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Abstract

Adjusted for chance measures are widely used to compare partitions/clusterings of the
same data set. In particular, the Adjusted Rand Index (ARI) based on pair-counting, and
the Adjusted Mutual Information (AMI) based on Shannon information theory are very
popular in the clustering community. Nonetheless it is an open problem as to what are the
best application scenarios for each measure and guidelines in the literature for their usage
are sparse, with the result that users often resort to using both. Generalized Information
Theoretic (IT) measures based on the Tsallis entropy have been shown to link pair-counting
and Shannon IT measures. In this paper, we aim to bridge the gap between adjustment
of measures based on pair-counting and measures based on information theory. We solve
the key technical challenge of analytically computing the expected value and variance of
generalized IT measures. This allows us to propose adjustments of generalized IT measures,
which reduce to well known adjusted clustering comparison measures as special cases. Using
the theory of generalized IT measures, we are able to propose the following guidelines for
using ARI and AMI as external validation indices: ARI should be used when the reference
clustering has large equal sized clusters; AMI should be used when the reference clustering
is unbalanced and there exist small clusters.

Keywords: Clustering Comparison, Clustering Validation, Adjustment for Chance, Gen-
eralized Information Theoretic Measures, Pair-Counting Measures

1. Introduction

Clustering comparison measures are used to compare partitions/clusterings of the same data
set. In the clustering community (Aggarwal and Reddy, 2013), they are extensively used for
external validation when the ground truth clustering is available. A family of popular clus-
tering comparison measures are measures based on pair-counting (Albatineh et al., 2006).
This category comprises the well known similarity measures Rand Index (RI) (Rand, 1971)
and the Jaccard coefficient (J) (Ben-Hur et al., 2001). Recently, information theoretic (IT)
measures have been also extensively used to compare partitions (Strehl and Ghosh, 2003;
Vinh et al., 2010). Given the variety of different possible measures, it is very challenging to
identify the best choice for a particular application scenario (Wu et al., 2009).

The picture becomes even more complex if adjusted for chance measures are also consid-
ered. Adjusted for chance measures are widely used external clustering validation techniques
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because they improve the interpretability of the results. Indeed, two important properties
hold true for adjusted measures: they have constant baseline equal to 0 value when the par-
titions are random and independent, and they are equal to 1 when the compared partitions
are identical. Notable examples are the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) and the Adjusted Mutual Information (AMI) (Vinh et al., 2009). It is common to
see published research that validates clustering solutions against a reference ground truth
clustering with the ARI or the AMI. Nonetheless there are still open problems: there are
no guidelines for their best application scenarios shown in the literature to date and authors
often resort to employing them both and leaving the reader to interpret.

Moreover, some clustering comparisons measures are susceptible to selection bias: when
selecting the most similar partition to a given ground truth partition, clustering compari-
son measures are more likely to select partitions with many clusters (Romano et al., 2014).
In Romano et al. (2014) it was shown that it is beneficial to perform statistical standard-
ization to IT measures to correct for this bias. In particular, standardized IT measures
help in decreasing this bias when the number of objects in the data set is small. Statistical
standardization has not been applied to pair-counting measures yet in the literature. We
solve this challenge in the current paper, and provide further results about the utility of
measure adjustment by standardization.

In this work, we aim to bridge the gap between the adjustment of pair-counting measures
and the adjustment of IT measures. In Furuichi (2006) and Simovici (2007) it has been
shown that generalized IT measures based on the Tsallis q-entropy (Tsallis et al., 2009)
are a further generalization of IT measures and some pair-counting measures such as RI.
In this paper, we will exploit this useful idea to connect ARI and AMI. Furthermore using
the same idea, we can perform statistical adjustment by standardization to a broader class
of measures, including pair-counting measures.

A key technical challenge is to analytically compute the expected value and variance
for generalized IT measures when the clusterings are random. To solve this problem, we
propose a technique applicable to a broader class of measures we name Lφ, which includes
generalized IT measures as a special case. This generalizes previous work which provided an-
alytical adjustments for narrower classes: measures based on pair-counting from the family
L (Albatineh et al., 2006), and measures based on the Shannon mutual information (Vinh
et al., 2009, 2010). Moreover, we define a family of measures Nφ which generalizes many
clustering comparison measures. For measures which belong in this family, the expected
value can be analytically approximated when the number of objects is large. Figure 1 de-
picts the families of measures discussed in this paper. Table 1 summarizes the development
of this line of work over the past 30 years and positions our contribution. In summary, we
make the following contributions:

• We define families of measures for which the expected value and variance can be
computed analytically when the clusterings are random;

• We propose generalized adjusted measures to correct for the baseline property and for
selection bias. This captures existing well known measures as special cases;

• We provide insights into the open problem of identifying the best application scenarios
for clustering comparison measures, in particular the application scenarios for ARI and
AMI.
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Figure 1: Families of clustering comparison measures discussed in this paper. We show how
to analytically adjust measures in Lφ and how to obtain approximations for the
family Nφ.

Year Contribution Reference

1985 Expectation of Rand Index (RI) (Hubert and Arabie, 1985)

2006 Expectation and variance of S ∈ L (Albatineh et al., 2006)

2009 Expectation of Shannon Mutual Information (MI) (Vinh et al., 2009)

2010 Expectation of Normalized Shannon MI (NMI) (Vinh et al., 2010)

2014 Variance of Shannon MI (Romano et al., 2014)

2016
Expectation and variance of S ∈ Lφ
Asymptotic expectation of S ∈ Nφ

This Work

Table 1: Work on adjusting clustering comparison measures carried out over the past 30
years. Information theoretic measures have been only recently adjusted for chance.
In this paper, we bridge the gap between adjustment of pair-counting measures
and information theoretic measures.

2. Comparing Partitions

Given two partitions (clusterings) U and V of the same data set ofN objects, let {u1, . . . , ur}
and {v1, . . . , vc} be the disjoint sets (clusters) for U and V respectively. Let |ui| = ai for
i = 1, . . . , r denote the number of objects in the set ui and |vj | = bj for j = 1, . . . , c denote
the number of objects in vj . Naturally,

∑r
i=1 ai =

∑c
j=1 bj = N . The overlap between the

two partitions U and V can be represented in matrix form by a r× c contingency table M
where nij represents the number of objects in both ui and vj , i.e. nij = |ui ∩ vj |. Also, we
refer to ai =

∑r
i=1 nij as the row marginals and to bj =

∑c
j=1 nij as the column marginals.

A contingency table M is shown in Table 2.

Pair-counting measures between partitions, such as the Rand Index (RI) (Rand, 1971),
might be defined using the following quantities: k11, the pairs of objects in the same set in
both U and V ; k00 the pairs of objects not in the same set in U and not in the same set in
V ; k10, the pairs of objects in the same set in U and not in the same set in V ; and k01 the
pairs of objects not in the same set in U and in the same set in V . All these quantities can
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V
b1 · · · bj · · · bc

a1 n11 · · · · · · · n1c
...

...
...

...
U ai · nij ·

...
...

...
...

ar nr1 · · · · · · · nrc

Table 2: r × c contingency table M related to two clusterings U and V . ai =
∑

j nij are
the row marginals and bj =

∑
i nij are the column marginals.

be computed using the contingency table M, for example:

k11 =
1

2

r∑
i=1

c∑
j=1

nij(nij − 1), k00 =
1

2

(
N2 +

r∑
i=1

c∑
j=1

n2ij −
( r∑
i=1

a2i +
c∑
j=1

b2j

))
(1)

Using k00, k11, k10, and k01 it is possible to compute similarity measures, e.g. RI, or dis-
tance measures, e.g. the Mirkin index MK(U, V ) ,

∑
i a

2
i +

∑
j b

2
j − 2

∑
i,j n

2
ij , between

partitions (Meilă, 2007):

RI(U, V ) , (k11 + k00)/

(
N

2

)
, MK(U, V ) = 2(k10 + k01) = N(N − 1)(1− RI(U, V )) (2)

Information theoretic measures are instead defined for random variables but can also be used
to compare partitions when we employ the empirical probability distributions associated to
U , V , and the joint partition (U, V ). Let ai

N ,
bj
N , and

nij

N be the probability that an object
falls in the set ui, vj , and ui∩ vj respectively. We can therefore define the Shannon entropy

with natural logarithms for a partition V as follows: H(V ) , −
∑

j
bj
N ln

bj
N . Similarly, we

can define the entropy H(U) for the partition U , the joint entropy H(U, V ) for the joint
partition (U, V ), and the conditional entropies H(U |V ) and H(V |U). Shannon entropy
can be used to define the well know Mutual Information (MI) and employ it to compute
similarity between partitions U and V :

