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Abstract

In this paper we generalize the framework of the Feasible Descent Method (FDM) to a
Randomized (R-FDM) and a Randomized Coordinate-wise Feasible Descent Method (RC-
FDM) framework. We show that many machine learning algorithms, including the famous
SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent
method for the LASSO problem, fits into the framework of RC-FDM. We prove linear
convergence for both R-FDM and RC-FDM under the weak strong convexity assumption.
Moreover, we show that the duality gap converges linearly for RC-FDM, which implies that
the duality gap also converges linearly for SDCA applied to the SVM dual problem.

Keywords: feasible descent method, stochastic methods, iteration complexity, conver-
gence theory, weak strong convexity

1. Introduction

In this paper we are interested in the following optimization problem

min
x∈X

f(x), (1)

where the function f is smooth and convex, and X ⊆ Rn is a convex set. The Feasible
Descent Method (FDM) (Luo and Tseng 1993; Necoara 2015; Wang and Lin 2014) is any
algorithm, which produces a sequence of points {xk}∞k=0, where there exist constants β ≥ 0,
ζ > 0 and ωk ≥ ω̄ > 0, such that for every iteration k, the following conditions are satisfied:

xk+1 = ProjX (xk − ωk∇f(xk) + zk) , (2)

‖zk‖ ≤ β‖xk − xk+1‖, (3)

f(xk+1) ≤ f(xk)− ζ‖xk − xk+1‖2, (4)
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where ProjX (y) := arg minx∈X ‖x− y‖ is the projection of y onto X.
As was shown in Luo and Tseng (1993), many first order algorithms, including steep-

est descent, the gradient projection algorithm, the extra gradient method, the proximal
minimization algorithm and the cyclic coordinate descent method, fit into the framework of
FDM. However, randomized first order algorithms are becoming increasingly popular in the
optimization and machine learning literature, and the following question naturally arises:

“Can the framework of FDM be extended to a randomized setting?”

In this paper we give an affirmative answer to this question: we show that, indeed, a
randomized version of FDM can be formulated and we will show that, for example, the
inexact gradient projection algorithm (when the gradient is corrupted with random noise)
or the stochastic coordinate descent method, fit into this new framework.

1.1 Assumptions and Notations

In this section we state the assumptions and introduce the notation that will be used in
this paper. In particular, throughout this paper we will assume that f satisfies weak strong
convexity, and that the gradient of f is Lipschitz.

Now we formalize the first assumption, which is that the function f enjoys weak strong
convexity. Henceforth, we use Rn++ to denote the set of vectors in Rn, with (strictly) positive
components, and we denote the i-th component of the vector x by x(i).

Assumption 1. We assume that there exists a positive vector w ∈ Rn++ such that the
function f(x) satisfies the weak strong convexity property on the set X, which is defined as

f(x)− f(x̄) ≥ κf‖x− x̄‖2W , ∀x ∈ X, (5)

where κf > 0, W = diag(w), ‖x‖2W =
∑n

i=1wi(x
(i))2, f∗ = minx∈X f(x), and

x̄ := arg min
y∈X:f(y)=f∗

‖x− y‖W . (6)

Let us remark that, if f is smooth and has a Lipschitz continuous gradient, then Assump-
tion 1 is weaker than the strong convexity assumption or the global error bound property,
Necoara (2015). We now provide a few examples of a functions that are used in machine
learning, which are weakly strongly convex, but are not strongly convex.

1. In particular, let x ∈ Rn and let c ∈ R. We have

shrinkc(x) = sign(x) max{|x| − c, 0}, and f(x) = 1
2‖shrinkc(x)‖22,

where the shrinkage function is applied component-wise to vector x. Note that f is
not strongly convex because f(x) = 0 for x ∈ [−c, c] (which is the minimizer set). On
the other hand, f(x) = 1

2‖x+ c‖22 for x ≤ −c and f(x) = 1
2‖x− c‖

2
2 for x ≥ c. Thus,

f(x) is weakly strongly convex. See also Zhang and Yin (2013).

2. Another ilustrative example of function which is weakly stronly convex but not strongly
convex is f(x) = 1

2‖Ax− b‖
2 with A ∈ Rm×n such that m < n. If x∗ is some optimal

solution then x∗ + t is also optimal iff t ∈ null(A). One can easily show that κf is
related to the smallest non-negative singular value of matrix ATA.
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The second assumption we make regards the smoothness of f , and is defined precisely
as follows.

Assumption 2. We assume that f(x) has a coordinate-wise Lipschitz continuous gradient
with constants Li, i.e. ∀x ∈ X and ∀δ ∈ R : x+ δei ∈ X the following inequality holds

|∇if(x)−∇if(x+ δei)| ≤ Li|δ|, (7)

where ei denotes the i-th column of the identity matrix I ∈ Rn×n.

As was shown in Richtárik and Takáč (2014), Assumption 2 implies that the function
f(x) has a Lipschitz continuous gradient with Lipschitz constant LWf > 0 with respect to
the norm ‖ · ‖W , i.e. ∀x, y ∈ X we have

‖∇f(x)−∇f(y)‖∗W ≤ LWf ‖x− y‖W , (8)

where ‖x‖∗W =
√∑n

i=1
1
wi

(x(i))2 is the dual norm to ‖ · ‖W . Moreover, Richtárik and Takáč

(2014) also showed that LWf ≤
∑n

i=1
Li
wi

.

We define the projection operator onto the set X, with respect to the norm ‖ · ‖W , as
follows

ProjWX (x) = arg min
y∈X
‖x− y‖2W = arg min

y∈X

n∑
i=1

wi(x
(i) − y(i))2. (9)

1.2 Applications

In this section we discuss several problems that arise in the optimization and machine
learning literature, which fit into the FDM framework that we analyze in this paper. We
also provide details showing that, for each problem, the objective function satisfies the
assumptions in Section 1.1. (A discussion regarding the value of the weak strong convexity
parameter κf will be given in Section 4.)

The dual of SVM. Consider the classical linear SVM problem. The goal is, given n
training points (ai, yi), where ai ∈ Rd are the features for point i and yi ∈ {−1,+1} is its
label, find w ∈ Rd such that the regularized empirical loss function is minimized, i.e., solve
the following optimization problem

min
w∈Rd

{
P(w) := 1

n

∑n
i=1`i(w

Tai) + λ
2‖w‖

2
}
, (10)

where λ > 0 is a regularization parameter, and, in the case of SVM, the function `i(w
Tai) =

max{0, 1 − yiwTai} is the hinge loss. Clearly, the objective function (10) is not smooth.
However, one can formulate the dual problem (Hsieh et al. 2008; Shalev-Shwartz and Zhang
2013; Takáč et al. 2013)

min
x∈Rn,0≤x(i)≤1

{
f(x) := 1

2λn2x
TQx− 1

n1Tx
}
, (11)

where Qi,j = yiyj 〈ai, aj〉, and 1 denotes the vector of all ones, which is smooth. The
linear SVM problem (10) can now be solved via the dual problem (11). Note that (11) is
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of the form (1), so our new FDM framework can be used to solve this important machine
learning problem.

