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Abstract
The proliferation of online communities has attracted much attention to modelling user behaviour
in terms of social interaction, language adoption and contribution activity. Nevertheless, when
applied to large-scale and cross-platform behavioural data, existing approaches generally suffer
from expressiveness, scalability and generality issues. This paper proposes trans-dimensional von
Mises-Fisher (TvMF) mixture models for L2 normalised behavioural data, which encapsulate: (1)
a Bayesian framework for vMF mixtures that enables prior knowledge and information sharing
among clusters, (2) an extended version of reversible jump MCMC algorithm that allows adaptive
changes in the number of clusters for vMF mixtures when the model parameters are updated, and (3)
an online TvMF mixture model that accommodates the dynamics of clusters for time-varying user
behavioural data. We develop efficient collapsed Gibbs sampling techniques for posterior inference,
which facilitates parallelism for parameter updates. Empirical results on simulated and real-world
data show that the proposed TvMF mixture models can discover more interpretable and intuitive
clusters than other widely-used models, such as k-means, non-negative matrix factorization (NMF),
Dirichlet process Gaussian mixture models (DP-GMM), and dynamic topic models (DTM). We
further evaluate the performance of proposed models in real-world applications, such as the churn
prediction task, that shows the usefulness of the features generated.

Keywords: Mixture Models, von Mises-Fisher, Bayesian Nonparametric, Temporal Evolution,
User Modelling

1. Introduction

Recent years have witnessed an increasing population of online peer production communities, such
as Wikipedia, Stack Overflow and OpenStreetMap, which rely on contributions from volunteers to
build knowledge, software artifacts and navigational tools, respectively. The growing popularity
and importance of these communities requires a better understanding and characterisation of user
behaviour so that the communities can be better managed, new services delivered, challenges and
opportunities detected. For instance, by understanding the general lifecycles that users go through
and the key features that distinguish different user groups and different life stages, we can develop
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techniques for the following applications (Qin et al., 2014): (i) predict whether a user is likely to
abandon the community; (ii) develop intelligent software to recommend tasks for users within the
same life-stage. Moreover, social interaction and contribution behaviour of contributors plays a
significant role in shaping the health and sustainability of online communities.

Different from text documents, which are commonly represented as term-frequency vectors,
user behavioural data derived from online communities are generally represented as unit vectors.
For instance, the level of linguistic change for online users in beer rating websites is denoted as a
numeric feature (Danescu-Niculescu-Mizil et al., 2013). The measures used to quantify the cen-
trality of members’ positions in social networks are naturally numeric measurements (Rowe, 2013;
Chan et al., 2010). The quality of questions, answers, and comments posted by users on Q&A sites
are also numeric measures (Furtado et al., 2013). Existing approaches to identify patterns of user
behaviour include principle component analysis, clustering analysis and entropy-based methods.
However, these studies tend to be application-specific and suffer from scalability and generality
issues due to the constrained feature set and the inherent limitations of the approaches employed.
Additionally, the existing approaches fail to capture a mixture of user interests over time.

On the other hand, over the last decade, there have been significant advances in topic models
which develop automatic text analysis techniques to discover latent structures from time-varying
document collections (e.g. Blei and Lafferty (2006); Ahmed and Xing (2010); Gopal and Yang
(2014)) and from time-varying user activity data in computational advertising (Ahmed et al., 2011).
Topic models generally work well in document collections and user activity data where the data are
represented in term-frequency format. However, many traditional topic models are not applicable to
scenarios where the data are represented as unit vectors, e.g. the term frequency-inverse document
frequency (tf-idf) representation of documents. Based on von Mises-Fisher (vMF) distributions,
Gopal and Yang (2014) proposed dynamic clustering models which combine the success of nor-
malised representation and flexibility of graphical models, and found that their proposed models can
discover more intuitive clusters than existing approaches. Nevertheless, the vMF clustering models
by Gopal and Yang (2014) did not take into consideration the dynamic evolution in the number of
clusters and the birth/death of clusters over time. This work makes the following contributions:

• Extend the reversible jump Markov Chain Monte Carlo (RJMCMC) algorithm (Richardson
and Green, 1997) for directional distribution (i.e. vMF mixtures).

• Enhance the Bayesian and temporal vMF mixture models by Gopal and Yang (2014) by
integrating with our extended version of RJMCMC algorithm, which empowers both models
with the ability to change the number of clusters automatically and to refine an inappropriate
initialization of model parameters.

• Apply the model to analyse time-varying user behaviour data in online communities, in par-
ticular Wikipedia. Compared with previous works in this direction (Danescu-Niculescu-Mizil
et al., 2013; Rowe, 2013; Furtado et al., 2013; Chan et al., 2010), the proposed model is more
general and can be applied to model user behaviour in online communities (e.g. Wikipedia,
Stack Overflow, Twitter, and Facebook) whenever user behavioural data are available.

We develop efficient collapsed Gibbs sampling techniques for the proposed models, which al-
lows parallelism for parameter updates. The empirical comparison on synthetic and real-world data
demonstrates that the proposed model can generate a more intuitive and interpretable clustering than
other popular tools, such as k-means (Hartigan and Wong, 1979), non-negative matrix factorization
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(NMF) (Lee and Seung, 1999), Dirichlet process Gaussian mixture models (DP-GMM) (Chang and
Fisher III, 2013), and dynamic topic models (DTM) (Blei and Lafferty, 2006).

The rest of the paper is organised as follows. Section 2 provides an overview of related work,
followed by an introduction to the von Mises-Fisher (vMF) distribution in Section 3. In Section
4, we present posterior inference for Bayesian von Mises-Fisher mixture models using collapsed
Gibbs sampling techniques, model exploration using our extension of the reversible jump MCMC
algorithm, and an online trans-dimensional von Mises-Fisher mixture model for time-varying user
behavioural data. We demonstrate the empirical performance of the proposed models using syn-
thetic and real-world data in Section 5. We then present an application of the features generated by
the models for user clustering and churn prediction tasks, followed by discussion and concluding
remarks in Section 6. The appendix includes detailed derivations for model inference and additional
detailed analysis of the models.

2. Related Work

In this section, we provide an overview of the main lines of research underpinning this work, and
discuss how our work leverages and advances the state-of-the-art techniques.

2.1 Modelling User Behaviour

Recently, researchers have approached the issue of modelling online user behaviour from different
perspectives. They have so far focused on a separate set or combination of user properties, such
as information exchange behaviour in discussion forums (Chan et al., 2010), social and/or lexical
dynamics in online platforms (Danescu-Niculescu-Mizil et al., 2013; Rowe, 2013), and diversity
of contribution behaviour on Q&A sites (Furtado et al., 2013). These studies generally employed
either principle component analysis and clustering analysis to identify user profiles (Chan et al.,
2010; Furtado et al., 2013) or entropy measures to track social and/or linguistic changes throughout
user lifecycles (Danescu-Niculescu-Mizil et al., 2013; Rowe, 2013). While previous studies provide
insights into community composition, user profiles and their dynamics, they have limitations either
in their definition of lifecycle periods (e.g. dividing each user’s lifetime using a fixed time-slicing
approach (Danescu-Niculescu-Mizil et al., 2013) or a fixed activity-slicing approach (Rowe, 2013))
or in the expressiveness of user lifecycles in terms of the evolution of expertise and user activity for
users and online communities over time. Specifically, previous studies failed to capture a mixture of
user interests over time. Different from previous works, Qin et al. (2014) employed topic modelling
to study the evolving patterns of editor behaviour in Wikipedia. They found that a number of
editor roles (e.g. Technical Experts, Social Networkers) prevail in the temporal Wikipedia editor
activity data, and that the features inspired by latent space representation are beneficial for the
churn prediction task. However, two major limitations exist in the topic model used by Qin et al.
(2014): (1) the inability to deal with numeric behavioural data, and (2) the inability to capture the
birth/death of topics over time.

2.2 Parametric and Nonparametric Temporal Models

Parametric models, such as Latent Dirichlet Allocation (LDA) by Blei et al. (2003) and non-negative
matrix factorization (NMF) by Lee and Seung (1999), generally assume a fixed pre-specified num-
ber of topics a priori. This assumption inevitably involves computationally expensive model com-
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parison using model selection criteria such as penalised log-likelihoods (AIC and BIC) in order to
choose an appropriate number of topics for a given dataset. While log-likelihood related criteria
have shown success in static settings, it is obvious that doing model selection for each time period
may lead to a sub-optimal solution as it ignores the role of context in model selection, or alter-
natively, local optima problems in model selection at each epoch may accumulate and result in a
globally suboptimal solution (Wang et al., 2007; Ahmed and Xing, 2008). Nonparametric models
have been suggested in order to relax the assumption of a fixed number of topics for stationary and
time-varying data.

There are two major lines of research for non-parametric models: (1) hierarchical Dirichlet pro-
cess (HDP, Teh et al. (2006)), and (2) trans-dimensional (split/merge) approaches. The hierarchical
Dirichlet process is a Bayesian nonparametric model that can be used to cluster groups of data with
a potentially infinite number of components. In HDP based nonparametric models, each observa-
tion within a group is a draw from a Dirichlet process (DP) (or mixture model), the group-specific
DPs can be linked together via another DP to ensure the sharing of mixture components between
groups; the well-known clustering property of the DP can provide a nonparametric prior for the
number of mixture components within each group (Teh et al., 2006). HDP has been widely used
to learn recurring patterns (or “topics”) from document collections (e.g. the nonparametric Topics
over Time (npTOT) model by Dubey et al. (2013)) and time-varying user activity data in compu-
tational advertising (the Time-Varying User Model (TVUM) by Ahmed et al. (2011)). In contrast,
trans-dimension nonparametric models adapt the number of components by using a split-merge or
birth-death mechanism while preserving certain properties (e.g. the zeroth, first and second mo-
ments) of the components. One well-known example of trans-dimensional models in this direction
is the reversible jump MCMC algorithm by Richardson and Green (1997). Recently, Chang and
Fisher III (2013) proposed a novel parallel restricted Gibbs sampling algorithm for Dirichlet pro-
cess Gaussian mixture models (DP-GMM) with sub-cluster split/merge moves, and showed that
their proposed sampler is orders of magnitude faster than other exact MCMC methods. In addi-
tion, based on the small-variance limit of Bayesian nonparametric von-Mises Fisher (vMF) mixture
distributions (i.e. the birth-death strategy), Straub et al. (2015a) proposed two novel flexible and ef-
ficient k-means-like clustering algorithms for directional data such as surface normals in computer
vision applications.

The evolving nature of data in different scenarios, such as scientific publications, news stories,
and user query logs for search engines, has motivated research about temporal models to cope with
the challenges of learning coherent and interpretable clusters over time (Ahmed and Xing, 2008).
A good evolutionary model should be able to accommodate the dynamics of different aspects of the
evolving clusters (Ahmed and Xing, 2008; Ahmed and Xing, 2010), specifically:

• Dynamics of cluster parameters. For example, in Gaussian mixture models, the mean and
covariance for a mixture of Gaussians should be able to evolve according to a given time
series model, such as Kalman filter that is used in the dynamic topic model (DTM) by Blei
and Lafferty (2006). One principle for choosing a time series model for cluster parameters is
to guarantee the smoothness of cluster parameters over time. One common strategy for this
is to draw the cluster parameters at time epoch t from the corresponding distribution at the
previous time t − 1 by leveraging the smoothness assumption over cluster parameters (Blei
and Lafferty, 2006; Ahmed and Xing, 2008; Ahmed and Xing, 2010; Ahmed et al., 2011;
Gopal and Yang, 2014).
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• Popularity of clusters over time. The popularity of clusters can change over time due to the
evolving nature of data. Existing models have relied on the rich gets richer assumption to
capture the trends of clusters over time (Ahmed and Xing, 2008; Ahmed and Xing, 2010;
Ahmed et al., 2011).

• Automatic change in the number of clusters over time. Non-parametric models allow the
clusters to remain, die out or emerge over time (Ahmed and Xing, 2008; Ahmed and Xing,
2010; Ahmed et al., 2011; Dubey et al., 2013).

To the authors’ knowledge, while many aforementioned models have focused on categorical
data, only the models by Gopal and Yang (2014) are designed for L2 normalised data. However,
their models are parametric which require using model selection criteria to choose the appropriate
number of clusters. In this work, based on the smoothness assumption and the idea of reversible
jump MCMC algorithm, we extend their Bayesian vMF mixture model and propose an online trans-
dimensional von Mises-Fisher mixture model (OTvMFMM) for time-varying user behavioural data.
The proposed model not only allows us to explore the model space for clusters, but more impor-
tantly, it can model time-varying clusters that are consistent.

2.3 Models for Directional Data

The existence of directional data in many applications has attracted much attention from researchers
to build models for clustering on the hypersphere. There are three lines of research related to
clustering directional data: (1) Euclidean geometry based algorithms, which ignore the geometric
properties of the data and usually use Euclidean distance to measure similarity or distance between
data points (e.g. k-means by Hartigan and Wong (1979), the Dirichlet process Gaussian mixture
model (DPGMM) by Rasmussen (2000)); (2) spherical geometry based models, which consider the
inherent geometry of the data and use cosine similarity to measure similarity between data points
with standardized length (e.g. the von Mises-Fisher mixture model (vMFMM) by Banerjee et al.
(2005), the Spherical Topic Model (SAM) for documents by Reisinger et al. (2010), the Dirichlet
process vMFMM for radiation therapy data by Bangert et al. (2010), the temporal vMF mixture
model (Temporal vMFMM) for time-varying document collections by Gopal and Yang (2014));
and (3) models that consider spherical geometry and anisotropic covariance of directional data,
which capture the geometric properties and different variances in each dimension of the data (e.g.
the Dirichlet process tangential Gaussian mixture model (DP-TGMM) by Straub et al. (2015b)).

Essentially, the vMF distribution can be considered as a variant of the multivariate Gaussian
with spherical covariance on SD−1, parameterized by cosine distance rather than Euclidean distance
(Reisinger et al., 2010). Cosine distance belongs to the normalized correlation coefficient and takes
into consideration the directions of the L2-normalized feature vectors when computing the simi-
larity. Empirical studies have suggested the advantages of such type of directional measure over
Euclidean distance in high-dimensional data particularly in information retrieval (Banerjee et al.,
2005; Zhong and Ghosh, 2005; Reisinger et al., 2010; Gopal and Yang, 2014). The vMF distri-
bution can capture the absence/presence of words, which the Multinomial distribution cannot. For
instance, let θ = [1/3, 1/3, 1/3] be a Multinomial parameter (i.e. topic-word) vector, d = [n1, n2, n3]
denote the number of occurrences of word w1, w2 and w3 in document d. Assume we have two doc-
uments: d1 = [1, 1, 1] and d2 = [3, 0, 0]. The two docments are more likely to be clustered together
under Multi(·|θ), whereas d1 and d2 have different densities under a corresponding vMF(·|θ). The
von Mises-Fisher mixture models have been shown to model sparse data (e.g. text) more accurately
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than their Multinomial counterparts (Banerjee et al., 2005; Zhong and Ghosh, 2005; Reisinger et al.,
2010; Gopal and Yang, 2014).

