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Abstract

Complex chronic diseases (e.g., autism, lupus, and Parkinson’s) are remarkably hetero-
geneous across individuals. This heterogeneity makes treatment difficult for caregivers
because they cannot accurately predict the way in which the disease will progress in order
to guide treatment decisions. Therefore, tools that help to predict the trajectory of these
complex chronic diseases can help to improve the quality of health care. To build such
tools, we can leverage clinical markers that are collected at baseline when a patient first
presents and longitudinally over time during follow-up visits. Because complex chronic
diseases are typically systemic, the longitudinal markers often track disease progression in
multiple organ systems. In this paper, our goal is to predict a function of time that models
the future trajectory of a single target clinical marker tracking a disease process of interest.
We want to make these predictions using the histories of many related clinical markers as
input. Our proposed solution tackles several key challenges. First, we can easily handle
irregularly and sparsely sampled markers, which are standard in clinical data. Second,
the number of parameters and the computational complexity of learning our model grows
linearly in the number of marker types included in the model. This makes our approach
applicable to diseases where many different markers are recorded over time. Finally, our
model accounts for latent factors influencing disease expression, whereas standard regres-
sion models rely on observed features alone to explain variability. Moreover, our approach
can be applied dynamically in continous-time and updates its predictions as soon as any
new data is available. We apply our approach to the problem of predicting lung disease
trajectories in scleroderma, a complex autoimmune disease. We show that our model im-
proves over state-of-the-art baselines in predictive accuracy and we provide a qualitative
analysis of our model’s output. Finally, the variability of disease presentation in sclero-
derma makes clinical trial recruitment challenging. We show that a prognostic tool that
integrates multiple types of routinely collected longitudinal data can be used to identify
individuals at greatest risk of rapid progression and to target trial recruitment.

Keywords: gaussian processes, conditional random fields, prediction of functional targets,
latent variable models, disease trajectories, precision medicine

1. Introduction

In complex chronic diseases (CCD) such as autism, lupus, and Parkinson’s, the way the
disease manifests may vary greatly across individuals. This makes treatment challenging
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because caregivers cannot easily predict an individual’s future trajectory to guide therapy
decisions. For example, in scleroderma, an autoimmune disorder, lung disease is a common
cause of morbidity and mortality (Varga et al., 2012), but there are no known biomarkers
or precise algorithms for stratifying individuals into groups based on similar lung disease
course. A tool that can provide accurate forecasts of disease progression can help clinicians
to tailor treatments to each patient based on their most likely course.

To monitor disease progression, clinicians collect many clinical markers both at baseline
when an individual first visits the clinic and longitudinally during routine follow-up visits.
Many CCDs are systemic, and so the markers are designed to monitor the disease’s impact
across many organ systems. In scleroderma, individuals may be affected across six organ
system—the lungs, heart, skin, gastrointestinal tract, kidneys, and vasculature—to varying
extents (Varga et al., 2012). Example clinical markers include PFVC (percent of predicted
forced vital capacity), which is used to measure lung damage severity; TSS (total skin score),
which is used to measure skin disease activity; and, PDLCO (percent of carbon monoxide
diffused by the lung), used to measure vasculature health.

Our goal is to predict a function of time that models the future trajectory of a single
target clinical marker tracking a disease process of interest. We want to make these pre-
dictions by leveraging baseline information and additional time-dependent clinical markers
(henceforth referred to as auxiliary markers) as they are collected. This is the focal challenge
of personalized medicine: integrative analysis of heterogeneous data from an individual’s
medical history to improve care (Collins and Varmus, 2015). So far, efforts in integrative
analysis have focused on combining inferences from molecular data modalities (Rosenbloom
et al., 2013). Our focus in this paper is on leveraging routinely recorded information from
the electronic health record—both static and time-dependent—to make precise estimates
of an individual’s disease course.

A key challenge in this setting is that these data are collected during routine clinical
visits and therefore they are sparse and irregularly sampled. Predicting an individual’s
future disease is commonly framed as a regression problem where the target clinical marker
at a specific time in the future is modeled as a function of observed input features alone.
These features are computed by generating summaries from the observed data (e.g., the
last PFVC value or the trend in the PFVC over the last six months). However, training
conditional models is less straightforward from data where varying numbers of repeated
measurements are sampled per patient and across different markers. In this setting, others
have focused on dynamical prediction (e.g., Rizopoulos and Ghosh 2011; Proust-Lima et al.
2014) by fitting parametric models to the longitudinal data and using the resulting model
parameters as features for prediction. But existing formulations do not scale to high-
dimensional problems with many auxiliary markers.

Another key challenge in predicting disease trajectories in CCDs is that differences in
trajectories across individuals may be largely due to factors that are not yet known. For
example, different disease pathways or biological mechanisms (e.g., genetic mutations or
autoimmune markers) may be driving different subtypes of the disease (Lewis et al., 2005;
Lötvall et al., 2011; Doshi-Velez et al., 2014; Saria and Goldenberg, 2015), each associ-
ated with distinct disease trajectories (Schulam et al., 2015). But, in many diseases, our
knowledge of these pathways is, at best, limited. In this setting, Schulam et al. (2015)
use a latent variable model to infer subtypes—subgroups with similar trajectories—using
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repeated measurements of clinical marker data in the electronic health record. Schulam and
Saria (2015) extend these ideas and introduce a transfer learning framework for predicting
individual-specific disease trajectories that accounts for subtypes and other latent factors
causing heterogeneity in disease expression. These works, however, focus on modeling single
marker trajectories. We build on Schulam and Saria (2015) in this paper.

1.1 Contributions

In this paper, we describe a scalable framework for predicting a target marker trajectory
(i.e. a continuous-time function) that allows us to use multiple longitudinal clinical marker
histories as inputs. Our approach makes it easy to handle irregular sampling patterns across
markers. Because we use a discriminative training criterion that conditions on marker his-
tories instead of jointly modeling them, the framework is not as sensitive to misspecified
dependencies across marker types. Moreover, the number of parameters and computational
complexity scales linearly with the number of markers, which makes it possible to apply
our approach in high-dimensional settings where many different marker types are available.
Finally, our approach aligns with the dynamical nature of clinical medicine; it can be used
to make predictions using continuously growing marker histories. We apply our approach to
the problem of predicting lung disease trajectories in scleroderma, a complex autoimmune
disease. We show that our model improves over state-of-the-art baselines in predictive accu-
racy and we provide a qualitative analysis of our model’s output. Moreover, we demonstrate
the clinical utility of our model by measuring performance on early detection of individuals
who develop aggressive lung disease.

2. Related Work

Most predictive models used in medicine are cross-sectional—they use features from data
measured up until the current time to predict a clinical marker or outcome at a fixed point
in the future. As an example, consider the mortality prediction model by Lee et al. (2003),
where logistic regression is used to integrate features into a prediction about the probability
of death within 30 days for a given patient. To predict the outcome at multiple time points,
it is common to fit separate models (e.g., Wang et al. 2012; Zhou et al. 2011). These models
are trained to use features extracted from a fixed-size window, rather than a dynamically
growing history. Moreover, they tackle heterogeneity in a limited way—any differences
across individuals must be explained by observed features alone.

A common approach to dynamical prediction of trajectories is to use Markov models
such as order-p autoregressive models (AR-p), HMMs, state space models, and dynamic
Bayesian networks (e.g. Hassan and Nath 2005; Quinn et al. 2009; Murphy 2002). While
such models naturally make dynamic predictions using the full history by forward-filtering,
they typically assume discrete, regularly-spaced observation times.

To model an individual’s disease trajectory using sparse and irregularly sampled clinical
markers, we draw heavily from ideas in the functional data analysis (FDA) literature (see
e.g., Ramsay 2006). In FDA, sequences of measurements are assumed to be samples from
an underlying continuous function. A common first-step in FDA is to project the irregular
observations on to a functional basis, such as B-splines, and then analyze the time series in
coefficient space. However, coefficient estimates can have high variance when a time series
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has too few observations, which is common in clinical data. James and Sugar (2003) address
this issue by modeling the parameters of individual trajectories as random variables with
a low-rank parameterization of the mean and covariance. This work is closely related to
ours, and the idea of sharing statistical strength across trajectories through a structured
prior over individual-specific parameters is used broadly throughout trajectory analysis to
account for sparsity. Gaussian processes (GPs) are also commonly used in FDA; they offer
flexible nonparametric models of trajectories but can also help to counteract sparsity by
sharing kernel hyperparameters across individuals—see Roberts et al. (2013) for a recent
review of GPs applied to time series data. Recent work by Liu and Hauskrecht (2014)
combines the advantages of Markov models (e.g. AR processes and state space models)
and Gaussian processes to make predictions of clinical laboratory test results. To account
for variability in collections of functions, a number of authors have proposed variants of
GPs that account for variability in the mean function (e.g. Lázaro-Gredilla et al. 2012; Shi
et al. 2012) and the covariance function (e.g. Shi et al. 2005). Another related line of work
in the FDA literature is function-to-function regression (e.g., Oliva et al. 2015). In most
approaches to function-to-function regression (FFR) the input and output are defined on
fixed domains. In contrast, our problem requires updated predictions as the clinical history
continues to grow; both the input and output domains are therefore constantly changing.

Most related to our work is that by Rizopoulos (2011), where the focus is on making
dynamical predictions about a time-to-event outcome (e.g. time until death) using all
previously observed values of a longitudinally recorded marker. As more data is collected,
they dynamically update posterior distributions over individual-specific longitudinal model
parameters (as is done in FDA), which serve as time-varying features for the time-to-event
prediction. Proust-Lima et al. (2014) tackles the same task but uses a mixture of trajectories
to model longitudinal data. As more observations are collected, the posterior over a set of
classes is updated, each of which has a distinct set of time-to-event model parameters. These
are both state-of-the-art models for the task of dynamical disease trajectory prediction; we
will revisit them in our experimental section where we use the approaches as baselines.
To scale these models to multivariate time series, however, requires careful specification
of the joint model across different markers, which can be challenging in high-dimensional
settings (e.g., Dürichen et al. 2015) and may be difficult to scale. For example, Rizopoulos
and Ghosh (2011) use a random effects model with a full covariance matrix to describe
dependencies across markers, which scales quadratically in the number of marker types (as
opposed to linearly as is the case for C-LTM). Because C-LTM is discriminatively trained
(we optimize the likelihood of future target trajectories given target and auxiliary marker
histories), it is less sensitive to misspecification of the dependencies across markers.