Lasso problem and least squares problem. Consider the following optimization
problem

min
x∈Rn

g(x) + λ‖x‖1, (12)

where λ ≥ 0 and g(x) is a smooth function with the special structure: g(x) = h(Ax) + qTx,
where A ∈ Rm×n is some data matrix, q ∈ Rn is some vector and h is a strongly convex
function. It is a simple exercise to show that, if we double the dimension of x to [x+;x−],
we can replace the term λ‖x‖1 in (12) with λ1Tx+ + λ1Tx− and impose the constraints
x+, x− ≥ 0. Then the Lasso problem (12) can be reformulated as a smooth optimization
problem with simple box constraints.

`2 regularized empirical loss minimization. Many machine learning problems have
the following structure (Chang et al. (2008))

min
x∈Rn

f(x) =
1

n

n∑
i=1

`i(a
T
i x) +

λ

2
xTx, (13)

where λ > 0 is a regularization parameter and `i is a loss function. Because we assume that f
must be smooth, the following commonly used loss functions fit our assumptions: the logistic
loss function `i(a

T
i x) = log(1+exp(−yiaTi x)); the squared loss function `i(a

T
i x) = (yi−aTi x)2

and the squared hinge loss function `i(a
T
i x) = (max{0, 1− yiaTi x})2. Hence, any machine

learning problem of the form (13) (used with any of the mentioned loss functions) fits our
randomized FDM framework.

1.3 Related work

Luo and Tseng (1993) are among the first to establish asymptotic linear convergence for a
non-strongly convex problem under the local error bound property. They consider a class of
feasible descent methods, which includes, for example, the cyclic coordinate descent method.
The error bound measures how close the current solution is to the optimal solution set, with
respect to the projected gradient. Recently, Wang and Lin (2014) proved that the feasible
descent method enjoys a linear convergence rate (from the beginning, rather than only
locally) under the global error bound property. Considering the class of smooth constrained
optimization problems with the global error bound property, Necoara and Clipici (2016);
Necoara and Nedelcu (2014a) showed a linear convergence rate for the parallel version of the
stochastic coordinate descent method. Liu and Wright (2015) analyzed the asynchronous
stochastic coordinate descent method (SCDM) under the weak strong convexity assumption.
Very recently, Necoara (2015) showed that, if the objective function is smooth, then the
class of problems with the global error bound property is a subset of the class of problems
with the weak strong convexity property.

1.4 Contributions

In this section we list the most important contributions of this paper (not in order of their
significance):
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• Randomized and Randomized Coordinate Feasible Descent Methods. We
extend the well known framework of Feasible Descent Methods (FDM) (Luo and Tseng
1993) to randomized and randomized coordinate FDM and show that the SCDM
algorithm fits into our new proposed framework.

• Linear Convergence Rate. We show that any stochastic or deterministic algorithm,
which fits our Randomized FDM (R-FDM) or Randomized Coordinate-FDM (RC-
FDM) framework and satisfies our previously stated assumptions, converges linearly
in expectation.

• Linear Convergence of the Duality Gap for SDCA for SVM. As a consequence
of our analysis, we show that when SDCA is applied to the dual of the SVM problem,
the duality gap converges linearly. Previously, linear convergence of the duality gap
was only proven in case when the matrix Q in (11) is positive definite (Shalev-Shwartz
and Zhang 2013; Takáč et al. 2015). However, our new linear convergence result holds,
even when Q is singular.

• Inexact Randomized Coordinate Descent. By the nature of the FDM frame-
work, inexact first order methods belong to the class of FDMs, (where inexact meth-
ods are methods that incorporate some kind of inexact information, for example, via
inexact gradients, or via inexact updates). Our new randomized coordinate FDM
framework includes inexact randomized coordinate descent methods. Therefore, an-
other contribution of this work is that it provides a linear convergence rate for e.g.
randomized coordinate descent with inexact computations of (partial) gradient, which
was analyzed in various settings. (See, for example, Devolder et al. 2014; Bonettini
2011; Tappenden et al. 2016; Hua and Yamashita 2012; Necoara and Nedelcu 2014b.)

• Flexibility and wide applicability. Our randomized- and randomized coordinate-
FDM framework is extremely flexible. It is a general framework that not only covers
and unifies many existing algorithms, but any algorithm that fits our framework is
also covered by the FDM convergence guarantees. Moreover, as demonstrated in
Section 1.2, a very wide range of optimization and machine learning problems can
be written in the form (1), and subsequently, they can be solved via the new FDM
framework. Problems include the dual of SVM, the LASSO problem, and any `2-
regularized empirical loss functions where the loss function is smooth and separable.
All such problems appear very frequently in the machine learning literature.

• Parallel methods. The RC-FDM framework is sufficiently general so as to include
parallel randomized coordinate descent methods.

1.5 Paper Outline

In Section 2 we derive the Randomized (R-FDM) and the Randomized Coordinate (RC-
FDM) Feasible Descent Methods. In Section 3 we derive the convergence rate for any
method which fits into the R-FDM or RC-FDM framework and we compare our results
with those in Liu and Wright (2015) for SCDM. In Section 4 we briefly review the global
error bound property and using the result in Necoara (2015) we compare our convergence
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results with Wang and Lin (2014). In Section 5 we show that the duality gap converges
linearly for SDCA applied to the dual of the SVM problem, and in Section 6 we present a
brief summary.

2. Randomized and Randomized Coordinate Feasible Descent Method

The framework of Feasible Descent Methods (FDM) broadly covers many algorithms that
use first-order information (Luo and Tseng 1993) including gradient descent, cyclic coordi-
nate descent and also the inexact gradient descent algorithm. We generalize the classical
FDM framework to a randomized setting, which we call the Randomized Feasible Descent
Method (R-FDM). Algorithms that use randomization have become extremely popular over
the past few years, and the success, reliability, scalability, applicability and efficiency of such
random algorithms is well documented. To the best of our knowledge this is the first time
such a unifying R-FDM framework has been proposed and that a global linear conver-
gence rate has been established under Assumptions 1 and 2. Further, we also show that
the popular minibatch stochastic coordinate descent/ascent method, fits into the R-FDM
framework.

Definition 3 (Randomized Feasible Descent Method (R-FDM)). A sequence {xk}∞k=0 is
generated by R-FDM if there exist β ≥ 0, ζ > 0 and {ωk}∞k=0 with mink ωk ≥ ω̄ > 0 such
that for every iteration k, the following conditions are satisfied,

xk+1 = ProjWX
(
xk − ωkW−1(∇f(xk)− zk)

)
, (14)

E[(‖zk‖∗W )2] ≤ β2E[‖xk − xk+1‖2W ], (15)

E[f(xk+1)] ≤ f(xk)− ζE[‖xk − xk+1‖2W ], (16)

where zk is some random vector, which satisfies the Markov property, conditioned on xk.

We will now compare the new Randomized FDM framework (Definition 3) with the
original FDM ((2)–(4)), where, for simplicity of exposition, we will take ‖ · ‖W ≡ ‖ · ‖2 (i.e.,
W = I). Notice that the first step of R-FDM (14) is the same as the first step of FDM
(2); it is a projected (gradient) descent type step. Note the role that zk plays in (14); it
captures any error/inexactness/noise in the update step, and it is clear to see that if zk = 0
for all k, (i.e., no inexactness) then (14) is the same update as in a projected gradient
descent method. Next, (15) gives an upper bound for ‖zk‖∗W , which shows that, in order
to guarantee convergence, the noise in (14) cannot be arbitrarily large, which intuitively
makes sense. Finally, (16) guarantees that there is a reduction in the objective value, in
expectation, after each iteration. The key difference between FDM and R-FDM is that
for FDM, (3) and (4) hold deterministically (with a deterministic vector zk), whereas for
R-FDM (3) and (4) only need to hold in expectation. That is, for R-FDM, conditions (3)
and (4) are replaced by conditions (15) and (16), where zk is a random vector. Notice that
(15) and (16) are weaker conditions than (3) and (4). That is, for FDM, (3) and (4) must
hold at every iteration (i.e., they are deterministic), whereas for the R-FDM framework, the
conditions (15) and (16) are equivalent to (3) and (4) holding only on average. The R-FDM
framework is extremely general. It encapsulates algorithms that involve a (possibly noisy)
projection step, has small enough noise on average and decreases the objective function on
average, as the iterations progress.
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Remark 4. We will see later (in the proof of convergence of R-FDM) that (15) can be re-
laxed to the existence of constant η > 0 such that E[(‖zk‖∗W )2] ≤ η

(
f(xk)−E[f(xk+1)]2W

)
.