In this work, we employ the von Mises-Fisher distribution to deal with L2 normalised user
behavioural data. Table 1 compares the capabilities of the proposed model and previous approaches.
Although it is possible to make the proposed OTvMFMM aiming for anisotropic covariance using
Fisher-Bingham distribution as in (Kent, 1982; Peel et al., 2001), extensions to high-dimensional
data are difficult due to the normaliser of the probability density function (Straub et al., 2015b).

Table 1: Capabilities of different models

Models (Authors)
Spherical Bayesian Anisotropic

Nonparametric Parallelizeable Temporal
Geometry Inference Covariance

DTM (Blei and Lafferty, 2006) · · ·

npTOT (Dubey et al., 2013) · · ·

TVUM (Ahmed et al., 2011) · ·

vMFMM (Banerjee et al., 2005) · · · ·

Temporal vMFMM
· ·

(Gopal and Yang, 2014)
DP-GMM (Chang and Fisher III, 2013) · ·

DP-TGMM (Straub et al., 2015b) ·

OTvMFMM (proposed) ·

Notation. In this work, random variables are denoted by capital letters (e.g. X, Y , Z), the ob-
servations of random variables (or vectors) are represented by the corresponding lower-case letters
(e.g. x, y, z, µ). The set of N observations corresponding to random variable X is denoted by
X={xi}

N
i=1. The probability of a set of events A is denoted by P(A), the probability of A given B (i.e.

conditional probability) is written as P(A|B). Probability density functions (for continuous random
variables) and probability mass functions (for discrete random variables) are denoted by lower-case
letters, e.g. f (x), f (x|θ), p or q, where θ is the set of parameters for a specific distribution. p(·) and
q(·) are frequently used to represent the distributions of random variables. The set of observations
or prior parameters is denoted by a calligraphic letter (e.g. X, Z, B). The set of real numbers is
denoted by R; the norm ‖ · ‖ denotes the L2 norm.

3. Preliminaries

This section provides a brief review of the finite von Mises-Fisher mixture models that facilitates a
better understanding of the proposed models.

3.1 Von Mises-Fisher Distribution

A random D-dimensional unit vector x (i.e. x ∈ RD and ‖x‖=1) is said to follow the D-variate von
Mises-Fisher (vMF) distribution if its probability density function is given by

f (x | µ, κ) = CD(κ)exp
(
κµT x

)
; CD(κ) =

κD/2−1

(2π)D/2ID/2−1(κ)
(1)

where ‖µ‖ = 1, κ ≥ 0, D ≥ 2; CD(κ) is the normalising constant, ID/2−1(κ) denotes the modified
Bessel function of the first kind with order D/2 − 1 and argument κ. The concentration parameter,
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κ, quantifies how tightly the distribution is concentrated around the mean direction µ. Note that
µT x is the cosine similarity between x and µ and that κ plays the role of the inverse of variances
(precision). The vMF distribution is used for clustering data on the unit hypersphere, whereas the
Gaussian distribution is used for modelling data with a multivariate Normal distribution. A very
useful property of the vMF distribution that we will use in this work is the preservation of the
functional form under multiplication (Chiuso and Picci, 1998)

f (x | µ1, κ1) f (x | µ2, κ2) = f (x | µ, κ), where µ =
κ1µ1 + κ2µ2

‖κ1µ1 + κ2µ2‖
, κ = ‖κ1µ1 + κ2µ2‖ (2)

Following Mardia and Jupp (2000), the sample covariance matrix of directional data, X={xi}
N
i=1,

about µ is defined by:

S =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)T (3)

which is an unbiased estimator of the covariance matrix (i.e. Σ = S ).

3.2 Finite von Mises-Fisher Mixture

Let f (x|θh) denote a vMF distribution with parameters θh=(µh, κh) for h ∈ [1,H]. Banerjee et al.
(2005) proposed a simple vMF mixture model with the density of vMF mixtures given by

f (x | {πh, θh}
H
h=1) =

H∑
h=1

πh f (x|θh) (4)

where Θ = {πh, θh}
H
h=1 are the set of parameters to be estimated, πh are the mixing proportions which

are non-negative and sum to 1 (i.e. 0 ≤ πh ≤ 1,
∑

h πh=1). To sample a point from this mixture
distribution, we randomly choose the h-th component with probability πh, and then sample a point x
following f (x|θh). Let X={xi}

N
i=1 be a set of N data points that are sampled independently following

Eq. (4). The mixture model in Eq. (4) can be interpreted as a missing data model if we introduce a
set of membership variables (a.k.a. latent/hidden variables), Z={zi}

N
i=1, for the data points (Celeux

et al., 2006), indicating the specific vMF distribution from which the points are sampled. Each
membership variable is a H-dimensional indicator vector, denoted by zi=(zi1, · · · , ziH), zih ∈ {0, 1},
so that zih = 1 if and only if xi is generated from the vMF distribution f (·|{πh, θh}

H
h=1), conditioning

on zi. The zih are assumed to be drawn independently from the following distributions

P(zih = 1) = πh, i ∈ [1,N], h ∈ [1,H] (5)

where P(zi) =
∏H

h=1 π
zih
h . The density of the corresponding vMF mixture model with latent variables

is given by (Celeux et al., 2006)

f (xi, zi | {πh, θh}
H
h=1) = P(zi) f (xi|zi, {πh, θh}

H
h=1) =

H∏
h=1

{πh f (xi | θh)}zih (6)

4. Proposed Trans-dimensional vMF Mixture Models

In this section, we first describe the Bayesian von Mises-Fisher mixture model (BvMFMM) by
Gopal and Yang (2014), including inference via efficient collapsed Gibbs sampling. We then present
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our extension of the reversible jump MCMC algorithm for model exploration of Bayesian vMF
mixtures, and introduce the proposed online trans-dimensional von Mises-Fisher mixture model for
temporal user behavioural data.

4.1 Formulation of Bayesian vMF Mixture Model

The Bayesian vMF mixture model views the vMF mixture model parameters as random variables
and introduces prior distributions on them. This brings advantages, such as sharing statistical
strength among mean directions and flexibility for parameter estimation (Gopal and Yang, 2014).
The Bayesian vMF mixture model is very similar to the Spherical Topic Model (Reisinger et al.,
2010), the only difference lies in the fact that the former allows learning cluster-specific concentra-
tion parameters while the latter keeps the concentration parameters fixed. The generative process of
BvMFMM proceeds as follows:

1. Draw topic proportions, π ∼ Dirichlet(.|α), from a Dirichlet with hyperparameter α.

2. Draw topics, µh ∼ vMF(.|µ0,C0), on the unit hypersphere for h ∈ [1,H].

3. Draw concentration parameters, κh ∼ logNormal(.|m, σ2), from a log-normal distribution with
mean m and variance σ2 for h ∈ [1,H].

4. For each L2 normalised data point xi ∈ {xi}
N
i=1:

(a) Draw topic indicator zi ∼ Multi(.|π).
(b) Draw the data point xi ∼ vMF(.|µzi , κzi).

where Multi(.|π) denotes a Multinomial distribution. The plate notation1 of BvMFMM is given in
Figure 1.

π ∼ Dirichlet(.|α) (topic proportions)

µh ∼ vMF(.|µ0,C0) (topics, mean directions)

κh ∼ logNormal(.|m, σ2) (concentration parameters)

zi ∼ Multi(.|π) (latent cluster variables)

xi ∼ vMF(.|µzi , κzi) (data points)

h ∈ [1,H], i ∈ [1,N]

Figure 1: A graphical model representation of BvMFMM, in which nodes represent random vari-
ables, arrows denote dependency among variables, and plates denote replication. Shaded nodes
correspond to observed variables, unshaded nodes represent hidden variables, and solid nodes rep-
resent the hyperparameters.

For a fully Bayesian vMF mixture model, the number of components H is considered as a
random variable for which a posterior distribution should be found. Nobile (2005) suggested that
compared with a uniform prior, Poisson(1) prior is strongly biased towards low H and removes

1. All the plate notations for graphical models used in this work were drawn using the Daft software provided by Dan
Foreman-Mackey and David W. Hogg, available at: http://daft-pgm.org/
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empty clusters. In other words, to some extent, the Poisson(1) prior acts as a penalty term that favors
simpler models (i.e., ones with fewer components or factors), which is similar to the idea of AIC
or BIC styled model comparison metrics (McLachlan and Peel, 2000; Gershman and Blei, 2012).
Therefore, we use Poisson(1) as the prior distribution for H. From the topology of the Bayesian
network, the likelihood of the complete-data, i.e., the joint distribution of all known and hidden
variables that corresponds to the above generative process and the graphical model of BvMFMM in
Figure 1 is given by

P(H,X,Z, {πh, θh}
H
h=1|B) = P(H) f (π|α)

H∏
h=1

f (µh|µ0,C0) f (κh|m, σ2)
N∏

i=1

P(zi|π) f (xi|µzi , κzi) (7)

where P(H) is the prior probability for H, f (π|α) is the prior probability for π, f (µh|µ0,C0) and
f (κh|m, σ2) are the prior probabilities for µ and κ respectively. P(zi|π) are the mixed membership
priors for each data point, f (xi|µzi , κzi) are the pdfs of each observation given its mixed membership
and model parameters.

In Eq. (7), the global variables are the topics µh, the concentration parameters κh and the topic
proportions π, while the local variables are the per-data point topic indicators zi. The user specified
prior parameters are B={α, µ0,C0,m, σ2}. We can learn these prior parameters using empirical
Bayes and do not rely on the user to set any prior parameters. Alternatively, to avoid potential
problems such as overfitting caused by estimating too many parameters, we can specify the values
for certain prior parameters with empirical knowledge and update other parameters using empirical
Bayes method. The empirical Bayes estimate for prior parameters are given in Appendix B.

Following Heinrich (2009), we can obtain the likelihood of xi as one of its marginal distributions
by integrating out the distributions π, µ and κ and summing over zi:

f (xi|m, σ2, µ0,C0, α) =

∫
π

Mult(zi|π) f (π|α) ×
∫
µ

∫
κ

f (xi|µzi , κzi) f (µ|µ0,C0) f (κ| m, σ2) (8)

Finally, the corresponding likelihood of the complete data {xi}
N
i=1 is given by:

f ({xi}
N
i=1|m, σ

2, µ0,C0, α) =

N∏
i=1

f (xi|m, σ2, µ0,C0, α) (9)

4.2 Inference via Collapsed Gibbs Sampling

Because the likelihood of xi in Eq. (8) is not a closed form distribution, the exact inference of
the high dimensional vMF mean parameter µh is generally intractable. Following Gopal and Yang
(2014), we make use of the fact that the vMF distributions are conjugate and employ this fact to
completely integrate out the mean parameters µ and the mixing proportions π. Therefore we need
to infer only two sets of parameters {Z, κ}. The conditional distribution for zi is given by2

γ(zih) ≡ P(zih = 1|Z−i, {x j}
N
j=1, κ,m, σ

2, µ0,C0, α)

∝ (α + nh,−i)CD(κh)
CD(‖κh

∑
j,i z jhx j + C0µ0‖)

CD(‖κh(xi +
∑

j,i z jhx j) + C0µ0‖)

(10)

2. We defer the detailed derivations to Appendix A. The γ(zih) can also be seen as the responsibility of component h for
explaining the i-th data point, subject to 0 ≤ γ(zih) ≤ 1,

∑
h γ(zih)=1.
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where Z−i indicates excluding the contribution of the i-th data point. Similarly, the conditional
distribution for κh is given by2

f (κh|X,Z, κ,m, σ2, µ0,C0) ∝
CD(κh)nhCD(C0)

CD(‖κh
∑

j:z jh=1 z jhx j + C0µ0‖)
logNormal(κh|m, σ2) (11)

where nh is the number of observations assigned to the h-th component, nh =
∑

i zih. Since the
conditional distribution for κh is not a closed form, we need to use a step of MCMC sampling (with
appropriate distribution) to draw κh.

Sampling for µ and π. Finally, we need to estimate (π, µ). According to their usual definitions
as directional distributions with vMF priors, applying Bayes’ rule on the component zih=1 in Eq.
(9) gives the full conditional posterior density function for µ as follows:

f (µh|{xi}
N
i=1, {zi}

N
i=1, µ0,C0) =

∏N
zih=1 f (xi|µh, κh)P(µh|µ0,C0)∫ ∏N
zih=1 f (xi|µh, κh)P(µh|µ0,C0)dµ

=

∏N
zih=1 CD(κh)CD(C0)exp

{
κhµ

T
h xi + C0µ

T
0 µh

}
Zµ

∝ exp
{(
κh

∑
zihxT

i + C0µ
T
0

)
µh

} (12)

where the updates for concentration parameter and mean direction of the posterior distribution are
given by ‖κh

∑
zihxi + C0µ0‖ and κh

∑
zih xi+C0µ0

‖κh
∑

zih xi+C0µ0‖
, respectively. The update for the mean parameter

µh is drawn from the von Mises-Fisher distribution in Eq. (12). Similarly, according to their usual
definitions as Multinomial distributions with Dirichlet3 priors, applying Bayes’ rule in Eq. (9) yields
the posterior distribution for π:

f (π|{xi}
N
i=1, {zi}

N
i=1,
−→α ) =

∏N
i=1 f (π|−→α )P(zi|π)∫ ∏N
i=1 f (π|−→α )P(zi|π)dπ

=
1
Zπ

1

B(−→α )

H∏
h=1

π(αh−1)
h

N∏
i=1

H∏
h=1

πzih
h

=
1
Zπ

1

B(−→α )

H∏
h=1

π(αh+nh−1)
h = Dir(−→π |−→α + −→nh)

(13)

Empirical Bayes estimate for prior parameters. When the user does not have enough infor-
mation to specify the prior parameters, a general approach is to estimate them directly from the data.
The prior parameters can be estimated by maximising the summation of the marginal likelihood of
the data. The details are discussed in Appendix B.

