θjadd-right are i.i.d. distributed as per the foregoing prior. More
generally, this elliptical transformation determines the extent to which the new proposal kernel
configurations should deviate from the current configuration θjp. α is restricted to [0, π2] so as to
give a positive weight the the current vector of hyper-parameters θjp. When α = 0, the left hand-
side cluster [cjp, c

j
∗[will fully exploit the current kernel configuration, while the right hand-side

cluster [cj∗, c
j
p+1[will use the prior to explore a new set of hyper-parameters. When α = π

2 the
reverse occurs. To preserve symmetry between the left and right hand-side kernel configurations,
we choose

α =
π

4
. (35)

Whenever we choose to delete a change-point, we choose an existing change-point uniformly at
random, say cjp. Deleting cjp, would merge the clusters [cjp−1, c

j
p[and [cjp, c

j
p+1[, where we may have

aj = cjp−1 and/or bj = cjp+1. We propose as vector of hyper-parameters for the tentative merged
cluster [cjp−1, c

j
p+1[the vector θjdel-merged satisfying:

log θjdel-merged = cos(α) log θjp−1 + sin(α) log θjp, (36)

which together with
log θjdel-* = − sin(α) log θjp−1 + cos(α) log θjp, (37)

constitute the inverse of the transformation defined by Equations (33) and (34).
Whenever a proposal to add or delete a change-point occurs, the factors Ljk and M j

k that would
be affected by the change in kernel membership structure are recomputed, and so are the affected
coordinates of z.

This scheme satisfies the reversibility and dimension-matching requirements of Green (1995).
Moreover, the absolute value of the Jacobian of the mapping(

log θjp, log θj∗
)
→
(

log θjadd-left, log θjadd-right

)
of the move to add a change-point in [cjp, c

j
p+1[reads∣∣∣∣∣∣

∂
(

log θjadd-left, log θjadd-right

)
∂
(

log θjp, log θj∗

)
∣∣∣∣∣∣ = 1. (38)

32

STRING AND MEMBRANE GAUSSIAN PROCESSES

Similarly, the absolute value of the Jacobian of the mapping corresponding to a move to delete
change-point cjp, namely(

log θjp−1, log θjp

)
→
(

log θjdel-merged, log θjdel-*

)
,

reads: ∣∣∣∣∣∂
(

log θjdel-merged, log θjdel-*

)
∂
(

log θjp−1, log θjp
) ∣∣∣∣∣ = 1. (39)

Applying the standard result Equation (8) of Green (1995), the acceptance ratio of the move to add
a change-point is found to be

rj+ = min

1,
p(D|x, c+,θ+,u)

p(D|x, c,θ,u)

λ[j]
(
bj − aj

)
1 + n[j]

plog θj

(
log θjadd-left

)
plog θj

(
log θjadd-right

)
plog θj

(
log θjp

)
plog θj

(
log θj∗

)

(40)

where plog θj is the prior over log hyper-parameters in the j-th input dimension (as per the prior
specification Equation 16), which we recall is i.i.d. centred Gaussian with variance ρ[j], and c+

and θ+ denote the proposal new vector of change-points and the corresponding vector of hyper-
parameters. The three coloured terms in the acceptance probability are very intuitive. The green
term p(D|x,c+,θ+,u)

p(D|x,c,θ,u) represents the fit improvement that would occur if the new proposal is accepted.

In the red term
λ[j](bj−aj)

1+n[j] , λ[j]
(
bj − aj

)
represents the average number of change-points in the j-

th input dimension as per the HPP prior, while 1 + n[j] corresponds to the proposal new number of
change-points in the j-th dimension, so that the whole red term acts as a complexity regulariser. Fi-

nally, the blue term
p
log θj (log θjadd-left)plog θj (log θjadd-right)

p
log θj (log θjp)plog θj (log θj∗)

plays the role of hyper-parameters regulariser.

Similarly, the acceptance ratio of the move to delete change-point cjp, thereby changing the
number of change-points in the j-th input dimension from n[j] to n[j]− 1, is found to be

rj− = min

1,
p(D|x, c−,θ−,u)

p(D|x, c,θ,u)

n[j]

λ[j] (bj − aj)

plog θj

(
log θjdel-merged

)
plog θj

(
log θjdel-*

)
plog θj

(
log θjp−1

)
plog θj

(
log θjp

)
 ,

(41)
where c− and θ− denote the proposal new vector of change-points and the corresponding vector of
hyper-parameters. Once more, each coloured term plays the same intuitive role as its counterpart in
Equation (40).

Overall resource requirement: The bottleneck of between-models updates is the evaluation of
the new likelihoods p(D|x, c+,θ+,u) or p(D|x, c−,θ−,u), whose resource requirements, which
are the same as those of within-models updates, we already discussed.

Algorithm 2 summarises the proposed MCMC sampler.

5.3 Multi-Output Problems

Although we have restricted ourselves to cases where the likelihood model depends on a single
real-valued function for brevity and to ease notations, cases where the likelihood depends on vector-
valued functions, or equivalently multiple real-valued functions, present no additional theoretical or

33

KOM SAMO AND ROBERTS

Algorithm 2 MCMC sampler for nonparametric Bayesian inference of a real-valued latent function
under a string GP prior

Inputs: Likelihood model p(D|f ,u), link function φ, training data D, test inputs, type of uncon-
ditional kernel, prior parameters α,β,ρ.
Outputs: Posterior samples of the values of the latent function at training and test inputs f and
f∗, and the corresponding gradients∇f and ∇f∗.

Step 0: Set n = 0 and c = ∅, and sample θ,λ,x,u from their priors.
repeat

Step 1: Perform a within-model update.
1.1: Update each λ[j] by sampling from the Gamma distribution in Equation (26).
1.2: Update u, the vector of other likelihood parameters, if any, using Metropolis-Hastings

(MH) with proposal q and acceptance ratio Equation (27) or by sampling directly from the
posterior when p(u) is conjugate to the likelihood model.

1.3: Update θ, using elliptical slice sampling (ESS) with target distribution Equation (31),
and record the newly computed factors {Ljk,M

j
k} that relate z to its whitened representation

x.
1.4: Update x using ESS with target distribution Equation (29).
1.5: Update change-point positions c sequentially using MH, drawing a proposal update for

cjp uniformly at random on]cJp−1, c
j
p+1[, and accepting the update with probability r

cjp
(defined

Equation 28). On accept, update the factors {Ljk,M
j
k}.

Step 2: Perform a between-models update.
2.1: Sample a dimension to update, say j, uniformly at random.
2.2: Consider adding or deleting a change-point

if n[j] = 0 then
Randomly choose to add a change-point with probability 1/2.
if we should consider adding a change-point then

Construct proposals to update following Section 5.2.6.
Accept proposals with probability rj+ (see Equation 40).

end if
else

Randomly choose to add/delete a change-point with probability 1/3.
if we should consider adding a change-point then

Construct proposals to update following Section 5.2.6.
Accept proposals with probability rj+ (see Equation 40).

else if we should consider deleting a change-point then
Construct proposals to update following Section 5.2.6.
Accept proposals with probability rj− (see Equation 41).

else
Continue.

end if
end if

Step 3: Compute f , f∗,∇f and ∇f∗, first recovering z from x, and then recalling that f(x) =

φ
(
z1
x[1], . . . , z

d
x[d]

)
and∇f(x) =

(
z1′
x[1]

∂φ
∂x[1](x), . . . , zd′x[d]

∂φ
∂x[d](x)

)
.

until enough samples are generated after mixing.
34

STRING AND MEMBRANE GAUSSIAN PROCESSES

practical challenge. We may simply put independent string GP priors on each of the latent functions.
An MCMC sampler almost identical to the one introduced herein may be used to sample from the
posterior. All that is required to adapt the proposed MCMC sampler to multi-outputs problems is to
redefine z to include all univariate derivative string GP values across input dimensions and across
latent functions, perform step 1.1 of Algorithm 2 for each of the latent function, and update step 2.1
so as to sample uniformly at random not only what dimension to update but also what latent function.
Previous analyses and derived acceptance ratios remain unchanged. The resource requirements
of the resulting multi-outputs MCMC sampler on a problem with K latent functions, N training
and test d-dimensional inputs, are the same as those of the MCMC sampler for a single output
(Algorithm 2) with N training and test dK-dimensional inputs. The time complexity is O(N)
when dK computing cores are available,O(dKN) when no distributed computing is available, and
the memory requirement becomes O(dKN).

5.4 Flashback to Small Scale GP Regressions with String GP Kernels

In Section 5.1 we discussed maximum marginal likelihood inference in Bayesian nonparametric
regressions under additively separable string GP priors, or GP priors with string GP covariance
functions. We proposed learning the positions of boundary times, conditional on their number,
jointly with kernel hyper-parameters and noise variances by maximizing the marginal likelihood
using gradient-based techniques. We then suggested learning the number of strings in each input
dimension by trading off goodness-of-fit with model simplicity using information criteria such as
AIC and BIC. In this section, we propose a fully Bayesian nonparametric alternative.

Let us consider the Gaussian process regression model

yi = f(xi) + εi, f ∼ GP (0, kSGP(., .)) , εi ∼ N
(
0, σ2

)
, (42)

xi ∈ [a1, b1]× · · · × [ad, bd], yi, εi ∈ R, (43)

where kSGP is the covariance function of some string GP with boundary times {ajk} and correspond-
ing unconditional kernels {kjk} in the j-th input dimension. It is worth stressing that we place a GP
(not string GP) prior on the latent function f , but the covariance function of the GP is a string GP
covariance function (as discussed in Section 4.2 and as derived in Appendix I). Of course when the
string GP covariance function kSGP is separately additive, the two functional priors are the same.
However, we impose no restriction on the link function of the string GP that kSGP is the covariance
function of, other than continuous differentiability. To make full Bayesian nonparametric inference,
we may place on the boundary times {ajk} independent homogeneous Poisson process priors, each
with intensity λj . Similarly to the previous section (Equation 16) our full prior specification of the
string GP kernel reads

λj ∼ Γ(αj , βj),

{ajk}
∣∣λj ∼ HPP(λj)

θjk[i]
∣∣{ajk}, λj i.i.d∼ logN (0, ρj)

∀(j, k) 6= (l, p) θjk ⊥ θ
l
p,

, (44)

where θjk is the vector of hyper-parameters driving the unconditional kernel kjk. The method de-
veloped in the previous section and the resulting MCMC sampling scheme (Algorithm 2) may be

35

KOM SAMO AND ROBERTS

reused to sample from the posterior over function values, pending the following two changes. First,
gradients∇f and∇f∗ are no longer necessary. Second, we may work with function values (f , f∗) di-
rectly (that is in the original as opposed to whitened space). The resulting (Gaussian) distribution of
function values (f , f∗) conditional on all other variables is then analytically derived using standard
Gaussian identities, like it is done in vanilla Gaussian process regression, so that the within-model
update of (f , f∗) is performed using a single draw from a multivariate Gaussian.

This approach to model complexity learning is advantageous over the information criteria al-
ternative of Section 5.1 in that it scales better with large input-dimensions. Indeed, rather than
performing complete maximum marginal likelihood inference a number of times that grows expo-
nentially with the input dimension, the approach of this section alternates between exploring a new
combination of numbers of kernel configurations in each input dimension, and exploring function
values and kernel hyper-parameters (given their number). That being said, this approach should
only be considered as an alternative to commonly used kernels for small scale regression problems
to enable the learning of local patterns. Crucially, it scales as poorly as the standard GP paradigm,
and Algorithm 2 should be preferred for large scale problems.

6. Experiments

We now move on to presenting empirical evidence for the efficacy of string GPs in coping with
local patterns in data sets, and in doing so in a scalable manner. Firstly we consider maximum
marginal likelihood inference on two small scale problems exhibiting local patterns. We begin
with a toy experiment that illustrates the limitations of the standard GP paradigm in extrapolating
and interpolating simple local periodic patterns. Then, we move on to comparing the accuracy
of Bayesian nonparametric regression under a string GP prior to that of the standard Gaussian
process regression model and existing mixture-of-experts alternatives on the motorcycle data set of
Silverman (1985), commonly used for the local patterns and heteroskedasticity it exhibits. Finally,
we illustrate the performance of the previously derived MCMC sampler on two large scale Bayesian
inference problems, namely the prediction of U.S. commercial airline arrival delays of Hensman
et al. (2013) and a new large scale dynamic asset allocation problem.

6.1 Extrapolation and Interpolation of Synthetic Local Patterns

In our first experiment, we illustrate a limitation of the standard approach consisting of postulating
a global covariance structure on the domain, namely that this approach might result in unwanted
global extrapolation of local patterns, and we show that this limitation is addressed by the string GP
paradigm. To this aim, we use 2 toy regression problems. We consider the following functions:

f0(t) =

{
sin(60πt) t ∈ [0, 0.5]
15
4 sin(16πt) t ∈]0.5, 1]

, f1(t) =

{
sin(16πt) t ∈ [0, 0.5]
1
2 sin(32πt) t ∈]0.5, 1]

. (45)

f0 (resp. f1) undergoes a sharp (resp. mild) change in frequency and amplitude at t = 0.5. We con-
sider using their restrictions to [0.25, 0.75] for training. We sample those restrictions with frequency
300, and we would like to extrapolate the functions to the rest of their domains using Bayesian non-
parametric regression.

We compare marginal likelihood string GP regression models, as described in Section 5.1, to
vanilla GP regression models using popular and expressive kernels. All string GP models have two
strings and the partition is learned in the marginal likelihood maximisation. Figure 5 illustrates

36

STRING AND MEMBRANE GAUSSIAN PROCESSES

plots of the posterior means for each kernel used, and Table 2 compares predictive errors. Overall, it
can be noted that the string GP kernel with the periodic kernel (MacKay (1998)) as building block
outperforms competing kernels, including the expressive spectral mixture kernel

kSM(r) =
K∑
k=1

σ2
k exp(−2π2r2γ2

k) cos(2πrµk)

of Wilson and Adams (2013) with K = 5 mixture components.12

The comparison between the spectral mixture kernel and the string spectral mixture kernel is
of particular interest, since spectral mixture kernels are pointwise dense in the family of stationary
kernels, and thus can be regarded as flexible enough for learning stationary kernels from the data.
In our experiment, the string spectral mixture kernel with a single mixture component per string sig-
nificantly outperforms the spectral mixture kernel with 5 mixture components. This intuitively can
be attributed to the fact that, regardless of the number of mixture components in the spectral mixture
kernel, the learned kernel must account for both types of patterns present in each training data set.
Hence, each local extrapolation on each side of 0.5 will attempt to make use of both amplitudes and
both frequencies evidenced in the corresponding training data set, and will struggle to recover the
true local sine function. We would expect that the performance of the spectral mixture kernel in this
experiment will not improve drastically as the number of mixture components increases. However,
under a string GP prior, the left and right hand side strings are independent conditional on the (un-
known) boundary conditions. Therefore, when the string GP domain partition occurs at time 0.5,
the training data set on [0.25, 0.5] influences the hyper-parameters of the string to the right of 0.5
only to the extent that both strings should agree on the value of the latent function and its derivative
at 0.5. To see why this is a weaker condition, we consider the family of pair of functions:

(αω1 sin(ω2t), αω2 sin(ω1t)), ωi = 2πki, ki ∈ N, α ∈ R.

Such functions always have the same value and derivative at 0.5, regardless of their frequencies,
and they are plausible GP paths under a spectral mixture kernel with one single mixture component
(µk = ki and γk � 1), and under a periodic kernel. As such it is not surprising that extrapolation
under a string spectral mixture kernel or a string periodic kernel should perform well.

To further illustrate that string GPs are able to learn local patterns that GPs with commonly
used and expressive kernels can’t, we consider interpolating two bivariate functions f2 and f3 that
exhibit local patterns. The functions are defined as:

∀u, v ∈ [0.0, 1.0] f2(u, v) = f0(u)f1(v), f3(u, v) =
√
f0(u)2 + f1(v)2. (46)

We consider recovering the original functions as the posterior mean of a GP regression model trained
on [0.0, 0.4] ∪ [0.6, 1.0] × [0.0, 0.4] ∪ [0.6, 1.0]. Each bivariate kernel used is a product of two
univariate kernels in the same family, and we used standard Kronecker techniques to speed-up
inference (see Saatchi, 2011, p.134). The univariate kernels we consider are the same as previously.
Each univariate string GP kernel has one change-point (two strings) whose position is learned by
maximum marginal likelihood. Results are illustrated in Figures 6 and 7. Once again it can be
seen that unlike any competing kernel, the product of string periodic kernels recover both functions
almost perfectly. In particular, it is impressive to see that, despite f3 not being a separable function,

12. The sparse spectrum kernel of Lazaro-Gredilla et al. (2010) can be thought of as the special case γk � 1.

37

KOM SAMO AND ROBERTS

a product of string periodic kernels recovered it almost perfectly. The interpolations performed
by the spectral mixture kernel (see Figures 6 and 7) provide further evidence for our previously
developed narrative: the spectral mixture kernel tries to blend all local patterns found in the training
data during the interpolation. The periodic kernel learns a single global frequency characteristic
of the whole data set, ignoring local patterns, while the squared exponential, Matérn and rational
quadratic kernels merely attempt to perform interpolation by smoothing.