MI(U, V ) , H(U)−H(U |V ) = H(V )−H(V |U) = H(U) +H(V )−H(U, V ) (3)

On contingency tables, MI is linearly related to G-statistics used for likelihood-ratio tests:
G = 2NMI. In Meilă (2007), using the Shannon entropy it was shown that the following
distance, namely the Variation of Information (VI) is a metric:

VI(U, V ) , 2H(U, V )−H(U)−H(V ) = H(U |V ) +H(V |U) = H(U) +H(V )− 2MI(U, V )
(4)

Information theoretic measures are extensively used to compare crisp partitions (Strehl and
Ghosh, 2003; Vinh et al., 2010). Very recently they have also been used to compare fuzzy
partitions (Lei et al., 2014a, 2016).
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2.1 Generalized Information Theoretic Measures

Generalized Information Theoretic (IT) measures based on the generalized Tsallis q-entropy
(Tsallis, 1988) can be defined for random variables (Furuichi, 2006) and also be applied to
the task of comparing partitions (Simovici, 2007). Indeed, these measures have also seen
recent application in the machine learning community. More specifically, it has been shown
that they can act as proper kernels (Martins et al., 2009). Furthermore, empirical studies
demonstrated that careful choice of q yields successful results when comparing the similarity
between documents (Vila et al., 2011), decision tree induction (Maszczyk and Duch, 2008;
Wang et al., 2015), and reverse engineering of biological networks (Lopes et al., 2011). It is
important to note that the Tsallis q-entropy is equivalent to the Harvda-Charvat-Daróczy
generalized entropy proposed in Havrda and Charvát (1967); Daróczy (1970). Results
available in literature about these generalized entropies are equivalently valid for all the
proposed versions.

Given q ∈ R+ − {1}, the generalized Tsallis q-entropy for a partition V is defined

as follows: Hq(V ) , 1
q−1
(
1 −

∑
j

( bj
N

)q)
. Similarly to the case of Shannon entropy, we

have the joint q-entropy Hq(U, V ) and the conditional q-entropies Hq(U |V ) and Hq(V |U).
Conditional q-entropy is computed according to a weighted average parametrized on q.
More specifically the formula for Hq(V |U) is:

Hq(V |U) ,
r∑
i=1

(ai
N

)q
Hq(V |ui) =

r∑
i=1

(ai
N

)q 1

q − 1

(
1−

c∑
j=1

(nij
ai

)q)
(5)

The q-entropy reduces to the Shannon entropy computed in nats for q → 1.
In Furuichi (2006), using the fact that q > 1 implies Hq(U) ≥ Hq(U |V ), it is shown that

non-negative MI can be naturally generalized with q-entropy when q > 1:

MIq(U, V ) , Hq(U)−Hq(U |V ) = Hq(V )−Hq(V |U) = Hq(U) +Hq(V )−Hq(U, V ) (6)

However, q values smaller than 1 are allowed if the assumption that MIq(U, V ) is always
positive can be dropped. In addition, generalized IT measures can be used to define the
generalized Variation of Information distance (VIq) which tends to VI in Eq. (4) when
q → 1:

VIq(U, V ) , Hq(U |V )+Hq(V |U) = 2Hq(U, V )−Hq(U)−Hq(V ) = Hq(U)+Hq(V )−2MIq(U, V )
(7)

In Simovici (2007) it was shown that VIq is a proper metric and interesting links were
identified between measures for comparing partitions U and V . We state these links in
Proposition 1 given that they set the fundamental motivation of our paper:

Proposition 1 (Simovici, 2007) When q = 2 the generalized variation of information,
the Mirkin index, and the Rand index are linearly related: VI2(U, V ) = 1

N2 MK(U, V ) =
N−1
N (1− RI(U, V )).

Generalized IT measures are not only a generalization of IT measures in the Shannon sense
but also a generalization of pair-counting measures for particular values of q. Note that in
literature there exist another well know generalization of entropy: the Renyi entropy (Renyi,
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1961). This entropy is again parametrized on a real number q and is defined as follows:

Rq(V ) , 1
1−q ln

(∑
j

( bj
N

)q)
. Because of the use of the logarithm for any value of q, the Renyi

entropy does enable the generalization of pair-counting measures when q = 2. Therefore,
in this paper we make use of generalized IT measures based on the Tsallis entropy.

2.2 Normalized Generalized IT Measures

To allow a more interpretable range of variation, a clustering similarity measure should be
normalized: it should achieve its maximum at 1 when U = V . An upper bound to the
generalized mutual information MIq is used to obtained a normalized measure. MIq can
take different possible upper bounds (Furuichi, 2006). Here, we choose to derive another
possible upper bound using Eq. (7) when we use the minimum value of VIq = 0: max MIq =
1
2(Hq(U) + Hq(V )). This upper bound is valid for any q ∈ R+ − {1} and allows us to
link different existing measures as we will show in the next sections of the paper. The
Normalized Mutual Information with q-entropy (NMIq) is defined as follows:

NMIq(U, V ) ,
MIq(U, V )

max MIq(U, V )
=

MIq(U, V )
1
2

(
Hq(U) +Hq(V )

) =
Hq(U) +Hq(V )−Hq(U, V )

1
2

(
Hq(U) +Hq(V )

) (8)

Even if NMIq(U, V ) achieves its maximum 1 when the partitions U and V are identical,
NMIq(U, V ) is not a suitable clustering comparison measure. Indeed, it does not show
constant baseline value equal to 0 when partitions are random. We explore this through an
experiment. Given a dataset of N = 100 objects, we randomly generate uniform partitions
U with r = 2, 4, 6, 8, 10 sets and V with c = 6 sets independently of each others. The average
value of NMIq over 1, 000 simulations for different values of q is shown in Figure 2. It is
reasonable to expect that when the partitions are independent, the average value of NMIq
is constant irrespectively of the number of sets r of the partition U . This is not the case.
This behavior is unintuitive and misleading when comparing partitions. Computing the

2 3 4 5 6 7 8 9 10

Number of sets r in U

-0.5

0

0.5

1

N
M

I q

q = 0.9
q = 1.2
q = 2

Figure 2: The baseline value of NMIq(U, V ) between independent random partitions U and
V . Despite the partitions are random, the baseline of NMIq is not constant and
depends on the number of sets of the partitions.

analytical expected value of generalized IT measures under the null hypothesis of random
and independent U and V is important; it can be subtracted from the measure itself to
adjust its baseline for chance such that the result is 0 when U and V are random. Given
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Proposition 1, this strategy also allows us to generalize adjusted for chance pair-counting
and Shannon IT measures.

3. Baseline Adjustment

In order to adjust the baseline of a similarity measure S(U, V ), we have to compute its
expected value under the null hypothesis of independent random partitions U and V . We
adopt the assumption of randomness used to adjust RI (Hubert and Arabie, 1985) and the
Shannon MI (Vinh et al., 2009). This is formalized as follows:

Definition 1 (Random partitions) The partitions U and V are generated independently
and at random fixing the number of objects N and the marginals ai and bj.

This is also denoted as the permutation or the hypergeometric model of randomness. We
are able to compute the exact expected value for a similarity measure in the family Lφ:

Definition 2 Let Lφ be the family of similarity measures S(U, V ) = α + β
∑

ij φij(nij)
where α and β do not depend on the entries nij of the contingency table M and φij(·) are
bounded real functions.

Intuitively, Lφ represents the class of measures that can be written as a linear combination
of φij(nij). A measure between partitions uniquely determines α, β, and φij . However, not
every choice of α, β, and φij yields a meaningful similarity measure. Lφ is a superset of the
set L defined in Albatineh et al. (2006) as the family of measures S(U, V ) = α+ β

∑
ij n

2
ij ,

i.e. S ∈ L are special cases of measures in Lφ with φij(·) = (·)2. Figure 1 shows a diagram
of the similarity measures discussed in Section 2.1 and their relationships.

Lemma 1 If S(U, V ) ∈ Lφ, when partitions U and V are random:

E[S(U, V )] = α+ β
∑
ij

E[φij(nij)] where E[φij(nij)] is (9)

min{ai,bj}∑
nij=max{0,ai+bj−N}

φij(nij)
ai!bj !(N − ai)!(N − bj)!