4.3 Reversible Jump MCMC Algorithm

This section presents our extension of the reversible jump MCMC algorithm for directional distribu-
tion (i.e. vMF distribution), and then ensembles the new algorithm with the Bayesian vMF mixture
model to allow adaptive change in the number of components, leading to trans-dimensional von
Mises-Fisher mixture model (TvMFMM). Compared with BvMFMM, the proposed TvMFMM has
the ability to explore multiple models simultaneously, which brings additional benefit - refining an
inappropriate initialization of model parameters which parametric models are incapable of.

3. The Dirichlet distribution of order H ≥ 2 with parameters α1, · · · , αH > 0 is given by: Dir(−→π |−→α ) = 1
B(−→α )

∏H
h=1 π

αh−1
h ,

where B(−→α ) is the multinomial Beta function defined as B(−→α ) =
∏H

h=1 Γ(αh)

Γ(
∑H

h=1 αh)
.

10
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4.3.1 REVERSIBLE JUMP MOVE TYPES

Richardson and Green (1997) developed a methodology to perform Bayesian inference and model
exploration for the univariate Gaussian mixture model by using the reversible jump MCMC algo-
rithm, one sweep of which consists of six types of moves:

1. Updating the weights, π, following Eq. (13);

2. Updating the parameters, (µ, κ) , following Eq. (12) for µ and Eq. (11) for κ using MCMC
sampling;

3. Updating the allocation, z, following Eq. (10);

4. Updating the hyperparameters, B;

5. Splitting one mixture component into two, or combining two into one;

6. The birth or death of an empty component.

Moves (5) and (6) involve changing H by 1 and making necessary corresponding changes to
(µ, κ, π, z), and are used for model exploration via the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970). Assume that a proposed move type t, from s=(Z,Θ,H) to s̃=(Z′,Θ′,H+

1)= f (s, u), where f (s, u) is an invertible deterministic function (Richardson and Green, 1997). The
reverse of the move (from s̃ to s) can be accomplished by using the inverse transformation, so that
the proposal is deterministic. The acceptance probabilities from s to s̃ and from s̃ to s are min{1, A}
and min{1, A−1} respectively, where

A = likelihood ratio × prior ratio × proposal ratio × Jacobian

=
f (X|Z′,Θ′,B,H + 1)

f (X|Z,Θ,B,H)
×

P(H + 1)P(Z′,Θ′|B,H + 1)
P(H)P(Z,Θ|B,H)

×
rt(s̃)

rt(s)q(u)
×

∣∣∣∣∣ ∂s̃
∂(s, u)

∣∣∣∣∣
=

f (s̃|X)
f (s|X)

×
rt(s̃)

rt(s)q(u)
×

∣∣∣∣∣ ∂s̃
∂(s, u)

∣∣∣∣∣
(14)

where rt(s) is the probability of choosing move type t when in state s, q(u) is the density function of
the auxiliary random variables u, the final term is the Jacobian determinant arising from the change
of variables from (s, u) to s̃. The birth-death moves in (6) are supplements to the split-merge moves
in (5) in a sense that the former are used for empty components, whereas the latter are used for
non-empty components.

4.3.2 SPLIT AND MERGE MOVES

In the split-merge move in (5), the RJMCMC algorithm makes a random choice between splitting
or merging existing component(s) with probabilities bh and dh=1-bh respectively, depending on h.
Generally, d1=0, bHmax=0, and bh=dh=0.5 for h ∈ [2,Hmax-1]. The merging proposal works by
choosing two random components j1 and j2, subject to the following constraint (adjacency condi-
tion)

µ j1 < µ j2 , with no other µs ∈ [µ j1 , µ j2], s , j1, j2 (15)

In the univariate setting, Richardson and Green (1997) proposed the constraints of preserving
the zeroth, first and second moments of components before and after the split-merge move. In
the multivariate setting, previous works (Dellaportas and Papageorgiou, 2006; Zhang et al., 2004)

11
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generally preserved the mean vectors and covariance matrices of components via spectral decom-
position of the covariance matrices. The first two moments of vMF distribution are mean direction
and concentration parameter. However, a direct extension of the RJMCMC algorithm (i.e. preserv-
ing the first two moments) for vMF mixture model would be impractical for the split-merge move.
Recall that the concentration parameter controls how tightly the distribution is concentrated around
the mean direction, which resembles the idea behind covariance matrices - groups of similar data
points would result in high (variance) values in the diagonal of the matrices. In other words, to some
extent, preserving the concentration parameter is similar to preserving the statistical properties of
the covariance matrices. In this work, we make use of the spectral decomposition of the covariance
matrices for the split-merge moves of vMF mixtures.

Let Σh = VhΛhVT
h be the spectral decomposition of the covariance matrix, Σh, of the compo-

nents in Eq. (6), where Λh is a diagonal matrix Λh = diag(λh1, · · · , λhD) with the eigenvalues of
Σh in increasing order, and Vh is an orthogonal matrix with the eigenvectors of Σh in order cor-
responding to the eigenvalues in Λh. Let λhd denote the d-th largest eigenvalue of Σh. Let j∗
be one of the H components to be considered to split, j1, j2 be the two proposed components,
π j∗ , π j1 , π j2 the corresponding weights, µ j∗ , µ j1 , µ j2 the corresponding mean vectors, κ j∗ , κ j1 , κ j2 the
corresponding concentration parameters, and Σ j∗ ,Σ j1 ,Σ j2 the corresponding variance matrices. Let
u1, u2 = (u21, · · · , u2D)T , u3 = (u31, · · · , u3D)T be the 2D + 1 random variables needed to construct
weights, means and eigenvalues for the split move. They are generated from beta and uniform
distributions

u1 ∼ Beta(2, 2), u21 ∼ Beta(1, 2D), u2d ∼ U(−1, 1)

u31 ∼ Beta(1,D), u3d ∼ U(0, 1), d ∈ [2,D]
(16)

Let P be D×D rotation matrix with columns orthonormal unit vectors which has D(D−1)/2 free
parameters. The elements in the lower triangular are randomly generated from uniform distribution
U(0, 1), and the elements in other positions are determined by the fact that P is an orthonormal
matrix. Then, the proposed split moves are given by

π j1 = u1π j∗ , π j2 = (1 − u1)π j∗

µ j1 = µ j∗ −

√
π j2

π j1

 D∑
d=1

u2d
√
λ j∗dV j∗d


µ j2 = µ j∗ +

√
π j1

π j2

 D∑
d=1

u2d
√
λ j∗dV j∗d


λ j1d = u3d(1 − u2

2d)λ j∗d
π j∗

π j1

λ j2d = (1 − u3d)(1 − u2
2d)λ j∗d

π j∗

π j2

V j1 = PV j∗ , V j2 = PT V j∗ , d ∈ [1,D]

µ j1 =
µ j1

‖µ j1‖
, µ j2 =

µ j2

‖µ j2‖
(Normalized mean directions)

(17)

It can be readily shown that these are indeed valid, with weights positive and covariance matrices
positive-definite. Now we need to check whether the adjacency condition in Eq. (15) is satisfied. If
the condition is satisfied, we reallocate those with arg maxh γ(zih) = j∗ to j1 or j2 using the formula

12
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P(zih = 1| · · · ) ∝ πh f (xi|{πh, θh}
H
h=1). If the test is not passed, then the move is rejected in order to

preserve the reversibility of the split/merge move.
The corresponding merge move is specified by the following expressions

π j∗ = π j1 + π j2

π j∗µ j∗ = π j1µ j1 + π j2µ j2

π j∗[(µ
T
j∗V j∗d)2 + λ j∗d] = π j1[(µT

j1V j1d)2 + λ j1d] + π j2[(µT
j2V j2d)2 + λ j2d]

µ j∗ =
µ j∗

‖µ j∗‖
(Normalized mean directions)

(18)

The solutions of u1, u2, u3, λ j∗d,V j∗ and P are as follows:

u1 = π j1/π j∗

u2d = (µT
j∗V j∗d − µ

T
j1V j∗d)/(

√
λ j∗d

π j2

π j1
)

u3d = π j1λ j1d/[π j∗λ j∗d(1 − u2
2d)]

λ j∗d = π−1
j∗

{
π j1[(µT

j1V j1d)2 + λ j1d] + π j2[(µT
j2V j2d)2 + λ j2d]

}
− (µT

j∗V j∗d)2

V j∗ =
1
2

(PT V j1 + PV j2), d ∈ [1,D]

(19)

For successful merge move, we have to reallocate those observations xi with arg maxh γ(zih) = j1
or arg maxh γ(zih) = j2 to j∗. At this point, we calculate the acceptance probabilities of split and
merge moves: min{1, A} and min{1, A−1} according to Eq. (14), where

A =
P(H + 1,Z′,Θ′,B|X)dH+1

P(H,Z,Θ,B|X)bHPallocq(u)
×

∣∣∣∣∣∣det
(

∂Σ

∂(λ,V)

)∣∣∣∣∣∣ × | det(J)| (20)

where Palloc is the probability of making this particular allocation of data to j1 and j2 given by
(Bouguila and Elguebaly, 2012)

Palloc =

∏
zi j1 =1 π j1 f (xi|µ j1 , κ j1)

∏
zi j2 =1 π j2 f (xi|µ j2 , κ j2)∏

zi j∗=1 π j1 f (xi|µ j1 , κ j1) + π j2 f (xi|µ j2 , κ j2)
(21)

The ∂Σ
∂(λ,V) term is the Jacobian of the transformation from the Σ of the components to the eigen-

values and eigenvectors (Dellaportas and Papageorgiou, 2006); J is the Jacobian of the parameter
transformation. The calculation of the Jacobian terms and the factorization of P(H,Z, θ,B|{xi}

N
i=1)

are given in Appendix C and Appendix D.
It is worth noting that it can be computationally inefficient to calculate the Jacobian term∣∣∣∣det
(

∂Σ
∂(λ,V)

)∣∣∣∣ particularly for high-dimensional data. To solve this issue, Zhang et al. (2004) proposed
a simplified multivariate Gaussian mixture model (GMM) with reversible jump MCMC algorithm,
which imposed a common eigenvector matrix for the covariance matrices of all components. Their
experiments showed that their proposed simplified GMM obtains good estimates on general GMMs,
especially on their model exploration. In this work, we follow Zhang et al. (2004) and use a common
eigenvector matrix for the covariance matrices of all the vMF components when splitting/merging
the components.

13
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Algorithm 1: Collapsed Gibbs sampling for TvMFMM
Input:

Data points: X = {xi}
N
i=1 (Unit vectors on the hypersphere)

Prior parameters: B={α, µ0,C0,m, σ2}

Initial number of components: H
Output:

Estimation of model parameters
1 Initialise parameters: π = {πh}

H
h=1, µ = {µh}

H
h=1, κ = {κh}

H
h=1;

2 Initialise latent variablesZ = {{zih}
H
h=1}

N
i=1 arbitrarily;

3 n← 0;
4 while NotConverged do
5 Sample a random variable u from Uniform(0,1): u← U(0, 1);
6 if u 6 bbirth-death then
7 Create or delete an empty component;
8 else if u 6 bbirth-death + bsplit-merge then
9 Split one nonempty component into two, or merge two into one;

10 else
11 Sample latent variables, zih, following the parallel sampling in Algorithm 2;
12 end
13 if Accept the birth-death/split-merge move or Update latent variables then
14 Sample the weights, πn, following Eq. (13);
15 Sample the mean directions, µn, following Eq. (12);
16 Sample the concentration parameters, κn, using MCMC sampling;
17 Sample hyperparameters;
18 end
19 n← n + 1;
20 Check for convergence;
21 end
22 Employ the k!-means style algorithm by Celeux et al. (2000) to solve label switching

problem for RJMCMC chains for mixture model estimation;

4.3.3 BIRTH AND DEATH MOVES

Our birth-death move can be adopted straightforwardly from the one used in (Richardson and Green,
1997; Zhang et al., 2004). We first make a random choice between birth or death of an empty com-
ponent with the same probabilities bk and dk as above. For a birth, a mixing weight and parameters
of the proposed component are drawn using the following distributions

π j∗ ∼ Beta(1,H), µ j∗ ∼ vMF(.|µ0,C0), κ j∗ ∼ logNormal(.|m, σ2) (22)

It is necessary to rescale the existing weights in order to ‘make space’ for the new component using
π j′ = π j(1 − π j∗), so that

∑
πh = 1.0. The acceptance probabilities for birth and death moves are

14
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min{1, A} and min{1, A−1} respectively, where

A =
P(H + 1)

P(H)
×

P(π′|H + 1, α)
P(π|H, α)

×
rt(s̃)

rt(s)q(u)
×

∣∣∣∣∣ ∂s̃
∂(s, u)

∣∣∣∣∣
=

P(H + 1)
P(H)

×

Γ((H+1)α)
(Γ(α))H+1

∏H+1
h=1 π

′nh+α−1
h

Γ(Hα)
(Γ(α))H

∏H
h=1 π

nh+α−1
h

×
dH+1

(H0 + 1)bH
×

1
g1,H(π j∗ )

× (1 − π j∗ )
H−1

=
P(H + 1)

P(H)
×

1
B(α,Hα)

× πα−1
j∗ × (1 − π j∗ )

N+Hα−H × (H + 1) ×
dH+1

(H0 + 1)bH
×

1
g1,H(π j∗ )

× (1 − π j∗ )
H−1

(23)

In Eq. (23), H0 is the number of empty components, g1,H(·) is the probability density function of
Beta(1,H) distribution.

In our implementation of the reversible jump MCMC algorithm, rather than passing through
each of the six moves deterministically, following (Andrieu et al., 2003; Dellaportas and Papageor-
giou, 2006), we choose to randomly select one of the three moves (i.e. Moves (3), (5) and (6)) with
fixed probabilities in each iteration. We have used (.1, .4, .5) as probabilities to choose the three
moves respectively. This allows some extra tuning which can potentially speed up the convergence
and improve the mixing of the RJMCMC chain. The resulting collapsed Gibbs sampling procedure
of TvMFMM is summarised in Algorithm 1. Note that we employ parallel sampling to update the
latent variables in Algorithm 2, which is very similar to state synchronization in the parallel topic
models proposed by Smola and Narayanamurthy (2010).

Algorithm 2: Parallel sampling for latent variablesZ

1 function Inference(X,Z, α, µ0, C0, m, σ2)
2 Initialise γold(zih) = γ(zih) for all i, h;
3 while Sampling do
4 Read global stats {nh}

H
h=1

5 for every component h ∈ [1,H] do
6 Sample a latent, zih, conditioned on all other labels following Eq. (10).
7 end
8 Normalise local latent variables for data point xi:
9 γ(zih) =

γ(zih)∑H
j=1 γ(zi j)

for every h ∈ [1,H]

10 Lock {nh}
H
h=1 globally.

11 Update nh = nh + [γ(zih) − γold(zih)] for every h ∈ [1,H].
12 Release {nh}

H
h=1 globally.