3. Coupled Latent Trajectory Model

Our goal is to predict a continuous function modeling the future trajectory of a target
clinical marker (e.g. PFVC) that tracks disease progression in a specific organ. To make
our predictions, we will use a collection of baseline (i.e. static) markers measured when an
individual first visits the clinic, the previously observed values of the target marker, and
the previously observed values of a collection of auxiliary clinical markers tracking related
organ systems. See Figure 6a-d for example applications. In these figures, the posterior
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Figure 1: Plots (a-c) show example marker trajectories. Plot (d) shows four individuals with ad-
justments to a population and subpopulation fit (row 1). Row 2 makes an individual-
specific long-term adjustment. Row 3 makes individual-specific short-term adjustments.
To simplify, we only show mean functions; posterior uncertainty intervals are omitted.

Input: Baseline predictors 
Target marker trajectories
Auxiliary marker trajectories

Stage 1: Fit Latent Trajectory Models (Model in Sec. 3.2, learning in Sec. 3.5)
Fit target marker LTM to define factor 
For 

Fit auxiliary marker LTM to define factor

Stage 2: Fit Coupling Model (Model in Sec. 3.3 & 3.4, learning in Sec. 3.5) 
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Figure 2: Two-stage procedure for fitting the Coupled Latent Trajectory Model (C-LTM).

distribution over the PFVC values (blue and green shaded regions) are conditioned upon
baseline markers (e.g. gender and race), the observed PFVC values (black points), and
auxiliary marker histories (e.g. TSS). We learn our model from a database of clinical
histories of individuals, which are comprised of the individuals’ baseline information and
irregularly sampled trajectories of both the target and auxiliary markers. Formally, our
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model will estimate the following conditional distribution (notation is described in the
subsequent paragraph):

D(i, t) , p(yi(·) | ~yi,≤t, ~y1:C,i,≤t, ~xi). (1)

Notation. For an individual i, we denote each target marker observation using yij and its
measurement time using tij where j ∈ {1, . . . , Ni}. We use ~yi ∈ RNi and ~ti ∈ RNi to denote
all of individual i’s marker values and measurement times respectively. We assume that the
target marker observations are noisy observations of a latent continuous-time function (the
trajectory), which we denote using yi(·). Each individual has baseline (static) information
collected into a vector, which we denote using ~xi. We use C to denote the number of auxiliary
marker types, Nci to denote the number of observations of the cth type, and use ycij and tcij
to denote individual i’s jth measurement of marker type c. We use ~yci ∈ RNci and ~tci ∈ RNci

to denote the vector containing all of individual i’s cth marker values and times respectively.
We will also frequently need to refer to the vector of marker values observed up until a time
t, which we denote using ~yi,≤t (~yci,≤t for auxiliary markers). Similarly, for markers observed
after a time t, we use ~yi,>t (~yci,>t for auxiliary markers). The term ~y1:C,i,≤t refers to all
auxiliary markers measured on individual i up until time t.

At a high-level, we will model Eq. 1 by first assuming that each clinical marker trajectory
(both target and auxiliary) can be d-separated (rendered conditionally independent) of all
other marker types given a marker type-specific latent variable. We denote these latent
variables using zi for the target marker and zci for auxiliary marker c, and will describe
them further later in this section. Under this assumption, we can write Eq. 1 as

D(i, t) =
∑
zi

p(y(·) | zi, ~yi,≤t, ~xi)p(zi | ~yi,≤t, ~y1:C,i,≤t, ~xi)

∝
∑
zi

p(y(·) | zi, ~yi,≤t, ~xi)p(~yi,≤t | zi, ~xi)p(zi | ~y1:C,i,≤t, ~xi)

∝
∑
zi

p(y(·) | zi, ~yi,≤t, ~xi)︸ ︷︷ ︸
LTM predictive,

Section 3.2.2,
Eq. 24

p(~yi,≤t | zi, ~xi)︸ ︷︷ ︸
LTM likelihood,

Section 3.2.1,
Eq. 16

∑
z1:C,i

p(zi, z1:C,i | ~xi)︸ ︷︷ ︸
Coupling Model,

Section 3.3,
Eq. 25

C∏
c=1

p(~yci,≤t | zci, ~xi).︸ ︷︷ ︸
LTM likelihood,

Section 3.2.1,
Eq. 16

(2)

We will learn this parameterization of D(i, t) in two stages. The models for the target
and each of the auxiliary markers are learned independently during the first stage; using
these, the LTM predictive and likelihood terms can be computed in Eq. 2. We treat the
target and auxiliary markers as instances of the Latent Trajectory Model (LTM), which
we review in Section 3.2. We emphasize, however, that any other generative model can be
used if better suited to the domain. The coupling model is learned in the second stage, and
is described in Section 3.3. We refer to the model created by combining these components
as the Coupled Latent Trajectory Model (C-LTM), which we describe in Section 3.4. An
overview of the procedure used to fit the C-LTM is shown in Figure 2.
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3.1 Preliminaries

The Latent Trajectory Model (LTM) uses B-splines to model longitudinal trajectories, and
our coupling model uses a conditional random field (CRF). We briefly introduce these two
concepts, and point to resources where the interested reader can find additional details.

3.1.1 B-Splines

A common approach to fitting nonlinear functions of time while maintaining a linear de-
pendence on model parameters is to use a basis expansion. Such an expansion defines some
non-linear function f(t) as a linear combination of other functions φ1(t), . . . , φd(t):

y = f(t | β) =
d∑
i=1

βdφd(t) = Φ>(t)~β, (3)

where φ1, . . . , φd act as bases in some vector space of nonlinear functions and Φ(t) ∈ Rd is the
vector containing the values of the p basis functions evaluated at time t. The benefit of this
formulation is that the function f is linear in the model parameters β, making it relatively
easy to fit complex models. B-splines are a particular family of basis functions that we can
use to parameterize nonlinear functions. Others include polynomial bases and radial basis
functions. However, there are two advantages to using B-splines. First, each basis function
is non-zero only over a compact interval of the real line, which improves statistical stability
and also allows for computational speed ups that take advantage of sparse basis matrices
(Gelman et al., 2014). This is in contrast to polynomials, where each basis takes non-zero
values globally. The second advantage is that the family of functions parameterized by B-
splines are not infinitely differentiable (in contrast to radial basis functions) and therefore
not smooth (Gelman et al., 2014). This bias is often helpful in modeling functions from
the real-world that arise from non-smooth processes. Because B-splines are linear in their
parameters, we can use the well-developed machinery of linear regression for learning. See
Ch. 20 in Gelman et al. (2014) or Ch. 5 in Friedman et al. (2001) for further details.

Penalized B-splines. In practice, the parameters of a B-spline model are fit using a
penalized least squares criterion. The penalty is typically introduced in order to control
the smoothness of the fit. For data ~y measured at times ~t with corresponding basis matrix
Φ(~t ) = [Φ(t1), . . . ,Φ(tn)]>, we minimize the following objective:

J(~β ) = ‖~y − Φ(~t )~β‖22 + ρ~β >Ω~β, (4)

where Ω is a first-order differences matrix as described by Eilers and Marx (1996). The
penalized objective is still quadratic in ~β and so can be easily minimized.

3.1.2 Conditional Random Fields

Conditional random fields (CRFs) provide a framework for modeling and learning the joint
distribution of a collection of random variables conditioned on some set of observations
(see e.g., Murphy 2012). The parameterization is identical to that of Markov random fields
(MRF), but the factors that define the distribution can be functions of the observations
(this allows the distribution to vary depending on the values of the observations). For some
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output y, input x and parameters θ, the conditional probability is defined to be:

p(y | x, θ) =
1

Z(x, θ)

∏
c

ψc(yc | x, θ), Z(x, θ) ,
∑
y′

∏
c

ψc(y
′
c | x, θ), (5)

where ψc(yc | x, θ) is a non-negative factor that can be interpreted as scoring the con-
figuration of the subset of variables yc given the observations x and parameters θ. The
term Z(x, θ) is called the partition function and ensures that the distribution is normalized.
When we can write

logψc(yc | x, θ) = θ>c fc(yc, x) ⇐⇒ ψc(yc | x, θ) = exp
{
θ>c fc(yc, x)

}
, (6)

where fc extracts some vector of features from the observations x and the target yc, then
we say that the CRF is a log-linear model. Log-linear models have a number of desirable
properties, the most relevant to this work being the ease with which we can differentiate the
log-likelihood with respect to model parameters. To compute the derivative with respect
to θc (the parameters corresponding to the cth factor) we have:

∂ log p(y | x, θ)
∂θc

= fc(yc, x)− ∂ logZ(x, θ)

∂θc
. (7)

To compute the partial derivative in the second term on the RHS, first note that

∂Z(x, θ)

∂θc
=
∑
y′

∏
d 6=c

ψd(y
′
d | x, θd

 ∂ψc(y
′
c | x, θc)
∂θc

(8)

=
∑
y′

∏
d6=c

ψd(y
′
d | x, θd

ψc(y
′
c | x, θd)fc(y′c, x). (9)

This implies that the partial derivative of logZ(x, θ) is simply:

∂ logZ(x, θ)

∂θc
=

1

Z(x, θ)

∂Z(x, θ)

∂θc
= Ey [fc(yc, x) | x] (10)

This means that the gradient of the log-likelihood with respect to a set of parameters θc
is the difference between the observed features fc(y, x) and their expectation under the
current set of parameters θ. To learn the weights, we can apply gradient-based algorithms
to optimize the likelihood of a set of observed training input-output pairs. In addition, a
regularizer is often added to the objective to discourage complexity or induce sparsity. We
will use these ideas in the derivation of our learning algorithm. See Ch. 19 in Murphy
(2012) for further details.