N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!
(10)

Lemma 1 extends the results in Albatineh and Niewiadomska-Bugaj (2011) showing exact
computation of the expected value of measures in the family L. Given that generalized IT
measures belong in Lφ we can employ this result to adjust them.

3.1 Baseline Adjustment for Generalized IT measures

Using Lemma 1 it is possible to compute the exact expected value of Hq(U, V ), VIq(U, V )
and MIq(U, V ):

Theorem 1 When the partitions U and V are random:

i) E[Hq(U, V )] = 1
q−1

(
1− 1

Nq

∑
ij E[nqij ]

)
with E[nqij ] from Eq. (10) with φij(nij) = nqij;

ii) E[MIq(U, V )] = Hq(U) +Hq(V )− E[Hq(U, V )];

7



Romano, Vinh, Bailey, and Verspoor

iii) E[VIq(U, V )] = 2E[Hq(U, V )]−Hq(U)−Hq(V ).

It is worth noting that this approach is valid for any q ∈ R+ − {1}. We can use these
expected values to adjust for baseline generalized IT measures. We use the method proposed
in Hubert and Arabie (1985) to adjust similarity measures, such as MIq, and distance
measures, such as VIq:

AMIq ,
MIq − E[MIq]

max MIq − E[MIq]
AVIq ,

E[VIq]−VIq
E[VIq]−min VIq

(11)

VIq is a distance measure, thus min VIq = 0. For MIq we use the upper bound max MIq =
1
2

(
Hq(U) + Hq(V )

)
as for NMIq in Eq. (8). An exhaustive list of adjusted versions of

Shannon MI can be found in Vinh et al. (2010), when the upper bound 1
2(Hq(U) +Hq(V ))

is used the authors named the adjusted MI as AMIsum.
It is important to note that this type of adjustment turns distance measures into simi-

larity measures, i.e., AVIq is a similarity measure. It is also possible to maintain both the
distance properties and the baseline adjustment using NVIq , VIq/E[VIq] which can be
seen as a normalization of VIq with the stochastic upper bound E[VIq] (Vinh et al., 2009).
It is also easy to see that AVIq = 1 − NVIq. The adjustments in Eq. (11) also enable the
measures to be normalized. AMIq and AVIq achieve their maximum at 1 when U = V and
their minimum is 0 when U and V are random partitions.

According to the chosen upper bound for MIq, we obtain the nice analytical form shown
in Theorem 2. Our adjusted measures quantify the discrepancy between the values of the
actual contingency table and their expected value in relation to the maximum discrepancy
possible, i.e. the denominator in Eq. (12). It is also easy to see that all measures in Lφ
resemble this form when adjusted.

Theorem 2 Using E[nqij ] in Eq. (10) with φij(nij) = nqij, the adjustments for chance for
MIq(U, V ) and VIq(U, V ) are:

AMIq(U, V ) = AVIq(U, V ) =

∑
ij n

q
ij −

∑
ij E[nqij ]

1
2

(∑
i a
q
i +

∑
j b
q
j

)
−
∑

ij E[nqij ]
(12)

From now on we only discuss AMIq, given that it is identical to AVIq. There are notable
special cases for our proposed adjusted generalized IT measures. In particular, the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) is equal to AMI2. ARI is a classic measure,
heavily used for validation in social sciences and the most popular clustering validity index.

Corollary 1 It holds true that:
i) limq→1 AMIq = limq→1 AVIq = AMI = AVI with Shannon entropy;
ii) AMI2 = AVI2 = ARI.

Therefore, using the permutation model we can perform baseline adjustment to generalized
IT measures. Our generalized adjusted IT measures are a further generalization of partic-
ular well known adjusted measures such as AMI and ARI. It is worth noting, that ARI
is equivalent to other known measures for comparing partitions (Albatineh et al., 2006).
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Furthermore, there is also a strong connection between ARI and Cohen’s κ statistics used
to quantify inter-rater agreement (Warrens, 2008). As final remark, we point out that
our baseline adjustments can also be seen as statistical corrections for generalized informa-
tion theoretic measures. It is indeed well known that information theoretic measures are
severely biased when plug-in estimators are used, and many have worked on correcting this
bias for decades: there exist in literature frequentist approaches (Paninski, 2003) as well as
Bayesian approaches (Archer et al., 2013; Cerquetti, 2014) to reduce bias. In this section,
we discussed an adjustment to obtain exact bias correction in particular when U and V are
independent.

Computational complexity: The computational complexity of AMIq in Eq. (12) is
dominated by the computation of the sum of the expected value of each cell.

Proposition 2 The computational complexity of AMIq is O(N ·max {r, c}).

If all the possible contingency tables M obtained by permutations were generated, the
computational complexity of the exact expected value would be O(N !). However, this can
be dramatically reduced using properties of the expected value.

3.2 Experiments on Measure Baseline

Here we show that our adjusted generalized IT measures have a baseline value of 0 when
comparing random partitions U and V . In Figure 3 we show the behavior of AMIq, ARI, and
AMI on the same experiment proposed in Section 2.2. They are all close to 0 with negligible
variation when the partitions are random and independent. Moreover, it is interesting to
see the equivalence of AMI2 and ARI. On the other hand, the equivalence of AMIq and
AMI with Shannon entropy is obtained only at the limit q → 1.

2 3 4 5 6 7 8 9 10

Number of sets r in U

-5

0

5

A
M

I q

#10 -3

q = 0.9

q = 1.2

q = 2

ARI

AMI

Figure 3: Baseline value of adjusted clustering comparison measures between two random
partitions. When varying the number of sets for the random partition U , the
value of AMIq(U, V ) is always very close to 0 with negligible variation for any q.

We also point out that NMIq does not show constant baseline when the relative size of
the sets in U varies when U and V are random. In Figure 4, we generate random partitions
V with c = 6 sets on N = 100 points, and random binary partitions U independently.
NMIq(U, V ) shows different behavior at the variation of the relative size of the biggest set
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in U . This is unintuitive given that the partitions U and V are random and independent.
We obtain the desired property of a baseline value of 0 with AMIq.

50 60 70 80 90

Relative size of the biggest set in U [%]

-0.2

0

0.2

0.4

0.6

0.8

N
M

I q

50 60 70 80 90

Relative size of the biggest set in U [%]

-1

-0.5

0

0.5

1

A
M

I q

#10 -3

q = 0.9

q = 1.2

q = 2

ARI

AMI

Figure 4: The left panel shows the baseline value of NMIq(U, V ) between the random par-
tions U and V at the variation of the size of the sets in U . The right panel shows
the baseline value of adjusted clustering comparison measures. When varying the
relative size of one cluster for the random partition U , the value of AMIq(U, V )
is always very close to 0 with negligible variation for any q.

3.3 Large Number of Objects

In this section, we introduce a very general family of measures which includes Lφ. For
measures belonging to this family, it is possible to find an approximation of their expected
value when the number of objects N is large. This allows us to identify approximations for
the expected value of measures in Lφ as well as for measures not in Lφ, such as the Jaccard
coefficient as shown in Figure 1.

Let Nφ be the family of measures which are non-linear combinations of φij(nij):

Definition 3 Let Nφ be the family of similarity measures S(U, V ) = φ(n11
N , . . . ,

nij

N , . . . , nrc
N )

where φ is a bounded real function as N reaches infinity.

Note that Nφ is a generalization of Lφ. At the limit of large number of objects N , it is
possible to compute the expected value of measures in Nφ under random partitions U and
V using only the marginals of the contingency table M:

Lemma 2 If S(U, V ) ∈ Nφ, then limN→+∞E[S(U, V )] = φ
(
a1
N
b1
N , . . . ,

ai
N
bj
N , . . . ,

ar
N
bc
N

)
.

In Morey and Agresti (1984) the expected value of the RI was computed using an approx-
imated value based on the multinomial distribution. It turns out this approximated value
is equal to what we obtain for RI using Lemma 2. The authors of Albatineh et al. (2006)
noticed that the difference between the approximation and the expected value obtained with
the hypergeometric model is small on empirical experiments when N is large. We point
out that this is a natural consequence of Lemma 2 given that RI ∈ Lφ ⊆ Nφ. Moreover,
the multinomial distribution was also used to compute the expected value of the Jaccard
coefficient (J) in Albatineh and Niewiadomska-Bugaj (2011), obtaining good results on em-
pirical experiments with many objects. Again, this is a natural consequence of Lemma 2
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given that J ∈ Nφ but J /∈ Lφ. Indeed, the Jaccard coefficient does not allow analytical
adjustment using the hypergeometric model but it allows an approximation using Lemma
2.