13 end

4.4 Online Trans-dimensional vMF Mixture Model

This section presents the procedures of collapsed Gibbs sampling for the proposed online trans-
dimensional von Mises-Fisher mixture model (OTvMFMM). Given data, X={{xt,i}

Nt
i=1}

T
t=1, where

xt,i ∈ R
D, OTvMFMM assumes the generative model for the data given in Figure 2.

The user specified prior parameters are B={α, µ0,0,C0,m, σ2}. To some extent, the prior param-
eter C0 acts as a smoothing term to ensure that the parameters of the next time epoch to be similar
to the previous one. Following Gopal and Yang (2014), the concentration parameters of the clus-
ters at time t (kt,h) are drawn from a log-Normal distribution with mean m and variance σ2. The
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πt ∼ Dirichlet(.|α)

µ1,h ∼ vMF(.|µ0,0,C0), h ∈ [1,H]

µt,h ∼ vMF(.|µt−1,h,C0), for t ∈ [2,T ], h ∈ [1,H]

µt,h ∼ vMF(.|µt,0,C0), t ∈ [2,T ], h = H + 1

kt,h ∼ logNormal(.|m, σ2)

zt,i|πt ∼ Multi(.|πt)

xt,i ∼ vMF(.|µzt,i , kzt,i)

where t ∈ [1,T ], h ∈ [1,H], i = 1, 2, · · ·Nt

Figure 2: A graphical model representation of OTvMFMM, in which nodes represent random vari-
ables, arrows denote dependency among variables, and plates denote replication.

cluster-specific mean parameters at time t (µt,h) are drawn from a vMF distribution centered around
the corresponding clusters at the previous time t − 1 or centered around µt,0 with concentration C0.
This evolutionary change of the cluster parameters introduces flexibility and enables OTvMFMM
to accommodate smooth changes in the mean parameter within a given cluster over time.

The inference and reversible jump MCMC algorithm for OTvMFMM can be adapted straight-
forwardly from those of TvMFMM introduced in Section 4.2, 4.3. The likelihood of the complete-
data is given by

P(H,{xi,t}
Nt
i=1, {zi,t}

Nt
i=1, {πt,h, θt,h}

H
h=1|B)

= P(H) f (πt|α) P({zi,t}
Nt
i=1|πt) f (µt|µt,0,C0) f (κt|m, σ2) f ({xi,t}

Nt
i=1, {zi,t}

Nt
i=1|{πt,h, θt,h}

H
h=1)

= P(H) f (πt|α)
H∏

h=1

f (µt,h|µt−1,h,C0) f (κt,h|m, σ2)
Nt∏
i=1

P(zt,i|π) f (xt,i|µzt,i , κzt,i)

(24)

The likelihood of xt,i can be defined as one of its marginal distributions by integrating out the
distributions πt, µt and κt and summing over zt,i:

f (xt,i|m, σ2, µt−1,h,C0, α) =∫
πt

∫
µt

∫
κt

f (πt|α)
H∏

h=1

P(zt,i,h = 1) f (xt,i|µt,h, κt,h) f (µt,h|µt−1,h,C0) f (κt,h| m, σ2)

=

∫
πt

f (πt|α)
H∏

h=1

P(zt,i,h = 1)
∫
µt

∫
κt

H∏
h=1

f (xi|µt,h, κt,h) f (µt,h|µt−1,h,C0) f (κt,h| m, σ2)

(25)

Similarly to Section 4.2, we obtain the following updates for the posterior parameters.
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γ(zt,i,h) ≡ P(zt,i,h = 1|Zt,−i, {xi,t}
Nt
i=1, κt,m, σ2, µt−1,h,C0, α)

∝
(
nt,h + α

)
CD(κt,h)

CD(‖κt,h
∑

j,i zt, j,hxt, j + C0 µt−1,h‖)
CD(‖κt,h(xt, j +

∑
j,i zt, j,hxt, j) + C0 µt−1,h‖)

f (κt,h|Xt,Zt, κt,m, σ2,µt−1,h,C0) ∝
CD(κt,h)nt,hCD(C0)

CD(‖κt,h
∑

j zt, j,hxt, j + C0 µt−1,h‖)
logNormal(κt,h|m, σ2)

f (µt,h|Xt,Zt,µt−1,h,C0) ∝ exp


κt,h

∑
i

zt,i,hxt,i + C0 µt−1,h

 µt,h


f (πt,h|{xi,t}

Nt
i=1, {zi,t}

Nt
i=1, α) ∝

(
nt,h + α

)

(26)

where nt,h is the number of observations assigned to the h-th component at time t, nt,h =
∑

i zt,i,h.
The empirical updates for the prior parameters are given as follows

µt,0 =

∑H
h=1 µt,h

‖
∑H

h=1 µt,h‖
, C0 =

rD − r3

1 − r2 , where, r =
‖
∑H

h=1 µt,h‖

H
, t ∈ [2,T ]

arg max
α>0

−log
 Γ(Hα)∏H

h=1 Γ(α)

 + (α − 1)
H∑

h=1

πt,h

m =
1
H

H∑
h=1

log(κt,h), σ2 =
1
H

H∑
h=1

log(κt,h)2 − m2

(27)

Similarly, the move (5) and (6) of the RJMCMC algorithm for OTvMFMM can be straightfor-
wardly derived following the strategy for TvMFMM in Section 4.3. The acceptance probabilities of
split and merge moves are min{1, A} and min{1, A−1} respectively, where

A =
P(H + 1,Z′t , {π

′
t,h, θ

′
t,h}

H
h=1,B | Xt)

P(H,Zt, {πt,h, θt,h}
H
h=1,B | Xt)

×
dH+1

bHPallocq(u)
×

∣∣∣∣∣ ∂Σ

∂(λ,V)

∣∣∣∣∣ × | det(J)| (28)

The acceptance probabilities for birth and death moves are min{1, A} and min{1, A−1} respectively,
where

A =
P(H + 1)

P(H)
×

1
B(α,Hα)

× πα−1
t, j∗ (1 − πt, j∗)

N+Hα−M × (H + 1)

×
dH+1

(H0 + 1)bH
×

1
g1,H(πt, j∗)

× (1 − πt, j∗)
H

(29)

In Eq. (29), H0 is the number of empty components, g1,H(·) is the probability density function of
Beta(1,H) distribution.

5. Empirical Evaluation

In this section, we evaluate the proposed models on synthetic and real-world data. We used the
movMF software4 provided by Banerjee et al. (2005) to generate synthetic data with: a) 4 well-
separated components; b) 5 well-separated components; c) 7 not well-separated components. Each
of the synthetic datasets has a training size of 10000 and held-out test data size of 2500. The
visualisation of synthetic dataset is presented in Figure 3.

4. http://suvrit.de/work/soft/movmf/
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(a) 4 well-separated components (b) 5 well-separated components (c) 7 not well-separated components

Figure 3: Visualisation of synthetic data on 3-d unit sphere.

Preprocessing of Wikipedia data. In Wikipedia, pages are subdivided into ‘namespaces’5

which represent general categories of pages based on their function. For instance, the article (or
main) namespace is the most common namespace and is used to organise encyclopedia articles.
In many practical applications, we might be more interested in how the actual interests of editors
(in terms of the categories of Wikipedia articles they have edited) change over time. For this rea-
son, rather than using the main namespace as one feature, we further group Wikipedia articles into
clusters based on their macro-categories6. Because the categories for articles given by Wikipedia
are generally not fine-grained, we infer the macro-categories for articles by identifying candidate
categories from the DBpedia7 category graph. DBpedia is one of the best known multi-domain
knowledge bases which extracts structure information from Wikipedia Categorization system and
forms a semantic graph of concepts and relations. The association between Wikipedia categories
and DBpedia concepts is defined using the subject property of the DCIM terms vocabulary (pre-
fixed by dcterms:) (Hulpus et al., 2013). A category’s parent and child categories can be extracted
by querying for properties skos:broader and skos:broaderof, these category-subcategory relation-
ships create connections between DBpedia concepts. We can obtain a DBpedia category graph8 by
merging all the connections among DBpedia concepts together. With the category graph available,
we can identify the macro-categories for Wikipedia articles by searching for the shortest paths from
the categories associated with the articles to the macro-categories in the category graph. If multiple
shortest paths exist, then the article is assigned to multiple macro-categories with weights propor-
tional to the number of paths leading to a specific macro-category. For other complex methods of
labelling topics, we recommend the readers refer to Hulpus et al. (2013).

Users can make edits to any namespace or article based on their interests and expertise. The
amount of edits across all the 28 namespaces and 22 macro-categories can be considered as work
archetypes. A namespace or macro-category can be considered as a ‘term’ in the vector space
for document collections, the number of edits to that namespace/category is analogous to word
frequency. A user’s edit activity across different namespaces/categories in a time period can be
regarded as a ‘document’. The main motivation of this work is to apply topic models on the evolving
user behavioural data in order to identify and characterise the patterns of change in user edit activity

5. http://en.wikipedia.org/wiki/Wikipedia:Namespace
6. At the time we collected data for this work, there were 22 macro-categories: http://en.wikipedia.org/
wiki/Category:Main_topic_classifications

7. http://dbpedia.org
8. The category graph is a directed one due to the nature of category-subcategory structure.
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(i.e. common work archetypes) over time in Wikipedia. For this purpose, we parsed the May 2014
dump of English Wikipedia9, collected the edit activity of all registered users, then aggregated the
edit activity of each user on a quarterly basis. In this way, we obtained a time-varying dataset
consisting of the quarterly editing activity of all users from the inception of Wikipedia till May 2nd,
2014. There is an overwhelming number of users who stayed active for only one quarter. To avoid
a bias towards behaviours most dominant in dataset with larger user bases, following Furtado et al.
(2013), we randomly selected 20% of users who stayed active for only one quarter, included these
users and those who were active for at least two quarters as our training dataset; the remaining 80%
of short-term users were used as held-out dataset. The statistics and an example of the dataset are
given in Figure 4. The size of the quarterly datasets range from several hundreds to about 200,000.
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Observations of quarterly datasets.

An example of a simple entry in the dataset.
Uname Quarter Mathematics Science Article talk
User A 10 233 650 2

Wikipedia Wikipedia talk user user talk
299 33 2 81

Dataset Statistics.
#Features #Quarters #True clusters

Wikipedia dataset 50 21 unknown

Figure 4: Statistics and an example of Wikipedia dataset.

We implement the models in Python, and parallelize the models wherever possible by using
the parallel functionality of Python. Specifically, we make use of the multiprocessing10 package to
implement parallelism for parameter updates, and use Value and Array data structures provided by
the package to enable data sharing among multiprocessors.

Experimental settings. All our experiments were run on 32 core AMD Opteron 6134 @
2.25Ghz with 252GB RAM. The main computational bottleneck in our collapsed Gibbs sampling
algorithm is the computation of z and κ. We compared the proposed models with the following
algorithms and models that are widely-used in the literature:

• K-means (Hartigan and Wong, 1979) and MiniBatchKMeans (Sculley, 2010) algorithms with
random and k-means++ (Arthur and Vassilvitskii, 2007) initialisation for the centroids. Dif-
ferent initialisation of the centroids for k-means can affect its convergence and may lead to
a local minimum. The k-means++ initialisation scheme selects initial cluster centers in a
heuristic way which can speed up convergence and lead to better results than random initiali-
sation.

• Non-negative matrix factorization (NMF) model (Lee and Seung, 1999). We used the Non-
negative Double Singular Value Decomposition (NNDSVD) strategy (Boutsidis and Gal-
lopoulos, 2008) to choose initial factors for NMF, which can produce deterministic results
and avoid a poor local minimum.

9. http://dumps.wikimedia.org/enwiki/20140502/
10. https://docs.python.org/2/library/multiprocessing.html
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• Dynamic topic model (DTM)11 (Blei and Lafferty, 2006), designed for clustering of temporal
document collections represented in term-frequency style format.

• Bayesian von Mises-Fisher mixture model (BvMFMM) (Gopal and Yang, 2014), designed for
clustering of static numeric (and directional) data. The model is initialised with k-means++
(Arthur and Vassilvitskii, 2007) method.

• Dirichlet process Gaussian mixture model (DP-GMM) with sub-cluster split/merge moves12

(Chang and Fisher III, 2013).

The generated synthetic data is L2 normalised. For Wikipedia datasets, we used the tf-idf nor-
malised representation for NMF, BvMFMM, DP-GMM and OTvMFMM, and feature count repre-
sentation (without normalisation) for DTM. For k-means, MiniBatchKMeans and NMF, we used
the implementation in the scikit-learn package. If not specified, we run the models with their de-
fault parameters. If not explained specifically, TvMFMM is initialised with k-means++ strategy, and
OTvMFMM is initialised with posterior estimation from the previous time point. To determine the
number of clusters for parametric models (i.e. NMF, BvMFMM, and DTM) on real-world data, we
experimented with different number of clusters k ∈ [5, 45] with steps of 5 on the quarterly Wikipedia
editor datasets using Non-negative Matrix Factorization (NMF) clustering, and then employed mea-
sures such as normalised pairwise mutual information (NPMI) as suggested by O’Callaghan et al.
(2015) to assess model coherence for different ks. We found that overall, the run with 10 clusters
generates more coherent clusters, so we set H = 10 for parametric models. Detailed analysis is
given in Appendix F.

Chaining of clusters13. Label switching of the components (stemming from the posterior dis-
tribution being invariant with respect to the permutation of the component labels) is an issue which
needs to be solved when analyzing MCMC samples. Briefly, label switching can be solved by
imposing certain ordering constraints on component parameters. Celeux et al. (2000) proposed a
k!-means style clustering algorithm to deal with label switching problem for MCMC chains, and
showed the advantages and justification of k!-means clustering over loss functions for label switch-
ing problem in terms of avoiding storage of the complete MCMC chain. In this work, we employ
their k!-means style algorithm for two purposes: (1) to solve label switching problem for RJMCMC
chains for mixture model estimation, and (2) to chain the clusters in different quarters together in
order to visualise the popularity and dynamics of clusters over time.

To evaluate the influence of the two different strategies for split-merge moves, we compared the
performance of TvMF mixture model with/without common eigenvectors for split-merge moves on
synthetic data. The results suggest that TvMFMM with two different strategies for the split-merge
moves show similar performance and mixing properties on synthetic data. Therefore, for the results
presented in the following sections, we ran TvMFMM and OTvMFMM with common eigenvectors
for split-merge moves. The detailed results are provided in Appendix E.