We will now demonstrate that (see Theorem 7), under an additional mild assumption,
if the set X = Rn, then SCDM (captured in Algorithm 1 with Option I.) is equivalent
to R-FDM. We also remark that there is a need to modify R-FDM so that the stochastic
coordinate descent method can be analyzed even when X 6= Rn. However, first we describe
SCDM and make the following assumption in order to establish the equivalence of SCDM
with X = Rn and R-FDM.

Algorithm 1 Stochastic Coordinate Descent Method (SCDM)

1: Input: f(x), {ωk}∞k=0, diagonal matrix W � 0, x0.
2: Input: X = X1 × · · · ×Xn, where Xi = [a, b] with −∞ ≤ a < b ≤ +∞
3: while k ≥ 0: do
4: choose i ∈ {1, 2, . . . , n} uniformly at random
5: set xk+1 = xk
6: Option I: x

(i)
k+1 = arg minx(i)∈Xi f((x

(1)
k , x

(2)
k , . . . , x

(i−1)
k , x(i), x

(i+1)
k , . . . , x

(n)
k )T )

7: Option II: xk+1 = ProjWX
(
xk − ωkW−1∇if(xk)ei

)
8: end while

Remark 5. For simplicity of exposition, Algorithm 1 is the serial form of SCDM, although
a minibatch version of SCDM does exist. We will see in Definition 9 that our RC-FDM
framework is flexible and general, because it also works in the parallel/minibatch case.

Assumption 6. The function f is coordinate-wise strongly convex with respect to the norm
‖ · ‖W with parameter γ > 0, if, for any x ∈ X and any i ∈ {1, 2, . . . , n} we have

f(x(1), . . . , x(i−1), ξ, x(i+1), . . . , x(n))− f(x) +∇if(x)(x(i) − ξ) ≥ γwi|ξ − x(i)|2. (17)

Note that Assumption 6 does not imply strong convexity of the function f . For example,
(17) is satisfied for the Lasso problem or for the SVM dual problem whenever ∀i : ‖ai‖ > 0,
and neither of those problems is strongly convex.

Theorem 7. Let Assumptions 1, 2 and 6 hold. If X = Rn then the Stochastic Coordinate
Descent Method (SCDM) (Algorithm 1 with Option I.) is equivalent to R-FDM with the

parameters β2 = 2[(LWf )2 + 1] + (n− 1)r2, ζ = γ and ωk = 1, where r2 = maxi
L2
i

w2
i
.

Let us comment that, if importance sampling is incorporated into SCDM, the conver-
gence rate in Theorem 7 can be slightly improved, as the parameter r can be made to be

r2 = 1
n

∑
i
L2
i

w2
i
, i.e., ‘average’ rather than ‘max’. However, it is typical to consider the case

wi = Li so that r2 = 1 in Theorem 7 regardless.

The following remark compares the result of the above theorem with the cyclic rule.

Remark 8. It was shown in Luo and Tseng (1993) that for the cyclic coordinate descent
method (which is not randomized and hence Equation 14-16 hold deterministically) we have
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Figure 1: Number of coordinate updates v.s. objective gap for two methods.

ω
cyclic
k = 1, ζcyclic = γ and (βcyclic)2 = (1 +

√
nLWf )2 = 1 + 2

√
nLWf +n(LWf )2. For sim-

plicity, let us assume that W = diag(L1, L2, . . . , Ln). Then r2 = 1 and LWf ∈ [1, n]. For the
cyclic coordinate descent method and SCDM, ωk and ζ are the same. However, if we con-

sider the worst case (when LWf = n) we have that β2 ∼ O(n2), whereas (βcyclic)2 ∼ O(n3).
Also note that one iteration of cyclic coordinate descent requires n coordinate updates,
whereas SCDM updates just one coordinate, and therefore each iteration of SCDM is n times

cheaper. In the other extreme, when LWf = 1 we have that both β2 ∼ (βcyclic)2 ∼ O(n),
but again we recall that one iteration of SCDM is n times cheaper.

We present two experiments to support the discussion above. We apply both the cyclic
coordinate descent method and SCDM to the problem

min
x∈Rn

f(x) = xTAx,

where the matrix A ∈ Rn×n has ones on the diagonal and constant c elsewhere, Sun and
Ye (2016). The optimal solution to this problem is x = 0. For the first experiment we set
n = 100 and c = 0.03 (LWf = 3.97 ≈ 1), and in the second experiment we keep n unchanged

and set c = 0.99 (LWf = 99.01 ≈ n). For each method we randomly select five starting

points. From Figure 1, it is easy to see that when c is large (i.e., LWf ≈ n) SCDM performs
much better than cyclic coordinate descent. On the other hand, there is not such an obvious
difference between the two methods when c is small. Thus, the difference in performance
between the two methods depends upon the parameter LWf . Moreover, the case where c
is small is more friendly for both methods, since they require far fewer coordinate updates
to reach optimality, compared with the large c case. These results highlight and support
Remark 8, regarding the theoretical gap between two methods.

It turns out that if X 6= Rn then SCDM does not fit the R-FDM framework because
∇if(xk) cannot be bounded by ‖xk − xk+1‖W , as is shown in the proof of Theorem 7.
Thus, there is a need to modify R-FDM such that the SCDM algorithm can be analyzed
for bounded problems.

The natural modification to R-FDM, which would allow SCDM to fit the R-FDM frame-
work is the following: at each iteration k we require that in (14), only a subset of coordinates
of the vector xk are updated. This can be achieved by the following method.
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Definition 9. [Randomized Coordinate Feasible Descent Method (RC-FDM)] Let X =
X1 × · · · × Xn, where Xi are intervals. A sequence {xk}∞k=0 is generated by RC-FDM if
there exists β ≥ 0, ζ > 0 and {ωk}∞k=0 with mink ωk ≥ ω̄ > 0 such that for every iteration
k, the following are satisfied

xk+1 = ProjWX
(
xk − ωkW−1(∇f(xk)− zk)[I]

)
, (18)

(‖(zk)[I]‖∗W )2 ≤ β2‖xk − xk+1‖2W , (19)

f(xk+1) ≤ f(xk)− ζ‖xk − xk+1‖2W , (20)

where I is a set of coordinates that are selected uniformly at random from the set {1, 2, . . . , n}
with |I| = τ , where 1 ≤ τ ≤ n, x[I] is a vector whose elements j /∈ I are set to 0 and zk is
some fixed vector at iteration k.

Now, we show that even if X 6= Rn, SCDM fits the RC-FDM. Theorem 10 holds if
Option I. is used in Algorithm 1 and Theorem 11 holds if Option II. is used.

