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Abstract

We propose a simple framework for estimating derivatives without fitting the regression
function in nonparametric regression. Unlike most existing methods that use the symmet-
ric difference quotients, our method is constructed as a linear combination of observations.
It is hence very flexible and applicable to both interior and boundary points, including
most existing methods as special cases of ours. Within this framework, we define the
variance-minimizing estimators for any order derivative of the regression function with a
fixed bias-reduction level. For the equidistant design, we derive the asymptotic variance
and bias of these estimators. We also show that our new method will, for the first time,
achieve the asymptotically optimal convergence rate for difference-based estimators. Fi-
nally, we provide an effective criterion for selection of tuning parameters and demonstrate
the usefulness of the proposed method through extensive simulation studies of the first-
and second-order derivative estimators.

Keywords: Linear combination, Nonparametric derivative estimation, Nonparametric
regression, Optimal sequence, Taylor expansion

1. Introduction

Consider the following nonparametric regression model:

Yi = m(xi) + εi, 1 ≤ i ≤ n, (1)

where xi are the design points satisfying 0 ≤ x1 < · · · < xn ≤ 1, m(x) is the regression
function, Yi are the observations, and εi are independent and identically distributed random
errors with E(εi) = 0 and var(εi) = σ2 <∞. Estimation of m(x) is an important problem
in nonparametric regression and has received sustained attention in the literature. Such
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methods include, for example, kernel smoothing (Härdle, 1990), spline smoothing (Wahba,
1990), and local polynomial regression (Fan and Gijbels, 1996). It has been noted that the
estimation of the first- or higher-order derivatives of m(x) is also important for practical
implementations including, but not limited to, the modeling of human growth data (Ramsay
and Silverman, 2002), kidney function for a lupus nephritis patient (Ramsay, 2006), and
Raman spectra of bulk materials (Charnigo et al., 2011). Derivative estimation is also
needed in nonparametric regression to construct confidence intervals for regression functions
(Eubank and Speckman, 1993), to select kernel bandwidths (Ruppert et al., 1995), and to
compare regression curves (Park and Kang, 2008).

Most existing methods for pth-order derivative estimation can be expressed as a weighted
average of the responses,

m̂(p)(x) =

n∑
i=1

wi(x)Yi,

where wi(x) are weights assigned to each observation Yi. These estimators can be separated
into two classes by their ability to directly or indirectly assess the weights, wi(x). In the
indirect methods, the regression function is initially estimated as m̂(x) =

∑n
i=1 ci(x)Yi by

the aforementioned nonparametric smoothing techniques, where ci(x) are smooth functions.
Then, wi(x) are estimated as dpci(x)/dxp (Gasser and Müller, 1984; Müller et al., 1987;
Fan and Gijbels, 1995; Zhou and Wolfe, 2000; Boente and Rodriguez, 2006; Cao, 2014).
We note, however, that the optimal bandwidths may differ for estimating the regression
function and for estimating the derivatives, respectively. That is, a good estimate of the
regression function may not guarantee the generation of good estimates of the derivatives.

Direct methods lead to the second class, which estimate the derivatives directly with-
out fitting the regression function. The two key steps for such methods are constructing
point-wise estimates for the derivatives of each design point and determining the amount
of smoothing or the bandwidth. To select the bandwidth, one may refer to some classical
methods in Müller et al. (1987), Härdle (1990), Fan and Gijbels (1996), Opsomer et al.
(2001), Lahiri (2003), and Kim et al. (2009), among others. In contrast, little attention has
been paid to the improvement of the point-wise estimation of the derivatives. One simple
point-wise estimator for derivatives uses difference quotients. This method is, however, very
noisy. For example, the variance of the first-order difference quotient (Yi−Yi−1)/(xi−xi−1)
is of order O(n2). Charnigo et al. (2011) proposed a variance-reducing linear combination
of symmetric difference quotients, called empirical derivatives, and applied it to their gen-
eralized Cp criterion for tuning parameter selection. De Brabanter et al. (2013) established
the L1 and L2 convergence rates for the empirical derivatives. Specifically, they defined the
empirical derivatives as