Generalized IT measures belong in Lφ ⊆ Nφ. Therefore we can employ Lemma 2.
When the number of objects is large, the expected value under random partitions U and V
of Hq(U, V ), MIq(U, V ), and VIq(U, V ) in Theorem 1 depends only on the entropy of the
partitions U and V , i.e., just the marginals of the contingency table must be taken into
account:

Theorem 3 It holds true that:
i) limN→+∞E[Hq(U, V )] = Hq(U) +Hq(V )− (q − 1)Hq(U)Hq(V );

ii) limN→+∞E[MIq(U, V )] = (q − 1)Hq(U)Hq(V );

iii) limN→+∞E[VIq(U, V )] = Hq(U) +Hq(V )− 2(q − 1)Hq(U)Hq(V ).

Result i) recalls the property of non-additivity that holds true for random variables (Fu-
ruichi, 2006). Figure 5 shows the behavior of E[Hq(U, V )] when the partitions U and V
are generated uniformly at random. V has c = 6 sets and U has r sets. In this case,
Hq(U) + Hq(V ) − (q − 1)Hq(U)Hq(V ) appears to be a good approximation already for
N = 1000. In particular, the approximation is good when the number of objects N is big
with regards to the number of cells of the contingency table in Table 2: i.e., when N

r·c is
large enough.

(a) Approximation on smaller sample size

2 4 6 8 10
Number of sets r in U
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q
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N = 50 objects

(b) Approximation on bigger sample size
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Number of sets r in U
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N = 1000 objects

q = 0.8

q = 1.1
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Figure 5: The left panel shows the average value of E[Hq(U, V )] between random partitions
U and V when they are induced on N = 50 objects. The right panel shows results
for N = 1000 objects. E[Hq(U, V )] are plotted using a solid line and their limit
value Hq(U) + Hq(V ) − (q − 1)Hq(U)Hq(V ) is plotted using a dashed line. The
solid line coincides approximately with the dashed one in 4(b) when N = 1000.
The limit value is a good approximation for E[Hq(U, V )] when N

r·c is large enough.

From point ii) follows the result proved in Vinh et al. (2010) to connect the adjusted
mutual information to the widely used Normalized Mutual Information (NMI) based on
Shannon entropy (Strehl and Ghosh, 2003):

Theorem 4 (Vinh et al., 2010) It holds true that:

lim
N→+∞

AMI(U, V ) = NMI(U, V )

11
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NMI is easier to compute than AMI and it is less prone to computer precision errors. The
analysis provided in this session aims at broadening the possible clustering comparison
measures that can be adjusted: as long as a measure belongs in Nφ, its expected value at
large N can be computed and thus it can be adjusted. Moreover, we saw that adjusted
measures in Lφ ⊆ Nφ have simpler formulas at large N . The adjustments at large N are
faster to compute and less prone to computer precision errors.

In the next section we put forward a theoretical analysis on the best choice between
AMI and ARI when validating clustering solutions. Moreover being NMI equal to AMI at
large N , the next section helps also to understand when to use either NMI or ARI.

4. Application Scenarios for AMIq

In this section we aim to answer to the question: Given a reference ground truth clustering
V , which is the best choice for q in AMIq(U, V ) to validate the clustering solution U?
By answering this question, we implicitly identify the application scenarios for ARI and
AMI given the results in Corollary 1. This is particularly important for external clustering
validation. Nonetheless, there are a number of other applications where the task is to find
the most similar partition to a reference ground truth partition: e.g., categorical feature
selection (Vinh et al., 2014), decision tree induction (Criminisi et al., 2012), generation of
alternative or multi-view clusterings (Müller et al., 2013), or the exploration of the clustering
space with the Meta-Clustering algorithm (Caruana et al., 2006; Lei et al., 2014b) to list a
few.

Different values for q in AMIq yield to different biases. The source of these biases can be
identified by analyzing the properties of the q-entropy. In Figure 6 we show the q-entropy
for a binary partition at the variation of the relative size p of one cluster. This can be
analytically computed: Hq(p) = 1

q−1(1 − pq − (1 − p)q). The range of variation for Hq(p)
is much bigger if q is small. More specifically when q is small, the difference in entropy
between an unbalanced partition and a balanced partition is big.

Figure 6: Tsallis q-entropy Hq(p) for a binary cluster-
ing where p is the relative size of one clus-
ter. When q is small, the q-entropy varies
in a bigger range. When q is small, the dif-
ference in entropy between an unbalanced
partition and a balanced partition is big.
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Let us focus on an example. Let V be a reference clustering with 3 clusters of size 50 each,
and let U1 and U2 be two clustering solutions with the same number of clusters and same
cluster sizes. The contingency tables for U1 and U2 are shown on Figure 7. Given that
both contingency tables have the same marginals, the only difference between AMIq(U1, V )
and AMIq(U2, V ) according to Eq. (11) lies in MIq. Given that both solutions U1 and U2

12
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V
50 50 50

50 50 0 0
U1 50 0 44 6

50 0 6 44

V
50 50 50

50 48 1 1
U2 50 1 46 3

50 1 3 46

q
0 1 2 3

A
M

I q

0.5

0.6

0.7

0.8

0.9

AMIq(U1; V )

AMIq(U2; V )

Figure 7: Ground truth clustering V compared in turn to the clustering solutions U1 and
U2. AMIq with small q prefers the solution U1 because there exists one pure
cluster: i.e., there is one cluster which contains elements from only one cluster in
the reference clustering V .

are compared against V , the only term that varies in MIq(U, V ) = Hq(V ) − Hq(V |U) is
Hq(V |U). In order to identify the clustering solution that maximizes AMIq we have to
analyze the solution that decreases Hq(V |U) the most. Hq(V |U) is a weighted average of
the entropies Hq(V |ui) computed on the rows of the contingency table as shown in Eq. (5),
and this is sensitive to values equal to 0. Given the bigger range of variation of Hq for small
q, small q implies higher sensitivity to row entropies of 0. Therefore, small values of q tends
to decrease Hq(V |U) much more if the clusters in the solution U are pure: i.e., clusters
contain elements from only one cluster in the reference clustering V . In other words, AMIq
with small q prefers pure clusters in the clustering solution.

When the marginals in the contingency tables for two solutions are different, another
important factor in the computation of AMIq is the normalization coefficient 1

2(Hq(U) +
Hq(V )). Balanced solutions U will be penalized more by AMIq when q is small. Therefore,
AMIq with small q prefers unbalanced clustering solutions. To summarize, AMIq with small
q such as AMI0.5 or AMI1 = AMI with Shannon entropy:

• Is biased towards pure clusters in the clustering solutions;

• Prefers unbalanced clustering solutions.

By contrary, AMIq with bigger q such as AMI2.5 or AMI2 = ARI:

• Is less biased towards pure clusters in the clustering solution;

• Prefers balanced clustering solutions.

Given a reference clustering V , these biases can guide the choice of q in AMIq to identify
more suitable clustering solutions.

4.1 Use AMIq with small q such as AMI0.5 or AMI1 = AMI when the reference
clustering is unbalanced and there exist small clusters

If the reference cluster V is unbalanced and presents small clusters, AMIq with small q
might prefer more appropriate clustering solutions U . For example, in Figure 8 we show
two contingency tables associated to two clustering solutions U1 and U2 for the reference

13
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clustering V with 4 clusters of size [10, 10, 10, 70] respectively. When there exist small
clusters in the reference V their identification has to be precise in the clustering solution.
The solution U1 looks arguably better than U2 because it shows many pure clusters. In
this scenario we advise the use of AMI0.5 or AMI1 = AMI with Shannon entropy because
it gives more weight to the clustering solution U1.

V
10 10 10 70

U1

8 8 0 0 0
7 0 7 0 0
7 0 0 7 0
78 2 3 3 70

V
10 10 10 70

U2

10 7 1 1 1
10 1 7 1 1
10 1 1 7 1
70 1 1 1 67

q
0 1 2 3

A
M

I q

0

0.2

0.4

0.6

0.8

1

AMIq(U1; V )

AMIq(U2; V )

Figure 8: Ground truth clustering V compared in turn to the clustering solutions U1 and
U2. V is unbalanced and presents small clusters. When the reference clustering
has small clusters their identification in the solution has to be precise. Therefore
U1 appears to be a better solution than U2. AMIq with small q prefers the solution
U1 because its clusters are pure. In this scenario we advise the use of AMI0.5 or
AMI1 = AMI.

