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Abstract

This paper presents an information theory-driven matching methodology for making causal
inference from observational data. The paper adopts a “potential outcomes framework”
view on evaluating the strength of cause-effect relationships: the population-wide average
effects of binary treatments are estimated by comparing two groups of units – the treated
and untreated (control). To reduce the bias in such treatment effect estimation, one has to
compose a control group in such a way that across the compared groups of units, treatment
is independent of the units’ covariates. This requirement gives rise to a subset selection /
matching problem. This paper presents the models and algorithms that solve the match-
ing problem by minimizing the mutual information (MI) between the covariates and the
treatment variable. Such a formulation becomes tractable thanks to the derived optimality
conditions that tackle the non-linearity of the sample-based MI function. Computational
experiments with mixed integer-programming formulations and four matching algorithms
demonstrate the utility of MI based matching for causal inference studies. The algorithmic
developments culminate in a matching heuristic that allows for balancing the compared
groups in polynomial (close to linear) time, thus allowing for treatment effect estimation
with large data sets.

Keywords: Observational Causal Inference, Mutual Information, Matching, Subset Se-
lection, Optimization

1. Introduction

The tools for making inference based on observational data are useful for estimating the
effects of binary treatments that are non-randomly assigned to the units of a studied pop-
ulation (Cochran, 1965). Causal investigations are of importance in various domains of
science including economics (Abadie and Imbens, 2006), medical research (da Veiga and
Wilder, 2008), political science (Ho et al., 2007), sociology (Morgan and Harding, 2006),
law (Rubin, 2001), etc. As a conventional recipe, matching of treated and untreated units
allows one to compare them and distill the effect of the treatment, while blocking the effects
of confounding unit covariates.

c©2016 Lei Sun and Alexander G. Nikolaev.



Sun and Nikolaev

The most widely adopted conventional matching methods employ various distance met-
rics (e.g., Mahalanobis distance) and propensity scores (see Section 2 for a detailed review);
the success of a matching venture is typically assessed by checking if the compared groups
are “well-balanced”, i.e., if the distributions of covariates within them are similar. The
methods introduced more recently strive to directly optimize balance (Zubizarreta, 2012).
In particular, Nikolaev et al. (2013) re-cast matching as a subset selection problem with
the objective to optimize a measure of covariate balance across groups (as opposed to indi-
vidual unit pairs). The approach was coined Balance Optimization Subset Selection, with
its applicability illustrated by employing linear programming models (Nikolaev et al., 2013)
and simulated annealing heuristics (Tam Cho et al., 2013).

Note, however, that improving balance, expressed via some metric(s) capturing the dif-
ference between the distributions of covariates in the compared groups, is just one approach
that defines a matching procedure objective. It is as good as any other approach that would
achieve the reduction of the dependence between the covariates and the treatment variable
in the matched groups. This observation is exploited in the present paper, as it explores a
new form of covariate balance and an alternative approach to doing matching.

This paper frames matching as an optimization problem with a mutual information
(MI) based objective. The presented methods are non-parametric, and hence, do not suffer
from human bias in model selection. The value of information theory in empirical statistics
research and computer science has been emphasized over the past decade (Burnham and
Anderson, 2002). However, while this thrust has been successful in facilitating hypothesis
testing, optimization problems with information measures have proven to be difficult, mainly
due to the inherent non-linearity of entropy and MI functions (Shannon, 1948). This paper
presents a way to treat such non-linearity in subset selection problems, which arise in
applying information theory logic for making causal inference with observational data.

MI has been used to formulate various problems involving feature selection (Estévez
et al., 2009), dependency analysis (Kraskov et al., 2004) and chaotic data identification
(Fraser and Swinney, 1986). It measures the level of dependence between random variables;
e.g., when evaluated for two variables, it takes a high value when one random variable con-
tains much information about the other, signifying high dependence, while zero MI implies
that the variables are independent. We show that the difference between the covariate dis-
tributions among the treated and untreated units can be directly evaluated MI, exploiting
the fact that randomization in treatment assignment implies zero MI between covariates
and the treatment variable. To the best of the authors’ knowledge, no MI based method has
yet been employed for grouping observations (units) to achieve a particular group property
– most likely due to the non-linearity in the expression defining MI. This paper tackles this
challenge and offers the models and algorithms that make theoretical and practical advances
in subset selection, or simply, matching for treatment effect estimation.

While some optimization methods have already been employed for the methodological
developments in causal inference with observational data (Hansen, 2004), the use of math-
ematical programming techniques for statistics-oriented applications is still rare. One such
notable contribution is due to Bertsimas and Shioda (2007) who re-framed the classifica-
tion and regression problems using integer programming. Similar to their efforts, this paper
motivates the use of non-linear integer programming techniques in causal inference research.
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First, this paper identifies pathways for the effective use of information theoretic mea-
sures (namely, MI) in optimization problems. The presented theoretical analysis techniques
for treating non-linearity are generic, and hence, can be adopted in other applications, where
making assumptions on model/data structures is undesirable. More generally, this paper
may open up venues for the application of mathematical programming and optimization
techniques in information theory itself.

Second, this paper explains how MI can serve as the basis of a new form of covariate
balance. The resulting MI-based matching method for selecting control groups for causal
inference is flexible in that it can achieve solutions of pre-specified quality, with pre-set
control group size, – moreover, it can optimize the latter. The presented algorithmic devel-
opments produce a matching heuristic that runs in polynomial (close to linear) time: it thus
allows for causal effect estimation with large data sets that are nowadays becoming available
through mining social networks, health records, etc. While this work is not the first effort to
employ the information theoretic tools for the needs of causal inference Hainmueller (2012),
it appears to be the first where mutual information is used as an optimization objective.

The paper is organized as follows. Section 2 explains the problem of causal inference
with observational data, and motivates optimization-driven subset selection approaches to
attacking it. Section 3 introduces a class of MI-based matching problems with different ob-
jectives. Section 4 derives optimality conditions for matched groups using MI, and presents
the mixed integer programming-based and sequential selection-based matching algorithms
that work to balance the covariate distributions across the treatment and control groups.
Section 5 showcases the practical value of the MI-based matching approach by comparing
the designed algorithms’ performance against the best previously existing matching meth-
ods. Section 6 discusses the MIM limitations and future research directions. Section 7
provides concluding remarks and discusses the promising extensions of this line of work.

2. Causal Inference with Observation Data

Observational studies are often the only source of information about a program, policy, or
treatment. For example, people non-randomly choose to participate in economy-boosting
programs, political movements, online activities such as post re-tweeting, question answer-
ing, service subscription, etc. In estimating any causal effect with such data, the researchers
resort to the nonparametric data preprocessing, commonly referred to as matching (Ho et al.,
2011).

In a real-world causal inference problem instance, a treatment group (a group of treated
units) is typically smaller than the size of a pool of available control (untreated) units; a
control group can then be selected by a researcher from this pool. When a matching proce-
dure is performed (Rubin, 2006), a control group is designed to contain the units that are
similar in covariate values to those in the treatment group (differing only on the treatment
indicators). A rule-of-thumb for evaluating the success of a matching procedure posits that
better balance on covariates leads to smaller bias in the treatment effect estimation (Rosen-
baum and Rubin, 1985); here, balance is understood as similarity between the empirical
covariate distributions in the treatment and control groups. Note that theoretically, if an
optimal matching does not exist, no guarantee as to the bias reduction amount can be given.
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Among different types of matching recipes, the first proposed and well-used one is the
nearest neighbor matching (Rubin, 1973). It prescribes to pair up each observed treatment
unit with a control unit so as to minimize a weighted distance between the units’ covariate
vectors in each such pair. Mahalanobis distance is widely used for this purpose (Rubin,
1980), however, as a measure of divergence, it relies on elliptical distributions of covariates
(Sekhon, 2008). Another widely-used recipe prescribes to match units on propensity score
(Rosenbaum and Rubin, 1983) defined as the probability of a unit to receive treatment.

The Mahalanobis distance and propensity score based matching methods can be com-
bined in various ways (Rubin, 2001; Diamond and Sekhon, 2013). However, such methods
require assumptions on model and/or data structure. As such, true units’ propensity score
values are generally unknown, and must be estimated via regression on covariates, which
makes room for the researcher’s bias in data analysis (when one can “tinker with” with an
analysis tool to make it output the result that one anticipates, perhaps subconsciously).
This weakness has led to controversial exchanges between the authors analyzing the same
data and reaching conflicting conclusions (Dehejia and Wahba, 1999, 2002; Smith and Todd,
2005b; Dehejia, 2005; Smith and Todd, 2005a).