Y
(L)
i =

kL∑
j=1

wj,L

(
Y

(L−1)
i+j − Y (L−1)

i−j
xi+j − xi−j

)
, L = 1, . . . p,

where Y
(L)
i denotes the estimated Lth-order derivative at xi, Y

(0)
i = Yi and wj,L are the

associated weights. When L = 1, wj,1 are chosen as the optimal weights that minimize the
estimation variance. For L ≥ 2, wj,L are determined intuitively instead of by optimizing
the estimation variance. As a consequence, their higher-order empirical derivatives may not
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be optimally defined. Another attempt was made recently by Wang and Lin (2015). They
estimated the derivative as the intercept of a linear regression model through the weighted
least squares method. They further showed that their proposed estimators achieve better
control of the estimation bias, which makes them superior to empirical derivatives when
the signal-to-noise ratio is large. Finally, it is noteworthy that their method only applies to
equidistant designs and hence the practical applications are somewhat limited.

In this paper, we propose a simple framework for estimating derivatives in model (1)
without fitting the regression function. Our method does not rely on symmetric difference
quotients; hence, it is more flexible than existing methods. Within this framework, we
define the variance-minimizing estimators for any order derivative of m(x) with a fixed
bias-reduction level. For the equidistant design, we derive the asymptotic variance and bias
of these estimators. We also show that the proposed estimators perform well on both interior
and boundary points and, more importantly, that they achieve the optimal convergence rate
for the mean squared error (MSE).

The rest of this paper is organized as follows. In Section 2, we propose a new framework
for first-order derivative estimation and show that most existing estimators are special cases
of ours. We also investigate the theoretical properties of the proposed estimator, including
the optimal sequence, the asymptotic variance and bias, the point-wise consistency, and the
boundary behavior. In Section 3, we extend the proposed method to higher-order derivative
estimation and provide an effective criterion for the selection of tuning parameters. We
then report extensive simulation studies in Section 4 that validate the proposed method.
We conclude the paper with a discussion in Section 5. Technical proofs of the theoretical
results are given in the Appendix.

2. First-order derivative estimation

In this section, we propose a new framework for estimating derivatives in nonparametric
regression. Within this framework, we define the optimal estimator for the first-order deriva-
tive by minimizing the estimation variance. Theoretical results including the asymptotic
variance and bias, and point-wise consistency are derived for the proposed optimal estima-
tors under the equidistant design. We also investigate the performance of the estimators on
the boundaries.

2.1 New framework

Recall that most existing methods are weighted average of symmetric difference quotients,
which limits their implementation to some extent. All these estimators can be expressed as
a linear combination of the observations for fixed design points. To proceed, we define

DYi =

r∑
k=0

dkYi+k, 1 ≤ i ≤ n− r,

where (d0, . . . , dr) is a sequence of real numbers, and r is referred to as the order of the
sequence. Assuming that m(x) is a smooth enough function, we have the following Taylor
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expansion at xi+l for each m(xi+k),

m(xi+k) = m(xi+l) +
∞∑
j=1

(xi+k − xi+l)j

j!
m(j)(xi+l), 0 ≤ l ≤ r.

Note that xi+l can be any design point within [xi, xi+r], which frees our method from the
symmetric form restriction. If we further assume that xi are equidistant, then xi = i/n, i =
1, . . . , n. Define Cj,l =

∑r
k=0 dk(k−l)j/(njj!), j = 0, 1, . . . and l = 0, . . . , r. The expectation

of DYi can be expressed as

E(DYi) =
∞∑
j=0

Cj,lm
(j)(xi+l), 1 ≤ i ≤ n− r. (2)

To estimate the first-order derivative at xi+l with DYi, we let C0,l = 0 and C1,l = 1 so that

E(DYi) = m′(xi+l) +
∞∑
j=2

Cj,lm
(j)(xi+l),

where the second term on the right side is the estimation bias. When the regression function
is oscillating around xi+l, we can alter our model by controlling the estimation bias at a
higher level. Specifically, if we let

C1,l = 1 and Cj,l = 0, 0 ≤ j 6= 1 ≤ q − 1, (3)

then

E(DYi) = m′(xi+l) +
∞∑
j=q

Cj,lm
(j)(xi+l).