Theorem 10. Let Assumptions 1, 2 and 6 hold. Let τ = 1 for simplicity, if X = X1×· · ·×
Xn, where Xi are intervals then the Stochastic Coordinate Descent Method in Algorithm 1
with Option I. is RC-FDM with β2 = 2[(LWf )2 + 1], ζ = γ, and ωk = 1.

Theorem 11. Let Assumptions 1, 2 and 6 hold. Let τ = 1 for simplicty, if X =
X1 × · · · × Xn, where Xi are intervals then the Stochastic Coordinate Descent Method
in Algorithm 1 with Option II. is RC-FDM with zk = 0, ζ = γ, β = 0, ωk = 1, and
W = diag(L1, L2, . . . , Ln).

3. Convergence Analysis

Necoara (2015) proved a linear convergence rate for FDM under Assumptions 1 and 2. The
following theorem shows that a linear convergence rate can also be established for R-FDM.

Theorem 12 (Linear Convergence of R-FDM). Let Assumptions 1 and 2 hold. If the
sequence {xk}∞k=0 is produced by R-FDM, i.e. (14)-(16) are satisfied, then

E[f(xk)− f∗] ≤
(

c

1 + c

)k
(f(x0)− f∗) , (21)

where

c =
2

κfζ

(
(LWf + 1

ω̄ )2 + β2
)
. (22)

The next theorem establishes a linear convergence rate for RC-FDM.

Theorem 13 (Linear Convergence of RC-FDM). Let X = X1 × · · · × Xn, where Xi are
intervals. Further, let Assumptions 1 and 2 hold, and let the sequence {xk}∞k=0 be produced
by RC-FDM, i.e. (18)-(20) are satisfied. Then, for zk 6= 0, there exists c ∈ (0, 1) such that,
for all k,

E[f(xk)− f∗] ≤ (1− c)k (f(x0)− f∗) . (23)

Moreover, if for all k we have zk ≡ 0, and 1
ωk
≥ maxi

Li
wi

, then c = 2ω̄τ
n(2ω̄+1) with

E[f(xk)− f∗] ≤ (1− c)k
(
f(x0)− f∗ +

τ

2ω̄
‖x0 − x̄0‖2W

)
. (24)
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3.1 Comparison with the Results in Related Literature

In Theorem 13 we established a linear rate of convergence for RC-FDM for any zk. We will
now compare our result with the one presented in Liu and Wright (2015) for the projected
coordinate gradient descent algorithm, and also with the result presented in Necoara (2015)
for deterministic FDM. For this comparison we will assume that τ = 1 (i.e., for serial RC-
FDM), because the first paper only considers a serial algorithm, and for ease of comparison
with the results in the second paper. (However, RC-FDM works for general 1 ≤ τ ≤ n.)

The projected coordinate gradient descent algorithm (Liu and Wright 2015) fits the
RC-FDM framework. We also note that the result in Liu and Wright (2015) only holds
for zk = 0, so our result is more general. Further, even though the paper Liu and Wright
(2015) considers an asynchronous implementation, where the update computed at iteration
k is based on gradient information at a point up to ν iterations old, if ν = 0 then their
method fits into the RC-FDM framework. One of the benefits of our work is that more
general norms can be used. So, for simplicity, and to match with the work in Liu and
Wright (2015), let us assume that Li = 1 for all i and we also choose wi = 1 for all i. (This
is the case e.g. for the SVM dual problem). The geometric rate in (24) in our work is then
1− κf

n(κf+ 1
2

)
and from Theorem 4.1 in Liu and Wright (2015) for ν = 0 we obtain that the

geometric rate is 1− κf
n(κ+Lmax) , where Lmax ≥ 1 is such that

‖∇f(x)−∇f(x+ δei)‖∞ ≤ Lmax|δ|

holds ∀x ∈ Rn, δ ∈ R and i ∈ {1, 2, . . . , n}. Hence, in this case our convergence results are
better because 1

2 ≤ 1 ≤ Lmax.
In Necoara (2015) the author provided a linear convergence rate for deterministic FDM.

It is shown in Theorem 3.2 in Necoara (2015) that the coefficient of the linear rate is
1− ζ

ζ+ρ where ρ = 1
κf

(Lf + 1
ω̄ + β)2 whereas, in Theorem 13 of this work, from (21) we see

that the coefficient is the same but with a different ρ. To be precise, in our case we have

ρ̄ = 2
κf

(
(LWf + 1

ω̄ )2 + β2
)
. Our result can be better or worse than that in Necoara (2015),

depending on the values of LWf , ω̄ and β, but our results holds for R-FDM, which is broader
than FDM.

4. Global Error Bound Property

In this section we describe a class of problems that satisfies the Global Error Bound (GEB)
property. We show that this implies the weak strong convexity property and we compare
the convergence rate obtained in this paper with several results in the current literature
derived for problems obeying the GEB. We begin by defining the projected gradient.

Definition 14 (Projected Gradient). For any x ∈ Rn let us define the projected gradient
as follows,

∇+f(x) := x−ProjWX (x−∇f(x)) . (25)

Note that projected gradient is zero at x if and only if x is an optimal solution of (1).
Also, we will employ the projected gradient to define an error bound, which measures the
distance between x and the optimal solution. Now, we are ready to define a global error
bound as follows.

10
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Definition 15 (Definition 6 in Wang and Lin 2014). An optimization problem admits a
global error bound if there is a constant ηf ≥ 0 such that

‖x− x̄‖ ≤ ηf‖∇+f(x)‖∗W , ∀x ∈ X, (26)

where x̄ and ∇+f(x) are defined in (6) and (25), respectively. A relaxed condition called the
global error bound from the beginning is if the above inequality holds only for x ∈ X such
that f(x)− f(x̄) ≤M , where M is a constant, and usually we have that M = f(x0)− f∗.

Let us consider a special instance of (1) when X is a polyhedral set, i.e.

X = {x ∈ Rn : Bx ≤ c}, (27)

and the function f has the following structure

f(x) = h(Ax) + qTx, (28)

where B ∈ Rl×n, A ∈ Rd×n, h is a σh strongly convex function and f satisfies Assumption 2.
We also assume that there exists an optimal solution and hence the optimal solution set
X∗ is assumed to be non-empty, Wang and Lin (2014). It is easy to observe that if f is
strongly convex, then (5) is trivially satisfied. Just recently, Necoara (2015) showed that if
(26) is satisfied, then (5) is satisfied with

κf =
LWf
2η2
f

. (29)

For problem (28) it was discussed in Wang and Lin (2014) that

ηf = θ2(1 + LWf )

(
1 + 2‖∇h(Ax̄)‖2

σh
+ 4M

)
+ 2θ‖∇f(x̄)‖, (30)

where θ is a constant from the Hoffman bound (Hoffman 1952; Li 1993; Robinson 1973)
defined as follows

θ := sup
u,v


∥∥∥∥(uv

)∥∥∥∥
∣∣∣∣∣∣∣∣∣

∥∥∥∥∥BTu+

(
A
qT

)T
v

∥∥∥∥∥ = 1, u ≥ 0

and the corresponding rows of B,A to u, v’s
non-zero elements are linearly independent.

 . (31)

Note that the constant θ can be very large; we will discuss this in Section 5.

