
Journal of Machine Learning Research 17 (2016) 1-24 Submitted 8/15; Revised 12/15; Published 6/16

The Factorized Self-Controlled Case Series Method: An
Approach for Estimating the Effects of Many Drugs on

Many Outcomes

Ramin Moghaddass ramin@miami.edu
Department of Industrial Engineering
University of Miami
Coral Gables, FL, USA

Cynthia Rudin cynthia@cs.duke.edu
Department of Computer Science
Department of Electrical and Computer Engineering
Duke University
Durham, NC, USA

David Madigan madigan@stat.columbia.edu

Department of Statistics

Columbia University

New York, NY, USA

Editor: Benjamin M. Marlin, C. David Page, and Suchi Saria

Abstract

We provide a hierarchical Bayesian model for estimating the effects of transient drug ex-
posures on a collection of health outcomes, where the effects of all drugs on all outcomes
are estimated simultaneously. The method possesses properties that allow it to handle
important challenges of dealing with large-scale longitudinal observational databases. In
particular, this model is a generalization of the self-controlled case series (SCCS) method,
meaning that certain patient specific baseline rates never need to be estimated. Further,
this model is formulated with layers of latent factors, which substantially reduces the num-
ber of parameters and helps with interpretability by illuminating latent classes of drugs and
outcomes. We believe our work is the first to consider multivariate SCCS (in the sense of
multiple outcomes) and is the first to couple latent factor analysis with SCCS. We demon-
strate the approach by estimating the effects of various time-sensitive insulin treatments
for diabetes.

Keywords: Bayesian Analysis, Drug Safety, Self-Controlled Case Series, Matrix Factor-
ization, Effect Size Estimation

1. Introduction

The medical community, the pharmaceutical industry, and health authorities are obligated
to confirm that marketed medical products and prescription drugs have acceptable benefit-
risk profiles; in fact, these entities have come under increasing scientific, regulatory, and
public scrutiny to accurately estimate the effects of drugs. The increasing availability of
large-scale longitudinal observational healthcare databases (LODs) opens up exciting new
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opportunities to add to the evidence base concerning these issues, though the complexity and
scale of some of the available databases presents interesting statistical and computational
challenges. In what follows we focus on using longitudinal observational databases to make
inference about the effects of many drugs with respect to many outcomes simultaneously.

Many research studies have attempted to characterize the relationship between time-
varying drug exposures and adverse events (AEs) related to health outcomes (e.g., in Madi-
gan et al., 2011; Greene et al., 2011; Benchimol et al., 2013; Simpson et al., 2013; Chui
et al., 2014) and the use of LODs to study individual drug-adverse effect combinations
has become routine. The medical literature provides many examples and many different
epidemiological and statistical approaches, often tailored to the specific drug and specific
adverse effect. There is a major flaw in these approaches of estimating the effect of one drug
on one outcome, which is that it is very clear that many drugs are closely related to each
other (there are dozens of antibiotics for instance), and many health outcomes are closely
related to each other (e.g., strokes, heart attacks, and other vascular diseases). In this work,
we borrow strength across both drugs and outcomes in order to obtain better estimates for
each individual drug and outcome. Since we are interested in the effects of drugs, and not
in the patient-specific baseline rate of the outcome, we use the ideas of the self-controlled
case series (SCCS) method of Farrington (1995), which is a conditional Poisson regres-
sion approach wherein each patient serves as his or her own control. The SCCS method
has been widely applied, especially in vaccine studies (see the tutorial of Whitaker et al.,
2006). SCCS controls for all fixed patient-level covariates but remains susceptible to time-
varying confounding. The standard SCCS method focuses on one drug and one outcome.
Simpson et al. (2013) introduced the high-dimensional multiple self-controlled case series
(MSCCS) method that simultaneously provides effect estimates for multiple drugs and a
single outcome. In fact, the MSCCS provides a self-controlled approach that can control for
many time-varying covariates, drugs being a special case. Bayesian implementations of both
SCCS and MSCCS provide significant advantages, especially in high-dimensional settings
with thousands or even tens of thousands of drugs and outcomes and even larger numbers of
interactions. Suchard et al. (2013a) and Madigan et al. (2014) describe large-scale empirical
evaluations of SCCS and MSCCS in comparison with other standard methods for effect size
estimation.

Neither SCCS nor MSCCS account for the fact that many drugs/treatments naturally
form classes and therefore regression coefficients for drugs from within a single class might
reasonably be modeled as arising exchangeably from a common prior distribution. Adverse
events and health conditions can also be organized hierarchically, again affording an oppor-
tunity to “borrow strength” across related outcomes. For both drugs and outcomes, the
hierarchy could extend to multiple levels. In what follows, we formalize these ideas within
the framework of latent factor Bayesian hierarchical models.

Factor models, which have been traditionally used in behavioral sciences and bioinfor-
matics, provide a flexible framework for modeling multivariate data via unobserved latent
factors (e.g., Ghosh and Dunson, 2009; Carvalho et al., 2008). In this paper, we do not
impose specific latent structure a priori. However, our approach can also be used for cases
where classes of drugs and conditions are known a priori. We will show that the latent
factor approach not only brings more interpretability to our model, but also can signif-
icantly contribute to reducing the computational complexity. To our knowledge, only a
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few authors have previously considered matrix factorization-based data analysis techniques
for drug safety and surveillance (for example, Zitnik and Zupan 2014, for drug-induced
liver injury prediction and Cobanoglu et al. 2013, for predicting drug-target interactions in
neurobiological disorders, which are both very different from our study).