Both the Mahalanobis distance and propensity score based matching methods are ap-
plied with the objective to minimize the differences between the units in the treatment group
and the control group of the same size. In contrast, Iacus et al. (2012) introduce a new class
of matching methods, the Monotonic Imbalance Bounding (MIB) matching, which looks to
assemble matched control groups consisting of a sufficiently large number of observations
with a fixed pre-set level of maximum allowed imbalance. Based on the imbalance level, an
algorithm is designed to split the range of each covariate into several coarse categories, so
that any exact matching algorithm can be applied to solve this discretized problem.

Methodologies for direct optimization of balance have been proposed by researchers just
recently. Rosenbaum et al. (2007) introduce a fine balance method, where exact balance is
sought on several categorized nominal covariates and approximate matching is conducted on
the remaining ones. For the exact matching part, a matrix of Mahalanobis distance values
across all pairs of treatment and control units is defined, and then the classic assignment
algorithm is used to minimize the total distance. Nikolaev et al. (2013) introduce Balance
Optimization Subset Selection (BOSS) approach, optimizing explicit measures of balance
and treating several models with exact and heuristic methods. Zubizarreta (2012) builds
mixed integer programming models to optimize covariate balance directly by minimizing the
total sum of the distances between the treated units and matched control units. The latter
two lines of research work to measure the difference between the covariate distributions
in the treatment group and control pool by employing chi-square, correlations, quantiles
and Kolmogorov-Smirnov statistics, which are fundamentally different from the information
theory-driven approach developed in the present paper.

3. Problem Definition

This section begins by presenting several matching problems, using illustrative examples,
and explains how mutual information can guide a matching process. Then, relying on the
mutual information function, nonlinear integer optimization problems are formally stated.
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3.1 Motivating the Use of Matching for Causal Inference: Problem Statements

Given a set of observed units that have been treated, termed a treatment pool, and a set of
observed untreated units, termed a control pool C, the causal inference problem objective
is to evaluate the degree of influence of the treatment on the population units, termed
treatment effect. For an observable unit u, let Y 1

u (Y 0
u ) denote a treated (untreated) response

and tu a treatment indicator (1 means treated, 0 means not treated). Per Rubin’s model
of causal inference, these responses are referred to as potential outcomes, reflecting the fact
that it is impossible to observe both Y 1

u and Y 0
u on the same unit u (Holland, 1986). For this

reason, in estimating the population-wide effects of a treatment, researchers have to resort
to comparing the averages across the treatment and control groups (Holland, 1986). One
commonly targeted quantity of interest in causal inference studies, and the one this paper
focuses on, is the average treatment effect for the treated (ATT), E(Y 1|t = 1)−E(Y 0|t = 1),
i.e., the average effect of treatment on the units that actually receive it.

Assume that a treatment group, T : |T | < |C|, is given (randomly selected from a
treatment pool), so E(Y 1|t = 1) can be estimated directly. A decision has to be made
about selecting a control subset S ⊂ C so that the units in T and S can be compared. If the
two groups have the same distribution of covariates, one can use the value E(Y 0|t = 0) over
S as an estimate of E(Y 0|t = 1) over the entire population (refer Rosenbaum and Rubin
(1983) for more statistical fundamental work), and then, obtain an estimate of ATT.

The goal of a matching procedure is to ensure that the covariate distributions in the
treatment and control groups are as similar as possible. The key insight this paper exploits
is that, if a matching procedure is successful, then it should make it impossible to distinguish
the treatment units from the control units based on the covariates, or, in other words, learn
the treatment status of an observation based on the information captured by its covariate
values. For example, randomization guarantees that the treated and control units are indis-
tinguishable by making the covariate distributions in both groups be identical to that in the
whole population; in other words, randomization tends to balance covariates on expecta-
tion. The information about the treatment captured in the covariates can be quantified as
the MI between the covariates and the treatment variable, and more specifically, expressed
using either the joint covariate distribution or the marginal covariate distributions. This
paper considers both these formulations, separately.

Let K be the set of covariates. For an observed unit, the |K|-dimensional covariate
vector is denoted by X = {X1, X2, ..., X|K|}. Assume that every covariate is or can be made
categorical. The discretization of continuous covariates can be accomplished by applying
a binning scheme (Iacus et al., 2012; Nikolaev et al., 2013) to divide the range of values
for each such covariate into a fixed set of intervals. These categorical or interval bounds
partition the covariate hyperspace into subspaces. Define a marginal bin as the largest
subspace associated with an interval from a covariate’s range, and a joint bin as a covariate
subspace that is not further subdivided into any smaller subspaces. Then, by design, a joint
bin is an intersection of |K| marginal bins, and every observed unit is contained in one such
bin. Let b denote a joint bin, B denote the set of all joint bins, m denote a marginal bin
and M denote the set of all marginal bins. With the binning scheme, units with covariate
values falling into the same joint bin can no longer be distinguished from each other.
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Figure 1: Different control groups selected when the perfect matching cannot be achieved
due to the lack of control units in bin (*).

Note that the matching problem is trivial if there exists a control group that perfectly
matches the treatment group (i.e., the empirical covariate distributions in the groups are
identical). Consider the treatment group in Figure 1a, where the two-dimensional grid
(built for two covariates) contains in its cells, termed bins, the number of units found in
each bin. If a perfect matching of the control units to the treated ones does not exist,
then the selection of a good control group becomes challenging. When a joint distribution
is used to capture the dependence between the treatment variable and the covariates, the
joint bins can be viewed as being independent and all equally important for representing
the distribution. A good matching method should select some control units to form a group
with a minimum loss in the joint distribution (Figure 1b). On the other hand, since the
joint bins are formed as the intersections of |K| multiple marginal bins, the assumption
of the independence between the bins may not be well justified. Then, one can take an
alternative approach and select the control group that achieves the best matching in all
the marginal distributions (Figure 1c), albeit sacrificing some information captured in the
copula. In summary, the problems of matching on the joint or marginal distributions each
have their pros and cons, which is why the ensuing computational studies use and compare
them both for treatment effect estimation (see Section 5).

3.2 Nonlinear Integer Optimization Problems

The objective of our matching problem is to select such a subset S ⊆ C that minimizes the
MI between the treatment indicator and covariate vector over set S ∪ T . The MI between
t and X (or all the Xk) is denoted by I(t;X) if the computation is based on the full joint
distribution of the covariates, and by

∑
k∈K I(t;Xk) if the computation is based on the

marginal distributions of individual covariates. Since these expressions have similar math-
ematical forms, only I(t,X) will be used for notation in the following discussion, with X
representing either X or Xk, depending on the context. Note that I(t,X) is an unambiguous
notation for MI in a problem with a single covariate. Meanwhile, for a problem with multi-
ple covariates, the units in the joint or marginal bins can be thought of as being projected
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into a one-dimensional range, and hence, can also be treated as a single-covariate problem,
albeit possibly with the additional constraints capturing the copula-based dependencies.

In order to express I(t;X) using the empirical covariate distribution for the units in a
given problem, denote the covariate value for any unit contained in bin b by the same variable
Xb. Let p(t) be the probability that a unit is treated, and p(Xb) be the probability that its
covariate value falls into bin b, with

∑
b∈B p(Xb) = 1. Also, let p(Xb, t) be the probability

that the covariate value of a unit with treatment indicator t falls into bin b. Then, the
empirical MI between the treatment indicator t and covariate X can be expressed as

I(t;X) =
∑
b∈B

∑
t∈{0,1}

p(Xb, t) log
p(Xb, t)

p(Xb)p(t)
. (1)

Let Sb (or Tb, Cb) denote the number of units in group S (or T , C) with covariate
values falling into bin b. From the characteristics of the units in S ∪ T , the probabilities
in equation (1) can be estimated. If t = 0, p(Xb, t) = Sb

|S|+|T | and p(t) = |S|
|S|+|T | ; if t = 1,

p(Xb, t) = Tb
|S|+|T | and p(t) = |T |

|S|+|T | ; also, p(Xb) = Tb+Sb
|S|+|T | .