If the number of objects N is large, AMI is equivalent to NMI according to Theorem 4.
Therefore, when the reference clustering is unbalanced, there exist small clusters, and N is
large, it is advisable to use NMI rather than ARI.

4.2 Use AMIq with big q such as AMI2.5 or AMI2 = ARI when the reference
clustering has big equal sized clusters

If V is a reference clustering with big equal size clusters it is less crucial to have precise
clusters in the solution. Indeed, precise clusters in the solution penalize the recall of clusters
from the reference. In this case, AMIq with bigger q might prefer more appropriate solutions.
In Figure 9 we show two clustering solutions U1 and U2 for the reference clustering V with
4 equal size clusters of size 25. The solution U2 looks better than U1 because each of its
clusters identifies more elements from particular clusters in the reference. Moreover, U2 has
to be preferred to U1 because it consists in 4 equal sized clusters as the reference clustering V
consists in equal sized clusters. In this scenario we advise the use of AMI2.5 or AMI2 = ARI
because it gives more importance to the solution U2.

If the number of objects N is large, AMI is equivalent to NMI according to Theorem 4.
Therefore, when the reference clustering is balanced with big equal sized clusters and N is
large, it is advisable to use ARI rather than NMI.

5. Standardization of Clustering Comparison Measures

The selection of the most similar partition U to a reference partition V is biased accord-
ing to the chosen similarity measure, the number of sets r in U , and their relative size.
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V
25 25 25 25

U1

17 17 0 0 0
17 0 17 0 0
17 0 0 17 0
49 8 8 8 25

V
25 25 25 25

U2

24 20 2 1 1
25 2 20 2 1
23 1 1 20 1
28 2 2 2 22

q
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I q

0.2
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0.7

AMIq(U1; V )

AMIq(U2; V )

Figure 9: Ground truth clustering V compared in turn to the clustering solutions U1 and
U2. V shows equal size clusters. U2 appears to be a better solution than U1

because its clusters are more balanced in size than the clusters in U1. When
the reference clustering has big equal sized clusters their precise identification is
less crucial. AMIq with big q prefers the solution U2 because it is less biased
to pure clusters in the solution. In this scenario we advise the use of AMI2.5 or
AMI2 = ARI.

This phenomena is known as selection bias and it has been extensively studied in decision
trees (White and Liu, 1994). Researchers in this area agree that in order to achieve unbiased
selection of partitions, distribution properties of similarity measures have to be taken into
account (Dobra and Gehrke, 2001; Shih, 2004; Hothorn et al., 2006). Using the permutation
model, we proposed in Romano et al. (2014) to analytically standardize the Shannon MI
by subtraction of its expected value and division by its standard deviation. In this section,
we discuss how to achieve analytical standardization of measures S ∈ Lφ.

In order to standardize a measure, we must analytically compute its variance:

Lemma 3 If S(U, V ) ∈ Lφ, when partitions U and V are random:

Var(S(U, V )) = β2
(
E
[(∑

ij

φij(nij)
)2]
−
(∑

ij

E[φij(nij)]
)2)

,

where

E
[(∑

ij

φij(nij)
)2]

is equal to∑
ij

∑
nij

φ(nij)P (nij) ·

[
φij(nij) +

∑
i′ 6=i

∑
ñi′j

φi′j(ñi′j)P (ñi′j)+

+
∑
j′ 6=j

∑
ñij′

P (ñij′)

(
φij′(ñij′) +

∑
i′ 6=i

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)P (˜̃ni′j′)

)]
(13)

with nij ∼ Hyp(ai, bj , N), ñi′j ∼ Hyp(bj − nij , ai′ , N − ai), ñij′ ∼ Hyp(ai− nij , bj′ , N − bj),
˜̃ni′j′ ∼ Hyp(ai′ , bj′ − ñij′ , N − ai) hypergeometric random variables.

We can use the expected value to standardize measures S ∈ Lφ, such as generalized IT
measures.
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5.1 Standardization of Generalized IT Measures

The variance under the permutation model of generalized IT measures is:

Theorem 5 Using Eqs. (10) and (13) with φij(·) = (·)q, when the partitions U and V are
random:

i) Var(Hq(U, V )) = 1
(q−1)2N2q

(
E[(
∑

ij n
q
ij)

2]− (
∑

ij E[nqij ])
2
)

;

ii) Var(MIq(U, V )) = Var(Hq(U, V ))

iii) Var(VIq(U, V )) = 4Var(Hq(U, V ))

We define the standardized version of the similarity measure MIq (SMIq), and the standard-
ized version of the distance measure VIq (SVIq) as follows:

SMIq ,
MIq − E[MIq]√

Var(MIq)
, SVIq ,

E[VI]q −VIq√
Var(VIq)

, (14)

As for the case of AMIq and AVIq, it turns out that SMIq is equal to SVIq:

Theorem 6 Using Eqs. (10) and (13) with φij(·) = (·)q, the standardized MIq(U, V ) and
the standardized VIq(U, V ) are:

SMIq(U, V ) = SVIq(U, V ) =

∑
ij n

q
ij −

∑
ij E[nqij ]√

E[(
∑

ij n
q
ij)

2]− (
∑

ij E[nqij ])
2

(15)

This formula shows that we are interested in maximizing the difference between the sum of
the cells of the actual contingency table and the sum of the expected cells under randomness.
Standardized measures differs from their adjusted counterpart because of the denominator,
i.e. the standard deviation of the sums of the cells. Indeed, SMIq and SVIq measure the
number of standard deviations MIq and VIq are from their mean.

There are some notable special cases for particular choices of q. Indeed, our generalized
standardization of IT measures allows us to generalize also the standardization of pair-
counting measures such as the Rand index. To see this, let us define the Standardized
Rand Index (SRI): SRI , RI−E[RI]√

Var(RI)
and recall that the standardized G-statistic is defined

as SG , G−E[G]√
Var(G)

(Romano et al., 2014):

Corollary 2 It holds true that:
i) limq→1 SMIq = limq→1 SVIq = SMI = SVI = SG with Shannon entropy;
ii) SMI2 = SVI2 = SRI.

Computational complexity: The computational complexity of SMIq is dominated by
computation of the second moment of the sum of the cells defined in Eq. (13):

Proposition 3 The computational complexity of SMIq is O(N3c ·max {c, r}).

Note that the complexity is quadratic in c and linear in r. This happens because of the
way we decided to condition the probabilities in Eq. (13) in the proof of Lemma 3. With
different conditions, it is possible to obtain a formula symmetric to Eq. (13) with complexity
O(N3r ·max {r, c}) (Romano et al., 2014).
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Statistical inference: All IT measures computed on partitions can be seen as estimators
of their true value computed using the random variables associated to the partitions U and
V . Therefore, SMIq can be used as non-parametric independence test for MIq. We formalize
this with the following proposition:

Proposition 4 The p-value associated to the test for independence between U and V using
MIq(U, V ) is smaller than: 1

1+(SMIq(U,V ))2
.

For example, if SMIq is equal to 4.46 the associated p-value is smaller than 0.05. Neural time
series data is often analyzed making use of the Shannon MI (e.g. see Chapter 29 in Cohen
(2014)). It is common practice to test the independence of two time series by computing
SMI via Monte Carlo permutations, sampling from the space of N ! cardinality. Our SMIq
can be effectively and efficiently used in this application because it is exact and obtains
O(N3r ·max {r, c}) complexity.

5.2 Experiments on Selection Bias

In this section, we evaluate the performance of standardized measures on selection bias cor-
rection when partitions U are generated at random and independently from the reference
partition V . This hypothesis has been employed in previous published research to study
selection bias (White and Liu, 1994; Frank and Witten, 1998; Dobra and Gehrke, 2001;
Shih, 2004; Hothorn et al., 2006; Romano et al., 2014). In particular, we experimentally
demonstrate that NMIq is biased towards the selection of partitions U with more clusters at
any q. Therefore, in this scenario it is beneficial to perform standardization. Mind though
that the choice of whether performing standardization or not is application dependent (Ro-
mano et al., 2015). For example, it has been argued that in some cases the selection of
clustering solutions should be biased towards clusterings with the same number of clusters
as in the reference (Amelio and Pizzuti, 2015). In this section we aim to show the effects
of selection bias when clusterings are independent and that standardization helps in reduc-
ing it. Moreover, we will see in Section 5.3 that it is particularly important to correct for
selection bias when the number of objects N is small.