We introduce three models for predicting the effects of multiple drugs on multiple out-
comes that use hierarchical Bayesian analysis. The first model (Model 0) does not use latent
factors, and borrows strength across all drugs and outcomes. The second model (Model 1)
uses one set of latent drugs and one set of latent outcomes, through a single matrix factor-
ization. The third model (Model 2) uses two sets of latent factors, by factoring the matrix
of coefficients into three matrices; one for converting drugs to latent drugs, another for con-
verting outcomes to latent outcomes, and the third for modeling the effects of latent drugs
on latent outcomes. By allowing for latent factors, the second and third models provide an
increased level of interpretability, use fewer variables, and are thus more computationally
efficient to estimate.

The rest of this paper is organized as follows: Section 2 provides an overview of the self-
controlled case series (SCCS) method. In Sections 3, 4.1, 4.2, and 4.3 we describe the model
and the Bayesian inference procedure. We then use a series of simulations in Section 5 to
show that we can recover the true generating parameters from data. Finally, we demonstrate
the approach in Section 6 for estimating the effects of various insulin treatments for diabetes.
Our proposed methodology has broader applicability beyond estimating the effects of drugs
considered in this paper.

2. Background: Overview of the Self-Controlled Case Series (SCCS)

The self-controlled case series method (Farrington, 1995) models the event rate during drug
exposure in comparison to the baseline event rate while unexposed (see Whitaker et al.,
2006; Madigan et al., 2010; Suchard et al., 2013a). In the self-controlled case series method,
each individual also acts as their own control. Each treatment observation, which is a
period of time that someone is drug-exposed, is considered with respect to other periods
of time in which the same person is not exposed. This way of matching gracefully avoids
patient-level selection bias; it controls for all fixed confounders, such as the individual’s
underlying frailty, the severity of their underlying disease, genetics, socioeconomic status,
and so on. Further, because of the way the SCCS model is designed around this choice, the
non-time dependent factors for each person cancel within the formula for the likelihood,
and do not appear in the likelihood at all. This allows us to focus our modeling efforts on
the time-dependent terms that involve the effects of the drugs.

To obtain SCCS’s benefits, we also suffer its disadvantages and assumptions. First,
SCCS is susceptible to bias due to potential unmeasured time-varying confounders. (How-
ever, SCCS does account for non-time-varying confounding.) This means we should include
all features that affect the outcome and vary over time. Second, SCCS assumes that treat-
ment effects are homogeneous across subjects. This avoids having to model patient-specific
effects. However, it is possible that patients experience different effects from the various
treatments. It is possible to create extensions of our approach that include patient specific
random effects if desired. Third, the basic version of SCCS assumes that future outcomes
are independent of past ones, but this can be changed, as discussed later. Conditional on
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the model parameters, outcomes are assumed to be independent of each other, although
because we are using latent factors, there can be marginal dependences among the outcomes.

In the SCCS, events are modeled as arising from a non-homogeneous Poisson process.
The event rate varies over time, based on exposure to drugs. Each patient i = 1, · · · , N
carries an unknown individual baseline event rate of eφi . The exposure to drug j = 1, ..., J
measured each day results in a multiplicative effect of eβj to this baseline rate eφi . The
historical data for patient i on day d (d = 1, · · · , τi) includes a vector of drug exposure as
xid = [xid1, xid2, ..., xidJ ]>, where xidj = 1 if patient i is exposed to drug j on day d and 0
otherwise. The SCCS defines λid = exp(φi + x>idβ) as the Poisson event rate for patient i
on interval d, where β = [β1, β2, ..., βJ ]> are regression coefficients. We denote yid as the
number of events that patient i experiences on day d. Conditioning on the total number of
events for patient i, denoted by ni, nuisance quantities φi cancel out of the SCCS likelihood,
leaving log-likelihood as follows:

L(β) =
N∑
i

[
τi∑
d

yid x
>
id β − ni log

(
τi∑
d

ex
>
idβ

)]
. (1)

Since larger LODs can contain millions of patients, avoiding estimation of the patient-
specific baseline rates represents a significant computational and statistical advantage.

The most basic version of the SCCS deals with one drug and estimates a single unknown,
β1, the effect estimate for the target drug of direct interest. However, most patients in
longitudinal healthcare databases often take multiple drugs and treatments throughout the
course of their observation and also experience multiple health outcomes. This motivates
us to use a multiple-drug, multiple-outcome analysis.

3. Multi-drug, Multi-Outcome Self-Controlled Case Series - Notation
and Inference

The methods proposed here generalize the self-controlled case series to handle mul-
tiple drugs/treatments and multiple outcomes/conditions. We describe the extended
SCCS/MSCCS where there are J drugs and O health outcomes. The notation used through-
out the paper is as follows:
N : number of patients (i indexes individuals from 1 to N).
xidj : binary indicator reflecting whether patient i is exposed to drug j on interval d.
xid = [xid1, xid2, ..., xidJ ]>: the vector of exposed drugs for patient i on interval d.
J : number of drugs (treatments).
O: number of health outcomes (adverse events).
Do
i : the set of observation intervals where patient i has outcome o.

τ oi : the number of observation intervals where patient i has outcome o (the size of Do
i ).

yoid: binary indicator reflecting whether patient i has outcome o on interval d.
yoi = [yoi1, y

o
i2, ..., y

o
iτoi

]>: the vector of observed outcomes o for patient i.
φoi : baseline incidence of outcome o for patient i.