Although we used synthetic data to ease illustrating our argument, it is reasonable to expect that
in real-life problems the bigger the data set, the more likely there might be local patterns that should
not be interpreted as noise and yet are not indicative of the data set as whole.

38

STRING AND MEMBRANE GAUSSIAN PROCESSES

0.0 0.2 0.4 0.6 0.8 1.0
t

−6

−4

−2

0

2

4

6
f(

t)
Extrapolation of f0

f0

Per.
SM
String Per.
String SM
SE
MA 3/2
MA 5/2
RQ

0.0 0.2 0.4 0.6 0.8 1.0
t

−6

−4

−2

0

2

4

6

f(
t)

Extrapolation of f1

f1

Per.
SM
String Per.
String SM
SE
MA 3/2
MA 5/2
RQ

Figure 5: Extrapolation of two functions f0 and f1 through Bayesian nonparametric regression un-
der string GP priors and vanilla GP priors with popular and expressive kernels. Each
model is trained on [0.25, 0.5] and extrapolates to [0, 1.0].

39

KOM SAMO AND ROBERTS

A
bs

ol
ut

e
E

rr
or

Sq
ua

re
d

E
rr

or

K
er

ne
l

f 0
f 1

f 0
f 1

Sq
ua

re
d

ex
po

ne
nt

ia
l

1
.4

4
±

2
.4

0
0.

48
±

0.
58

3.
50
±

9.
20

0.
31
±

0.
6
4

R
at

io
na

lq
ua

dr
at

ic
1
.3

9
±

2
.3

1
0.

51
±

0.
83

3.
28
±

8.
79

0.
43
±

1.
1
5

M
at

ér
n

3/
2

1
.6

3
±

2
.5

3
1.

26
±

1.
37

4.
26
±

11
.0

7
2.

06
±

3.
5
5

M
at

ér
n

5/
2

1
.7

5
±

2
.7

7
0.

48
±

0.
58

5.
00
±

12
.1

8
0.

31
±

0.
6
4

Pe
ri

od
ic

1
.5

1
±

2
.4

5
0.

53
±

0.
60

3.
79
±

9.
62

0.
37
±

0.
7
2

Sp
ec

.M
ix

.(
5

co
m

p.
)

0
.7

5
±

1
.1

5
0.

39
±

0.
57

0.
94
±

2.
46

0.
24
±

0.
5
8

St
ri

ng
Sp

ec
.M

ix
.(

2
st

ri
ng

s,
1

co
m

p.
)

0
.2

3
±

0
.8

4
0.

01
±

0.
03

0.
21
±

1.
07

0
.0
0
±

0
.0
0

St
ri

ng
Pe

ri
od

ic
0
.0
2
±
0
.0
2

0
.0
0
±
0
.0
1

0
.0
0
±
0
.0
0

0
.0
0
±

0
.0
0

Ta
bl

e
2:

Pr
ed

ic
tiv

e
ac

cu
ra

ci
es

in
th

e
ex

tr
ap

ol
at

io
n

of
th

e
tw

o
fu

nc
tio

ns
f 0

an
d
f 1

of
Se

ct
io

n
6.

1
th

ro
ug

h
B

ay
es

ia
n

no
np

ar
am

et
ri

c
re

gr
es

-
si

on
un

de
r

st
ri

ng
G

P
pr

io
rs

an
d

va
ni

lla
G

P
pr

io
rs

w
ith

po
pu

la
r

an
d

ex
pr

es
si

ve
ke

rn
el

s.
E

ac
h

m
od

el
is

tr
ai

ne
d

on
[0
.2

5,
0.

5
]

an
d

ex
tr

ap
ol

at
es

to
[0
,1
.0

].
T

he
pr

ed
ic

tiv
e

er
ro

rs
ar

e
re

po
rt

ed
as

av
er

ag
e
±

2
st

an
da

rd
de

vi
at

io
ns

.

40

STRING AND MEMBRANE GAUSSIAN PROCESSES

6.2 Small Scale Heteroskedastic Regression

In our second experiment, we consider illustrating the advantage of the string GP paradigm over
the standard GP paradigm, but also over the alternatives of Kim et al. (2005), Gramacy and Lee
(2008), Tresp (2000) and Deisenroth and Ng (2015) that consist of considering independent GP ex-
perts on disjoint parts of the domain or handling disjoint subsets of the data. Using the motorcycle
data set of Silverman (1985), commonly used for the local patterns and heteroskedasticity it ex-
hibits, we show that our approach outperforms the aforementioned competing alternatives, thereby
providing empirical evidence that the collaboration between consecutive GP experts introduced in
the string GP paradigm vastly improves predictive accuracy and certainty in regression problems
with local patterns. We also illustrate learning of the derivative of the latent function, solely from
noisy measurements of the latent function.

The observations consist of accelerometer readings taken through time in an experiment on the
efficacy of crash helmets. It can be seen at a glance in Figure 8 that the data set exhibits roughly
4 regimes. Firstly, between 0ms and 15ms the acceleration was negligible. Secondly, the impact
slowed down the helmet, resulting in a sharp deceleration between 15ms and 28ms. Thirdly, the
helmet seems to have bounced back between 28ms and 32ms, before it finally gradually slowed
down and came to a stop between 32ms and 60ms. It can also be noted that the measurement noise
seems to have been higher in the second half of the experiment.

We ran 50 independent random experiments, leaving out 5 points selected uniformly at random
from the data set for prediction, the rest being used for training. The models we considered include
the vanilla GP regression model, the string GP regression model with marginal maximum likelihood
inference as described in Section 5.1, mixtures of independent GP experts acting on disjoint subsets
of the data both for training and testing, the Bayesian committee machine (Tresp (2000)), and the
robust Bayesian committee machine (Deisenroth and Ng (2015)). We considered string GPs with 4
and 6 strings whose boundary times are learned as part of the maximum likelihood inference. For
consistency, we used the resulting partitions of the domain to define the independent experts in the
competing alternatives we considered. The Matérn 3/2 kernel was used throughout. The results
are reported in Table 3. To gauge the ability of each model to capture the physics of the helmets
crash experiment, we have also trained all models with all data points. The results are illustrated in
Figures 8 and 9.

It can be seen at a glance from Figure 9 that mixtures of independent GP experts are inappro-
priate for this experiment as i) the resulting posterior means exhibit discontinuities (for instance at
t = 30ms and t = 40ms) that are inconsistent with the physics of the underlying phenomenon, and
ii) they overfit the data towards the end. The foregoing discontinuities do not come as a surprise as
each GP regression expert acts on a specific subset of the domain that is disjoint from the ones used
by the other experts, both for training and prediction. Thus, there is no guarantee of consistency
between expert predictions at the boundaries of the domain partition. Another perspective to this
observation is found in noting that postulating independent GP experts, each acting on an element of
a partition of the domain, is equivalent to putting as prior on the whole function a stochastic process
that is discontinuous at the boundaries of the partition. Thus, the posterior stochastic process should
not be expected to be continuous at the boundaries of the domain either.

This discontinuity issue is addressed by the Bayesian committee machine (BCM) and the robust
Bayesian committee machine (rBCM) because, despite each independent expert being trained on a
disjoint subset of the data, each expert is tasked with making predictions about all test inputs, not

41

KOM SAMO AND ROBERTS

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

f2

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

Training f2

−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

Figure 6: Extrapolation of a synthetic function f2 (top left corner), cropped in the middle for train-
ing (top right corner), using string GP regression and vanilla GP regression with various
popular and expressive kernels.

42

STRING AND MEMBRANE GAUSSIAN PROCESSES

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

f3

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

Training f3

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

Figure 7: Extrapolation of a synthetic function f3 (top left corner), cropped in the middle for train-
ing (top right corner), using string GP regression and vanilla GP regression with various
popular and expressive kernels.

43

KOM SAMO AND ROBERTS

just the ones that fall into its input subspace. Each GP expert prediction is therefore continuous on
the whole input domain,13 and the linear weighting schemes operated by the BCM and the rBCM on
expert predictions to construct the overall predictive mean preserve continuity. However, we found
that the BCM and the rBCM suffer from three pitfalls. First, we found them to be less accurate
than any other alternative out-of-sample on this data set (see Table 3). Second, their predictions
of latent function values are overly uncertain. This might be due to the fact that, each GP expert
being trained only with training samples that lie on its input subspace, its predictions about test
inputs that lie farther away from its input subspace will typically be much more uncertain, so that,
despite the weighting scheme of the Bayesian committee machine putting more mass on ‘confident’
experts, overall the posterior variance over latent function values might still be much higher than in
the standard GP paradigm for instance. This is well illustrated by both the last column of Table 3
and the BCM and rBCM plots in Figure 9. On the contrary, no string GP model suffers from this
excess uncertainty problem. Third, the posterior means of the BCM, the rBCM and the vanilla GP
regression exhibit oscillations towards the end (t > 40ms) that are inconsistent with the experimen-
tal setup; the increases in acceleration as the helmet slows down suggested by these posterior means
would require an additional source of energy after the bounce.

In addition to being more accurate and more certain about predictions than vanilla GP regres-
sion, the BCM and the rBCM (see Table 3), string GP regressions yield posterior mean acceleration
profiles that are more consistent with the physics of the experiment: steady speed prior to the shock,
followed by a deceleration resulting from the shock, a brief acceleration resulting from the change in
direction after the bounce, and finally a smooth slow down due to the dissipation of kinetic energy.
Moreover, unlike the vanilla GP regression, the rBCM and the BCM, string GP regressions yield
smaller posterior variances towards the beginning and the end of the experiment than in the middle,
which is consistent with the fact that the operator would be less uncertain about the acceleration at
the beginning and at the end of the experiment—one would indeed expect the acceleration to be null
at the beginning and at the end of the experiment. This desirable property can be attributed to the
heteroskedasticity of the noise structure in the string GP regression model.

We also learned the derivative of the latent acceleration with respect to time, purely from noisy
acceleration measurements using the joint law of a string GP and its derivative (Theorem 2). This
is illustrated in Figure 8.

13. So long as the functional prior is continuous, which is the case here.

44

STRING AND MEMBRANE GAUSSIAN PROCESSES

Tr
ai

ni
ng

Pr
ed

ic
tio

n

L
og

.l
ik

.
L

og
.l

ik
.

A
bs

ol
ut

e
E

rr
or

Sq
ua

re
d

E
rr

or
Pr

ed
.S

td

St
ri

ng
G

P
(4

st
ri

ng
s)
−

38
8.

36
±

0
.3

6
−

22
.1

6
±

0
.4

1
1
5
.7
0
±
1
.0
5

4
6
6
.4
7
±
5
0
.7
4

0
.7

0/
2
.2

5/
3
.3

9
St

ri
ng

G
P

(6
st

ri
ng

s)
−
3
6
7
.2
1
±
0
.4
3

−
21
.9

9
±

0
.3

7
15
.8

9
±

1.
06

47
5.

59
±

51
.9

5
0
.6
4
/
2
.2
1
/
3
.4
6

V
an

ill
a

G
P

−
42

0.
69
±

0
.2

4
−

22
.7

7
±

0
.2

4
16
.8

4
±

1.
09

52
4.

18
±

58
.3

3
2.

6
6/

3.
0
9
/4
.9

4
M

ix
.o

f4
G

Ps
−

38
8.

37
±

0
.3

8
−

20
.9

0
±

0
.3

8
16
.6

1
±

1.
10

51
2
.3

0
±

56
.0

8
1.

6
7/

2.
8
5
/4
.5

9
M

ix
.o

f6
G

Ps
−

36
9.

05
±

0
.4

5
−
2
0
.1
1
±
0
.4
5

16
.0

5
±

1
.1

1
50

0
.4

3
±

58
.2

6
0.

6
2/

2.
8
3
/4
.6

3
B

C
M

w
ith

4
G

Ps
−

41
9.

08
±

0
.3

0
−

22
.9

4
±

0
.2

6
17
.1

7
±

1
.1

3
53

8
.9

4
±

61
.9

1
7.

2
0/

9.
9
2
/2

2.
9
2

B
C

M
w

ith
6

G
Ps

−
42

2.
15
±

0
.3

0
−

22
.9

1
±

0
.2

6
16
.9

3
±

1
.1

2
53

3
.2

1
±

61
.7

8
7.

0
9/

9.
9
3
/2

5.
1
0

rB
C

M
w

ith
4

G
Ps

−
41

9.
08
±

0
.3

0
−

22
.9

9
±

0
.2

7
17
.2

9
±

1
.1

1
54

6
.9

5
±

61
.2

1
5.

8
6/

9.
0
8
/2

7.
5
2

rB
C

M
w

ith
6

G
Ps

−
42

2.
15
±

0
.3

0
−

22
.9

6
±

0
.2

8
16
.7

9
±

1
.1

2
54

2
.9

5
±

61
.9

5
5.

1
5/

8.
6
1
/2

9.
1
5

Ta
bl

e
3:

Pe
rf

or
m

an
ce

co
m

pa
ri

so
n

be
tw

ee
n

st
ri

ng
G

P
s,

va
ni

lla
G

Ps
,m

ix
tu

re
of

in
de

pe
nd

en
tG

Ps
,t

he
B

ay
es

ia
n

co
m

m
itt

ee
m

ac
hi

ne
(T

re
sp

(2
00

0)
)

an
d

th
e

ro
bu

st
B

ay
es

ia
n

co
m

m
itt

ee
m

ac
hi

ne
(D

ei
se

nr
ot

h
an

d
N

g
(2

01
5)

)
on

th
e

m
ot

or
cy

cl
e

da
ta

se
to

f
Si

lv
er

m
an

(1
98

5)
.

T
he

M
at

ér
n

3/
2

ke
rn

el
w

as
us

ed
th

ro
ug

ho
ut

.
T

he
do

m
ai

n
pa

rt
iti

on
s

w
er

e
le

ar
ne

d
in

th
e

st
ri

ng
G

P
ex

pe
ri

m
en

ts
by

m
ax

im
um

lik
el

ih
oo

d.
T

he
le

ar
ne

d
pa

rt
iti

on
s

w
er

e
th

en
re

us
ed

to
al

lo
ca

te
da

ta
be

tw
ee

n
G

P
ex

pe
rt

s
in

ot
he

r
m

od
el

s.
5
0

ra
nd

om
ru

ns
w

er
e

pe
rf

or
m

ed
,e

ac
h

ru
n

le
av

in
g

5
da

ta
po

in
ts

ou
tf

or
te

st
in

g
an

d
us

in
g

th
e

re
st

fo
r

tr
ai

ni
ng

.
A

ll
re

su
lts

(e
xc

ep
tf

or
pr

ed
ic

tiv
e

st
an

da
rd

de
vi

at
io

ns
)a

re
re

po
rt

ed
as

av
er

ag
e

ov
er

th
e

50
ru

ns
±

st
an

da
rd

er
ro

r.
T

he
la

st
co

lu
m

n
co

nt
ai

ns
th

e
m

in
im

um
,a

ve
ra

ge
an

d
m

ax
im

um
of

th
e

pr
ed

ic
tiv

e
st

an
da

rd
de

vi
at

io
n

of
th

e
va

lu
es

of
th

e
la

te
nt

(n
oi

se
-f

re
e)

fu
nc

tio
n

at
al

lt
es

tp
oi

nt
s

ac
ro

ss
ra

nd
om

ru
ns

.

45

KOM SAMO AND ROBERTS

0 10 20 30 40 50 60

Time (ms)

−150

−100

−50

0

50

100
A

cc
e
le

ra
ti

o
n
 (

g
)

String GP (6 strings)

0 10 20 30 40 50 60

Time (ms)

−40

−30

−20

−10

0

10

20

30

Je
rk

 (
g
/m

s)

String GP (6 strings)

Figure 8: Posterior mean ± 2 predictive standard deviations on the motorcycle data set (see Silver-
man, 1985), under a Matérn 3/2 derivative string GP prior with 6 learned strings. The top
figure shows the noisy accelerations measurements and the learned latent function. The
bottom function illustrates the derivative of the acceleration with respect to time learned
from noisy acceleration samples. Posterior credible bands are over the latent functions
rather than noisy measurements, and as such they do not include the measurement noise.

46

STRING AND MEMBRANE GAUSSIAN PROCESSES

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

V
a
n
ill
a
 G
P

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

S
tr
in
g
 G
P
 (
4
 s
tr
in
g
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

S
tr
in
g
 G
P
 (
6
 s
tr
in
g
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

B
C
M
 (
4
 e
x
p
e
rt
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

B
C
M
 (
6
 e
x
p
e
rt
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

rB
C
M
 (
4
 e
x
p
e
rt
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

rB
C
M
 (
6
 e
x
p
e
rt
s)

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

M
ix
.
4
 G
P
s

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (
m
s)

−
1
5
0

−
1
0
0

−
5
00

5
0

1
0
0

Acceleration (g)

M
ix
.
6
 G
P
s

Fi
gu

re
9:

B
ay

es
ia

n
no

np
ar

am
et

ri
c

re
gr

es
si

on
s

on
th

e
m

ot
or

cy
cl

e
da

ta
se

to
f

Si
lv

er
m

an
(1

98
5)

.
M

od
el

s
co

m
pa

re
d

ar
e

st
ri

ng
G

P
re

gr
es

si
on

,
va

ni
lla

G
P

re
gr

es
si

on
,m

ix
tu

re
of

in
de

pe
nd

en
tG

P
re

gr
es

si
on

ex
pe

rt
s

on
a

pa
rt

iti
on

of
th

e
do

m
ai

n,
th

e
B

ay
es

ia
n

co
m

m
itt

ee
m

a-
ch

in
e

(B
C

M
)

an
d

th
e

ro
bu

st
B

ay
es

ia
n

co
m

m
itt

ee
m

ac
hi

ne
(r

B
C

M
).