In general, an MI estimation bias (which is different from the causal estimation bias
discussed above) arises when the MI estimation is done based on a fixed limited number of
observations (1) (Panzeri and Treves, 1996; Roulston, 1999). However, this paper analyzes
the empirical distributions of the variables defined for the units in the control and treatment
groups, which are available in their entirety, and hence, by (1), the MI is exactly given,

I(t;X) = log (|S|+ |T |) +
1

|S|+ |T |
(
∑
b∈B

Sb[logSb − log(Tb + Sb)− log |S|]

+
∑
b∈B

Tb[log Tb − log(Tb + Sb)− log |T |]).
(2)

Two alternative MI-based objective functions are analyzed in this paper: I(t;X) and∑
k∈K I(t;Xk). Formally, a problem from the class of Mutual Information based

Matching (MIM) problems is stated:
Given: |K| covariates; treatment group T ; control pool C with |C| > |T |; for each observed
unit u ∈ T ∪ C, the covariate vectors X = {X1, X2, ..., X|K|}; segmented covariate space
with joint bins b ∈ B and marginal bins m ∈ M ; a fixed integer N as the target control
group size.
Objective: find a subset S ⊆ C such that

• |S| = N and I(t;X) is minimized (MIM-Joint problem), or

• |S| = N and
∑

k∈K I(t;Xk) is minimized (MIM-Marginal problem).

A matching problem based on either joint or marginal covariate distribution(s) is de-
signed with the decision variables returning the number of control units to be selected from
each joint bin. Complete enumeration of feasible solutions in a problem with any of these
two objective types would take an exponentially growing number of computing operations
in the size of the control pool. Another challenge lies in the nonlinearity of the objective
functions, further analysis of which is required in order to arrive at tractable mathematical
programming formulations for MIM.
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Theorem 1 The decision version of the MIM-Marginal problem, minS⊂C
∑

k∈K I(t;Xk)
subject to |S| = N , is NP-complete.

Proof See Appendix A.

4. Solution Approaches

This section investigates the properties of solutions with the minimum MI, with the goal of
developing a method for treating the nonlinearity in the objective function of MIM problems.
The derivations presented in this section unfold from the problem of minimizing I(t;X)
under the assumption that the contents of the bins capturing the distribution of covariate
X are independent. The obtained insights are next extended to the MIM-Joint and MIM-
Marginal problems. The mixed integer programming models and matching algorithms are
then developed for selecting control subsets for MIM-Joint and MIM-Marginal problems.

4.1 Analyses of Optimality Conditions

Consider the expression of MI in (2); observe that since the treatment group is given,
and the target control group size is known, |S| = N , several terms in equation (2) are
constant. Also,

∑
b∈B Sb log |S|+

∑
b∈B Tb log |T | = |T | log |T |+ |S| log |S|. Then, the term∑

b∈B Sb[logSb − log(Tb + Sb)] +
∑

b∈B Tb[log Tb − log(Tb + Sb)] remains the only one to be
considered for MI minimization. For the ease of presentation, this term can now be rewritten
based not on the bins’ aggregate contents but on the individual units’ locations in the bins.
Because all the observed units, whose covariate values Xu are contained in the same bin,
have the same values of Tb and Sb, the minimization of (2) is equivalent to that of

R ≡
∏

u∈S,Xu∈b

Sb
Tb + Sb

∏
u∈T ,Xu∈b

Tb
Tb + Sb

. (3)

Consider the MIM problem instance illustrated by Figure 2, where N − 1 control units
have been selected from the control pool into a control group (not necessarily optimally).
In order to complete the selection of units into the control group, one last unit has to be
selected from any of the bins with Sb < Cb. All such bins can be partitioned into three
subsets: B1 = {b : Sb < Tb}, B2 = {b : Sb ≥ Tb, Tb 6= 0}, B3 = {b : Tb = 0}. Given that
the last unit added to the control group is contained in bin b, let Ib denote the resulting MI
between t and X, and Rb denote the resulting objective function value in (3).

The following two lemmas provide the guidelines for the optimal selection of the last
unit to be included into the control group.

Lemma 2 Consider an instance where an incomplete control group has N − 1 units in it,
and three candidate units (that could complete it) are contained in bins b1 ∈ B1, b2 ∈ B2

and b3 ∈ B3, respectively. Then, I1 < I2 < I3.

Proof If the candidate unit from bin b1 ∈ B1 is selected, then the value of Sb1 increases
by 1, while all the other Sb and Tb values stay unchanged. Thus, the objective func-

tion value in (3) becomes R1 = R̂(
Sb1

+1

Tb1
+Sb1

+1)Sb1
+1(

Tb1
Tb1

+Sb1
+1)Tb1 (

Sb2
Tb2

+Sb2
)Sb2 (

Tb2
Tb2

+Sb2
)Tb2 ,
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t=0

t=1

……

…… ……

……

b1 b2 b3 b4

Figure 2: A selection process illustration. Treated units in T , selected control units in S
and unselected control pool units are represented by triangles, full circles and
dashed circles, respectively.

where R̂ represents the terms unrelated to b1 or b2. Similarly, if the candidate unit
from bin b2 ∈ B2 is selected, then the objective function value in (3) becomes R2 =

R̂(
Sb1

Tb1
+Sb1

)Sb1 (
Tb1

Tb1
+Sb1

)Tb1 (
Sb2

+1

Tb2
+Sb2

+1)Sb2
+1(

Tb2
Tb2

+Sb2
+1)Tb2 . By the definitions of B1 and B2,

observe that Tb1 ≥ Sb1 + 1 > Sb1 and Sb2 + 1 > Sb2 ≥ Tb2 . Therefore, R1
R2

< 1, and hence,
I1 < I2.

If a unit from b2 ∈ B2 or b3 ∈ B3 is selected to complete the control group, then the corre-

sponding objective function value in (3) is given byR2 = R̂(
Sb2

+1

Tb2
+Sb2

+1)Sb2
+1(

Tb2
Tb2

+Sb2
+1)Tb2 or

R3 = R̂(
Sb2

Tb2
+Sb2

)Sb2 (
Tb2

Tb2
+Sb2

)Tb2 , where R̂ represents the terms unrelated to b2 or b3, respec-

tively. By the definition of B2, observe that Sb2 + 1 > Sb2 ≥ Tb2 , and hence, 0.5 < R2
R3

< 1.
Consequently, one has I2 < I3.

Lemma 3 Consider an instance where an incomplete control group has N − 1 units in
it, and two candidate units (that could complete it) are contained in bins b1, b2 ∈ B1 (or

b1, b2 ∈ B2), respectively. Then, I1 < I2 if and only if
Sb1
−A

Tb1
<

Sb2
−A

Tb2
, where A ≈ −0.47.

Proof First, consider the case where b1 ∈ B1 and b2 ∈ B1. Similarly to the proof

of Lemma 2, one obtains R1 = R̂(
Sb1

+1

Tb1
+Sb1

+1)Sb1
+1(

Tb1
Tb1

+Sb1
+1)Tb1 (

Sb2
Tb2

+Sb2
)Sb2 (

Tb2
Tb2

+Sb2
)Tb2 ,

and R2 = R̂(
Sb1

Tb1
+Sb1

)Sb1 (
Tb1

Tb1
+Sb1

)Tb1 (
Sb2

+1

Tb2
+Sb2

+1)Sb2
+1(

Tb2
Tb2

+Sb2
+1)Tb2 , and hence, R1

R2
= (1 +

1
Sb1

)Sb1
1

(1+ 1
Tb1

+Sb1
)
Tb1

+Sb1

Sb1
+1

Tb1
+Sb1

+1
1

Sb2
+1

Tb2
+Sb2

+1

1

(1+ 1
Sb2

)
Sb2

(1 + 1
Tb2

+Sb2
)Tb2

+Sb2

= {
(1+ 1

Sb1
)
Sb1

(1+ 1
Tb1

+Sb1
)
Tb1

+Sb1 (1+
Tb1

Sb1
+1

)
}/{

(1+ 1
Sb2

)
Sb2

(1+ 1
Tb2

+Sb2
)
Tb2

+Sb2 (1+
Tb2

Sb2
+1

)
}. Observe that both the nu-

merator and denominator in this expression have the same form. Therefore, the prop-
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erties of the ratio R1
R2

can be analyzed by studying the properties of function f(x, y) =
(1+ 1

x
)x

(1+ 1
y+x

)(y+x)(1+ y
x+1

)
; more specifically, if one can show that f(Sb1 , Tb1) < f(Sb2 , Tb2), then

one has R1
R2

< 1 and I1 < I2, and vice versa. Per the properties of f(x, y) (see Appendix B),

it is concluded that f(Sb1 , Tb1) < f(Sb2 , Tb2) if and only if
Sb1
−A

Tb1
<

Sb2
−A

Tb2
, where A ≈ −0.47.

The proof for the case with b1 ∈ B2 and b2 ∈ B2 is constructed in the same manner.

