
Journal of Machine Learning Research 17 (2016) 1-53 Submitted 12/15; Revised 4/16; Published 9/16

A General Framework for Constrained Bayesian
Optimization using Information-based Search

José Miguel Hernández-Lobato1,∗ jmh@seas.harvard.edu

Michael A. Gelbart3,∗ mgelbart@cs.ubc.ca

Ryan P. Adams1,4 rpa@seas.harvard.edu

Matthew W. Hoffman2 mwh30@cam.ac.uk

Zoubin Ghahramani2 zoubin@eng.cam.ac.uk

1. School of Engineering and Applied Sciences

Harvard University, Cambridge, MA 02138, USA

2. Department of Engineering

Cambridge University, Cambridge, CB2 1PZ, UK

3. Department of Computer Science

The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

4. Twitter

Cambridge, MA 02139, USA

Editor: Andreas Krause

Abstract

We present an information-theoretic framework for solving global black-box optimization
problems that also have black-box constraints. Of particular interest to us is to efficiently
solve problems with decoupled constraints, in which subsets of the objective and constraint
functions may be evaluated independently. For example, when the objective is evaluated on
a CPU and the constraints are evaluated independently on a GPU. These problems require
an acquisition function that can be separated into the contributions of the individual func-
tion evaluations. We develop one such acquisition function and call it Predictive Entropy
Search with Constraints (PESC). PESC is an approximation to the expected information
gain criterion and it compares favorably to alternative approaches based on improvement in
several synthetic and real-world problems. In addition to this, we consider problems with a
mix of functions that are fast and slow to evaluate. These problems require balancing the
amount of time spent in the meta-computation of PESC and in the actual evaluation of the
target objective. We take a bounded rationality approach and develop a partial update for
PESC which trades off accuracy against speed. We then propose a method for adaptively
switching between the partial and full updates for PESC. This allows us to interpolate
between versions of PESC that are efficient in terms of function evaluations and those that
are efficient in terms of wall-clock time. Overall, we demonstrate that PESC is an effective
algorithm that provides a promising direction towards a unified solution for constrained
Bayesian optimization.

Keywords: Bayesian optimization, constraints, predictive entropy search

∗. Authors contributed equally.

c©2016 J. M. Hernández-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman and Z. Ghahramani.

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

1. Introduction

Many real-world optimization problems involve finding a global minimizer of a black-box
objective function subject to a set of black-box constraints all being simultaneously satisfied.
For example, consider the problem of optimizing the performance of a speech recognition
system, subject to the requirement that it operates within a specified time limit. The system
may be implemented as a neural network with hyper-parameters such as the number of
hidden units, learning rates, regularization constants, etc. These hyper-parameters have to
be tuned to minimize the recognition error on some validation data under a constraint on
the maximum runtime of the resulting system. Another example is the discovery of new
materials. Here, we aim to find new molecular compounds with optimal properties such as
the power conversion efficiency in photovoltaic devices. Constraints arise from our ability
(or inability) to synthesize various molecules. In this case, the estimation of the properties
of the molecule and its synthesizability can be achieved by running expensive simulations
on a computer.

More formally, we are interested in finding the global minimum x? of a scalar objective
function f(x) over some bounded domain, typically X ⊂ RD, subject to the non-negativity
of a set of constraint functions c1, . . . , cK . We write this as

min
x∈X

f(x) s.t. c1(x) ≥ 0, . . . , cK(x) ≥ 0 . (1)

However, f and c1, . . . , cK are unknown and can only be evaluated pointwise via expensive
queries to “black boxes” that may provide noise-corrupted values. Note that we are assum-
ing that f and each of the constraints ck are defined over the entire space X . We seek to
find a solution to Eq. (1) with as few queries as possible.

For solving unconstrained problems, Bayesian optimization (BO) is a successful ap-
proach to the efficient optimization of black-box functions (Mockus et al., 1978). BO meth-
ods work by applying a Bayesian model to the previous evaluations of the function, with
the aim of reasoning about the global structure of the objective function. The Bayesian
model is then used to compute an acquisition function (i.e., expected utility function) that
represents how promising each possible x ∈ X is if it were to be evaluated next. Maximizing
the acquisition function produces a suggestion which is then used as the next evaluation
location. When the evaluation of the objective at the suggested point is complete, the
Bayesian model is updated with the newly collected function observation and the process
repeats. The optimization ends after a maximum number of function evaluations is reached,
a time threshold is exceeded, or some other stopping criterion is met. When this occurs,
a recommendation of the solution is given to the user. This is achieved for example by
optimizing the predictive mean of the Bayesian model, or by choosing the best observed
point among the evaluations. The Bayesian model is typically a Gaussian process (GP); an
in-depth treatment of GPs is given by Rasmussen and Williams (2006). A commonly-used
acquisition function is the expected improvement (EI) criterion (Jones et al., 1998), which
measures the expected amount by which we will improve over some incumbent or current
best solution, typically given by the expected value of the objective at the current best rec-
ommendation. Other acquisition functions aim to approximate the expected information
gain or expected reduction in the posterior entropy of the global minimizer of the objective

2

Constrained Bayesian Optimization using Information-based Search

(Villemonteix et al., 2009; Hennig and Schuler, 2012; Hernández-Lobato et al., 2014). For
more information on BO, we refer to the tutorial by Brochu et al. (2010).

There have been several attempts to extend BO methods to address the constrained
optimization problem in Eq. (1). The proposed techniques use GPs and variants of the
EI heuristic (Schonlau et al., 1998; Parr, 2013; Snoek, 2013; Gelbart et al., 2014; Gard-
ner et al., 2014; Gramacy et al., 2016; Gramacy and Lee, 2011; Picheny, 2014). Some of
these methods lack generality since they were designed to work in specific contexts, such
as when the constraints are noiseless or the objective is known. Furthermore, because they
are based on EI, computing their acquisition function requires the current best feasible so-
lution or incumbent: a location in the search space with low expected objective value and
high probability of satisfying the constraints. However, the best feasible solution does not
exist when no point in the search space satisfies the constraints with high probability (for
example, because of lack of data). Finally and more importantly, these methods run into
problems when the objective and the constraint functions are decoupled, meaning that the
functions f, c1, . . . , cK in Eq. (1) can be evaluated independently. In particular, the acquisi-
tion functions used by these methods usually consider joint evaluations of the objective and
constraints and cannot produce an optimal suggestion when only subsets of these functions
are being evaluated.

In this work, we propose a general approach for constrained BO that does not have
the problems mentioned above. Our approach to constraints is based on an extension of
Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014), an information-theoretic
method for unconstrained BO problems. The resulting technique is called Predictive En-
tropy Search with Constraints (PESC) and its acquisition function approximates the ex-
pected information gain with regard to the solution of Eq. (1), which we call x?. At each
iteration, PESC collects data at the location that is the most informative about x?, in
expectation. One important property of PESC is that its acquisition function naturally
separates the contributions of the individual function evaluations when those functions are
modeled independently. That is, the amount of information that we approximately gain
by jointly evaluating a set of independent functions is equal to the sum of the gains of
information that we approximately obtain by the individual evaluation of each of the func-
tions. This additive property in its acquisition function allows PESC to efficiently solve
the general constrained BO problem, including those with decoupled evaluation, something
that no other existing technique can achieve, to the best of our knowledge.

An initial description of PESC is given by Hernández-Lobato et al. (2015). That work
considers PESC only in the coupled evaluation scenario, where all the functions are jointly
evaluated at the same input value. This is the standard setting considered by most prior
approaches for constrained BO. Here, we further extend that initial work on PESC as
follows:

1. We present a taxonomy of constrained BO problems. We consider problems in which
the objective and constraints can be split into subsets of functions or tasks that require
coupled evaluation, but where different tasks can be evaluated in a decoupled way.
These different tasks may or may not compete for a limited set of resources. We
propose a general algorithm for solving this type of problems and then show how
PESC can be used for the practical implementation of this algorithm.

3

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

2. We analyze PESC in the decoupled scenario. We evaluate the accuracy of PESC when
the different functions (objective or constraint) are evaluated independently. We show
how PESC efficiently solves decoupled problems with an objective and constraints that
compete for the same computational resource.

3. We intelligently balance the computational overhead of the Bayesian optimization
method relative to the cost of evaluating the black-boxes. To achieve this, we develop a
partial update to the PESC approximation that is less accurate but faster to compute.
We then automatically switch between partial and full updates so that we can balance
the amount of time spent in the Bayesian optimization subroutines and in the actual
collection of data. This allows us to efficiently solve problems with a mix of decoupled
functions where some are fast and others slow to evaluate.

The rest of the paper is structured as follows. Section 2 reviews prior work on constrained
BO and considers these methods in the context of decoupled functions. In Section 3 we
present a general framework for describing BO problems with decoupled functions, which
contains as special cases the standard coupled framework considered in most prior work
as well as the notion of decoupling introduced by Gelbart et al. (2014). This section also
describes a general algorithm for BO problems with decoupled functions. In Section 4 we
show how to extend Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014) to
solve Eq. (1) in the context of decoupling, an approach that we call Predictive Entropy
Search with Constraints (PESC). We also show how PESC can be used to implement the
general algorithm from Section 3. In Section 5 we modify the PESC algorithm to be more
efficient in terms of wall-clock time by adaptively using an approximate but faster version
of the method. In Sections 6 and 7 we perform empirical evaluations of PESC on coupled
and decoupled optimization problems, respectively. Finally, we conclude in Section 8.

2. Related Work

Below we discuss previous approaches to Bayesian optimization with black-box constraints,
many of which are variants of the expected improvement (EI) heuristic (Jones et al., 1998).
In the unconstrained setting, EI measures the expected amount by which observing the
objective f at x leads to improvement over the current best recommendation or incumbent,
the objective value of which is denoted by η (thus, η has the units of f , not x). The
incumbent η is usually defined as the lowest expected value for the objective over the
optimization domain. The EI acquisition function is then given by

αEI(x) =

∫
max(0, η − f(x))p(f(x)|D) df(x) = σf (x) (zf (x)Φ (zf (x)) + φ (zf (x))) , (2)

where D represents the collected data (previous function evaluations) and p(f(x)|D) is the
predictive distribution for the objective made by a Gaussian process (GP), µf (x) and σ2

f (x)
are the GP predictive mean and variance for f(x), zf (x) ≡ (η − µf (x))/σf (x), and Φ and
φ are the standard Gaussian CDF and PDF, respectively.

4

Constrained Bayesian Optimization using Information-based Search

2.1 Expected Improvement with Constraints

An intuitive extension of EI in the presence of constraints is to define improvement as only
occurring when the constraints are satisfied. Because we are uncertain about the values of
the constraints, we must weight the original EI value by the probability of the constraints
being satisfied. This results in what we call Expected Improvement with Constraints (EIC):

αEIC(x) = αEI(x)
K∏
k=1

Pr(ck(x) ≥ 0|D) = αEI(x)
K∏
k=1

Φ

(
µk(x)

σk(x)

)
, (3)

The constraint satisfaction probability factorizes because f and c1, . . . , cK are modeled by
independent GPs. In this expression µk and σ2

k are the posterior predictive mean and
variance for ck(x). EIC was initially proposed by Schonlau et al. (1998) and has been
revisited by Parr (2013), Snoek (2013), Gardner et al. (2014) and Gelbart et al. (2014).

In the constrained setting, the incumbent η can be defined as the minimum expected
objective value subject to all the constraints being satisfied at the corresponding location.
However, we can never guarantee that all the constraints will be satisfied when they are
only observed through noisy evaluations. To circumvent this problem, Gelbart et al. (2014)
define η as the lowest expected objective value subject to all the constraints being satisfied
with posterior probability larger than the threshold 1− δ, where δ is a small number such
as 0.05. However, this value for η still cannot be computed when there is no point in the
search space that satisfies the constraints with posterior probability higher than 1− δ. For
example, because of lack of data for the constraints. In this case, Gelbart et al. change the
original acquisition function given by Eq. (3) and ignore the factor αEI(x) in that expression.
This allows them to search only for a feasible location, ignoring the objective f entirely and
just optimizing the constraint satisfaction probability. However, this can lead to inefficient
optimization in practice because the data collected for the objective f is not used to make
optimal decisions.

2.2 Integrated Expected Conditional Improvement

Gramacy and Lee (2011) propose an acquisition function called the integrated expected
conditional improvement (IECI), defined as

αIECI(x) =

∫
X

[
αEI(x

′)− αEI(x
′|x)
]
h(x′)dx′ . (4)

Here, αEI(x
′) is the expected improvement at x′, αEI(x

′|x) is the expected improvement
at x′ given that the objective has been observed at x (but without making any assumptions
about the observed value), and h(x′) is an arbitrary density over x′. The IECI at x is the
expected reduction in EI at x′, under the density h(x′), caused by observing the objective
at x. Gramacy and Lee use IECI for constrained BO by setting h(x′) to the probability of
the constraints being satisfied at x′. They define the incumbent η as the lowest posterior
mean for the objective f over the whole optimization domain, ignoring the fact that the
lowest posterior mean for the objective may be achieved in an infeasible location.

The motivation for IECI is that collecting data at an infeasible location may also provide
useful information. EIC strongly discourages this, because Eq. (3) always takes very low

5

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

values when the constraints are unlikely to be satisfied. This is not the case with IECI
because Eq. (4) considers the EI over the whole optimization domain instead of focusing only
on the EI at the current evaluation location, which may be infeasible with high probability.
Gelbart et al. (2014) compare IECI with EIC for optimizing the hyper-parameters of a topic
model with constraints on the entropy of the per-topic word distribution and show that EIC
outperforms IECI on this problem.

2.3 Expected Volume Minimization

An alternative approach is given by Picheny (2014), who proposes to sequentially explore
the location that most decreases the expected volume (EV) of the feasible region below the
best feasible objective value η found so far. This quantity is computed by integrating the
product of the probability of improvement and the probability of feasibility. That is,

αEV(x) =

∫
p[f(x′) ≤ η]h(x′)dx′ −

∫
p[f(x′) ≤ min(η, f(x))]h(x′)dx′ , (5)

where, as in IECI, h(x′) is the probability that the constraints are satisfied at x′. Picheny
considers noiseless evaluations for the objective and constraint functions and defines η as
the best feasible objective value seen so far or +∞ when no feasible location has been found.

A disadvantage of Picheny’s method is that it requires the integral in Eq. (5) to be
computed over the entire search domain X , which is done numerically over a grid on x′.
The resulting acquisition function must then be globally optimized. This is often performed
by first evaluating the acquisition function on a grid on x. The best point in this second grid
is then used as the starting point of a numerical optimizer for the acquisition function. This
nesting of grid operations limits the application of this method to small input dimension D.
This is also the case for IECI whose acquisition function in Eq. (4) also includes an integral
over X . Our method PESC requires a similar integral in the form of an expectation with
respect to the posterior distribution of the global feasible minimizer x?. Nevertheless, this
expectation can be efficiently approximated by averaging over samples of x? drawn using the
approach proposed by Hernández-Lobato et al. (2014). This approach is further described
in Appendix B.3. Note that the integrals in Eq. (5) could in principle be also approximated
by using Marcov chain Monte Carlo (MCMC) to sample from the unnormalized density
h(x′). However, this was not proposed by Picheny and he only described the grid based
method.

2.4 Modeling an Augmented Lagrangian

Gramacy et al. (2016) propose to use a combination of EI and the augmented Lagrangian (AL)
method: an algorithm which turns an optimization problem with constraints into a sequence
of unconstrained optimization problems. Gramacy et al. use BO techniques based on EI to
solve the unconstrained inner loop of the AL problem. When f and c1, . . . , cK are known
the unconstrained AL objective is defined as

LA(x|λ1, . . . , λK , p) = f(x) +

K∑
k=1

[
1

2p
min(0, ck(x))2 − λkck(x)

]
, (6)

6

Constrained Bayesian Optimization using Information-based Search

where p > 0 is a penalty parameter and λ1 ≥ 0, . . . , λK ≥ 0 serve as Lagrange multipliers.
The AL method iteratively minimizes Eq. (6) with different values for p and λ1, . . . , λK at

each iteration. Let x
(n)
? be the minimizer of Eq. (6) at iteration n using parameter values p(n)

and λ
(n)
1 , . . . , λ

(n)
K . The next parameter values are λ

(n+1)
k = max(0, λ

(n)
k − ck(x

(n)
?)/p(n))

for k = 1, . . . ,K and p(n+1) = p(n) if x
(n)
? is feasible and p(n+1) = p(n)/2 otherwise. When f

and c1, . . . , cK are unknown we cannot directly minimize Eq. (6). However, if we have
observations for f and c1, . . . , cK , we can then map such data into observations for the AL
objective. Gramacy et al. fit a GP model to the AL observations and then select the next
evaluation location using the EI heuristic. After collecting the data, the AL parameters are
updated as above using the new values for the constraints and the whole process repeats.

A disadvantage of this approach is that it assumes that the the constraints c1, . . . , ck are
noiseless to guarantee that that p and λ1, . . . , λK can be correctly updated. Furthermore,
Gramacy et al. (2016) focus only on the case in which the objective f is known, although
they provide suggestions for extending their method to unknown f . In section 6.3 we show
that PESC and EIC perform better than the AL approach on the synthetic benchmark
problem considered by Gramacy et al., even when the AL method has access to the true
objective function and PESC and EIC do not.

2.5 Existing Methods for Decoupled Evaluations

The methods described above can be used to solve constrained BO problems with coupled
evaluations. These are problems in which all the functions (objective and constraints) are
always evaluated jointly at the same input. Gelbart et al. (2014) consider extending the
EIC method from Section 2.1 to the decoupled setting, where the different functions can be
independently evaluated at different input locations. However, they identify a problem with
EIC in the decoupled scenario. In particular, the EIC utility function requires two conditions
to produce positive values. First, the evaluation for the objective must achieve a lower value
than the best feasible solution so far and, second, the evaluations for the constraints must
produce non-negative values. When we evaluate only one function (objective or constraint),
the conjunction of these two conditions cannot be satisfied by a single observation under
a myopic search policy. Thus, the new evaluation location can never become the new
incumbent and the EIC is zero everywhere. Therefore, standard EIC fails in the decoupled
setting.

Gelbart et al. (2014) circumvent the problem mentioned above by treating decoupling as
a special case and using a two-stage acquisition function: first, the next evaluation location x
is chosen with EIC, and then, given x, the task (whether to evaluate the objective or one of
the constraints) is chosen according to the expected reduction in the entropy of the global
feasible minimizer x?, where the entropy computation is approximated using Monte Carlo
sampling as proposed by Villemonteix et al. (2009). We call the resulting method EIC-D.
Note that the two-stage decision process used by EIC-D is sub-optimal and a joint selection
of x and the task should produce better results. As discussed in the sections that follow, our
method, PESC, does not suffer from this disadvantage and furthermore, can be extended
to a wider range of decoupled problems than EIC-D can.