When q = 2, condition (3) reduces to C1,l = 1 and C0,l = 0. When q ≥ 3, condition (3)
eliminates the estimation bias up to order q − 1.

2.2 Theoretical results

If we use a sequence with an order r ≥ q, an infinite number of choices satisfying (3)
is available. Among them, we choose the one(s) minimizing the estimation variance,
var(DYi) = σ2

∑r
k=0 d

2
k, which leads to the following optimization problem,

(d0, . . . , dr)1,q = argmin
(d0,...,dr)∈Rr+1

r∑
k=0

d2k, s.t. condition (3) holds.

We denote this variance-minimizing sequence as (d0, . . . , dr)1,q. For simplicity of notation,
the dependence of dk on l is suppressed. In addition, we introduce the following notation:

I
(l)
i =

∑r
k=0(k − l)i, l = 0, . . . , r and i = 0, 1, . . . ;

U (l) denotes a q × q matrix with u
(l)
ij = I

(l)
i+j−2;
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V (l) = (U (l))−1 is the inverse matrix of U (l).

Then, we present the theoretical results for (d0, . . . , dr)1,q in the following proposition.

Proposition 1 Assume that model (1) holds with equidistant design and m(x) has a finite
qth-order derivative on [0, 1]. For 1 ≤ i ≤ n − r and 0 ≤ l ≤ r, the unique variance-
minimizing sequence is

(dk)1,q = n

q−1∑
j=0

V
(l)
(j+1,2)(k − l)

j , k = 0, . . . , r,

for estimating m′(xi+l) with an order of accuracy up to m(q)(xi+l), q ≥ 2. Here, V
(l)
(i,j)

denotes the element in the ith row and the jth column of the matrix V (l).
Proof: see Appendix A.

When q is fixed, the optimal sequence depends only on l, which makes it quite convenient
for practical implementation. When r is even and l = r/2, we get the symmetric form used
in De Brabanter et al. (2013) and Wang and Lin (2015). For this case, it is easy to verify
that dk = −dr−k, which eliminates all the even-order derivatives in (2). The sequence is
derived for the equidistant design on [0, 1]. To extend the result to equidistant designs on
an arbitrary interval, [a, b] ⊂ R, we can simply use dk/(b − a) instead. We treat the DYi
built on (d0, . . . , dr)1,q as the estimator for the first-order derivative with a bias-reduction
level of q, denoted by m̂′q(xi+l).

Theorem 1 Assume that model (1) holds with equidistant design, m(x) has a finite qth-
order derivative on [0, 1] and r = o(n), r → ∞. For 1 ≤ i ≤ n − r and 0 ≤ l ≤ r, we
have

var[m̂′q(xi+l)] = n2V
(l)
(2,2)σ

2 = O

(
n2

r3

)
,

bias[m̂′q(xi+l)] =
1

q!nq−1

q−1∑
j=0

V
(l)
(j+1,2)I

(l)
j+qm

(q)(xi+l) + o

(
rq−1

nq−1

)
.

Proof: see Appendix B.

For a larger q, the order of estimation bias is indeed reduced as expected, and the
estimation variance surprisingly retains the same order at the same time. Assuming r = nλ

and 2/3 < λ < 1, we can establish the point-wise consistency of our estimator, m̂′q(xi+l)
P−→

m′(xi+l), where “
P−→” means convergence in probability.