Given the arbitrary bins b1 ∈ B1, b2 ∈ B2 and b3 ∈ B3, I1 < I2 < I3, by Lemma 2

and by the definition of the subsets B1, B2 and B3, one has
Sb1
−A

Tb1
< 1,

Sb2
−A

Tb2
> 1, and

Sb3
−A

Tb3
= +∞. Therefore, Lemma 2 can be viewed as a special case of Lemma 3. Having

considered the problem of optimally adding a single unit to the existing (incomplete) control
group, the obtained results are now generalized to the problem of selecting a whole control
group of a given size.

Theorem 4 (Necessary and Sufficient Condition for Optimality) Consider an instance of
minimizing I(t;X). A control group S of size N is optimal if and only if for any pair of
bins b1 and b2 with |Cb2 − Sb2 | ≥ 1 it holds that

Sb1 − 1−A
Tb1

≤ Sb2 −A
Tb2

, (4)

where A ≈ −0.47.

Proof The proof will proceed by contradiction. For convenience, in the following narrative,
any group violating the theorem’s condition is termed an improvable group. For an improv-
able group, one can identify at least one pair of bins, b1 and b2, such that |Cb2 − Sb2 | ≥ 1

and
Sb1
−1−A
Tb1

>
Sb2
−A

Tb2
. Any such pair is termed an improvable pair.

First, consider the necessary condition for optimality: if a group is optimal, then it is
not an improvable group. Suppose that S is an optimal group with the minimum I(t;X),
and S is also an improvable group. Without loss of generality, assume that b1 and b2 are an

improvable pair and
Sb1
−1−A
Tb1

>
Sb2
−A

Tb2
. Consider an incomplete control group of size N −1,

obtained by removing a control unit from bin b1 in S. Because
(Sb1
−1)−A
Tb1

>
Sb2
−A

Tb2
and

according to Lemma 3, one can obtain a group with a smaller value of I(t;X) by adding
the last unit into bin b2. Thus, S is not optimal, and one arrives at a contradiction.

Second, consider the sufficient condition for optimality: if a group is not an improvable
group, then it is optimal. Suppose that S is not an improvable group, S∗ is an optimal
group with the minimum I(t;X), and S∗ 6= S. Then, there must exist some bin(s) where
S∗ has fewer units than S, and some other bin(s) where S∗ has more units than S. Without
loss of generality, assume that b1 and b2 are two such bins, respectively. Since S∗ has more
units in bin b2 than S, this implies |Cb2 − Sb2 | ≥ 1. Because S is not an improvable group,

one has
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
.

If
Sb1
−1−A
Tb1

<
Sb2
−A

Tb2
, then according to Lemma 3, if a unit is removed from b1 and

another unit is added into b2 for S, then one can obtain a group with a greater value of

10
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I(t;X), with
Sb1
−1−∆−A
Tb1

<
Sb1
−1−A
Tb1

<
Sb2
−A

Tb2
<

Sb2
+∆−A
Tb2

holding for ∀∆ > 0. Note again

that b1 and b2 were arbitrarily picked. Such unit shuffling (i.e., removal and addition)
operations can repeat until S is modified to become identical to S∗. Since in this process,
I(t;X) increases with every shuffle, then S∗ could not be optimal, which is a contradiction.

If
Sb1
−1−A
Tb1

=
Sb2
−A

Tb2
, then as a result of removing a unit from b1 and adding one into b2,

I(t;X) will not change. In such a case, if the updated S becomes identical to S∗, then this
means that S is an alternative optimal solution with the minimum I(t;X). Otherwise, one

can continue shuffling units, with
Sb1
−1−∆−A
Tb1

<
Sb1
−1−A
Tb1

=
Sb2
−A

Tb2
<

Sb2
+∆−A
Tb2

holding for

∀∆ > 0. Similarly, I(t;X) will continue increasing, leading to S∗ not being optimal, i.e., to
a contradiction.

Theorem 4 provides the necessary and sufficient optimality conditions for the control
groups with the minimum I(t;X). Its value lies in condition (4) being linear in Sb, unlike
the minimization problem objective (2). Note, however, that Theorem 4 only works to
determine whether a control group is optimal or not; it cannot be used to assess or compare
the quality of suboptimal control groups.

In order to effectively apply Theorem 4 in practice, one would like to avoid the exhaustive
traversal of bin pairs. Corollaries 5 and 6 allow for tackling this problem and provide a means
for efficient optimal control group selection.

Corollary 5 Consider an instance of minimizing I(t;X) where N >
∑

b∈{b:Tb≥1}Cb. Then,
a control group S is optimal if it includes all the control units in all b ∈ {b : Tb ≥ 1}.

Proof Follows directly from Lemma 2.

Corollary 6 Consider an instance of minimizing I(t;X), where N ≤
∑

b∈{b:Tb≥1}Cb.
Then, a control group S is optimal if and only if for every pair of bins b1 and b2 such
that

b1 ∈ argmax
b∈B

{Sb − 1−A
Tb

} (5)

and

b2 ∈ argmin
b∈B

{Sb −A
Tb

: |Cb − Sb| ≥ 1}, (6)

one has
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
, where A ≈ −0.47.

Proof Consider any pair of bins, b3 and b4, with |Cb4 −Sb4 | ≥ 1. In order to determine if S
is optimal, Theorem 4 prescribes to compare the left-hand and right-hand sides of inequality

(4) for bins b3 and b4. By the statement of this corollary, one has
Sb1
−1−A
Tb1

≥ Sb3
−1−A
Tb3

and
Sb2
−A

Tb2
≤ Sb4

−A
Tb4

. Then, if inequality (4) holds for bins b1 and b2, then it also holds for bins

B3 and B4, because
Sb3
−1−A
Tb3

≤ Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
≤ Sb4

−A
Tb4

, and vice versa.

11
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4.2 Mixed Integer Programming-Based Matching Algorithms

The optimality conditions in Theorem 4 and Corollary 6 allow one to construct an alter-
native formulation for the problem of minimizing I(t;X) with N ≤

∑
b∈{b:Tb≥1}Cb, using

the expression Sb−1−A
Tb

. Note that this ratio is undefined for bins with Tb = 0; however,
per Lemma 2, an optimal solution can contain control units from such bins only if all the
available control units from other bins have been exhausted. In order to reformulate the ob-
jective function of minimizing I(t;X), the expression Sb−1−A

Tb
should first be revised so that

its denominator evaluates to a fixed number, α ∈ (0, 1), small enough to make the selection
of control units from bins with Tb = 0 very costly. In order to search for a control group
satisfying the condition in Corollary 6, the following optimization problem is formulated:

min
S⊂C
{max
b∈B

Sb − 1−A
max{Tb, α}

}, (7)

where α is a positive parameter small enough to distinguish Tb = 0 from other positive
values of Tb, e.g., α = 0.01.

By solving (7), one can work to construct an optimal control group through minimizing
the maximum value of the function in (5). Having found an optimal solution to (7), one
can check if (for this solution) the set in (5) is a singleton. If it is, then the condition in
Corollary 6 holds. Otherwise, satisfying (7) may not be sufficient for satisfying Corollary
6, since it requires one to check every pair of bins in both the set in (5) and the set in (6).
As an example of this situation, suppose that there exist two bins, b1 and b3, in the set

in (5), and a bin b2 in the set in (6) such that
Sb1
−1−A
Tb1

=
Sb3
−1−A
Tb3

>
Sb2
−A

Tb2
. If a unit is

removed from b1 while another unit is added into b2, the objective value of (7) does not

improve because
Sb3
−1−A
Tb3

does not decrease. Thus, the optimization process based purely

on solving (7) would terminate early without guaranteeing an optimal matching.
To handle the situation where the set in (5) is not a singleton for a solution of (7), an

algorithm is developed to iteratively solve for the optimal number of units to be selected
from each bin. In any iteration, if solving (7) returns multiple bins with values of Sb−1−A

Tb

equal to the maximum (over all the bins), then one of these bins is added to a “forbidden
bin set”, denoted by BF and initialized at an empty set before the first iteration. Every
time BF is updated, problem (7) is reformulated, with all the bins that are not in BF , and
solved again in the next iteration. After several such iterations, once the set in (5) is found
to be a singleton for a solution to (7), one can be sure that an optimal control group has
been found. In order to ensure that the unit picking in a given iteration does not mess up
the optimality achieved within any bin in the previous iteration(s), a bin with the smallest
number of the treatment units in the non-singleton set (5) is always fixed first. In every
iteration, (7) is solved as a mixed integer programming (MIP) model,

min q (8)

s.t. q ≥ Sb − 1−A
max{Tb, α}

∀b /∈ BF , (9)∑
b∈B

Sb = N, (10)
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Sb ≤ Cb ∀b ∈ B, (11)

Sb ≥ 0 ∀b ∈ B, (12)

Sb : integer ∀b ∈ B, (13)

B = {b : Cb + Tb ≥ 1}. (14)

The decision variables in this MIP are the numbers of the control units, Sb, to be selected
from each bin. Since it is only necessary to consider the bins in {b : Cb + Tb ≥ 1}, then
despite the fact that the total number of joint bins grows exponentially with the binning
partition granularity, the number of the decision variables is bounded by |T | + |C|. The
contents of the forbidden bin set BF are updated iteratively in the described algorithm.
The minimax optimization problem (7) is formulated with the objective function (8) and
the constraint set (9). Constraint (10) ensures that the total number of units in the control
group is equal to N . Constraints (11), (12) and (13) restrict the range of Sb to nonnegative
integers not exceeding the number of available control units in each respective bin.