Necoara (2015) derived that, for problem (28), the weak strong convexity property (5)
holds with

κf =
σh
2θ2

. (32)

Note that κf given in (32) is O(θ−2) whereas κf obtained from (29) is of the order θ−4.
Therefore we will compare our results using the latter estimates of κf .

11
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4.1 Comparison with the Results in Related Literature

In Theorem 8 in Wang and Lin (2014), under the global error bound property, it is proven
that FDM converges at a linear rate: f(xk+1)− f∗ ≤ (1− 1

c̄+1)(f(xk)− f∗), with1

c̄ =
1

ζ
(LWf +

1

ω̄
+ β)(1 + ηf (

1

ω̄
+ β)) =

1

ζ
(LWf +

1

ω̄
+ β)(1 + θ2

1 + LWf
σh

(
1

ω̄
+ β))

∼ O
(
θ2

ζσh
(1 + LWf )(

1

ω̄
+ β)(LWf +

1

ω̄
+ β)

)
.

From Theorem 12 in this work, we have linear convergence of RC-FDM with the coefficient

c =
2

κfζ

(
(LWf + 1

ω̄ )2 + β2
) (32)

=
4θ2

σhζ

(
(LWf + 1

ω̄ )2 + β2
)
.

These coefficients are very similar, but FDM Wang and Lin (2014) covers only cyclic co-
ordinate descent and not a randomized coordinate descent method (which is covered by
Theorem 12).

5. Linear Convergence Rate of SDCA for Dual of SVM

In this section we show that the SDCA algorithm (which is SCDM applied to Equation
11) achieves a linear convergence rate for the duality gap. This improves upon the result
obtained in Shalev-Shwartz and Zhang (2013); Takáč et al. (2015); Takáč et al. (2013),
where only a sublinear rate was derived.

Assume, for simplicity, that in problem (10) for all i ∈ {1, 2, . . . , n} it holds that ‖ai‖ ≤ 1.
Then, from Takáč et al. (2015); Takáč et al. (2013), we have that for any x ∈ Rn, s ∈ [0, 1]
and the function f defined in (11),

f(x)− f∗ ≥ sG(x)− s2 σ
2

2λ
, (33)

where f∗ denotes the optimal value of (11), A = [a1, a2, . . . , an], σ2 = 1
n‖X‖ ∈ [ 1

n , 1] and
G(x) is the duality gap at the point x, which is defined as G(x) := P ( 1

λnAx) + f(x).
We remark that SDCA for problem (11) is equivalent to RC-FDM, where the constants

in (18)-(20) are: zk = 0, β2 = 0, wi = Li = 1
λn2 ‖ai‖2, and ωk = 1. Hence, if we choose

x0 = 0 then from Theorem 13 we have that E[f(xk) − f∗] ≤ (1 − c)k
(
f(0)− f∗ + ‖x∗‖2L

)
with c =

2κf
n(2κf+1) .

Now, we see that rearranging (33) gives

G(x)
(33)

≤ s
σ2

2λ
+

1

s
(f(x)− f∗). (34)

If we want to achieve G(x) ≤ ε it is sufficient to choose both terms on right hand side of
(34) to be ≤ ε

2 . Hence, we can set s = min{1, ελ
σ2 }. All we have to do now is to choose k

such that f(xk)− f∗ ≤ s ε2 . In the following theorem we establish linear convergence of the
duality gap G(x) for the SDCA algorithm.

1. In Wang and Lin (2014) it is shown that, in special cases (e.g. X = Rn), (30) is ηf = θ2
1+LW

f

σh
.

12
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Theorem 16. Let s = min{1, 1
ελσ

2} and let K be such that

K ≥ n
(

1 +
1

2κf

)
log

2
(
f(0)− f∗ + ‖x∗‖2L

)
sε

.

Then if the SDCA algorithm is applied to problem (11) to produce {xk}∞k=0, then ∀k ≥ K
we have that E[G(xk)] ≤ ε.

Let us now comment on the size of the parameter κf
(32)
= σh

2θ2
. In our case, X is the

polyhedral set (27) defined by B =
(
−In, In

)T
, and c = (0T ,1T )T , where In ∈ Rn×n is

the identity matrix. Because of this structure (31) simplifies to

θ := sup
u,n


∥∥∥∥(uv

)∥∥∥∥
∣∣∣∣∣∣∣∣∣

∥∥∥∥∥Inu+

(
A
qT

)T
v

∥∥∥∥∥ = 1

and the corresponding rows of In, A to u, v’s
non-zero elements are linearly independent.

 . (35)

To show that θ can be very large, let us assume that two rows of the matrix A are highly
correlated (in this case rows corresponds to features). We denote these two rows by A1 and
A2, and let us assume that A1 = A2 + δe1. Then we can chose v = (−1

δ ,
1
δ , 0, . . . , 0)T and

u = 0. This particular choice is feasible in optimization problem (35) and hence is imposing

a lower-bound on θ: θ ≥
√

2
|δ| . Clearly, for small δ, this shows that θ can be arbitrarily

large.

6. Summary

In this paper we have extended the framework of the feasible descent method FDM to
a randomized, and a randomized coordinate, FDM framework. We have shown that
many problems in the machine learning literature fit our problem structure, and subse-
quently, any algorithm that fits our FDM framework can be used to successfully solve
them. We have proven a linear convergence rate (under the weak strong convexity assump-
tion) for both methods, and we have shown that the convergence rates are similar to the
deterministic/non-randomized FDM. We also showed that for the cyclic coordinate descent
method, the coefficients in FDM are worse than, or similar to, the stochastic coordinate
descent method (and hence the theory tells us that they converge at roughly the same
speed), but each iteration of the stochastic coordinate descent method is n-times cheaper.
We concluded the paper with a result showing that, for the SDCA algorithm applied to the
dual of the linear SVM, the duality gap converges linearly.
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Appendix A. Proof of Theorem 7

Let us define an auxiliary vector x̃ such that

x̃(i) = arg min
x(i)∈Xi

f((x
(1)
k , x

(2)
k , . . . , x

(i−1)
k , x(i), x

(i+1)
k , . . . , x

(n)
k )T ). (36)

Then we can see that if coordinate i is chosen during iteration k in Algorithm 1 then

x
(j)
k+1 =

{
x

(j)
k , if j 6= i,

x̃(i), otherwise.
(37)

If coordinate i is chosen during iteration k, then the optimality conditions for Step 6 of
Algorithm 1, give us that

x
(i)
k+1 = ProjWXi

(
x

(i)
k+1 −

1

wi
∇if(xk+1)

)
. (38)

Moreover, by (37), for j 6= i we have that x
(j)
k = x

(j)
k+1 which is possible only if z

(j)
k =

∇jf(xk).
Note that xk+1 is a random variable, which depends on i and xk only. Therefore, we

can define a random zk such that the i-th coordinate is

z
(i)
k = ∇if(xk)−∇if((x

(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T ) + wi(x

(i)
k − x̃

(i)) (39)

and the j-th coordinate (for j 6= i) is defined as z
(j)
k = ∇jf(xk). It is easy to verify that for

zk defined above, condition (14) holds. Now, we will compute E[(‖zk‖∗W )2]. We have that
if the i-th coordinate is chosen then

1

wi
(z

(i)
k )2

=
1

wi

(
∇if(xk)−∇if((x

(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T ) + wi(x

(i)
k − x̃

(i))
)2

≤ 2

wi

(
∇if(xk)−∇if((x

(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T )

)2
+ 2wi(x

(i)
k − x̃

(i))2

≤ 2
(
‖∇f(xk)−∇f((x

(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T )‖∗W

)2
+ 2wi(x

(i)
k − x̃

(i))2

(8)

≤ 2(LWf ‖xk − (x
(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T ‖W )2 + 2wi(x

(i)
k − x̃

(i))2

= 2(LWf )2wi(x
(i)
k − x̃

(i))2 + 2wi(x
(i)
k − x̃

(i))2 = 2[(LWf )2 + 1]wi(x
(i)
k − x̃

(i))2, (40)

otherwise

1

wi
(z

(i)
k )2 =

1

wi
(∇if(xk))

2.