Corollary 1 Assume that the conditions in Theorem 1 hold. When r is even and l = r/2,

m̂′2v(xi+r/2) = m̂′2v+1(xi+r/2), v = 1, 2, . . . ,

[
q − 1

2

]
,

where [x] denotes the greatest integer less than or equal to x.
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This means that, when we employ a symmetric form for our estimator, the optimal
sequence is the same for q = 2v and q = 2v+ 1. In other words, the symmetric form further
reduces the order of estimation bias without any increase in the estimation variance. Hence,
it is natural to use the symmetric form (r is even and l = r/2) for the interior points,
{xi : 1 + r/2 ≤ i ≤ n − r/2}, when the design points are equidistant. Also, we can show
that the two existing estimators for the first-order derivative (De Brabanter et al., 2013;
Wang and Lin, 2015) are special cases of our method.

When q = 2 or q = 3, we get the same sequence as

(dk)1,2 = (dk)1,3 =
6n(2k − r)

r(r + 1)(r + 2)
, k = 0, . . . , r.

This results in the empirical estimator in De Brabanter et al. (2013), denoted by m̂′emp.
Assuming the regression function has a finite third-order derivative on [0, 1], the estimation
variance and bias are respectively

var[m̂′2(xi+r/2)] =
12n2σ2

r(r + 1)(r + 2)
and bias[m̂′2(xi+r/2)] =

r2

40n2
m(3)(xi+r/2) + o

(
r2

n2

)
.

When q = 4 or q = 5, we get the same sequence as

(dk)1,4 = (dk)1,5 =
n
[
I
(r/2)
6 (k − r

2)− I(r/2)4 (k − r
2)3
]

I
(r/2)
2 I

(r/2)
6 − I(r/2)4

2 , k = 0, . . . , r.

This results in the least squares estimator in Wang and Lin (2015), denoted by m̂′lse. Within
our framework, it is clear that the least squares estimator can be regarded as a bias-reduction
modification of the empirical estimator.

Figure 1 presents an example of m′q(xi) with different levels of control for the estimation

bias (q = 3 , 5 and 7). We follow the regression function m(x) =
√
x(1− x) · sin{2.1π/(x+

0.05)} for model (1) from De Brabanter et al. (2013) and Wang and Lin (2015). Five
hundred design points are equidistant on [0.25, 1] and the random errors are generated from
a Gaussian distribution, N(0, 0.12). Sequence orders are chosen as {50, 100}. We observe
that the estimation curves are smoother for smaller q, and the bias in oscillating areas
decreases significantly for larger q. These results are consistent with our theoretical results.
With various levels of bias control, we may achieve a better compromise in the trade-off
between the estimation variance and bias.

2.3 Behavior on the boundaries

If we use a sequence with order r, then the boundary region will be {xi : 1 ≤ i ≤ [r/2] or n−
[r/2] + 1 ≤ i ≤ n.}. Within our framework, we have two types of estimators for estimating
derivatives for the boundary area. One choice is to use a sequence with smaller order, so
that we can still use the symmetric estimator as suggested for the interior points. This
solution is also suggested by both De Brabanter et al. (2013) and Wang and Lin (2015).
The other is to hold the sequence order while using an asymmetric form of the estimator
instead.
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Figure 1: First-order derivative estimates with different levels of bias reduction. Red lines
(dotted): q = 3; green lines (long dash): q = 5; blue lines (dot dash): q = 7 and
black lines (solid): the true first-order derivative.

For the symmetric estimator, we can choose an even-order t satisfying 1 ≤ t/2 ≤
min (i− 1, n− i, [r/2]). By Theorem 1, we have

var[m̂′q(xi)] = O

(
n2

t3

)
and bias[m̂′q(xi)] = O

(
tq−1

nq−1

)
,

for 2 ≤ i ≤ [r/2] or n − [r/2] + 1 ≤ i ≤ n − 1. The closer xi locates to the endpoints,
the smaller the largest order of the chosen sequence, which means that the information we
can incorporate into the estimator becomes very limited. As a consequence, the estimation
variance will eventually reach an order of O(n2), which is rather noisy.