The prior parameters for all the vMF mixtures are {α, µ0,C0,m, σ2}. Although we provide an
empirical Bayes step to estimate the priors from data, estimating too many parameters is prone to
problems such as overfitting. The acceptance rate of the birth-death move in Eq. (23, 29) is sensitive
to the value of α, larger value of α tends to result in lower acceptance rate for the move. We set

11. Available at: https://www.cs.princeton.edu/˜blei/topicmodelling.html
12. Available at: http://people.csail.mit.edu/jchang7/code.php
13. Throughout the paper, we use the terms topic, component, cluster, mixture, and common user role interchangeably

to denote the same concept.
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α = 1.0 for all models. The prior parameter µ0 is estimated using empirical Bayes. Gopal and Yang
(2014) suggested setting the prior parameter manually with relative low values (typically smaller
than 10) rather than directly learning it from data. Following the suggestion, we set C0 = 2.0 for all
the vMF mixtures. The prior parameters m and σ2 control the range of the concentration parameters
κ, which can affect the mixing property / convergence of the RJMCMC chain. More details about
this effect are discussed in Appendix H. In the following analyses (excluding those in Appendix H),
we used the trace plot of the number of components and log likelihood over sweeps to assist setting
appropriate values for m and σ2.

5.1 Clustering Performance on Synthetic Data

This section compares the clustering performance of TvMF mixture model with other models on
synthetic data. Following Gopal and Yang (2014), we compared the clustering performance of
TvMFMM with other models on synthetic datasets using the following performance metrics:

• Adjusted Rand Index (ARI)14.

• Normalised Mutual Information (NMI)14.

• Adjusted Mutual Information (AMI)14.

• Purity-related metrics14: Homogeneity, quantifies the extent to which each cluster contains
only members of a single class; Completeness, quantifies the extent to which all members of
a given class are assigned to the same cluster.

Table 2 presents the comparison of clustering performance. The results are the average of 10
runs for each method. K-means and MiniBatchKMeans algorithms are run with the true number
of components and hard assignments for each dataset but with 2 different strategies to initialise the
centroids. BvMFMM is also run with the true number of components. The posterior estimation of
the number of components for TvMFmix are 4, 5, and 7 for the three synthetic datasets, respec-
tively, based on the results in Appendix E. To further verify our findings, we conducted two-way
significance tests using paired t-tests between TvMFMM and other models for every metric. The
null hypothesis is that there is no significant difference between the performance of TvMFMM and
other models.

The results show that TvMFMM performs statistically significantly better than BvMFMM on
synthetic datasets with 7 not well-separated components, but both models have similar performance
on datasets with 4 and 5 well-separated components; TvMFMM performs statistically significantly
better than DP-GMM on all the three synthetic datasets; TvMFMM has similar Homogeneity scores
as k-means and MiniBatchKMeans, but performs statistically significantly better than k-means and
MiniBatchKMeans on the other four performance metrics. Note that the clustering performance of
BvMFMM relies on setting the optimal number of clusters and reasonable initialisation of cluster
centres, while TvMFMM solves the two issues via the use of RJMCMC algorithm. For BvMFMM,
even if the number of clusters could be tuned carefully to be the optimal number for a specific
dataset, a reasonable initialisation of the cluster parameters (i.e. mean directions) would still be
difficult particularly for not well-separated datasets. This explains why TvMFMM performs better
than BvMFMM on the synthetic dataset with 7 components. Overall, the results suggest that the
proposed TvMF mixture model performs significantly better than other widely-used models such
as, k-means, BvMFMM, and DP-GMM on synthetic data, i.e. points on the unit sphere.

14. http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
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Table 2: Comparison of clustering performance for different models on synthetic data. Bold face
numbers indicate best performing method for the corresponding metric. The results of the paired
t-test against TvMFMM are denoted by: * for significance at 5% level, ** for significance at 1%
level.

True H ARI AMI NMI Homogeneity Completeness
TvMFMM

4 0.925 0.898 0.899 0.898 0.899
5 0.947 0.941 0.945 0.947 0.944
7 0.809 0.821 0.829 0.827 0.832

BvMFMM
4 0.881 0.858 0.86 0.859 0.861
5 0.94 0.931 0.931 0.931 0.932
7 0.612** 0.676** 0.719** 0.677** 0.765*

DPGMM
4 0.662** 0.652** 0.726** 0.652** 0.811**
5 0.599** 0.626** 0.727** 0.626** 0.847**
7 0.436** 0.494** 0.614** 0.495** 0.767*

Kmeans with kmeans++ initialization
4 0.517** 0.577** 0.726** 0.911 0.578**
5 0.675** 0.710** 0.825** 0.958 0.711**
7 0.769* 0.766** 0.808* 0.853 0.767**

Kmeans with random initialization
4 0.516** 0.576** 0.724** 0.909 0.577**
5 0.674** 0.710** 0.825** 0.958 0.711**
7 0.770* 0.766** 0.809* 0.854 0.767**

MiniBatchKMeans with kmeans++ initialization
4 0.540** 0.581** 0.726** 0.906 0.582**
5 0.692** 0.714** 0.826** 0.954 0.715**
7 0.765* 0.764** 0.807* 0.85 0.765**

MiniBatchKMeans with random initialization
4 0.544** 0.584** 0.729** 0.909 0.585**
5 0.710** 0.722** 0.833** 0.959 0.723**
7 0.775* 0.770** 0.811* 0.853 0.771**

5.2 Performance on Real-world Data

In this section, we evaluate the performance of the proposed online trans-dimensional von Mises-
Fishes mixture model (OTvMFMM) on Wikipedia editor activity data over 21 quarters. Because
the first 9 quarters had a small number of user activity records (generally less than 1000), we choose
to analyse the editor activity from the 10-th quarter to the 30-th quarter.
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5.2.1 CONVERGENCE DIAGNOSTICS OF OTVMFMM

Before proceeding to model exploration, we diagnose the convergence of the OTvMFMMs. We
follow the methodology of Brooks and Giudici (2000) which monitors particular functions of pa-
rameters (e.g. log likelihood). The method requires running I independent chains with 2T iterations,
and then divides the I sequences into batches of length b, which gives a series of sequences of chains
with length 2kb (where k ∈ [1,T/b]). With sequences of chains ready, we then calculate the total
variations of log likelihood both between chains and between models to diagnose the convergence
of the RJMCMC chain. Following Brooks and Giudici (2000), six quantities are computed:

• The total variation V̂ and the within-chain variance Wc. Essentially, the ratio V̂/Wc is anal-
ogous to the potential scale reduction factor (PSRF, denoted by R̂) of Gelman and Rubin
(1992).

• The within-model variance Wm, the variance within both chains and models WmWc. The
comparison of Wm and WmWc, which should well approximate the true mean of within-model
variance, tells us how well the chains are mixing within models.

• The between-model variance Bm, and the within-chain variation split between and averaged
over models BmWc. The comparison of Bm and BmWc, which should well approximate the
true between-model variance, tells us how well the chains are mixing between models.
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Figure 5: Diagnostic plots for convergence analysis and trace of the log likelihood on Wikipedia
data: (a)-(b) models started with k-means++ initial means; (c)-(d) models started with the posterior
mean of the previous quarter.
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For details of the quantities readers can refer to Brooks and Giudici (2000). Three independent
chains (each chain running 20000 iterations) were used to diagnose the convergence of OTvMFMMs
started with k-means++ initial mean parameters (the initial number of components was set to 10)
and started with the posterior mean of the previous quarter, respectively. We use log likelihood as
the scalar parameter for convergence diagnostics which has also been used by (Brooks and Giudici,
2000; Zhong and Girolami, 2009). Figure 5 gives the diagnostic plots of convergence analysis on
the 15th quarter of Wikipedia editor activity data.

The results showed that in general, OTvMFMMs started with k-means++ initial mean param-
eters have higher level of variations in log likelihood than those started with posterior parameter
initialisation. OTvMFMMs started with k-means++ initial mean parameters became convergent af-
ter k=4, as evidenced in the corresponding trace plot for log likelihood; the overall variations of log
likelihood for OTvMFMMs started with posterior mean initialisation were relatively stable through-
out the range of ks, the chains were mixing very well after 3000 iterations. The results suggested
that, OTvMFMM started with posterior mean initialisation converges faster than that started with k-
means++ initial mean parameters. When analysing the massive temporal Wikipedia data, we notice
that OTvMFMMs started with posterior mean initialisation tend to converge within 3000 iterations;
we generally determine the convergence of OTvMFMM by checking the trace of the log likelihood.

5.2.2 QUALITATIVE ANALYSIS

To show how the OTvMFMM can generate more coherent, interpretable and intuitive clusters (or
common user roles) than existing models for time-varying user behavioural data, we compare the
popularity of clusters over time and the evolution of top terms for selected similar clusters identi-
fied by different models. Figure 6 presents the trends of clusters over time for different models15.
We hand-labelled the clusters generated by different models according to the top terms for each
cluster. We observe that clusters generated by DTM and OTvMFMM evolve relatively smoothly
in their trends over time; NMF tends to generate many clusters that appear in less than 4 quarters,
indicating smoothness issues in the clusters; DTM fails to capture the birth/death of clusters over
time, while OTvMFMM can capture the birth/death of clusters over time; BvMFMM generates the
least smooth clusters in terms of popularity over time. Comparing the cluster labels for DP-GMM
and OTvMFMM in Figure 6, we notice that DP-GMM tends to generate fewer clusters that are rel-
atively general, whereas OTvMFMM tends to generate a larger number of clusters that are specific,
interpretable and intuitive.

Figure 7 visualises the evolution of top terms for selected common user roles identified by differ-
ent models. We observe that user roles generated by DTM and OTvMFMM generally contain a few
most dominant terms, indicating interpretable and intuitive clusters; NMF also generates a few in-
terpretable clusters; BvMFMM and DP-GMM tends to generate clusters with many dominant terms,
indicating general and less interpretable clusters. The visualisation of more common user roles are
provided in Figure 18 of Appendix I. Overall, the results suggest that DTM and OTvMFMM tend
to generate interpretable and intuitive clusters, NMF tends to generate many clusters that appear in
less than 4 quarters, BvMFMM and DP-GMM tend to generate general clusters that lack of most
dominant terms.

Appendix G presents a discriminative analysis of of the topical representations by different
models on the 18th quarter of Wikipedia Editor dataset.

15. To improve readability, we only visualise the trends for clusters that appear at least 4 quarters.
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Figure 6: Popularity of common user roles over time for different models and birth-death of user
roles over time for OTvMFMM. Quarter corresponds to the index of quarter. Intensity indicates the
weight of user roles in each quarter, and is calculated as the percentage of user profiles assigned
to that user role in a quarter. Each curve represents the trend of one user role over time. Chain id
indicates the corresponding user role for OTvMFMM. NB: in (e), we make use of a discontinuity in
the y-axis to better visualise the detail in the bottom of the plot.
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Figure 7: Evolution of top terms for similar common user roles (Misc Maintenance) identified by
different models. Weight indicates the weight of features for the user roles, and is available from
the model parameters.

5.2.3 QUANTITATIVE ANALYSIS

We evaluate the performance of OTvMFMM and its counterparts quantitatively from two aspects:
the coherence of the clusters generated, and the perplexity (equivalently, held-out log likelihood) of
the models. Traditional predictive metrics, such as perplexity, are commonly used in the literature
to evaluate topic models; these metrics capture the model’s predictive ability over a test set of un-
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seen documents based on the parameters learned from a training set (Chang et al., 2009). Following
these authors, the predictive likelihood of data point x can be approximated using P(x | Xtrain) =∫
Θ

P(x,Θ|Xtrain) ≈ P(x|Θ̂) P(Θ̂|Xtrain), where Θ̂ are the posterior estimation of model parameters
learned from the training set. Chang et al. (2009) showed that perplexity was often negatively cor-
related with human judgements of topic quality, and suggested alternative measures such as topic
coherence or focusing upon real-world task performance that includes human knowledge to evaluate
topic quality. Topic coherence can capture the semantic interpretability of discovered topics based
on their corresponding descriptor terms using measures such as normalised Pointwise Mutual In-
formation (NPMI) (Chang et al., 2009; O’Callaghan et al., 2015). Higher coherence scores indicate
better semantic interpretability, thus more coherent and interpretable topics. Figure 8 compares the
coherence of clusters, and held-out log likelihood for different models16.
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Figure 8: Mean normalised PMI and held-out log likelihood.

We observe that the NPMI values of OTvMFMM are constantly higher than those of NMF and
DTM in the range of quarters considered; the NPMI values of OTvMFMM are higher than those
of BvMFMM and DP-GMM in most quarters. The NPMI values of BvMFMM and DP-GMM
experience certain level of fluctuation compared with those of the other three models. The held-
out log likelihood of OTvMFMM is constantly higher than that of BvMFMM in all the quarters
considered; the held-out log likelihood of OTvMFMM is higher than that of DP-GMM from quarter
10 to 23, after which the measures of the two models are approximately at the same level. To
summarise, the results suggest that OTvMFMM presents better predictive ability on unseen data
than BvMFMM and DP-GMM, and that OTvMFMM generates more interpretable and coherent
clusters than other models.

5.2.4 TIME ANALYSIS

Table 3 compares the learning time of different models on the 13th to 16th quarter of Wikipedia
datasets. For DTM, the time reported was the total learning time on the 4 datasets. It is obvious
from the table that NMF took the least time to learn the model, DTM took the second least time
to learn the model, DP-GMM and BvMFMM took about the same amount of time to train the

16. We did not compare with the perplexity of DTM because DTM inferred model parameters using variational Bayes,
and gave a lower bound of held-out log likelihood.
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model. Comparing with the other four models, OTvMFMM took the maximum amount of time to
learn the model on all the datasets considered. This is due to two reasons: (i) it generally takes a
substantial amount of time for reversible jump MCMC styled algorithms (e.g. Richardson and Green
(1997); Zhang et al. (2004); Dellaportas and Papageorgiou (2006); Zhong and Girolami (2009)) to
generate convergent MCMC chains; (ii) compared with other models, updating the latent variables
in OTvMFMM involves calculating the normalising constants of von Mises-Fisher distributions,
which is computationally expensive, particularly for large datasets.

Table 3: Learning time in seconds for number of iterations (#Iterations) after which the algorithms
converged for different models.