Hence, we obtain that

E[(‖zk‖∗W )2]
(40)

≤
n∑
i=1

1

n
2[(LWf )2 + 1]wi(x

(i)
k − x̃

(i))2 +
n− 1

n

n∑
i=1

1

wi
(∇if(xk))

2. (41)

14
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From the optimality condition of Step 6 of Algorithm 1, and the fact that Xi = R, we
know that for all i the following holds,

∇if(x
(1)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k ) = 0. (42)

Therefore ∀i we have

1

wi
(∇if(xk))

2 =
1

wi
(∇if(xk)−∇if(x

(1)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k ))2

(7)

≤ 1

wi
L2
i (x̃

(i) − x(i)
k )2 =

1

w2
i

L2
iwi(x̃

(i) − x(i)
k )2.

If we denote by r2 = maxi
L2
i

w2
i
, then we obtain from (41)

E[(‖zk‖∗W )2]
(40)

≤
n∑
i=1

(
1
n2[(LWf )2 + 1] + n−1

n r2
)
wi(x

(i)
k − x̃

(i))2

=
(

1
n2[(LWf )2 + 1] + n−1

n r2
) n∑
i=1

wi(x
(i)
k − x̃

(i))2

=
(
2[(LWf )2 + 1] + (n− 1)r2

)
1
n

n∑
i=1

wi(x
(i)
k − x̃

(i))2

=
(
2[(LWf )2 + 1] + (n− 1)r2

)
E[‖xk − xk+1‖2W ]

and we can conclude that (15) holds with β2 = 2[(LWf )2 + 1] + (n− 1)r2.
Now, it remains to show (16). From (36) we know that

∇if((x
(1)
k , x

(2)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k , )T )(x̃(i) − x(i)

k ) ≤ 0. (43)

Therefore, from (17) with ξ = x
(i)
k and x = (x

(1)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T

(37)
= xk+1,

we have that

f(xk)− f(xk+1) ≥ γwi|x(i)
k − x

(i)
k+1|

2 +∇if(xk+1)(x
(i)
k − x

(i)
k+1)

(43)

≥ γwi|x(i)
k − x

(i)
k+1|

2. (44)

Therefore

f(xk)− f(xk+1)
(44)

≥ γwi|x(i)
k − x

(i)
k+1|

2 = γ‖xk − xk+1‖2W .

and by taking expectation on both sides of the above, (16) follows with ζ = γ.

Appendix B. Proof of Theorem 10

The proof is very similar to the proof of Theorem 7. Let us define an auxiliary vector x̃ in
the same way as in (36). Then we can see that if coordinate i is chosen during iteration
k in Algorithm 1 then (37) holds, and the optimality conditions for Step 6 of Algorithm 1
imply that (38) holds.
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Note that xk+1 is a random variable which depends on i and xk only. Therefore, we can
define zk such that i-th coordinate is given by (39). It is easy to verify that for zk defined
in (39), the condition (18) holds. Now, let us compute (‖(zk)[i]‖∗W )2. We have that

(‖(zk)[i]‖∗W )2 =
1

wi
(z

(i)
k )2

(40)

≤ 2[(LWf )2 + 1]wi(x
(i)
k − x̃

(i))2 (37)
= 2[(LWf )2 + 1]‖x(i)

k − x
(i)
k+1‖

2
W .

Therefore, we conclude that (19) holds with β2 = 2[(LWf )2 + 1].
Now, it remains to show (20). Again from (36) we know that (43) holds. Therefore

from (17) with ξ = x
(i)
k and x = (x

(1)
k , . . . , x

(i−1)
k , x̃(i), x

(i+1)
k , . . . , x

(n)
k )T

(37)
= xk+1 we have

(44). Therefore f(xk)− f(xk+1)
(44)

≥ γwi|x(i)
k − x

(i)
k+1|

2 = γ‖xk − xk+1‖2W , so (20) holds with
ζ = γ.

Appendix C. Proof of Theorem 12

This proof is based on the proof of Theorem 3.2 in Necoara (2015). We can write the
optimality conditions for xk+1 from (14) and using the definition of a projection given in
(9). We have that ∀x ∈ X, the following inequality holds〈

W
(
xk+1 − xk + ωkW

−1(∇f(xk)− zk)
)
, x− xk+1

〉
≥ 0. (45)

Now, using the convexity of f we obtain that

f(xk+1)− f∗ = f(xk+1)− f(x̄k+1) ≤ 〈∇f(xk+1), xk+1 − x̄k+1〉
= 〈∇f(xk+1)−∇f(xk) +∇f(xk), xk+1 − x̄k+1〉 . (46)

Plugging x = x̄k+1 into (45) we obtain〈
1
ωk
W (xk+1 − xk)− zk, x̄k+1 − xk+1

〉
≥ 〈∇f(xk), xk+1 − x̄k+1〉 . (47)

Plugging this into (46) gives us that

f(xk+1)− f(x̄k+1)
(46),(47)

≤
〈
∇f(xk+1)−∇f(xk)− 1

ωk
W (xk+1 − xk) + zk, xk+1 − x̄k+1

〉
CS
≤ ‖∇f(xk+1)−∇f(xk)‖∗W ‖xk+1 − x̄k+1‖W

+
〈
− 1
ωk
W (xk+1 − xk) + zk, xk+1 − x̄k+1

〉
(8)

≤ LWf ‖xk+1 − xk‖W ‖xk+1 − x̄k+1‖W
+
〈
− 1
ω̄W (xk+1 − xk), xk+1 − x̄k+1

〉
+ 〈zk, xk+1 − x̄k+1〉

CS
≤ LWf ‖xk+1 − xk‖W ‖xk+1 − x̄k+1‖W ]

+ 1
ω̄‖W (xk+1 − xk)‖∗W ‖xk+1 − x̄k+1‖W + ‖zk‖∗W ‖xk+1 − x̄k+1‖W

=
(
(LWf + 1

ω̄ )‖xk+1 − xk‖W + ‖zk‖∗W
)
‖xk+1 − x̄k+1‖W

(5)

≤
(
(LWf + 1

ω̄ )‖xk+1 − xk‖W + ‖zk‖∗W
)√ 1

κf
(f(xk+1)− f(x̄k+1)). (48)
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Therefore, we can conclude that

f(xk+1)− f∗
(48)

≤ 1

κf

(
(LWf + 1

ω̄ )‖xk+1 − xk‖W + ‖zk‖∗W
)2
. (49)

Taking the expectation of (49) with respect to the random vector zk, we obtain

E[f(xk+1)− f(x̄k+1)]
(49)

≤ 1

κf
E
[(

(LWf + 1
ω̄ )‖xk+1 − xk‖W + ‖zk‖∗W

)2]
≤ 2

κf

(
(LWf + 1

ω̄ )2E[‖xk+1 − xk‖2W ] + E[(‖zk‖∗W )2]
)

(15)

≤ 2

κf

(
(LWf + 1

ω̄ )2 + β2
)
E[‖xk − xk+1‖2W ]

(16)

≤ 2

κf

(
(LWf + 1

ω̄ )2 + β2
) 1

ζ
(f(xk)−E[f(xk+1)])

=
2

κf

(
(LWf + 1

ω̄ )2 + β2
) 1

ζ︸ ︷︷ ︸
c

(
f(xk)− f(x̄k)

+ E[f(x̄k+1)]−E[f(xk+1)]
)
. (50)

Finally, from (50) we obtain that

E[f(xk+1)− f∗] = E[f(xk+1)− f(x̄k+1)] ≤ c

1 + c
(f(xk)− f(x̄k+1)) =

c

1 + c
(f(xk)− f∗) ,

and the result follows.