3.2 Latent Trajectory Model

The Latent Trajectory Model (LTM) is a probabilistic model introduced by Schulam and
Saria (2015) for obtaining individualized predictions of a clinical marker trajectory in
populations with diverse disease expression. LTM posits that the measured markers are
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Subtype marginal 
probability

zi

fi

M

↵

yij tij

Ni

~�g G

~bi

⌃b

~⇢i
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featuresPopulation model coefficients 

Long-term level features-to-coefficient map

Subtype B-spline coefficients

Subtype indicator 2 {1, . . . , G}

Long-term coefficients covariance matrix 2 Rd`⇥d`

Long-term level coefficients 2 Rd`

Short-term level GP 
hyper-parameters

   Short-term level effects 2 RR

2 Rdz

2 Rqp2 Rdp

2 Rdp⇥qp

⇤

⇡g

2 R

~xi

Figure 3: The LTM graphical model. Levels in the hierarchy are color-coded. Model parameters
are enclosed in dashed circles. Observed variables are shaded.

noisy observations of the underlying disease activity trajectory, which is a function of both
individual-specific parameters and parameters that are shared across other individuals in
the population. Moreover, the LTM uses individual-specific latent factors to explain dif-
ferences in trajectories across the population that are not explained by observed features
alone. The LTM graphical model is shown in Figure 3. We review the LTM below using the
same notation defined at the beginning of this section. In addition, we use Φ(tij) to denote a
column-vector containing a basis expansion of the time tij and Φ

(
~ti
)

= [Φ(ti1), . . . ,Φ(tiNi)]
>

to denote the matrix containing the basis expansion of points in ~ti in each of its rows.
The LTM models the jth marker value for individual i as a normally distributed random

variable with a mean assumed to be the sum of four terms: a population component, a
subpopulation component, an individual long-term component, and an individual short-
term component.

yij |zi,~bi, fi ∼ N

Φp(tij)
>Λ ~xi︸ ︷︷ ︸

(A) population

+ Φz(tij)
>~βzi︸ ︷︷ ︸

(B) subpopulation

+ Φ`(tij)
>~bi︸ ︷︷ ︸

(C) ind. long-term

+ fi(tij)︸ ︷︷ ︸
(D) ind. short-term

, σ2

 .

(11)

The four terms in the sum serve two purposes. First, and most importantly, they allow for
a number of different sources of variation — both observed and latent — to influence the
observed marker value, which allows for heterogeneity both across and within individuals.
Second, they share statistical strength across different subsets of observations. The pop-
ulation component shares strength across all observations. The subpopulation component
shares strength across observations belonging to subgroups of individuals. The individual
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long-term component shares strength across all observations belonging to the same individ-
ual. Finally, the individual short-term component shares information across observations
belonging to the same individual that are measured at similar times. Predicting an individ-
ual’s trajectory involves estimating her subtype and individual-specific parameters as new
clinical data becomes available. We briefly review each of the components here for ease of
presentation, but refer the interested reader to Schulam and Saria (2015) for further details.

Population level. The population model predicts aspects of an individual’s disease ac-
tivity trajectory using observed baseline characteristics (e.g. gender and race), which are
represented using the feature vector ~xi. This sub-model is shown within the orange box
in Figure 3. The predicted value of the jth marker of individual i measured at time tij is
shown in Eq. 11 (A), where Φp (t) ∈ Rdp is a basis expansion of the observation time and
Λ ∈ Rdp×qp is a matrix used as a linear map from an individual’s covariates ~xi to coefficients
ρi ∈ Rdp . At this level, individuals with similar covariates will have similar coefficients.

Subpopulation level. LTM models an individual’s subtype using a discrete-valued latent
variable zi ∈ {1, . . . , G}, where G is the number of subtypes. zi is a multinomially dis-
tributed random variable with parameters π1:G , [π1, . . . , πG] where πg ≥ 0 and

∑
g πg = 1.

Each subtype has a unique disease activity trajectory represented using B-splines, where
the number and location of the knots and the degree of the polynomial pieces are fixed prior
to learning. These hyper-parameters determine a basis expansion Φz(t) ∈ Rdz mapping a
time t to the B-spline basis function values at that time. Trajectories for each subtype are
parameterized by a vector of coefficients ~βg ∈ Rdz for g ∈ {1, . . . , G}, which are learned
offline. Under subtype zi, the predicted value of marker yij measured at time tij is shown
in Eq. 11 (B). This component explains differences such as those observed between the
trajectories in Figures 1a and 1b.

Individual long-term level. The individual long-term component is parameterized using
a linear model with basis expansion Φ`(t) ∈ Rd` and individual-specific coefficients ~bi ∈
Rd` . This level models deviations from the population and subpopulation models using
parameters that are learned dynamically as the individual’s clinical history grows. An
individual’s coefficients are modeled as latent variables with marginal distribution ~bi ∼
N (~0,Σb). For individual i, the predicted value of marker yij measured at time tij is shown
in Eq. 11 (C). This component can explain, for example, differences in overall health due
to an unobserved characteristic such as chronic smoking, which may cause atypically lower
lung function than what is predicted by the population and subpopulation components.
Such an adjustment is illustrated across the first and second rows of Figure 1d.

Individual short-term level. Finally, the individual short-term component fi captures
transient trends in an individual’s marker sequence that do not generalize outside of a
small time window. For example, an infection may cause an individual’s lung function to
temporarily appear more restricted than it actually is, which may cause short-term trends
like those shown in Figure 1c and the third row of Figure 1d. We treat fi as a function-
valued latent variable and model it using a Gaussian process with zero-valued mean function
and Ornstein-Uhlenbeck (OU) covariance function

KOU(t1, t2) = a2 exp
{
−`−1|t1 − t2|

}
. (12)

The amplitude a controls the magnitude of the structured noise that we expect to see and
the length-scale ` controls the length of time over which we expect these temporary trends
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to occur. The OU kernel is ideal for modeling such deviations as it is both mean-reverting
and draws from the corresponding stochastic process are only first-order continuous, which
eliminates long-range dependencies between deviations (Rasmussen and Williams, 2006).
Applications in other domains may require different kernel structures motivated by proper-
ties of transient deviations in the trajectories.

Accounting for treatments. Several interventions are common in scleroderma, but none
have been proven to significantly alter the long-term course of the disease. For example,
steroids are commonly administered, but there have been no randomized controlled trials
confirming its effects on patients with scleroderma-related lung disease—see, for example,
Ch. 35 in Varga et al. (2012). Immunosuppressants are also commonly used to treat
scleroderma-related lung disease, but the proven effects are modest and have only been
demonstrated over the course of one year (Tashkin et al., 2006). We assume that these types
of transient interventions are well-modeled by the individual-specific short-term component,
and so we do not explicitly model the treatment effects of steroids or immunosuppressants
in our data. Others have developed methods for estimating treatment effects from observa-
tional time series (e.g., Chib and Hamilton 2002; Kleinberg and Hripcsak 2011; Brodersen
et al. 2015). More recently, see Xu et al. (2016) for an application using functional data.
Treatment effects can be incorporated within the trajectory likelihood in diseases where
treatments are suspected to alter long term trajectory. We leave this more general case as
a direction for future work.

Missing data mechanism. The LTM assumes observations of the trajectory are missing
at random (MAR). This implies that we can use maximum likelihood estimation without
needing to incorporate additional information about the sampling model; see Appendix B.
When the data are missing not at random, assumptions about the missing data mechanism
should be explicated and incorporated within the individual marker models.

In summary, the latent, individual-specific factors in the model (zi, ~bi, and fi from
Eq. 11B, 11C, and 11D respectively) each contribute to describe the observed trajectory
at different granularities. These are all treated as random variables and marginalized out
during learning to avoid overfitting. When making predictions, we can use an individual’s
observed data to compute posterior distributions over these latent factors, which allows us
to tailor predictions.

3.2.1 LTM Likelihood

Given parameters Θ = {Λ, π1:G, ~β1:G,Σb, a, `, σ
2}, we can compute the observed-data like-

lihood of a given clinical marker trajectory by marginalizing zi, ~bi and fi out of the joint
distribution defined by our model:

p (~yi | ~xi,Θ)

=
G∑

zi=1

p (zi | Θ)︸ ︷︷ ︸
Multinomial prior

∫
Rd`

p
(
~bi | Θ

)
︸ ︷︷ ︸
Normal prior

∫
RNi

p (fi | Θ)︸ ︷︷ ︸
GP prior

p
(
~yi | zi,~bi, fi, ~xi,~ti,Θ

)
︸ ︷︷ ︸

Eq. 11

dfi d~bi (13)

=
G∑

zi=1

πziN
(
~yi | Φp

(
~ti
)

Λ ~xi + Φz

(
~ti
)
~βzi ,K

(
~ti,~ti

))
. (14)
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Moving from Eq. 13 to Eq. 14, we evaluate the innermost integral using the fact that the
GP prior over fi is conjugate to Eq. 11 yielding a new multivariate normal (Rasmussen and
Williams, 2006). To evaluate the next integral in Eq. 13, we again have that the normal
prior over ~bi is conjugate to the multivariate normal obtained by marginalizing over fi,
which gives us the multivariate normal shown in Eq. 14 where the covariance function is
defined as

K (t1, t2) = Φ` (t1)>ΣbΦ` (t2) +KOU (t1, t2) + σ2I (t1 = t2) . (15)

We see that the observed-data likelihood for individual i is defined by a mixture of multi-
variate normals where each subtype is associated with a class in the mixture. The mixing
probabilities are defined by the multinomial over subtypes. The mean of the multivariate
normal is defined by the population and subpopulation models, and the covariance is de-
fined by the individual long-term and short-term components of the model. To obtain the
LTM likelihood needed in Eq. 2, we will condition Eq. 14 on subtype zi. This gives us the
following expression:

p(~yi | zi, ~xi) , N
(
~yi | Φp

(
~ti
)

Λ ~xi + Φz

(
~ti
)
~βzi ,K

(
~ti,~ti

))
. (16)

3.2.2 LTM Predictive

As presented, the LTM can be easily applied to the task of disease activity trajectory predic-
tion. Note that the LTM provides a posterior distribution over the trajectory using baseline
markers and measurements of the target marker (e.g. PFVC) as they are recorded. It does
not incorporate information from other time-varying markers such as TSS and PDLCO.
Suppose we have estimates of the model parameters Θ = {Λ, π1:G, ~β1:G,Σb, a, `, σ