7

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

3. Decoupled Function Evaluations and Resource Allocation

We present a framework for describing constrained BO problems. We say that a set of
functions (objective or constraints) are coupled when they always require joint evaluation
at the same input location. We say that they are decoupled when they can be evaluated
independently at different inputs. In practice, a particular problem may exhibit coupled
or decoupled functions or a combination of both. An example of a problem with coupled
functions is given by a financial simulator that generates many samples from the distribution
of possible financial outcomes. If the objective function is the expected profit and the
constraint is a maximum tolerable probability of default, then these two functions are
computed jointly by the same simulation and are thus coupled to each other. An example
of a problem with decoupled functions is the optimization of the predictive accuracy of a
neural network speech recognition system subject to prediction time constraints. In this
case different neural network architectures may produce different predictive accuracies and
different prediction times. Assessing the prediction time may not require training the neural
network and could be done using arbitrary network weights. Thus, we can evaluate the
timing constraint without evaluating the accuracy objective.

When problems exhibit a combination of coupled and decoupled functions, we can then
partition the different functions into subsets of functions that require coupled evaluation.
We call these subsets of coupled functions tasks. In the financial simulator example, the
objective and the constraint form the only task. In the speech recognition system there are
two tasks, one for the objective and one for the constraint. Functions within different tasks
are decoupled and can be evaluated independently. These tasks may or may not compete
for a limited set of resources. For example, two tasks that both require the performance of
expensive computations may have to compete for using a single available CPU. An example
with no competition is given by two tasks, one which performs computations in a CPU and
another one which performs computations in a GPU. Finally, two competitive tasks may
also have different evaluation costs and this should be taken into account when deciding
which one is going to be evaluated next.

In the previous section we showed that most existing methods for constrained BO can
only address problems with coupled functions. Furthermore, the extension of these methods
to the decoupled setting is difficult because most of them are based on the EI heuristic and,
as illustrated in Section 2.5, improvement can be impossible with decoupled evaluations.
A decoupled problem can, of course, be coupled artificially and then solved as a coupled
problem with existing methods. We examine this approach here with a thought experi-
ment and with empirical evaluations in Section 7. Returning to our time-limited speech
recognition system, let us consider the cost of evaluating each of the tasks. Evaluating the
objective requires training the neural network, which is a very expensive process. On the
other hand, evaluating the constraint (run time) requires only to time the predictions made
by the neural network and this could be done without training, using arbitrary network
weights. Therefore, evaluating the constraint is in this case much faster than evaluating
the objective. In a decoupled framework, one could first measure the run time at several
evaluation locations, gaining a sense of the constraint surface. Only then would we incur
the significant expense of evaluating the objective task, heavily biasing our search towards
locations that are considered to be feasible with high probability. Put another way, artifi-

8

Constrained Bayesian Optimization using Information-based Search

cially coupling the tasks becomes increasingly inefficient as the cost differential is increased;
for example, one might spend a week examining one aspect of a design that could have been
ruled out within seconds by examining another aspect.

In the following sections we present a formalization of constrained Bayesian optimization
problems that encompasses all of the cases described above. We then show that our method,
PESC (Section 4), is an effective practical solution to these problems because it naturally
separates the contributions of the different function evaluations in its acquisition function.

3.1 Competitive Versus Non-competitive Decoupling and Parallel BO

We divide the class of problems with decoupled functions into two sub-classes, which we
call competitive decoupling (CD) and non-competitive decoupling (NCD). CD is the form of
decoupling considered by Gelbart et al. (2014), in which two or more tasks compete for the
same resource. This happens when there is only one CPU available and the optimization
problem includes two tasks with each of them requiring a CPU to perform some expensive
simulations. In contrast, NCD refers to the case in which tasks require the use of differ-
ent resources and can therefore be evaluated independently, in parallel. This occurs, for
example, when one of the two tasks uses a CPU and the other task uses a GPU.

Note that NCD is very related to parallel Bayesian optimization (see e.g., Ginsbourger
et al., 2011; Snoek et al., 2012). In both parallel BO and NCD we perform multiple task
evaluations concurrently, where each new evaluation location is selected optimally accord-
ing to the available data and the locations of all the currently pending evaluations. The
difference between parallel BO and NCD is that in NCD the tasks whose evaluations are
currently pending may be different from the task that will be evaluated next, while in par-
allel BO there is only a single task. Parallel BO conveniently fits into the general framework
described below.

3.2 Formalization of Constrained Bayesian Optimization Problems

We now present a framework for describing constrained BO problems of the form given by
Eq. (1). Our framework can be used to represent general problems within any of the cate-
gories previously described, including coupled and decoupled functions that may or may not
compete for a limited number of resources, each of which may be replicated multiple times.
Let F be the set of functions {f, c1, . . . , cK} and let the set of tasks T be a partition of F in-
dicating which functions are coupled and must be jointly evaluated. Let R = {r1, . . . , r|R|}
be the set of resources available to solve this problem. We encode the relationship be-
tween tasks and resources with a bipartite graph G = (V, E) with vertices V = T ∪ R and
edges {t ∼ r} ∈ E such that t ∈ T and r ∈ R. The interpretation of an edge {t ∼ r} is
that task t can be performed on resource r. (We do not address the case in which a task
requires multiple resources to be executed; we leave this as future work.) We also intro-
duce a capacity ωmax for each resource r. The capacity ωmax(r) ∈ N represents how many
tasks may be simultaneously executed on resource r; for example, if r represents a cluster
of CPUs, ωmax(r) would be the number of CPUs in the cluster. Introducing the notion of
capacity is simply a matter of convenience since it is equivalent to setting all capacities to
one and replicating each resource node in G according to its capacity.

9

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

tasks	
 resources	
functions	

coupled	

objective	

constraint	

f	

c1	

t1	
 r1	

non-competitive	

decoupled	

objective	

constraint	

f	

c1	

t1	

t2	
 r2	

r1	

competitive	

decoupled	

objective	

constraint	

f	

c1	

t1	

t2	

r1	

parallel	
t1	

r1	

r2	

objective	

constraint	

f	

c1	

Figure 1: Schematic comparing the coupled, parallel, non-competitive decoupled (NCD),
and competitive decoupled (CD) scenarios for a problem with a single constraint
c1. In each case, the mapping between tasks and resources (the right-hand portion
of the figure) is the bipartite graph G.

We can now formally describe problems with coupled evaluations as well as NCD and
CD. In particular, coupling occurs when two functions g1 and g2 belong to the same task t.
If this task can be evaluated on multiple resources (or one resource with ωmax > 1), then
this is parallel Bayesian optimization. NCD occurs when two functions g1 and g2 belong
to different tasks t1 and t2, which themselves require different resources r1 and r2, (that
is, t1 ∼ r1, t2 ∼ r2 and r1 6= r2). CD occurs when two functions g1 and g2 belong to
different tasks t1 and t2 (decoupled) that require the same resource r (competitive). These
definitions are visually illustrated in Fig. 1. The definitions can be trivially extended to
cases with more than two functions. The most general case is an arbitrary task-resource
graph G encoding a combination of coupling, NCD, CD and parallel Bayesian optimization.

3.3 A General Algorithm for Constrained Bayesian Optimization

In this section we present a general algorithm for solving constrained Bayesian optimization
problems specified according to the formalization from the previous section. Our approach
relies on an acquisition function that can measure the expected utility of evaluating any
arbitrary subset of functions, that is, of any possible task. When an acquisition function
satisfies this requirement we say that it is separable. As discussed in Section 4.1, our

10

Constrained Bayesian Optimization using Information-based Search

Algorithm 1 A general method for constrained Bayesian optimization.

1: Input: F , G = (T ∪ R, E), αt for t ∈ T , X , M, D, ω, ωmax and δ.
2: repeat
3: for r ∈ R such that ω(r) < ωmax(r) do
4: Update M with any new data in D
5: for t ∈ T such that {t ∼ r} ∈ E do
6: x∗t ← arg maxx∈X αt(x|M)
7: α∗t ← αt(x

∗
t |M)

8: end for
9: t∗ ← arg maxt α

∗
t

10: Submit task t∗ at input x∗t∗ to resource r
11: Update M with the new pending evaluation
12: end for
13: until termination condition is met
14: Output: arg minx∈X EM[f(x)] s.t. p(c1(x) ≥ 0, . . . , cK(x) ≥ 0|M) ≥ 1− δ

method PESC has this property, when the functions are modeled as independent. This
property makes PESC an effective solution for the practical implementation of our general
algorithm. By contrast, the EIC-D method of Gelbart et al. (2014) is not separable and
cannot be applied in the general case presented here.

Algorithm 1 provides a general procedure for solving constrained Bayesian optimization
problems. The inputs to the algorithm are the set of functions F , the set of tasks T ,
the set of resources R, the task-resource graph G = (T ∪ R, E), an acquisition function for
each task, that is, αt for t ∈ T , the search space X , a Bayesian model M, the initial
data set D, the resource query functions ω and ωmax and a confidence level δ for making a
final recommendation. Recall that ωmax indicates how many tasks can be simultaneously
executed on a particular resource. The function ω is introduced here to indicate how many
tasks are currently being evaluated in a resource. The acquisition function αt measures
the utility of evaluating task t at the location x. This acquisition function depends on the
predictions of the Bayesian modelM. The separability property of the original acquisition
function guarantees that we can compute an αt for each t ∈ T .

Algorithm 1 works as follows. First, in line 3, we iterate over the resources, checking
if they are available. Resource r is available if its number of currently running jobs ω(r)
is less than its capacity ωmax(r). Whenever resource r is available, we check in line 4 if
any new function observations have been collected. If this is the case, we then update
the Bayesian model M with the new data (in most cases we will have new data since the
resource r probably became available due to the completion of a previous task). Next,
we iterate in line 5 over the tasks t that can be evaluated in the new available resource r
as dictated by G. In line 6 we find the evaluation location x∗t that maximizes the utility
obtained by the evaluation of task t, as indicated by the task-specific acquisition function
αt. In line 7 we obtain the corresponding maximum task utility α∗t . In line 9, we then
maximize over tasks, selecting the task t∗ with highest maximum task utility α∗t (this is the
“competition” in CD). Upon doing so, the pair (t∗,x∗t∗) forms the next suggestion. This
pair represents the experiment with the highest acquisition function value over all possible

11

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

(t,x) pairs in T × X that can be run on resource r. In line 10, we evaluate the selected
task at resource r and in line 11 we update the Bayesian model M to take into account
that we are expecting to collect data for task t∗ at input x∗t∗ . This can be done for example
by drawing virtual data from M’s predictive distribution and then averaging across the
predictions made when each virtual data point is assumed to be the data actually collected
by the pending evaluation (Schonlau et al., 1998; Snoek et al., 2012). In line 13 the whole
process repeats until a termination condition is met. Finally, in line 14, we give to the user
a final recommendation of the solution to the optimization problem. This is the input that
attains the lowest expected objective value subject to all the constraints being satisfied with
posterior probability larger than 1 − δ, where δ is maximum allowable probability of the
recommendation being infeasible according to M.

Algorithm 1 can solve problems that exhibit any combination of coupling, parallelism,
NCD, and CD.

3.4 Incorporating Cost Information

Algorithm 1 always selects, among a group of competitive tasks, the one whose evaluation
produces the highest utility value. However, other cost factors may render the evaluation
of one task more desirable than another. The most salient of these costs is the run time
or duration of the task’s evaluation, which could depend on the evaluation location x.
For example, in the neural network speech recognition system, one of the variables to be
optimized may be the number of hidden units in the neural network. In this case, the
run time of an evaluation of the predictive accuracy of the system is a function of x since
the training time for the network scales with its size. Snoek et al. (2012) consider this
issue by automatically measuring the duration of function evaluations. They model the
duration as a function of x with an additional Gaussian process (GP). Swersky et al. (2013)
extend this concept over multiple optimization tasks so that an independent GP is used to
model the unknown duration of each task. This approach can be applied in Algorithm 1
by penalizing the acquisition function for task t with the expected cost of evaluating that
task. In particular, we can change lines 6 and 7 in Algorithm 1 to

6: x∗t ← arg maxx∈X αt(x|M)/ζt(x)

7: α∗t ← αt(x
∗
t |M)/ζt(x

∗
t)

where ζt(x) is the expected cost associated with the evaluation of task t at x, as estimated by
a model of the collected cost data. When taking into account task costs modeled by Gaussian
processes, the total number of GP models used by Algorithm 1 is equal to the number of
functions in the constrained BO problem plus the number of tasks, that is, |F| + |T |.
Alternatively, one could fix the cost functions ζt(x) a priori instead of learning them from
collected data.

4. Predictive Entropy Search with Constraints (PESC)

To implement Algorithm 1 in practice we need to compute an acquisition function that is
separable and can measure the utility of evaluating an arbitrary subset of functions. In this
section we describe how to achieve this.

12

Constrained Bayesian Optimization using Information-based Search

Our acquisition function approximates the expected gain of information about the so-
lution to the constrained optimization problem, which is denoted by x?. Importantly, our
approximation is additive. For example, let A be a set of functions and let I(A) be the
amount of information that we approximately gain in expectation by jointly evaluating the
functions in A. Then I(A) =

∑
a∈A I({a}). Although our acquisition function is additive,

the exact expected gain of information is not. Additivity is the result of a factorization
assumption in our approximation (see Section 4.2 for further details). The good results
obtained in our experiments seem to support that this is a reasonable assumption. Because
of this additive property, we can compute an acquisition function for any possible subset
of f , c1, . . . , cK using the individual acquisition functions for these functions as building
blocks.

We follow MacKay (1992) and measure information about x? by the differential entropy
of p(x?|D), where D is the data collected so far. The distribution p(x?|D) is formally defined
in the unconstrained case by Hennig and Schuler (2012). In the constrained case p(x?|D)
can be understood as the probability distribution determined by the following sampling
process. First, we draw f , c1, . . . , cK from their posterior distributions given D and second,
we minimize the sampled f subject to the sampled c1, . . . , cK being non-negative, that is, we
solve Eq. (1) for the sampled functions. The solution to Eq. (1) obtained by this procedure
represents then a sample from p(x?|D).

We consider first the case in which all the black-box functions f, c1, . . . , cK are evalu-
ated at the same time (coupled). Let H [x? | D] denote the differential entropy of p(x?|D)
and let yf , yc1 , . . . , ycK denote the measurements obtained by querying the black-boxes for
f , c1, . . . , cK at the input location x. We encode these measurements in vector form as
y = (yf , yc1 , . . . , ycK)T. Note that y contains the result of the evaluation of all the func-
tions at x, that is, the objective f and the constraints c1, . . . , cK . We aim to collect data
at the location that maximizes the expected information gain or the expected reduction in
the entropy of p(x?|D). The corresponding acquisition function is

α(x) = H [x? | D]− Ey | D,x [H [x? | D ∪ {(x,y)}]] . (7)

In this expression, H [x? | D ∪ {(x,y)}] is the amount of information on x? that is available
once we have collected new data y at the input location x. However, this new y is unknown
because it has not been collected yet. To circumvent this problem, we take the expectation
with respect to the predictive distribution for y given x and D. This produces an expression
that does not depend on y and could in principle be readily computed.

A direct computation of Eq. (7) is challenging because it requires evaluating the entropy
of the intractable distribution p(x? | D) when different pairs (x,y) are added to the data.
To simplify computations, we note that Eq. (7) is the mutual information between x? and
y given D and x, which we denote by MI(x?,y). The mutual information operator is
symmetric, that is, MI(x?,y) = MI(y,x?). Therefore, we can follow Houlsby et al. (2012)
and swap the random variables y and x? in Eq. (7). The result is a reformulation of the
original equation that is now expressed in terms of entropies of predictive distributions,
which are easier to approximate:

α(x) = H [y | D,x]− Ex? | D [H [y | D,x,x?]] . (8)

13

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

This is the same reformulation used by Predictive Entropy Search (PES) (Hernández-Lobato
et al., 2014) for unconstrained Bayesian optimization, but extended to the case where y is
a vector rather than a scalar. Since we focus on constrained optimization problems, we call
our method Predictive Entropy Search with Constraints (PESC). Eq. (8) is used by PESC
to efficiently solve constrained Bayesian optimization problems with decoupled function
evaluations. In the following section we describe how to obtain a computationally efficient
approximation to Eq. (8). We also show that the resulting approximation is separable.

4.1 The PESC Acquisition Function

We assume that the functions f , c1, . . . , cK are independent samples from Gaussian process
(GP) priors and that the noisy measurements y returned by the black-boxes are obtained
by adding Gaussian noise to the noise-free function evaluations at x. Under this Bayesian
model for the data, the first term in Eq. (8) can be computed exactly. In particular,

H [y | D,x] =
K+1∑
i=1

1

2
log σ2

i (x) +
K + 1

2
log(2πe) , (9)

where σ2
i (x) is the predictive variance for yi at x and yi is the i-th entry in y. To obtain

this formula we have used the fact that f , c1, . . . , cK are generated independently, so that
H [y | D,x] =

∑K+1
i=1 H [yi | D,x], and that p(yi | D,x) is Gaussian with variance parameter

σ2
i (x) given by the GP predictive variance (Rasmussen and Williams, 2006):

σ2
i (x) = ki(x)− ki(x)TK−1

i ki(x) + νi , i = 1, . . . ,K + 1 , (10)

where νi is the variance of the additive Gaussian noise in the i-th black-box, with f being
the first one and cK the last one. The scalar ki(x) is the prior variance of the noise-free
black-box evaluations at x. The vector ki(x) contains the prior covariances between the
black-box values at x and at those locations for which data from the black-box is available.
Finally, Ki is a matrix with the prior covariances for the noise-free black-box evaluations
at those locations for which data is available.