NMF DTM DP-GMM BvMFMM OTvMFMM #Obs

#Iterations – 200 5000 40 10000 –

Quarter 13 12.65

6217.0

867.95 735.66 53333.33 7344
Quarter 14 15.83 1170.56 1503.28 69504.62 10217
Quarter 15 32.34 1722.03 1742.40 119349.18 14829
Quarter 16 27.92 2215.67 2032.45 108577.73 20129

6. Applications of User Profiles

In this section, we explore: (1) how discriminative are the generated features in distinguishing
different groups of users, and (2) how useful are the features generated from patterns of change in
editor activities by different models for the churn prediction task. Identifying the key features that
distinguish different user groups and different life stages makes it possible to develop techniques for
important applications, such as churn prediction and task recommendation. Churners present a great
challenge for community management and maintenance as the turnover of established members can
have a detrimental effect on the community in terms of creating communication gaps, knowledge
gaps or other gaps. Qin et al. (2014) presented similar applications of user profiles. This work
replicates their application scenarios in order to provide insights into the usefulness of the features
generated by the proposed models in real-world applications.

6.1 Group Level Change in User Profiles

Different users are more likely to follow slightly or totally different trajectories in their lifecycle.
In this analysis, we examine how different groups of users evolve throughout their lifecycle periods
by comparing how each user’s profile in one period is different from that in the previous periods.
The historical comparison of the distribution of user profiles toward user roles is a useful indicator
of how the user changes edit activity relative to past behaviour. Cross-period entropy can be used
to gauge the cross-period variation in user’s edit activity throughout lifecycle periods. The cross-
entropy of one probability distribution P (from a given lifecycle period) with respect to another
distribution Q from an earlier period (e.g. the previous quarter) is defined as follows (Rowe, 2013):

C(P,Q) = −
∑

x

p(x) logq(x) (30)
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We are interested in questions such as: what are the differences between the changes in edit ac-
tivity for different groups of users (e.g. short-term vs. long-term users, admin vs. bot17 users)
over time? For this purpose, we divide the users into several groups according to the number
of active quarters as in Table 4. We calculated the cross-period entropy of each user throughout
their lifestages based on the distributions of their profiles toward the common user roles, and then
recorded the mean of the entropy measures for each group within each period. Plotting the mean
entropy values over lifecycle periods provides an overview of the general changes that each group
experiences. Figure 9 visualises the cross-period entropies for different groups of editors over time.

Table 4: Groups of Editors

Name 4 30–35 >40 Admins Bots

Active quarters equal to 4 30 to 35 more than 40 (previous or current) bot usersadministrators
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Figure 9: Evolution of cross-period entropy for different groups of users using features generated
from DTM and OTvMFMM.

We observe from Figure 9 that there is an obvious separation between the curves corresponding
to the evolution of cross-period entropies of different groups of users using features generated from
both models. Because DTM generates relatively general topics and tends to predict a mixture of
topics (common user roles) for user profiles (a.k.a. soft clustering), whereas OTvMFMM tends to
generate more specific, interpretable and intuitive topics, and then predicts a unique topic for user
profiles (a.k.a. hard clustering). Special care should be taken when interpreting the trends in the
evolution of cross-period entropies for the two models. For DTM, the cross-period entropies of
groups with short-term users (i.e. 4) are much higher than those of groups with long-term users (i.e.
40, 30–35, and Admins), suggesting that short-term users generally experience more fluctuation in
their historical edit activity and thus distribute their edit contribution among multiple namespaces
and categories of articles over the course of their career. For OTvMFMM, the cross-period entropies
of all groups increase over time and the cross-period entropies of groups with long-term users are
much higher than those of groups with short-term users, indicating that long-term users are more

17. In Wikipedia, bots are generally programs or scripts that make repetitive automated or semi-automated edits without
the necessity of human decision-making: http://en.wikipedia.org/wiki/Wikipedia:Bot_policy
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likely to grow gradually in their expertise (i.e. changing from one user role to another) than short-
term users. Overall, the results suggest the features generated by both DTM and OTvMFMM can
capture change in editor activity over time.
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Figure 10: The dynamic of profile distribution for selected long-term and short-term users for DTM
(a-c) and OTvMFMM (d-f). Probability represents the probability of assigning user profile to a
specific user role, and is predicted by DTM. Chain id indicates the corresponding user role for
OTvMFMM.

Figure 10 provides sample individual user lifecycles for two groups of users: short-term and
long-term users in terms of the evolution of profile distribution over time. We observe that there are
certain level of fluctuations in the profile distributions of short-term users, signifying that short-term
users generally do not develop long-term edit interests and tend to distribute their edit contribution
among multiple namespaces and categories of articles over the course of their career in the com-
munity. In contrast, long-term users generally experience gradual and soft evolution in their profile
distributions, and have more diversified edit preference than short-term users; these users tend to
have focused/dominant long-term edit interests in one or more namespaces/categories of articles
throughout their contributory lifespans. These user lifecycles provide further supports for the argu-
ments we make in the previous paragraph.

6.2 Churn Prediction

Definition of churn prediction. Following Danescu-Niculescu-Mizil et al. (2013), we define the
churn prediction task as predicting whether an editor is among the ‘departed’ or the ‘staying’ class.
Considering that our dataset spans more than 5 years (i.e. 21 quarters), and that studies about churn
prediction generally follow the paradigm of predicting the churn status of users in the prediction
period based on user exhibited behaviour in the observation period (e.g. Weia and Chiub (2002);
Danescu-Niculescu-Mizil et al. (2013)), we employed a sliding-window based method for churn
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prediction. Specifically, we make predictions based on features generated from editor profile dis-
tributions in a sliding window with w=4 quarters. An editor is in the ‘departed’ class if she leaved
the community before being active for less than m=1 quarter after the sliding window, denote the
interval [w, w+m] as the departed range. Similarly, an editor is in the ‘staying’ class if she was
active in the community long enough for a relatively large n ≥ 3 quarters after the sliding-window,
term the interval [w + n, +∞] as the staying range.

6.2.1 FEATURES FOR THE TASK

Our features are generated based on the findings reported in the previous section. For simplicity, we
assume the w quarters included in the i-th sliding-window being i = [ j, · · · , j + w−1] ( j ∈ [10, 30]),
and denote the Probability Of Activity Profile of an editor in quarter j assigned to the k-th user role
as POAPi, j,k. We use the following features to characterise the patterns of change in editor profile
distributions:

• First active quarter: the quarter in which an editor began edits in Wikipedia. The timestamp
a user joined the community may affect her decision about whether to stay for longer.

• Cumulative active quarters: the total number of quarters an editor had been active in the
community till the last quarter in the sliding window.

• Fraction of active quarters in lifespan: the proportion of quarters a user was active till the
sliding window.

• Fraction of active quarters in sliding window: the fraction of quarters a user was active in
current sliding window.

• Similarity of profile distribution in sliding window: quantifies the similarity of user profile
distributions in any two successive quarters using cosine similarity.

• Diversity of edit activity: denotes the entropy of POAPi, j,k for each quarter j in window i.
This measure captures the extent to which an editor diversified her edits toward multiple
namespaces and categories of articles.

• Cross-entropy of edit activity: denotes the historical variation in POAPi, j,k compared to the
same measure in previous quarters, calculated using Eq. (30). This measure captures the
extent to which an editor changed her edit activity compared to her past behaviour.

• mean POAPi, j,k: denotes the average of POAPi, j,k for each user role k in window i, and cap-
tures whether an editor focused her edits on certain namespaces and categories of articles in
window i.

• ∆POAPi, j,k: denotes the change in POAPi, j,k between the quarter j − 1 and j, measured by
∆POAPi, j,k=(POAPi, j,k − POAPi, j−1,k + δ)/(POAPi, j−1,k + δ), where δ is a small positive real
number (i.e. 0.001) to avoid the case when POAPi, j−1,k is 0. This measure also captures the
fluctuation of POAPi, j,k for each user role k in window i.

For each editor, the first three features are global-level features which may be updated with the
sliding window, the remaining features are window-level features and are recalculated within each
sliding window. The intuition behind the last four features is to approximate the evolution of editor
lifecycle we sought to characterise in the previous section. The dataset is of the following form:
D=(xi, yi), where yi denotes the churn status of the editor, yi ∈ {Churner, Non-churner}; xi denotes
the feature vector for the editor.
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6.2.2 TASK PERFORMANCE

Table 5: Performance of sliding-window based churn prediction using features generated from dif-
ferent models. The measures are averaged over all sliding windows for each model.

Models FP Rate Precision Recall F-Measure ROC Area

DTM 0.40±0.02 0.72±0.01 0.73±0.01 0.72±0.01 0.77±0.01

OTvMFMM 0.47±0.03 0.69±0.01 0.71±0.01 0.69±0.01 0.72±0.02

NMF 0.45±0.02 0.70±0.01 0.71±0.01 0.69±0.01 0.73±0.02

BvMFMM 0.48±0.03 0.69±0.01 0.71±0.01 0.68±0.01 0.70±0.03

DP-GMM 0.45±0.04 0.70±0.01 0.71±0.01 0.69±0.02 0.72±0.04

Table 5 gives the averaged performance of sliding-window based churn prediction using fea-
tures generated from different models. We observe that the best performance is obtained using
features generated from DTM; churn prediction using features generated from the other four mod-
els presents similar performance. Notice that DTM and NMF generally generate a mixture of topics
for user profiles, while the other three models tend to generate unique topics for user profiles. This
suggests that different models may be applied to applications with different requirements. Alter-
natively, models such as DTM and NMF may be better at capturing change in user behaviour for
churn prediction, while discriminative models such as DP-GMM and OTvMFMM may be better at
identifying user expertise for task recommendation. Our results suggest that sudden changes in user
behaviour can be a signal that the user is likely to abandon the community, and that features inspired
by topic models are useful for churn prediction.
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Figure 11: Lift chart of churn prediction using features generated from different models. The
measures are averaged over all sliding windows.
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Lift factors have been widely used by researchers to evaluate the performance of churn-prediction
models (Weia and Chiub, 2002). The lift factors achieved by different models are shown in Fig-
ure 11. In a lift chart, the diagonal line represents a baseline which randomly selects a subset of
editors as potential churners, i.e., it selects s% of the editors that will contain s% of the true churn-
ers, resulting in a lift factor of 1. For instance, in Figure 11, on average, all models (except Baseline)
was capable of identifying 10% of editors that contained at least 20% of true churners (i.e. a lift
factor of 2.0). DTM was capable of identifying 20% of editors that contained 39.3% of true churn-
ers (i.e. a lift factor of 1.966), and 30% of editors that contained 53.9% of true churners (i.e. a lift
factor of 1.799). Evidently, DTM achieved slightly higher lift factors than the other four models, all
models achieved higher lift factors than the baseline. Thus if the objective of the lift analysis is to
identify a small subset of likely churners for an intervention that might persuade them not to churn,
then this analysis suggests that all models can identify a set of 10% of users where the probability
of churning is more than twice the baseline figure.

7. Conclusion

This work proposed an online trans-dimensional von Mises-Fisher mixture model (OTvMFMM)
for temporal user behavioural data, which (a) enables information sharing among clusters via a
Bayesian framework, (b) allows adaptive change in the number of clusters by using our extended
version of the reversible jump MCMC algorithm, and (c) accommodates the dynamics of clusters
for time-varying user behavioural data based on the smoothness assumption. Our efficient col-
lapsed Gibbs sampling algorithms make the models applicable to large-scale real-world data such
as Wikipedia dataset. Empirical results on synthetic and real-world data show that the proposed
models can discover more interpretable and intuitive clusters than other widely-used models, such
as k-means, Non-negative Matrix Factorization (NMF), Dirichlet process Gaussian mixture models
(DP-GMM), and dynamic topic models (DTM). We further evaluated the performance of proposed
models in real-world applications, such as churn prediction task, that shows the usefulness of the
features generated.

The results show that the proposed OTvMFMM can discover more interpretable and intuitive
clusters for evolving user behavioural data than DP-GMM with sub-cluster split/merge moves by
Chang and Fisher III (2013), whereas the latter is found to converge much faster than the former.
An interesting and promising future direction is to replace the reversible jump MCMC algorithm
(Richardson and Green, 1997) with the subcluster split-merge strategy (Chang and Fisher III, 2013)
in order to allow adaptive change in the number of clusters for the Bayesian von Mises-Fisher
mixture models. The new integration would lead to more efficient and interpretable non-parametric
models for L2 normalised data that combine the advantages of both OTvMFMM and DP-GMM. In
addition, heterogeneous user behavioural data are ubiquitous in the sense of multiplicity of features
and multiple data sources available. We would like to handle heterogeneous data and apply the
models to analyse user behavioural data in other online communities.
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Appendices

Appendix A Detailed Inference for Collapsed Gibbs Sampling

Updates for zi. The conditional distribution for zi is given by

γ(zih) ≡ P(zih = 1|Z−i, {x j}
N
j=1, κ,m, σ

2, µ0,C0, α) ∝∫
π

∫
µ

f (xi|µzi , κzi)P(zi|π) f (π|α)
∏
j,i

P(z j|π) f (x j|µz j , κz j)
H∏

h=1

f (µh|µ0,C0) f (κh| m, σ2)

∝

∫
π

P(zi|π) f (π|α)
∏
j,i

P(z j|π)×

H∏
h=1

∫
µh

 f (xi|µzi , κzi)
∏

j,i,z jh=1

f (x j|µh, κh)

 f (µh|µ0,C0) f (κh| m, σ2)

∝

∫
π

P(zi|π) f (π|α)
∏
j,i

P(z j|π) ×
H∏

h=1

∫
µh

 f (xi|µzi , κzi)
∏

j,i,z jh=1

f (x j|µh, κh)

 f (µh|µ0,C0)

(A-1)

where the description of each term in Eq. (A-1) can be referred to Eq. (7). Expanding out the
Dirichlet priors and the discrete distributions according to their usual definitions, i.e., P(π|α) ∼
Dirichlet(H, α), P(zi|π) ∼ Multi(.|π), yields18:

∫
π

P(zih = 1|π) f (π|α)
∏
j,i

P(z j|π) =

∫
π

H∏
h=1

πzih
h

Γ(Hα)∏H
h=1 Γ(α)

H∏
h=1

πα−1
h

∏
j,i

H∏
h=1

πzih
h

=
Γ(Hα)∏H
h=1 Γ(α)

∫
π

H∏
h=1

π
α+nh,−i+zih−1
h

=
Γ(Hα)∏H
h=1 Γ(α)

∏H
h=1 Γ(α + nh,−i + zih)

Γ(Hα + N)

∝ Γ(α + nh,−i + 1) ∝ (α + nh,−i)Γ(α + nh,−i) ∝ (α + nh,−i)

(A-2)

Similarly, expanding out the probabilities f (xi|µzi , κzi), f (x j|µh, κh) and f (µh|µ0,C0) according to
their usual definitions, f (xi|µzi , κzi) = CD(κzi)exp{κziµ

T
zi

xi} and f (µh|µ0,C0) = CD(C0)exp{C0µ
T
0 µh}

18. In the calculation, following Heinrich (2009), the Dirichlet integral of the first kind for summation function,∑
h πh=1, Γ(α)H

Γ(Hα) =
∫
π

∏H
h=1 π

αh−1
h is used, analogous to the identity of the beta integral: B(α1, α2)=

∫ 1

0
xα1−1(1− x)α2−1 dx.