2}, then
we can predict an individual’s future course by computing the posterior predictive distri-
bution p(~yi,>t | ~yi,≤t, ~xi), where ~yi,>t denotes marker values after time t and ~yi,≤t denotes
marker values observed prior to time t. To compute the expected marker value at time t∗i ,
we evaluate the following expression:

ŷ (t∗i ) =

G∑
zi=1

∫
Rd`

∫
RNi

E
[
y∗i | zi,~bi, fi

]
︸ ︷︷ ︸

prediction given latent vars.

p
(
zi,~bi, fi | ~yi,≤t, xip,Θ

)
︸ ︷︷ ︸

posterior over latent vars.

dfi d~bi (17)

= E∗
zi,~bi,fi

[
Φp (t∗i )

> Λ ~xi + Φz (t∗i )
> ~βzi + Φ` (t∗i )

>~bi + fi (t∗i )
]

(18)

= Φp (t∗i )
> Λ ~xi︸ ︷︷ ︸

pop. prediction

+ Φz (t∗i )
>

~β∗i︷ ︸︸ ︷
E∗zi
[
~βzi

]
︸ ︷︷ ︸

subpop. prediction

+ Φ` (t∗i )
>

~b∗i︷ ︸︸ ︷
E∗~bi

[
~bi

]
︸ ︷︷ ︸
ind. long prediction

+

f∗i (t∗i )︷ ︸︸ ︷
E∗fi [fi (t∗i )]︸ ︷︷ ︸

ind. short prediction

, (19)

where E∗ denotes an expectation conditioned on ~yi,≤t, xi,Θ. We see that the prediction
takes a natural form; we compute the value of the individual’s disease activity trajectory
at the future time point by replacing the latent factors with their posterior expectations.
Computing the population prediction is straightforward as all quantities are observed. To
compute the subpopulation prediction, we need to compute the marginal posterior over zi,
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which is easily done given that the observed-data likelihood has a mixture of multivariate
normals density (Eq. 14). The posterior probability of subtype g for individual i is therefore

π∗ig ∝ πg N
(
~yi | Φp

(
~ti
)

Λ ~xi + Φz

(
~ti
)
~βg,K

(
~ti,~ti

))
. (20)

To compute the subpopulation prediction in Eq. 19 above, we simply compute the expected
value of the B-spline coefficients under the posterior in Eq. 20:

~β∗i ,
(∑G

zi=1 π
∗
izi
~βzi

)
. (21)

The expectation required for the individual long-term prediction is:

~b∗i ,
[
Σ−1
b + Φ`(~ti)

>K−1
f Φ`(~ti)

]−1 [
Φ`(~ti)

>K−1
f

(
~yi − Φ>p (~ti)Λ ~xi − Φ>z (~ti)~β

∗
i

)]
. (22)

Finally, the expectation required for the individual short-term prediction is:

f∗(t∗i ) , KOU(t∗i ,~ti)
[
KOU(~ti,~ti) + σ2I

]−1
~ri (23)

where ~ri =
(
~yi − Φ>p (~ti)Λ ~xi − Φ>z (~ti)~β

∗
i − Φ>` (~ti)~b

∗
i

)
For brevity, we omit the derivation of these expectations here, but point the interested
reader to Schulam and Saria (2015) and its supplementary material for the steps taken to
arrive at these expressions. To obtain the LTM predictive needed in Eq. 2, we condition
Eq 19 on subtype zi. This gives us the following expression:

p(y(·) | zi, ~yi,≤t, ~xi) , Φp (·)> Λ ~xi + Φz (·)> ~βzi + Φ` (·)> E∗~bi
[
~bi

]
+ E∗fi [fi (·)] . (24)

3.3 Coupling Model

The Coupled Latent Trajectory Model (C-LTM) seeks to learn and capture correlations
across trajectories of different marker types. In scleroderma, for example, an individual
with worse lung trajectories (e.g. the rapidly declining lung trajectory subtype) is more
likely to have a severe skin disease trajectory. In the C-LTM these types of dependencies
are captured by the term p(zi, z1:C,i | xi) shown in Eq. 2. We parameterize this distribution
using a conditional random field with singleton and pairwise factors defined over zi and
z1:C,i. Singleton factors can depend on the baseline covariates ~xi. Pairwise factors are
defined only between the clinical marker random variables zi and each of the auxiliary
marker latent variables zci. Both are parameterized linearly. The coupling model therefore
has the following form:

log p(zi, z1:C,i | ~xi) ∝ φ(zi, ~xi) +

C∑
c=1

φ(zci, ~xi) + ψ(zi, zci)

= θ>f(zi, ~xi) +

C∑
c=1

θ>c fc(zci, ~xi) + η>c gc(zi, zci). (25)
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Figure 4: The factor graph of the coupled latent trajectory model. Empty nodes denote
latent random variables, and shaded nodes denote observed variables. The latent
trajectory model (LTM, described in Section 3.2) acts as a data-driven factor
linking observed target and auxiliary marker histories into predictions.

3.4 Predicting Trajectories using the C-LTM

To predict trajectories (i.e. compute Eq. 1), we combine the LTM likelihood (Eq. 16), the
LTM predictive (Eq. 24), and the coupling model (Eq. 25). Let `i,≤t(zi) stand as shorthand
for log p(~yi,≤t | zi, ~xi) and `ci,≤t(zc,i) stand as shorthand for log p(~yci,≤t | zci, ~xi), then we
see that

D(i, t) ∝
∑
zi

p(y(·) | zi, ~yi,≤t, ~xi)
∑
z1:C,i

u(zi, z1:C,i | H(i, t)), (26)

where we have defined H(i, t) to be the set of information contained in the clinical history
of individual i at time t: {~yi,≤t, ~y1:C,i,≤t, ~xi}, and used u(zi, z1:C,i | H(i, t)) to denote the
following unnormalized weight assigned to all values of the latent variables given the history:

u(zi, z1:C,i | H(i, t)) ,

exp

{
`i,≤t(zi) + θ>f(zi, ~xi) +

C∑
c=1

`ci,≤t(zci) + θ>c fc(zci, ~xi) + η>c gc(zi, zci)

}
, (27)

To make D(i, t) a proper distribution, we normalize u(zi, z1:C,i | H(i, t)) to obtain

p(zi | H(i, t)) =

∑
z1:C

u(zi, z1:C | H(i, t))∑
z

∑
z1:C

u(z, z1:C | H(i, t))
,
Z ′i,t(zi)

Zi,t
. (28)
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then we can write D(i, t) (Eq. 1) as

D(i, t) =
∑
zi

p(y(·) | zi, ~yi,≤t, ~xi) p(zi | H(i, t)). (29)

Intuitively, we see that the predictive distribution under C-LTM is simply a weighted com-
bination of the subtype-specific predictive distributions under LTM (Eq. 24). Moreover,
the distribution p(zi | H(i, t)) is the marginal distribution over zi in a conditional random
field with structure similar to the coupling model (Eq. 25) but augmented with additional
singleton factors defined by the LTM likelihood functions given the marker trajectory his-
tories. The LTM likelihood factors in Eq. 27 are added into the model unchanged, but
additional parameters {γ, γ1:C} can be included to reweight those terms (a similar idea is
used in Raina et al. (2003)).1 The factor graph for this conditional random field is shown
in Figure 4. Note that the weight p(zi | H(i, t)) can be efficiently computed in time linear
in the number of auxiliary markers using the junction tree algorithm.

The C-LTM offers a number of advantages for predictive modeling of disease trajectories
in domains where many other related marker trajectories are available. First, it allows
irregularly and sparsely sampled trajectories to be neatly summarized using modularized,
single-marker generative models. These can capture important latent factors and account for
marker-specific measurement models and noise processes. Second, we can discriminatively
use auxiliary marker trajectory histories when modeling Eq. 1 instead of specifying a
joint generative model, which sidesteps the challenges associated with correctly specifying
dependencies between many different marker types. Finally, the model can be used in
continuous time and it dynamically updates predictions as new observations arrive.

3.5 Learning the C-LTM

We have described two components of our approach: the Latent Trajectory Model (LTM)
and the coupling model. When these components are combined as shown in Section 3.4,
then we obtain the C-LTM. The C-LTM has two conceptually distinct sets of parameters.
The first set are those belonging to the individually trained LTMs for each marker type.
To learn these, we can use the EM algorithm described in Schulam and Saria (2015). To
learn the parameters for the C-LTM, we keep the single-marker model parameters fixed (e.g.
those learned for the LTM), and use a standard gradient-based CRF learning algorithm (as
described in Section 3.1.2) to optimize the penalized log-likelihood of example trajectory
predictions. For completeness, we provide additional details for both stages in Appendix A.

3.5.1 Scalability

The EM algorithm used to learn the parameters of the LTM poses no serious challenges
to scalability. The primary computational burden lies in the E-step wherein sufficient
statistics from all individuals are computed and collected. This is linear in the number of
patient records being analyzed, but since the inference required to compute the sufficient
statistics can be performed independently for each individual given the current parameter
estimates, the E-step can be easily parallelized to offset slow learning due to large numbers

1. When using a penalty, we can center the weights at 1 so that the default behavior is to leave the likelihood
factors unchanged as in Eq. 27
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of patient records. For any given individual, the E-step is dominated by the inversion of
the Ni ×Ni covariance matrix. We do not expect this to be problematic, however, because
clinical markers in chronic diseases are observed at a maximum rate of 12 times per year.
Moreover, such diseases occur over periods on the order of tens of years. Therefore, the
number of measurements will be at most on the order of 100-200.

Learning the parameters of the CRF requires a sweep through all M |T | training in-
stances in order to compute and aggregate the gradient at each iteration. The primary
computational burden is computing the expected values of the features (Eq. 42), however,
the tree-structured graphical model shown in Figure 4 allows the junction tree algorithm to
run in time linear in the number of auxiliary markers. On a standard laptop, we are able
to train the model on 772 patients (5,458 PFVC measurements) in 10-20 minutes.

Online inference for predicting a given individual’s future trajectory is also computation-
ally straightforward. The key quantities are (1) the weights p(zi | H(i, t)) in Eq. 29, which
are easily computed using the junction tree algorithm in time linear in the number of aux-
iliary markers, and (2) the subtype-specific predictive densities p(y(·) | zi, ~yi,≤t, ~xi), which
have the same computational complexity as the E-step in the LTM learning algorithm.