The second term in Eq. (8), that is, Ex? | D [H [y | D,x,x?]], cannot be computed exactly
and needs to be approximated. We do this operation as follows. 1 : The expectation with
respect to p(x? | D) is approximated with an empirical average over M samples drawn from
p(x? | D). These samples are generated by following the approach proposed by Hernández-
Lobato et al. (2014) for sampling x? in the unconstrained case. We draw approximate pos-
terior samples of f, c1, . . . , cK , as described by Hernández-Lobato et al. (2014, Appendix A),
and then solve Eq. (1) to obtain x? given the sampled functions. More details can be found
in Appendix B.3 of this document. Note that this approach only applies for stationary
kernels, but this class includes popular choices such as the squared exponential and Matérn
kernels. 2 : We assume that the components of y are independent given D, x and x?,
that is, we assume that the evaluations of f , c1, . . . , cK at x are independent given D and
x?. This factorization assumption guarantees that the acquisition function used by PESC
is additive across the different functions that are being evaluated. 3 : Let xj? be the j-th
sample from p(x? | D). We then find a Gaussian approximation to each p(yi | D,x,xj?) using
expectation propagation (EP) (Minka, 2001a). Let σ2

i (x|xj?) be the variance of the Gaussian

14

Constrained Bayesian Optimization using Information-based Search

approximation to p(yi | D,x,xj?) given by EP. Then, we obtain

Ex? | D [H [y | D,x,x?]]
1≈ 1

M

M∑
j=1

H
[
y | D,x,xj?

] 2≈ 1

M

M∑
j=1

[
K+1∑
i=1

H
[
yi | D,x,xj?

]]

3≈
K+1∑
i=1

 1

M

M∑
j=1

1

2
log σ2

i (x|xj?)

+
K + 1

2
log(2πe) , (11)

where each of the approximations has been numbered with the corresponding step from the
description above. Note that in step 3 of Eq. (11) we have swapped the sums over i and j.

The acquisition function used by PESC is then given by the difference between Eq. (9)
and the approximation shown in the last line of Eq. (11). In particular, we obtain

αPESC(x) =

K+1∑
i=1

α̃i(x) , (12)

where

α̃i(x) =
1

M

M∑
j=1

1

2
log σ2

i (x)− 1

2
log σ2

i (x|xj?)︸ ︷︷ ︸
α̃i(x|xj?)

, i = 1, . . . ,K + 1 . (13)

Interestingly, the factorization assumption that we made in step 2 of Eq. (11) has produced
an acquisition function in Eq. (12) that is the sum of K + 1 function-specific acquisition
functions, given by the α̃i(x) in Eq. (13). Each α̃i(x) measures how much information we
gain on average by only evaluating the i-th black box, where the first black-box evaluates
f and the last one evaluates cK+1. Furthermore, α̃i(x) is the empirical average of α̃i(x|x?)
across M samples from p(x?|D). Therefore, we can interpret each α̃i(x|x?) in Eq. (13)
as a function-specific acquisition function conditioned on x?. Crucially, by using bits of
information about the minimizer as a common unit of measurement, our acquisition function
can make meaningful comparisons between the usefulness of evaluating the objective and
constraints.

We now show how PESC can be used to obtain the task-specific acquisition functions
required by the general algorithm from Section 3.3. Let us assume that we plan to evaluate
only a subset of the functions f , c1, . . . , cK and let t ⊆ {1, . . . ,K + 1} contain the indices
of the functions to be evaluated, where the first function is f and the last one is cK . We
assume that the functions indexed by t are coupled and require joint evaluation. In this
case t encodes a task according to the definition from Section 3.2. We can then approximate
the expected gain of information that is obtained by evaluating this task at input x. The
process is similar to the one used above when all the black-boxes are evaluated at the same
time. However, instead of working with the full vector y, we now work with the components
of y indexed by t. One can then show that the expected information gain obtained after
evaluating task t at input x can be approximated as

αt(x) =
∑
i∈t

α̃i(x) , (14)

15

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2
A) Sample from p(f |D)

x

f
(x
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

B) Distribution p(y1|D,x)

x

y 1

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

C) Approx. p(y1|D,x,x1
?)

x

y 1

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0
.6

0
.8

1
.0

1.
2

D) Function α̃1(x|x1
?)

x

α̃
1
(x
|x

1 ?
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0
.6

0
.8

1
.0

1.
2

E) Function α̃1(x)

x

α̃
1
(x
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

F) Sample from p(c1|D)

x

c 1
(x
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

G) Distribution p(y2|D,x)

x

c 1
(x
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

H) Approx. p(y2|D,x,x1
?)

x

c 1
(x
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

I) Function α̃2(x|x1
?)

x

α̃
2
(x
|x

1 ?
)

x1
?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

J) Function α̃2(x)

x

α̃
2
(x
)

x1
?

Figure 2: Illustration of the process followed to compute the function-specific acquisition
functions given by Eq. (13). See the main text for details.

where the α̃i are given by Eq. (13). PESC’s acquisition function is therefore separable since
Eq. (14) can be used to obtain an acquisition function for each possible task. The process
for constructing these task-specific acquisition functions is also efficient since it requires
only to use the individual acquisition functions from Eq. (13) as building blocks. These two
properties make PESC an effective solution for the practical implementation of the general
algorithm from Section 3.3.

Fig. 2 illustrates with a toy example the process for computing the function-specific
acquisition functions from Eq. (13). In this example there is only one constraint function.
Therefore, the functions in the optimization problem are only f and c1. The search space
X is the unit interval [0, 1] and we have collected four measurements for each function. The
data for f are shown as black points in panels A, B and C. The data for c1 are shown as
black points in panels F, G and H. We assume that f and c1 are independently sampled
from a GP with zero mean function and squared exponential covariance function with unit
amplitude and length-scale 0.07. The noise variance for the black-boxes that evaluate f
and c1 is zero. Let y1 and y2 be the black-box evaluations for f and c1 at input x. Under
the assumed GP model we can analytically compute the predictive distributions for y1 and

16

Constrained Bayesian Optimization using Information-based Search

y2, that is, p(y1|D,x) and p(y2|D,x). Panels B and G show the means of these distribu-
tions with confidence bands equal to one standard deviation. The first step to compute
the α̃i(x) from Eq. (13) is to draw M samples from p(x?|D). To generate each of these
samples, we first approximately sample f and c1 from their posterior distributions p(f |D)
and p(c1|D) using the method described by Hernández-Lobato et al. (2014, Appendix A).
Panels A and F show one of the samples obtained for f and c1, respectively. We then
solve the optimization problem given by Eq. (1) when f and c1 are known and equal to the
samples obtained. The solution to this problem is the input that minimizes f subject to c1

being positive. This produces a sample x1
? from p(x?|D) which is shown as a discontinuous

vertical line with a red triangle in all the panels. The next step is to find a Gaussian ap-
proximation to the predictive distributions when we condition to x1

?, that is, p(y1|D,x,x1
?)

and p(y2|D,x,x1
?). This step is performed using expectation propagation (EP) as described

in Section 4.2 and Appendix A. Panels C and H show the approximations produced by EP
for p(y1|D,x,x1

?) and p(y2|D,x,x1
?), respectively. Panel C shows that conditioning to x1

?

decreases the posterior mean of y1 in the neighborhood of x1
?. The reason for this is that

x1
? must be the global feasible solution and this means that f(x1

?) must be lower than any
other feasible point. Panel H shows that conditioning to x1

? increases the posterior mean of
y2 in the neighborhood of x1

?. The reason for this is that c1(x1
?) must be positive because

x1
? has to be feasible. In particular, by conditioning to x1

? we are giving zero probability
to all c1 such that c1(x1

?) < 0. Let σ2
1(x|x1

?) and σ2
2(x|x1

?) be the variances of the Gaussian
approximations to p(y1|D,x,x1

?) and p(y2|D,x,x1
?) and let σ2

1(x) and σ2
2(x) be the variances

of p(y1|D,x) and p(y2|D,x). We use these quantities to obtain α̃1(x|x1
?) and α̃2(x|x1

?) ac-
cording to Eq. (13). These two functions are shown in panels D and I. The whole process is
repeated M = 50 times and the resulting α̃1(x|xj?) and α̃2(x|xj?), j = 1, . . . ,M , are averaged
according to Eq. (13) to obtain the function-specific acquisition functions α̃1(x) and α̃2(x),
whose plots are shown in panels E and J. These plots indicate that evaluating the objective
f is in this case more informative than evaluating the constraint c1. But this is certainly
not always the case, as will be demonstrated in the experiments later on.

4.2 How to Compute the Gaussian Approximation to p(yi|D,x,xj?)

We briefly describe the process followed to find a Gaussian approximation to p(yi|D,x,xj?)
using expectation propagation (EP) (Minka, 2001b). Recall that the variance of this ap-
proximation, that is, σ2

i (x|xj?), is used to compute α̃i(x|xj?) in Eq. (13). Here we only
provide a sketch of the process; full details can be found in Appendix A.

We start by assuming that the search space has finite size, that is, X = {x̃1, . . . , x̃|X |}.
In this case the functions f , c1, . . . , cK are encoded as finite dimensional vectors denoted
by f , c1, . . . , cK . The i-th entries in these vectors are the result of evaluating f , c1, . . . , cK
at the i-th element of X , that is, f(x̃), c1(x̃i), . . . , cK(x̃i). Let us assume that xj? and x are
in X . Then p(y|D,x,xj?) can be defined by the following rejection sampling process. First,
we sample f , c1, . . . , cK from their posterior distribution given the assumed GP models.
We then solve the optimization problem given by Eq. (1). For this, we find the entry
of f with lowest value subject to the corresponding entries of c1, . . . , cK being positive.
Let i ∈ {1, . . . , |X |} be the index of the selected entry. Then, if xj? 6= x̃i, we reject the
sampled f , c1, . . . , cK and start again. Otherwise, we take the entries of f , c1, . . . , cK

17

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

indexed by x, that is, f(x), c1(x), . . . , cK(x) and then obtain y by adding to each of these
values a Gaussian random variable with zero mean and variance ν1, . . . , νK+1, respectively.
The probability distribution implied by this rejection sampling process can be obtained
by first multiplying the posterior for f , c1, . . . , cK with indicator functions that take value
zero when f , c1, . . . , cK should be rejected and one otherwise. We can then multiply the
resulting quantity by the likelihood for y given f , c1, . . . , cK . The desired distribution is
finally obtained by marginalizing out f , c1, . . . , cK .

We introduce several indicator functions to implement the approach described above.
The first one Γ(x) takes value one when x is a feasible solution and value zero otherwise,
that is,

Γ(x) =

K∏
k=1

Θ[ck(x)] , (15)

where Θ[·] is the Heaviside step function which is equal to one if its input is non-negative
and zero otherwise. The second indicator function Ψ(x) takes value zero if x is a better
solution than xj? according to the sampled functions. Otherwise Ψ(x) takes value one. In
particular,

Ψ(x) = Γ(x)Θ[f(x)− f(xj?)] + (1− Γ(x)) . (16)

When x is infeasible, this expression takes value one. In this case, x is not a better solution
than xj? (because x is infeasible) and we do not have to reject. When x is feasible, the
factor Θ[f(x)− f(xj?)] in Eq. (16) is zero when x takes lower objective value than xj?. This
will allow us to reject f , c1, . . . , cK when x is a better solution than xj?. Using Eq. (15) and
Eq. (16), we can then write p(y|D,x,xj?) as

p(y|D,x,xj?) ∝
∫
p(y|f , c1, . . . , cK ,x) p(f , c1, . . . , cK |D)Γ(xj?)

{∏
x′∈X

Ψ(x′)

}
︸ ︷︷ ︸

f(f , c1, . . . , cK |xj?)

df dc1 · · · cK , (17)

where p(f , c1, . . . , cK |D) is the GP posterior distribution for the noise-free evaluations of f ,
c1, . . . , cK at X and p(y|f , c1, . . . , cK ,x) is the likelihood function, that is, the distribution
of the noisy evaluations produced by the black-boxes with input x given the true function
values:

p(y|f , c1, . . . , cK ,x) = N (y1|f(x), ν1)N (y2|c1(x), ν2) · · · N (yK+1|cK(x), νK+1) . (18)

The product of the indicator functions Γ and Ψ in Eq. (17) takes value zero whenever xj?
is not the best feasible solution according to f , c1, . . . , cK . The indicator Γ in Eq. (17)
guarantees that xj? is a feasible location. The product of all the Ψ in Eq. (17) guarantees
that no other point in X is better than xj?. Therefore, the product of Γ and the Ψ in
Eq. (17) rejects any value of f , c1, . . . , cK for which xj? is not the optimal solution to the
constrained optimization problem.

The factors p(f , c1, . . . , cK |D) and p(y|f , c1, . . . , cK ,x) in Eq. (17) are Gaussian. Thus,
their product is also Gaussian and tractable. However, the integral in Eq. (17) does not

18

Constrained Bayesian Optimization using Information-based Search

have a closed form solution because of the complexity introduced by the the product of
indicator functions Γ and Ψ. This means that Eq. (17) cannot be exactly computed and
has to be approximated. For this, we use EP to fit a Gaussian approximation to the product
of p(f , c1, . . . , cK |D) and the indicator functions Γ and Ψ in Eq. (17), which we have denoted
by f(f , c1, . . . , cK |xj?), with a tractable Gaussian distribution given by

q(f , c1, . . . , cK |xj?) = N (f |m1,V1)N (c1|m2,V2) · · · N (cK |mK+1,VK+1) , (19)

where m1, . . . ,mK+1 and V1, . . . ,VK+1 are mean vectors and covariance matrices to be
determined by the execution of EP. Let vi(x) be the diagonal entry of Vi corresponding to
the evaluation location given by x, where i = 1, . . . ,K+1. Similarly, let mi(x) be the entry
of mi corresponding to the evaluation location x for i = 1, . . . ,K + 1. Then, by replacing
f(f , c1, . . . , cK |xj?) in Eq. (17) with q(f , c1, . . . , cK |xj?), we obtain

p(y|D,x,xj?) ≈
K+1∏
i=1

N (yi|mi(x), vi(x) + νi) . (20)

Consequently, σ2
i (x|xj?) = vi(x) + νi can be used to compute α̃i(x|xj?) in Eq. (13).

The previous approach does not work when the search space X has infinite size, for
example when X = [0, 1]d with d being the dimension of the inputs to f, c1, . . . , cK . In this
case the product of indicators in Eq. (17) includes an infinite number of factors Ψ(x′), one
for each possible x′ ∈ X . To solve this problem we perform an additional approximation.
For the computation of Eq. (17), we consider that X is well approximated by the finite set
Z, which contains only the locations at which the objective f has been evaluated so far,
the value of xj? and x. Therefore, we approximate the factor

∏
x′∈X Ψ(x′) in Eq. (17) with

the factor
∏

x′∈Z Ψ(x′), which has now finite size. We expect this approximation to become
more and more accurate as we increase the amount of data collected for f . Note that our
approximation to X is finite, but it is also different for each location x at which we want
to evaluate Eq. (17) since Z is defined to contain x. A detailed description of the resulting
EP algorithm, indicating how to compute the variance functions vi(x) shown in Eq. (20),
is given in Appendix A.

The EP approximation to Eq. (20), performed after replacing X with Z, depends on
the values of D, xj? and x. Having to re-run EP for each value of x at which we may want
to evaluate the acquisition function given by Eq. (12) is a very expensive operation. To
avoid this, we split the EP computations between those that depend only on D and xj?,
which are the most expensive ones, and those that depend only on the value of x. We
perform the former computations only once and then reuse them for each different value of
x. This allows us to evaluate the EP approximation to Eq. (17) at different values of x in
a computationally efficient way. See Appendix A for further details.

4.3 Efficient Marginalization of the Model Hyper-parameters

So far we have assumed to know the optimal hyper-parameter values, that is, the amplitude
and the length-scales for the GPs and the noise variances for the black-boxes. However,
in practice, the hyper-parameter values are unknown and have to be estimated from data.
This can be done for example by drawing samples from the posterior distribution of the

19

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

hyper-parameters under some non-informative prior. Ideally, we should then average the
GP predictive distributions with respect to the generated samples before approximating
the information gain. However, this approach is too computationally expensive in practice.
Instead, we follow Snoek et al. (2012) and average the PESC acquisition function with
respect to the generated hyper-parameter samples. In our case, this involves marginalizing
each of the function-specific acquisition functions from Eq. (13). For this, we follow the
method proposed by Hernández-Lobato et al. (2014) to average the acquisition function
of Predictive Entropy Search in the unconstrained case. Let Θ denote the model hyper-
parameters. First, we draw M samples Θ1, . . . ,ΘM from the posterior distribution of
Θ given the data D. Typically, for each of the posterior samples Θj of Θ we draw a
single corresponding sample xj? from the posterior distribution of x? given Θj , that is,
p(x? | D,Θj). Let σ2

i (x|Θj) be the variance of the GP predictive distribution for yi when

the hyper-parameter values are fixed to Θj , that is, p(yi|D,x,Θj), and let σ2
i (x|xj?,Θj) be

the variance of the Gaussian approximation to the predictive distribution for yi when we
condition to the solution of the optimization problem being xj? and the hyper-parameter
values being Θj . Then, the version of Eq. (13) that marginalizes out the model hyper-
parameters is given by

α̃i(x) =
1

M

M∑
j=1

{
1

2
log σ2

i (x|Θj)− 1

2
log σ2

i (x|xj?,Θj)

}
, i = 1, . . . ,K + 1 . (21)

Note that j is now an index over joint posterior samples of the model hyper-parameters Θ
and the constrained minimizer x?. Therefore, we can marginalize out the hyper-parameter
values without adding any additional computational complexity to our method because a
loop over M samples of x? is just replaced with a loop over M joint samples of (Θ,x?).
This is a consequence of our reformulation of Eq. (7) into Eq. (8). By contrast, other
techniques that work by approximating the original form of the acquisition function used
in Eq. (7) do not have this property. An example in the unconstrained setting is Entropy
Search (Hennig and Schuler, 2012), which requires re-computing an approximation to the
acquisition function for each hyper-parameter sample Θj .

4.4 Computational Complexity

In the coupled setting, the complexity of PESC is O(MKN3), where M is the number of
posterior samples of the global constrained minimizer x?, K is the number of constraints,
and N is the number of collected data points. This cost is determined by the cost of each EP
iteration, which requires computing the inverse of the covariance matrices V1, . . . ,VK+1 in
Eq. (20). The dimensionality of each of these matrices grows with the size of Z, which is
determined by the number N of objective evaluations (see the last paragraph of Section 4.2).
Therefore each EP iteration has cost O(KN3) and we have to run an instance of EP for
each of the M samples of x?. If M is also the number of posterior samples for the GP
hyperparameters, as explained in Section 4.3, this is the same computational complexity
as in EIC. However, in practice PESC is slower than EIC because of the cost of running
multiple iterations of the EP algorithm.