Given a reference partition V on N = 100 objects with c = 4 sets, we generate a pool
of random partitions U with r ranging from 2 to 10 sets. Then, we use NMIq(U, V ) to
select the closest partition to the reference V . The plot at the bottom of Figure 10 shows
the probability of selection of a partition U with r sets using NMIq computed on 5000
simulations. We do not expect any partition to be the best given that they are all generated
at random: i.e., the plot is expected to be flat if a measure is unbiased. Nonetheless, we see
that there is a clear bias towards partitions with 10 sets if we use NMIq with q respectively
equal to 1.001, 2, or 3. We can see that the use of the adjusted measures such as AMIq helps
in decreasing this bias, in particular when q = 2. On this experiment when q = 2, baseline
adjustment seems to be effective in decreasing the selection bias because the variance of
AMI2 = ARI is almost constant. However for all q, using SMIq we obtain close to uniform
probability of selection of each random partition U .
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Figure 10: Selection bias towards random partitions U with different number of sets r when
compared to a reference V . The probability of selection should be uniform when
partitions are random. Using SMIq we achieve close to uniform probability of
selection for q equal to 1.001, 2 and 3 respectively.

5.3 Large Number of Objects

It is likely to expect that the variance of generalized IT measures decreases when partitions
are generated on a large number of objects N . Here we prove a general result about measures
of the family Nφ.

Lemma 4 If S(U, V ) ∈ Nφ, then limN→+∞Var(S(U, V )) = 0.

Given that generalized IT measures belong in the family Nφ, we can prove the following:

Theorem 7 It holds true that:

lim
N→+∞

Var(Hq(U, V )) = lim
N→+∞

Var(MIq(U, V )) = lim
N→+∞

Var(VIq(U, V )) = 0 (16)

Therefore, SMIq attains very large values when N is large. In practice of course, N is finite,
so the use of SMIq is beneficial. However, it is less important to correct for selection bias if
the number of objects N is big with regards to the number of cells in the contingency table
in Table 2: i.e., when N

r·c is large. Indeed, when the number of objects is large AMIq might
be sufficient to avoid selection bias and any test for independence between partitions has
high power. In this scenario, SMIq is not needed and AMIq might be preferred as it can be
computed more efficiently.

6. Conclusion

In this paper, we computed the exact expected value and variance of measures of the family
Lφ, which contains generalized IT measures. We also showed how the expected value for
measures S ∈ Nφ can be computed for large N . Using these statistics, we proposed AMIq
and SMIq to adjust generalized IT measures both for baseline and for selection bias. AMIq is
a further generalization of well known measures for clustering comparisons such as ARI and
AMI. This analysis allowed us to provide guidelines for their best application in different
scenarios. In particular ARI might be used as external validation index when the reference
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clustering shows big equal sized clusters. AMI can be used when the reference clustering
is unbalanced and there exist small clusters. The standardized SMIq can instead be used
to correct for selection bias among many possible candidate clustering solutions when the
number of objects is small. Furthermore, it can also be used to test the independence
between two partitions. All code has been made available online1.
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Appendix A. Theorem Proofs

Proposition 1 (Simovici, 2007) When q = 2 the generalized variation of information,
the Mirkin index, and the Rand index are linearly related: VI2(U, V ) = 1

N2 MK(U, V ) =
N−1
N (1− RI(U, V )).

Proof

VIq(U, V ) = 2Hq(U, V )−Hq(U)−Hq(V )

=
2

q − 1

(
1−

r∑
i=1

c∑
j=1

(nij
N

)q)
− 1

q − 1

(
1−

r∑
i=1

(ai
N

)q)
− 1

q − 1

(
1−

c∑
j=1

( bj
N

)q)
=

1

(q − 1)N q

( r∑
i=1

aqi +

c∑
j=1

bqj − 2

r∑
i=1

c∑
j=1

nqij

)

When q = 2, VI2(U, V ) = 1
N2 (
∑

i a
2
i +

∑
j b

2
j − 2

∑
i,j n

2
ij) = 1

N2 MK(U, V ) = N−1
N (1 −

RI(U, V )).

Lemma 1 If S(U, V ) ∈ Lφ, when partitions U and V are random:

E[S(U, V )] = α+ β
∑
ij

E[φij(nij)] where E[φij(nij)] is (9)

min{ai,bj}∑
nij=max{0,ai+bj−N}

φij(nij)
ai!bj !(N − ai)!(N − bj)!

N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)!
(10)

Proof The expected value of S(U, V ) according to the hypergeometric model of ran-
domness is E[S(U, V )] =

∑
M S(M)P (M) where M is a contingency table generated via

permutations. This is reduced to E[S(U, V )] =
∑
M(α + β

∑
ij φij(nij))P (M) = α +

β
∑
M
∑

ij φij(nij)P (M). Because of linearity of the expected value, it is possible to swap
the summation over M and the one over cells obtaining α + β

∑
ij

∑
nij
φij(nij)P (nij) =

α + β
∑

ij E[φij(nij)] where nij is a hypergeometric distribution with the marginals ai, bj ,
and N as parameters, i.e. nij ∼ Hyp(ai, bj , N).

Theorem 1 When the partitions U and V are random:

i) E[Hq(U, V )] = 1
q−1

(
1− 1

Nq

∑
ij E[nqij ]

)
with E[nqij ] from Eq. (10) with φij(nij) = nqij;

ii) E[MIq(U, V )] = Hq(U) +Hq(V )− E[Hq(U, V )];

iii) E[VIq(U, V )] = 2E[Hq(U, V )]−Hq(U)−Hq(V ).

Proof The results easily follow from Lemma 1 and the hypothesis of fixed marginals.
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Theorem 2 Using E[nqij ] in Eq. (10) with φij(nij) = nqij, the adjustments for chance for
MIq(U, V ) and VIq(U, V ) are:

AMIq(U, V ) = AVIq(U, V ) =

∑
ij n

q
ij −

∑
ij E[nqij ]

1
2

(∑
i a
q
i +

∑
j b
q
j

)
−
∑

ij E[nqij ]
(12)

Proof The using the upper bound 1
2(Hq(U) +Hq(V )) to MIq, AMIq and AVIq are equiva-

lent. Therefore we compute AVIq. The denominator is equal to E[VIq] = 2
(q−1)Nq

(
1
2(
∑

i a
q
i+∑

j b
q
j)−

∑
i,j E[nqij ]

)
. The numerator is instead 2

(q−1)Nq

(∑
ij n

q
ij −

∑
i,j E[nqij ]

)
.

Corollary 1 It holds true that:
i) limq→1 AMIq = limq→1 AVIq = AMI = AVI with Shannon entropy;
ii) AMI2 = AVI2 = ARI.

Proof Point i) follows from the limit of the q-entropy when q → 1. Point ii) follows from:

AVI2 =
E[VI2]−VI2

E[VI2]−min VI2
=

N−1
N (RI− E[RI])

N−1
N (max RI− E[RI])

= ARI

Proposition 2 The computational complexity of AMIq is O(N ·max {r, c}).

Proof The computation of P (nij) where nij is a hypergeometric distribution Hyp(ai, bj , N)
is linear in N . However, the computation of the expected value E[nqij ] =

∑
nij
nqijP (nij) can

exploit the fact that P (nij) are computed iteratively: P (nij+1) = P (nij)
(ai−nij)(bj−nij)

(nij+1)(N−ai−bj+nij+1) .