The identity Γ(x + 1)=xΓ(x) is used in the last line.
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yields19:

H∏
h=1

∫
µh

 f (xi|µzi , κzi)
∏

j,i,z jh=1

f (x j|µh, κh)

 f (µh|µ0,C0) =

=

H∏
h=1

∫
µh

CD(κh)nh,−i+zihCD(C0)exp

C0µ
T
0 µh + κhµ

T
h

xi +
∑
j,i

z jhx j




=

H∏
h=1

CD(κh)nh,−i+zihCD(C0)
∫
µh

exp


C0µ

T
0 + κhxT

i + κh

∑
j,i

z jhxT
j

 µh


=

H∏
h=1

CD(κh)nh,−i+zihCD(C0)

CD(‖κh
(
xi +

∑
j,i z jhx j

)
+ C0µ0‖)

(A-3)

Substituting Eq. (A-2)-(A-3) in Eq. (A-1) yields the following:

P(zih = 1|Z−i, {x j}
N
j=1, κ,m, σ

2, µ0,C0, α)

∝

∫
π

P(zi|π) f (π|α)
∏
j,i

P(z j|π)
H∏

h=1

∫
µh

 f (xi|µzi , κzi)
∏

j,i,z jh=1

f (x j|µh, κh)

 f (µh|µ0,C0)

∝ (α + nh,−i)
H∏

h=1

CD(κh)nh,−i+zihCD(C0)

CD(‖κh
(
xi +

∑
j,i z jhx j

)
+ C0µ0‖)

∝ (α + nh,−i)CD(κh)
CD(‖κh

∑
j,i z jhx j + C0µ0‖)

CD(‖κh
(
xi +

∑
j,i z jhx j

)
+ C0µ0‖)

(A-4)

Updates for κ. Similarly, the conditional distribution for κh is given by

f (κh|Z, {x j}
N
j=1, κ,m, σ

2, µ0,C0) ∝
∫
µh

∏
zih=1

f (xi|µh, κh) f (µh|µ0,C0) f (κh| m, σ2)

∝

∫
µh

∏
zih=1

CD(κh)CD(C0)exp
{
κhµ

T
h xi + C0µ

T
0 µh

}
logNormal(κh|m, σ2)

∝

∫
µh

CD(κh)nhCD(C0)exp

κhµ
T
h

∑
zih=1

xi + C0µ
T
0 µh

 logNormal(κh|m, σ2)

∝ CD(κh)nh CD(C0) logNormal(κh|m, σ2)
∫
µh

exp

κhµ
T
h

∑
zih=1

xi + C0µ
T
0 µh


∝

CD(κh)nhCD(C0)
CD(‖κh

∑
j:z jh=1 z jhx j + C0µ0‖)

logNormal(κh|m, σ2)

(A-5)

where nh is the number of observations assigned to the h-th component.

19. In this calculation, the identity of the von Mises-Fisher integral (Mardia and Jupp (2000), page 168; Chiuso and Picci
(1998)) is used,

∫
RD−1 exp

{
κµT x

}
dx = (2π)

D
2
(
κ̂
2

)1−D/2
ID/2−1(κ̂) = 1

CD(κ̂) , where κ̂ = ‖κµ‖.

39



QIN, CUNNINGHAM AND SALTER-TOWNSHEND

Appendix B Empirical Bayes Estimates for Prior Parameters

The joint likelihood function of the prior parameters (µ0,C0,m, σ2, α) is given by:

L(µ0,C0,m, σ2, α|{xi}
N
i=1, µ, κ, π) = f ({xi}

N
i=1|µ, κ, π) f (µ|µ0,C0) f (κ|m, σ2) f (π|α)

∝

H∏
h=1

CD(C0)exp
{
C0µ

T
0 µh

} H∏
h=1

1

κhσ
√

2π
exp

{
−

(logκh − m)2

2σ2

}
Γ(Hα)∏H
h=1 Γ(α)

H∏
h=1

πα−1
h

(B-1)

Since the prior parameters are assumed to be independent, we have the following log-likelihood
functions according to Eq. (B-1)

logL(C0, µ0|{xi}
N
i=1, µ) = H logCD(C0) + C0µ

T
0

 H∑
h=1

µh


logL(m, σ2|{xi}

N
i=1, κ) = −

H
2

log(σ2) −
1

2σ2

H∑
h=1

(
log(κh)2 − 2mlog(κh) + m2

)
logL(α|{xi}

N
i=1, π) = −log

 Γ(Hα)∏H
h=1 Γ(α)

 + (α − 1)
H∏

h=1

πh

(B-2)

Following Gopal and Yang (2014), the empirical Bayes estimate for C0, µ0 is given by:

arg max
µ0,C0

H logCD(C0) + C0µ
T
0

 H∑
h=1

µh

 (B-3)

which suggests the following updates (Gopal and Yang, 2014)

µ0 =

∑H
h=1 µh

‖
∑H

h=1 µh‖
, C0 =

rD − r3

1 − r2 , where, r =
‖
∑H

h=1 µh‖

H
(B-4)

Similarly, the empirical Bayes estimate for α is given by Gopal and Yang (2014):

arg max
α>0

−log
 Γ(Hα)∏H

h=1 Γ(α)

 + (α − 1)
H∑

h=1

πh (B-5)

Since there exists no closed-form solution for Eq. (B-5), we rely on numerical optimization such as
gradient descent to find the Maximum Likelihood Estimate for α.

The empirical Bayes estimate for m, σ2 can be obtained in a similar way by taking the partial
derivative on Eq. (B-2) w. r. t. m and σ2, respectively, which gives:

∂logL(m, σ2|X, κ)
∂m

= −
1

2σ2

H∑
h=1

[
−2log(κh) + 2m

]
= 0

∂logL(m, σ2|X, κ)
∂x

= −
H
2x

+
1

2x2

H∑
h=1

(
log(κh)2 − 2mlog(κh) + m2

)
= 0 (Let x=σ2)

⇒ m =
1
H

H∑
h=1

log(κh), x = σ2 =
1
H

H∑
h=1

log(κh)2 − m2

(B-6)

Alternatively, we can use the Monte Carlo Expectation-Maximum (MCEM) algorithm (Wei and
Tanner, 1990) to estimate the prior parameters m and σ2.
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• E-step: Randomly sample L times the value for κh, {κ(i)
h }

H
h=1, i ∈ [1, L]. Note that previously,

we use MCMC sampling to estimate κks. Here, we can reuse the set of generated κhs in the
MCMC step.

• M-step: Estimate m and σ2 by maximising the log-likelihood:

m =
1

LH

L∑
i=1

H∑
h=1

log(κ(i)
h ), σ2 =

1
LH

L∑
i=1

H∑
h=1

log(κ(i)
h )2 − m2 (B-7)

Appendix C Factorization of Acceptance Probability

We can factorize P(H,Z, {πh, θh}
H
h=1,B|{xi}

N
i=1) below:

P(H,Z, {πh, θh}
H
h=1,B|{xi}

N
i=1) =

P(H,Z, π, µ, κ,m, σ2, µ0,C0, α, {xi}
N
i=1)

P({xi}
N
i=1)

=
P(H) f (π|α)P(Z|π) f (µ|C0, µ0) f (κ|m, σ2) f ({xi}

N
i=1|Z, µ, κ)

P({xi}
N
i=1)

(C-1)

where each term in Eq. (C-2) can be specified as follows:

P(H + 1,Z′,Θ′,B|{xi}
N
i=1)

P(H,Z,Θ,B|{xi}
N
i=1)

=
P(H + 1)

P(H)
×

f (π′|α)
f (π|α)

×
P(Z′|π′)
P(Z|π)

×
f (µ′|µ0,C0)
f (µ|µ0,C0)

×

f (κ′|m, σ2)
f (κ|m, σ2)

×
f ({xi}

N
i=1|Z

′, µ′, κ′)

f ({xi}
N
i=1|Z, µ, κ)

(C-2)

P(H + 1)
P(H)

=
f (H + 1; 1)

f (H; 1)
,

P({z′i}
N
i=1|π)

P({zi}
N
i=1|π)

=
π

n j1
j1
π

n j2
j2

π
n j∗
j∗

f (π′|α)
f (π|α)

=

Γ((H+1)α)
(Γ(α))H+1

∏H+1
h=1 π

α−1
h

Γ(Hα)
(Γ(α))H

∏H
h=1 π

α−1
h

=
1

B(α,Hα)

πα−1
j1
πα−1

j2

πα−1
j∗

f (µ′|C0, µ0)
f (µ|C0, µ0)

= (H + 1)
f (µ j1 |C0, µ0) f (µ j2 |C0, µ0)

f (µ j∗ |C0, µ0)

f (κ′|m, σ2)
f (κ|m, σ2)

=
f (κ j1 |m, σ

2) f (κ j2 |m, σ
2)

f (κ j∗ |m, σ2)

f ({xi}
N
i=1|{z

′
i}

N
i=1, µ

′, κ′)

f ({xi}
N
i=1|{zi}

N
i=1, µ, κ)

= (likelihood ratio) =

∏N
i=1 f (xi|µ

′
zi
, κ′zi

)∏N
i=1 f (xi|µzi , κzi)

where n j1 =

N∑
i=1

zi j1 , n j2 =

N∑
i=1

zi j2 , n j∗ = n j1 + n j1

(C-3)

where B(·, ·) is the Beta function, the (H +1)-factor in the third line being the ratio (H +1)!/H! from
the order statistics densities for the parameters (π, µ, κ) (i.e. label switching for the parameters). The
calculation of the Jacobian matrix J and its determinant is similar to that in Zhang et al. (2004) and
given in Appendix D.
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Following Dellaportas and Papageorgiou (2006), the Jacobian term
∣∣∣∣ ∂Σ
∂(λ,V)

∣∣∣∣ can be computed by
using the following formulae

∂λ = V
′

d(∂Σ)Vd, ∂V = (λdID − Σ)+(∂Σ)Vd (C-4)

where λd and Vd, d=1, · · · ,D, are the specific eigenvalue-eigenvector pairs of Σ; (A)+ denotes the
Moore-Penrose pesudo-inverse matrix of A (See Magnus and Neudecker (1988) p.179). For sym-
metric perturbations, Magnus and Neudecker (1988) (p.181) suggested that applying the properties
of vec operator (i.e. vec ABC = (C

′

⊗ A) vec B) and the chain rule, Eq. (C-4) can be rewritten as
follows

∂λ = (V
′

d ⊗ V
′

d)D∂v(Σ), ∂V = (V
′

d ⊗ (λdID − Σ)+)D∂v(Σ) (C-5)

where D is the duplication matrix (see Magnus and Neudecker (1988) Chapter 3). From Eq. (C-5),
we obtain the derivatives

∂λ

∂(vec Σ)′
= V

′

d ⊗ V
′

d

∂V
∂(vec Σ)′

= V
′

d ⊗ (λdID − Σ)+

(C-6)

According to the inverse function theorem (Spivak, 1965), the inverse of the Jacobian matrix of
an invertible function is equivalent to the Jacobian matrix of the inverse function. Specifically, if the
Jacobian of the function F : Rn → Rn is continuous and non-singular at the point p ∈ Rn , then F is
invertible in some neighbourhood of p and we have

JF−1(F(p)) = (JF(p))−1 (C-7)

Thus, if
∣∣∣∣ ∂(λ,V)
∂(vec Σ)′

∣∣∣∣ is non-zero, then we can have

∣∣∣∣∣ ∂Σ

∂(λ,V)

∣∣∣∣∣ =

∣∣∣∣∣ ∂(λ,V)
∂(vec Σ)′

∣∣∣∣∣−1
(C-8)

Appendix D Calculation of Jacobian Matrix

Let s = {π j∗ , µ j∗ , g j∗} and s′ = {π j1 , π j2 , µ j1 , µ j2 , g j1 , g j2} denote the state of Markov chain before
and after the split move, respectively, where g j∗ = (λ j∗1, · · · , λ j∗D)T , g j1 = (λ j11, · · · , λ j1D)T , g j2 =

(λ j21, · · · , λ j2D)T . Denote the set of continuous random variables needed for the split move as
u = {u1, u2, u3}, where u2 = (u21, · · · , u2D)T , u3 = (u31, · · · , u3D)T . Thus, from the transformation
defined by Eq. (17), we can obtain the Jacobian matrix J for the split move (from (s, u) to s′) as
follows (Zhang et al., 2004)

J =
∂s′

∂(s, u)
=



∂π j1
∂π j∗

∂π j1
∂u1

∂π j1
∂µ j∗

∂π j1
∂u2

∂π j1
∂g j∗

∂π j1
∂u3

∂π j2
∂π j∗

∂π j2
∂u1

∂π j2
∂µ j∗

∂π j2
∂u2

∂π j2
∂g j∗

∂π j2
∂u3

∂µ j1
∂π j∗

∂µ j1
∂u1

∂µ j1
∂µ j∗

∂µ j1
∂u2

∂µ j1
∂g j∗

∂µ j1
∂u3

∂µ j2
∂π j∗

∂µ j2
∂u1

∂µ j2
∂µ j∗

∂µ j2
∂u2

∂µ j2
∂g j∗

∂µ j2
∂u3

∂g j1
∂π j∗

∂g j1
∂u1

∂g j1
∂µ j∗

∂g j1
∂u2

∂g j1
∂g j∗

∂g j1
∂u3

∂g j2
∂π j∗

∂g j2
∂u1

∂g j2
∂µ j∗

∂g j2
∂u2

∂g j2
∂g j∗

∂g j2
∂u3


(D-1)
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From the transformation in Eq. (17), we calculate the partial derivatives:

∂π j1
∂π j∗

= u1,
∂π j1
∂u1

= π j∗ ,
∂π j1
∂µ j∗

= 01×D,
∂π j1
∂u2

= 01×D

∂π j1
∂g j∗

= 01×D,
∂π j1
∂u3

= 01×D

∂π j2
∂π j∗

= 1 − u1,
∂π j2
∂u1

= −π j∗ ,
∂π j2
∂µ j∗

= 01×D,
∂π j2
∂u2

= 01×D

∂π j2
∂g j∗

= 01×D,
∂π j2
∂u3

= 01×D

∂µ j1
∂π j∗

= 0D×1,
∂µ j1
∂u1

= 0D×1,
∂µ j1
∂µ j∗

= I,
∂µ j1
∂u3

= 0D×D

∂µ j2
∂π j∗

= 0D×1,
∂µ j2
∂u1

= 0D×1,
∂µ j2
∂µ j∗

= I,
∂µ j2
∂u3

= 0D×D

∂g j1
∂π j∗

= 0D×1,
∂g j1
∂u1

= 0D×1,
∂g j1
∂µ j∗

= 0D×D

∂g j2
∂π j∗

= 0D×1,
∂g j2
∂u1

= 0D×1,
∂g j2
∂µ j∗

= 0D×D

(D-2)

The other partial derivatives can be calculated as:

∂µ j1

∂u2d
= −

√
π j2

π j1
λ

1
2
j∗d

V j∗d,
∂µ j1

∂λ j∗d
= −

1
2

√
π j2

π j1
λ
− 1

2
j∗d

u2dV j∗d

∂µ j2

∂u2d
=

√
π j1

π j2
λ

1
2
j∗d

V j∗d,
∂µ j2

∂λ j∗d
=

1
2

√
π j1

π j2
λ
− 1

2
j∗d

u2dV j∗d

∂λ j1d

∂u2l
=

 −2u3du2dλ j∗d
π j∗
π j1

l = d,

0 l , d

∂λ j2d

∂u2l
=

 −2(1 − u3d)u2dλ j∗d
π j∗
π j2

l = d,

0 l , d

∂λ j1d

∂λ j∗l
=

 u3d(1 − u2
2d) π j∗

π j1
l = d,

0 l , d

∂λ j2d

∂λ j∗l
=

 (1 − u3d)(1 − u2
2d) π j∗

π j2
l = d,

0 l , d

∂λ j1d

∂u3l
=

 λ j∗d(1 − u2
2d) π j∗

π j1
l = d,

0 l , d

∂λ j2d

∂u3l
=

 −λ j∗d(1 − u2
2d) π j∗

π j2
l = d,

0 l , d, d ∈ [1,D]

(D-3)

Therefore, we have the following expressions

∂µ j1
∂u2

= −

√
π j2
π j1

V j∗Λ
1
2
j∗
,

∂µ j1
∂g j∗

= − 1
2

√
π j2
π j1

V j∗Λ
− 1

2
j∗

U2

∂µ j2
∂u2

=
√

π j1
π j2

V j∗Λ
1
2
j∗
,

∂µ j2
∂g j∗

= 1
2

√
π j1
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(D-4)
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where U2 = diag(u2d, · · · , u2D) and U3 = diag(u31, · · · , u3D) are diagonal matrices. Substituting
Eq. (D-2) and (D-4) into Eq. (D-1) yields the Jacobian matrix, J, as follows:

J =



u1 π j∗ 01×D 01×D 01×D 01×D

1 − u1 −π j∗ 01×D 01×D 01×D 01×D
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(D-5)

where 0D×1 is the D × 1 zero vector, 01×D is the 1 × D zero vector, 0D×D the D × D zero matrix,
U2=diag{u21, u22, · · · , u2D} and U3=diag{u31, u32, · · · , u3D} are diagonal matrices.

By blocking the Jacobian matrix J defined by Eq. (D-5), we have

|det(J)| = π j∗ · |det(J1)| (D-6)

where

J1 =
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(D-7)

We partitioned J1 into J1 =

[
J11 J12
J21 J22

]
as indicated by the vertical and horizontal lines in Eq.

(D-7). When J11 is invertible, according to Theorem by Brualdi and Schneider (1983), we have

|det(J1)| = |det(J11)| · |det(J22 − J21J−1
11 J12)| (D-8)

Calculating each determinant in Eq. (D-8) and substituting them into Eq. (D-6) yields the absolute
of determinant of J, det(J), as follows

|det(J)| =
π3D+1

j∗

(π j1π j2)
3D
2

D∏
d=1

λ3/2
j∗d

(1 − u2
2d) (D-9)

Appendix E Comparison of Different Split-merge Moves

In this appendix, we compared the performance of TvMF mixture model with common eigenvec-
tors (i.e. simplified RJMCMC move) and without common eigenvectors (i.e. original RJMCMC
move) for split-merge moves on synthetic data from three aspects: (1) clustering performance, (2)
acceptance rate for the moves and posterior estimation for the number of components H, and (3) the
trace plot of the log likelihood and number of components over sweeps (in Figure 12). Table 6 com-
pares the clustering performance and posterior estimation of H for TvMFMM with two different
strategies for split-merge moves.
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Table 6: Clustering performance and posterior estimation of H for TvMFMM with/without common
eigenvectors for split-merge moves on synthetic data.

True H ARI AMI NMI Homogeneity Completeness
TvMFMM with common eigenvectors for split-merge move

4 0.925 0.898 0.899 0.898 0.899
5 0.947 0.941 0.945 0.947 0.944
7 0.809 0.821 0.829 0.827 0.832

TvMFMM without common eigenvectors for split-merge move
4 0.931 0.904 0.904 0.904 0.904
5 0.936 0.931 0.935 0.936 0.934
7 0.792 0.812 0.82 0.814 0.826

True H
Portion of moves accepted (%)

Posterior estimation for H
Split-merge Birth-death

TvMFMM with common eigenvectors for split-merge move
4 0.89 0.15 P(4)=0.997, P(5)=0.002, P(6)=0.001
5 0.25 0.16 P(5)=0.999, P(6)=0.001
7 0.69 0.3 P(7)=0.977, P(8)=0.020, P(9)=0.002, P(10)=0.001

TvMFMM without common eigenvectors for split-merge move
4 0.08 0.05 P(4)=1.000
5 0.02 0.1 P(5)=0.999, P(6)=0.001
7 0.42 0.11 P(7)=0.855, P(8)=0.143, P(9)=0.001

We observe from Table 6 that TvMFMM with and without common eigenvectors for split-merge
moves present very similar clustering performance on the three datasets; TvMFMM with common
eigenvectors for split-merge move achieves relatively better clustering performance. Both versions
of TvMFMM give an accurate estimation of the number of components with the highest posterior
probability for the true value of H. In addition, TvMFMM with both settings show very low ac-
ceptance rate for the split-merge and birth-death moves. This is one of the characteristics of the
RJMCMC algorithm, which generally has very low acceptance rate for the moves, as observed by
other researchers (Richardson and Green, 1997; Zhang et al., 2004; Dellaportas and Papageorgiou,
2006).

Figure 12 shows that TvMFMM with/without common eigenvectors for split-merge moves
present similar mixing properties for the RJMCMC chains in terms of the smoothness of the log
likelihood and number of components over sweeps. It is obvious that the RJMCMC chain becomes
stable gradually in terms of the number of components and log likelihood after 5000 sweeps. We ac-
tually choose to use a burn-in period of 10000 sweeps for comparison of clustering performance on
synthetic data. Overall, the results suggest that TvMFMM with/without common eigenvectors for
the split-merge moves show similar performance and mixing rates on synthetic data. Therefore, for
the results presented in the empirical evaluation, we ran TvMFMM and OTvMFMM with common
eigenvectors for split-merge moves.
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(a) Log likelihood for simplified RJMCMC move (b) #Components for simplified RJMCMC move

(c) Log likelihood for the original RJMCMC move (d) #Components for the original RJMCMC move

Figure 12: Trace plot of the log likelihood and estimated number of components for TvMFMM with
simplified RJMCMC move and with original RJMCMC move on synthetic data.

Appendix F Model Parameter Analysis

To choose the optimal number of clusters for parametric models, we used NMF model with different
number of clusters to analyse Wikipedia quarterly datasets, and measured cluster coherence using
normalised pairwise mutual information (NPMI). The results are presented in Figure 13. Recall that
the NPMI metric captures the semantic interpretability of discovered clusters based on the corre-
sponding descriptor terms. Higher coherence scores indicate better semantic interpretability, thus
more coherent and interpretable topics. One obvious trend in Figure 13 is that NMF models running
with larger number of clusters result in lower values of NPMI scores, indicating less coherent and
interpretable clusters; whereas models running with smaller number of clusters have higher values
of NPMI scores, suggesting more coherent and interpretable clusters. Moreover, NMF models run-
ning with 5, 10 and 15 clusters generate very close NPMI scores on all the quarterly datasets, of
which models with 10 clusters output the best overall NPMI scores. Therefore, we choose H = 10
for parametric models.

We perform further analysis of the log likelihood and cluster coherence of Bayesian vMF mix-
ture model on selected Wikipedia quarterly datasets for varying number of clusters, which are given
in Figure 14. As the number of clusters increase from 5 to 20, the log likelihood of the model
on the training and held-out datasets also increases, after which the log likelihood becomes rela-
tively stable for any increase in #clusters. On the other hand, as #clusters increases from 5 to 10,
the NPMI scores also go up, after which the NPMI scores reduce slightly and become relatively
stable. This suggests that larger numbers of clusters does not indicate improved cluster coherence
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Figure 13: Cluster coherence (NPMI) of NMF model for varied number of clusters (k ∈ [5, 45]) on
Wikipedia quarterly training datasets.

/ interpretability. The analysis provides further support for our choice of H = 10 for parametric
models.
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Figure 14: Log likelihood and cluster coherence for Bayesian vMFMM with varied number of
clusters (k ∈ [5, 50]) on the 18th (Q18), 19th (Q19) and 20th (Q20) quarter of Wikipedia editor
dataset.

One main advantage of the reversible jump MCMC algorithm is the ability to explore multiple
models simultaneously, which brings side-benefit that can refine the inappropriate initialization of
model parameters. To explore this point, we present a plot of log likelihood and estimated number
of components of TvMFMM on selected Wikipedia and synthetic datasets after every 100 itera-
tions. The results are presented in Figure 15, from which we observe that: the log likelihood of
the model increases in the beginning, but then becomes relatively stable as more iterations proceed;
there are some fluctuations in the log likelihood corresponding to synthetic training dataset with 7
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components. The number of components increases with the iterations in the beginning, and then
experiences some fluctuations with more iterations. By checking the output of model statistics at
these points, we notice that the fluctuation points correspond to the accepted split-merge / birth-
death moves where the model explores alternative models. In addition, the statistics of TvMFMM
on Wikipedia data and synthetic data with 5 components shows better mixing property (i.e. less
fluctuations) than those on synthetic data with 7 components. The results are consistent with our
statement about the advantage of RJMCMC.
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Figure 15: Trace plot of log likelihood and estimated number of components for TvMFMM after
each 100 iterations on the 15th (Q15) and 16th (Q16) quarter of Wikipedia editor datasets, and
synthetic datasets with 5 (S5) and 7 (S7) components. Where the left yaxis corresponds to log
likelihood and the right yaxis represents #components.

Appendix G Discriminative Analysis for Different Models

Embedding methods, such as t-distributed stochastic neighbourhood embedding (t-SNE; van der
Maaten and Hinton (2008)) can be used to visualise high-dimensional data in a two or three-
dimensional map. This visualisation provides a unique insight into the discriminative ability of
mixture models in terms of separating data points in low-dimensional representation.

Figure 16 presents a 2D embedding of the inferred topic estimation by five models, using the
t-SNE method, where each dot represents an entry of user behavioural data and each color-shape
represents a topic. Visually, the proposed OTvMFMM produces a relatively better separation of
data points than NMF, DTM and BvMFMM, while DP-GMM does not produce a well-separated
embedding, and data points assigned to different clusters tend to mix together. This is consistent
with our qualitative analysis in Section 5.2.2 that OTvMFMM can produce more interpretable and
intuitive topics than other models. Intuitively, a well-separated representation is more discriminative
for data separation.
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(a) NMF (Quarter 18) (b) DTM (Quarter 18)

(c) BvMFMM (Quarter 18) (d) OTvMFMM (Quarter 18)

(e) DP-GMM (Quarter 18)

Figure 16: t-SNE 2D embedding of the topical representations by different models on the 18th
quarter of Wikipedia Editor dataset.
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Appendix H Effects of Prior Parameters

The prior parameters m and σ2 control the range of the concentration parameters κ, where the value
of κ affects the mixing property / convergence of the RJMCMC chain. Figure 17 presents the trace
plot of the number of components and log likelihood for TvMFMM with different values for m
and σ2 on synthetic data with 5 and 7 components. The values of m and σ2 are chosen so that the
corresponding ranges of κ are able to illustrate the effects of appropriate and inappropriate priors
on the convergence of the chain. If the priors m and σ2 are appropriately set, the convergence of
RJMCMC algorithm can be sped up, leading to well mixing chain, as observed in in Figure 17 (a-b)
that the chains begin converging from around the 5000th sweep onwards. On the other hand, when
the priors m and σ2 are inappropriately set, the convergence of RJMCMC algorithm can be slowed
down, resulting in poor mixing chain, as obvious in Figure 17 (c-d) that the chains experience more
fluctuations in the number of components and log likelihood over sweeps. The observations suggest
that the trace plot can be used to diagnose whether the priors are appropriately set.

(a) #Components - appropriate prior: m = 21.0, σ2 =

1.025, CI for κ is (19.4, 22.8)
(b) Log likelihood - appropriate prior: m = 21.0, σ2 =

1.025, CI for κ is (19.4, 22.8)

(c) #Components - inappropriate prior: m = 28.0, σ2 =

1.035, CI for κ is (25.0, 31.4)
(d) Log likelihood - inappropriate prior: m = 28.0, σ2 =

1.035, CI for κ is (25.0, 31.4)

Figure 17: Trace plot of log likelihood and the number of components over iterations for TvMFMM
with appropriate/inappropriate values for the prior parameters m and σ2 on synthetic data, including
99.9% confidence interval (CI) for κ.
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Appendix I Dynamics of Top Terms for User Roles – Content Editors
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(b) DTM (All-round contributors II)
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(c) BvMFMM (All-round contributors)

10 15 20 25 30
Quarter

0.0

0.5

1.0

1.5

W
e
ig

h
t

People

MainDisambution

Society

Talk

Technology

User

Culture

Politics

Arts

Humanities

Geography

History

Wikipedia

Concepts

UserTalk

(d) DP-GMM (All-round contributors II)
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Figure 18: Evolution of top terms for common user roles (Content Editors) identified by different
models.
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