In the decoupled setting the cost of PESC is O(M
∑K+1

k=2 (N1 +Nk)
3) where N1 is the

number of evaluations of the objective and Nk is the number of evaluations for constraint

20

Constrained Bayesian Optimization using Information-based Search

k − 1. The origin of this cost is again the size of the matrices V1, . . . ,VK+1 in Eq. (20).
While V1 still scales as a function of |Z|, we have that V2, . . . ,VK+1 scale now as a function
of |Z| plus the number of observations for the corresponding constraint function. The reason
for this is that

∏
x′∈Z Ψ(x′) is used to approximate

∏
x′∈X Ψ(x′) in Eq. (17) and each factor

in
∏

x′∈Z Ψ(x′) represents then a virtual data point for each GP. See Appendix A for details.

The cost of sampling the GP hyper-parameters is O(MKN3) and therefore, it does not
affect the overall computational complexity of PESC.

4.5 Relationship between PESC and PES

PESC can be applied to unconstrained optimization problems. For this we only have to set
K = 0 and ignore the constraints. The resulting technique is very similar to the method
PES proposed by Hernández-Lobato et al. (2014) as an information-based approach for
unconstrained Bayesian optimization. However, PESC without constraints and PES are not
identical. PES approximates p(y|D,x,xj?) by multiplying the GP predictive distribution by
additional factors that enforce xj? to be the location with lowest objective value. These
factors guarantee that 1) the value of the objective at xj? is lower than the minimum of
the values for the objective collected so far, 2) the gradient of the objective is zero at x?
and 3) the Hessian of the objective is positive definite at x?. We do not enforce the last
two conditions since the global optimum may be on the boundary of a feasible region and
thus conditions 2) and 3) do not necessarily hold (this issue also arises in PES because the
optimum may be on the boundary of the search space X). Condition 1) is implemented
in PES by taking the minimum observed value for the objective, denoted by η, and then
imposing the soft condition f(xj?) < η + ε, where ε ∼ N (0, ν) accounts for the additive
Gaussian noise with variance ν in the black-box that evaluates the objective. In PESC this
is achieved in a more principled way by using the indicator functions given by Eq. (16).

4.6 Summary of the Approximations Made in PESC

We describe here all the approximations performed in the practical implementation of PESC.
PESC approximates the expected reduction in the posterior entropy of x? (see Eq. 7) with
the acquisition function given by Eq. (12). This involves the following approximations:

1. The expectation over x? in Eq. (8) is approximated with Monte Carlo sampling.

2. The Monte Carlo samples of x? come from samples of f, c1, . . . , cK drawn approxi-
mately using a finite basis function approximation to the GP covariance function, as
described by Hernández-Lobato et al. (2014, Appendix A).

3. We approximate the factor
∏

x′∈X Ψ(x′) in Eq. (17) with the factor
∏

x′∈Z Ψ(x′).
Unlike the original search space X , Z has now finite size and the corresponding product
of Ψ indicators is easier to approximate. The set Z is formed by the locations of the
current observations for the objective f and the current evaluation location x of the
acquisition function.

4. After replacing
∏

x′∈X Ψ(x′) with
∏

x′∈Z Ψ(x′) in Eq. (17), we further approximate

the factor f(f , c1, . . . , cK |xj?) in this equation with the Gaussian approximation given

21

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

by the right-hand-side of Eq. (20). We use the method expectation propagation (EP)
for this task, as described in Appendix A. Because the EP approximation in Eq. (19)
factorizes across f , c1, . . . , cK , the execution of EP implicitly includes the factorization
assumption performed in step 2 of Eq. (11).

5. As described in the last paragraph of Section 4.2, in the execution of EP we separate
the computations that depend on D and xj?, which are very expensive, from those that
depend on the location x at which the PESC acquisition function will be evaluated.
This allows us to evaluate the approximation to Eq. (17) at different values of x in a
computationally efficient way.

6. To deal with unknown hyper-parameter values, we marginalize the acquisition function
over posterior samples of the hyper-parameters. Ideally, we should instead marginalize
the predictive distributions with respect to the hyper-parameters before computing
the entropy, but this is too computationally expensive in practice.

In Section 6.1, we assess the accuracy of these approximations (except the last one) and
show that PESC performs on par with a ground-truth method based on rejection sampling.

Note that in addition to the mathematical approximations described above, additional
sources of error are introduced by the numerical computations involved. In addition to the
usual roundoff error, etc., we draw the reader’s attention to the fact that the x? samples
are the result of numerical global optimization of the approximately drawn samples of
f, c1, . . . , cK , and then the suggestion is chosen by another numerical global optimization
of the acquisition function. At present, we do not have guarantees that the true global
optimum is found by our numerical methods in each case.

5. PESC-F: Speeding Up the BO Computations

One disadvantage of PESC is that sampling x? and then computing the corresponding
EP approximation can be slow. If PESC is slow with respect to the evaluation of the
black-box functions f, c1, . . . , cK , the entire Bayesian optimization (BO) procedure may be
inefficient. For the BO approach to be useful, the time spent doing meta-computations
has to be significantly shorter than the time spent actually evaluating the objective and
constraints. This issue can be avoided in the coupled case by, for example, switching to
a faster acquisition function like EIC or abandoning BO entirely for methods such as the
popular CMA-ES (Hansen and Ostermeier, 1996) evolutionary strategy. However, in the
decoupling setting, one can encounter problems in which some tasks are fast and others are
slow. In this case, a cumbersome BO method might be undesirable because it would be
unreasonable to spend minutes making a decision about a task that only takes seconds to
complete; and, yet, a method that is fast but inefficient in terms of function evaluations
would be ill-suited to making decisions about a task that takes hours complete. This
situation calls for an optimization algorithm that can adaptively adjust its own decision-
making time. For this reason, we introduce additional approximations in the computations
made by PESC to reduce their cost when necessary. The new method that adaptively
switches between fast and slow decision-making computations is called PESC-F. The two
main challenges are how to speed up the original computations made by PESC and how to

22

Constrained Bayesian Optimization using Information-based Search

decide when to switch between the slow and the fast versions of those computations. In the
following paragraphs we address these issues.

We propose ways to reduce the cost of the computations performed by PESC after
collecting each new data point. These computations include

1. Drawing posterior samples of the GP hyper-parameters and then for each sample
computing the Cholesky decomposition of the kernel matrix.

2. Drawing approximate posterior samples of x? and then running an EP algorithm for
each of these samples.

3. Globally maximizing the resulting acquisition functions.

We shorten each of these steps. First, we reduce the cost of step 1 by skipping the sampling
of the GP hyper-parameters and instead considering the hyper-parameter samples already
used at an earlier iteration. This also allows for additional speedups by using fast (O(N2))
updates of the Cholesky decomposition of the kernel matrix instead of recomputing it from
scratch. Second, we shorten step 2 by skipping the sampling of x? and instead considering
the samples used at the previous iteration. We also reuse the EP solutions computed at the
previous iteration (see Appendix A for further details on how to reuse the EP solutions).
Finally, we shorten step 3 by using a coarser termination condition tolerance when maxi-
mizing the acquisition function. This allows the optimization process to converge faster but
with reduced precision. Furthermore, if the acquisition function is maximized using a local
optimizer with random restarts and/or a grid initialization, we can shorten the computation
further by reducing the number of restarts and/or grid size.

5.1 Choosing When to Run the Fast or the Slow Version

The motivation for PESC-F is that the time spent in the BO computations should be small
compared to the time spent evaluating the black-box functions. Therefore, our approach is
to switch between two distinct types of BO computations: the full (slow) and the partial
(fast) PESC computations. Our goal is to approximately keep constant the fraction of total
wall-clock time consumed by such computations. To achieve this, at each iteration of the
BO process, we use the slow version of the computations if and only if

τnow − τlast

τslow
> γ , (22)

where τnow is the current time, τlast is the time at which the last slow BO computations
were complete, τslow is the duration of the last execution of the slow BO computations (this
includes the time passed since the actual collection of the data until the maximization of
the acquisition function) and γ > 0 is a constant called the rationality level. The larger
the value of γ, the larger the amount of time spent in rational decision making, that is,
in performing BO computations. Algorithm 2 shows the steps taken by PESC-F for the
decoupled competitive case. In this case each function f, c1, . . . , cK represents a different
task, that is, the different functions can be evaluated in a decoupled manner and in addition
to this, all of them compete for using a single computational resource.

One could replace τslow with an average over the durations of past slow computations.
While this approach is less noisy, we opt for using only the duration of the most recent

23

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

Algorithm 2 PESC-F for competitive decoupled functions.

1: Inputs: T = {{f}, {c1}, . . . , {cK}}, D, γ, δ.
2: τlast ← 0
3: τslow ← 0
4: repeat
5: τnow ← current time
6: if (τnow − τlast)/τslow > γ then
7: Sample GP hyper-parameters
8: Fit GP to D
9: Generate new samples of x?

10: Compute the EP solutions from scratch
11: τslow ← current time− τnow

12: τlast ← current time
13: {x∗, t∗} ← arg maxx∈X ,t∈T αt(x) (expensive optimization)
14: else
15: Update fit of GP to D
16: Reuse previous EP solutions
17: {x∗, t∗} ← arg maxx∈X ,t∈T αt(x) (cheap optimization)
18: end if
19: Add to D the evaluation of the function in task t∗ at input x∗

20: until termination condition is met
21: Output: arg minx∈X EGP[f(x)] s.t. p(c1(x) ≥ 0, . . . , cK(x) ≥ 0|GP) ≥ 1− δ

slow update since these durations may exhibit deterministic trends. For example, the cost
of computations tends to increase at each iteration due to the increase in data set size. If
indeed the update duration increases monotonically, then the duration of the most recent
update would be a more accurate estimate of the duration of the next slow update than the
average duration of all past updates.

PESC-F can be used as a generalization of PESC, since it reduces to PESC in the
case of sufficiently slow function evaluations. To see this, note that the time spent in a
function evaluation will be upper bounded by τnow − τlast and according to Eq. (22), the
slow computations are performed when τnow − τlast > γτslow. When the function evaluation
takes a very large amount of time, we have that τslow will always be smaller than that amount
of time and the condition τnow − τlast > γτslow will always be satisfied for reasonable choices
of γ. Thus, PESC-F will always perform slow computations as we would expect. On the
other hand, if the evaluation of the black-box function is very fast, PESC-F will mainly
perform fast computations but will still occasionally perform slow ones, with a frequency
roughly proportional to the function evaluation duration.

5.2 Setting the Rationality Level in PESC-F

PESC-F is designed so that the ratio of time spent in BO computations to time spent in
function evaluations is at most γ. This notion is approximate because the time spent in
function evaluations includes the time spent doing fast computations. The optimal value
of γ may be problem-dependent, but we propose values of γ on the order of 0.1 to 1, which

24

Constrained Bayesian Optimization using Information-based Search

correspond to spending roughly 50−90% of the total time performing function evaluations.
The optimal γ may also change at different stages of the BO process. Selecting the optimal
value of γ is a subject for future research. Note that in PESC-F we are making sub-optimal
decisions because of time constraints. Therefore, PESC-F is a simple example of bounded
rationality, which has its roots in the traditional AI literature. For example, Russell (1991)
proposes to treat computation as a possible action that consumes time but increases the
expected utility of future actions.

5.3 Bridging the Gap Between Fast and Slow Computations

As discussed above, PESC-F can be applied even when function evaluations are very slow,
as it automatically reverts to standard PESC when τeval > τslow. However, if the func-
tion evaluations are extremely fast, that is, faster even that the fast PESC updates, then
even PESC-F violates the condition that the decision-making should take less time than
the function evaluations. We have already defined τslow as the duration of the slow BO
computations. Let us also define τfast as the duration of the fast BO computations and τeval

as the duration of the evaluation of the functions. Then, the intuition described above can
be put into symbols by saying that PESC-F is most useful when τfast < τeval < τslow.

Many aspects of PESC-F are not specific to PESC and could easily be adapted to
other acquisition functions like EIC or even unconstrained acquisition functions like PES
and EI. In particular, lines 9, 10 and 16 of Algorithm 2 are specific to PESC, whereas
others are common to other techniques. For example, when using vanilla unconstrained
EI, the computational bottleneck is likely to be the sampling of the GP hyper-parameters
(Algorithm 2, line 7) and maximizing the acquisition function (Algorithm 2, line 13). The
ideas presented above, namely to skip the hyper-parameter sampling and to optimize the
acquisition function with a smaller grid and/or coarser tolerances, are applicable in this
situation and might be useful in the case of a fairly fast objective function. However, as
mentioned above, in the single-task case one retains the option to abandon BO entirely for
a faster method, whereas in the multi-task case considered here, neither a purely slow nor
a purely fast method suits the nature of the optimization problem. An interesting direction
for future research is to further pursue this notion of optimization algorithms that bridge
the gap between those designed for optimizing cheap (fast) functions and those designed
for optimizing expensive (slow) functions.

6. Empirical Analyses in the Coupled Case

We first evaluate the performance of PESC in experiments with different types of coupled
optimization problems. First, we consider synthetic problems of functions sampled from the
GP prior distribution. Second, we consider analytic benchmark problems that were previ-
ously used in the literature on Bayesian optimization with unknown constraints. Finally, we
address the meta-optimization of machine learning algorithms with unknown constraints.

For the first synthetic case, we follow the experimental setup used by Hennig and Schuler
(2012) and Hernández-Lobato et al. (2014). The search space is the unit hypercube of
dimension D, and the ground truth objective f is a sample from a zero-mean GP with
a squared exponential covariance function of unit amplitude and length scale ` = 0.1 in
each dimension. We represent the function f by first sampling from the GP prior on a

25

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

(a) Marginal posteriors

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

A
c
q

u
s
iti

o
n

 F
u

n
c
tio

n RS
PESC

(b) Acquisition functions

Number of Coupled Evaluations

Lo
g

M
ed

ia
n

U
til

ity
 G

ap

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●●●

●●●
●

●●
●●●

●●●
●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●●●●
●●●●●●●

●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●●●
●●●●●

●●
●●●

−3.5

−2.5

−1.5

−0.5

0 25 50 75 100

Methods
●

●

●

PESC
RS
RSDG

1
0

(c) Performance in 1D

Figure 3: Accuracy of the PESC approximation. (a) Marginal posterior distributions for
the objective and constraint given some collected data denoted by ×’s. (b) PESC
and RS acquisition functions given the data in (a). (c) Median utility gap for
PESC, RS and RSDG in the experiments with synthetic functions sampled from
the GP prior with D = 1.

grid of 1000 points generated using a Halton sequence (see Leobacher and Pillichshammer,
2014) and then defining f as the resulting GP posterior mean. We use a single constraint
function c1 whose ground truth is sampled in the same way as f . The evaluations for f
and c1 are contaminated with i.i.d. Gaussian noise with variance ν1 = ν2 = 0.01.

6.1 Assessing the Accuracy of the PESC Approximation

We first analyze the accuracy of the PESC approximation to the acquisition function shown
in Eq. (8). We compare the PESC approximation with a ground truth for the acquisition
function obtained by rejection sampling (RS). The RS method works by discretizing the
search space using a fine uniform grid. The expectation with respect to p(x? | D) in Eq. (8)
is then approximated by Monte Carlo. To achieve this, f, c1, . . . , cK are sampled on the
grid and the grid cell with non-negative c1, . . . , cK (feasibility) and the lowest value of f
(optimality) is selected. For each sample of x?, H

[
yf , y1, . . . , yK | D,x,x?

]
is approximated

by rejection sampling: we sample f, c1, . . . , cK on the grid and select those samples whose
corresponding feasible optimal solution is the sampled x? and reject the other samples. We
assume that the selected samples for f, c1, . . . , cK have a multivariate Gaussian distribution.
Under this assumption, H

[
yf , y1, . . . , yK | D,x,x?

]
can be approximated using the formula

for the entropy of a multivariate Gaussian distribution, with the covariance parameter
in the formula being equal to the empirical covariance of the selected samples for f and
c1, . . . , cK at x plus the corresponding noise variances ν1 and ν2, . . . , νK+1 in its diagonal.
In our experiments, this approach produces entropy estimates that are very similar, faster
to obtain and less noisy than the ones obtained with non-parametric entropy estimators.
We compared this implementation of RS with another version that ignores correlations in
the samples of f and c1, . . . , cK . In practice, both methods produced equivalent results.
Therefore, to speed up the method, we ignore correlations in our implementation of RS.

Figure 3(a) shows the posterior distribution for f and c1 given 5 observations sampled
from the GP prior with D = 1. The posterior is computed using the optimal GP hyper-

26

Constrained Bayesian Optimization using Information-based Search

parameters. The corresponding approximations to the acquisition function generated by
PESC and RS are shown in Fig. 3(b). In the figure, both PESC and RS use a total of
M = 50 samples from p(x? | D) when approximating the expectation in Eq. (8). The PESC
approximation is quite accurate, and importantly its maximum value is very close to the
maximum value of the RS approximation. The approximation produced by the version of
RS that does not ignore correlations in the samples of f, c1, . . . , cK (not shown) cannot be
visually distinguished from the one shown in Fig. 3(b).

One disadvantage of the RS method is its high cost, which scales with the size of the
grid used. This grid has to be large to guarantee good performance, especially when D is
large. An alternative is to use a small dynamic grid that changes as data is collected. Such
a grid can be obtained by sampling from p(x? | D) using the same approach as in PESC to
generate these samples (a similar approach is taken by Hennig and Schuler (2012), in which
the dynamic grid is sampled from the EI acquisition function). The samples obtained then
form the dynamic grid, with the idea that grid points are more concentrated in areas that
we expect p(x? | D) to be high. The resulting method is called Rejection Sampling with a
Dynamic Grid (RSDG).

We compare the performance of PESC, RS and RSDG in experiments with synthetic
data corresponding to 500 pairs of f and c1 sampled from the GP prior with D = 1. RS
and RSDG draw the same number of samples of x? as PESC. We assume that the GP
hyper-parameters are known to each method and fix δ = 0.05, that is, recommendations
are made by finding the location with highest posterior mean for f such that c1 is non-
negative with probability at least 1− δ. For reporting purposes, we set the utility u(x) of
a recommendation x to be f(x) if x satisfies the constraint, and otherwise a penalty value
of the worst (largest) objective function value achievable in the search space. For each
recommendation x, we compute the utility gap |u(x)−u(x?)|, where x? is the true solution
to the optimization problem. Each method is initialized with the same three random points
drawn with Latin hypercube sampling.