Note that for solving any MIM-Joint problem, since the bins’ contents can be treated
as being independent from each other, the described procedure for minimizing I(t;X) can
be exactly followed to minimize I(t;X), with bins b in (8)-(14) being the joint bins.

Algorithm 1 MIP-based matching for MIM-Joint problem

1: Initialize the bin set {b : Cb + Tb ≥ 1} consisting of all the bins occupied by the units
in T ∪ C; compute Tb and Cb; forbidden bin set BF = ∅.

2: Update and solve the corresponding instantiation of formulation (8)-(14) to obtain Sb
for every bin b.

3: If argmaxb/∈BF {Sb−1−A
Tb

} is a singleton, go to step 4. Otherwise, add the bin with the

smallest number of treatment units in argmaxb/∈BF {Sb−1−A
Tb

} into set BF , record and
fix the optimal number of control units to be selected in it, and go to step 2.

4: Construct a control group complying with the obtained values of Sb over all the initial-
ized bins b. Stop.

However, for solving an MIM-Marginal problem, modifications to the above formulation
and the algorithm are necessary due to the fact that the marginal bins cannot be assumed
independent. The decision variables of an MIP-Marginal model are the numbers of control
units to be selected into S for every joint bin (b still denotes a joint bin), and constraints
(10)-(14) remain a part of the optimization problem. Let m denote a marginal bin, MF

denote the forbidden marginal bin set, and Tm, Cm and Sm denote the number of all the
treatment units, number of all the control units and number of the selected control units in
m, respectively. Equation (9) is then replaced by (15). Also, an additional constraint (16)
is added to the formulation to ensure that the number of units in any marginal bin equals
the summed total number of units in all the corresponding joint bins.

q ≥ Sm − 1−A
max{Tm, α}

∀m /∈MF , (15)

Sm =
∑

b;Xm∈b
Sb ∀m ∈ {m : Cm + Tm ≥ 1} (16)

13
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Recall that in every iteration of solving MIM-Joint using Algorithm 1, one checks
whether the set of bins with the maximum value of Sm−1−A

Tm
is a singleton. Because of

the dependence between the contents of marginal bins, this condition by itself does not
guarantees optimality for MIM-Marginal problem. Specifically, given a feasible solution to
an MIM-Marginal problem, if exactly one marginal bin is found to achieve the maximum
value of Sm−1−A

Tm
and this marginal bin is associated with covariate k, then because the bins

in the same covariate are independent and according to Corollary 6, I(t;Xk) is minimized.
But the MI in other covariates might still be improved without changing I(t;Xk), e.g., by
adding and removing the same number of control units to/from the same marginal bin in
covariate k. Thus, while solving for the optimal number of units in each marginal bin, and
adding the marginal bins one-by-one to a forbidden bin set, one should not stop until the
sets of bins with the maximum values of Sm−1−A

Tm
in all the |K| covariates become singletons.

Algorithm 2 MIP-based matching for MIM-Marginal problem

1: Initialize the joint bin set {b : Cb +Tb ≥ 1} and the marginal bin set {m : Cm +Tm ≥ 1}
consisting of all the bins occupied by the units in T ∪ C; compute Tb, Cb, Tm and Cm;
forbidden bin set MF = ∅.

2: Update and solve the corresponding instantiation of formulation (8), (10)-(16) to obtain
Sb for every joint bin b.

3: If argmaxm/∈MF {Sm−1−A
Tm

} is a singleton for every covariate, go to step 4. Otherwise, add

the marginal bin with the smallest number of treatment units in argmaxm/∈MF {Sm−1−A
Tm

}
into set MF , record and fix the optimal number of control units to be selected in it,
and go to step 2.

4: Construct a control group complying with the obtained values of Sb over all the initial-
ized bins b. Stop.

4.3 Sequential Selection Matching Algorithms

Based on the optimality conditions in Theorem 4, Algorithms 1 and 2 are guaranteed to
achieve best matched control groups for MIM-fixed and MIM-marginal problem instances.
However, their MIPs may become difficult to solve for problems of large size, which, however,
can be avoided by utilizing the result captured in Theorem 7, presented for the problem of
minimizing I(t;X).

Theorem 7 If control group S has the minimum I(t;X) among all the control groups of
size N , then a group with the minimum I(t;X) among all the control groups of size N + 1
(N −1) can be obtained from S by adding to it a single unit from bin b ∈ argminb∈B{Sb−A

Tb
:

|Cb − Sb| ≥ 1} (removing from it a single unit from bin b ∈ argmaxb∈B{Sb−1−A
Tb

}).

Proof Let S+ denote a control group obtained from S by adding to it a single unit from
bin b ∈ argminb∈B{Sb−A

Tb
: |Cb − Sb| ≥ 1}. According to Lemma 3, the MI between T and

X over set T ∪ S+ is minimal among all the groups that can be built on S. The following
proof will show S+ is also globally optimal.
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Let S+
b denote the number of control units selected into S+ in bin b. Let b1 and

b2 be two bins such that b1 ∈ argmaxb∈B{
S+
b −1−A

Tb
} and |Cb2 − S+

b2
| ≥ 1. If b1 is the

bin where S+ has one more unit than S, then S+
b1
− 1 = Sb1 and S+

b2
= Sb2 , and then

S+
b1
−1−A
Tb1

=
Sb1
−A

Tb1
≤ Sb2

−A
Tb2

=
S+
b2
−A

Tb2
. Note that by Theorem 4, because S is optimal, one

has
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
. If b2 is the bin where S+ has one more unit than S, then S+

b2
−1 = Sb2

and S+
b1

= Sb1 , and then
S+
b1
−1−A
Tb1

=
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
<

S+
b2
−A

Tb2
. If S and S+ have the same

numbers of units in both b1 and b2, then
S+
b1
−1−A
Tb1

=
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
=

S+
b2
−A

Tb2
. Therefore,

by Corollary 6, S+ is a group with the minimum I(t;X) among all the control groups of
size N + 1.

Let S− denote a control group obtained from S by removing a single unit from bin
b ∈ argmaxb∈B{Sb−1−A

Tb
}. Let S−b denote the number of control units selected into S− in

bin b. Let b1 and b2 be two bins such that b1 ∈ argmaxb∈B{
S−
b −1−A

Tb
} and |Cb2 − S

−
b2
| ≥ 1.

If b2 is the bin where S has one more unit than S−, then Sb2 − 1 = S−b2 and S+
b1

= Sb1 ,

and then
S−
b1
−1−A
Tb1

=
Sb1
−1−A
Tb1

≤ Sb2
−1−A
Tb2

=
S−
b2
−A

Tb2
. Note that due to the optimality of S,

Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
. If b1 is the bin where S has one more unit than S−, then Sb1 − 1 = S−b1

and S+
b2

= Sb2 , and then
S−
b1
−1−A
Tb1

<
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
=

S−
b2
−A

Tb2
. If S and S+ have the same

numbers of units in both b1 and b2, then
S−
b1
−1−A
Tb1

=
Sb1
−1−A
Tb1

≤ Sb2
−A

Tb2
=

S−
b2
−A

Tb2
. Therefore,

by Corollary 6, S− is a group with the minimum I(t;X) among all the control groups of
size N − 1.

Theorem 7 provides a method for finding optimal control groups for MIM problems,
without solving any programming models. One can iteratively build control groups of
increasing sizes until an optimal solution of the desired size N is obtained. Each control
group in this process results in the minimum value of MI among all the groups of the same
size. Also, Theorem 7 provides establishes a relationship between the optimal subsets for
problems with different target control group sizes. This result will be important for seeking
the minimum MI in the problems with an unrestricted (flexible) control group size.