Φ =

 φ11 ... φO1
: : :
φ1N ... φON

: baseline incidence matrix.
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βoj : regression coefficients associated with outcome o and drug j.

βo = [βo1 , β
o
2 , ..., β

o
J ]>: regression coefficients associated with outcome o.

B =

 β11 ... βO1
: : :
β1J ... βOJ

 : drug-outcome coefficient matrix.

λ0id = exp(φoi + x>idβ
o): the Poisson event rate of outcome o, for patient i, on interval d.

Similar to the SCCS, outcomes occur according to a nonhomogeneous Poisson process,
where drug exposure can modulate the rate over time. Patient i has an individual baseline
rate of exp(φoi ) for outcome o that remains constant over time. Drug j has a multiplicative
effect of exp(βoj ) on the individual baseline rate exp(φoi ) during its exposure period. The
Poisson event rate for outcome o and patient i on interval d according to the SCCS is

λoid = exp(φoi + x>idβ
o).

The key benefit of the SCCS is that the φoi terms do not need to be modeled, since we
are interested in the ratio of Poisson intensities with and without the drug. For instance,
considering only one drug j, comparing the intensity ratio for day d1 to a different day d2
with no exposure to the drug, we have

λoid1
λoid2

=
exp(φoi + 1βoj )

exp(φoi + 0βoj )
= exp(βoj ).

As the Poisson rate is assumed to be constant within each interval, the number of outcomes
o observed for patient i on interval d is distributed as a Poisson random variable (r.v.)
denoted by Y o

id as

Pr(Y o
id = yoid|xid) =

e−λ
o
id λoid

yoid

yoid!
.

Based on the above, the contribution to the likelihood for patient i and outcome o for the
observed sequence of events yoi = [yoi1, y

o
i2, ..., y

o
iτoi

]>, conditioned on the observed exposures

xi = [xi1, ...,xiτoi ] is

Loi = Pr(yoi |xi) =
∏
d∈Do

i

Pr(yoid|xid) = exp

−∑
d∈Do

i

eφ
o
i+x

>
idβ

o

 ∏
d∈Do

i

(
eφ

o
i+x

>
idβ

o
)yoid

yoid!
(2)

= exp

−eφoi ∑
d∈Do

i

ex
>
idβ

o

 ∏
d∈Do

i

eφ
o
i y

o
id

∏
d∈Do

i

(
ex

>
idβ

o
)yoid

yoid!

= exp

φoinoi − eφoi ∑
d∈Do

i

ex
>
idβ

o

 ∏
d∈Do

i

(
ex

>
idβ

o
)yoid

yoid!
,

where noi =
∑
d

yoid.
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Two key assumptions underly the above likelihood. First, the model assumes that fu-
ture outcomes are independent of past outcomes. For certain outcomes (e.g., myocardial
infarction) this may not be reasonable. Simpson (2013), Schuemie et al. (2014), and Farring-
ton et al. (2011) consider SCCS generalizations that allow for such dependence; in future
work it is possible to consider similar generalizations of the method proposed here. The
SCCS model also assumes that conditional on the parameters, outcomes are independent of
each other. The latent structure, however, allows for arbitrary marginal dependence among
outcomes.

One could form the full likelihood to estimate the unknown parameters (Φ,B). In order
to avoid estimating the nuisance parameter set Φ, we can condition on its sufficient statistic,
which removes the dependence on Φ. The cumulative intensity is a sum (rather than an
integral) since we assume a constant intensity over each interval. Conditioning on noi yields
the following likelihood for person i:

Loi = Pr(yoi |xi, noi ) =

∏
d∈Do

i

Pr(yoid|xid)

Pr(noi |xi)
=

∏
d∈Do

i

Pr(yoid|xid)
exp

− ∑
d∈Do

i

λoid

 ∑
d∈Do

i

λoid

no
i

no
i !


(3)

∝ exp
∏
d∈Do

i

 ex
>
idβ

o∑
d′
ex

>
id′β

o


yoid

.

Notice that because noi is sufficient, the individual likelihood in the above expression no
longer contains Φ. Assuming that patients are independent and outcomes are conditionally
independent, the full conditional likelihood for event o is simply the product of the individual

likelihoods (i.e. Lo =
N∏
i=1
Loi ). Intuitively it follows that if i has no outcomes of type o, it

cannot provide any information about the relative rate of outcome o.
Using the notation and the formula for the likelihood established in this section, we next

present three hierarchical models called Factorized Self-Controlled Case Series methods, for
multiple drug, multiple outcome analysis and discuss how to estimate the drug-outcome
coefficient matrix B. Two of the models have latent factors that allow B to be expressed
in a simpler and more interpretable way. In our experiments, the empirical performance of
these methods is approximately the same.

4. Factorized Self-Controlled Case Series (FSCCS)

Building on the notation in the previous section, this section describes the proposed self-
controlled case series methods within the three following subsections.