The asymmetric estimator does not require the estimated point to be located at the
middle of the interval. We can still use a relatively large sequence order to include as much
information as included in the interior points. The theoretical results were provided in
Theorem 1:

var[m̂′q(xi)] = O

(
n2

r3

)
and bias[m̂′q(xi)] = O

(
rq−1

nq−1

)
.

With a proper choice of r, we can still get a consistent estimate for the derivatives at the
boundary region. Another advantage of this asymmetric form is that it is applicable to all
the boundary points including x1 and xn, which can never be handled by the symmetric-
form estimators.

It is noteworthy that Wang and Lin (2015) also proposed left-side and right-side weighted
least squares estimators for the boundary points. Their estimators are, however, two special
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cases of our asymmetric estimator with q = 2 and l = 0 (right-side) or l = r (left-side). The
estimation bias for m̂′2(xi+l) is

bias[m̂′2(xi+l)] =
r − 2l

2n
m′′(xi+l) + o

( r
n

)
.

To minimize the estimation bias on these boundary points, we recommend the following
criterion:

m̂′2(xi) =

{
DY1 1 ≤ i ≤ [r/2],
DYn−r n− [r/2] + 1 ≤ i ≤ n.

Then, the smallest absolute estimation bias can be simply derived as

|E[m̂′2(xi)]−m′(xi)| =
r − 2min(i− 1, n− i)

2n
|m′′(xi)|+ o

( r
n

)
.

In summary, the asymmetric estimator generates a smaller variance, while its estimation
bias is of a higher order. Consequently, the sequence order should be selected to achieve
the best trade-off between the estimation variance and bias. In view of this, we recommend
using the asymmetric estimator when the regression function is flat at the boundary region
or when σ2 is large; otherwise, the symmetric form should be employed.

3. Higher-order derivative estimation

In this section, we extend our method and propose higher-order derivative estimators for
model (1). We further demonstrate that the new estimators possess the optimal estimation
variance, which is not achieved by the two aforementioned methods (De Brabanter et al.,
2013; Wang and Lin, 2015). Our new estimators also achieve the optimal convergence rate
for MSE.

3.1 Theoretical results

To define an estimator for m(p)(xi+l) with a bias-reduction level up to m(q)(xi+l), we con-
struct the new conditions on the coefficients as

Cp,l = 1 and Cj,l = 0, 0 ≤ j 6= p ≤ q − 1. (4)

Then, the optimal sequence can be derived as the solution(s) of the following optimization
problem:

(d0, . . . , dr)p,q = argmin
(d0,...,dr)∈Rr+1

r∑
k=0

d2k, s.t. condition (4) holds.

We present the result for (d0, . . . , dr)p,q in the following proposition.

Proposition 2 Assume that model (1) holds with equidistant design and m(x) has a finite
qth-order derivative on [0, 1]. For 1 ≤ i ≤ n − r and 0 ≤ l ≤ r, the unique variance
minimizing sequence is

(dk)p,q = p!np
q−1∑
j=0

V
(l)
(j+1,p+1)(k − l)

j , k = 0, . . . , r,
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for estimating m(p)(xi+l) with an order of accuracy up to m(q)(xi+l), q ≥ p+ 1.
Proof: see Appendix C.

To extend the result to equidistant designs on an arbitrary interval, [a, b] ⊂ R, we
can simply use (dk)p,q/(b − a)p instead. We treat the DYi built on (d0, . . . , dr)p,q as the
estimator for the pth-order derivative with a bias-reduction level up to m(q)(xi+l), denoted

as m̂
(p)
q (xi+l).

Theorem 2 Assume that model (1) holds with equidistant design, m(x) has a finite qth-
order derivative on [0, 1] and r = o(n), r → ∞. For 1 ≤ i ≤ n − r and 0 ≤ l ≤ r, we
have

var[m̂(p)
q (xi+l)] = (p!)2n2pV

(l)
(p+1,p+1)σ

2 = O

(
n2p

r2p+1

)
,

bias[m̂(p)
q (xi+l)] =

p!

q!nq−p

q−1∑
j=0

V
(l)
(j+1,p+1)I

(l)
j+qm

(q)(xi+l) + o

(
rq−p

nq−p

)
.