For the MIM-Joint problem, since its bins are treated as independent from each other,
Theorem 7 directly applies, and Algorithm 3 guarantees to return an optimal solution. Note
that Algorithm 3 is polynomial. In the worst case, it needs to make comparisons of Sb−A

Tb

for N multiples of the number of bins occupied by treatment units.

With the MIM-Marginal problem, a challenge arises due to the dependence between the
marginal bins’ contents. By comparing the terms Sm−A

Tm
, one can identify the marginal bin

to which a control unit should be added, but one still needs to pick some joint bin. Even
further, since the marginal bins on the same covariate are independent from each other,
the comparison of Sm−A

Tm
can reveal the most favorable marginal bin for each covariate,

but the bin that lies at the intersection of those |K| marginal bins may not contain any
control unit that could be added to the control group. Algorithm 4 offers an organized way
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Algorithm 3 Sequential selection matching for MIM-Joint problem

1: Initialize the joint bin set {b : Cb + Tb ≥ 1} consisting of all the bins occupied by the
units in T ∪ C; compute Tb and Cb; set Sb = 0 for all b.

2: Select a bin b ∈ argminb∈B{Sb−A
Tb

: |Cb − Sb| ≥ 1}, update Sb by adding 1.
3: If N units are selected, go to step 4. Otherwise, go to step 2.
4: Construct a control group complying with the obtained values of Sb over all the initial-

ized bins b. Stop.

to achieve good (but not necessarily optimal) solutions to MIM-Marginal instances in the
following manner. For each joint unit, |K| ratios of the form Sm−A

Tm
are evaluated (one per

covariate); these |K| ratios are organized in a descending order; then, the joint bin with
the lexicographically minimal ratio gets one more unit added to it. Again, the resulting
Algorithm 4 is an approximate method, but it is polynomial, and in practice, is found to
return solutions of high quality for diverse matching problem instances (see Section 5).

Algorithm 4 Sequential selection matching for MIM-Marginal problem

1: Initialize the joint bin set {b : Cb + Tb ≥ 1} consisting of all the bins occupied by the
units in T ∪ C; compute Tb and Cb; set Sb = 0 for all b.

2: Update Sm−A
Tm

for each marginal bin, and order all associated Sm−A
Tm

by values in descend
sequence for each joint bin.

3: Find a bin b in set {b : |Cb−Sb| ≥ 1} such that its ordered set of Sm−A
Tm

is lexicographically
minimal; increase the value of the decision variable, Sb, corresponding to this bin, by 1.

4: If N units are selected, go to step 5. Otherwise, go to step 2.
5: Construct a control group complying with the obtained values of Sb over all the initial-

ized bins b. Stop.

The complexity of Algorithm 4 depends on the number of covariates |K|, the number of
marginal bins |M |, treatment group size |T |, control pool size |C| and target control group
size N . In the worst case, every unit (treated or control) occupies one unique joint bin, with
each joint bin contributing to |K| marginal bins. The storage of these data requires a space
of size O(|K|(|T | + |C|)). In the binning step, both the treatment group and control pool
are traversed, with each unit being assigned to the appropriate marginal and joint bins:
this operation takes O(|M |(|T | + |C|)) time. In the matching step, all the occupied joint
bins are traversed for the lexicographic comparison, which takes O(N(|T |+ |C|)|K|2) time.

5. Computational Analyses

This section presents the results of the computational experiments with synthetic and real-
world (LaLonde, 1986) data sets, evaluating the performance of the MIM method in esti-
mating causal effects, and comparing it to the BOSS method (Nikolaev et al., 2013) and
the widely used propensity score based matching method (Rosenbaum and Rubin, 1983).
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5.1 Algorithm Performance Assessment

In order to evaluate the performance of the MIM algorithms, a series of tests is first con-
ducted with the data set designed by Sauppe et al. (2014), which was found challenging
for the existing matching methods1. This synthetic data set with 25 covariates contains
100 treatment units and 10,000 control units. All the covariate values are drawn from nor-
mal distributions with mean 0. All the treatment and control units have the same, highly
nonlinear response function. Thus, by design, the average treatment effect for the treated
(ATT) for the created population is zero.

The experiments were conducted with the number of the considered covariates varied in
the range from 1 to 25. In optimizing the covariate balance, Sauppe et al. (2014) uniformly
partitioned the range of the observed unit values in each covariate into 20 bins, and used
Balance Optimization Subset Selection (BOSS) for control group selection. In order to treat
the instances resulting in large MIP formulations, Sauppe et al. (2014) adopted a time limit
heuristic. They achieved quite well balanced control groups; however, the limited computa-
tional efficiency remains the key challenge for the existing BOSS methods, especially when
the data sets to make inference from are very large.

With the same settings as in Sauppe et al. (2014), this section compares the performance
of the following matching methods: the Mahalanobis distance-based one, the propensity
score-based one, the BOSS methods from Sauppe et al. (2014), and three MIM methods –
MIM-Joint, MIM-Marginal MIP, and MIM-Marginal sequential selection. Note that the first
two of these methods are widely used and included in several existing matching packages,
e.g., MatchIt (Ho et al., 2011) and optmatch (Hansen and Klopfer, 2012). We also used
Coarsened Exact Matching (CEM) in MatchIt (Ho et al., 2011) and fullmatch method in
optmatch (Hansen and Klopfer, 2012). However, CEM excluded many treatment units from
the matched treatment group in the experiments with five or more covariates, and thus,
was not found suitable for ATT estimation. Also, under the pre-set control group size, the
results of fullmatch were no different from those of the standard Mahalanobis distance or
propensity score matching (depending on the selected parameter settings).

The MIP models for MIM were solved using CPLEX. To reduce the runtime in solving
some large-size problems, a heuristic was applied that utilized the solution of sequential
selection to covert MIP to an integer program. Generally, MIP-based methods (be it for
BOSS or MIM) are time-consuming. However, the sequential selection algorithm always
runs very quickly: it took about 7 seconds on average to find solutions for the instances
with 25 covariates on a desktop with an Intel Xeon E5-2420 1.9GHz CPU and 16G RAM.

Table 1 presents the ATT estimates obtained with the considered methods for the in-
stances with the varied number of covariates; Figure 3 provides a graphical illustration of
the results. Recall that by design, the ATT is zero, so the closer an estimate is to zero, the
better. Table 2, Figure 4a and Figure 4b report the Kolmogorov-Smirnov (KS) test statistic
scores and associated p-values for checking whether the underlying covariate distributions
differ in the treated and control groups. In Table 2, column “Avg” reports the average

1. The data set, named 25c10k, features a highly nonlinear response function and is available in full in the
online supplement of Sauppe et al. (2014). The response function in it is y = 0.8x1(1.0−x1)+0.5x2(0.7+
x1)+0.27x3x2−0.9x2

4+0.7x5(0.5+x5)x2−0.6x6x1+0.4x7−0.8x8+0.6x9(0.9−x9)+0.2x2
10(0.3−x7)+

0.5x2
11 − 1.4x12 − 0.8x13 − 0.9x2

14 +0.5x2
15(0.1+ x15) + 0.8x16 − 0.9x17(0.2− x13) + 1.5x18 − 1.2x19(1.0+

x11)+0.7x2
20(0.8−x20)−0.5x21−1.3x22(1.0+x22)+1.1x23−1.2x24(1.0+x23)+0.4x2

25(0.6−x25)+N(0, 1).
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Table 1: Estimated treatment effects with different matching methods.
Mahalanobis Propensity MIM-Marginal MIM-Marginal

# Covariates metric score BOSS MIM-Joint (MIP) (Sequential)

1 -0.133 -0.117 0.218 0.006 0.006 0.006
5 0.626 -1.223 0.045 6.361 0.005 1.721
10 0.39 5.437 -2.646 16.646 -1.123 0.517
15 6.261 19.126 3.074 30.593 2.590 2.403
20 10.164 -11.849 7.782 35.306 5.927 8.084
25 16.074 -14.753 6.618 50.643 12.170 8.448
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Figure 3: Trends for estimated treatment effects with different matching methods.

KS distance or p-value over all the covariates, and columns “Max” and “Min” report the
maximum KS test statistic and minimum p-values, respectively. The smaller the KS score
and the larger the p-value, the better balance is achieved.

In general, the MIM-Joint does not output accurate treatment effect estimates in the
multi-covariate cases. If an exact or almost-exact matching solution exists, the MIM-joint
performs well, e.g., as in the one-covariate case. However, it is too sensitive to imbalance.
As the number of the covariates grows, there remain fewer and fewer bins in which exact
matching is possible, making the MIM-Joint formulation not-so-useful for most practical
cases. At the same time, the marginal bin-based matching methods succeed in obtaining
rather accurate ATT estimates.