4.1 Model 0 - Hierarchical Model With No Latent Factors

Instead of estimating each coefficient independently, we borrow strength over both drugs
and outcomes, which adds substantial regularization. This is particularly relevant when
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considering a set of related outcomes and drugs, e.g., heart-disease related outcomes and
the set of drugs one might prescribe for heart-related conditions. We take a hierarchical
Bayesian approach. By analogy with ridge regression, we use normal priors for the regression
parameters (sparsifying priors such as the double exponential could be used instead). We
shrink the coefficients for drug j for all outcomes o to µj by placing an independent normal
prior on each βoj as βoj ∼ N (µj , σ

2
j ),∀(j, o), where µj ∼ N (0, γ2),∀j. This prior helps with

numerical instability, overfitting, and makes the model more interpretable. We assume
uniform priors for hyperparameters σj and γ as σj ∼ U(0, a),∀j and γ ∼ U(0, a), where
hyperparameter a is a user-defined constant, which can also be determined through cross-
validation. A natural extension of this model (not explored here) would be to have drugs
belong to certain classes of drugs, so that priors can be defined based on each class of drugs;
similarly with outcomes. The posterior density is as follows:

Pr(B,µ,σ, γ|y, a) ∝ Pr(y|B)× Pr(B|µ,σ)× Pr(µ|γ)× Pr(γ|a)× Pr(σ|a) (4)

∝
∏
o

∏
i

∏
d∈Di

(
exp

(
x>idβ

o
)∑

d′ exp
(
x>id′β

o
))y(o)id

×
∏
j

∏
o

N (βoj |µj , σ2j ) ×
∏
j

N (µj |0, γ2)×
∏
j

Pr(σj |a)× Pr(γ|a).

The negative log-posterior (which can be used for finding the MAP solution if desired) is:

L1 = − log (Pr(B,µ,σ, γ|y, a)) .

The graphical representation of this model is shown in Figure 1.

4.2 Model 1 - One Level of Latent Factors

Two considerations motivate this model. First, modeling the full posterior distribution of
Model 0 can be computationally expensive, particularly for large N , J , and O, where J and
O determine the number of variables to be estimated within the B matrix. Second, Model
0 overlooks the fact that drugs and outcomes might come from a smaller number of latent
classes; for instance, there are commonly several drugs that are extremely similar to each
other for treating a set of highly related illnesses. We consider F latent factors for drugs
and outcomes. We model the J ×O matrix B as B = L(D) × L(O), where

L(D) =

 L
(D)
1,1 ... L

(D)
1,F

: : :

L
(D)
J,1 ... L

(D)
J,F

 ,L(O) =

 L
(O)
1,1 ... L

(O)
1,O

: : :

L
(O)
F,1 ... L

(O)
F,O

 .

This way, we do not assume we know in advance which drugs have similar effects on which
outcomes, instead we estimate this from data. The number of latent factors F can be
determined by cross-validation. The total number of latent factors is J ×F +F ×O, which
can be substantially less than J×O. The coefficient βoj associated with outcome o and drug

j can be calculated as βoj =
F∑
f=1

L
(D)
j,f × L

(O)
f,o .
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γ

µjσj

βoj

a

B

j = 1 : J
o = 1 : O

Figure 1: Graphical representation of Model 0

For drug latent factors, we place independent normal priors on the entries of L(D) as

L
(D)
jf ∼ N (µ

(D)
f , σ

(D)2
f ), ∀(j, f), where µ

(D)
f ∼ N (0, γ(D)2), ∀f.

Similarly, we define normal priors on the entries of L(O) as

L
(O)
fo ∼ N (µ

(O)
f , σ

(O)2
f ),∀(f, o), where µ

(O)
f ∼ N (0, γ(O)2), ∀f.

We assume uniform priors for hyperparameters σj and γ as

σ
(D)
f ∼ U(0, a),∀f, σ(O)

f ∼ U(0, a), ∀f, γ(D) ∼ U(0, b), γ(O) ∼ U(0, b),

where (a, b) are known parameters. The posterior over the parameters is now defined as
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Pr(L(D),L(O),µ(D),µ(O),σ(D),σ(O), γ(D), γ(O)|y) ∝ Pr(y|L(D),L(O)) (5)

× Pr(L(D)|µ(D),σ(D))× Pr(L(O)|µ(O),σ(O))× Pr(µ(D)|γ(D))× Pr(µ(O)|γ(O))

× Pr(σ(D)|a)× Pr(σ(O)|a)× Pr(γ(D)|b)× Pr(γ(O)|b)

∝
∏
o

∏
i

∏
d∈Do

i

(
exp

(
x>idβ

o
)∑

d′ exp
(
x>id′β

o
))y(o)id

×
J∏
j=1

F∏
f=1

N (L
(D)
jf |µ

(D)
f , σ

(D)2
f )×

F∏
f=1

O∏
o=1

N (L
(O)
fo |µ

(O)
f , σ

(O)2
f )

×
F∏
f=1

N (µ
(D)
f |0, γ

(D)2)×
F∏
f=1

N (µ
(O)
f |0, γ

(O)2)

× Pr(σ
(D)
f |b)× Pr(σ

(O)
f )|b)× Pr(γ(D)|a)× Pr(γ(D)|a).

The graphical representation of this hierarchical Bayesian model is given in Figure 2.

4.3 Model 2 - Two Levels of Latent Factors

Here we represent B as

B = L(D) × L(F ) × L(O),

where

B =

 L
(D)
1,1 ... L

(D)
1,F1

: : :

L
(D)
J,1 ... L

(D)
J,F1

×
 L

(F )
1,1 ... L

(F )
1,F2

: : :

L
(F )
F1,1

... L
(F )
F1,F2

×
 L

(O)
1,1 ... L

(O)
1,O

: : :

L
(O)
F2,1

... L
(O)
F2,O

 .

The number of latent factors is thus J × F1 + F1 × F2 + F2 × O, which can be less than
the number of variables of Model 1 in many cases. Its major benefit is interpretability,
since now the number of latent drug factors and the number of latent outcome factors can
be estimated differently. L(D) represents the relationship between drugs and latent drug-
related factors, L(F ) represents the relationship between latent drug-related factors and
latent health-outcome-related factors, and L(O) represents the relationship between latent
health-outcome-related factors and health-outcome-related factors. L(F ) is really the core
set of variables since they relate the latent treatments to the latent health outcomes.