Figure 3(c) shows the median of the utility gap for each method for the 500 realizations
of f and c1. The x-axis in this plot is the number of joint function evaluations for f and c1.
We report the median because the empirical distribution of the utility gap is heavy-tailed
and in this case the median is more representative of the location of the bulk of the data than
the mean. The heavy tails arise because we are averaging over 500 different optimization
problems with very different degrees of difficulty. In this and all of the following experiments,
unless otherwise specified, error bars are computed using the bootstrap method. The plot
shows that PESC and RS are better than RSDG. Furthermore, PESC is very similar to
RS, with PESC even performing slightly better, perhaps because PESC is not confined to a
grid as RS is. These results seem to indicate that PESC yields an accurate approximation
of the information gain.

6.2 Synthetic Functions in 2 and 8 Input Dimensions

We compare the performance of PESC and RSDG with EIC using the same experimental
protocol as in the previous section, but with dimensionalities D = 2 and D = 8. We do not
compare with RS here because its use of grids does not scale to higher dimensions. Fig. 4
shows the utility gap for each method across 500 different samples of f and c1 from the

27

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

Number of Coupled Evaluations

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●●●
●

●●
●

●
●●

●
●●

●
●●●●●●●

●
●●●●●●

●●
●●●●●●●

●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●

●

●

●
●

●

●

●
●●

●
●

●
●

●
●●●

●●●

●●
●

●
●

●
●●

●●
●

●●●
●●

●
●●●●●●

●●●
●●●●●●●●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●●

●
●●●●●●

●●
●

●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−2.6

−1.6

−0.6

0 25 50 75 100

Lo
g

M
ed

ia
n

U
til

ity
 G

ap
1
0

Methods
●

●

●

EIC
PESC
RSDG

(a) D = 2

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ●

● ● ●
●

●
● ● ● ● ● ● ● ●

● ● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ●
●

● ● ● ● ●
● ● ● ● ●

●

0.2

0.5

0 10 20
Number of Coupled Evaluations

Methods
●

●

●

EIC
PESC
RSDG

Lo
g

M
ed

ia
n

U
til

ity
 G

ap
1
0

(b) D = 8

Figure 4: Optimizing samples from the GP prior with (a) D = 2 and (b) D = 8.

GP prior with (a) D = 2 and (b) D = 8. Overall, PESC is the best method, followed by
RSDG and EIC. RSDG performs similarly to PESC when D = 2, but is significantly worse
when D = 8. This shows that, when D is high, grid based approaches (e.g. RSDG) are at
a disadvantage with respect to methods that do not require a grid (e.g. PESC).

6.3 A Toy Problem

Next, we compare PESC with EIC and AL (Gramacy et al. (2016), Section 2.4) on the toy
problem described by Gramacy et al. (2016), namely,

min
x∈[0,1]2

f(x) s.t. c1(x) ≥ 0, c2(x) ≥ 0 , (23)

f(x) = x1 + x2 ,

c1(x) = 0.5 sin (2π(x2
1 − 2x2)) + x1 + 2x2 − 1.5 ,

c2(x) = −x2
1 − x2

2 + 1.5 .

This optimization problem has two local minimizers and one global minimizer. At the global
solution, which is at x? ≈ [0.1954, 0.4404], only one of the two constraints (c1) is active.
Since the objective is linear and c2 is not active at the solution, learning about c1 is the main
challenge of this problem. Fig. 5(a) shows a visualization of the linear objective function
and the feasible and infeasible regions, including the location of the global constrained
minimizer x?.

In this case, the evaluations for f , c1 and c2 are noise-free. To produce recommendations
in PESC and EIC, we use the confidence value δ = 0.05. We also use a squared exponential
GP kernel. PESC uses M = 10 samples of x? when approximating the expectation in
Eq. (8). We use the AL implementation provided by Gramacy et al. (2016) in the R package
laGP, which is based on the squared exponential kernel and assumes the objective f is
known. Thus, in order for this implementation to be used, AL has an advantage over other
methods in that it has access to the true objective function. In all three methods, the GP
hyperparameters are estimated by maximum likelihood.

Figure 5(b) shows the mean utility gap for each method across 500 repetitions. Each
repetition corresponds to a different initialization of the methods with three data points

28

Constrained Bayesian Optimization using Information-based Search

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Solution
Infeasible

+

(a) Visualization of the problem.

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ● ● ●

●

●

●

●

●
●

● ● ●
●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
● ●

●

●

●
●

●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−2.3

−1.3

−0.3

0 10 20 30
Number of Coupled Evaluations

Methods
●

●

●

AL
EIC
PESC

Lo
g

M
ea

n
U

til
ity

 G
ap

1
0

(b) Performance of PESC, AL and EIC.

Figure 5: Comparing PESC, AL, and EIC in the toy problem described by Gramacy et al.
(2016). (a) Visualization of the linear objective function and the feasible and
infeasible regions. (b) Results obtained by PESC, AL and EIC on the toy problem.

selected with Latin hypercube sampling. The results show that PESC is significantly better
than EIC and AL for this problem. EIC is superior to AL, which performs slightly better
at the beginning, possibly because it has access to the ground truth objective f .

6.4 Finding a Fast Neural Network

In this experiment, we tune the hyper-parameters of a three-hidden-layer neural network
subject to the constraint that the prediction time must not exceed 2 ms on an NVIDIA
GeForce GTX 580 GPU (also used for training). We use the Matérn 5/2 kernel for the GP
priors. The search space consists of 12 parameters: 2 learning rate parameters (initial value
and decay rate), 2 momentum parameters (initial and final values, with linear interpolation),
2 dropout parameters (for the input layer and for other layers), 2 additional regularization
parameters (weight decay and max weight norm), the number of hidden units in each of
the 3 hidden layers, and the type of activation function (RELU or sigmoid). The network is
trained using the deepnet package1, and the prediction time is computed as the average time
of 1000 predictions for mini-batches of size 128. The network is trained on the MNIST digit
classification task with momentum-based stochastic gradient descent for 5000 iterations.
The objective is reported as the classification error rate on the standard validation set. For
reporting purposes, we treat constraint violations as the worst possible objective value (a
classification error of 1.0). This experiment is inspired by a real need for neural networks
that can make fast predictions with high accuracy. An example is given by computer
vision problems in which the prediction time of the best performing neural network is not
fast enough to keep up with the fast rate at which new data is available (e.g., YouTube,
connectomics).

Figure 6(a) shows the results of 50 iterations of the Bayesian optimization process. In
this experiment and in the next one, the y-axis represents the best objective value observed

1. https://github.com/nitishsrivastava/deepnet

29

https://github.com/nitishsrivastava/deepnet

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

0 10 20 30 40 50
Number of coupled evaluations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

lo
g
1
0

o
b

je
ct

iv
e

 v
a

lu
e

EIC
PESC

(a) Finding a fast neural network.

0 20 40 60 80 100
Number of coupled evaluations

-5

-4

-3

-2

-1

0

−
lo
g
1
0

e
ff

e
ct

iv
e

 s
a

m
p

le
 s

iz
e

EIC
PESC

(b) Tuning Hamiltonian Monte Carlo

Figure 6: Results for PESC and EIC on the tuning of machine learning methods with
coupled constraints. (a) Tuning a neural network subject to the constraint that
it makes predictions in under 2 ms. (b) Tuning Hamiltonian Monte Carlo to
maximize the number of effective samples within 5 minutes of compute time,
subject to the constraints passing the Geweke and Gelman-Rubin convergence
diagnostics and integrator stability.

so far, with recommendations produced using δ = 0.05 and observed constraint violations
resulting in objective values equal to 1.0. Curves show averages over five independent
experiments. In this case, PESC performs significantly better than EIC.

When the constraints are noisy, reporting the best observation is an overly optimistic
metric because the best feasible observation might be infeasible in practice. On the other
hand, ground-truth is not available. Therefore, to validate our results further, we used the
recommendations made at the final iteration of the Bayesian optimization process for each
method (EIC and PESC) and evaluated the functions with these recommended parameters.
We repeated the evaluation 10 times for each of the 5 repeated experiments. The result is
a ground-truth score obtained as the average of 50 function evaluations. This procedure
yields a score of 7.0 ± 0.6% for PESC and 49 ± 4% for EIC (as in the figure, constraint
violations are treated as a classification error of 100%), where the numbers after the ±
symbol denote the empirical standard deviation. This result is consistent with Fig. 6(a) in
that PESC performs significantly better than EIC.

6.5 Tuning Markov Chain Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) is a popular MCMC technique that
takes advantage of gradient information for rapid mixing. HMC contains several parameters
that require careful tuning. The two basic parameters are the number of leapfrog steps and
the step size. HMC may also include a mass matrix which introduces O(D2) additional
parameters for problems in D dimensions, although the matrix is often fixed to be diagonal
(D parameters) or a multiple of the identity matrix (1 parameter) (Neal, 2011). In this
experiment, we optimize the performance of HMC. We use again the Matérn 5/2 kernel for

30

Constrained Bayesian Optimization using Information-based Search

the GP priors. We tune the following parameters: the number of leapfrog steps, the step
size, a mass parameter and the fraction of the allotted computation time spent burning
in the chain. Our experiment measures the number of effective samples obtained in a
fixed computation time. We impose the constraints that the generated samples must pass
the Geweke (Geweke, 1992) and Gelman-Rubin (Gelman and Rubin, 1992) convergence
diagnostics. In particular, we require the worst (largest absolute value) Geweke test score
across all variables and chains to be at most 2.0, and the worst (largest) Gelman-Rubin
score between chains and across all variables to be at most 1.2. We use the coda R package
(Plummer et al., 2006) to compute the effective sample size and the Geweke convergence
diagnostic, and the PyMC python package (Patil et al., 2010) to compute the Gelman-Rubin
diagnostic over two independent traces.

The HMC integration may also diverge for large values of the step size. We treat this
as a hidden constraint, and set δ = 0.05. We use HMC to sample from the posterior of a
logistic regression binary classification problem using the German credit data set from the
UCI repository (Frank and Asuncion, 2010). The data set contains 1000 data points, and
is normalized to have zero mean unit variance for each feature. We initialize each chain
randomly with D = 25 independent draws from a Gaussian distribution with mean zero
and standard deviation 10−3. For each set of inputs, we compute two chains, each one with
five minutes of computation time on a single core of a compute node.

Figure 6(b) compares EIC and PESC on this task, averaged over ten realizations of the
experiment. As above, we perform a ground-truth assessment of the final recommendations.
For each method (EIC and PESC), we used the recommendations made at the final iteration
of the Bayesian optimization process and evaluated the functions with these recommended
parameters multiple times. The resulting average effective sample size is 3300 ± 1200 for
PESC and 2300± 900 for EIC, where the number after the ± symbol denotes the empirical
standard deviation. Here, the difference between the two methods is within the margin
of error. When we compare these results with the ones in Fig. 6(b) we observe that the
latter results are overly optimistic, indicating that this experiment is very noisy. The
noise presumably comes from the randomness in the initialization and the execution of
HMC, which causes the passing or the failure of the convergence diagnostics to be highly
stochastic.

7. Empirical Analyses with Decoupled Functions

Section 6 focused on the evaluation of the performance of PESC in experiments with coupled
functions. Here, we evaluate the performance of PESC in the decoupled case, where the
different functions can be evaluated independently.

7.1 Accuracy of the PESC Approximation

We first evaluate the accuracy of PESC when approximating the function-specific acquisition
functions from Eq. (13). We consider a synthetic problem with input dimension D = 1 and
including an objective function and a single constraint function, both drawn from the GP
prior distribution. Figure 7(a) shows the marginal posterior distributions for f and c1 given
7 observations for the objective and 3 for the constraint. Figures 7(b) and 7(c) show the
PESC approximations to the acquisition functions for the objective and the constraint,

31

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

(a) Marginal posteriors

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

x

RS
PESC

A
cq

us
iti

on
 F

un
ct

io
n

(b) αf (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

x

RS
PESC

A
cq

us
iti

on
 F

un
ct

io
n

(c) αc(x)

(d) Marginal posteriors

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

x

RS
PESC

A
cq

us
iti

on
 F

un
ct

io
n

(e) αf (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

x

RS
PESC

A
cq

us
iti

on
 F

un
ct

io
n

(f) αc(x)

Figure 7: Assessing the accuracy of the decoupled PESC approximation for the partial
acquisition functions for αf (x) and αc(x). Between the top and bottom rows,
three additional observations of the constraint have been made.

respectively. These functions approximate how much information we would obtain by the
individual evaluation of the objective or the constraint at any given location. We also
include in Figs. 7(b) and 7(c) the value of a ground truth obtained by rejection sampling
(RS). The RS solution is obtained in the same way as in Section 6.1. Both PESC and
RS use a total of M = 50 samples from p(x? | D). The PESC approximation is quite
accurate, and importantly its maximum value is very close to the maximum value of the RS
approximation. Figures 7(b) and 7(c) indicate that the highest expected gain of information
is obtained by evaluating the constraint at x ≈ 0.3. The reason for this is that, as Fig. 7(a)
shows, the objective is low near x ≈ 0.3 but the constraint has not been evaluated at that
location yet.

Figure 7(d) shows the marginal posterior distributions for f and c1 when three more
observations have been collected for the constraint. The corresponding approximations
given by PESC and RS to the function-specific acquisition functions are shown in Figs. 7(e)
and 7(f). As before, the PESC approximation is very similar to the RS one. In this case,
evaluating the constraint is no longer as informative as before and the highest expected
gain of information is obtained by evaluating the objective at x ≈ 0.25. Intuitively, as
we collect more constraint observations the constraint becomes well determined and the
optimizer turns its attention to the objective.

32

Constrained Bayesian Optimization using Information-based Search

7.2 Comparing Coupled and Decoupled PESC

We now compare the performance of coupled and decoupled versions of PESC in the same
decoupled optimization problem. This allows us to empirically demonstrate the benefits of
treating a decoupled problem as such.

We first consider the toy problem from Section 6.3 given by Eq. (23). We assume that
there are three decoupled tasks: one for the objective and another one for each constraint
function. We further assume that there is a single resource r with capacity ωmax(r) = 3.
Each task requires to use resource r for its evaluation and the evaluation of each task
takes always the same amount of time, which is assumed to be much larger than the BO
computations. At each iteration resource r is used to evaluate 3 functions in parallel. We
compare the performance of four versions of PESC, which differ in how they select the 3
parallel evaluations that will be performed at each iteration. The first method is a coupled
approach (Coupled) which, at each iteration, evaluates jointly the three tasks at the same
input. The second method is a non-competitive decoupling approach (NCD) which, at
each iteration, evaluates all the different tasks once but not necessarily at the same input.
This is equivalent to assuming that there are 3 resources with capacity 1 and each task
can only be evaluated in one resource: the tasks do not have to compete because each one
can only be evaluated in its corresponding resource. The third method is a competitive-
decoupling approach (CD) which allows the different tasks to compete such that, at each
iteration, three not necessarily unique functions are evaluated at three not necessarily unique
locations. We also consider an implementation of CD that is not based on PESC and uses
the EIC-D approach, as described in Section 2.5. We call this method EIC-CD. EIC-CD
works like CD, with the difference that, at each step, we first determine the next evaluation
location x by maximizing the EIC acquisition function. After this, the next task to be
evaluated at x is chosen according to the expected reduction in the entropy of the global
feasible minimizer x?. The original description of this method given by Gelbart et al. (2014)
approximates the expected reduction in entropy using Monte Carlo sampling. This is in
general computationally very expensive. To speed up EIC-CD, we replace the Monte Carlo
sampling step by the approximation of the expected reduction in entropy given by PESC.

All the methods have to update the GP model, the posterior samples of x? and the
EP solutions just after collecting the data from resource r. However, the method CD and
EIC-CD have to do two additional update operations after sending the first and the second
evaluations to resource r, respectively. These updates correspond to step 11 in Algorithm 1
and they allow CD and EIC-CD to condition on pending evaluations that are not complete
yet. In our experiments we use the Kriging believer approach, in which we pretend that the
pending function evaluations have completed and returned the values of the GP predictive
mean at those locations. This allows the methods CD and EIC-CD to update the GP model
in a fast way, at the cost of ignoring uncertainty in the predictions of the GP model. The
samples of x? and the EP solutions are, however, recomputed from scratch once the GP
model has been updated. This can be expensive in practice. To address this problem we
introduce the method CD-F, which works like CD, but replaces the full updates for the
samples of x? and the EP solutions with the corresponding fast updates used by PESC-F in
Section 5. Therefore, by comparing CD and CD-F, we can evaluate the loss in performance
that is obtained by using the fast PESC-F updates. Note that CD-F uses the fast updates

33

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●

● ● ●

● ● ●

● ● ●
● ● ● ● ● ●

● ● ●

● ● ●
● ● ●

● ● ●

● ● ● ● ● ●
● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ●

● ● ● ● ● ●
● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ● ● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ●

● ● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ● ● ● ●

● ● ●

● ● ●

● ● ● ● ● ● ● ● ●

● ● ●

● ● ●
● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ●

−3.2

−2.2

−1.2

−0.2

0 20 40 60 80
Number of Function Evaluations

Lo
g

M
ea

n
U

til
ity

 G
A

P

Methods

●

●

●

●

●

EIC-CD

Coupled
CD
CD-F
NCD

(a) Performance

q
q

q q

q
q

q q q q q q q q q q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q q

0

20

40

60

80

0 20 40 60 80C
u

m
ul

at
iv

e
N

um
be

r
of

 E
va

lu
at

io
ns

 p
er

 T
as

k

Tasks

q

q

q

Total Number of Evaluations

(b) Cumulative task evaluations

Figure 8: Results for the decoupled toy problem (Eq. (23)) when using a resource r that
can evaluate 3 tasks (f , c1 or c2) in parallel. (a) Performance comparison of
Coupled (orange), NCD (yellow), CD (blue), CD-F (green) and EIC-CD (black)
approaches. (b) Cumulative number of evaluations for each task performed by
CD-F. The algorithm automatically discovers that the constraint c1 is much more
important than the objective f or the other constraint c2.

only after sending the first and the second evaluations to resource r. Once the new data is
collected, CD-F uses the original slow updates.