D
om

ai
n

pa
rt

iti
on

s
w

er
e

le
ar

ne
d

du
ri

ng
st

ri
ng

G
P

m
ax

im
um

lik
el

ih
oo

d
in

fe
re

nc
e

(r
ed

ve
rt

ic
al

ba
rs

),
an

d
re

us
ed

in
ot

he
re

xp
er

im
en

ts
.B

lu
e

st
ar

s
ar

e
no

is
y

sa
m

pl
es

,r
ed

lin
es

ar
e

po
st

er
io

rm
ea

ns
of

th
e

la
te

nt
fu

nc
tio

n
an

d
gr

ey
ba

nd
s

co
rr

es
po

nd
to
±

2
pr

ed
ic

tiv
e

st
an

da
rd

de
vi

at
io

ns
of

th
e

(n
oi

se
-f

re
e)

la
te

nt
fu

nc
tio

n
ab

ou
ti

ts
po

st
er

io
rm

ea
n.

47

KOM SAMO AND ROBERTS

6.3 Large Scale Regression

To illustrate how our approach fares against competing alternatives on a standard large scale prob-
lem, we consider predicting arrival delays of commercial flights in the USA in 2008 as studied by
Hensman et al. (2013). We choose the same covariates as in Hensman et al. (2013), namely the
age of the aircraft (number of years since deployment), distance that needs to be covered, airtime,
departure time, arrival time, day of the week, day of the month and month. Unlike Hensman et al.
(2013) who only considered commercial flights between January 2008 and April 2008, we consider
commercial throughout the whole year, for a total of 5.93 million records. In addition to the whole
data set, we also consider subsets so as to empirically illustrate the sensitivity of computational time
to the number of samples. Selected subsets consist of 10, 000, 100, 000 and 1, 000, 000 records
selected uniformly at random. For each data set, we use 2/3 of the records selected uniformly at
random for training and we use the remaining 1/3 for testing. In order to level the playing field
between stationary and nonstationary approaches, we normalize training and testing data sets.14 As
competing alternatives to string GPs we consider the SVIGP of Hensman et al. (2013), the Bayesian
committee machines (BCM) of Tresp (2000), and the robust Bayesian committee machines (rBCM)
of Deisenroth and Ng (2015).

As previously discussed the prediction scheme operated by the BCM is Kolmogorov-inconsistent
in that the resulting predictive distributions are not consistent by marginalization.15 Moreover,
jointly predicting all function values by using the set of all test inputs as query set, as originally
suggested in Tresp (2000), would be impractical in this experiment given that the BCM requires
inverting a covariance matrix of the size of the query set which, considering the numbers of test in-
puts in this experiment (which we recall can be as high as 1.97 million), would be computationally
intractable. To circumvent this problem we use the BCM algorithm to query one test input at a time.
This approach is in-line with that adopted by Deisenroth and Ng (2015), where the authors did not
address determining joint predictive distributions over multiple latent function values. For the BCM
and rBCM, the number of experts is chosen so that each expert processes 200 training points. For
SVIGP we use the implementation made available by the The GPy authors (2012–2016), and we use
the same configuration as in Hensman et al. (2013). As for string GPs, we use the symmetric sum
as link function, and we run two types of experiments, one allowing for inference of change-points
(String GP), and the other enforcing a single kernel configuration per input dimension (String GP*).
The parameters α and β are chosen so that the prior mean number of change-points in each input
dimension is 5% of the number of distinct training and testing values in that input dimension, and
so that the prior variance of the foregoing number of change-points is 50 times the prior mean—the
aim is to be uninformative about the number of change-points. We run 10, 000 iterations of our
RJ-MCMC sampler and discarded the first 5, 000 as ‘burn-in’. After burn-in we record the states
of the Markov chains for analysis using a 1-in-100 thinning rate. Predictive accuracies are reported
in Table 4 and CPU time requirements16 are illustrated in Figure 10. We stress that all experiments
were run on a multi-core machine, and that we prefer using the cumulative CPU clock resource

14. More precisely, we substract from every feature sample (both in-sample and out-of-sample) the in-sample mean of
the feature and we divide the result by the in-sample standard deviation of the feature.

15. For instance the predictive distribution of the value of the latent function at a test input x1, namely f(x1), obtained
by using {x1} as set of test inputs in the BCM, differs from the predictive distribution obtained by using {x1, x2} as
set of test inputs in the BCM and then marginalising with respect to the second input x2.

16. We define CPU time as the cumulative CPU clock resource usage of the whole experiment (training and testing),
across child processes and threads, and across CPU cores.

48

STRING AND MEMBRANE GAUSSIAN PROCESSES

as time complexity metric, instead of wall-clock time, so as to be agnostic to the number of CPU
cores used in the experiments. This metric has the merit of illustrating how the number of CPU
cores required grows as a function of the number of training samples for a fixed/desired wall-clock
execution time, but also how the wall-clock execution time grows as a function of the number of
training samples for a given number of available CPU cores.

The BCM and the rBCM perform the worst in this experiment both in terms of predictive ac-
curacy (Table 4) and total CPU time (Figure 10). The poor scalability of the BCM and the rBCM
is primarily due to the testing phase. Indeed, if we denote M the total number of experts, then
M = d N300e, as each expert processes 200 training points, of which there are 2

3N . In the prediction
phase, each expert is required to make predictions about all 1

3N test inputs, which requires evalu-
ating M products of an 1

3N × 200 matrix with a 200 × 200 matrix, which results in a total CPU
time requirement that grows in O(M 1

3N2002), which is the same as O(N2). Given that training
CPU time grows linearly in N the cumulative training and testing CPU time grows quadratically
in N . This is well illustrated in Figure 10, where it can be seen that the slopes of total CPU time
profiles of the BCM and the rBCM in log-log scale are approximately 2. The airline delays data
set was also considered by Deisenroth and Ng (2015), but the authors restricted themselves to a
fixed size of the test set of 100, 000 points. However, this limitation might be restrictive as in many
‘smoothing’ applications, the test data set can be as large as the training data set—neither the BCM
nor the rBCM would be sufficiently scalable in such applications.

As for SVIGP, although it was slightly more accurate than string GPs on this data set, it can be
noted from Figure 10 that string GPs required 10 times less CPU resources. In fact we were unable
to run the experiment on the full data set with SVIGP—we gave up after 500 CPU hours, or more
than a couple of weeks wall-clock time given that the GPy implementation of SVIGP makes little
use of multiple cores. As a comparison, the full experiment took 91.0 hours total CPU time (≈ 15
hours wall-clock time on our 8 cores machine) when change-points were inferred and 83.11 hours
total CPU time (≈ 14 hours wall-clock time on our 8 cores machine) when change-points were not
inferred. Another advantage of additively separable string GPs over GPs, and subsequently over
SVIGP, is that they are more interpretable. Indeed, one can determine at a glance from the learned
posterior mean string GPs of Figure 11 the effect of each of the 8 covariates considered on arrival
delays. It turns out that the three most informative factors in predicting arrival delays are departure
time, distance and arrival time, while the age of the aircraft, the day of the week and the day of
the month seem to have little to no effect. Finally, posterior distributions of the number of change-
points are illustrated in Figure 12, and posterior distributions of the locations of change-points are
illustrated in Figure 13.

49

KOM SAMO AND ROBERTS

N String GP String GP* BCM rBCM SVIGP

10, 000 1.03± 0.10 1.06± 0.10 1.06± 0.10 1.06± 0.10 0.90± 0.09
100, 000 0.93± 0.03 0.96± 0.03 1.66± 0.03 1.04± 0.04 0.88± 0.03
1, 000, 000 0.93± 0.01 0.92± 0.01 N/A N/A 0.82± 0.01
5, 929, 413 0.90± 0.01 0.93± 0.01 N/A N/A N/A

Table 4: Predictive mean squared errors (MSEs) ± one standard error on the airline arrival delays
experiment. Squared errors are expressed as fraction of the sample variance of airline
arrival delays, and hence are unitless. With this normalisation, a MSE of 1.00 is as good
as using the training mean arrival delays as predictor. The * in String GP* indicates that
inference was performed without allowing for change-points. N/A entries correspond to
experiments that were not over after 500 CPU hours.

103 104 105 106 107

N

10-1

100

101

102

103

104

C
P
U
 t
im

e
 (
h
o
u
rs

)

String GP*

String GP

BCM

rBCM

SVIGP

Figure 10: Total CPU time (training and testing) taken by various regression approaches on the
airline delays data set as a function of the size of the subset considered, in log-log scale.
The experimental setup is described in Section 6.3. The CPU time reflects actual CPU
clock resource usage in each experiment, and is therefore agnostic to the number of CPU
cores used. It can be regarded as the wall-clock time the experiment would have taken
to complete on a single-core computer (with the same CPU frequency). Dashed lines
are extrapolated values, and correspond to experiments that did not complete after 500
hours of CPU time.

50

STRING AND MEMBRANE GAUSSIAN PROCESSES

0 10 20 30 40 50

Age (years)

−6

−4

−2

0

2

4

6
z

j t

0 100 200 300 400 500 600

Air Time (min)

−4

−2

0

2

4

6

z
j t

00:00 05:00 10:00 15:00 20:00

Arrival Time (hh:mm)

−6

−4

−2

0

2

4

6

8

10

12

z
j t

00:00 05:00 10:00 15:00 20:00

Departure Time (hh:mm)

−15

−10

−5

0

5

10

15

20

25

z
j t

0 1000 2000 3000 4000 5000

Distance (miles)

−10

−5

0

5

10

15

20

25

z
j t

2 4 6 8 10 12

Month

−4

−3

−2

−1

0

1

2

3

4

z
j t

5 10 15 20 25 30

Day of Month

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z
j t

1 2 3 4 5 6 7

Day of Week

−6

−4

−2

0

2

4

6

8

z
j t

Figure 11: Posterior mean± one posterior standard deviation of univariate string GPs in the airline
delays experiment of Section 6.3. Change-points were automatically inferred in this
experiment.

51

KOM SAMO AND ROBERTS

0 2 4 6 8 10

Number of change-points

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F
re
q
u
e
n
c
y

Age

0 2 4 6 8 10

Number of change-points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
re
q
u
e
n
c
y

Air Time

0 2 4 6 8 10

Number of change-points

0.0

0.2

0.4

0.6

0.8

1.0

F
re
q
u
e
n
c
y

Arrival Time

0 2 4 6 8 10

Number of change-points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
re
q
u
e
n
c
y

Departure Time

0 2 4 6 8 10

Number of change-points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
re
q
u
e
n
c
y

Distance

0 2 4 6 8 10

Number of change-points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
re
q
u
e
n
c
y

Month

0 2 4 6 8 10

Number of change-points

0.0

0.2

0.4

0.6

0.8

1.0

F
re
q
u
e
n
c
y

Day of Month

0 2 4 6 8 10

Number of change-points

0.0

0.2

0.4

0.6

0.8

1.0

F
re
q
u
e
n
c
y

Day of Week

Figure 12: Posterior distributions of the numbers of change-points in each input dimension in the
airline delays experiment of Section 6.3.

52

STRING AND MEMBRANE GAUSSIAN PROCESSES

0 10 20 30 40 50

Locations of change-point

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
re
q
u
e
n
c
y

Age (years)

82.8 83.0 83.2 83.4 83.6 83.8 84.0

Locations of change-point

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
re
q
u
e
n
c
y

Air Time (min)

00:00 05:00 10:00 15:00 20:00

Locations of change-point

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F
re
q
u
e
n
c
y

Arrival Time (hh:mm)

00:00 05:00 10:00 15:00 20:00

Locations of change-point

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
re
q
u
e
n
c
y

Departure Time (hh:mm)

0 1000 2000 3000 4000 5000

Locations of change-point

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F
re
q
u
e
n
c
y

Distance (miles)

0 2 4 6 8 10 12

Locations of change-point

0.00

0.05

0.10

0.15

0.20

0.25

F
re
q
u
e
n
c
y

Month

Figure 13: Posterior distributions of the locations of change-points in each input dimension in the
airline delays experiment of Section 6.3. Dimensions that were learned to exhibit no
change-point have been omitted here.

53

KOM SAMO AND ROBERTS

6.4 Large Scale Dynamic Asset Allocation

An important feature of our proposed RJ-MCMC sampler (Algorithm 2) is that, unlike the BCM,
the rBCM and SVIGP, which are restricted to Bayesian nonparametric regression and classification,
Algorithm 2 is agnostic with regard to the likelihood model, so long as it takes the form p(D|f ,u).
Thus, it may be used as is on a wide variety of problems that go beyond classification and regression.
In this experiment we aim to illustrate the efficacy of our approach on one such large scale problem
in quantitative finance.

6.4.1 BACKGROUND

Let (xi(t))t>0 for i = 1, . . . , n be n stock price processes. Let (Xi(t))t>0 for i = 1, . . . , n denote
the market capitalisation processes, that is Xi(t) = ni(t)xi(t) where ni(t) is the number of shares
in company i trading in the market at time t. We call long-only portfolio any vector-valued stochastic
process π = (π1, . . . , πn) taking value on the unit simplex on Rn, that is

∀i, t, πi(t) ≥ 0 and
n∑
i=1

πi(t) = 1.

Each process πi represents the proportion of an investor’s wealth invested in (holding) shares in
asset i. An example long-only portfolio is the market portfolio µ = (µ1, . . . , µn) where

µi(t) =
Xi(t)

X1(t) + · · ·+Xn(t)
(47)

is the market weight of company i at time t, that is its size relative to the total market size (or that
of the universe of stocks considered). The market portfolio is very important to practitioners as it
is often perceived not be to subject to idiosyncracies, but only to systemic risk. It is often used as
an indicator of how the stock market (or a specific universe of stocks) performs as a whole. We
denote Zπ the value process of a portfolio π with initial capital Zπ(0). That is, Zπ(t) is the wealth
at time t of an investor who had an initial wealth of Zπ(0), and dynamically re-allocated all his
wealth between the n stocks in our universe up to time t following the continuous-time strategy π.

A mathematical theory has recently emerged, namely stochastic portfolio theory (SPT) (see
Karatzas and Fernholz, 2009) that studies the stochastic properties of the wealth processes of cer-
tain portfolios called functionally-generated portfolio under realistic assumptions on the market
capitalisation processes (Xi(t))t>0. Functionally-generated portfolios are rather specific in that
the allocation at time t, namely (π1(t), . . . , πn(t)), solely depends on the market weights vector
(µ1(t), . . . , µn(t)). Nonetheless, some functionally-generated portfolios π∗ have been found that,
under the mild (so-called diversity) condition

∃µmax, 0 < µmax < 1 s.t. ∀i ≤ n, t ≤ T, µi(t) ≤ µmax, (48)

outperform the market portfolio over the time horizon [0, T] with probability one (see Vervuurt and
Karatzas, 2015; Karatzas and Fernholz, 2009). More precisely,

P (Zπ∗(T) ≥ Zµ(T)) = 1 and P (Zπ∗(T) > Zµ(T)) > 0. (49)

Galvanized by this result, we here consider the inverse problem consisting of learning from his-
torical market data a portfolio whose wealth process has desirable user-specified properties. This

54

STRING AND MEMBRANE GAUSSIAN PROCESSES

inverse problem is perhaps more akin to the problems faced by investment professionals: i) their
benchmarks depend on the investment vehicles pitched to investors and may vary from one vehicle
to another, ii) they have to take into account liquidity costs, and iii) they often find it more valu-
able to go beyond market weights and leverage multiple company characteristics in their investment
strategies.