Because of the high non-linearity of the response function, propensity score matching
does not produce good ATT estimates, and there is no clear trend in its performance as it
degrades. Mahalanobis metric matching, BOSS and two MIM-Marginal methods all produce
similar estimates, with the MIM-Marginal MIP performing slightly better than the other
methods. For the instances with fewer than 15 covariates, the estimates produced by these
four methods are close zero (the true ATT value 0), but MIM-Marginal methods achieve
much better balance in covariates judging by the KS test scores and p-values. For the
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Figure 4: Trends for marginal balance quality for matching solutions.

instances with more than 15 covariates, the large number of bins makes for a large variance
in the ATT estimates; comparing only the 100 treatment units and the 100 matched control
units, one observes significant divergence between the ATT and its estimates obtained with
all the methods, even though BOSS achieves the smallest KS scores. Considering both the
matching quality and runtime performance, the MIM-Marginal with sequential selection
algorithm comes out as the most efficient matching method for practical purposes.

5.2 The Experiences with Using Mutual Information as a Measure of Balance

The next set of experiments reveals that the MI function, employed as the objective in MIM,
can be viewed as a surrogate measure of covariate balance. In order to trace the dependence
between the MI values, obtained with different control groups, and the corresponding ATT
estimates, an additional set of results is reported with the data set of Section 5.1 with
10 covariates. This set is also used to help us assess the impact of the MIM algorithm
parameter settings on the matching quality

For a large number of randomly generated control groups, the MI values were recorded
together with the resulting treatment effect estimates (see Figure 5). Among these, four
groups were found to have the MI less than 0.002 and at least 100 groups fell in each of the
other intervals, into which the MI range was divided. Observe that, as the MI grows, the
average of the ATT estimates tends to increase, and the standard deviation of the estimate
values over the intervals grows as well. This confirms the premise that minimizing MI is a
valid approach to guiding the matching process.

Another benefit of using MI lies in the ability to directly compare the matching problem
solutions (control groups) of different sizes. Indeed, with the empirical covariate distribution
in a given treatment group being fixed, the decision-maker has the freedom of selecting the
target control group size. With the same binning scheme, the MI values obtained with
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the control groups of different sizes can be compared on the same scale, and hence, the
optimization of the control group size becomes possible.

Figure 6 shows the MI values and MIM-based ATT estimates as functions of the control
group size in the range from 20 to 200 (of control units). Despite the noise, it is clear that for
some control group sizes, the MIM method achieves lower MI values, and simultaneously,
higher quality estimates. Most importantly, the group size range, over which the MI is
consistently low, coincides with the range, for which the estimates are closest to the truth.
As such, in the considered example, the MI gets closer to zero with the lowest noise for the
control group of sizes of about 130; a control group of this size returns the ATT estimate
value of 0.099.

21



Sun and Nikolaev

5.3 Experiences with Large Data Sets

In order to test the performance of the presented MIM methods with large data sets, three
suitable real-world data sets were identified. The first one contains weighted census data
extracted from the 1994 and 1995 Current Population Surveys conducted by the U.S. Census
Bureau (Lichman, 2013): it contains 199,523 records with 41 demographic and employment
related variables. The second one was extracted from the 1994 Census database (Lichman,
2013): it contains 32,561 records with 14 variables. The third one was collected in a study
focusing on the National Supported Work Demonstration Program (NSW) (LaLonde, 1986),
where the randomized job training experiment benchmark was obtained for the treatment
effect: it contains 16,177 records with 8 variables. Of the three data sets, only the third one
was originally created for a matching purpose. The aim of its creator was to examine how
well the statistical methods would perform in trying to replicate the result of a randomized
experiment (LaLonde, 1986). To design the test instances with the different number of
covariates and varied control pool and treatment group sizes, the first data set was split
into a treatment group and a control pool by “US citizenship” and “Business ownership”
indicators, respectively; and the second data set was split by “US native” and “Doctorate
degree” indicators, respectively. To apply the MIM-Marginal method, each continuous
covariate’s range was partitioned into 20 bins, while all the categorical covariates kept their
original categories. The target control group size was set equal to the treatment group size.
Table 3 gives an aggregate view of the data sets’ specifics, and MIM results and runtimes.

Overall, the MIM-marginal method achieves very good balance across all the covariates.
The average KS scores in all the tests are below 0.01 and the average p-values are all greater
than 0.05. Note that since the treated and control data sets in every test are distinct, the
results cannot be meaningfully compared across the test instances. For example, the best
balance metric values were achieved in the experiment the “Business ownership” data set,
even though it had more units and covariates than some other data sets. In the experiment
with the “US citizenship” data set, the matching algorithm performed the worst. Indeed,
this was a challenging test instance with the target control group size of 13,401, amounting
to about 7.2% of the control pool: in such a case, the method is forced to pick non-optimal
units to reach the target size, and hence, increases the imbalance. Note, however, that
selecting such a large size control group might not be a good idea in practice anyway.

Excellent computational efficiency of the MIM-Marginal method is unparalleled by any
other matching method, making it highly practical for data mining; its runtime requirement
grows polynomially with the problem size. For example, the “US citizenship” test instance
features a very large data set: compared to the training data set, it has 11.6 times more
control units, 72.4 times more treated units, significantly larger target control group size,
and 5 times more covariates. Yet, the MIM-Marginal runtime with the the “US citizenship”
is only 38,040 times larger.

The NSW data set is the most famous one in the matching literature, because an
ATT benchmark of 1,794 has been separately obtained for the problem that it addresses
(LaLonde, 1986). Dehejia and Wahba (1999) reported the estimate based on propensity
score method was 1,691. Tam Cho et al. (2013) used BOSS and obtained the best individual
matched solution resulting in the estimate of 1,741, as well as a set of alternative solutions,
with mean 1,595 and standard deviation 281.
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The runs of MIM-Marginal with the NSW data set produce a solution set with mean
1,851.5 and standard deviation 92.1. The average MI over this set is 0.002383; see the
achieved balance metrics in Table 3. Importantly, if one removes the target control group
size restriction and allows the MIM-Marginal to optimize over it, then a solution with 169
control units is obtained, with the MI of 0.001824 and ATT estimate set with mean 1,818.2
and standard deviation 91.2.

6. MIM Limitations and Future Research Directions

While the presented computational investigations demonstrate the utility of the MIM
methodology, this work has its limitations and desirable directions for further improvement.

First, this paper does not offer an approach to the calculated selection of a binning
scheme. The discretization of the covariate space affects the MI-based estimation outputs,
however, the present MIM algorithms take the binning scheme as an input and do not work
to perturb it to account for the differences in the shapes of the distributions of different
covariates or the distances between bins. Intuitively, if the binning is coarse then the
MIM cannot be expected to produce high quality solutions. While binning has been a
point of research in multiple branches of optimization-based matching literature, the design
of binning structures is still an open question. Another point, relevant to the MI based
methods specifically, is that mutual information could be employed in its continuous form,
in which case the accuracy of matching might be improved without the use of bins.

Second, in its current form as a non-parametric matching methodology, MIM does not
differentiate the covariates by relative importance. Moreover, if there is any indispens-
able information of the form of the response function, covariate relationships, or covariate
distributions that is not captured via binning, MIM may underperform. There may even
exist circumstances where MIM would be consistently unsuccessful in producing accurate
treatment effect estimates: such circumstances, as those exposed by Sauppe et al. (2014)
with propensity score-based matching, are yet to be explored with MIM. In any case, prior
to using MIM, the researcher must be careful about selecting the covariates to work with.
Indeed, data preprocessing has been a topic of research worth much attention. Distance-
based matching methods employ weights to emphasize the importance of balancing certain
some covariates over others. The developments in propensity score-based methods led to
the introduction of the concept of “fine balance”. Expanding the MIM research in a similar
direction would add to its value.

Finally, by relaxing the integrality constraints of the MIM problems’ decision variables,
one could produce linear (non necessarily integer) solutions allowing for insightful interpre-
tations. The research in this direction might remedy the MIM dependence on binning.

7. Conclusion

The problem of causal inference based on observational data lies in selecting control units
from a large unit pool to achieve control groups that are similar in covariate distributions to
a given treatment group. To address this problem, this paper presents a set of methods with
the objective of minimizing the mutual information between the treatment and covariates
over the merged set of selected control and treatment units. Optimal conditions are derived
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for matching on a single covariate and on the joint distribution of multiple covariates,
allowing one to remove non-linear terms from the original mutual information formula and
leading to a mixed integer programming formulation of the problem. A sequential selection
algorithm is presented that runs in polynomial time and obtains optimal solutions for the
problems of matching on a single covariate and matching on a joint distribution of multiple
covariates.