Figure 8(a) shows the results obtained by each method across 500 repetitions of the
experiment starting from random initializations. Recommendations are computed with
δ = 0.01. The horizontal axis in the plot denotes the number of function evaluations
performed so far. Since ωmax(r) = 3, these evaluation are performed in parallel in blocks
of three. The vertical axis denotes the average utility gap, computed as in Section 6.1.
Overall, CD and CD-F perform the best; the fact that CD and CD-F obtain similar results
implies that the fast PESC-F updates incur no significant performance loss in this synthetic
optimization problem. EIC-CD is worse than these two methods. This is a result of the
the sub-optimal two-stage decision process used by EIC-CD to select the next evaluation
location and the next task to be evaluated at that location; see Section 2.5 for more details.
NCD performs about the same as Coupled which means that, in this problem, the benefits
of decoupling come from choosing an unequal distribution of tasks to evaluate, rather than
from the additional freedom of evaluating the three tasks at potentially different locations.
This hypothesis is corroborated by Fig. 8(b), which shows the average cumulative number
of evaluations performed by CD for each task (f , c1 or c2) at each iteration. CD chooses
to evaluate the constraint c1 far more often than the objective or the other constraint c2.
This makes sense since the objective is a linear function and c1, which has a complicated
form, is the only active constraint at the global solution. Thus, the PESC algorithm has
automatically discovered that the constraint c1 is much more important (both in the sense
of being complicated and in the sense of being active at the true solution) than the objective
f or the other constraint c2. This demonstrates the true power of competitive decoupling,

34

Constrained Bayesian Optimization using Information-based Search

●●
●●

●●

●●
●●

●●

●●

●●
●●

●●
●●

●●●●

●●

●●

●●

●●
●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●
●●●●

●●
●●

●●●●
●●

●●
●●●●

●●
●●

●●●●●●
●●

●●
●●●●

●●●●●●●●
●●●●●●●●

●●
●●●●

●●
●●

●●●●
●●

●●
●●●●

●●●●●●●●
●●

●●●●●●
●●●●

●●
●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●
●●

●●●●

●●
●●

●●
●●●●

●●●●●●
●●

●●
●●

●●
●●●●●●●●

●●
●●●●●●

●●
●●

●●●●
●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●●●●●●●●●●●

●●●●●●
●●

●●●●
●●●●●●

●●●●●●●●
●●

●●
●●

●●

●●
●●

●●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●
●●

●●

●●

●●
●●●●

●●●●●●●●

●●●●
●●

●●

●●●●

●●
●●●●

●●

●●
●●●●

●●
●●

●●●●
●●●●●●●●●●

●●●●
●●●●

●●●●●●●●
●●

●●●●●●
●●

●●
●●

●●
●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●●
●●●●

−3

−2

−1

0

0 50 100 150 200
Number of Function Evaluations

Lo
g

M
ed

ia
n

U
til

ity
 G

A
P

Methods
●

●

●

CD−F
Coupled
NCD

1
0

(a) Performance

●
●
●
●
●●

●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●
●
●●

●●
●●

●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●
●
●
●●

●
●
●●

●
●
●
●
●
●
●●

●●
●
●
●●

●●
●
●
●
●
●●

●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0

30

60

90

120

0 50 100 150 200
Total Number of Evaluations

C
um

ul
at

iv
e

N
um

be
r o

f E
va

lu
at

io
ns

 p
er

 T
as

k Tasks
●

●

(b) Constraint active

●
●
●●●

●●
●●●●

●●●●●●●●●●
●●●●

●●
●●

●●●●●●
●●●●

●●
●●

●●
●●●●

●●●●●●●
●
●●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●
●●

●●
●

●
●
●●

0

50

100

150

0 50 100 150 200

Tasks
●

●

C
um

ul
at

iv
e

N
um

be
r o

f E
va

lu
at

io
ns

 p
er

 T
as

k

Total Number of Evaluations

(c) Constraint not active

Figure 9: Results on synthetic problems with D = 2 sampled from the GP prior as in
Section 6.2 when using a resource r that can evaluate 2 tasks (f or c1) in parallel.
(a) Performance comparison of Coupled (black), NCD (green), and CD-F (orange)
approaches. (b) Cumulative number of task evaluations performed by CD-F when
c1 is active at the solution. (c) Cumulative number of task evaluations performed
by CD-F when c1 is not active at the solution.

as the algorithm avoids wasting time on uninteresting tasks that might be, in the worst
case scenario, even more expensive than the interesting ones.

We perform another comparison of the methods Coupled, NCD and CD-F in synthetic
problems in which the objective f and a single constraint function c1 are drawn from the
GP prior with D = 2. This is done in the same way as in Section 6.2. We set δ = 0.05
and follow an experimental protocol similar to the one from the previous experiment: we
assume that there are two tasks, given by f and c1, which can be evaluated at a resource
r with capacity ωmax(r) = 2. Therefore, at any iteration we will be evaluating 2 tasks in
parallel. Figure 9(a) shows the median utility gap obtained by each method across 500
different realizations of the experiment. As in the previous toy problem, CD-F outperforms
Coupled, while Coupled performs similar to NCD. Again, decoupling is useful when we
can choose the tasks to evaluate (CD-F) and evaluating the tasks at potentially different
locations (NCD) does not seem to produce significant improvements with respect to the
coupled approach.

In the previous toy problem, CD-F outperformed NCD and Coupled because it learned
that evaluating the constraint c1 is much more useful than evaluating the objective f or
the constraint c2. We perform a similar analysis here by plotting the cumulative number
of evaluations for each task performed by CD-F. We divide the 500 realizations into those
cases in which the constraint c1 is active at the true solution (Fig. 9(b)) and those in which
c1 is not active at the true solution (Fig. 9(c)). The plots in Figs. 9(b) and 9(c) show
that when the constraint c1 is active at the solution, CD-F chooses to evaluate c1 much
more frequently. By contrast, when the constraint is not active, c1 is evaluated much less.
Presumably, in the latter case c1 need only be evaluated until it is determined that it is
very unlikely to be active at the solution. After this point, further evaluations of c1 are not

35

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

very informative. These results indicate that the task-specific acquisition functions used by
PESC and given by Eq. (14) are able to successfully measure the usefulness of evaluating
each different task.

7.3 Performance of PESC-F with Respect to Wall-clock Time

We now evaluate the performance of PESC with fast BO computations (PESC-F, Sec-
tion 5) while considering the wall-clock time of each experiment. Again, we focus on the
toy problem from Section 6.3 given by Eq. (23). To highlight what can go wrong in decou-
pled optimization problems, we will assume that evaluating the objective is instantaneous,
evaluating c1 takes 2 seconds, and evaluating c2 takes 1 minute. Each of these functions
forms a different task so that all of them can be evaluated independently. We also consider
that there is a single resource r with ωmax(r) = 1, that is, only one task can be evaluated
at any given time with no possible parallelism. This setup corresponds to the competitive
decoupling scenario from Fig. 1. We limit each experiment time to 15 minutes and consider
the following methods: Coupled, and competitive decoupled (CD) with PESC-F and ratio-
nality levels γ = {∞, 1, 0.1, 0}. According to Eq. (22), setting γ =∞ is simply another way
of saying that fast BO computations are not used.

Figure 10(a) shows the average utility gap of each method as a function of elapsed time.
The coupled approach is the worst performing one, being outperformed by all the versions
of PESC-F with different γ. This illustrates the advantages of the decoupled approach. The
performance of PESC-F is improved as γ moves from ∞ to 1 and then to 0.1. The reason
for this is that, as γ is reduced, less time is spent in the BO computations and more time
is spent in the actual collection of data. However, reducing γ too much is detrimental as
γ = 0 performs significantly worse than γ = 0.1 and γ = 1. The reason for this is that
γ = 0 performs too many fast BO computations, which produce suboptimal decisions.

Figures 10(b) to 10(f) and Section 7.3 are useful to understand the results obtained by
the different methods in Fig. 10(a). These figures show, for each method, the cumulative
number of evaluations per task as a function of the elapsed time. The coupled approach
performs very few evaluations of the different tasks. The reason for this is that it al-
ways evaluates all the tasks the same number of times and this leads to wasting a lot of
time by evaluating too often the slowest task, that is, constraint c2, which is not very
informative about the solution to the problem. The different versions of PESC-F with
γ = {∞, 1, 0.1, 0} evaluate more often the most informative task, that is, c1 and less fre-
quently all the other tasks. As the rationality level γ is decreased, less time is spent in
the BO computations, and thus more task evaluations are performed. These correspond
to increases in performance. However, this trend does not continue indefinitely as γ is
decreased. When γ = 0, performance is significantly diminished. By not performing slow
BO computations, the γ = 0 method is not able to learn that c2 is uninformative and
continues to spend time evaluating it, thus performing many fewer evaluations of the most
informative task c1. The configuration files for running this experiment are available at
https://github.com/HIPS/Spearmint/tree/PESC/examples/toy-fast-slow.

Section 7.3 shows the time spent by each method in fast and slow BO computations and
in the evaluation of tasks c1 and c2. We do not include the time spent in the evaluation of
task f because it is always zero. Note that the total time spent in the BO computations

36

https://github.com/HIPS/Spearmint/tree/PESC/examples/toy-fast-slow

Constrained Bayesian Optimization using Information-based Search

0 2 4 6 8 10 12 14 16
Elapsed time (minutes)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

lo
g 1
0

ut
ili

ty
ga

p

Coupled

CD PESC-F γ=∞
γ=1
γ=0.1
γ=0

CD PESC-F

CD PESC-F

CD PESC-F

(a) Performance, all approaches

0 3 6 9 12 15 18

Elapsed time (minutes)

0

20

40

60

80

100

C
um

ul
at

iv
e

ev
al

ua
tio

ns

f
c1
c2

(b) Coupled

0 3 6 9 12 15 18

Elapsed time (minutes)

0

20

40

60

80

100

C
um

ul
at

iv
e

ev
al

ua
tio

ns

f
c1
c2

(c) CD PESC-F, γ =∞

0 3 6 9 12 15 18

Elapsed time (minutes)

0

20

40

60

80

100

C
um

ul
at

iv
e

ev
al

ua
tio

ns

f
c1
c2

(d) CD PESC-F, γ = 1

0 3 6 9 12 15 18

Elapsed time (minutes)

0

20

40

60

80

100

C
um

ul
at

iv
e

ev
al

ua
tio

ns

f
c1
c2

(e) CD PESC-F, γ = 0.1

0 3 6 9 12 15 18

Elapsed time (minutes)

0

20

40

60

80

100

C
um

ul
at

iv
e

ev
al

ua
tio

ns

f
c1
c2

(f) CD PESC-F, γ = 0

Figure 10: Results for Coupled and CD PESC-F with γ = {∞, 1, 0.1, 0} on the toy problem
given by Eq. (23). Evaluations of f are instantaneous, evaluations of c1 take 2
sec. and evaluations of c2 take 1 min. The maximum experiment time is 15 min.
(a) log utility gap versus wall-clock time. (b-f) Cumulative function evaluations
for (b) Coupled, (c) CD PESC-F with γ = ∞ (no fast computations), (d) CD
PESC-F with γ = 1.0, (e) CD PESC-F with γ = 0.1, and (f) CD PESC-F with
γ = 0 (no slow computations). Curves reflect the mean over 100 trials. Error
bars in (b-f) are given by the empirical standard deviations.

37

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

Slow BO Fast BO Total BO Total
Method Comp. Comp. Comp. c1(x) c2(x) Evaluation

Coupled 2.0 0.0 2.0 0.4 13.0 13.4
CD PESC-F, γ =∞ 10.2 0.0 10.2 1.4 3.6 5.0
CD PESC-F, γ = 1 5.2 3.0 8.2 2.2 4.7 6.9
CD PESC-F, γ = 0.1 1.5 5.1 6.6 2.5 6.0 8.5
CD PESC-F, γ = 0.0 0.2 1.8 2.0 1.0 12.5 13.5

Table 1: Time spent by each method in BO computations and in task evaluations. For each
method, the table reports the mean time in minutes, over 100 independent runs,
spent in fast and slow BO computations and in the evaluation of tasks c1 and c2.

and in the evaluation of the different tasks does not add up exactly to 15 minutes because,
in our implementation, the current iteration is allowed to finish after the 15-minute mark is
reached. As expected, the time spent in the BO computations decreases monotonically as γ
is decreased. The coupled approach spends a small amount of time doing BO computations.
The reason for this is that this method does not have to perform step 11 in Algorithm 1 and
step 4 is performed less frequently than in the PESC-F methods because Coupled spends
most of its time in the evaluation of c2.

The fifth column in Section 7.3 corresponds to the time spent in the evaluation of c1.
The entries in this column are indicative of the relative performances of each method, since
c1 is the most important function in this optimization problem. From these entries we may
conclude that this problem exhibits an optimal value of γ close to 0.1. This represents an
optimal ratio of time spent in the BO computations to time spent in the evaluation of the
different tasks. We leave to future work the issue of selecting the optimal value for γ. In a
highly sophisticated approach this could be done in an online fashion by using reinforcement
learning.

8. Conclusions and Future Work

We have presented a general framework for solving Bayesian optimization (BO) problems
with unknown constraint functions. In these problems the objective and the constraints
can only be evaluated via expensive queries to black boxes that may provide noisy values.
Our framework allows for problems in which the objective and the constraints can be split
into subsets of functions that require coupled evaluation, meaning that these functions have
always to be jointly evaluated at the same input. We call these subsets of coupled functions
tasks. Different tasks may, however, be evaluated independently at different locations, that
is, in a decoupled way. Furthermore, the tasks may or may not compete for a limited set
of resources during their evaluation. Based on this, we have then introduced the notions of
competitive decoupling (CD), where two or more tasks compete for the same resource, and
non-competitive decoupling (NCD), where the tasks require to use different resources and
can therefore be evaluated in parallel. The notion of parallel BO is a special case in which

38

Constrained Bayesian Optimization using Information-based Search

one task requires a specific resource, of which many instances are available. We have then
presented a general procedure, given by Algorithm 1, to solve problems with an arbitrary
combination of coupling and decoupling. This algorithm receives as input a bipartite graph
G whose nodes are resources and tasks and whose edges connect each task with the resource
at which it can be evaluated. Algorithm 1 relies on an acquisition function that can measure
the utility of evaluating any arbitrary subset of functions, that is, of any possible task. An
acquisition function that satisfies this requirement is said to be separable.

To implement Algorithm 1, we have proposed a new information-based approach called
Predictive Entropy Search with Constraints (PESC). At each iteration, PESC collects data
at the location that is expected to provide the highest amount of information about the
solution to the optimization problem. By introducing a factorization assumption, we obtain
an acquisition function that is additive over the subset of functions to be evaluated. That
is, the amount of information that we approximately gain by jointly evaluating a set of
functions is equal to the sum of the gains of information that we approximately obtain by
the individual evaluation of each of the functions. This property means that the acquisition
function of PESC is separable. Therefore, PESC can be used to solve general constrained
BO problems with decoupled evaluation, something that has not been previously addressed.

We evaluated the performance of PESC in coupled problems, where all the functions
(objective and constraints) are always jointly evaluated at the same input location. This is
the standard setting considered by most prior approaches to constrained BO. The results
of our experiments show that PESC achieves state-of-the-art results in this scenario. We
also evaluated the performance of PESC in the decoupled setting, where the different tasks
can be evaluated independently at arbitrary input locations. We considered scenarios with
competition (CD) and with non-competition (NCD) and compared the performances of two
versions of PESC: one with decoupling (decoupled PESC) and another one that always
performs coupled evaluations (coupled PESC). Decoupled PESC is significantly better than
coupled PESC when there is competition, that is, in the CD setting. The reason for this
is that some functions can be more informative than others and decoupled PESC exploits
this to make optimal decisions when deciding which function to evaluate next with limited
resources. In particular, decoupled PESC avoids wasting time in function evaluations that
are unlikely to improve the current estimate of the solution to the optimization problem.
However, when there is no competition, that is, in the NCD setting, coupled and decoupled
PESC perform similarly. Therefore, in our experiments, the main advantages of considering
decoupling seem to come from choosing an unequal distribution of tasks to evaluate, rather
than from the additional freedom of evaluating the different tasks at potentially arbitrary
locations. In our experiments we have assumed that the evaluation of all the functions takes
the same amount of time. However, NCD is expected to perform better than the coupled
approach in other settings in which some functions are much faster to evaluate than others.
Evaluating the performance of NCD in these settings is left as future work.

For the BO approach to be useful, the time spent performing BO computations (such as
computing and globally optimizing the acquisition function) has to be significantly shorter
than the time spent collecting data. However, decoupled optimization problems may include
some tasks that are fast to evaluate. When these tasks are informative and their evaluation
time is comparable to that of the BO computations, the BO approach may be inefficient.
To address this issue, we follow a bounded rationality approach and introduce additional

39

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

approximations in the computations made by PESC to reduce their cost when necessary.
The new method is called PESC-F and it is able to automatically switch between fast, but
approximate, and slow, but accurate, operations. A parameter called the rationality level is
used in PESC-F to balance the amount of time that is spent in the BO computations and
in the actual collection of data. Experiments with wall-clock time in a CD scenario show
that PESC-F can be significantly better than the original version of PESC.

In summary, PESC is an effective algorithm for BO problems with unknown constraints
and the separability of its acquisition function makes it a promising direction towards a
unified solution for constrained BO problems. As new acquisition functions are proposed
in the future, they will hopefully be developed with separability in mind as an important
and desirable property.

The code for PESC, including decoupling and PESC-F, is available in PESC branch of
the open-source Bayesian optimization package Spearmint at https://github.com/HIPS/
Spearmint/tree/PESC.

One potential line of future work includes extensions to settings where tasks require
more than one resource to run. This could, for example, be formalized using a framework
similar to the one presented in Section 3, but where the resource dependencies for each task
t are represented as a set of edges Eti = {t ∼ r} for the ith potential allocation of resources.
This can be interpreted as the statement that all resource nodes Vti = {r : (t ∼ r) ∈ Eti}
are required in order to initiate task t using allocation i. Note that the union of these edges
now specifies a multigraph with edges E =

⋃
t,i Eti due to the fact there may be resources

that are required across multiple allocations of a particular task. This also modifies the
pseudocode for Algorithm 1 where the loop over resources r becomes a loop over potential
allocations such that ω(r) < ωmax(r) for r ∈ Vti for some (t, i) pair. In the case where
each task requires only a single resource this reduces to the earlier formulation. Another
possibility is for allocations where the resources are time or iteration dependent. This would
require some form of temporal planning. To make such a procedure feasible, however, it
may be necessary to consider greedy decisions at each point in time.

Another direction for future work is concerned with the use of bounded rationality in
Bayesian optimization. Here we have used a simple heuristic for selecting between two levels
(fast and slow) of computations in PESC-F. However, we could consider a larger number
of levels with increasingly more accurate computations (Hay et al., 2012). The Bayesian
optimization algorithm would then have to optimally select one of these to determine the
next evaluation location. We could also consider different modeling approaches for the
collected data, with different trade-offs between accuracy and computational cost. We also
leave for future work a theoretical analysis of PESC. This would be in the line of the work
of Russo and Van Roy (2014) on information-directed sampling. However, they use simpler
models for the data and do not consider problems with constraints.