Appendix D. Proof of Theorem 13 if zk = 0

Let us define an auxiliary vector x̃ such that

x̃(i) = ProjWX
(
xk − ωkW−1(∇f(xk)− zk)[I]

)
[I]
. (51)

Then we can see that if coordinates I is chosen during iteration k in Algorithm 1 then

x
(j)
k+1 =

{
x

(j)
k , if j /∈ I,
x̃(i), otherwise.

(52)

Therefore, let us estimate the expected value of f at a random point xk+1, where the
expectation is taken with respect to the selection of coordinates I at iteration k. Let
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h ∈ Rn. Then if 1
ωk
≥ maxi

Li
wi

we have

E[f(xk + h[I])]
(7)

≤ f(xk) + E

[〈
∇f(xk), h[I]

〉
+

LI
2wI
‖h[I]‖2W

]
≤ f(xk) + E

[〈
∇f(xk), h[I]

〉
+

1

2ωk
‖h[I]‖2W

]
(52)
= f(xk) +

τ

n

(
〈∇f(xk), h〉+

1

2ωk
‖h‖2W

)

=
n− τ
n

f(xk) +
τ

n

f(xk) + 〈∇f(xk)− zk, h〉+
1

2ωk
‖h‖2W︸ ︷︷ ︸

H(h;xk,zk)

+ 〈zk, h〉

 .

(53)

Now, observe that

x̃ = xk + arg min
h:x+xk∈X

H(h;xk, zk)

= xk + arg min
h∈Rn

{H(h;xk, zk) + ΦX(x+ xk)} =: xk + ĥ, (54)

where ΦX(x) is the indicator function for the set X, i.e.

ΦX(x) =

{
0, if x ∈ X,
+∞, otherwise.

(55)

From the first order optimality conditions of (54) we have

∇f(xk)− zk +
1

ωk
Wĥ+ s = 0, (56)

where s ∈ ∂Φ(xk + ĥ). We can define a composite gradient mapping Lu and Xiao (2013);
Nesterov (2013); Tappenden et al. (2015) as

g := − 1

ωk
Wĥ. (57)

Therefore, we can observe that

−∇f(xk) + zk + g
(56)
∈ ∂Φ(xk + ĥ). (58)

It is also easy to show that

‖ĥ‖2W = ‖ωkW−1g‖2W = ω2
k(‖g‖∗W )2 (59)

and 〈
g, ĥ
〉

= − 1

ωk
‖ĥ‖2W

(59)
= −ωk(‖g‖∗W )2. (60)
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Finally note that for any y ∈ X we have

‖xk + ĥ− y‖2W = ‖xk − y‖2W + 2ωk 〈g, y − xk〉+ ‖ĥ‖2W
(59)
= ‖xk − y‖2W + 2ωk 〈g, y − xk〉+ ω2

k(‖g‖∗W )2. (61)

Now, we are ready to bound H(h;xk, zk) + Φ(x+ h) for h = ĥ. We have

H(ĥ;xk, zk) + Φ(xk + ĥ)

= f(xk) +
〈
∇f(xk)− zk, ĥ

〉
+

1

2ωk
‖ĥ‖2W + Φ(xk + ĥ)

(58)

≤ f(y) + 〈∇f(xk), xk − y〉+
〈
∇f(xk)− zk, ĥ

〉
+

1

2ωk
‖ĥ‖2W

+ Φ(y) +
〈
−∇f(xk) + zk + g, xk + ĥ− y

〉
= f(y) + Φ(y) +

1

2ωk
‖ĥ‖2W + 〈g, xk − y〉+ 〈zk, xk − y〉+

〈
g, ĥ
〉

(60),(59)
= f(y) + Φ(y) +

1

2
ωk(‖g‖∗W )2 + 〈g, xk − y〉+ 〈zk, xk − y〉 − ωk(‖g‖∗W )2

= f(y) + Φ(y)− 1

2
ωk(‖g‖∗W )2 + 〈g, xk − y〉+ 〈zk, xk − y〉

(61)
= f(y) + Φ(y)− 1

2ωk

(
‖xk + ĥ− y‖2W − ‖xk − y‖2W

)
+ 〈zk, xk − y〉

(52),(63)
= f(y) + Φ(y)− 1

2ωk

n

τ

(
E[‖xk+1 − y‖2W ]− ‖xk − y‖2W

)
+ 〈zk, xk − y〉 ,

where in the last step, we use

nE[‖xk+1 − y‖2W ] = τ‖xk + ĥ− y‖2W + (n− τ)‖xk − y‖2W .

Now, from (53) we conclude that ∀y we have

E[f(xk+1)] ≤ n− τ
n

f(xk)+
τ

n

(
f(y) + Φ(y)− n

2ωkτ
E[‖xk+1 − y‖2W ]

+
n

2ωkτ
‖xk − y‖2W +

〈
zk, xk + ĥ− y

〉)
,

which can be equivalently written as

E

[
f(xk+1) +

1

2ωk
‖xk+1 − y‖2W

]
≤f(xk) +

1

2ωk
‖xk − y‖2W

− τ

n
(f(xk)− f(y)− Φ(y)) +

τ

n

〈
zk, xk + ĥ− y

〉
.

If we choose y = x̄k then the latter inequality reads as follows

E

[
f(xk+1) +

1

2ωk
‖xk+1 − x̄k‖2W

]
≤f(xk) +

1

2ωk
‖xk − x̄k‖2W

− τ

n
(f(xk)− f∗) +

τ

n

〈
zk, xk + ĥ− x̄k

〉
.
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From the definition of x̄ we obtain that ‖xk+1 − x̄k+1‖W ≤ ‖xk+1 − x̄k‖W and therefore

E

[
f(xk+1)− f∗ +

1

2ωk
‖xk+1 − x̄k+1‖2W

]
≤(1− τ

n)(f(xk)− f∗)

+
1

2ωk
‖xk − x̄k‖2W +

τ

n

〈
zk, xk + ĥ− x̄k

〉
.

Let us assume that ∀k : zk = 0. Then let us define c = 2τω̄
n(2ω̄+1) ∈ (0, 1),

E

[
f(xk+1)− f∗ +

1

2ωk
‖xk+1 − x̄k+1‖2W

]
≤ (1− c)

(
f(xk)− f∗ +

1

2ω̄
‖xk − x̄k‖2W

)
. (62)

Therefore,

E[f(xk)− f∗] ≤ E

[
f(xk)− f∗ +

1

2ωk
‖xk − x̄k‖2W

]
(62)

≤ (1− c)k
(
f(x0)− f∗ +

1

2ω̄
‖x0 − x̄0‖2W

)
.