4. Experiments

We demonstrate our approach by building a tool for predicting lung disease trajectories
for individuals with scleroderma. Lung disease is currently the leading cause of death
among scleroderma patients, and is notoriously difficult to treat due to the lack of accurate
predictors of decline and tremendous variability across individual trajectories (Allanore
et al., 2015). Clinicians use percent of predicted forced vital capacity (PFVC) to track
lung severity, which is expected to drop as the disease progresses. In addition, they collect
demographic information and other clinical marker values that measure the impact of disease
on the different organ systems involved in scleroderma.

Data description. We train and validate our model using data from the Johns Hopkins
Scleroderma Center patient registry, one of largest collections of clinical scleroderma data in
the world. Demographic information is collected during the patient’s first visit to the clinic.
PFVC and other clinical markers are collected during routine visits thereafter. To select
individuals from the registry, we used the following criteria. First, we include individuals
who were seen at the clinic within two years of their earliest scleroderma-related symptom2

(1, 186 individuals). Second, we exclude all individuals with fewer than two PFVC measure-
ments after first being seen by the clinic (398 individuals). Finally, we exclude individuals
who received a lung transplant (16 individuals) because their natural trajectory is altered
by the intervention. Transplants are rare so removing patients with transplants should not
introduce significant bias. As mentioned earlier, there are no other known course-altering
therapies for scleroderma.

Our final data set contains 772 individuals and a total of 5, 458 PFVC measurements
tracking individuals over a period of 20 years. The first, second, and third quartiles of the
total number of PFVC measurements for an individual are 3, 5, and 9 respectively. The
maximum number of PFVC measurements for one individual is 63. The first, second, and
third quartiles of the measurement times are 1 year, 2.8 years, and 5.9 years. The first,

2. Date of first symptom is established during the first encounter by both the patient and clinician.
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second, and third quartiles of elapsed time between measurements are 0.4 years, 0.7 years,
and 1.10 years. The minimum and maximum elapsed time is 0.002 years and 16.4 years
respectively.

The baseline demographic information includes gender and African American race, both
of which have been shown to be associated with disease severity in scleroderma (Allanore
et al., 2015). Antibody data are also collected at baseline, but since these are only available
for a small subset of individuals, we do not include that data here. For time-dependent
predictors, we include 5 auxiliary clinical markers. Three of the auxiliary markers are
similar to PFVC in that they are continuous-valued test results used to measure the health
of organ systems. We include: percent of predicted forced expiratory volume in one second
(PFEV1), which measures the force with which air is expelled from the lungs; percent of
predicted diffusing capacity (PDLCO), which measures the efficiency of oxygen diffusion
from the lungs to the bloodstream; and total skin score (TSS), which is a cumulative
measure of the thickness of the skin at various points on the body. In addition, we include
2 severity scores—clinical Likert-scaled judgements of organ damage severity: Raynaud’s
phenomenon (RP) severity score, which measures the severity of damage to the extremities
by issues related to the vasculature, and GI severity score that measures the severity of
damage to the GI tract. For the interested reader, a more detailed discussion of these
markers and their relationship to the disease can be found in Varga et al. (2012).

Experimental setup. For the 4 continuous-valued clinical markers (PFVC, PFEV1,
PDLCO, TSS) we use the LTM and for the 2 severity scores (GI and RP) we use a simpler
model that we will describe later. For the population model, we use constant functions
(i.e. the basis expansion Φp(t) contains an intercept term whose coefficient is determined
by baseline covariates). For the subpopulation B-splines, we set boundary knots at 0 and 25
years (the maximum observation time in our data set is 23 years), use two interior knots that
divide the time period from 0-25 years into three equally spaced chunks, and use quadratics
as the piecewise components. For the individual-specific long-term basis Φ`, we use the
same basis as the population model (constant functions).

We divide our data into 10 folds and use log-likelihood on the first fold for tuning
hyperparameters. For PFVC, we select G = 9 subtypes using BIC. For the kernel hyperpa-
rameters Θ1 = {Σb, α, `, σ

2} we set Σb ∈ R to be 16.0, which corresponds to the variance
of individual-specific intercepts. We set α = 6, ` = 2, and σ2 = 1 using a grid search over
values chosen using domain knowledge. Qualitatively, these make sense; we expect transient
deviations to last around 2 years and to change PFVC by around ±6 units. Finally, we
penalize the expected log-likelihood with respect to ~β1:G as in Eq. 4 and set the weight
ρ = 0.01, which was chosen based on the clinical interpretability of the learned subtype
trajectories. The remaining 9 folds were used for our cross-validation experiments. The
parameters of each trajectory model are estimated independently for each fold (e.g. the
B-spline coefficients of the subtype trajectories). For the severity scores, which are Likert-
scaled and not continuous, we use a simple naive Bayes generative model wherein the latent
“class” is an indicator of whether the individual ever reaches a high severity level (a cut-
off in the severity scale determined by clinical collaborators). Severity score observations
are treated as iid draws from a class-specific multinomial distribution (i.e. the likelihood
for these auxiliary markers is a multinomial distribution over severity scores). Finally, we
estimate the parameters of the C-LTM by maximizing the objective in Eq. 33 augmented
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with an L1 regularizer. We optimize the objective using the Orthant-Wise Limited-memory
Quasi-Newton (OWL-QN) algorithm (Andrew and Gao, 2007). To generate training examples
for the C-LTM, we use times T = {1, 2, 4} (the first three quintiles of observation times in
our data) to fit three different models. We choose time points earlier in the disease course
because this is when it is most valuable to leverage all available information. In our cross-
validated experimental results below, we estimate the penalty of the L1 regularization term
in each fold by splitting a portion of the training data into a development set. We sweep the
penalty from 1.0× 10−7 to 1.0× 10−1 and choose based on development set performance.

Baselines. As a first baseline, we fit a regression model using static predictors only
(features in ~xi). This is to compare against typical approaches in clinical prediction which
rely only on observed features to predict disease progression (e.g. Khanna et al. 2011). The
regression function is as follows, where Φ(t) is a B-spline basis:

ŷ(t) | ~xi = Φ(t)>
(
~β0 +

∑
xij in ~xi

xij ~βi +
∑

xij ,xik in pairs of ~xi
xijxik~βij

)
. (30)

The following baselines reflect state-of-the-art approaches for dynamical prediction. The
focus for each of these models, as discussed in the related work section, is on dynamical
prediction of single marker trajectories using the marker history and static measurements
collected during the first visit. The second baseline, like Rizopoulos (2011) and Shi et al.
(2012), defines a single mean function parameterized in the same way as the first baseline
and models individual-specific variations using a GP with the same kernel as in Equation
15 (using hyper-parameters as above). The third baseline is a mixture of B-splines, which
models subpopulations that can express different trajectory shapes (as in Proust-Lima et al.
(2014)).3 Finally, we use the LTM (no coupling to auxiliary markers) as a baseline. All
B-spline bases used in these baseline models are parameterized in the same way as the
C-LTM (described above).

Evaluation. Prediction accuracy for all models is measured using the absolute error
between the predicted and a smoothed version of the individual’s observed trajectory. We
make predictions after one, two, and four years of follow-up, which are summarized using
averages computed in the second year of follow-up (t ∈ (1, 2]), in the third and fourth
year of follow-up (t ∈ (2, 4]), fifth to eighth year of follow-up (t ∈ (4, 8]), and beyond the
eighth year of follow-up (t ∈ (8, 25])4. Mean absolute errors (MAE) and standard errors
are estimated using 9-fold CV5 at the level of individuals (i.e. all of an individual’s data
is held-out). Significance tests are computed against baselines using a paired t-test with
point-wise predictions aggregated across folds.

4.1 Results

In this section, we present four sets of results. The first two are qualitative, and demon-
strate the advantages of the C-LTM over the baseline models using examples. In the first

3. For the B-spline mixture, we use the subtypes discovered by LTM as the mixture classes. Without
accounting for individual-specific variability explicitly, we have found that fitting a B-spline mixture
using EM recovers poor classes that do not capture important trajectory shapes in the data. For
additional details, see Section 3 in the supplement of Schulam and Saria (2015).

4. After the eighth year, data becomes too sparse to further divide this time span.
5. Recall that the first of 10 folds is used for hyperparameter estimates.
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Figure 5: Examples of predictions made using 1, 2, and 4 years of data (moving across
columns from left to right). Plot (a) shows dynamic predictions using C-LTM.
Red markers are unobserved. Blue shows the trajectory predicted using the most
likely subtype, and green shows the second most likely. Plot (b) shows dynamic
predictions for the B-spline mixture baseline. Plot (c) shows the same for the
B-spline + GP baseline.

qualitative analysis, we compare predictions made by C-LTM to those made by the B-spline
mixture and the B-spline + GP. In the second qualitative analysis, we compare the C-LTM
inferences with those from the LTM, which is a state-of-the-art single-marker model. The
second two results are quantitative. The first compares predictive accuracies between the
baseline models and the C-LTM. The second investigates clinical utility by using each model
to predict a severity score that we use to detect individuals with aggressive lung disease.

4.1.1 Visual Comparison to Baselines

As an illustrative example to compare C-LTM with baselines, in Figures 5a, 5b, and 5c
we show the dynamic predictions made using the C-LTM, the B-spline mixture, and the
B-spline + GP baselines on a sample patient.6 For each model, we show 95% posterior

6. This patient was selected as an exemplar for the types of errors commonly made by the baseline models.
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intervals for the future trajectory. For the C-LTM and B-spline mixture, the most likely
subtype is shown in blue and the second most likely is in green. The B-spline mixture (Figure
5b) cannot explain individual-specific sources of variation (e.g. short-term deviations from
the mixture mean) and so over-reacts to the slight rise in PFVC seen in the last two
observed (black) measurements in the second panel (year 2). The B-spline + GP (Figure
5c) cannot capture long-term differences in trajectory means (e.g. due to subtypes) and
so pulls back to the population mean over time even after four years of data suggest a
declining trajectory. On the other hand, at year 1 the C-LTM (Figure 5a) maintains the
hypothesis that the individual may decline or return to stability (correctly putting most
weight on the former). After 2 years of data, the temporary recovery seems to have caused
confidence in the declining trajectory to fall (going from 66% to 39%), but the top-weighted
hypothesis is still correct. After 4 years of data, the model again becomes confident in the
declining trajectory. Clinically, this robustness to short-term changes is important. After
having seen the recovery between years 1 and 2, a clinician may become less immediately
concerned with the individual’s future lung disease, possibly delaying immunotherapy until
a rapid decline becomes more evident. Note that the B-spline mixture, on the other hand,
over-reacts to the recovery and predicts that the individual will continue to recover.