Finally, we would like to point out that the approach described here can be applied
in a straightforward manner to address multi-objective Bayesian optimization problems
(Knowles, 2006). In the multi-objective case the different tasks would be given by groups
of objective functions that have to be evaluated in a coupled manner. An extension of PES
for working with multiple objectives is given by Hernández-Lobato et al. (2016).

40

https://github.com/HIPS/Spearmint/tree/PESC
https://github.com/HIPS/Spearmint/tree/PESC

Constrained Bayesian Optimization using Information-based Search

Acknowledgments

José Miguel Hernández-Lobato acknowledges support from the Rafael del Pino Foundation.
Zoubin Ghahramani acknowledges support from Google Focused Research Award and EP-
SRC grant EP/I036575/1. Matthew W. Hoffman acknowledges support from EPSRC grant
EP/J012300/1.

Appendix A. The Expectation Propagation Method Used by PESC

We describe here the expectation propagation (EP) method that is used by PESC to adjust
a Gaussian approximation to the non-Gaussian factor f(f , c1, . . . , cK |xj?) in Eq. (17). This
is done after replacing the infinite set X with the finite set Z, which contains only the
locations at which the objective f has been evaluated so far, the value of xj? and x. Recall
that x is the input to the acquisition function, that is, it contains the location at which we
are planning to evaluate f, c1, . . . , cK . When X is replaced with Z we have that the vectors
f , c1, . . . , cK contain now the result of the noise-free evaluations of f, c1, . . . , cK at Z, that
is,

f = [f(x1
f), . . . , f(xN1

f), f(xj?), f(x)]T , (24)

ck = [ck(x
1
f), . . . , ck(x

N1
f), ck(x

j
?), ck(x)]T , for k = 1, . . . ,K . (25)

where x1
f , . . . ,x

N1
f are the locations at which the objective f has been evaluated so far.

That is, the first N1 entries in f , c1, . . . , cK contain the function values at the locations for
which there is data for the objective. These entries are then followed by the function values
at xj? and at x. When we replace X with Z we have that

f(f , c1, . . . , cK |xj?) = p(f , c1, . . . , cK |D)Γ(xj?)

{
N1∏
i=1

Ψ(xif)

}
Ψ(x) . (26)

In this expression we should have included a factor Ψ(xj?) since xj? ∈ Z. We ignore such
factor because it is always equal to 1 according to Eq. (16). In Eq. (26) we have separated the
non-Gaussian factor that depends on x, that is, Ψ(x) from those factors that do not depend
on x, that is, Γ(xj?),Ψ(x1

f), . . . ,Ψ(xN1
f). All these non-Gaussian factors are approximated

with Gaussians using EP.

Finding the next suggestion involves maximizing the acquisition function. This requires
to evaluate the acquisition function at many different x and recomputing the complete EP
approximation for each value of x can be excessively expensive. To avoid this, we first
compute the EP approximation for the factors that do not depend on x in isolation, store it
and then reuse it as we compute the EP approximation for the remaining factors. Since most
of the factors do not depend on x, this leads to large speedups when we have to evaluate
the acquisition function at many different x. Therefore, we start by finding a Gaussian
approximation to the factors that do not depend on x, that is, Γ(xj?),Ψ(x1

f), . . . ,Ψ(xN1
f),

while ignoring the other factor that does depend on x, that is, Ψ(x).

41

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

A.1 Approximating the Non-Gaussian Factors that do not Depend on x

We use EP to find a Gaussian approximation to Γ(xj?),Ψ(x1
f), . . . ,Ψ(xN1

f) in Eq. (26) when
Ψ(x1), . . . ,Ψ(xK+1) are assumed to be constant and equal to 1. Because the data is assumed
to be generated from independent GPs, we have that p(f , c1, . . . , cK |D) in Eq. (26) is

p(f , c1, . . . , cK |D) = N (f |mpred
1 ,Vpred

1)
K∏
k=1

{
N (ck |mpred

k+1 ,V
pred
k+1)

}
, (27)

where mpred
1 and Vpred

1 are the mean and covariance matrix of the posterior distribution of

f given the data for the objective and mpred
k+1 and Vpred

k+1 are the mean and covariance matrix
of the posterior distribution of ck given the data for constraint k. In particular, from Eqs.
(2.22) to (2.24) of (Rasmussen and Williams, 2006) we have that

mpred
i = Ki

?(K
i + νiI)−1yi , (28)

Vpred
i = Ki

?,? −Ki
?(K

i + νiI)−1[Ki
?]
> , for i = 1, . . . ,K + 1 , (29)

where yi is an Ni-dimensional vector with the data for the i-th function in {f, c1, . . . , cK},
Ki
? is an (N1 + 2) ×Ni matrix with the prior cross-covariances between the entries of the

i-th vector in {f , c1, . . . , cK} and the value of the corresponding function at the locations
for which there is data available for that function and Ki

?,? is an (N1 + 2)× (N1 + 2) matrix
with the prior covariances between entries of the i-th vector in {f , c1, . . . , cK} and νi is the
noise variance at the black-box for the i-th function in {f, c1, . . . , cK}.

The exact factors Γ(xj?),Ψ(x1
f), . . . ,Ψ(xN1

f) from Eq. (26) are then approximated with

the corresponding Gaussian factors Γ̃(xj?), Ψ̃(x1
f), . . . , Ψ̃(xN1

f). Let βn(f) = [f(xnf), f(xj?)]
T,

where xnf is the n-th location for which there is data for the objective f . Then, we define

Ψ̃(xnf) ∝ exp

{
−1

2
βn(f)TÃnβn(f) + βn(f)Tb̃n

} K∏
k=1

exp

{
−1

2
ck(x

n
f)2d̃kn + ck(x

n
f)ẽkn

}
, (30)

where Ãn and b̃n are the natural parameters of a bivariate Gaussian distribution on βn(f)
and d̃kn and ẽkn are the natural parameters of a Gaussian distribution on ck(x

n
f), that is, the

value of constraint k at the n-th location for which there is data for the objective. We also
define

Γ̃(xj?) ∝
K∏
k=1

exp

{
−1

2
ck(x

j
?)

2g̃k + ck(x
j
?)h̃k

}
,

where g̃k and h̃k are the natural parameters of a Gaussian distribution on ck(x
j
?), that is,

the value of constraint k at the current posterior sample of x?.
The parameters Ãn, b̃n, d̃kn, ẽkn, g̃k and h̃k are fixed by running EP. Once the value of

these parameters has been fixed, we replace the exact factors Γ(xj?),Ψ(x1
f), . . . ,Ψ(xN1

f) in
Eq. (26) with their corresponding Gaussian approximations to obtain an approximation to
f(f , c1, . . . , cK |xj?). We denote this approximation by q(f , c1, . . . , cK), where

q(f , c1, . . . , cK) ∝ p(f , c1, . . . , cK |D)Γ̃(xj?)

{
N1∏
i=1

Ψ̃(xif)

}{
K+1∏
k=1

Ψ̃(xk)

}
. (31)

42

Constrained Bayesian Optimization using Information-based Search

Since the approximate factors are Gaussian and p(f , c1, . . . , cK |D) is also Gaussian, we have
that q(f , c1, . . . , cK) is also Gaussian:

q(f , c1, . . . , cK) = N (f |m1,V1)

K∏
k=1

N (ck|mk+1,Vk+1) , (32)

where, by applying the formula for products of Gaussians, we obtain

Vi =
[
[Vpred

i]−1 + S̃i

]−1
, (33)

mi = Vi

[
[Vpred

i]−1mpred
i + t̃i

]
, for i = 1, . . . ,K + 1 , (34)

with the following definitions for S̃i and t̃i:

• S̃1 is an (N1 + 2)× (N1 + 2) matrix whose non-zero entries are

– [S̃1]n,n = [An]1,1 for n = 1, . . . , N1 ,

– [S̃1]N1+1,n = [S̃1]n,N1+1 = [An]1,2 for n = 1, . . . , N1 ,

– [S̃1]N+1,N+1 =
∑N1

n=1 [An]2,2 .

• S̃k+1, for k = 1, . . . ,K, is an (N1 + 2)× (N1 + 2) matrix whose non-zero entries are

– [S̃k+1]n,n = dn for n = 1, . . . , N1 ,

– [S̃k+1]N1+1,N1+1 = gn for n = 1, . . . , N1 .

• t̃1 is an (N1 + 2)-dimensional vector whose non-zero entries are

– [̃t1]n = [b̃n]1 for n = 1, . . . , N1 ,

– [̃t1]N1+1 =
∑N1

n=1[b̃n]2 .

• t̃k+1, for k = 1, . . . ,K, is an (N1 + 2)-dimensional vector whose non-zero entries are

– [̃tk+1]n = ẽkn for n = 1, . . . , N1 ,

– [̃tk+1]N1+1 = h̃k .

We now explain how to obtain the values of all the Ãn, b̃n, d̃kn, ẽkn, g̃k and h̃k using EP.

A.1.1 Adjusting Ψ̃(xnf) by EP

We explain how to adjust the parameters Ãn, b̃n, d̃kn and ẽkn of the approximate factor
Ψ̃(xnf) using EP. EP performs this operation by minimizing the following Kullback-Leibler
divergence:

KL[Ψ(xnf)q¬n(f , c1, . . . , cK)||Ψ̃(xnf)q¬n(f , c1, . . . , cK)] , (35)

where q¬n(f , c1, . . . , cK) is the cavity distribution given by

q¬n(f , c1, . . . , cK) = q(f , c1, . . . , cK)[Ψ̃(xnf)]−1 , (36)

43

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

If we marginalize out all variables except those which Ψ̃(xnf) depends on, namely βn(f) and
c1(xnf), . . . , cK(xnf), then q¬n takes the form

q¬n[βn(f), c1(xnf), . . . , cK(xnf)] ∝ N (βn(f) |b¬n,A¬n)

{
K∏
k=1

N (ck(x
n
f) | e¬nk , d¬nk)

}
, (37)

where the parameters b¬n, A¬n, e¬nk and d¬nk of these Gaussian distributions are obtained

from the ratio of q and Ψ̃(xnf) by using the formula for dividing Gaussians:

A¬n =
{

V−1
βn(f) − Ãn

}−1
, b¬n = A¬n

{
V−1

βn(f)mβn(f) − b̃n

}
, (38)

d¬nk =
{
v−1
ck(xn

f) − d̃k
}−1

, e¬nk = d¬nk

{
v−1
ck(xn

f)mck(xn
f) − ẽk

}−1
, (39)

where Vβn(f) is the 2× 2 covariance matrix for βn(f) given by q(f , c1, . . . , cK) in Eq. (32),
mβn(f) is the corresponding 2-dimensional mean vector, vck(xn

f) is the variance for ck(x
n
f)

given by q(f , c1, . . . , cK) in Eq. (32) and mck(xn
f) is the corresponding mean parameter.

To minimize Eq. (35) we match the 1st and 2nd moments of Ψ(xnf)q¬n(f , c1, . . . , cK)

and Ψ̃(xnf)q¬n(f , c1, . . . , cK)]. The moments of Ψ(xnf)q¬n(f , c1, . . . , cK) can be obtained
from the derivatives of the logarithm of its normalization constant Z, which is given by

Z =

∫
Ψ(xnf)q¬n(f , c1, . . . , cK) df dc1 · · · dcK = Φ(αn)

K∏
k=1

Φ
[
αkn

]
+ 1−

K∏
k=1

Φ
[
αkn

]
, (40)

where αkn = mck(xn
f)v
−1/2
ck(xn

f) and αn = [1, −1]mβn(f)([1, −1]Vβn(f)[1, −1]>)−1/2 and Φ is the

standard Gaussian cdf. We follow Eqs. (5.12) and (5.13) in (Minka, 2001b) to update d̃kn
and ẽkn in Eq. (30). However, we use the second partial derivative with respect to e¬nk rather
than first partial derivative with respect to d¬nk for numerical robustness. These derivatives
are given by

∂ logZ

∂e¬nk
=

(Z − 1)φ(αkn)

ZΦ(αkn)
√
d¬nk

,
∂2 logZ

∂[e¬nk]2
= −∂ logZ

∂e¬nk
· αkn√

d¬nk
−
[
∂ logZ

∂e¬nk

]2

, (41)

where φ is the standard Gaussian pdf. The update equations for the parameters d̃kn and ẽkn
of the approximate factor Ψ̃(xnf) are then

[d̃kn]new = −
{(

∂2 logZ

∂[e¬nk]2

)−1

+ d¬nk

}−1

, [ẽkn]new =

{
d¬nk −

[
∂2 logZ

∂[e¬nk]2

]−1
∂ logZ

∂e¬nk

}
[d̃kn]new , (42)

We now perform the analogous operations to update Ãn and b̃n. We need to compute

∂ logZ

∂b¬n
=

{∏K
k=1 Φ[αkn]

}
φ(αn)

Z
√
s

[1, −1] , (43)

∂ logZ

∂A¬n
= −1

2
[1, −1]>[1, −1]

{∏K
k=1 Φ[αkn]

}
φ(αn)αn

Zs
, (44)

44

Constrained Bayesian Optimization using Information-based Search

where s = [−1, 1]A¬n[−1, 1]>. We then compute the mean vector and covariance matrix
for βn(f) with respect to Ψ(xnf)q¬n(f , c1, . . . , cK):

[Vβn(f)]new = A¬n −A¬n

[
∂ logZ

∂b¬n

(
∂ logZ

∂b¬n

)>
− 2

∂ logZ

∂A¬n

]
A¬n , (45)

[mβn(f)]new = b¬n + A¬n
∂ logZ

∂b¬n
. (46)

Next, we divide the Gaussian with mean and covariance parameters given by Eqs. (45)
and (46) by the marginal for β(f) in the cavity distribution q¬n(f , c1, . . . , cK). Therefore,
the new parameters Ãn and b̃n of the approximate factor Ψ̃(xnf) are obtained using the
formula for the ratio of two Gaussians:

Ãnew
n = [Vβn(f)]

−1
new − [A¬n]−1 , (47)

b̃new
n = [Vβn(f)]

−1
new[mβn(f)]new − [A¬n]−1 b¬n . (48)

A.1.2 Adjusting Γ̃(xj?) by EP

We explain how to adjust the parameters g̃k and h̃k of the approximate factor Γ̃(xj?) using
EP. EP performs this operation by minimizing the following Kullback-Leibler divergence:

KL[Γ(xj?)q
¬(f , c1, . . . , cK)||Γ̃(xj?)q

¬(f , c1, . . . , cK)] , (49)

where q¬(f , c1, . . . , cK) is the cavity distribution given by

q¬(f , c1, . . . , cK) = q(f , c1, . . . , cK)[Γ̃(xj?)]
−1 , (50)

We integrate out in q¬ all the variables except those which Γ̃(xj?) does depend on, namely,
c1(xj?), . . . , cK(xj?). Then q¬ takes the form

q¬[c1(xj?), . . . , cK(xj?)] ∝
K∏
k=1

N (ck(x
n
f) |h¬k , g¬k) , (51)

where the parameters h¬k and g¬k of these Gaussian distributions are obtained by using the
formula for dividing Gaussians:

g¬k =
{
v−1
ck(x?) − g̃k

}−1
, h¬k = g¬k

{
v−1
ck(xn

f)mck(xn
f) − ẽk

}−1
, (52)

where v
ck(xj

?)
is the variance for ck(x

j
?) given by q(f , c1, . . . , cK) in Eq. (32) and m

ck(xj
?)

is

the corresponding mean parameter.
To minimize Eq. (49) we match the 1st and 2nd moments of Γ(xj?)q

¬(f , c1, . . . , cK) and
Γ̃(xj?)q

¬(f , c1, . . . , cK)]. The moments of Γ(xj?)q
¬(f , c1, . . . , cK) can be obtained from the

derivatives of the logarithm of its normalization constant Z, which is given by

Z =

∫
Γ(xj?)q

¬(f , c1, . . . , cK) df dc1 · · · dcK =
K∏
k=1

Φ
[
αkn

]
, (53)

45

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

where αkn = m
ck(xj

?)
v
−1/2

ck(xj
?)

. We follow Eqs. (5.12) and (5.13) in (Minka, 2001b) to update g̃k

and h̃k in Eq. (31). However, we use the second partial derivative with respect to g¬k rather
than first partial derivative with respect to h¬k for numerical robustness. These derivatives
are given by

∂ logZ

∂h¬k
=

(Z − 1)φ(αkn)

ZΦ(αkn)
√
g¬k

,
∂2 logZ

∂[h¬k]2
= −∂ logZ

∂h¬k
· αkn√

g¬k
−
[
∂ logZ

∂h¬k

]2

. (54)

The update equations for the parameters g̃k and h̃k of the approximate factor Γ̃(xj?) are

[g̃k]new = −
{(

∂2 logZ

∂[h¬k]2

)−1

+ g¬k

}−1

, [h̃k]new =

{
g¬k −

[
∂2 logZ

∂[h¬k]2

]−1
∂ logZ

∂g¬k

}
[g̃k]

new .

A.2 Approximating the Non-Gaussian Factor that Depends on x

Expectation propagation performs the operations described in Appendices A.1.1 and A.1.2
until the Gaussian approximations to Γ(xj?),Ψ(x1

f), . . . ,Ψ(xN1
f) converge. Importantly the

EP operations described in Appendices A.1.1 and A.1.2 can be implemented independently
of the value of x, that is, the location at which we will be evaluating PESC’s acquisition
function. After EP has converged, the next step is to approximate with Gaussians the
other factor in Eq. (26) that does depend on x, that is, Ψ(x). For this, we first replace
the exact factors Γ(xj?),Ψ(x1

f), . . . ,Ψ(xN1
f) in Eq. (26) with their Gaussian approximations.

This results in the following approximation:

f(f , c1, . . . , cK |xj?) ≈ f̃(f , c1, . . . , cK |xj?) = q(f , c1, . . . , cK)Ψ(x) , (55)

where q(f , c1, . . . , cK), as given by Eq. (32), approximates the product of p(f , c1, . . . , cK |D)
and Γ(xj?),Ψ(x1

f), . . . ,Ψ(xN1
f) in Eq. (26). Next, we find a Gaussian approximation to

the right-hand-side of Eq. (55). For this, we first marginalize out in q all the variables
except those which Ψ(x) does depend on, that is, γ(f) and c1(x), . . . , cK(x), where γ(f) =
[f(x), f(xj?)]