We compute P (nij) only for max {0, ai + bj −N}. In both cases P (nij) can be computed
in O(max {ai, bj}). We can compute all other probabilities iteratively as shown above in
constant time. Therefore:

r∑
i=1

c∑
j=1

O(max {ai, bj}) +

min {ai,bj}∑
nij=0

O(1)

 =

r∑
i=1

c∑
j=1

O(max {ai, bj}) =

r∑
i=1

O(max {cai, N})

= O(max {cN, rN}) = O(N ·max {c, r})

Lemma 2 If S(U, V ) ∈ Nφ, then limN→+∞E[S(U, V )] = φ
(
a1
N
b1
N , . . . ,

ai
N
bj
N , . . . ,

ar
N
bc
N

)
.
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Proof S(U, V ) can be written as φ(n11
N , . . . ,

nij

N , . . . , nrc
N ). Let X = (X1, . . . , Xrc) =

(n11
N , . . . ,

nij

N , . . . , nrc
N ) be a vector of rc random variables where nij is a hypergeometric

distribution with the marginals as parameters: ai, bj and N . The expected value of
nij

N is

E[
nij

N ] = 1
N
aibj
N . Let µ = (µ1, . . . , µrc) = (E[X1], . . . , E[Xrc]) = (a1N

b1
N , . . . ,

ai
N
bj
N , . . . ,

ar
N
bc
N )

be the vector of the expected values. The Taylor approximation of S(U, V ) = φ(X) around
µ is:

φ(X) ' φ(µ) +
rc∑
t=1

(Xt − µt)
∂φ

∂Xt
+

1

2

rc∑
t=1

rc∑
s=1

(Xt − µt)(Xs − µs)
∂2φ

∂Xt∂Xs
+ . . .

Its expected value is (see Section 4.3 of (Ang and Tang, 2006)):

E[φ(X)] ' φ(µ) +
1

2

rc∑
t=1

rc∑
s=1

Cov(Xt, Xs)
∂2φ

∂Xt∂Xs
+ . . .

We just analyse the second order remainder given that it dominates the higher order ones.
Using the Cauchy-Schwartz inequality we have that |Cov(Xt, Xs)| ≤

√
Var(Xt)Var(Xs).

Each Xt and Xs is equal to
nij

N for some indexes i and j. The variance of each Xt and Xs is

therefore equal to Var(
nij

N ) = 1
N2

aibj
N

N−ai
N

N−bj
N−1 . When the number of records is large also

the marginals increase: N → +∞ ⇒ ai → +∞, and bj → +∞ ∀i, j. However, because of

the permutation model, all the fractions ai
N and

bj
N stay constant ∀i, j. Therefore, also µ

is constant. However, at the limit of large N , the variance of
nij

N tends to 0: Var
(
nij

N

)
=

1
N
ai
N
bj
N

(
1− ai

N

)(
1 + 1

N−1 −
bj
N

)
→ 0. Therefore, at large N :

E[φ(X)] ' φ(µ) = φ
(a1
N

b1
N
, . . . ,

ai
N

bj
N
, . . . ,

ar
N

bc
N

)

Theorem 3 It holds true that:

i) limN→+∞E[Hq(U, V )] = Hq(U) +Hq(V )− (q − 1)Hq(U)Hq(V );

ii) limN→+∞E[MIq(U, V )] = (q − 1)Hq(U)Hq(V );

iii) limN→+∞E[VIq(U, V )] = Hq(U) +Hq(V )− 2(q − 1)Hq(U)Hq(V ).

Proof E[Hq(U, V )] = 1
q−1

(
1 −

∑
ij E

[(
nij

N

)q])
and according to Lemma 2 for large N :

E[Hq(U, V )] ' 1
q−1

(
1−
∑

ij

(
ai
N
bj
N

)q)
= 1

q−1

(
1−
∑

i

(
ai
N

)q∑
j

(
bj
N

)q)
. If we add an subtract
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1−
∑

i

(
ai
N

)q
−
∑

j

(
bj
N

)q
in the parenthesis above:

E[Hq(U, V )] ' 1

q − 1

(
1−

∑
i

(ai
N

)q∑
j

( bj
N

)q
+ 1−

∑
i

(ai
N

)q
−
∑
j

( bj
N

)q
− 1 +

∑
i

(ai
N

)q
+
∑
j

( bj
N

)q)
=

1

q − 1

(
1−

∑
i

(ai
N

)q)
+

1

q − 1

(
1−

∑
j

( bj
N

)q)
+

1

q − 1

(
− 1−

∑
i

(ai
N

)q∑
j

( bj
N

)q
+
∑
i

(ai
N

)q
+
∑
j

( bj
N

)q)
= Hq(U) +Hq(V ) +

1

q − 1

((
1−

∑
i

(ai
N

)q)(∑
j

( bj
N

)q))
= Hq(U) +Hq(V )− (q − 1)Hq(U)Hq(V )

Point ii) and iii) follow from Equations (6) and (7).

Lemma 3 If S(U, V ) ∈ Lφ, when partitions U and V are random:

Var(S(U, V )) = β2
(
E
[(∑

ij

φij(nij)
)2]
−
(∑

ij

E[φij(nij)]
)2)

,

where

E
[(∑

ij

φij(nij)
)2]

is equal to

∑
ij

∑
nij

φ(nij)P (nij) ·

[
φij(nij) +

∑
i′ 6=i

∑
ñi′j

φi′j(ñi′j)P (ñi′j)+

+
∑
j′ 6=j

∑
ñij′

P (ñij′)

(
φij′(ñij′) +

∑
i′ 6=i

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)P (˜̃ni′j′)

)]
(13)

with nij ∼ Hyp(ai, bj , N), ñi′j ∼ Hyp(bj − nij , ai′ , N − ai), ñij′ ∼ Hyp(ai− nij , bj′ , N − bj),
˜̃ni′j′ ∼ Hyp(ai′ , bj′ − ñij′ , N − ai) hypergeometric random variables.

Proof The proof follows Theorem 1 proof in Romano et al. (2014). Using the properties of

the variance we can show that Var(S(U, V )) = β2Var(
∑

ij φij(nij)) = β2
(
E[(
∑

ij φij(nij))
2]−
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(
∑

ij E[φij(nij)])
2
)

. (E[
∑

ij φij(nij)])
2 = (

∑
ij E[φij(nij)])

2 can be computed using Eq.

(10). The first term in the sum is instead:

E[(
∑
ij

φij(nij))
2] =

∑
ij

∑
i′j′

E[φij(nij)φi′j′(ni′j′)] =
∑
ij

∑
i′j′

∑
nij

∑
ni′j′

φij(nij)φi′j′(ni′j′)P (nij , ni′j′)

We cannot find the exact form of the joint probability P (nij , ni′j′) thus we rewrite it as
P (nij)P (ni′j′ |nij) = P (nij)P (ñi′j′). The random variable nij is an hypergeometric distribu-
tion that simulates the experiment of sampling without replacement the ai objects in the set
ui from a total of N objects. Sampling one of the bj objects from vj is defined as a success:
nij ∼ Hyp(ai, bj , N). The random variable ñi′j′ has a different distribution depending on
the possible combinations of indexes i, i′, j, j′. Thus E[(

∑
ij φij(nij))

2] is equal to:∑
ij

∑
nij

∑
i′j′

∑
ni′j′

φij(nij)φi′j′(ni′j′)P (nij , ni′j′) =
∑
ij

∑
nij

φij(nij)P (nij)
∑
i′j′

∑
ñi′j′

φi′j′(ñi′j′)P (ñi′j′)

which, by taking care of all possible combinations of i, i′, j, j′, is equal to :

∑
ij

∑
nij

φij(nij)P (nij) ·

[ ∑
i′=i,j′=j

∑
ñij

φij(ñij)P (ñij) +
∑

i′ 6=i,j′=j

∑
ñi′j

φi′j(ñi′j)P (ñi′j)

(17)

+
∑

i′=i,j′ 6=j

∑
ñij′

φij′(ñij′)P (ñij′) +
∑

i′ 6=i,j′ 6=j

∑
ñi′j′

φi′j′(ñi′j′)P (ñi′j′)

]
(18)

Case 1: i′ = i ∧ j′ = j
P (ñij) = 1 if and only if ñij = nij and 0 otherwise. This case produces the first term

φij(nij) enclosed in square brackets.

Case 2: i′ = i ∧ j′ 6= j
In this case, the possible successes are the objects from the set vj′ . We have already

sampled nij objects and we are sampling from the whole set of objects excluding the set vj .
Thus, ñij′ ∼ Hyp(ai − nij , bj′ , N − bj).

Case 3: i′ 6= i ∧ j′ = j
This case is symmetric to the previous one where ai′ is now the possible number of

successes. Therefore ñi′j ∼ Hyp(bj − nij , ai′ , N − ai).