6.4.2 MODEL CONSTRUCTION

We consider portfolios πf =
(
πf1 , . . . , π

f
n

)
of the form

πfi (t) =
f(ci(t))

f(c1(t)) + · · ·+ f(cn(t))
, (50)

where ci(t) ∈ Rd are some quantifiable characteristics of asset i that may be observed in the market
at time t, and f is a positive-valued function. Portfolios of this form include all functionally-
generated portfolios studied in SPT as a special case.17 A crucial departure of our approach from
the aforementioned type of portfolios is that the market characteristics processes ci need not be
restricted to size-based information, and may contain additional information such as social me-
dia sentiments, stock price path-properties, but also characteristics relative to other stocks such
as performance relative to the best/worst performing stock last week/month/year etc. We place a
mean-zero string GP prior on log f . Given some historical data D corresponding to a training time
horizon [0, T], the likelihood model p

(
D|πf

)
is defined by the investment professional and reflects

the extent to which applying the investment strategy πf over the training time horizon would have
achieved a specific investment objective. An example investment objective is to achieve a high
excess return relative to a benchmark portfolio α

UER

(
πf
)

= logZπf (T)− logZα(T). (51)

α can be the market portfolio (as in SPT) or any stock index. Other risk-adjusted investment objec-
tives may also be used. One such objective is to achieve a high Sharpe-ratio, defined as

USR

(
πf
)

=
r̄
√

252√
1
T

∑T
t=1(r(t)− r̄)2

, (52)

where the time t is in days, r(t) := logZπf (t) − logZπf (t − 1) are the daily returns the portfolio
πf and r̄ = 1

T

∑T
t=1 r(t) its average daily return. More generally, denoting U

(
πf
)

the performance
of the portfolio πf over the training horizon [0, T] (as per the user-defined investment objective),
we may choose as likelihood model a distribution over U

(
πf
)

that reflects what the investment
professional considers good and bad performance. For instance, in the case of the excess return
relative to a benchmark portfolio or the Sharpe ratio, we may choose U

(
πf
)

to be supported on
]0,+∞[(for instance U

(
πf
)

can be chosen to be Gamma distributed) so as to express that portfolios
that do not outperform the benchmark or loose money overall in the training data are not of interest.
We may then choose the mean and standard deviation of the Gamma distribution based on our

17. We refer the reader to Karatzas and Fernholz (2009) for the definition of functionally-generated portfolios.

55

KOM SAMO AND ROBERTS

expectation as to what performance a good candidate portfolio can achieve, and how confident we
feel about this expectation. Overall we have,

p
(
D|πf

)
= γ

(
U
(
πf
)

;αe, βe

)
, (53)

where γ(.;α, β) is the probability density function of the Gamma distribution. Noting, from Equa-
tion (50) that πf (t) only depends on f through its values at (c1(t), . . . , cn(t)), and assuming that
U
(
πf
)

only depends on πf evaluated at a finite number of times (as it is the case for excess returns
and the Sharpe ratio), it follows that U(πf) only depends on f , a vector of values of f at a finite
number of points. Hence the likelihood model, which we may rewrite as

p(D|f) = γ
(
U
(
πfi

)
;αe, βe

)
, (54)

is of the form required by the RJ-MCMC sampler previously developed. By sampling from the
posterior distribution p(f , f∗,∇f ,∇f∗|D), the hope is to learn a portfolio that did well during the
training horizon, to analyse the sensitivity of its investment strategy to the underlying market char-
acteristics through the gradient of f , and to evaluate the learned investment policy on future market
conditions.

6.4.3 EXPERIMENTAL SETUP

The universe of stocks we considered for this experiment are the constituents of the S&P 500 in-
dex, accounting for changes in constituents over time and corporate events. We used the period 1st

January 1990 to 31st December 2004 for training and we tested the learned portfolio during the pe-
riod 1st January 2005 to 31st December 2014. We rebalanced the portfolio daily, for a total of 2.52
million input points at which the latent function f must be learned. We considered as market char-
acteristics the market weight (CAP), the latest return on asset (ROA) defined as the ratio between
the net yearly income and the total assets as per the latest balance sheet of the company known at
the time of investment, the previous close-to-close return (PR), the close-to-close return before the
previous (PR2), and the S&P long and short term credit rating (LCR and SCR). While the market
weight is a company size characteristic, the ROA reflects how well a company performs relative to
its size, and we hope that S&P credit ratings will help further discriminate successful companies
from others. The close-to-close returns are used to learn possible ‘momentum’ patterns from the
data. The data originate from the CRSP and Compustat databases. In the experiments we consid-
ered as performance metric the annualised excess return UER-EWP relative to the equally-weighted
portfolio. We found the equally-weighted portfolio to be a harder benchmark to outperform than the
market portfolio. We chose αe and βe in Equation (54) so that the mean of the Gamma distribution
is 10.0 and its variance 0.5, which expresses a very greedy investment target.

It is worth pointing out that none of the scalable GP alternatives previously considered can cope
with our likelihood model Equation (54). We compared the performance of the learned string GP
portfolio out-of-sample to those of the best three SPT portfolios studied in Vervuurt and Karatzas
(2015), namely the equally weighted portfolio

πEWP
i (t) =

1

n
, (55)

and the diversity weighted portfolios

πDWP
i (t; p) =

µi(t)
p

µ1(t)p + · · ·+ µn(t)p
, (56)

56

STRING AND MEMBRANE GAUSSIAN PROCESSES

Figure 14: Evolution of the wealth processes of various long-only trading strategies on the S&P
500 universe of stocks between 1st January 2005 (where we assume a starting wealth
of 1) and 31st December 2014. The String GP strategy was learned using market data
from 1st January 1990 to 31st December 2004 as descried in Section 6.4. EWP refers
to the equally-weighted portfolio, MKT refers to the market portfolio (which weights
stocks proportionally to their market capitalisations) and DWP (p) refers to the diversity-
weighted portfolio with exponent p (which weights stocks proportionally to the p-th
power of their market weights).

with parameter p equals to−0.5 and 0.5, and the market portfolio. Results are provided Table 5, and
Figure 14 displays the evolution of the wealth process of each strategy. It can be seen that the learned
string GP strategy considerably outperforms the next best SPT portfolio. This experiment not only
demonstrates (once more) that string GPs scale to large scale problems, it also illustrates that our
inference scheme is able to unlock commercial value in new intricate large scale applications where
no alternative is readily available. In effect, this application was first introduced by Kom Samo and
Vervuurt (2016), where the authors used a Gaussian process prior on a Cartesian grid and under a
separable covariance function so as to speed up inference with Kronecker techniques. Although the
resulting inference scheme has time complexity that is linear in the total number of points on the
grid, for a given grid resolution, the time complexity grows exponentially in the dimension of the
input space (that is the number of trading characteristics), which is impractical for d ≥ 4. On the
other hand, string GPs allow for a time complexity that grows linearly with the number of trading
characteristics, thereby enabling the learning of subtler market inefficiencies from the data.

57

KOM SAMO AND ROBERTS

Strategy Sharpe Ratio Zπ(T)/ZEWP(T) Avg. Ann. Ret.

String GP 0.73 2.87 22.07%
DWP (p = −0.5) 0.55 1.07 10.56%
EWP 0.53 1.00 9.84%
MKT 0.34 0.62 4.77%
DWP (p = 0.5) 0.33 0.61 4.51%

Table 5: Performance of various long-only trading strategies on the S&P 500 universe of stocks
between 1st January 2005 (where we assume a starting wealth of 1) and 31st December
2014. The String GP strategy was learned using market data from 1st January 1990 to 31st

December 2004 as descried in Section 6.4. EWP refers to the equally-weighted portfolio,
MKT refers to the market portfolio (which weights stocks proportionally to their market
capitalisations) and DWP (p) refers to the diversity-weighted portfolio with exponent p
(which weights stocks proportionally to the p-th power of the market weight of the asset).
Zπ(T) denotes the terminal wealth of strategy π, and Avg. Ann. Ret. is the strategy’s
equivalent constant annual return over the test horizon.

7. Discussion

In this paper, we introduce a novel class of smooth functional priors (or stochastic processes), which
we refer to as string GPs, with the aim of simultaneously addressing the lack of scalability and the
lack of flexibility of Bayesian kernel methods. Unlike existing approaches, such as Gaussian process
priors (Rasmussen and Williams (2006)) or student-t process priors (Shah et al. (2014)), which are
parametrised by global mean and covariance functions, and which postulate fully dependent finite-
dimensional marginals, the alternative construction we propose adopts a local perspective and the
resulting finite-dimensional marginals exhibit conditional independence structures. Our local ap-
proach to constructing string GPs provides a principled way of postulating that the latent function
we wish to learn might exhibit locally homogeneous patterns, while the conditional independence
structures constitute the core ingredient needed for developing scalable inference methods. More-
over, we provide theoretical results relating our approach to Gaussian processes, and we illustrate
that our approach can often be regarded as a more scalable and/or more flexible extension. We ar-
gue and empirically illustrate that string GPs present an unparalleled opportunity for learning local
patterns in small scale regression problems using nothing but standard Gaussian process regres-
sion techniques. More importantly, we propose a novel scalable RJ-MCMC inference scheme to
learn latent functions in a wide variety of machine learning tasks, while simultaneously determin-
ing whether the data set exhibits local patterns, how many types of local patterns the data might
exhibit, and where do changes in these patterns are likely to occur. The proposed scheme has time
complexity and memory requirement that are both linear in the sample size N . When the number
of available computing cores is at least equal to the dimension d of the input space, the time com-
plexity is independent from the dimension of the input space. Else, the time complexity grows in
O(dN). The memory requirement grows in O(dN). We empirically illustrate that our approach
scales considerably better than competing alternatives on a standard benchmark data set, and is able
to process data sizes that competing approaches cannot handle in a reasonable time.

58

STRING AND MEMBRANE GAUSSIAN PROCESSES

7.1 Limitations

The main limitation of our approach is that, unlike the standard GP paradigm in which the time
complexity of marginal likelihood evaluation does not depend on the dimension of the input space
(other than through the evaluation of the Gram matrix), the string GP paradigm requires a number
of computing cores that increases linearly with the dimension of the input space, or alternatively has
a time complexity linear in the input space dimension on single-core machines. This is a by-product
of the fact that in the string GP paradigm, we jointly infer the latent function and its gradient. If the
gradient of the latent function is inferred in the standard GP paradigm, the resulting complexity will
also be linear in the input dimension. That being said, overall our RJ-MCMC inference scheme will
typically scale better per iteration to large input dimensions than gradient-based marginal likelihood
inference in the standard GP paradigm, as the latter typically requires numerically evaluating an
Hessian matrix, which requires computing the marginal likelihood a number of times per iterative
update that grows quadratically with the input dimension. In contrast, a Gibbs cycle in our MCMC
sampler has worst case time complexity that is linear in the input dimension.

7.2 Extensions

Some of the assumptions we have made in the construction of string GPs and membrane GPs can
be relaxed, which we consider in detail below.

7.2.1 STRONGER GLOBAL REGULARITY

We could have imposed more (multiple continuous differentiability) or less (continuity) regularity
as boundary conditions in the construction of string GPs. We chose continuous differentiability
as it is a relatively mild condition guaranteed by most popular kernels, and yet the corresponding
treatment can be easily generalised to other regularity requirements. It is also possible to allow for
discontinuity at a boundary time ak by replacing µbk and Σb

k in Equation (5) with kMak and kKak;ak

respectively, or equivalently by preventing any communication between the k-th and the (k + 1)-th
strings. This would effectively be equivalent to having two independent string GPs on [a0, ak] and
]ak, aK].

7.2.2 DIFFERENTIAL OPERATORS AS LINK FUNCTIONS

Our framework can be further extended to allow differential operators as link functions, thereby
considering the latent multivariate function to infer as the response of a differential system to inde-
pendent univariate string GP excitations. The RJ-MCMC sampler we propose in Section 5 would
still work in this framework, with the only exception that, when the differential operator is of first
order, the latent multivariate function will be continuous but not differentiable, except if global reg-
ularity is upgraded as discussed above. Moreover, Proposition 5 can be generalised to first order
linear differential operators.

59

KOM SAMO AND ROBERTS

7.2.3 DISTRIBUTED STRING GPS

The RJ-MCMC inference scheme we propose may be easily adapted to handle applications where
the data set is so big that it has to be stored across multiple clusters, and inference techniques have
to be developed as data flow graphs18 (for instance using libraries such as TensorFlow).

To do so, the choice of string boundary times can be adapted so that each string has the same
number of inner input coordinates, and such that in total there are as many strings across dimensions
as a target number of available computing cores. We may then place a prior on kernel memberships
similar to that of previous sections. Here, the change-points may be restricted to coincide with
boundary times, and we may choose priors such that the sets of change-points are independent
between input dimensions. In each input dimension the prior on the number of change-points can
be chosen to be a truncated Poisson distribution (truncated to never exceed the total number of
boundary times), and conditional on their number we may choose change-points to be uniformly
distributed in the set of boundary times. In so doing, any two strings whose shared boundary time
is not a change-point will be driven by the same kernel configuration.

This new setup presents no additional theoretical or practical challenges, and the RJ-MCMC
techniques previously developed are easily adaptable to jointly learn change-points and function
values. Unlike the case we developed in previous sections where an update of the univariate string
GP corresponding to an input dimension, say the j-th, requires looping through all distinct j-th
input coordinates, here no step in the inference scheme requires a full view of the data set in any
input dimension. Full RJ-MCMC inference can be constructed as a data flow graph. An exam-
ple such graph is constructed as follows. The leaves correspond to computing cores responsible
for generating change-points and kernel configurations, and mapping strings to kernel configura-
tions. The following layer is made of compute cores that use kernel configurations coming out of
the previous layer to sequentially compute boundary conditions corresponding to a specific input
dimension—there are d such compute cores, where d is the input dimension. These compute cores
then pass computed boundary conditions to subsequent compute cores we refer to as string com-
pute cores. Each string compute core is tasked with computing derivative string GP values for a
specific input dimension and for a specific string in that input dimension, conditional on previously
computed boundary conditions. These values are then passed to a fourth layer of compute cores,
each of which being tasked with computing function and gradient values corresponding to a small
subset of training inputs from previously computed derivative string GP values. The final layers
then computes the log-likelihood using a distributed algorithm such as Map-Reduce when possible.
This proposal data flow graph is illustrated Figure 15.

We note that the approaches of Kim et al. (2005), Gramacy and Lee (2008), Tresp (2000),
and Deisenroth and Ng (2015) also allow for fully-distributed inference on regression problems.
Distributed string GP RJ-MCMC inference improves on these in that it places little restriction on
the type of likelihood. Moreover, unlike Kim et al. (2005) and Gramacy and Lee (2008) that yield
discontinuous latent functions, string GPs are continuously differentiable, and unlike Tresp (2000)
and Deisenroth and Ng (2015), local experts in the string GP paradigm (i.e. strings) are driven by
possibly different sets of hyper-parameters, which facilitates the learning of local patterns.

18. A data flow graph is a computational (directed) graph whose nodes represent calculations (possibly taking place on
different computing units) and directed edges correspond to data flowing between calculations or computing units.

60

STRING AND MEMBRANE GAUSSIAN PROCESSES

7.2.4 APPROXIMATE MCMC FOR I.I.D. OBSERVATIONS LIKELIHOODS

As discussed in Section 5.2, the bottleneck of our proposed inference scheme is the evaluation
of likelihood. When the likelihood factorises across training samples, the linear time complexity
of our proposed approach can be further reduced using a Monte Carlo approximation of the log-
likelihood (see for instance Bardenet et al. (2014) and references therein). Although the resulting
Markov chain will typically not converge to the true posterior distribution, in practice its stationary
distribution can be sufficiently close to the true posterior when reasonable Monte Carlo sample sizes
are used. Convergence results of such approximations have recently been studied by Bardenet et al.
(2014) and Alquier et al. (2016). We expect this extension to speed-up inference when the number
of compute cores is in the order of magnitude of the input dimension, but we would recommend the
previously mentioned fully-distributed string GP inference extension when compute cores are not
scarce.

7.2.5 VARIATIONAL INFERENCE

It would be useful to develop suitable variational methods for inference under string GP priors,
that we hope will scale similarly to our proposed RJ-MCMC sampler but will converge faster. We
anticipate that the main challenge here will perhaps be the learning of model complexity, that is the
number of distinct kernel configurations in each input dimension.

61

KOM SAMO AND ROBERTS

C
ha

ng
e-

po
in

ts
co

m
pu

ta
tio

ns
C

om
pu

ta
tio

n
of

bo
un

da
ry

co
nd

iti
on

s
C

om
pu

ta
tio

n
of

in
ne

rS
tr

in
g

G
P

va
lu

es
co

nd
iti

on
al

on
bo

un
da

ry
co

nd
iti

on
s

C
om

pu
ta

tio
n

of
la

te
nt

fu
nc

tio
n

va
lu

es
an

d
gr

ad
ie

nt
s

C
om

pu
ta

tio
n

of
pa

rt
ia

l
lo

g-
lik

el
ih

oo
ds

(i
.e

.
M

ap
)

Su
m

of
pa

rt
ia

l
lo

g-
lik

el
ih

oo
ds

(i
.e

.
R

ed
uc

e)

B
ou

nd
ar

y
C

on
di

tio
ns

St
ri

ng
G

P
V

al
ue

s
an

d
D

er
iv

at
iv

es
L

at
en

tF
un

ct
io

n
an

d
G

ra
di

en
tV

al
ue

s
K

er
ne

l
H

yp
er

-P
ar

am
et

er
s

Pa
rt

ia
l

L
og

-L
ik

el
ih

oo
ds

Fi
gu

re
15

:
E

xa
m

pl
e

da
ta

flo
w

gr
ap

h
fo

r
fu

lly
-d

is
tr

ib
ut

ed
st

ri
ng

G
P

in
fe

re
nc

e
un

de
r

an
i.i

.d
ob

se
rv

at
io

ns
lik

el
ih

oo
d

m
od

el
.

H
er

e
th

e
in

pu
t

sp
ac

e
is

th
re

e-
di

m
en

si
on

al
to

ea
se

ill
us

tr
at

io
n.