4.1.2 Analysis of Example Inferences

In Figure 6a-d, we show the C-LTM’s target and auxiliary marker inferences for four dif-
ferent patients. For the target marker (PFVC) and auxiliary markers (TSS, PDLCO, and
PFEV1), we show the most likely (blue) and second most likely (green) subtype and their
corresponding trajectories. For the RP and GI severity score markers, we show the most
likely severity class (high versus low). The dashed lines indicate the threshold at which
high and low are determined based on judgements by our clinical collaborators. For PFVC,
PFEV1, and PDLCO lower values indicate more severe progression. For TSS, higher values
indicate severe progression. In Figures 6e-h, we show the predictions made by LTM to
visually compare against predictions made using the baseline markers and PFVC history
only (i.e. that do not leverage information from auxiliary markers).

In Figure 6a, we see a 55 year-old woman who presents with mildly impaired lung
function (approximately 65 PFVC), but seems to recover over the course of the first year
to reach a PFVC above 75 (considered by clinicians to be relatively healthy). Using this
information alone, one may suspect that she will not have future lung issues. Indeed, this
is what LTM predicts as shown in Figure 6e. By examining her auxiliary markers, however,
we see that the picture is less clear. In particular, PFEV1 (a clinical marker closely related
to PFVC) both decreases and increases over that period. C-LTM infers a mildly declining
trajectory for PFEV1. In addition, PDLCO is also noisy and overall low, which suggests
that the blood is not efficiently absorbing oxygen. This can happen for a number of reasons,
but active lung disease is one of them. Finally, we see that her initial skin score is quite
high and C-LTM projects it to stay high for the next few years, which is associated with
active lung disease. We see that C-LTM has successfully incorporated inferences about the
future trends of the auxiliary markers and correctly predicts that this woman’s PFVC will
decline after this initial improvement.
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Figure 6: The predicted PFVC trajectory and the auxiliary markers are shown for two
different patients. Red markers are unobserved. For the auxiliary markers TSS,
PFEV1, and PDLCO we show the most likely (blue) and second most likely
(green) subtype and their corresponding trajectories. For the RP and GI severity
scores, we show the most likely severity class (high versus low). The dashed lines
indicate the threshold at which high and low are determined clinically.
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In Figure 6b, we see a 75 year-old white woman who presents with healthy lung function
(approximately 85 PFVC), but is consistently declining over the course of the first year by
nearly 15 PFVC. A clinical rule of thumb is that a drop in 10 PFVC over the course of
a year warrants close monitoring for active lung disease. We see that LTM extrapolates
this initial trend and predicts that this individual will continue to decline rapidly (Figure
6f). Just as in the previous example, however, the auxiliary markers paint a more complete
picture of this individual. In the first few PFEV1 observations, we see that this decline is
not quite as pronounced and the progression is predicted to be more mild. In PDLCO we
see that oxygen is absorbed into the blood at healthy levels and also predicted to remain
stable (although incorrectly in this case). Finally, C-LTM predicts that the RP and GI
severity scores will remain low, which also supports the prediction that this woman will
stabilize. Note that in this example C-LTM overestimates the course of PDLCO and TSS.
Although the model still makes the correct prediction for PFVC in spite of this mistake,
it highlights that the performance of our approach may be further improved with better
auxiliary marker inferences. As research in systems biology yields new insights into modeling
specific measurements more precisely, the modular architecture of C-LTM makes it possible
to improve overall performance by incorporating improved versions of the target or auxiliary
marker models.

In Figure 6c, we see a 76 year-old white woman that presents with healthy lung function
(just under 90 PFVC), which also appears to be stable given the subsequent test result
taken later that same year. The LTM predicts that this individual’s most likely course is to
remain stable. From the PFEV1 trajectory, however, we see that there was a large initial
loss in PFEV1, which, together with the unusually high skin score (TSS) suggests that
this woman’s disease is active. The activity in the other organ systems allows the C-LTM
to offset the stability seen in the first two PFVC measurements and correctly predict the
consistently declining lung trajectory.

Finally, in Figure 6d, we see a 67 year-old African American man with mildly impaired
lung function early in the disease course (around 75 PFVC) that seems to recover over the
next one or two years to a healthier 85 PFVC. In Figure 6h, we see that the LTM predicts
that a stable trajectory thereafter is likely. By considering other organ systems, however,
we see that this man’s blood-oxygen diffusion is severely limited early in the disease course
(nearly 25% of the predicted DLCO). Moreover, we see that the this individual’s Raynaud’s
phenomenon severity score is high early on and correctly predicted to remain that way.
The low PDLCO and high RP severity score point to active vasculature disease, which is
hypothesized to cause late deterioration in lung function. We see that C-LTM correctly
uses this evidence to predict an accurate disease trajectory.

4.1.3 Predictive Accuracy

In Table 1, we report performance of the C-LTM, LTM, and the three other baseline mod-
els. First, we note that the C-LTM statistically significantly outperforms the B-spline with
baseline features for all predictions. This baseline makes static predictions using baseline
information only, and cannot adapt to an individual as new data becomes available. More-
over, after an initial amount of data has been collected on an individual, C-LTM statistically
significantly outperforms all other models. This is not surprising. When compared to the
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Predictions using 1 year of data
Model (1, 2] (2, 4] (4, 8] (8, 25]
B-spline with Baseline Feats. 13.17 (0.43) 14.07 (0.61) 14.34 (0.65) 14.12 (1.04)
B-spline + GP 5.57 (0.24) 8.40 (0.19) 10.88 (0.42) 11.74 (0.76)
B-spline Mixture 6.31 (0.22) 7.59 (0.36) 9.82 (0.46) 13.77 (0.55)
LTM 5.70 (0.30) 8.02 (0.41) 11.17 (0.72) 13.93 (0.67)
C-LTM F♣�♠5.12 (0.20) F♣�♠6.88 (0.27) F♣♠9.95 (0.51) F13.70 (1.08)

Predictions using 2 years of data
B-spline with Baseline Feats. 14.07 (0.61) 14.34 (0.65) 14.12 (1.04)
B-spline + GP 6.51 (0.19) 9.79 (0.35) 10.95 (0.68)
B-spline Mixture 6.17 (0.29) 8.34 (0.36) 12.19 (0.48)
LTM 5.74 (0.29) 8.08 (0.37) 10.89 (0.62)
C-LTM F♣�♠5.58 (0.34) F♣7.99 (0.61) F�11.27 (1.02)

Predictions using 4 years of data
B-spline with Baseline Feats. 14.34 (0.65) 14.12 (1.04)
B-spline + GP 6.60 (0.24) 9.53 (0.56)
B-spline Mixture 6.00 (0.37) 10.11 (0.56)
LTM 4.88 (0.28) 8.65 (0.59)
C-LTM F♣�5.04 (0.42) F♣�♠8.07 (0.35)

Table 1: Mean absolute error of PFVC predictions for the B-spline with baseline features, the B-
spline + GP, LTM, and C-LTM. Bold numbers indicate best performance across baseline
models and proposed model. F indicates statistically significant improvement against
the B-spline model with baseline features only using a paired t-test (α = 0.05). ♣ indi-
cates statistical significance compared against the B-spline + GP. � indicates statistical
significance compared against the B-spline mixture. ♠ indicates statistical significance
compared against LTM.

LTM, we see that C-LTM benefits from leveraging information from auxiliary markers. As
more information is collected, both models are able to the individual and provide compara-
ble predictions. The B-spline mixture is not able to personalize beyond capturing long-term
trends across subpopulations, so we see that it becomes less competitive compared to both
C-LTM and LTM as more data are collected. Finally, the B-spline + GP cannot capture
long-term trends specific to subpopulations (as we saw in Section 4.1.1), and so we see that
it does poorly when making predictions.

4.1.4 Clinical Utility

One may naturally wonder whether the observed improvements in MAE reported above
translate to practical benefits in the clinic. In the examples shown in Figure 6, we have
walked through cases where the model makes predictions that would seem unlikely if we
were to consider PFVC alone. This suggests that the model can augment expert clinical
judgement and may serve to protect against incorrect extrapolations. In this section, we
further elaborate upon this intuition by studying clinical utility quantitatively. In particular,
we compare how well the B-spline + GP, B-spline mixture, LTM, and C-LTM are able to
detect individuals who will have rapidly declining lung function. It is notoriously difficult to
predict which scleroderma patients will rapidly decline using only information from early in
the disease course. In addition to improving prognoses, more accurate detection of rapidly
declining lung function can help to improve the recruitment for clinical trials evaluating
drugs for scleroderma-related lung disease. If we include many individuals in a study who

23



Schulam and Saria

Model / Years of Data 1 2 4

B-spline + GP 0.59 0.63 0.74

B-spline mixture 0.58 0.63 0.76

LTM 0.57 0.71 0.84

C-LTM 0.68 0.75 0.87

(a) AUCs for detecting declining individuals.
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(b) ROCs comparing B-spline + GP at 1 year, B-spline mixture at 1 year,
LTM at 1 year, and C-LTM at years 1, 2, and 4.

Figure 7: Declining individual detection results.

are predicted to have active lung disease but do not, the results of the study are blurred
because both arms of the trial may include many individuals without active lung disease.