Appendix E. Proof of Theorem 13 if zk 6= 0

The proof follows similar arguments to the proof of Theorem 13 when zk = 0. Let us define
an auxiliary vector x̃ in the same way as in (51). Then we can see that if coordinates I
is chosen during iteration k in Algorithm 1 then (52) holds. Therefore, let us estimate the
expected value of f at a random point xk+1, where the expectation is taken with respect
to the selection of coordinate i at iteration k. Let h ∈ Rn. Then if 1

ωk
≥ maxi

Li
wi

we have
that (53) holds. Now, observe that

x̃ = xk + arg min
h:x+xk∈X

H(h;xk, zk)

= xk + arg min
h∈Rn

{H(h;xk, zk) + ΦX(h+ xk)} =: xk + ĥ, (63)

where ΦX(x) is indicator function for set X, (55). Now, we have

H(ĥ;xk, zk) = min
h∈Rn

{
f(xk) + 〈∇f(xk)− zk, h〉+

1

2ωk
‖h‖2W + ΦX(h+ xk)

}
= min

y∈Rn

{
f(xk) + 〈∇f(xk)− zk, y − xk〉+

1

2ωk
‖y − xk‖2W + ΦX(y)

}
≤ min

λ∈[0,1]

{
f(λx̄k + (1− λ)xk) + 〈−zk, λ(x̄k − xk)〉

+
1

2ωk
‖λ(x̄k − xk)‖2W + ΦX(λ(x̄k − xk) + xk)

}
≤ min

λ∈[0,1]

{
λf(x̄k) + (1− λ)f(xk) + λ‖zk‖∗W ‖x̄k − xk‖W +

λ2

2ωk
‖x̄k − xk‖2W

}
.

Note that from (52) and (63) we have

‖ĥ‖2W =
n∑
i=1

‖ĥ[I]‖2W =
n

τ
E[‖xk+1 − xk‖2W ]

(20)

≤ n

ζτ
E[f(xk)− f(xk+1)]. (64)

20



Randomized Feasible Descent Methods

Therefore, we conclude that

E[f(xk+1)− f∗]
(53),(19)

≤ min
λ∈[0,1]

{
f(xk)− f∗ +

τ

n

(
λ(f(x̄k)− f(xk)) + λ‖zk‖∗W ‖x̄k − xk‖W

+
λ2

2ωk
‖x̄k − xk‖2W + ‖zk‖∗W ‖ĥ‖W

)}
(5)

≤ min
λ∈[0,1]

{
f(xk)− f∗ + τ

n

(
− λ(f(xk)− f∗) + λ‖zk‖∗W ‖x̄k − xk‖W

+
λ2

2ωkκf
(f(xk)− f∗) + ‖zk‖∗W ‖ĥ‖W

)}
.

Now, let us denote by ξk = f(xk)− f∗. Notice that

(‖zk‖∗W )2 =

n∑
i=1

(‖(zk)[I]‖∗W )2
(19),(20)

≤ n
β2

ζ
(ξk −E[ξk+1]) (65)

where the expectation is with respect to the random choice i during the k-th iteration.
Therefore we have

E[ξk+1] ≤ min
λ∈[0,1]

{
ξk + τ

n

(
− λξk + λ‖zk‖∗W ‖x̄k − xk‖W +

λ2

2ωkκf
ξk + ‖zk‖∗W ‖ĥ‖W

)}
(65),(64)

≤ min
λ∈[0,1]

{
ξk + τ

n

(
− λξk + λ‖zk‖∗W ‖x̄k − xk‖W

+
λ2

2ωkκf
ξk +

nβ

ζ
√
τ

(ξk −E[ξk+1])
)}

which is equivalent to

(1+
√
τβ
ζ )E[ξk+1]≤(1 +

√
τβ
ζ )ξk + min

λ∈[0,1]
{− τ

nλξk + τ
nλ‖zk‖

∗
W ‖x̄k − xk‖W + τ

n
λ2

2ωkκf
ξk}

(65),(5)

≤ (1 +
√
τβ
ζ )ξk + min

λ∈[0,1]
{− τ

nλξk + τ
nλ
√
nβ

2

ζ (ξk −E[ξk+1])
√

1
κf
ξk + τ

n
λ2

2ωkκf
ξk}.

Using the fact that ∀a, b ∈ R+ we have
√
ab ≤ 1

2a+ 1
2b we obtain that

(1 +
√
τβ
ζ )E[ξk+1]

≤(1 +
√
τβ
ζ )ξk + min

λ∈[0,1]
{− τ

nλξk +
√

β2

ζ (ξk −E[ξk+1])
√

λ2

n
τ2

κf
ξk + τ

n
λ2

2ωkκf
ξk}

≤(1 +
√
τβ
ζ )ξk + min

λ∈[0,1]
{− τ

nλξk +
β2

2ζ
(ξk −E[ξk+1]) +

1

2

λ2

n

τ2

κf
ξk + τ

n
λ2

2ωkκf
ξk}.

Therefore, we obtain

(1 +
√
τβ
ζ + β2

2ζ )E[ξk+1]≤(1 +
√
τβ
ζ + β2

2ζ )ξk +
τ

nω̄κf
min
λ∈[0,1]

{−λω̄κf +
λ2

2
(1 + ω̄τ)}ξk. (66)
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The optimal λ∗ that minimizes the above expression is

λ∗ = min

{
1,

ω̄κf
ω̄τ + 1

}
.

Consider now two cases:

• λ∗ < 1. In this case

−λ∗ω̄κf +
(λ∗)2

2
(1 + ω̄τ) = −1

2

(ω̄κf )2

ω̄τ + 1
.

Combining this with (66) gives

(1 +
√
τβ
ζ + β2

2ζ )E[ξk+1]≤(1 +
√
τβ
ζ + β2

2ζ −
1

2n

ω̄κf
ω̄τ + 1

)ξk,

which is equivalent to

E[ξk+1]≤
(

1− 1

2n

2ω̄κfζ

(ω̄τ + 1)(2ζ + 2β
√
τ + β)

)
ξk.

• λ∗ = 1. In this case
ω̄κf
ω̄τ+1 ≥ 1 and hence

−λ∗ω̄κf t+
(λ∗)2

2
(1 + ω̄τ) = −ω̄κf +

1

2
(1 + ω̄τ) ≤ −ω̄κf +

1

2
ω̄κf = −1

2
ω̄κf .

Therefore, from (66) we can conclude that

E[ξk+1]≤
(

1− ζτ

n(2ζ + 2β
√
τ + 1 + β2)

)
ξk.
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Rachael Tappenden, Peter Richtárik, and Jacek Gondzio. Inexact coordinate descent: com-
plexity and preconditioning. Journal of Optimization Theory and Applications, 170(1):
14417176, 2016.

Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent methods for convex
optimization. The Journal of Machine Learning Research, 15(1):1523–1548, 2014.

H. Zhang and W. Yin. Gradient methods for convex minimization: better rates under
weaker conditions. Technical report, CAM Report 13-17, UCLA, 2013.

24


	Introduction
	Assumptions and Notations
	Applications
	Related work
	Contributions
	Paper Outline

	Randomized and Randomized Coordinate Feasible Descent Method
	Convergence Analysis
	Comparison with the Results in Related Literature

	Global Error Bound Property
	Comparison with the Results in Related Literature

	Linear Convergence Rate of SDCA for Dual of SVM
	Summary