Case 4: i′ 6= i ∧ j′ 6= j
In order compute P (ñi′j′), we have to impose a further condition:

P (ñi′j′) =
∑
ñij′

P (ñi′j′ |ñij′)P (ñij′) =
∑
ñij′

P (˜̃ni′j′)P (ñij′)
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We are considering sampling the ai′ objects in ui′ from the whole set of objects excluding
the ai objects from ui. Just knowing that nij objects have already been sampled from ui
does not allow us to know how many objects from vj′ have also been sampled. If we know
that nij′ is the number of objects sampled from vj′ , we know there are bj′ − nij′ possible
successes and thus ñi′j′ |ñij′ = ˜̃ni′j′ ∼ Hyp(ai′ , bj′ − ñij′ , N − ai). So the last two terms in
Eq. (18) can be put together:∑

i′=i,j′ 6=j

∑
ñij′

φij′(ñij′)P (ñij′) +
∑

i′ 6=i,j′ 6=j

∑
ñi′j′

φi′j′(ñi′j′)P (ñi′j′)

=
∑
j′ 6=j

∑
ñij′

φij′(ñij′)P (ñij′) +
∑

i′ 6=i,j′ 6=j

∑
ñi′j′

φi′j′(ñi′j′)
∑
ñij′

P (ñi′j′ |ñij′)P (ñij′)

=
∑
j′ 6=j

∑
ñij′

φij′(ñij′)P (ñij′) +
∑

i′ 6=i,j′ 6=j

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)
∑
ñij′

P (˜̃ni′j′)P (ñij′)

=
∑
j′ 6=j

∑
ñij′

P (ñij′)φij′(ñij′) +
∑
j′ 6=j

∑
ñij′

P (ñij′)
∑
i′ 6=i

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)P (˜̃ni′j′)

=
∑
j′ 6=j

∑
ñij′

P (ñij′)

(
φij′(ñij′) +

∑
i′ 6=i

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)P (˜̃ni′j′)

)

By putting everything together we get that E[(
∑

ij φij(nij))
2] is equal to:∑

ij

∑
nij

φ(nij)P (nij) ·

[
φij(nij) +

∑
i′ 6=i

∑
ñi′j

φi′j(ñi′j)P (ñi′j)+

+
∑
j′ 6=j

∑
ñij′

P (ñij′)

(
φij′(ñij′) +

∑
i′ 6=i

∑
˜̃ni′j′

φi′j′(˜̃ni′j′)P (˜̃ni′j′)

)]

Theorem 5 Using Eqs. (10) and (13) with φij(·) = (·)q, when the partitions U and V are
random:

i) Var(Hq(U, V )) = 1
(q−1)2N2q

(
E[(
∑

ij n
q
ij)

2]− (
∑

ij E[nqij ])
2
)

;

ii) Var(MIq(U, V )) = Var(Hq(U, V ))

iii) Var(VIq(U, V )) = 4Var(Hq(U, V ))

Proof The results follow from Lemma 3, the hypothesis of fixed marginals and properties
of the variance.

Theorem 6 Using Eqs. (10) and (13) with φij(·) = (·)q, the standardized MIq(U, V ) and
the standardized VIq(U, V ) are:

SMIq(U, V ) = SVIq(U, V ) =

∑
ij n

q
ij −

∑
ij E[nqij ]√

E[(
∑

ij n
q
ij)

2]− (
∑

ij E[nqij ])
2

(15)
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Proof
For SMIq: the numerator is equal toHq(U, V )−E[Hq(U, V )] = 1

(q−1)Nq

(∑
ij n

q
ij−
∑

i,j E[nqij ]
)

.

According Theorem 5, the denominator is instead:√
Var(MIq(U, V )) =

√
Var(Hq(U, V )) =

1

(q − 1)N q

√
E[(
∑
ij

nqij)
2]− (E[

∑
ij

nqij ])
2.

For SVIq: the numerator is equal to 2Hq(U, V ) − 2E[Hq(U, V )] = 2
(q−1)Nq

(∑
ij n

q
ij −∑

i,j E[nqij ]
)

. According Theorem 5, the denominator is instead:√
Var(VIq(U, V )) =

√
4Var(Hq(U, V )) =

2

(q − 1)N q

√
E[(
∑
ij

nqij)
2]− (E[

∑
ij

nqij ])
2.

Therefore, SMIq and SVIq are equivalent.

Corollary 2 It holds true that:
i) limq→1 SMIq = limq→1 SVIq = SMI = SVI = SG with Shannon entropy;
ii) SMI2 = SVI2 = SRI.

Proof Point i) follows from the limit of the q-entropy when q → 1 and the linear relation
of G-statistic to MI: G = 2NMI. Point ii) follows from:

SVI2 =
E[VI2]−VI2√

Var(VI2)
=

N−1
N (RI− E[RI])
N−1
N

√
Var(RI)

= SRI

Proposition 3 The computational complexity of SMIq is O(N3c ·max {c, r}).

Proof Each summation in Eq. (13) can be bounded above by the maximum value of the
cell marginals and each sum can be done in constant time. The last summation in Eq. (13)
is:

c∑
j′=1

max {ai,bj′}∑
ñij′=0

r∑
i′=1

max {ai′ ,bj′}∑
˜̃ni′j′=0

O(1) =
c∑

j′=1

max {ai,bj′}∑
ñij′=0

r∑
i′=1

O(max {ai′ , bj′})

=
c∑

j′=1

max {ai,bj′}∑
ñij′=0

O(max {N, rbj′})

=
c∑

j′=1

O(max {aiN, airbj′ , bj′N, rb2j′})

= O(max {caiN, airN, rN2})
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The above term is thus the computational complexity of the inner loop. Using the same
machinery one can prove that:

c∑
j=1

r∑
i=1

max {ai,bj}∑
nij=0

O(max {caiN, airN, rN2}) = O(max {c2N3, rcN3}) = O(N3c ·max {c, r})

Proposition 4 The p-value associated to the test for independence between U and V using
MIq(U, V ) is smaller than: 1

1+(SMIq(U,V ))2
.

Proof Let MI0q be the random variable under the null hypothesis of independence between
partitions associated to the test statistic MIq(U, V ). The p-value is defined as:

p-value = P
(

MI0q ≥ MIq(U, V )
)

= P
(

MI0q − E[MIq(U, V )] ≥ MIq(U, V )− E[MIq(U, V )]
)

= P

(
MI0q − E[MIq(U, V )]√

Var(MIq(U, V ))
≥ MIq(U, V )− E[MIq(U, V )]√

Var(MIq(U, V ))

)

= P

(
MI0q − E[MIq(U, V )]√

Var(MIq(U, V ))
≥ SMIq(U, V )

)

Let Z be the standardized random variable
MI0q−E[MIq(U,V )]√

Var(MIq(U,V ))
, then using the one side Cheby-

shev’s inequality also known as the Cantelli’s inequality (Ross, 2012):

p-value = P (Z ≥ SMIq(U, V )) <
1

1 +
(

SMIq(U, V )
)2

Lemma 4 If S(U, V ) ∈ Nφ, then limN→+∞Var(S(U, V )) = 0.

Proof Let X = (X1, . . . , Xrc) = (n11
N , . . . ,

nij

N , . . . , nrc
N ) be a vector of rc random variables

where nij is a hypergeometric distribution with the marginals as parameters: ai, bj and N .
Using the Taylor approximation (Ang and Tang, 2006) of S(U, V ) = φ(X), it is possible to
show that:

Var(φ(X)) '
rc∑
t=1

rc∑
s=1

Cov(Xt, Xs)
∂φ

∂Xt

∂φ

∂Xs
+ . . .

Using the Cauchy-Schwartz inequality we have that |Cov(Xt, Xs)| ≤
√

Var(Xt)Var(Xs).
Each Xt and Xs is equal to

nij

N for some indexes i and j. The variance of each Xt and Xs is
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therefore equal to Var(
nij

N ) = 1
N2

aibj
N

N−ai
N

N−bj
N−1 . When the number of records is large also

the marginals increase: N → +∞⇒ ai → +∞, and bj → +∞ ∀i, j. However because of the

permutation model, all the fractions ai
N and

bj
N stay constant ∀i, j. Therefore, at the limit

of large N , the variance of
nij

N tends to 0: Var
(
nij

N

)
= 1

N
ai
N
bj
N

(
1− ai

N

)(
1 + 1

N−1 −
bj
N

)
→ 0

and thus Var(φ(X)) tends to 0.

Theorem 7 It holds true that:

lim
N→+∞

Var(Hq(U, V )) = lim
N→+∞

Var(MIq(U, V )) = lim
N→+∞

Var(VIq(U, V )) = 0 (16)

Proof Trivially follows from Lemma 4.
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