The priors are L
(D)
jf1
∼ N (µ

(D)
f1

, σ
(D)2
f1

), L
(O)
f2o
∼ N (µ

(O)
f2
, σ

(O)2
f2

), L
(F )
f1f2
∼ N (µ(F ), σ(F )2),

µ
(D)
f1
∼ N (0, γ(D)2), µ(F ) ∼ N (0, γ(F )2), µ

(O)
f2
∼ N (0, γ(O)2), σ

(D)
f1
∼ U(0, a), σ(F ) ∼

U(0, a), σ
(O)
f2
∼ U(0, a), γ(D) ∼ U(0, b), γ(F ) ∼ U(0, b), and γ(O) ∼ U(0, b) for all

(f1, f2, j, o).
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b a a b

γ(D) γ(O)

µ
(D)
f

µ
(O)
fσ

(D)
f

σ
(O)
f

L
(D)
jf

L
(O)
fo

L(D) L(O)

B

f = 1 : F

oj

Figure 2: The Graphical Framework for Hierarchical Bayesian Model with one level of latent
factors

The posterior density is

Pr(L(D),L(F ),L(O),µ(D),µ(F ),µ(O),σ(D),σ(F ),σ(O), γ(D), γ(F ), γ(O)|y) (6)

∝ Pr(y|L(D),L(F ),L(O))× Pr(L(D)|µ(D),σ(D))× Pr(L(F )|µ(F ),σ(D))× Pr(L(O)|µ(O),σ(O))

× Pr(µ(D)|γ(D))× Pr(µ(F )|γ(F ))× Pr(µ(O)|γ(O))

× Pr(σ(D)|a)× Pr(σ(F )|a)× Pr(σ(O)|a)× Pr(γ(D)|b)× Pr(γ(F )|b)× Pr(γ(O)|b).

Table 1 compares the number of parameters in each of the three models. Models 1 and
2 have much fewer parameters when F , F1, and F2 are lower than J and O. We use
Markov Chain Monte Carlo (MCMC) to approximate the entries of B, specifically random
walk Metropolis (RWM) Hasting. The algorithm employs a Gaussian proposal distribution
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Model Name # of Parameters # of Hyperparameters Total

Model 0 J ∗O 2 ∗ J + 1 J ∗O + 2 ∗ J + 1

Model 1 J ∗ F + F ∗O 4 ∗ F + 2 J ∗ F + F ∗O + 4 ∗ F + 2

Model 2 J ∗ F1 + F1 ∗ F2 + F2 ∗O 2 ∗ F1 + 2 ∗ F2 + 5 J ∗ F1 + F1 ∗ F2 + F2 ∗O + 2 ∗ F1 + 2 ∗ F2 + 5

Table 1: The number of parameters and hyperparameters in each model.

Jt(x, x
′) which proposes a new parameter set x′ given the current parameter set x. We

denote Θ as the set of all parameters in the model excluding B.

Step 1. Generate an initial state {B0,Θ0} with positive probability Pr(B0,Θ0|y) and set
t = 1.

Repeat the following until stationary distribution and the desired number of samples are
reached considering optional burn-in and/or thinning.

Step 2. Sample {B∗,Θ∗} from the symmetric proposal distribution
Jt({Bt−1,Θt−1}, {B∗,Θ∗}).
Step 3. Calculate the acceptance probability

α = min

(
1,

Pr(B∗,Θ∗|y)

Pr(Bt−1,Θt−1|y)

)
.

Step 4. Draw a random number u from Unif(0, 1). If u ≤ α, accept the proposal state
{B∗,Θ∗} and set Bt = B∗,Θt = Θ∗, else set Bt = Bt−1,Θt = Θt−1. Set t : t+ 1.

Our implementation uses a component-wise sampling approach. For truly large-scale
applications, blocked sampling approaches may be necessary.

5. Simulation Study

As a sanity check, we will show that for data generated from our model, the true data-
generating parameters B can be recovered. We simulated sample trajectories of drug ex-
posure and health outcomes for 600 patients over 60 days. We set the number of drugs
to J = 4, and the number of health conditions to O = 4. Each patient randomly took
between 1 and J drugs over the past 60 days. The average exposure period was assumed to
be 20% of the study interval for each patient (that is, on average, each patient was exposed
to one or more drugs for at least 12 days). The exposure intervals are randomly selected,
so these intervals could be multiple non-consecutive days, multiple consecutive days, or a
combination of both. Drugs can have positive or negative contributions to the likelihood
and intensity rate of each outcome. For each model (Model 0, Model 1, Model 2), we gen-
erated the elements of B according to the model’s hierarchy. Figure 3 and Figures 12-13
(which are given in the Appendix) show the posterior density for each parameter of B, for
Models 0, 1 and 2, as estimated by MCMC sampling. These figures show that the posterior
samples were concentrated around the true values and the posterior mean of each variable
was generally close to its true value. We summarize Figures 3, 12, and 13 in Figure 4, which
provides a scatter plot of the posterior means and true values for each of the three models.
It can be observed that each of the posterior means are very close to their true values.
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Figure 3: Normalized histograms of posterior samples for each element of B in Model 0.
The vertical line indicates the true value.