T, we obtain

q[γ(f), c1(x), . . . , cK(x)] = N (γ(f)|mγ(f),Vγ(f))

{
K∏
k=1

N (ck(x)|mck(x), vck(x))

}
, (56)

where Vγ(f) is the 2 × 2 covariance matrix for γ(f) given by q(f , c1, . . . , cK) in Eq. (32),
mγ(f) is the corresponding 2-dimensional mean vector, vck(x) is the variance for ck(x) given
by q(f , c1, . . . , cK) in Eq. (32) and mck(x) is the corresponding mean parameter.

Let m′1 and V′1 be the mean vector and covariance matrices for the first N1 +1 elements
of f in Eq. (24), according to q in Eq. (32). Similarly, m′k+1 and V′k+1 be the mean vector
and covariance matrices for the first N1 + 1 elements of ck in Eq. (25), according to q in
Eq. (32), for k = 1, . . . ,K. After the execution of EP, we compute and store m′i and V′i,
for i = 1, . . . ,K. These parameters can then be used to efficiently compute Vγ(f), mγ(f),
vc1(x), . . . , vcK(x) and mc1(x), . . . ,mcK(x) for any arbitrary value of x. For this, we use Eqs.

46

Constrained Bayesian Optimization using Information-based Search

(3.22) and (3.24) in (Rasmussen and Williams, 2006) to obtain

[
mγ(f)

]
1

= k1(x)>
[
K1
?,?

]−1
m′1 ,[

mγ(f)

]
2

=
[
m′1
]
N1+1

,[
Vγ(f)

]
1,1

= k1(x,x)− k1(x)>
{[

K1
?,?

]−1
+
[
K1
?,?

]−1
V′1
[
K1
?,?

]−1
}

k1(x) ,[
Vγ(f)

]
2,2

=
[
V′1
]
N1+1,N1+1

,[
Vγ(f)

]
1,2

= k1(x,xj?)− k1(x)>
{

[K1
?,?]
−1 + [K1

?,?]
−1V′1[K1

?,?]
−1
}

k1(xj?) ,

mck(x) = kk+1(x)>
[
Kk+1
?,?

]−1
m′k+1 ,

vck(x) = kk+1(x,x)− kk+1(x)>
{[

Kk+1
?,?

]−1
+
[
Kk+1
?,?

]−1
V′k+1

[
Kk+1
?,?

]−1
}

kk+1(x) ,

for k = 1, . . . ,K, where ki(x) is the (N1 + 1)-dimensional vector with the prior cross-
covariances between the value of the i-th function in {f, c1, . . . , cK} at x and the values
of that function at x1

f , . . . ,x
N1
f ,xj?, Ki

?,? is an (N1 + 1) × (N1 + 1) matrix with the prior

covariances between the values of that function at x1
f , . . . ,x

N1
f ,xj? and ki(x,x) contains the

prior variance of the values of that function at x, for i = 1, . . . ,K + 1. Finally, k1(x,xj?)
contains the prior covariance between f(x) and f(xj?).

Once we have computed the parameters of q[γ(f)c1(x), . . . , cK(x)] in Eq. (56) using the
formulas above, we obtain the marginal means and variances for f(x), c1(x), . . . , cK(x) with
respect to q[γ(f), c1(x), . . . , cK(x)]Ψ(x). Let m1(x), . . . ,mK+1(x) and v1(x), . . . , vK+1(x)
be these marginal means and variances. Then, we have the approximation

∫
q[γ(f), c1(x), . . . , cK(x)]Ψ(x)df(xj?) ≈ N (f(x)|m1(x), v1(x))

K∏
k=1

N (ck(x)|mk+1(x), vk+1(x)) ,

where m1(x), . . . ,mK+1(x) and v1(x), . . . , vK+1(x) can be obtained from the normalization
constant of q[γ(f), c1(x), . . . , cK(x)]Ψ(x) using Eqs. (5.12) and (5.13) in (Minka, 2001b).
This normalization constant is given by

Z =

∫
q[γ(f), c1(x), . . . , cK(x)]Ψ(x) dγ(f) dc1(x) dcK(x) = Φ(α)

K∏
k=1

Φ(αk)+1−
K∏
k=1

Φ(αk) ,

where

αk =
mck(x)√
vck(x)

, α =
[1, −1]mγ(f)√

s
, s =

[
Vγ(f)

]
1,1

+
[
Vγ(f)

]
2,2
− 2

[
Vγ(f)

]
1,2

. (57)

47

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

Given Z, we then compute m1(x), . . . ,mK+1(x) and v1(x), . . . , vK+1(x) using Eqs. (5.12)
and (5.13) in (Minka, 2001b):

v1(x) =
[
Vγ(f)

]
1,1
− β

s
(β + α)

{[
Vγ(f)

]
1,1
−
[
Vγ(f)

]
1,2

}2
, (58)

m1(x) =
[
mγ(f)

]
1

+
{[

Vγ(f)

]
1,1
−
[
Vγ(f)

]
1,2

} β√
s
, (59)

vk+1(x) =
{
v−1
ck(x) + ãk

}−1
, for k = 1, . . . ,K , (60)

mk+1(x) = vk+1(x)
{
mck(x)v

−1
ck(x) + b̃k

}
, for k = 1, . . . ,K , (61)

where

β = Z−1φ(α)
K∏
k=1

Φ[αk] , ãk = −
{
∂2 logZ

∂m2
ck(x)

+ vck(x)

}−1

, (62)

b̃k = ãk

{
mck(x) +

√
vck(x)

αk + βk

}
,

∂2 logZ

∂m2
ck(x)

= −βk {αk + βk}
vck(x)

, (63)

βk =
φ(αn)

ZΦ(αn)
(Z − 1) . (64)

Eqs. (58) to (61) are the output of our EP algorithm. These quantities are used in Eq. (20)
to evaluate PESC’s acquisition function.

Appendix B. Implementation Considerations

We give details on the practical implementation of PESC.

B.1 Initialization, Convergence of EP and Parallel EP Updates

We start by fixing the parameters of all the approximate factors Γ̃(xj?), Ψ̃(x1
f), . . . , Ψ̃(xN1

f)
to be zero. We stop EP when the absolute change in the means and covariance matrices
for the first N1 + 1 elements of f and c1, . . . , cK in Eqs. (24) and (25), according to q in
Eq. (32), is below 10−4. The approximate factors Γ̃(xj?), Ψ̃(x1

f), . . . , Ψ̃(xN1
f) are updated in

parallel to speed up convergence (Gerven et al., 2009). With parallel updates q in Eq. (20)
is only updated once per iteration, after all the approximate factors have been refined.

B.2 EP with Damping

To improve the convergence of EP, we use damping (Minka and Lafferty, 2002). If Ψ̃(xnf)new

is the value of an approximate factor that minimizes the KL-divergence, damping entails
using instead Ψ̃(xnf)damped as the new factor value, as defined below:

Ψ̃(xnf)damped = [Ψ̃(xnf)new]ε + [Ψ̃(xnf)old]1−ε , (65)

where Ψ̃(xnf)old is the factor value before performing the update. We do the same for Γ̃(xj?).
The parameter ε controls the amount of damping, with ε = 1 corresponding to no damping.
We initialize ε to 1 and multiply it by a factor of 0.99 at each iteration.

48

Constrained Bayesian Optimization using Information-based Search

During the execution of EP, some covariance matrices in q or in the cavity distributions
may become non-positive-definite due to an excessively large step size (i.e. large ε). If this
issue is encountered during an EP iteration, the damping parameter is reduced by half and
the iteration is repeated.

B.3 Sampling x? in PESC

We sample x? from its posterior distribution using an extension of the method described
by Hernández-Lobato et al. (2014) to sample x? in the unconstrained setting. We perform
a finite basis approximation to the GPs used to describe the data for the objective and
the constraints. This allows us to sample analytic approximate samples from the the GP
posterior distribution. We then solve the optimization problem given by Eq. (1), when
the functions f , c1, . . . , cK are replaced by the generated samples. For this, we use a
numerical method for solving constrained optimization problems: the Method of Moving
Asymptotes (MMA) (Svanberg, 2002) as implemented in the NLopt package (Johnson,
2014). We evaluate the sampled functions in a uniform grid of size 103 and obtain the
best feasible result in that grid. We add to the points in the uniform grid the evaluation
locations for which we have already collected data. This is then used as the initial point for
the MMA method. The number of basis functions in the approximation to the GP is 103.
The NLopt convergence tolerance is 10−6 in the scaled input space units.

The finite basis approximation to the GP is given by a Bayesian Gaussian linear model
build on top of a collection of basis functions (Hernández-Lobato et al., 2014). Drawing
an approximate sample from the GP posterior distribution involves then sampling from
the posterior distribution of that linear model given the observed data. When the number
of basis functions is larger than the observed data points, this can be done efficiently as
described by Hernández-Lobato et al. (2014). In this case, the covariance matrix of the
Gaussian posterior distribution for the linear model is the sum of a low rank matrix and
a diagonal matrix, we can then use an efficient method to sample from that Gaussian
posterior distribution. This method is outlined in Appendix B.2 of Seeger (2008). The
cost is O(N2M) where N is the number of collected data points and M is the number
of basis functions. Sampling with the naive method takes O(M3) operations because we
must take the Cholesky decomposition of an M ×M covariance matrix. Given that in our
implementation M = 103 and typically N < 100, this method can speed up this sampling
procedure by orders of magnitude. A more efficient implementation could also be obtained
by using quasi-random numbers to generate the basis functions, thus reducing the number
of basis functions needed to attain the same approximation quality (Yang et al., 2014).

B.4 Cholesky Update in PESC-F

In PESC-F, during the fast BO computations, the GP hyperparameters (and in particular
the length scales) are not changed from the ones used during last iteration. Because of
this, the GP kernel matrix is unchanged except for the addition of a new row and column.
Given this, we can compute the Cholesky decomposition of the new kernel matrix with a
rank-one update of the Cholesky decomposition of the current kernel matrix. The O(N3)
computation of the Cholesky decomposition of the kernel matrix is the main bottleneck
for GP-based Bayesian optimization. As N gets large, this trick can significantly speed

49

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

up the fast BO computations in PESC-F. In fact, this trick applies more generally beyond
PESC-F or even any fast-update method: any Bayesian optimization method that does
not update the GP hyperparameters at every iteration can take advantage of the rank-one
Cholesky update. This update technique is described in more detail by Gill et al. (1974)
and is commonly used in the setting of Bayesian optimization as seen in (Osborne, 2010).

References

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian optimization of
expensive cost functions, 2010. arXiv:1012.2599 [cs.LG].

Simon Duane, Anthony D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
Monte Carlo. Physics letters B, 195(2):216–222, 1987.

Andrew Frank and Arthur Asuncion. UCI machine learning repository, 2010.

Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, and John P.
Cunningham. Bayesian optimization with inequality constraints. In Proceedings of the
31th International Conference on Machine Learning (ICML), pages 937–945, 2014.

Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization with un-
known constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, (UAI), pages 250–259, 2014.

Andrew Gelman and Donald R. Rubin. A single series from the Gibbs sampler provides
a false sense of security. In Bayesian Statistics 4: Proceedings of the Fourth Valencia
International Meeting, pages 625–32, 1992.

Marcel V. Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source
localization with the multivariate Laplace prior. In Advances in Neural Information
Processing Systems 22 (NIPS), pages 1901–1909, 2009.

John Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of
posterior moments. In Bayesian Statistics 4: Proceedings of the Fourth Valencia Inter-
national Meeting, pages 169–193, 1992.

Philip E. Gill, Gene H. Golub, Walter Murray, and Michael A. Saunders. Methods for
modifying matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

David Ginsbourger, Janis Janusevskis, and Rodolphe Le Riche. Dealing with asynchronicity
in parallel Gaussian process based global optimization. hal-00507632, pages 1–27, 2011.
URL https://hal.archives-ouvertes.fr/hal-00507632.

Robert B. Gramacy and Herbert K. H. Lee. Optimization under unknown constraints. In
Bayesian Statistics 9: Proceedings of the Ninth Valencia International Meeting, pages
229–256, 2011.

Robert B. Gramacy, Genetha A. Gray, Sébastien Le Digabel, Herbert K. H. Lee, Pritam
Ranjan, Garth Wells, and Stefan M. Wild. Modeling an augmented Lagrangian for
blackbox constrained optimization. Technometrics, 58(1):1–11, 2016.

50

https://hal.archives-ouvertes.fr/hal-00507632

Constrained Bayesian Optimization using Information-based Search

Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distribu-
tions in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE
International Conference on Evolutionary Computation, pages 312–317, 1996.

Nicholas Hay, Stuart J. Russell, David Tolpin, and Solomon Eyal Shimony. Selecting com-
putations: Theory and applications. In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, (UAI), pages 346–355, 2012.

Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13(1):1809–1837, 2012.

Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Amar Shah, and Ryan P. Adams.
Predictive entropy search for multi-objective Bayesian optimization. In Proceedings of the
33nd International Conference on Machine Learning (ICML), pages 1492–1501, 2016.

José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in
Neural Information Processing Systems 27 (NIPS), pages 918–926, 2014.

José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew. W. Hoffman, Ryan P.
Adams, and Zoubin Ghahramani. Predictive entropy search for Bayesian optimization
with unknown constraints. In Proceedings of the 32nd International Conference on Ma-
chine Learning (ICML), pages 1699–1707, 2015.

Neil Houlsby, José Miguel Hernández-Lobato, Ferenc Huszár, and Zoubin Ghahramani. Col-
laborative Gaussian processes for preference learning. In Advances in Neural Information
Processing Systems 25 (NIPS), pages 2096–2104, 2012.

Steven G. Johnson. The NLopt nonlinear-optimization package, 2014. URL http:

//ab-initio.mit.edu/nlopt.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.

Gunther Leobacher and Friedrich Pillichshammer. Introduction to quasi-Monte Carlo inte-
gration and applications. Springer, 2014.

David J. C. MacKay. Information-based objective functions for active data selection. Neural
Computation, 4(4):590–604, 1992.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI), pages
362–369, 2001a.

Thomas P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001b.

51

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

Hernández-Lobato, Gelbart, Adams, Hoffman and Ghahramani

Thomas P. Minka and John Lafferty. Expectation-propagation for the generative aspect
model. In Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence
(UAI), pages 352–359, 2002.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods
for seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978.

Radford M. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain
Monte Carlo, Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC
Press, 2011.

Michael Osborne. Bayesian Gaussian processes for sequential prediction, optimisation and
quadrature. PhD thesis, University of Oxford, 2010.

James Parr. Improvement criteria for constraint handling and multiobjective optimization.
PhD thesis, University of Southampton, 2013.

Anand Patil, David Huard, and Christopher Fonnesbeck. PyMC: Bayesian stochastic mod-
elling in Python. Journal of Statistical Software, 35(4):1–81, 2010.

Victor Picheny. A stepwise uncertainty reduction approach to constrained global optimiza-
tion. In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 787–795, 2014.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. CODA: Convergence diag-
nosis and output analysis for MCMC. R News, 6(1):7–11, 2006.

Carl Rasmussen and Christopher Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

Stuart Russell. Principles of metareasoning. Artificial Intelligence, 49(1-3):361–395, 1991.

Dan Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
In Advances in Neural Information Processing Systems 27 (NIPS), pages 1583–1591, 2014.

Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search
in constrained optimization of computer models. In Nancy Flournoy, William F. Rosen-
berger, and Weng Kee Wong, editors, New developments and applications in experimental
design, volume 34 of Lecture Notes–Monograph Series, pages 11–25. Institute of Mathe-
matical Statistics, 1998.

Matthias W Seeger. Bayesian inference and optimal design for the sparse linear model.
Journal of Machine Learning Research, 9:759–813, 2008.

Jasper Snoek. Bayesian optimization and semiparametric models with applications to as-
sistive technology. PhD thesis, University of Toronto, 2013.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems 25
(NIPS), pages 2951–2959, 2012.

52

Constrained Bayesian Optimization using Information-based Search

Krister Svanberg. A class of globally convergent optimization methods based on conservative
convex separable approximations. SIAM Journal on Optimization, 12:555–573, 2002.

Kevin Swersky, Jasper Snoek, and Ryan P. Adams. Multi-task Bayesian optimization. In
Advances in Neural Information Processing Systems 26 (NIPS), pages 2004–2012, 2013.

Julien Villemonteix, Emmanuel Vzquez, and Eric Walter. An informational approach to the
global optimization of expensive-to-evaluate functions. Journal of Global Optimization,
44(4):509–534, 2009.

Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael W. Mahoney. Quasi-Monte Carlo
feature maps for shift-invariant kernels. In Proceedings of the 31th International Confer-
ence on Machine Learning (ICML), pages 485–493, 2014.

53

	Introduction
	Related Work
	Expected Improvement with Constraints
	Integrated Expected Conditional Improvement
	Expected Volume Minimization
	Modeling an Augmented Lagrangian
	Existing Methods for Decoupled Evaluations

	Decoupled Function Evaluations and Resource Allocation
	Competitive Versus Non-competitive Decoupling and Parallel BO
	Formalization of Constrained Bayesian Optimization Problems
	A General Algorithm for Constrained Bayesian Optimization
	Incorporating Cost Information

	Predictive Entropy Search with Constraints (PESC)
	The PESC Acquisition Function
	How to Compute the Gaussian Approximation to p(yi|D,x,xj)
	Efficient Marginalization of the Model Hyper-parameters
	Computational Complexity
	Relationship between PESC and PES
	Summary of the Approximations Made in PESC

	PESC-F: Speeding Up the BO Computations
	Choosing When to Run the Fast or the Slow Version
	Setting the Rationality Level in PESC-F
	Bridging the Gap Between Fast and Slow Computations

	Empirical Analyses in the Coupled Case
	Assessing the Accuracy of the PESC Approximation
	Synthetic Functions in 2 and 8 Input Dimensions
	A Toy Problem
	Finding a Fast Neural Network
	Tuning Markov Chain Monte Carlo

	Empirical Analyses with Decoupled Functions
	Accuracy of the PESC Approximation
	Comparing Coupled and Decoupled PESC
	Performance of PESC-F with Respect to Wall-clock Time

	Conclusions and Future Work
	The Expectation Propagation Method Used by PESC
	Approximating the Non-Gaussian Factors that do not Depend on x
	Adjusting "0365(xfn) by EP
	Adjusting "0365(xj) by EP

	Approximating the Non-Gaussian Factor that Depends on x

	Implementation Considerations
	Initialization, Convergence of EP and Parallel EP Updates
	EP with Damping
	Sampling x in PESC
	Cholesky Update in PESC-F