Fi
lle

d
ci

rc
le

s
re

pr
es

en
t

co
m

pu
te

co
re

s,
an

d
ed

ge
s

co
rr

es
po

nd
to

flo
w

s
of

da
ta

.
C

om
pu

te
co

re
s

w
ith

th
e

sa
m

e
co

lo
ur

(g
re

en
,r

ed
or

ye
llo

w
)

pe
rf

or
m

op
er

at
io

ns
pe

rt
ai

ni
ng

to
th

e
sa

m
e

in
pu

t
di

m
en

si
on

,w
hi

le
bl

ac
k-

fil
le

d
ci

rc
le

s
re

pr
es

en
tc

om
pu

te
co

re
s

pe
rf

or
m

in
g

cr
os

s-
di

m
en

si
on

al
op

er
at

io
ns

.T
he

bl
ue

re
ct

an
gl

e
pl

ay
s

th
e

ro
le

of
a

hu
b

th
at

re
la

ys
st

ri
ng

G
P

va
lu

es
to

th
e

co
m

pu
te

co
re

s
th

at
ne

ed
th

em
to

co
m

pu
te

th
e

su
bs

et
of

la
te

nt
fu

nc
tio

n
va

lu
es

an
d

gr
ad

ie
nt

s
th

ey
ar

e
re

sp
on

si
bl

e
fo

r.
T

he
se

va
lu

es
ar

e
th

en
us

ed
to

co
m

pu
te

th
e

lo
g-

lik
el

ih
oo

d
in

a
di

st
ri

bu
te

d
fa

sh
io

n
us

in
g

th
e

M
ap

-R
ed

uc
e

al
go

ri
th

m
.

E
ac

h
ca

lc
ul

at
io

n
in

th
e

co
rr

es
po

nd
in

g
R

J-
M

C
M

C
sa

m
pl

er
w

ou
ld

be
in

iti
at

ed
at

on
e

of
th

e
co

m
pu

te
co

re
s,

an
d

w
ou

ld
tr

ig
ge

ru
pd

at
es

of
al

le
dg

es
ac

ce
ss

ib
le

fr
om

th
at

co
m

pu
te

co
re

.

62

STRING AND MEMBRANE GAUSSIAN PROCESSES

Acknowledgments

Yves-Laurent is a Google Fellow in Machine Learning and would like to acknowledge support
from the Oxford-Man Institute. Wharton Research Data Services (WRDS) was used in preparing
the data for Section 6.4 of this paper. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.

Appendix A.

We begin by recalling Kolmogorov’s extension theorem, which we will use to prove the existence
of derivative Gaussian processes and string Gaussian processes.

Theorem 7 (Kolmogorov’s extension theorem, (Øksendal, 2003, Theorem 2.1.5))
Let I be an interval, let all t1, . . . , ti ∈ I, i, n ∈ N∗, let νt1,...,ti be probability measures on Rni
such that:

νtπ(1),...,tπ(i)(Fπ(1), . . . , Fπ(i)) = νt1,...,ti(F1, . . . , Fi) (57)

for all permutations π on {1, . . . , i} and

νt1,...,ti(F1, . . . , Fi) = νt1,...,ti,ti+1,...,ti+m(F1, . . . , Fi,Rn, . . . ,Rn) (58)

for all m ∈ N∗ where the set on the right hand side has a total of i+m factors. Then there exists a
probability space (Ω,F ,P) and an Rn valued stochastic process (Xt)t∈I on Ω,

Xt : Ω→ Rn

such that
νt1,...,ti(F1, . . . , Fi) = P(Xt1 ∈ F1, . . . , Xti ∈ Fi) (59)

for all t1, . . . , ti ∈ I, i ∈ N∗ and for all Borel sets F1, . . . , Fi.

It is easy to see that every stochastic process satisfies the permutation and marginalisation condi-
tions (57) and (58). The power of Kolmogorov’s extension theorem is that it states that those two
conditions are sufficient to guarantee the existence of a stochastic process.

Appendix B. Proof of Proposition 1

In this section we prove Proposition 1, which we recall below.

Proposition 1 (Derivative Gaussian processes)
Let I be an interval, k : I × I → R a C2 symmetric positive semi-definite function,19 m : I → R a
C1 function.
(A) There exists a R2-valued stochastic process (Dt)t∈I , Dt = (zt, z

′
t), such that for all t1, . . . , tn ∈

I ,
(zt1 , . . . , ztn , z

′
t1 , . . . , z

′
tn)

19. C1 (resp. C2) functions denote functions that are once (resp. twice) continuously differentiable on their domains.

63

KOM SAMO AND ROBERTS

is a Gaussian vector with mean(
m(t1), . . . ,m(tn),

dm
dt

(t1), . . . ,
dm
dt

(tn)

)
and covariance matrix such that

cov(zti , ztj) = k(ti, tj), cov(zti , z
′
tj) =

∂k

∂y
(ti, tj), and cov(z′ti , z

′
tj) =

∂2k

∂x∂y
(ti, tj).

We herein refer to (Dt)t∈I as a derivative Gaussian process.
(B) (zt)t∈I is a Gaussian process with mean function m, covariance function k and that is C1 in the
L2 (mean square) sense.
(C) (z′t)t∈I is a Gaussian process with mean function dm

dt and covariance function ∂2k
∂x∂y . Moreover,

(z′t)t∈I is the L2 derivative of the process (zt)t∈I .

Proof

Appendix B.1 Proof of Proposition 1 (A)

Firstly, we need to show that the matrix suggested in the proposition as the covariance matrix of
(zt1 , . . . , ztn , z

′
t1 , . . . , z

′
tn) is indeed positive semi-definite. To do so, we will show that it is the

limit of positive definite matrices (which is sufficient to conclude it is positive semi-definite, as
xTMnx ≥ 0 for a convergent sequence of positive definite matrices implies xTM∞x ≥ 0).

Let k be as in the proposition, h such that ∀i ≤ n, ti +h ∈ I and (z̃t)t∈I be a Gaussian process
with covariance function k. The vector(

z̃t1 , . . . , z̃tn ,
z̃t1+h − z̃t1

h
, . . . ,

z̃tn+h − z̃tn
h

)
is a Gaussian vector whose covariance matrix is positive definite and such that

cov
(
z̃ti , z̃tj

)
= k(ti, tj), (60)

cov
(
z̃ti ,

z̃tj+h − z̃tj
h

)
=
k(ti, tj + h)− k(ti, tj)

h
, (61)

and

cov
(
z̃ti+h − z̃ti

h
,
z̃tj+h − z̃tj

h

)
=

1

h2
(k(ti + h, tj + h)− k(ti + h, tj)− k(ti, tj + h) + k(ti, tj)) . (62)

As k is C2, h → k(x, y + h) admits a second order Taylor expansion about h = 0 for every x, and
we have:

k(x, y + h) = k(x, y) +
∂k

∂y
(x, y)h+

1

2

∂2k

∂y2
(x, y)h2 + o(h2) = k(y + h, x). (63)

64

STRING AND MEMBRANE GAUSSIAN PROCESSES

Similarly, h→ k(x+ h, y+ h) admits a second order Taylor expansion about h = 0 for every x, y
and we have:

k(x+ h, y + h) = k(x, y) +

[
∂k

∂x
(x, y) +

∂k

∂y
(x, y)

]
h+

[
∂2k

∂x∂y
(x, y) +

1

2

∂2k

∂x2
(x, y)

+
1

2

∂2k

∂y2
(x, y)

]
h2 + o(h2). (64)

Hence,

k(ti, tj + h)− k(ti, tj) =
∂k

∂y
(ti, tj)h+ o(h), (65)

and

k(ti + h, tj + h)− k(ti + h, tj)− k(ti, tj + h) + k(ti, tj) =
∂2k

∂x∂y
(ti, tj)h

2 + o(h2). (66)

Dividing Equation (65) by h, dividing Equation (66) by h2, and taking the limits, we obtain:

lim
h→0

cov
(
z̃ti ,

z̃tj+h − z̃tj
h

)
=
∂k

∂y
(ti, tj),

and

lim
h→0

cov
(
z̃ti+h − z̃ti

h
,
z̃tj+h − z̃tj

h

)
=

∂2k

∂x∂y
(ti, tj),

which corresponds to the covariance structure of Proposition 1. In other words the proposed covari-
ance structure is indeed positive semi-definite.

Let νNt1,...,tn be the Gaussian probability measure corresponding to the joint distribution of
(zt1 , . . . , ztn , z

′
t1 , . . . , z

′
tn) as per the Proposition 1, and let νDt1,...,tn be the measure on the Borel

σ-algebra B(R2 × · · · × R2)︸ ︷︷ ︸
n times

such that for any 2n intervals I11, I12, . . . , In1, In2,

νDt1,...,tn(I11 × I12, . . . , In1 × In2) := νNt1,...,tn(I11, . . . , In1, I12, . . . , In2). (67)

The measures νDt1,...,tn are the finite dimensional measures corresponding to the stochastic object
(Dt)t∈I sampled at times t1, . . . , tn. They satisfy the time permutation and marginalisation con-
ditions of Kolmogorov’s extension theorem as the Gaussian measures νNt1,...,tn do. Hence, the R2-
valued stochastic process (Dt)t∈I defined in Proposition 1 does exist.

Appendix B.2 Proof of Proposition 1 (B)

That (zt)t∈I is a Gaussian process results from the fact that the marginals (zt1 , . . . , ztn) are Gaus-
sian vectors with mean (m(t1), . . . ,m(tn)) and covariance matrix [k(ti, tj)]i,j∈[1..n]. The fact that
(zt)t∈I is C1 in the L2 sense is a direct consequence of the twice continuous differentiability of k.

65

KOM SAMO AND ROBERTS

Appendix B.3 Proof of Proposition 1 (C)

In effect, it follows from Proposition 1(A) that zt+h−zt
h − z′t is a Gaussian random variable with

mean
m(t+ h)−m(t)

h
− dm

dt
(t)

and variance

k(t+ h, t+ h)− 2k(t+ h, t) + k(t, t)− 2∂k∂y (t+ h, t)h+ 2∂k∂y (t, t)h+ ∂2k
∂x∂y (t, t)h2

h2
.

Taking the second order Taylor expansion of the numerator in the fraction above about h = 0 we
get o(h2), hence

lim
h→0

Var
(
zt+h − zt

h
− z′t

)
= 0.

We also have

lim
h→0

E
(
zt+h − zt

h
− z′t

)
=

dm
dt

(t)− E(z′t) = 0.

Therefore,

lim
h→0

E

[(
zt+h − zt

h
− z′t

)2
]

= 0,

which proves that (z′t) is the L2 derivative of (zt). The fact that (z′t) is a Gaussian process with
mean function dm

dt and covariance function ∂2k
∂x∂y is a direct consequence of the distribution of the

marginals (z′t1 , . . . , z
′
tn). Moreover, the continuity of (z′t) in the L2 sense is a direct consequence of

the continuity of ∂2k
∂x∂y (see Rasmussen and Williams, 2006, p. 81 4.1.1).

Appendix C. Proof of Theorem 2

In this section we prove Theorem 2 which we recall below.

Theorem 2 (String Gaussian process)
Let a0 < · · · < ak < · · · < aK , I = [a0, aK] and let pN (x;µ,Σ) be the multivariate Gaussian den-
sity with mean vector µ and covariance matrix Σ. Furthermore, let (mk : [ak−1, ak]→ R)k∈[1..K] be
C1 functions, and (kk : [ak−1, ak]× [ak−1, ak]→ R)k∈[1..K] be C3 symmetric positive semi-definite
functions, neither degenerate at ak−1, nor degenerate at ak given ak−1.
(A) There exists an R2-valued stochastic process (SDt)t∈I , SDt = (zt, z

′
t) satisfying the following

conditions:
1) The probability density of (SDa0 , . . . , SDaK) reads:

pb(x0, . . . , xK) :=

K∏
k=0

pN

(
xk;µ

b
k,Σ

b
k

)
where: Σb

0 = 1Ka0;a0 , ∀ k > 0 Σb
k = kKak;ak − kKak;ak−1 kK−1

ak−1;ak−1 k
KT
ak;ak−1

,

66

STRING AND MEMBRANE GAUSSIAN PROCESSES

µb0 = 1Ma0 , ∀ k > 0 µbk = kMak + kKak;ak−1 kK−1
ak−1;ak−1

(xk−1 − kMak−1
),

with kKu;v =

[
kk(u, v) ∂kk

∂y (u, v)
∂kk
∂x (u, v) ∂2kk

∂x∂y (u, v)

]
, and kMu =

[
mk(u)
dmk
dt (u)

]
.

2) Conditional on (SDak = xk)k∈[0..K], the restrictions (SDt)t∈]ak−1,ak[, k ∈ [1..K] are indepen-
dent conditional derivative Gaussian processes, respectively with unconditional mean function
mk and unconditional covariance function kk and that are conditioned to take values xk−1 and xk
at ak−1 and ak respectively. We refer to (SDt)t∈I as a string derivative Gaussian process, and to
its first coordinate (zt)t∈I as a string Gaussian process namely,

(zt)t∈I ∼ SGP({ak}, {mk}, {kk}).

(B) The string Gaussian process (zt)t∈I defined in (A) is C1 in the L2 sense and its L2 derivative
is the process (z′t)t∈I defined in (A).

Proof

Appendix C.1 Proof of Theorem 2 (A)

We will once again turn to Kolmogorov’s extension theorem to prove the existence of the stochastic
process (SDt)t∈I . The core of the proof is in the finite dimensional measures implied by Theorem
2 (A-1) and (A-2). Let

{
tki ∈]ak−1, ak[

}
i∈[1..Nk],k∈[1..K]

be n times. We first formally construct the
finite dimensional measures implied by Theorem 2 (A-1) and (A-2), and then verify that they satisfy
the conditions of Kolmogorov’s extension theorem.
Let us define the measure νSD

t11,...,t
1
N1
,...,tK1 ,...,t

K
NK

,a0,...,aK
as the probability measure having density

with respect to the Lebesgue measure on B(R2 × · · · × R2)︸ ︷︷ ︸
1+n+K times

that reads:

pSD(xt11 , . . . , xt1N1
, . . . , xtK1

, . . . , xtKNK
, xa0 , . . . , xaK) =pb(xa0 , . . . , xaK)×

K∏
k=1

p
xak−1

,xak
N (xtk1

, . . . , xtkNk
) (68)

where pb is as per Theorem 2 (A-1) and p
xak−1

,xak
N (xtk1

, . . . , xtkNk
) is the (Gaussian) pdf of the joint

distribution of the values at times {tki ∈]ak−1, ak[} of the conditional derivative Gaussian process
with unconditional mean functions mk and unconditional covariance functions kk that is condi-
tioned to take values xak−1

= (zak−1
, z′ak−1

) and xak = (zak , z
′
ak

) at times ak−1 and ak respectively
(the corresponding—conditional—mean and covariance functions are derived from Equations (3
and 4). Let us extend the family of measures νSD to cases where some or all boundary times ak are
missing, by integrating out the corresponding variables in Equation (68). For instance when a0 and
a1 are missing,

νSD
t11,...,t

1
N1
,...,tK1 ,...,t

K
NK

,a2,...,aK
(T 1

1 , . . . , T
1
N1
, . . . , TK1 , . . . , TKNK , A2, . . . , AK)

:= νSD
t11,...,t

1
N1
,...,tK1 ,...,t

K
NK

,a0,...,aK
(T 1

1 , . . . , T
1
N1
, . . . , TK1 , . . . , TKNK ,R

2,R2, A2, . . . , AK)

(69)

67

KOM SAMO AND ROBERTS

whereAi and T ij are rectangle in R2. Finally, we extend the family of measures νSD to any arbitrary
set of indices {t1, . . . , tn} as follows:

νSDt1,...,tn(T1, . . . , Tn) := νSDtπ∗(1),...,tπ∗(n)(Tπ∗(1), . . . , Tπ∗(n)), (70)

where π∗ is a permutation of {1, . . . , n} such that {tπ∗(1), . . . , tπ∗(n)} verify the following condi-
tions:

1. ∀ i, j, if ti ∈]ak1−1, ak1 [, tj ∈]ak2−1, ak2 [, and k1 < k2, then Idx(ti) < Idx(tj). Where
Idx(ti) stands for the index of ti in {tπ∗(1), . . . , tπ∗(n)};

2. if ti /∈ {a0, . . . , aK} and tj ∈ {a0, . . . , aK} then Idx(ti) < Idx(tj);

3. if ti ∈ {a0, . . . , aK} and tj ∈ {a0, . . . , aK} then Idx(ti) < Idx(tj) if and only if ti < tj .

Any such measure νSDtπ∗(1),...,tπ∗(n) will fall in the category of either Equation (68) or Equation (69).
Although π∗ is not unique, any two permutations satisfying the above conditions will only differ
by a permutation of times belonging to the same string interval]ak−1, ak[. Moreover, it follows
from Equations (68) and (69) that the measures νSDtπ∗(1),...,tπ∗(n) are invariant by permutation of times
belonging to the same string interval]ak−1, ak[, and as a result any two π∗ satisfying the above
conditions will yield the same probability measure.

The finite dimensional probability measures νSDt1,...,tn are the measures implied by Theorem 2.
The permutation condition (57) of Kolmogorov’s extension theorem is met by virtue of Equa-
tion (70). In effect for every permutation π of {1, . . . , n}, if we let π′ : {π(1), . . . , π(n)} →
{π∗(1), . . . , π∗(n)}, then

νSDtπ(1),...,tπ(n)(Tπ(1), . . . , Tπ(n)) := νSDtπ′◦π(1),...,tπ′◦π(n)(Tπ′◦π(1), . . . , Tπ′◦π(n))

= νSDtπ∗(1),...,tπ∗(n)(Tπ∗(1), . . . , Tπ∗(n))

= νSDt1,...,tn(T1, . . . , Tn).