6. Application to Blood Glucose Analysis for Diabetes

We consider an application to Insulin-Dependent Diabetes Mellitus, where our goal is to
predict blood glucose level outcomes under different circumstances of a patient’s daily life,
including their recent eating history, exercise, and insulin injections. Our data are longi-
tudinal measurements taken multiple times per day from 70 patients (this is the AIM-94
data set provided by Michael Kahn, MD, PhD, Washington University, St. Louis, MO,
Bache and Lichman, 2013). We aim mainly to illustrate (i) how the models we introduce
can be used with complex longitudinal data to predict outcomes, (ii) the prediction power,
and (iii) interpretability of the proposed models. It is well known that current therapies for
regulating glucose level in diabetics are challenging and often frustrating, as they require
patients to continuously regulate diet, exercise, and various medications – any deviations
can be dangerous (Benchimol et al., 2013). Blood glucose measurements, symptoms and in-
sulin treatments were recorded with timestamps for each patient, over the course of several
weeks to months. The two main classes of health outcomes considered here are hyper-
glycemia (high blood glucose) and hypoglycemia (low blood glucose). All other health
outcomes we define later are related to these two classes. Figure 5 provides a schematic of
the type of data we are considering for one patient over a course of day.
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Figure 4: Scatter plot of posterior means vs. true parameter values of elements of B for
Models 0, 1 and 2.
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Figure 5: Sample longitudinal traces for a patient with multiple drug/treatments exposures
and blood glucose measurements over a day. Downwards arrows indicate glucose
measurements. Upwards arrows indicate treatments.

We will describe the setup in more detail:
Drugs/Treatments: Diet, exercise, and injected insulin were treated as three different
classes of treatments. It is obvious that interactions among these treatments are important.
Insulin doses are given one or more times a day, typically before meals and sometimes also
at bedtime. Three types of insulin were considered: (1) regular, (2) Neutral Protamine
Hagedorn (NPH), and (3) Ultralente. Each insulin type has its own characteristic time of
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onset (O), time of peak action (P), and effective duration (D). The exposure time intervals
for peak, and duration used in this paper, which were provided with the data set, are shown
in Table 2 in the “Exposure Time” column in the bottom several rows of the table labeled
“Insulin.”

Treatment
Exposure

Time

Health Outcome

Low Glucose Level High Glucose Level

1. Too low 2. Low 3. D1 4. Hypo Symptom 5. Too High 6. High 7. D10

Exercise
1. Normal 0-4 h − − − − − − −
2. Too High 0-4 h P P P P N N N
3. Low 0-4 h − − − − − − −

Diet
Level

4. Normal 0-4 h − − − − − − −
5. Too High 0-4 h N N N N N N N
6. Low 0-4 h − − − − − − −

Time
7. After Meal 0-4 h N N N N P P P
8. Before Meal 0-4 h P P P P N N N

Insulin

Regular
9. Peak 1-3 h P P P P N N N
10. Duration 0-5 h P P P P N N N

NPH
11. Peak 4-6 h P P P P N N N
12. Duration 0-12 h P P P P N N N

Ultralente
13. Peak 14-24 h P P P P N N N
14. Duration 0-27 h P P P P N N N

Table 2: The list of drugs/treatments and health outcomes and their known correlations.
P means strong positive correlation, and N means strong negative correlation, D1
is lower decile and D10 means highest decile.

Based on the actual time of injection, we determined the intervals at which the patient
is at peak and/or within the duration of an insulin injection. Based on this, six types of
treatments were considered, (1) regular insulin on peak, (2) regular insulin on duration, (3)
NPH insulin on peak, (4) NPH insulin on duration, (5) Ultralente insulin on peak, and (6)
Ultralente insulin on duration. At each interval of time, the patient can be either insulin
free or subject to one of the above six exposures.

The second class of treatment is exercise, which may have complex effects on the glu-
cose level. For example, glucose levels can fall during exercise but also quite a few hours
afterwards. Three types of exercise are reported, (1) normal exercise, (2) lower than nor-
mal exercise, and (3) higher than normal exercise. Each type of exercise was considered
separately as a single treatment.

The third class of treatment is for diet, which also can have complex effects on the
glucose level. For example, a larger meal may lead to a longer and possibly higher elevation
of blood glucose. Missing a meal may put the patient at risk for low glucose levels in the
hours that follow. Three types of diet are reported: (1) normal diet, (2) higher than normal
diet, and (3) lower than normal diet. Each of these types of diet were taken as a single
treatment. Since measurements were collected before a meal, after a meal, and at other
times, we considered two other features in the model, (1) before meal measurement of blood
glucose and (2) after meal measurement, and we treated them as binary features. These
extra features allow us to distinguish whether the measurement was made before or after
the meal (there is a big difference between glucose measurements taken before a meal and
after a meal).
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Based on all of the treatments described, the total number of variables associated with
treatments in the model is 14 (J = 14). The variables are all listed on Table 2 in the
“Treatment” column on the left.

Health Outcomes. The outcomes are divided into categories, based on glucose level. Given
that normal pre-meal blood glucose ranges from approximately 80-120 mg, and post-meal
blood glucose ranges from 80-140 mg/dl (Bache and Lichman, 2013), we considered seven
health outcomes for glucose level: extremely low (below 40 mg/dl), low (between 40-80
mg/dl), high (over 140 mg/dl), extremely high (over 180 mg/dl), lower decile (lower 10% of
glucose level for each patient), upper decile (upper 10% of glucose level for each patient),
and hypoglycemic (low glucose) symptoms. Thus, the total number of outcomes considered
for our analysis is O = 7. We can perform an evaluation only on intervals where we have
glucose measurements, thus we only use those intervals. Note that more than one outcome
can occur in each interval.