To test how well these different models can detect individuals that will experience rapidly
declining lung function, we use the predictions of future PFVC measurements to produce
a score. The score is defined to be the difference between the individual’s first PFVC mea-
surement and the minimum predicted value in the future—this will be higher for individuals
on whom a model predicts deteriorating lung function and lower for those predicted to be
stable. To label an individual as declining, we require that they (1) have at least one obser-
vation within the first year of being seen by the clinic, (2) have 3 years between their first
and last measurements, (3) have at least 4 PFVC measurements, and (4) have an initial
PFVC measurement that is 20 PFVC higher than their last measurement. Requirements
(2) and (3) are to ensure that the trajectory can be reliably annotated as declining or not.
For each model, we make predictions at years 1, 2, and 4 and compute the score described
above for each individual. We then compute the AUC for each model at each year. Table
7a displays the results of this experiment. We see that C-LTM achieves higher AUC at
all years than the baseline models. Figure 7b displays the ROCs for the B-Spline + GP
(green), B-Spline mixture (cyan), LTM (orange), and the proposed model (black) at year 1
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and also includes the ROCs for the proposed model at years 2 (blue) and 4 (red) to visualize
how performance improves as more data is added. Clinically, an AUC of 0.87 for predicting
individuals with lung decline after—on average—four years of data is high and has not been
shown previously.

5. Discussion

The goal of personalized (also called precision) medicine is to develop tools that help to
tailor prognoses to the characteristics and unique medical history of the individual. In this
paper, we describe an approach to personalized prognosis that uses an integrative analysis
of multiple clinical marker histories from the individuals medical records. Our approach
combines single-marker latent variable models (the LTM) with a CRF coupling model to
make more accurate predictions about the future trajectory of a target clinical marker.

The coupled model (C-LTM) has several advantages. First, the marker-specific LTMs
account for marker trajectory shapes using components at the population, subpopulation,
individual long-term, and individual short-term levels, which simultaneously allows for het-
erogeneity across and within individuals, and enables statistical strength to be shared across
observations at different “resolutions” of the data. Within an individual marker model,
the population and subpopulation components are learned offline, while estimates of the
individual-specific parameters are refined over the course of the disease as data accrues for
that individual. Second, our coupling model allows us to condition both the target and
auxiliary marker histories to make predictions about the future target marker trajectory.
We therefore use the marker-specific latent variable models to neatly summarize and ex-
tra information from the irregularly sampled and sparse, while simultaneously sidestepping
the issue of jointly modeling both the target and auxiliary markers. The conditional for-
mulation is less sensitive to misspecified dependencies between different marker types and
can also be easily scaled to diseases with a large number of auxiliary markers. Finally,
our model aligns with clinical practice; predictions are dynamically updated in continuous
time as new marker observations are measured. We also note that our description of the
method and the experimental results focus on predicting the trajectory of a single clinical
marker, but multiple latent factor regression models can be easily fit so that many markers
can be simultaneously predicted. Using this extension, we only need to maintain different
CRF parameters; the latent variable models are shared since they are fit independently as
a precursor to learning the CRF.

There are several shortcomings of the proposed approach that are promising directions
for future research. First, the model implicitly assumes that the data generating process is
noninformative (i.e. missing data is missing at random (Little and Rubin, 2014)). This is
appropriate for clinical markers that are routinely collected, but additional machinery would
be required to model markers whose missingness is informative. For example, in some cases,
additional measurements may be made due to clinical suspicion caused by factors that are
not clearly document in the health record. Researchers have begun to explore more complex
missing-data mechanisms for disease trajectory modeling (e.g., Lange et al. 2015; Coley et al.
2016), and it will be important to incorporate these ideas into the framework discussed here
to integrate the full set of markers measured during a clinical visit. Another shortcoming is
our focus on discrete latent factors of the auxiliary marker trajectories. Continuous-valued
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latent factors may also be useful, but would make learning and inference in the latent factor
CRF more challenging.

There are also several other immediate opportunities for improving the model. Aux-
iliary markers are integrated via separate marker-specific generative models. While we
incorporated two different types of models—trajectory and maximum-severity based—both
of which were data driven, existing and new clinical knowledge should be brought to bear to
improve these models, which we expect will improve predictions of the target trajectories.
Further, in this work, we focused on modeling the dependency of the target subtype on
the auxiliary markers. In addition, estimates of the individual-specific long-term and short-
term components may also benefit from conditioning on the auxiliary markers. Finally,
the parameters for the pairwise potentials learned in our model may serve as a means for
generating hypotheses about the co-evolution of organ-specific trajectories.

The ideas proposed here also open up other longer-term directions for future work.
The proposed model does not account for the effects of treatment on an individual’s long-
term trajectory. In many chronic conditions, as is the case for scleroderma, drugs only
provide short-term relief (accounted for in our model by the individual-specific adjustments).
However, if treatments that alter long-term course are available and commonly prescribed,
then these should be included within the model as an additional component that influences
the trajectory. Learning these treatment effects from noisy electronic health record data
(e.g., Xu et al. 2016) present an exciting and challenging direction for future work.

We have demonstrated our model by developing a prognostic tool for predicting lung
disease trajectories in patients with scleroderma, an autoimmune disease. We showed that
the proposed model makes more accurate predictions than state-of-the-art approaches. Ac-
curate tools for prognosis can allow clinicians and patients to more actively manage their
disease. While we have focused model development and evaluation on scleroderma, this
work is broadly applicable to other complex diseases (Craig, 2008), many of which track
disease activity using clinical scales of severity. The proposed model is most directly appli-
cable to CCDs where heterogeneity in disease presentation is common. Examples of such
diseases include lupus, multiple sclerosis, inflammatory bowel disease (IBD), chronic ob-
structive pulmonary disease (COPD), and asthma. Extensions of the proposed ideas, and
the model, to these diseases offer an opportunity to address important open challenges in
precision medicine.
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Appendix A. Learning the C-LTM: Details

In this section, we provide additional details on the learning algorithm for the C-LTM.
Recall that this consists of two stages: (1) independently fitting the single-marker models
(the LTM in our case), and (2) fitting the parameters of the coupling model. We describe
both stages below.

A.1 Learning the LTM

To learn the parameters of the single-marker model Θ = {Λ, π1:G, ~β1:G,Σb, a, `, σ
2}, we max-

imize the observed-data log-likelihood of a training sample of M retrospectively observed
trajectories (i.e. the probability of all individual’s marker values ~yi given measurement
times ~ti and features ~xi). Using the expression for the observed-data likelihood in Eq. 14,
we have that the observed-data log-likelihood for all individuals in a training sample is

L (Θ) =
M∑
i=1

log

[
G∑

zi=1

πziN
(
~yi | Φp

(
~ti
)

Λ ~xi + Φz

(
~ti
)
~βzi ,K

(
~ti,~ti

))]
. (31)

To maximize the observed-data log-likelihood with respect to Θ, we partition the param-
eters into two subsets. The first subset, Θ1 = {Σb, α, `, σ

2}, contains values that parameter-
ize the covariance function shown in Equation 15. As is often done when designing the kernel
of a Gaussian process, we use a combination of domain knowledge to choose candidate values
and model selection using observed-data log-likelihood as a criterion for choosing among can-
didates (Rasmussen and Williams, 2006). The second subset, Θ2 = {Λ, π1:G, ~β1:G}, contains
values that parameterize the mean of the multivariate normal distribution in Equation 14.
We learn these parameters using expectation maximization (EM) to find a local maximum
of the observed-data log-likelihood in Equation 31 (Dempster et al., 1977).

Expectation step. All parameters related to ~bi and fi are limited to the covariance kernel
and are not optimized using EM. We therefore only need to consider the subtype indicators
zi as unobserved in the expectation step. Because zi is discrete, its posterior is computed
by normalizing the joint probability of zi and ~yi. Let π∗ig denote the posterior probability
that individual i has subtype g ∈ {1, . . . , G}, then we have

π∗ig ∝ πgN
(
~yi | Φp

(
~ti
)

Λ ~xi + Φz

(
~ti
)
~βg,K

(
~ti,~ti

))
. (32)

Maximization step. In the maximization step, we optimize the marginal probability of
the soft assignments under the multinomial model with respect to π1:G. This amounts to
collecting total “soft counts” computed in Eq. 32 for each subtype and renormalizing. To
optimize the expected complete-data log-likelihood with respect to Λ and ~β1:G, we note
that the mean of the multivariate normal for each individual is a linear function of these
parameters. Holding Λ fixed, we can therefore solve for ~β1:G in closed form and vice versa.
We use a block coordinate ascent approach, alternating between solving for Λ and ~β1:G

until convergence. To control the smoothness of the subtypes we penalize the log-likelihood
with respect to the subtype parameters ~β1:G as in Eq. 4. Because the penalized expected
complete-data log-likelihood is concave with respect to all parameters in Θ2, each maxi-
mization step is guaranteed to converge. The exact computations required to maximize the
expected log-likelihood can be found in Schulam and Saria (2015) and its supplement.
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A.2 Learning the Coupling Model

To learn the parameters of the latent-factor CRF regression, we directly maximize the
conditional probability of future target markers given previously observed target markers,
previously observed auxiliary markers, and static baseline covariates on a collection of ex-
amples extracted from retrospective data. Suppose we are given records containing the
target marker, auxiliary markers, and baseline covariates for M individuals. We choose a
collection of times T that will be used to create training examples of history-future pairs.
For example, we may choose T = {1, 2} because early management decisions are made
using prognoses at years 1 and 2. We emphasize, however, that the model is not restricted
to making predictions at years 1 and 2; it can make predictions at arbitrary times. The
times T are simply used to create training instances. We also note that it is possible to
train specialized models for different time periods. For example, we may train one model
for making predictions in the first 2 years and another for beyond 4 years. Given the M
records and times T , we define the objective:

J(γ, γ1:C , θ, θ1:C , η1:C) =

M∑
i=1

∑
t∈T

log p(~yi,>t | H(i, t)) (33)

=

M∑
i=1

∑
t∈T

log

∑
zi

p(~yi,>t | zi)︸ ︷︷ ︸
(A)

p(zi | H(i, t))︸ ︷︷ ︸
(B)

 , (34)

where (A) is the subtype-specific multivariate normal likelihood in Eq. 14 and (B) is the
conditional distribution over zi shown in Eq. 28. To learn the parameters, we maximize
this objective with respect to γ, γ1:C , θ, θ1:C , and η1:C using gradient-based methods (e.g.
L-BFGS). In our experiments, we optimize a regularized version of the objective, but for
simplicity this section discusses the computations required to compute the gradient of Eq. 33
only. Consider a single summand of Eq. 33

log p(~yi,>t | H(i, t)) = log

(∑
zi

p(~yi,>t | zi)p(zi | H(i, t))

)
. (35)

To reiterate, the parameters of the density p(~yi,>t | zi) are assumed to have been learned
in a separate step (e.g. using the EM algorithm presented above), and so we are only
concerned with estimating the parameters of the singleton and pairwise factors in the CRF:
γ, γ1:C , θ, θ1:C , η1:C .