As for the marginalisation condition (58), it is met for every boundary time by virtue of how we
extended νSD to missing boundary times. All we need to prove now is that the marginalisation con-
dition is also met at any non-boundary time. To do so, it is sufficient to prove that the marginalisation
condition holds for t11, that is:

νSD
t11,...,t

1
N1
,...,tK1 ,...,t

K
NK

,a0,...,aK
(R2, T 1

2 , . . . , T
1
N1
, . . . , TK1 , . . . , TKNK , A0, . . . , AK)

= νSD
t12,...,t

1
N1
,...,tK1 ,...,t

K
NK

,a0,...,aK
(T 1

2 , . . . , T
1
N1
, . . . , TK1 , . . . , TKNK , A0, . . . , AK)

(71)

for every rectangles Ai and T ij in R2. In effect, cases where some boundary times are missing are
special cases with the corresponding rectangles Aj set to R2. Moreover, if we prove Equation (71),
the permutation property (57) will allow us to conclude that the marginalisation also holds true for
any other (single) non-boundary time. Furthermore, if Equation (71) holds true, it can be shown
that the marginalisation condition will also hold over multiple non-boundary times by using the
permutation property (57) and marginalising one non-boundary time after another.

68

STRING AND MEMBRANE GAUSSIAN PROCESSES

By Fubini’s theorem, and considering Equation (68), showing that Equation (71) holds true is
equivalent to showing that:∫

R2

p
xa0 ,xa1
N (xt11 , . . . , xt1N1

)dxt11 = p
xa0 ,xa1
N (xt12 , . . . , xt1N1

) (72)

which holds true as pxa0 ,xa1N (xt11 , . . . , xt1N1
) is a multivariate Gaussian density, and the correspond-

ing marginal is indeed the density of the same conditional derivative Gaussian process at times
t12, . . . , t

1
N1

.
This concludes the proof of the existence of the stochastic process (SDt)t∈I .

Appendix C.2 Proof of Theorem 2 (B)

As conditional on boundary conditions the restriction of a string derivative Gaussian process on a
string interval [ak−1, ak] is a derivative Gaussian process, it follows from Proposition 1 (C) that

∀ x̃a0 , . . . , x̃aK , ∀ t, t+ h ∈ [ak−1, ak],

lim
h→0

E

([
zt+h − zt

h
− z′t

]2 ∣∣∣∣xa0 = x̃a0 , . . . , xaK = x̃aK

)
= 0, (73)

or equivalently that:

∆zh := E

([
zt+h − zt

h
− z′t

]2 ∣∣∣∣xa0 , . . . , xaK
)

a.s.−→
h→0

0. (74)

Moreover,

∆zh = Var
(
zt+h − zt

h
− z′t

∣∣∣∣xa0 , . . . , xaK)+ E
(
zt+h − zt

h
− z′t

∣∣∣∣xa0 , . . . , xaK)2

. (75)

As both terms in the sum of the above equation are non-negative, it follows that

Var
(
zt+h − zt

h
− z′t

∣∣∣∣xa0 , . . . , xaK) a.s.−→
h→0

0 and E
(
zt+h − zt

h
− z′t

∣∣∣∣xa0 , . . . , xaK)2
a.s.−→
h→0

0.

From which we deduce

E
(
zt+h − zt

h
− z′t

∣∣∣xa0 , . . . , xaK) a.s.−→
h→0

0.

As E
(
zt+h−zt

h − z′t
∣∣∣xa0 , . . . , xaK) depends linearly on the boundary conditions, and as the bound-

ary conditions are jointly-Gaussian (see Appendix H step 1), it follows that

E
(
zt+h − zt

h
− z′t

∣∣∣xa0 , . . . , xaK)
is Gaussian. Finally we note that

Var
(
zt+h − zt

h
− z′t

∣∣∣xa0 , . . . , xaK)
69

KOM SAMO AND ROBERTS

does not depend on the values of the boundary conditions xak (but rather on the boundary times),
and we recall that convergence almost sure of Gaussian random variables implies convergence in
L2. Hence, taking the expectation on both side of Equation (75) and then the limit as h goes to 0
we get

E

([
zt+h − zt

h
− z′t

]2
)

= E(∆zh) −→
h→0

0,

which proves that the string GP (zt)t∈I is differentiable in the L2 sense on I and has derivative
(z′t)t∈I .

We prove the continuity in the L2 sense of (z′t)t∈I in a similar fashion, noting that conditional

on the boundary conditions, (z′t)t∈I is a Gaussian process whose mean function dm
ak−1,ak
ck
dt and

covariance function ∂2k
ak−1,ak
ck
∂x∂y are continuous, thus is continuous in the L2 sense on [ak−1, ak]

(conditional on the boundary conditions). We therefore have that:

∀ x̃a0 , . . . , x̃aK , ∀ t, t+ h ∈ [ak−1, ak], lim
h→0

E
(
(z′t+h − z′t)2

∣∣xa0 = x̃a0 , . . . , xaK = x̃aK
)

= 0,

(76)

from which we get that:

∆z′h := E
([
z′t+h − z′t

]2 ∣∣xa0 , . . . , xaK) a.s.−→
h→0

0. (77)

Moreover,

∆z′h = Var
(
z′t+h − z′t

∣∣xa0 , . . . , xaK)+ E
(
z′t+h − z′t

∣∣xa0 , . . . , xaK)2 , (78)

which implies that
Var
(
z′t+h − z′t

∣∣xa0 , . . . , xaK) a.s.−→
h→0

0

and
E
(
z′t+h − z′t

∣∣xa0 , . . . , xaK)2 a.s.−→
h→0

0,

as both terms in the sum in Equation (78) are non-negative. Finally,

Var
(
z′t+h − z′t

∣∣xa0 , . . . , xaK)
does not depend on the values of the boundary conditions, and

E
(
z′t+h − z′t

∣∣xa0 , . . . , xaK)
is Gaussian for the same reason as before. Hence, taking the expectation on both sides of Equation
(78), we get that

E
([
z′t+h − z′t

]2)
= E(∆z′h) −→

h→0
0,

which proves that (z′t) is continuous in the L2 sense.

70

STRING AND MEMBRANE GAUSSIAN PROCESSES

Appendix D. Proof of the Condition for Pathwise Regularity Upgrade of String GPs
from L2

In this section we prove that a sufficient condition for the process (z′t)t∈I in Theorem 2 to be almost
surely continuous and to be the almost sure derivative of the string Gaussian process (zt)t∈I , is
that the Gaussian processes on Ik = [ak−1, ak] with mean and covariance functions mak−1,ak

ck and
k
ak−1,ak
ck (as per Equations 3 and 4 with m := mk and k := kk) are themselves almost surely C1 for

every boundary condition.
Firstly we note that the above condition guarantees that the result holds at non-boundary times.

As for boundary times, the condition implies that the string GP is almost surely right differentiable
(resp. left differentiable) at every left (resp. right) boundary time, including a0 and aK . Moreover,
the string GP being differentiable inL2, the right hand side and left hand side almost sure derivatives
are the same, and are equal to the L2 derivative, which proves that the L2 derivatives at inner
boundary times are also in the almost sure sense. A similar argument holds to conclude that the
right (resp. left) hand side derivative at a0 (resp. aK) is also in the almost sure sense. Moreover, the
derivative process (z′t)t∈I admits an almost sure right hand side limit and an almost sure left hand
side limit at every inner boundary time and both are equal as the derivative is continuous in L2,
which proves its almost sure continuity at inner boundary times. Almost sure continuity of (z′t)t∈I
on the right (resp. left) of a0 (resp. aK) is a direct consequence of the above condition.

Appendix E. Proof of Proposition 4

In this section, we prove Proposition 4, which we recall below.

Proposition 4 (Additively separable string GPs are flexible)
Let k(x, y) := ρ

(
||x− y||2L2

)
be a stationary covariance function generating a.s. C1 GP paths in-

dexed on Rd, d > 0, and ρ a function that is C2 on]0,+∞[and continuous at 0. Let φs(x1, . . . , xd) =∑d
j=1 xj , let (zjt)t∈Ij , j∈[1..d] be independent stationary Gaussian processes with mean 0 and covari-

ance function k (where the L2 norm is on R), and let f(t1, . . . , td) = φs(z
1
t1 , . . . , z

d
td

) be the corre-
sponding stationary string GP. Finally, let g be an isotropic Gaussian process indexed on I1×· · ·×Id
with mean 0 and covariance function k (where the L2 norm is on Rd). Then:
1) ∀ x ∈ I1 × · · · × Id, H(∇f(x)) = H(∇g(x)),
2) ∀ x 6= y ∈ I1 × · · · × Id, I(∇f(x);∇f(y)) ≤ I(∇g(x);∇g(y)).

To prove Proposition 4 we need a lemma, which we state and prove below.

Lemma 8 Let Xn be a sequence of Gaussian random vectors with auto-covariance matrix Σn and
mean µn, converging almost surely to X∞. If Σn → Σ∞ and µn → µ∞ then X∞ is Gaussian with
mean µ∞ and auto-covariance matrix Σ∞.

Proof We need to show that the characteristic function of X∞ is

φX∞(t) := E(eit
TX∞) = eit

Tµ∞− 1
2
tTΣ∞t.

As Σn is positive semi-definite, ∀n, |eitTµn−
1
2
tTΣnt| = e−

1
2
tTΣnt ≤ 1. Hence, by Lebesgue’s

dominated convergence theorem,

φX∞(t) = E(lim
n→+∞

eit
TXn) = lim

n→+∞
E(eit

TXn) = lim
n→+∞

eit
Tµn− 1

2
tTΣnt = eit

Tµ∞− 1
2
tTΣ∞t.

71

KOM SAMO AND ROBERTS

Appendix E.1 Proof of Proposition 4 1)

Let x = (tx1 , . . . , t
x
d) ∈ I1 × · · · × Id. We want to show that H(∇f(x)) = H(∇g(x)) where f and

g are as per Proposition 4, and H is the entropy operator. Firstly, we note from Equation (11) that

∇f(x) =
(
z1′
tx1
, . . . , zd′txd

)
, (79)

where the joint law of the GP (zjt)t∈Ij and its derivative (zj′t)t∈Ij is provided in Proposition 1. As

the processes
(
zjt , z

j′
t

)
t∈Ij

, j ∈ [1..d] are assumed to be independent of each other, ∇f(x) is a

Gaussian vector and its covariance matrix reads:

Σ∇f(x) = −2
dρ
dx

(0)Id, (80)

where Id is the d× d identity matrix. Hence,

H(∇f(x)) =
d

2
(1 + ln(2π)) +

1

2
ln |Σ∇f(x)|. (81)

Secondly, let ej denote the d-dimensional vector whose j-th coordinate is 1 and every other coor-
dinate is 0, and let h ∈ R. As the proposition assumes the covariance function k generates almost
surely C1 surfaces, the vectors

(
g(x+he1)−g(x)

h , . . . , g(x+hed)−g(x)
h

)
are Gaussian vectors converging

almost surely as h → 0. Moreover, their mean is 0 and their covariance matrices have as element
on the i-th row and j-th column (i 6= j):

cov
(
g(x+ hei)− g(x)

h
,
g(x+ hej)− g(x)

h

)
=
ρ(2h2)− 2ρ(h2) + ρ(0)

h2
(82)

and as diagonal terms:

Var
(
g(x+ hej)− g(x)

h

)
= 2

ρ(0)− ρ(h2)

h2
. (83)

Taking the limit of Equations (82) and (83) using the first order Taylor expansion of ρ (which the
Proposition assumes is C2), we get that:

Σ∇g(x) = −2
dρ
dx

(0)Id = Σ∇f(x), (84)

It then follows from Lemma 8 that the limit∇g(x) of(
g(x+ he1)− g(x)

h
, . . . ,

g(x+ hed)− g(x)

h

)
is also a Gaussian vector, which proves that H(∇f(x)) = H(∇g(x)).

72

STRING AND MEMBRANE GAUSSIAN PROCESSES

Appendix E.2 Proof of Proposition 4 2)

We start by stating and proving another lemma we will later use.

Lemma 9 Let A and B be two d-dimensional jointly Gaussian vectors with diagonal covariance
matrices ΣA and ΣB respectively. Let ΣA,B be the cross-covariance matrix between A and B, and
let diag(ΣA,B) be the diagonal matrix whose diagonal is that of ΣA,B . Then:

det
([

ΣA diag(ΣA,B)
diag(ΣA,B) ΣB

])
≥ det

([
ΣA ΣA,B

ΣT
A,B ΣB

])
.

Proof Firstly we note that

det
([

ΣA diag(ΣA,B)
diag(ΣA,B) ΣB

])
= det(ΣA)det

(
ΣB − diag(ΣA,B)Σ−1

A diag(ΣA,B)
)

and

det
([

ΣA ΣA,B

ΣA,B ΣB

])
= det(ΣA)det

(
ΣB − ΣT

A,BΣ−1
A ΣA,B

)
.

As the matrix ΣA is positive semi-definite, det(ΣA) ≥ 0. The case det(ΣA) = 0 is straight-forward.
Thus we assume that det(ΣA) > 0, so that all we need to prove is that

det
(
ΣB − diag(ΣA,B)Σ−1

A diag(ΣA,B)
)
≥ det

(
ΣB − ΣT

A,BΣ−1
A ΣA,B

)
.

Secondly, the matrix Σ
diag
B|A := ΣB − diag(ΣA,B)Σ−1

A diag(ΣA,B) being diagonal, its determinant is
the product of its diagonal terms:

det(Σdiag
B|A) =

d∏
i=1

Σ
diag
B|A[i, i] =

d∏
i=1

(
ΣB[i, i]−

ΣA,B[i, i]2

ΣA[i, i]

)
.

As for the matrix ΣB|A := ΣB−ΣT
A,BΣ−1

A ΣA,B , we note that it happens to be the covariance matrix
of the (Gaussian) distribution of B given A, and thus is positive semi-definite and admits a Cholesky
decomposition ΣB|A = LLT . It follows that

det(ΣB|A) =
d∏
i=1

L[i, i]2 ≤
d∏
i=1

ΣB|A[i, i] =
d∏
i=1

ΣB[i, i]−
d∑
j=1

ΣA,B[j, i]2

ΣA[j, j]

≤

d∏
i=1

(
ΣB[i, i]−

ΣA,B[i, i]2

ΣA[i, i]

)
= det(Σdiag

B|A), (85)

where the first inequality results from the fact that ΣB|A[i, i] =
∑i

j=1 L[j, i]2 by definition of the
Cholesky decomposition. This proves that

det
(
ΣB − diag(ΣA,B)Σ−1

A diag(ΣA,B)
)
≥ det

(
ΣB − ΣT

A,BΣ−1
A ΣA,B

)
,

which as previously discussed concludes the proof of the lemma.

73

KOM SAMO AND ROBERTS

Proof of Proposition 4 2): Let x = (tx1 , . . . , t
x
d), y = (ty1, . . . , t

y
d) ∈ I1 × · · · × Id, x 6= y.

We want to show that I(∇f(x);∇f(y)) ≤ I(∇g(x);∇g(y)) where f and g are as per Proposition
4, and

I(X;Y) = H(X) +H(Y)−H(X,Y)

is the mutual information betweenX and Y . As we have proved that ∀ x, H(∇f(x)) = H(∇g(x)),
all we need to prove now is that

H(∇f(x),∇f(y)) ≥ H(∇g(x),∇g(y)).