True Relationships Between Drugs and Outcomes. We wanted to determine whether
our model reproduces known relationships between treatments and glucose levels from the
data alone. The information about true relationships within Table 2 mainly come from
material accompanying the data set and www.diabetes.org. We denoted known positive
effects in Table 2 by P, strong negative effects by N , and relationships that were unknown
were denoted by dashes “–”. For example, we expect NPH injection on peak to decrease
the likelihood of having “Too High” glucose level, so the correlation between NPH on peak
and “Too High” glucose level is known to be negative (N ).

Mixing. We performed cross-validation, dividing our data into five folds, training our
models on four folds and testing on the fifth. We removed the first 5000 iterations (as burn-
in) of Metropolis-Hastings sampling, and obtained 6000 additional samples to estimate the

posterior. Figure 6 shows samples from the posterior of one of the variables, βToo high GL
NPH on peak,

for five separate model instantiations (Model 0, Model 1 with F=2, Model 1 with F=3,
Model 2 with F1 = 2, F2 = 2, and Model 2 with F1 = 3, F2 = 3. Recall that in Models 1
and 2, we sample elements of the matrices of latent factors and then calculate B. From this
figure, we observe reasonable mixing for all models, and we observe that models with latent
factors (Models 1 and 2) have better mixing and convergence, possibly due to the smaller
number of variables.

Computation. The number of parameters differs substantially between models, which
affects CPU time of the MCMC sampler. In Figure 7, the number of parameters for each
model and the associated CPU time for running MCMC are shown. This figure shows a
clear correlation between the number of variables and CPU time, that is CPU time increases
with the number of parameters. In particular, Model 0 takes a long time to run, because it
has substantially more variables than the other models. Interestingly, using latent factors
has a purpose beyond interpretability and regularization, in that it helps with tractability.

Interpretation of coefficients in B and comparison with ground truth. We com-
pare the estimated coefficients in B to the ground truth signs of coefficients given in Table
2. It is not necessarily the case that the signs of the estimated coefficients need to agree
with the ground truth signs in order for the model to perform well, but it is a reasonable
aspect of the model to consider. To perform this comparison, we ranked the estimated
coefficients in B and used these rankings and the true signs of coefficients to generate an
ROC curve. That is, the ROC curve was generated by placing thresholds at each point in
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Figure 6: Samples from the posterior of βToo high GL
NPH on peak for five model instantiations (left), and

their histograms (right). The first 5000 samples were discarded as burn-in. We
observe better mixing and convergence in the models with latent factors (Model
1 and Model 2).

the ranking, and calculating the true positive rate and false positive rate with respect to
the true coefficients. We computed these ROC curves for all five model instantiations to
obtain Figure 8. These ROC curves indicate that all models performed well, in the sense of
estimating reasonable signs for the coefficients. The curves also indicate that models with
more latent factors performed better than Model 0. The models with two latent treatment
and outcome factors performed slightly better than the models with three latent treatment
and outcome factors, though there was no significant difference in performance between
Model 1 and Model 2 for the same number of latent treatment and outcome factors.

Drug Surveillance. We evaluated prediction performance of our model as follows: for
each patient we calculated the Poisson rate of each condition at each hour considering all
drug exposures. For each condition, we then checked whether or not the patient had the
condition at that time. The Poisson rate acts as the score of each patient with regards
to each condition. In Figure 9, we present the actual glucose level for a patient at 20
measurement points (upper figure) as well as the estimated intensity rate of the Too-High
glucose level for the same patient (lower figure). Each point in this figure represents the
estimated x>idβ̂

o, where β̂o are the estimated regression coefficients associated with too-
high glucose level and x>id is the known vector of drug exposures at interval d. The figure
shows that the estimated intensity rate is reasonably close to the actual level of glucose,
particularly when the glucose level is actually too high. In Figure 10, we repeated the
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Figure 8: Receiver Operating Characteristic (curve) for evaluating the signs of coefficients
against true signs for five model instantiations. See the text for details of how
these curves were generated.

analysis for Too-Low glucose level. It can be observed from this figure that the times
where this coefficient is particularly large are the same times where the glucose level drops
substantially. This kind of dramatic agreement was not observed for all patients nor all
conditions, so below we describe a more general evaluation procedure.

In Figure 11, we show the box plots for the estimated Poisson rates of the two conditions
of “Too Low” glucose level and “Too High” glucose level on all seventy patients in the test
sets. For comparison, we also plotted the box plots of the estimated Poisson rates for
normal conditions, where patients did not have too-high or too-low glucose levels. For
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Figure 9: Monitoring Too-High glucose levels over 20 hours. The upper figure shows the true
glucose levels obtained by measurement, and the lower figure shows the estimated
x>idβ̂

o for the Too-High glucose outcome over 20 consecutive measurements.
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Figure 10: Monitoring too-low glucose levels over 20 hours. The upper figure shows the
true glucose levels obtained by measurement, and the lower figure shows the
estimated x>idβ̂

o for the too-low glucose outcome over 20 hours.

clarity and fairness, we normalized the estimated Poisson rates for each patient. It can be
observed from this figure that the estimated Poisson rate of these conditions are elevated
when patients actually suffer from Too-Low (or Too-High, respectively) glucose. Thus, our
model could be a useful approach for monitoring the likelihood of a condition, given the
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timing of the drugs recently taken by the patient. The results were consistent across all five
model instantiations.
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Figure 11: Comparison between the box-plots for Too-High and Too-Low glucose levels and
the normal condition for all five model instantiations, where the Poisson rates
were normalized for each person.