Gradient of the objective. We derive the gradient for a single summand of the objective
(Eq. 33), which are combined additively to form the full gradient used at each iteration.
Although our model is log-linear over all latent variables zi and z1:C,i, Eq. 35 is not linear
in the parameters because the random field does not directly estimate the conditional dis-
tribution over the future target clinical markers, but instead estimates the weights assigned
to each configuration of the latent variables. We therefore have that the partial derivative
of Eq. 35 with respect to any parameter θk is:

∂ log p(~yi,>t | H(i, t))

∂θk
=

(∑
z p(~yi,>t | z)

∂p(z|H(i,t))
∂θk

)
p(~yi,>t | H(i, t))

. (36)
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To complete the expression for the partial derivative, we need to compute the partial deriva-
tive of the probability of a given target marker latent variable z with respect to the param-
eter θk. We have that:

∂p(z | H(i, t))

∂θk
=

∂

∂θk

Z ′i,t(z)

Zi,t
=

1

Zi,t

∂Z ′i,t(z)

∂θk
+ Z ′i,t(z)

∂Z−1
i,t

∂θk
. (37)

We can now leverage identities from the theory of log-linear models to continue with
the derivation. In particular, recall that log-linear models are in the exponential family of
distributions. As a consequence, we can consider the parameters γ, γ1:C , θ, θ1:C , η1:C as the
natural parameters of the distribution. The corresponding sufficient statistics are therefore
the factors in the log-linear model:

T (z, z1:C , ~xi) = [`i,≤t(z), `1,i,≤t(z1), . . . , `C,i,≤t(zC),

f>(z, ~xi), f
>
1 (z1, ~xi), . . . , f

>
C (zC , ~xi), (38)

g>1 (z, z1), . . . , g>C (z, zC)]>. (39)

An important property of exponential families is that the gradient of the log-normalizing-
constant with respect to the natural parameters is simply the expected value of the sufficient
statistics computed using the current value of the natural parameters. Note that both Z ′i,t(z)
and Zi,t are normalizing constants of exponential family distributions. In the case of Zi,t this
is trivial to see because it is the normalizing constant of our log-linear model. In the case
of Z ′i,t(z) we see that it is the normalizing constant of a log-linear model over the auxiliary
marker latent variables z1:C given both z and the clinical history H(i, t). We therefore have:

∂ logZ ′i,t(z)

∂θk
= Ez1:C [T (z, z1:C , ~xi)k | z,H(i, t)]

=⇒
∂Z ′i,t(z)

∂θk
= Z ′i,t(z)Ez1:C [T (z, z1:C , ~xi)k | z,H(i, t)] , (40)

∂ logZi,t
∂θk

= Ez,z1:C [T (z, z1:C , ~xi)k | H(i, t)]

=⇒
∂Z−1

i,t

∂θk
= − 1

Zi,t
Ez,z1:C [T (z, z1:C , ~xi)k | H(i, t)] , (41)

where we have used T (z, z1:C , ~xi)k to denote the feature (or sufficient statistic) corresponding
to the parameter θk. By plugging these partial derivatives back into Eq. 37, we have

∂

∂θk

Z ′i,t(z)

Zi,t
=
Z ′i,t(z)

Zi,t
(EΘ [T (z, z1:C , ~xi)k | z,H(i, t)]− EΘ [T (z, z1:C , ~xi)k | H(i, t)]) (42)

= p(z | H(i, t)) (EΘ [T (z, z1:C , ~xi)k | z,H(i, t)]− EΘ [T (z, z1:C , ~xi)k | H(i, t)]) .
(43)

In words, we see that the partial derivative with respect to a parameter θk is the expected
value of its corresponding feature given that we have observed the target marker latent
variable z and clinical history H(i, t) minus the expected value of the feature given only the
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clinical history H(i, t). The difference is then weighted by the probability of observing the
target marker latent variable given the clinical history. By plugging this expression back
into Eq. 36, we arrive at the final expression for the partial derivative of a single summand
with respect to θk:

∂ log p(~yi,>t | H(i, t))

∂θk
(44)

=
∑
z

p(~yi,>t | z)p(z | H(i, t))

p(~yi,>t | H(i, t))
(EΘ [T (z, z1:C , ~xi)k | z,H(i, t)]− EΘ [T (z, z1:C , ~xi)k | H(i, t)])

=
∑
z

p(z | ~yi,>t,H(i, t)) (EΘ [T (z, z1:C , ~xi)k | z,H(i, t)]− EΘ [T (z, z1:C , ~xi)k | H(i, t)]) .

(45)

The partial derivative has a nice interpretation. Each summand has similar structure to
the partial derivative of p(z | H(i, t)) (Eq. 42), but the weight conditioned on only the
clinical history has been replaced with a weight conditioned on both the clinical history
and the future target marker trajectory. The partial derivatives of the summands of the
objective in Eq. 33 are added together to obtain the partial derivative with respect to the
objective. These partial derivatives are combined to form a gradient, which is easily plugged
into existing first-order optimization routines. Optionally, the objective can be augmented
with a regularizer to restrict the complexity of the model or to encourage a sparse solution
to the learning problem. This concludes our discussion of the learning algorithm.

Appendix B. Missing Data for Continous-Time Trajectories

Trajectories in continuous-time can be thought of as random functions F (·) (Gaussian
processes are an example of a family of distributions over random functions). Although
the function specifies infinitely many values, to learn continuous-time models we maximize
the probability of a finite set of observations (or a penalized version of this objective). In
observational health care data, we need to be careful that we do not bias our likelihood-
based learners by unduly ignoring the dependence between the finite set of times at which
we observe the trajectory and the trajectory’s values at those times. For example, if the
trajectory is more likely to be sampled when its value is low, then our model will learn that
trajectories with high values are less likely than they actually are.

The aim of this section is to posit a set of assumptions about continuous trajectory
observation times that are (1) substantively reasonable, and (2) justify the use of standard
likelihood-based learning. At a high-level, we assume that trajectory observation times are
functions of the previous observation times and the values of the trajectory sampled at those
times. These assumptions are more formally encoded in the graphical model shown in Figure
8, which expresses dependencies for an individual with three trajectory observations. In the
figure, F (·) denotes the full trajectory, {T1, T2, T3} are random variables denoting the times
at which the trajectory is sampled, and {Y ?

1 , Y
?

2 , Y
?

3 } are the observed data. The conditional
probability distribution of any Y ?

i given the trajectory and associated observation time is
simply:

p(Y ?
i = y?i | Ti = ti, F = f) = I(f(ti) = y?i ). (46)
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Y ?
1 Y ?

2 Y ?
3

T1 T2 T3

F (·)

Figure 8: Example missing data mechanism in continuous-time.

These assumptions are reasonable in many healthcare settings. For example, in an ICU
where a patient is constantly under supervision, we can reasonably assume that clinical
marker measurements are made at times that depend on the previous observations (e.g.
the individual is thought to be at risk and so measurements are taken more frequently)
and on previous observation times (e.g. a measurement has not been recorded in a while,
so we should collect a new one). In the outpatient setting, an individual with a particular
disease that is being actively managed by a physician will have follow-up visits scheduled
either routinely or more frequently if the physician is especially concerned. On the other
hand, modeling the progression of a disease such as the flu using information from a general
practitioner’s office may not satisfy our assumption because individual’s with less severe
manifestations are less likely to visit.

Conditioned on these assumptions about the dependencies between the trajectory, ob-
servation times, and observed values, we want to justify likelihood-based learning. Suppose
we have a trajectory model with parameters Θ that allows us to compute the probability
of any finite set of trajectory values. For example, we can compute pΘ(F (t1) = y?1, F (t2) =
y?2, F (t3) = y?3). The observed data, however, are the observation times and sampled values:
{T1:n, Y

?
1:n}. Proper likelihood-based learning requires that we maximize:

p(T1:n = t1:n, Y
?

1:n = y?1:n). (47)

However, this expression is determined by both the observation time mechanism and the
trajectory model. Our goal is to show that this can be factored into two terms: one that
depends on the observed data and the observation time mechanism parameters, and the
other that depends on the sampled trajectory values and the trajectory model parameters
Θ. To do this, we first see that Equation 47 can be written as∫

p(F = f)p(T1:n = t1:n, Y
?

1:n = y?1:n | F = f)dF. (48)

The integrand in Equation 48 can be now be factored further to obtain

p(F = f)

n∏
i=1

p(Ti = ti | Hi)p(Y ?
i = y?i | Ti = ti, F = f), (49)
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where Hi is defined to be the previous i−1 observation times and sampled trajectory values.
Note that the first term in the product of Equation 49 can be pulled out of the integral,
allowing us to write Equation 48 as[

n∏
i=1

p(Ti = ti | Hi)

][∫
p(F = f)

n∏
i=1

p(Y ?
i = y?i | Ti = ti, F = f)dF

]
. (50)

The left-hand factor above depends only on the observation time mechanism and the ob-
served data. Moreover, the right-hand factor depends only on the trajectory model and the
sampled trajectory values, which we now show:∫

p(F = f)

n∏
i=1

p(Y ?
i = y?i | Ti = ti, F = f)dF

=

∫
p(F = f)

n∏
i=1

I(f(ti) = y?i )dF

=

∫
p(F = f)I(f(t1) = y?1, . . . , f(tn) = y?n)dF

= pΘ(f(t1) = y?1, . . . , f(tn) = y?n). (51)

We therefore see that, given our observation time mechanism assumptions, maximizing
the likelihood of the sampled trajectory values under our trajectory model is equivalent to
maximizing the “proper” likelihood in Equation 47 with respect to the model parameters
Θ. This result aligns with Theorems 7.1 and 8.1 found in Rubin’s original paper on missing
data (Rubin, 1976).
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