Firstly, it follows from Equation (79) and the fact that the derivative Gaussian processes (zjt , z
j′
t)t∈Ij

are independent that (∇f(x),∇f(y)) is a jointly Gaussian vector. Moreover, the cross-covariance
matrix Σ∇f(x),∇f(y) is diagonal with diagonal terms:

Σ∇f(x),∇f(y)[i, i] = −2

[
dρ
dx
(
||x− y||2L2

)
+ 2(txi − t

y
i)

2 d2ρ

dx2

(
||x− y||2L2

)]
. (86)

Secondly, it follows from a similar argument to the previous proof that (∇g(x),∇g(y)) is also
a jointly Gaussian vector, and the terms Σ∇g(x),∇g(y)[i, j] are evaluated as limit of the cross-

covariance terms cov
(
g(x+hei)−g(x)

h ,
g(y+hej)−g(y)

h

)
as h→ 0. For i = j,

cov
(
g(x+ hei)− g(x)

h
,
g(y + hei)− g(y)

h

)
=

1

h2

{
2ρ

(∑
k

(txk − t
y
k)

2

)

− ρ

∑
k 6=i

(txk − t
y
k)

2 + (txi + h− tyi)
2

− ρ
∑
k 6=i

(txk − t
y
k)

2 + (txi − h− t
y
i)

2

}, (87)

As ρ is assumed to be C2, the below Taylor expansions around h = 0 hold true:

ρ

(∑
k

(txk − t
y
k)

2

)
− ρ

∑
k 6=i

(txk − t
y
k)

2 + (txi − h− t
y
i)

2

 = 2(txi − t
y
i)h

dρ
dx

(∑
k

(txk − t
y
k)

2

)
(88)

−

[
dρ
dx

(∑
k

(txk − t
y
k)

2

)
+ 2(txi − t

y
i)

2 d2ρ

dx2

(∑
k

(txk − t
y
k)

2

)]
h2 + o(h2)

ρ

(∑
k

(txk − t
y
k)

2

)
− ρ

∑
k 6=i

(txk − t
y
k)

2 + (txi + h− tyi)
2

 = −2(txi − t
y
i)h

dρ
dx

(∑
k

(txk − t
y
k)

2

)
(89)

−

[
dρ
dx

(∑
k

(txk − yk)2

)
+ 2(txi − t

y
i)

2 d2ρ

dx2

(∑
k

(txk − t
y
k)

2

)]
h2 + o(h2)

74

STRING AND MEMBRANE GAUSSIAN PROCESSES

Plugging Equations (88) and (89) into Equation (87) and taking the limit we obtain:

Σ∇g(x),∇g(y)[i, i] = −2

[
dρ
dx
(
||x− y||2L2

)
+ 2(txi − t

y
i)

2 d2ρ

dx2

(
||x− y||2L2

)]
= Σ∇f(x),∇f(y)[i, i]. (90)

Similarly for i 6= j,

cov
(
g(x+ hei)− g(x)

h
,
g(y + hej)− g(y)

h

)
=

1

h2

{
ρ

(∑
k 6=i,j

(txk − t
y
k)

2 + (txi + h− tyi)
2 + (txj − h− t

y
j)

2

)

− ρ

∑
k 6=i

(txk − t
y
k)

2 + (txi + h− tyi)
2

− ρ
∑
k 6=j

(txk − t
y
k)

2 + (txi − h− t
y
j)

2

+ ρ

(∑
k

(txk − t
y
k)

2

)}
, (91)

and

ρ

∑
k 6=i,j

(txk − t
y
k)

2 + (txi + h− tyi)
2 + (txj − h− t

y
j)

2

− ρ(∑
k

(txk − t
y
k)

2

)

=

[
2

dρ
dx

(∑
k

(txk − t
y
k)

2

)
+ 2

(
(txi − t

y
i)− (txj − t

y
j)
)2
× d2ρ

dx2

(∑
k

(txk − t
y
k)

2

)]
h2

+ 2
(
txi − t

y
i − t

x
j + tyj

) dρ
dx

(∑
k

(txk − t
y
k)

2

)
h+ o(h2). (92)

Plugging Equations (88), (89) and (92) in Equation (91) and taking the limit we obtain:

Σ∇g(x),∇g(y)[i, j] = −4(txi − t
y
i)(t

x
j − t

y
j)

d2ρ

dx2

(
||x− y||2L2

)
. (93)

To summarize, (∇f(x),∇f(y)) and (∇g(x),∇g(y)) are both jointly Gaussian vectors;∇f(x),
∇g(x), ∇f(y), and ∇g(y) are (Gaussian) identically distributed with a diagonal covariance ma-
trix; Σ∇f(x),∇f(y) is diagonal; Σ∇g(x),∇g(y) has the same diagonal as Σ∇f(x),∇f(y) but has pos-
sibly non-zero off-diagonal terms. Hence, it follows from Lemma 9 that the determinant of the
auto-covariance matrix of (∇f(x),∇f(y)) is higher than that of the auto-covariance matrix of
(∇g(x),∇g(y)); or equivalently the entropy of (∇f(x),∇f(y)) is higher than that of (∇g(x),∇g(y))
(as both are Gaussian vectors), which as previously discussed is sufficient to conclude that the mu-
tual information between∇f(x) and ∇f(y) is smaller than that between∇g(x) and ∇g(y).

Appendix F. Proof of Proposition 6

In this section, we prove Proposition 6, which we recall below.

75

KOM SAMO AND ROBERTS

Proposition 6 (Extension of the standard GP paradigm)
Let K ∈ N∗, let I = [a0, aK] and Ik = [ak−1, ak] be intervals with a0 < · · · < aK . Furthermore,
let m : I → R be a C1 function, mk the restriction of m to Ik, h : I × I → R a C3 symmetric
positive semi-definite function, and hk the restriction of h to Ik × Ik. If

(zt)t∈I ∼ SGP({ak}, {mk}, {hk}),

then
∀ k ∈ [1..K], (zt)t∈Ik ∼ GP(m,h).

Proof
To prove Proposition 6, we consider the string derivative Gaussian process (Theorem 2) (SDt)t∈I ,
SDt = (zt, z

′
t) with unconditional string mean and covariance functions as per Proposition 6 and

prove that its restrictions on the intervals Ik = [ak−1, ak] are derivative Gaussian processes with the
same mean function m and covariance function h. Proposition 1(B) will then allow us to conclude
that (zt)t∈Ik are GPs with mean m and covariance function h.

Let t1, . . . , tn ∈]ak−1, ak[and let pD(xak−1
) (respectively pD(xak |xak−1

) and
pD(xt1 , . . . , xtn |xak−1

, xak)) denote the pdf of the value of the derivative Gaussian process with
mean function m and covariance function h at ak−1 (respectively its value at ak conditional on its
value at ak−1, and its values at t1, . . . , tn conditional on its values at ak−1 and ak). Saying that the
restriction of the string derivative Gaussian process (SDt) on [ak−1, ak] is the derivative Gaussian
process with mean m and covariance h is equivalent to saying that all finite dimensional marginals
of the string derivative Gaussian process pSD(xak−1

, xt1 , . . . , xtn , xak), ti ∈ [ak−1, ak], factorise
as20:

pSD(xak−1
, xt1 , . . . , xtn , xak) = pD(xak−1

)pD(xak |xak−1
)pD(xt1 , . . . , xtn |xak−1

, xak).

Moreover, we know from Theorem 2 that by design, pSD(xak−1
, xt1 , . . . , xtn , xak) factorises as

pSD(xak−1
, xt1 , . . . , xtn , xak) = pSD(xak−1

)pD(xak |xak−1
)pD(xt1 , . . . , xtn |xak−1

, xak).

In other words, all we need to prove is that

pSD(xak) = pD(xak)

for every boundary time, which we will do by induction. We note by integrating out every boundary
condition but the first in pb (as per Theorem 2 (a-1)) that

pSD(xa0) = pD(xa0).

If we assume that pSD(xak−1
) = pD(xak−1

) for some k > 0, then as previously discussed the
restriction of the string derivative Gaussian process on [ak−1, ak] will be the derivative Gaussian
process with the same mean and covariance functions, which will imply that pSD(xak) = pD(xak).
This concludes the proof.

20. We emphasize that the terms on the right hand-side of this equation involve pD not pSD .

76

STRING AND MEMBRANE GAUSSIAN PROCESSES

Appendix G. Proof of Lemma 10

In this section, we will prove Lemma 10 that we recall below.

Lemma 10 Let X be a multivariate Gaussian with mean µX and covariance matrix ΣX . If con-
ditional on X , Y is a multivariate Gaussian with mean MX + A and covariance matrix Σc

Y where
M , A and Σc

Y do not depend on X , then (X,Y) is a jointly Gaussian vector with mean

µX;Y =

[
µX

MµX +A

]
,

and covariance matrix

ΣX;Y =

[
ΣX ΣXM

T

MΣX Σc
Y +MΣXM

T

]
.

Proof To prove this lemma we introduce two vectors X̃ and Ỹ whose lengths are the same as those
of X and Y respectively, and such that (X̃, Ỹ) is jointly Gaussian with mean µX;Y and covariance
matrix ΣX;Y . We then prove that the (marginal) distribution of X̃ is the same as the distribution of
X and that the distribution of Ỹ |X̃ = x is the same as Y |X = x for any x, which is sufficient to
conclude that (X,Y) and (X̃, Ỹ) have the same distribution.

It is obvious from the joint (X̃, Ỹ) that X̃ is Gaussian distribution with mean µX and covariance
matrix ΣX . As for the distribution of Ỹ conditional on X̃ = x, it follows from the usual Gaussian
identities that it is Gaussian with mean

MµX + c+MΣXΣ−1
X (x− µX) = Mx+ c,

and covariance matrix

Σc
Y +MΣXM

T −MΣXΣ−1
X ΣT

XM
T = Σc

Y ,

which is the same distribution as that of Y |X = x since the covariance matrix ΣX is symmetric.
This concludes our proof.

Appendix H. Proof of Proposition 5

In this section we will prove that string GPs with link function φs are GPs, or in other words
that if f is a string GP indexed on Rd, d > 0 with link function φs(x1, . . . , xd) =

∑d
j=1 xj ,

then (f(x1), . . . , f(xn)) has a multivariate Gaussian distribution for every set of distinct points
x1, . . . , xn ∈ Rd.

Proof As the sum of independent Gaussian processes is a Gaussian process, a sufficient condition
for additively separable string GPs to be GPs in dimensions d > 1 is that string GPs be GPs in
dimension 1. Hence, all we need to do is to prove that string GPs are GPs in dimension 1.

Let (zjt , z
j′
t)t∈Ij be a string derivative GP in dimension 1, with boundary times aj0, . . . , a

j
Kj , and

unconditional string mean and covariance functions mj
k and kjk respectively. We want to prove that

(zjt1 , . . . , z
j
tn) is jointly Gaussian for any t1, . . . , tn ∈ Ij .

77

KOM SAMO AND ROBERTS

APPENDIX H.0.1 STEP 1
(
zja0 , z

j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj

)
IS JOINTLY GAUSSIAN

We first prove recursively that the vector
(
zja0 , z

j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj

)
is jointly Gaussian. We note

from Theorem 2 that (zjt , z
j′
t)t∈[a0,a1] is the derivative Gaussian process with mean mj

1 and co-
variance function kj1. Hence, (zja0 , z

j′
a0 , z

j
a1 , z

j′
a1) is jointly Gaussian. Moreover, let us assume that

Bk−1 := (zja0 , z
j′
a0 , . . . , z

j
ak−1 , z

j′
ak−1) is jointly Gaussian for some k > 1. Conditional on Bk−1,

(zjak , z
j′
ak) is Gaussian with covariance matrix independent of Bk−1, and with mean[

mj
k(a

j
k)

dmjk
dt (ajk)

]
+ j
kK

ajk;ajk−1

j
kK−1

ak−1;ajk−1

 zjajk−1

−mj
k(a

j
k−1)

zj′
ajk−1

− dmjk
dt (ajk−1)

 ,
which depends linearly on (zja0 , z

j′
a0 , . . . , z

j
ak−1 , z

j′
ak−1). Hence by Lemma 10,

(zja0 , z
j′
a0 , . . . , z

j
ak
, zj′ak)

is jointly Gaussian.

APPENDIX H.0.2 STEP 2 (zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
, . . . , zj

tki
, zj′
tki
, . . .) IS JOINTLY GAUSSIAN

Let tk1, . . . , t
k
nk
∈]ajk−1, a

j
k[, k ≤ Kj be distinct string times. We want to prove that the vector

(zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
, . . . , zj

tki
, zj′
tki
, . . .) where all boundary times are represented, and for any

finite number of string times is jointly Gaussian. Firstly, we have already proved that
(zja0 , z

j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
) is jointly Gaussian. Secondly, we note from Theorem 2 that conditional

on (zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
), (. . . , zj

tki
, zj′
tki
, . . .) is a Gaussian vector whose covariance matrix does

not depend on (zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
), and whose mean depends linearly on(

zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj

)
.

Hence, (
zja0 , z

j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
, . . . , zj

tki
, zj′
tki
, . . .

)
is jointly Gaussian (by Lemma 10).

APPENDIX H.0.3 STEP 3 (zjt1 , . . . , z
j
tn) IS JOINTLY GAUSSIAN

(zjt1 , z
j′
t1
, . . . , zjtn , z

j′
tn) is jointly Gaussian as it can be regarded as the marginal of some joint distri-

bution of the form (zja0 , z
j′
a0 , . . . , z

j
a
Kj
, zj′a

Kj
, . . . , zj

tki
, zj′
tki
, . . .). Hence, its marginal (zjt1 , . . . , z

j
tn) is

also jointly Gaussian, which concludes our proof.

Appendix I. Derivation of Global String GP Mean and Covariance Functions

We begin with derivative string GPs indexed on R. Extensions to membrane GPs are easily achieved
for a broad range of link functions. In our exposition, we focus on the class of elementary symmetric

78

STRING AND MEMBRANE GAUSSIAN PROCESSES

polynomials (Macdonald (1995)). In addition to containing the link function φs previously intro-
duced, this family of polynomials yields global covariance structures that have many similarities
with existing kernel approaches, which we discuss in Section 4.3.

For n ≤ d, the n-th order elementary symmetric polynomial is given by

e0(x1, . . . , xd) := 1, ∀1 ≤ n ≤ d en(x1, . . . , xd) =
∑

1≤j1<j2<···<jn≤d

n∏
k=1

xjk . (94)

As an illustration,

e1(x1, . . . , xd) =

d∑
j=1

xj = φs(x1, . . . , xd),

e2(x1, . . . , xd) = x1x2 + x1x3 + · · ·+ x1xd + · · ·+ xd−1xd,

. . .

ed(x1, . . . , xd) =
d∏
j=1

xj = φp(x1, . . . , xd).

Let f denote a membrane GP indexed on Rd with link function en and by (z1
t), . . . , (zdt) its inde-

pendent building block string GPs. Furthermore, let mj
k and kjk denote the unconditional mean and

covariance functions corresponding to the k-th string of (zjt) defined on [ajk−1, a
j
k]. Finally, let us

define
m̄j(t) := E(zjt), m̄j′(t) := E(zj′t),

the global mean functions of the j-th building block string GP and of its derivative, where ∀t ∈ Ij .
It follows from the independence of the building block string GPs (zjt) that:

m̄f (t1, . . . , td) := E(f(t1, . . . , td)) = en(m̄1(t1), . . . , m̄d(td)).

Moreover, noting that
∂en
∂xj

= en−1(x1, . . . , xj−1, xj+1, . . . , xd),

it follows that:

m̄∇f (t1, . . . , td) := E (∇f(t1, . . . , td)) =

 m̄1′(t1)en−1

(
m̄2(t2), . . . , m̄d(td)

)
. . .

m̄d′(td)en−1

(
m̄1(t1), . . . , m̄d−1(td−1)

)
 .

Furthermore, for any uj , vj ∈ Ij we also have that

cov (f(u1, . . . , ud), f(v1, . . . , vd)) = en

(
cov(z1

u1 , z
1
v1), . . . , cov(zdud , z

d
vd

)
)
,

cov
(
∂f

∂xi
(u1, . . . , ud), f(v1, . . . , vd)

)
= en

(
cov(z1

u1 , z
1
v1), . . . , cov(zi′ui , z

i
vi), . . . , cov(zdud , z

d
vd

)
)
,

79

KOM SAMO AND ROBERTS

and for i ≤ j

cov
(
∂f

∂xi
(u1, . . . , ud),

∂f

∂xj
(v1, . . . , vd)

)
=

{
en

(
cov(z1

u1 , z
1
v1), . . . , cov(zi′ui , z

i
vi), . . . , cov(zj′uj , z

j
vj), . . . , cov(zdud , z

d
vd

)
)
, if i < j

en
(
cov(z1

u1 , z
1
v1), . . . , cov(zi′ui , z

i′
vi), . . . , cov(zdud , z

d
vd

)
)
, if i = j

.

Overall, for any elementary symmetric polynomial link function, multivariate mean and covariance
functions are easily deduced from the previously boxed equations and the univariate quantities

m̄j(u), m̄j′(u), and jK̄u;v :=

[
cov(zju, z

j
v) cov(zju, z

j′
v)

cov(zj′u , z
j
v) cov(zj′u , z

j′
v)

]
= jK̄T

v;u,

which we now derive. In this regards, we will need the following lemma.

Lemma 10 Let X be a multivariate Gaussian with mean µX and covariance matrix ΣX . If condi-
tional on X , Y is a multivariate Gaussian with mean MX + A and covariance matrix Σc

Y where
M , A and Σc

Y do not depend on X , then (X,Y) is a jointly Gaussian vector with mean

µX;Y =

[
µX

MµX +A

]
,

and covariance matrix

ΣX;Y =

[
ΣX ΣXM

T

MΣX Σc
Y +MΣXM

T

]
.

Proof See Appendix G.

APPENDIX I.0.1 GLOBAL STRING GP MEAN FUNCTIONS

We now turn to evaluating the univariate global mean functions m̄j and m̄j′. We start with boundary
times and then generalise to other times.

Boundary times: We note from Theorem 2 that the restriction
(
zjt , z

j′
t

)
t∈[aj0,a

j
1]

is the derivative

Gaussian process with mean and covariance functions mj
1 and kj1. Thus,[

m̄j(aj0)

m̄j′(aj0)

]
=

[
mj

1(aj0)
dmj1
dt (aj0)

]
, and

[
m̄j(aj1)

m̄j′(aj1)

]
=

[
mj

1(aj1)
dmj1
dt (aj1)

]
.