In Table 3, we report an AUC (area under the ROC curve) value that measures the
probability that a method ranks a positive condition timepoint higher than a timepoint
with no condition, for the same patient. In particular, we are testing whether the Poisson
rate of a patient with a health condition is higher than the estimated rate of the same
patient when no condition is present. For each model instantiation, we trained the model
on four training folds and then calculated the AUC on the fifth fold, and we repeated this for
each condition. We reported the average and standard deviation of AUC over all patients
in the test sets. Again D1 is the lower decile (lower 10% of glucose level for each patient),
and D10 is the upper decile (upper 10% of glucose level for each patient).

Intuition of B as compared with other methods. We compared the performance of
the proposed models with that of the univariate self-controlled case series (SCCS), and
multi-variate self-controlled case series (MSCCS) (Simpson et al., 2013) with and without
an `2 regularization term on the coefficients. For each model instantiation and each method,
the estimated entries of B were compared to their known effects (positive or negative) from
Table 2. For each method, we provide the area under the curve (AUC) for this comparison
in Table 4. We also reported the mean, median, and standard deviation of all estimated
coefficients in the group of Table 2’s positive group and Table 2’s negative group. Better
models should have higher AUC, and the estimated coefficients of B should agree in sign
with those in Table 2. From Table 4, we observe that as expected, the MSCCS performed
better than the SCCS, the regularized MSCCS worked slightly better than the normal
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Too low Low Too high High D1 D10 Hypo Symptom

Model 0
Mean 70.30% 62.92% 62.98% 61.26% 58.20% 56.39% 59.17%
sd 9.56% 2.79% 3.38% 2.70% 3.93% 3.51% 4.95%

Model 1, F = 2
Mean 70.86% 62.70% 63.06% 61.58% 57.97% 56.05% 56.71%
sd 8.28% 2.47% 3.14% 2.11% 3.36% 3.04% 3.19%

Model 1, F = 3
Mean 70.66% 62.68% 62.92% 61.51% 57.97% 56.35% 56.33%
sd 7.89% 2.52% 3.14% 2.12% 3.37% 2.90% 2.87%

Model 2, F1 = F2 = 2
Mean 70.19% 62.71% 62.97% 61.44% 58.00% 55.91% 56.88%
sd 9.51% 2.43% 3.18% 2.13% 3.34% 3.06% 3.02%

Model 2, F1 = 3, F2 = 3
Mean 70.07% 62.73% 62.99% 61.47% 58.05% 56.05% 56.68%
sd 9.52% 2.44% 3.16% 2.07% 3.31% 3.05% 2.79%

Table 3: Average and standard deviation (sd) of AUC over 5 folds. The entities that were
ranked for each AUC calculation are measurements for a patient including time
points when the patient had a condition and time points when the patient did
not have a condition. The AUC indicates whether our method ranks a randomly
chosen time point where a patient had a condition higher than a randomly chosen
time point where a patient did not have a condition.

MSCCS, and all FSCCS Bayesian model instantiations (Model 0-2) performed better than
all of the traditional models, yielding higher AUC’s and better agreement in the mean signs
of coefficients; further the standard deviations for the coefficient values were substantially
lower. These performance benefits come in addition to the other benefits discussed earlier,
including computational tractability and interpretability of the latent factors.

Measure
Method

Model 0
Mode1
F = 2

Model 1
F = 3

Model 2
F1 = 2, F2 = 2

Model 2
F1 = 3, F2 = 3

SCCS MSCCS
Regularized

MSCCS

AUC 0.813 0.852 0.824 0.856 0.836 0.693 0.773 0.774

B−
Mean -0.190 -0.281 -0.276 -0.278 -0.282 -0.492 -0.663 -0.349

Median -0.077 -0.136 -0.143 -0.130 -0.141 -0.047 -0.122 -0.122

sd 0.353 0.417 0.410 0.422 0.424 2.362 2.462 0.640

B+
Mean 0.071 0.099 0.096 0.105 0.096 -0.552 -0.561 -0.023

Median 0.030 0.103 0.111 0.106 0.106 0.065 0.126 0.125

sd 0.368 0.369 0.385 0.368 0.378 3.158 3.149 0.771

Table 4: Comparison with existing models.
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7. Concluding Remarks

The novel elements of this work are as follows. (1) We estimate the effects of many drugs
on many health outcomes simultaneously. Borrowing strength across similar drugs and
outcomes allows us to create better estimates across both drugs and outcomes. (2) We use
latent factors to encode latent classes of drugs and outcomes, to help with interpretability,
and to provide a computational benefit. Another type of computational benefit is provided
naturally by using the SCCS’s framework, since we do not need to estimate the baseline rates
of outcomes for each patient. This approach is scalable to large longitudinal observational
databases, is applicable to problems beyond healthcare, and provides a level of interpretabil-
ity to physicians and patients that was not previously possible. Fully Bayesian inference via
MCMC may not be feasible for truly large-scale problems. Recent developments in cyclic
coordinate descent algorithms (see, for example, in Suchard et al., 2013b) would apply in
our context and represent one possible approach for very scale MAP estimation.
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Appendix A. Figures 12 and 13.
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Figure 12: Normalized histograms of posterior samples for each element of B in Model 1.
The vertical line indicates the true value.
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Figure 13: Normalized histograms of posterior samples for each element of B in Model 2.
The vertical line indicates the true value.
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