Matching problems formulated in this paper for both joint distribution and marginal
covariate distributions are analyzed theoretically, and the resulting solution methods tested
computationally. The problem of group matching with marginal covariate distributions is
proven to be NP-complete, and a fast sub-optimal algorithm is presented. The reported
computational study shows that the matching problem formulation with marginal covari-
ate distributions is more valuable than that based on the joint covariate distribution for
obtaining accurate causal effect estimates in practice.
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Appendix A. Proof of Theorem 1

The decision version of the matching problem on marginal covariate distributions with a
fixed target control group size (MIM-Marginal) can be stated as follows. Given a treatment
group T , a control pool C and a set of covariates Xk, k ∈ K. Let m be a marginal bin.
(In this proof, it is not necessary to indicate which covariate this marginal bin partitions.)
Given parameters γ and N , do there exist subsets S ⊂ C such that

∑
k∈K I(T ;Xk) ≤ γ and

|S| = N?

First, it has to be proven that MIM-Marginal belongs to the NP class. For any given
subset, one can check that the subset contains exactly N units, and then, calculate the
mutual information value as in 2 to check if it is smaller or equal to γ. This can be
completed in polynomial time, thus MIM-Marginal belongs to NP.

Second, it has to be proven that MIM-Marginal is NP-hard. Let δum be a binary variable,
with δum = 1 if unit u belongs to m, and 0 otherwise; let ηu be another binary variable,
with ηu = 1 if unit u is selected into S, and 0 otherwise. Let Tm denote the number of
units in group T with the values of covariates falling into bin m. If let γ = 0 and N = |T |,
then problem’s objective is to check whether a perfect matching exists, i.e., whether the
following constraints can be simultaneously satisfied:

|C|∑
u=1

δumηu = Tm ∀m, (17)

|C|∑
u=1

ηu = N, (18)

ηu ∈ {0, 1} ∀u,

where ηu is the decision variable. Constraint (17) ensures that a perfect matching is achieved
in each covariate. Constraint (18) limits the size of a control group that can be selected.
Note that, sinceN = |T | and each unit belongs to exactly |K|marginal bins, then converting
the constraints (17) and (18) into inequalities does not affect the optimal set of the problem,
which can now be stated as

|C|∑
u=1

δumηu ≥ Tm ∀m,

|C|∑
u=1

ηu ≤ N,

ηu ∈ {0, 1} ∀u.

Now, the set cover (SC) problem can be reduced to MIM-Marginal problem. The SC
problem is known to be NP-Hard (Garey and Johnson, 1979), and can be stated as follows.
Given: an element set J , a collection I of finite subsets of J , and a fixed number n. Question:
does I contain a subcollection of sets such that the total number of sets in this subcollection
is at most n, and each element of I is included in at least one of the selected sets?
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Let δ′ij be a binary variable, with δ′ij = 1 if element j is included in set Ii ∈ I, and 0
otherwise; let η′i be another binary variable, with η′i = 1 if set Ii is selected, and 0 otherwise.
The objective of the SC problem is to find η′ such that

|I|∑
i=1

δ′ijη
′
i ≥ 1 ∀j ∈ J,

|I|∑
i=1

η′i ≤ n,

η′i ∈ {0, 1} ∀i.

Define the following mapping: Tm = 1, N = n, u = i, m = j, δum = δ′ij and ηu = η′i.
Thus, the SC problem has a feasible solution if and only if the corresponding MIM-Marginal
has a solution. The transformation required to execute the described mapping can be
completed in polynomial time in the size of problem inputs. This completes the proof.

Appendix B. Properties of the Ratio Function f(x, y) in Lemma 3

This Appendix analyzes how the values of function f(x, y) =
(1+ 1

x
)x

(1+ 1
x+y

)(x+y)(1+ y
x+1

)
can be

compared for arbitrary inputs (x, y), with x > 0 and y > 0.

Define function g(x, y) ≡ log f(x, y) = x log(1 + 1
x)− (x+ y) log(1 + 1

x+y )− log(1 + y
1+x)

= x(log(1 +x)− log(x))− (x+ y)(log(1 +x+ y)− log(x+ y))− (log(1 +x+ y)− log(1 +x))
= (1 + x) log (1 + x)− x log(x)− (1 + x+ y) log(1 + x+ y) + (x+ y) log(x+ y).

Then, ∂g
∂x = log(1+x)−log(x)+log(x+y)−log(1+x+y) and ∂g

∂y = log(x+y)−log(1+x+y).

Also, ∂g
∂x = 1

f
∂f
∂x and ∂g

∂y = 1
f
∂f
∂y .

Because x > 0 and y > 0, one has 1 + x + y > 1 + x > 0. Also, the logarithm is a
monotonically increasing function with the monotonically decreasing slope, and hence, one
has log(1 + x) − log(x) > log(1 + x + y) − log(x + y) > 0, which implies that ∂g

∂x > 0 and
∂g
∂y < 0. Moreover, since f > 0, then ∂f

∂x > 0 and ∂f
∂y < 0.

To sum up, the function of interest is monotonic along both x and y directions. This
prompts one to study its contour lines over the feasible range of inputs (x, y) (Figure 7).
Unfortunately, even though the contours look linear, it does not seem possible to produce
a closed-form expression for them, of the form f(x, y) = C, with constant C.

Since f(x, y) = C is approximately a straight line for every specific C, then the values of
f(x, y) under different inputs can be compared by evaluating the slopes of the corresponding

contour lines: dy
dx = −

∂f
∂x
∂f
∂y

= −
∂g
∂x
∂g
∂y

= log(1+x)−log(x)
log(1+x+y)−log(x+y) − 1. Let h(x, y) ≡ dy

dx . For arbitrary

(x0, y0) and (x1, y1) such that f(x0, y0) = f(x1, y1), one has h(x0, y0) = h(x1, y1) = y1−y0
x1−x0

;
thus, one can study the linearization h(x, y) of f(x, y). Since these contour lines are straight
and do not intersect in the first quadrant, they must have a unique, common intersection
point. Thus, one can write h(x, y) = y−A2

x−A1
, where (A1, A2) are the coordinates of that

unknown intersection point. By numerical approximation, one can derive that (A1, A2) ≈
(−0.47, 0).
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Figure 7: A sketch of the contour lines of f(x, y) on (x, y) plane.

Due to the monotonicity of f(x, y), the greater the slope of a contour line that the point
(x, y) lies on, the smaller its corresponding function value. In other words, the smaller
h−1(x, y) = x−A1

y−A2
, the smaller f(x, y), and vice versa.

Appendix C. A Complete List of Notations Used

T : Treatment group.
C: Control pool.
S: Control group.
N : A given integer as the target control group size, i.e. |S| = N for an eligible matched
control group.
u: An observable unit, u ∈ T ∪ C.
t: Treatment indicator (1 means treated; 0 means not treated).
Y 1
u (or Y 0

u ): Treated (or untreated) response of unit u.
b: Joint bin. b1, b2 and b3 are different bins used in proofs.
B: Set of joint bins. B1, B2 and B3 are different bin sets used in proofs. BF is particular
bin set in the MIP-based algorithm.
m: Marginal bin.
M : Set of marginal bins. MF is particular bin set in the MIP-based algorithm.
k: A covariate.
K: Set of covariates.
Xk: Value of covariate k.
X: Covariate vector {X1, X2, ..., X|K|}.
X: A generalized covariate value to represent X and Xk for writing convenience.
Xu: Covariate value of unit u.
Xb: Covariate value for any unit contained in bin b.
Xm: Covariate value for any unit contained in marginal bin m.
p(t): Probability that a unit is treated.
p(Xb): Probability that a unit’s covariate value falls into bin b.
p(Xb, t): Probability that the covariate value of a unit with treatment indicator t falls into
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bin b.
Sb (or Tb, Cb): Number of units in group S (or T , C) with covariate values falling into bin
b. Sb1 , Sb2 , Sb3 , Tb1 , Tb2 , Tb3 and Cb2 are the number of units in different groups used in
proofs.
Sm (or Tm, Cm): Number of units in group S (or T , C) with covariate values falling into
marginal bin m.
I(t;X) (or I(t;X), I(t;Xk)): Mutual information between treatment indicator and covariate
value X (or covariate vector X, covariate value Xk).
Ib: Mutual information treatment indicator and covariate value if a unit in bin b is added
to the control group, e.g. I1, I2 and I3.
A and α: Constant numbers.
q: Objective value of MIP models.
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