For k > 1, we recall that conditional on
(
zj
ajk−1

, zj′
ajk−1

)
,
(
zj
ajk
, zj′
ajk

)
is Gaussian with mean

[
mj
k(a

j
k)

dmjk
dt (ajk)

]
+ j
kK

ajk;ajk−1

j
kK−1

ajk−1;ajk−1

 zjajk−1

−mj
k(a

j
k−1)

zj′
ajk−1

− dmjk
dt (ajk−1)

 ,
80

STRING AND MEMBRANE GAUSSIAN PROCESSES

with j
kKu;v =

 kjk(u, v)
∂kjk
∂y (u, v)

∂kjk
∂x (u, v)

∂2kjk
∂x∂y (u, v)

 .
It then follows from the law of total expectations that for all k > 1[

m̄j(ajk)

m̄j′(ajk)

]
=

[
mj
k(a

j
k)

dmjk
dt (ajk)

]
+ j
kK

ajk;ajk−1

j
kK−1

ajk−1;ajk−1

[
m̄j(ajk−1)−mj

k(a
j
k−1)

m̄j′(ajk−1)− dmjk
dt (ajk−1)

]
.

String times: As for non-boundary times t ∈]ajk−1, a
j
k[, conditional on

(
zjak−1 , z

j′
ak−1

)
and

(
zjak , z

j′
ak

)
,(

zjt , z
j′
t

)
is Gaussian with mean

[
mj
k(t)

dmjk
dt (t)

]
+ j
kK

t;(ajk−1,a
j
k)

j
kK−1

(ajk−1,a
j
k);(ajk−1,a

j
k)

zj
ajk−1

−mj
k(a

j
k−1)

zj′
ajk−1

− dmjk
dt (ajk−1)

zj
ajk
−mj

k(a
j
k)

zj′
ajk
− dmjk

dt (ajk)

,

with

j
kK(ajk−1,a

j
k);(ajk−1,a

j
k)

=

jkK
ajk−1;ajk−1

j
kK

ajk−1;ajk
j
kK

ajk;ajk−1

j
kK

ajk;ajk

and

j
kK

t;(ajk−1,a
j
k)

=
[
j
kK

t;ajk−1

j
kK

t;ajk

]
.

Hence, using once again the law of total expectation, it follows that for any t ∈]ajk−1, a
j
k[,

[
m̄j(t)
m̄j′(t)

]
=

[
mj
k(t)

dmjk
dt (t)

]
+ j
kK

t;(ajk−1,a
j
k)

j
kK−1

(ajk−1,a
j
k);(ajk−1,a

j
k)

m̄j(ajk−1)−mj

k(a
j
k−1)

m̄j′(ajk−1)− dmjk
dt (ajk−1)

m̄j(ajk)−m
j
k(a

j
k)

m̄j′(ajk)−
dmjk
dt (ajk)

 .

We note in particular that when ∀ j, k, mj
k = 0, it follows that m̄j = 0, m̄f = 0, m̄∇f = 0.

APPENDIX I.0.2 GLOBAL STRING GP COVARIANCE FUNCTIONS

As for the evaluation of jK̄u,v, we start by noting that the covariance function of a univariate string
GP is the same as that of another string GP whose strings have the same unconditional kernels but
unconditional mean functions mj

k = 0, so that to evaluate univariate string GP kernels we may
assume that ∀ j, k, mj

k = 0 without loss of generality. We start with the case where u and v are
both boundary times, after which we will generalise to other times.

81

KOM SAMO AND ROBERTS

Boundary times: As previously discussed, the restriction
(
zjt , z

j′
t

)
t∈[aj0,a

j
1]

is the derivative Gaus-

sian process with mean 0 and covariance function kj1. Thus,

jK̄
aj0;aj0

= j
1K

aj0;aj0
, jK̄

aj1;aj1
= j

1K
aj1;aj1

, jK̄
aj0;aj1

= j
1K

aj0;aj1
. (95)

We recall that conditional on the boundary conditions at or prior to ajk−1,
(
zj
ajk
, zj′
ajk

)
is Gaussian

with mean

b
kM

zjajk−1

zj′
ajk−1

 with b
kM = j

kK
ajk;ajk−1

j
kK−1

ajk−1;ajk−1

,

and covariance matrix
b
kΣ = j

kK
ajk;ajk

− b
kM

j
kK

ajk−1;ajk
.

Hence using Lemma 10 with M =
[
b
kM 0 . . . 0

]
where there are (k − 1) null block 2 × 2

matrices, and noting that
(
zj
aj0
, zj′
aj0
, . . . , zj

ajk−1

, zj′
ajk−1

)
is jointly Gaussian, it follows that the vector(

zj
aj0
, zj′
aj0
, . . . , zj

ajk
, zj′
ajk

)
is jointly Gaussian, that

(
zj
ajk
, zj′
ajk

)
has covariance matrix

jK̄
ajk;ajk

= b
kΣ + b

kM
jK̄

ajk−1;ajk−1

b
kM

T ,

and that the covariance matrix between the boundary conditions at ajk and at any earlier boundary
time ajl , l < k reads:

jK̄
ajk;ajl

= b
kM

jK̄
ajk−1;ajl

.

String times: Let u ∈ [ajp−1, a
j
p], v ∈ [ajq−1, a

j
q]. By the law of total expectation, we have that

jK̄u;v := E

([
zju
zj′u

] [
zjv zj′v

])
= E

(
E

([
zju
zj′u

] [
zjv zj′v

] ∣∣∣∣B(p, q)

))
,

where B(p, q) refers to the boundary condtions at the boundaries of the p-th and q-th strings, in other

words
{
zjx, z

j′
x , x ∈

{
ajp−1, a

j
p, a

j
q−1, a

j
q

}}
. Furthermore, using the definition of the covariance

matrix under the conditional law, it follows that

E
([

zju
zj′u

] [
zjv zj′v

] ∣∣∣∣B(p, q)

)
= j

cK̄u;v + E
([

zju
zj′u

] ∣∣∣∣B(p, q)

)
E
([

zjv zj′v

] ∣∣∣∣B(p, q)

)
, (96)

where jcK̄u;v refers to the covariance matrix between (zju, z
j′
u) and (zjv, z

j′
v) conditional on the bound-

ary conditions B(p, q), and can be easily evaluated from Theorem 2. In particular,

if p 6= q, jcK̄u;v = 0, and if p = q, jcK̄u;v = j
pKu;v − j

pΛu

jpKT
v;ajp−1

j
pKT

v;ajp

 , (97)

82

STRING AND MEMBRANE GAUSSIAN PROCESSES

where

∀ x, l, jlΛx =
[
j
lKx;ajl−1

j
lKx;ajl

]jlKajl−1;ajl−1

j
lKajl−1;ajl

j
lKajl ;a

j
l−1

j
lKajl ;a

j
l

−1

.

We also note that

E
([

zju
zj′u

] ∣∣∣∣B(p, q)

)
= j

pΛu

zj
ajp−1

zj′
ajp−1

zj
ajp

zj′
ajp

 and E
([

zjv zj′v

] ∣∣∣∣B(p, q)

)
=
[
zj
ajq−1

zj′
ajq−1

zj
ajq

zj′
ajq

]
j
qΛ

T
v .

Hence, taking the expectation with respect to the boundary conditions on both sides of Equation
(96), we obtain:

∀ u ∈ [ajp−1, a
j
p], v ∈ [ajq−1, a

j
q],

jK̄u;v = j
cK̄u;v + j

pΛu

[
jK̄

ajp−1;ajq−1

jK̄
ajp−1;ajq

jK̄
ajp;ajq−1

jK̄
ajp;ajq

]
j
qΛ

T
v ,

where jcK̄u;v is provided in Equation (97).

83

KOM SAMO AND ROBERTS

References

R. P. Adams and O. Stegle. Gaussian process product models for nonparametric nonstationarity. In
International Conference on Machine Learning (ICML), pages 1–8, 2008.

R. J. Adler and J. E. Taylor. Topological Complexity of Smooth Random Functions: École D’Été
de Probabilités de Saint-Flour XXXIX-2009. Lecture Notes in Mathematics / École d’Été de
Probabilités de Saint-Flour. Springer, 2011.

P. Alquier, N. Friel, R. Everitt, and A. Boland. Noisy monte carlo: Convergence of Markov chains
with approximate transition kernels. Statistics and Computing, 26(1-2):29–47, 2016.

R. Bardenet, A. Doucet, and C. Holmes. Towards scaling up Markov chain monte carlo: an adaptive
subsampling approach. In International Conference on Machine Learning (ICML), pages 405–
413, 2014.

S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov Chain Monte Carlo. CRC
press, 2011.

R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold Gaussian processes for
regression. arXiv preprint arXiv:1402.5876, 2014.

Y. Cao and D. J. Fleet. Generalized product of experts for automatic and principled fusion of
Gaussian process predictions. arXiv preprint arXiv:1410.7827, 2014.

D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer-Verlag,
2008.

M. Deisenroth and J. W. Ng. Distributed Gaussian processes. In International Conference on
Machine Learning (ICML), pages 1481–1490, 2015.

J. L. Doob. The elementary Gaussian processes. The Annals of Mathematical Statistics, 15(3):
229–282, 1944.

N. Durrande, D. Ginsbourger, and O. Roustant. Additive covariance kernels for high-dimensional
Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse, 21(3), 2012.

D. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive Gaussian processes. In Advances in
Neural Information Processing Systems (NIPS), pages 226–234, 2011.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics,
pages 209–230, 1973.

N. J. Foti and S. Williamson. A survey of non-exchangeable priors for Bayesian nonparametric
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):359–371, 2015.

R. B. Gramacy and H. K. H. Lee. Bayesian treed Gaussian process models with an application to
computer modeling. Journal of the American Statistical Association, 103(483), 2008.

P. J. Green. Reversible jump Markov chain monte carlo computation and Bayesian model determi-
nation. Biometrika, 82(4):711–732, 1995.

84

STRING AND MEMBRANE GAUSSIAN PROCESSES

P. J. Green and D. I. Hastie. Reversible jump MCMC. Genetics, 155(3):1391–1403, 2009.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in
Artificial Intellegence (UAI), pages 282–290, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 351–360,
2015.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of
Machine Learning Research, 14:1303–1347, 2013.

I. Karatzas and R. Fernholz. Stochastic Portfolio Ttheory: An Overview. Handbook of Numerical
Analysis, 15:89–167, 2009.

H. Kim, Mallick B. K., and Holmes C. C. Analyzing nonstationary spatial data using piecewise
Gaussian processes. Journal of the American Statistical Association, 100(470):653–668, 2005.

J. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59–78, 1967.

Y.-L. Kom Samo and A. Vervuurt. Stochastic portfolio theory : a machine learning perspective. In
Uncertainty in Artificial Intelligence (UAI), pages 657– 665, 2016.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: the informative
vector machine. In Advances in Neural Information Processing Systems (NIPS), pages 625–632,
2003.

M. Lazaro-Gredilla, J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vida. Sparse
spectrum Gaussian process regression. Journal of Machine Learning Research, 11:1866–1881,
2010.

Q. Le, T. Sarlós, and A. Smola. Fastfood-approximating kernel expansions in loglinear time. In
International Conference on Machine Learning (ICML), 2013.

I. G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, 1995.

D. J. C. MacKay. Introduction to Gaussian processes. In NATO ASI Series F: Computer and Systems
Sciences, pages 133–166. Springer, Berlin, 1998.

E. Meeds and S. Osindero. An alternative infinite mixture of Gaussian process experts. In Advances
In Neural Information Processing Systems (NIPS), 2006.

I. Murray, R. P. Adams, and D. J. C. MacKay. Elliptical slice sampling. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 9–16, 2010.

R. Neal. Bayesian learning for neural networks. Lecture notes in Statistics. Springer, 1996.

T. Nguyen and E. Bonilla. Fast allocation of Gaussian process experts. In International Conference
on Machine Learning (ICML), pages 145–153, 2014.

B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Hochschultext
/ Universitext. Springer, 2003.

85

KOM SAMO AND ROBERTS

C. Paciorek and M. Schervish. Nonstationary covariance functions for Gaussian process regression.
In Advances in Neural Information Processing Systems (NIPS), pages 273–280, 2004.

J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable sub-
ordinator. The Annals of Probability, pages 855–900, 1997.

C. Plagemann, K. Kersting, and W. Burgard. Nonstationary Gaussian process regression using
point estimate of local smoothness. In European Conference on Machine Learning (ECML),
pages 204–219, 2008.

J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), pages 1177–1184, 2007.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In Advances
in Neural Information Processing Systems (NIPS), pages 881–888, 2001.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press,
2006.

J. Ross and J. Dy. Nonparametric mixture of Gaussian processes with constraints. In International
Conference on Machine Learning (ICML), pages 1346–1354, 2013.

Y. Saatchi. Scalable Inference for Structured Gaussian Process Models. PhD thesis, University of
Cambridge, 2011.

A. M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary spatial covariance structure
via spatial deformations. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 65(3):743–758, 2003.

M. Seeger. Bayesian Gaussian process models: Pac-Bayesian generalisation error bounds and sparse
approximations. Technical report, 2003a.

M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. Journal
of Machine Learning Research, 3:233–269, 2003b.

A. Shah, A. G. Wilson, and Z. Ghahramani. Student-t processes as alternatives to Gaussian pro-
cesses. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
877–885, 2014.

B. W. Silverman. Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression
Curve Fitting. Journal of the Royal Statistical Society. Series B (Methodological), 47(1):1–52,
1985.

A. J. Smola and P. Bartlett. Sparse greedy Gaussian process regression. In Advances in Neural
Information Processing Systems (NIPS), pages 619–625. MIT Press, 2001.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems (NIPS), pages 1257–1264, 2006.

86

STRING AND MEMBRANE GAUSSIAN PROCESSES

The GPy authors. GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy, 2012–2016.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719–2741, 2000.

V. Tresp. Mixtures of Gaussian processes. In Advances in Neural Information Processing Systems
(NIPS), pages 654–660, 2001.

A. Vervuurt and I. Karatzas. Diversity-weighted portfolios with negative parameter. Annals of
Finance, 11(3):411–432, 2015.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Advances
in Neural Information Processing Systems (NIPS), pages 682–688, 2001.

A. G. Wilson and R. P. Adams. Gaussian process kernels for pattern discovery and extrapolation.
In International Conference on Machine Learning (ICML), pages 1067–1075, 2013.

A. G. Wilson and H. Nickisch. Kernel interpolation for scalable structured Gaussian processes. In
International Conference on Machine Learning (ICML), pages 1775–1784, 2015.

A. G. Wilson, E. Gilboa, and J. P. Nehorai, A.and Cunningham. Fast kernel learning for multidi-
mensional pattern extrapolation. In Advances in Neural Information Processing Systems (NIPS),
pages 3626–3634. 2014.

Z. Yang, A. Smola, L. Song, and A. G. Wilson. A la carte – learning fast kernels. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 1098–1106, 2015.

87

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

	Introduction
	Related Work
	Scalability Through Structured Approximations
	Scalability Through Data Distribution
	Expressive Stationary Kernels
	Application-Specific Nonstationary Kernels
	Our Approach

	Construction of String and Membrane Gaussian Processes
	String Gaussian Processes on R
	Pathwise Regularity
	Illustration
	String Gaussian Processes on Rd
	Choice of Link Function

	Comparison with the Standard GP Paradigm
	Some String GPs are GPs
	String GP Kernels and String GP Mean Functions
	Connection Between Multivariate String GP Kernels and Existing Approaches
	String GPs as Extension of the Standard GP Paradigm
	Commonly Used Covariance Functions and their String GP Counterparts

	Inference under String and Membrane GP Priors
	Maximum Marginal Likelihood for Small Scale Regression Problems
	Remarks

	Generic Reversible-Jump MCMC Sampler for Large Scale Inference
	Prior Specification
	Scalable Choice of Boundary Times
	Model Complexity Learning as a Change-Point Problem
	Overall Structure of the MCMC Sampler
	Within-Model Updates
	Between-Models Updates

	Multi-Output Problems
	Flashback to Small Scale GP Regressions with String GP Kernels

	Experiments
	Extrapolation and Interpolation of Synthetic Local Patterns
	Small Scale Heteroskedastic Regression
	Large Scale Regression
	Large Scale Dynamic Asset Allocation
	Background
	Model Construction
	Experimental Setup

	Discussion
	Limitations
	Extensions
	Stronger Global Regularity
	Differential Operators as Link Functions
	Distributed String GPs
	Approximate MCMC for I.I.D. Observations Likelihoods
	Variational Inference

	Appendix
	Appendix Proof of Proposition 1
	Proof of Proposition 1 (A)
	Proof of Proposition 1 (B)
	Proof of Proposition 1 (C)

	Appendix Proof of Theorem 2
	Proof of Theorem 2 (A)
	Proof of Theorem 2 (B)

	Appendix Proof of the Condition for Pathwise Regularity Upgrade of String GPs from L2
	Appendix Proof of Proposition 4
	Proof of Proposition 4 1)
	Proof of Proposition 4 2)

	Appendix Proof of Proposition 6
	Appendix Proof of Lemma 10
	Appendix Proof of Proposition 5
	Step 1 (za0j, za0j , …, zaKjj, zaKjj) is jointly Gaussian
	Step 2 (za0j, za0j , …, zaKjj, zaKjj , …, ztikj, ztikj , …) is jointly Gaussian
	Step 3 (zt1j, …, ztnj) is jointly Gaussian

	Appendix Derivation of Global String GP Mean and Covariance Functions
	Global String GP Mean Functions
	Global String GP Covariance Functions