Proof: see Appendix D.

For a fixed p and an increasing q, we can reduce the estimation bias to a lower order
while keeping the order of variance unchanged. Whenever we keep the difference between
q and p constant, the convergence rate of the bias is preserved for different p. When r is
an even number and l = r/2, we can derive that (dk)p,q = (−1)p(dn−k)p,q. Consequently in
this case, the optimal sequence remains the same when we increase q from p + 2ν − 1 to

p + 2ν, ν = 1, 2, . . . , which means m̂
(p)
p+2ν−1(xi+r/2) = m̂

(p)
p+2ν(xi+r/2). Hence, for this kind

of estimator, the symmetric form is also the most favorable choice for the interior points.
The optimal MSE of our estimator is of order O(n−2(q−p)/(2q+1)), which achieves the

asymptotically optimal rate established by Stone (1980). For comparison, we note that
the optimal MSE of the empirical estimator in De Brabanter et al. (2013) is of order
O(n−4/(2p+5)), that is, their estimator is of the optimal order only when q = p + 2. While
for the least squares estimator in Wang and Lin (2015), they provided asymptotic results
only for the first- and second-order derivative estimator. Their optimal MSE is of order
O(n−8/11) for p = 1 and O(n−8/13) for p = 2, which corresponds with two special cases, i.e.,
when (p, q) = (1, 5) or (2, 6). From this point of view, our method has greatly improved
the literature in derivative estimation and it achieves the optimal rate of MSE for any (p, q)
from Theorem 2.

As mentioned at the beginning of this section, the newly defined estimator is optimal
for the estimation variance, which is superior to existing estimators. In what follows,
we illustrate this advantage in detail with the second-order derivative estimator, which
is usually of greatest interest after the first-order derivative in practice. A similar analysis
can be made for other higher-order derivative estimators. For the estimator without bias-
control, e.g. m̂′′4, we derive the following results:

var[m̂′′4(xi+r/2)] =
4n4σ2I

(r/2)
0

I
(r/2)
0 I

(r/2)
4 − I(r/2)2

2 ,

bias[m̂′′4(xi+r/2)] =
r2

14n2
m(4)(xi+r/2) + o

(
r2

n2

)
.
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Figure 2: The ratio of estimation variance is plotted against the sequence order, r. Set-
ting: n = 500 and r is chosen as an even integer ranging from 20 to 200. (a),
var(m̂′′emp)/var(m̂′′4); (b), var(m̂′′lse)/var(m̂′′6).

The corresponding method is m̂′′emp in De Brabanter et al. (2013) with regard to the accurate
level. Instead of minimizing the estimation variance, they intuitively choose the weight
sequences for higher-order derivative estimators, which makes it quite difficult to derive
analytical asymptotic results. Hence, we make a finite sample comparison of the variance
of the two estimators. We set n = 500 and calculate the corresponding sequences for m̂′′4
with an even order r ranging from 20 to 200 and l = r/2. For m̂′′emp, we choose (k1, k2),
which achieves the smallest estimation variance from {(k1, k2) : k1 ≤ k2, k1 + k2 = r/2}.
We do not need a specified form of the regression function, since it is not related with the
estimation variance. We illustrate the ratio, var(m̂′′emp)/var(m̂′′4), in the left panel of Figure
2. Obviously, the new estimator improves the estimation variance significantly, which results
in a smaller MSE for smooth regression functions.

A similar comparison is carried out between m̂′′lse and m̂′′6 under the same settings,
and the ratio of var(m̂′′lse)/var(m̂′′6) is presented in the right panel of Figure 2. Wang
and Lin (2015) built a linear model with correlated regressors but employed the weighted
least squares regression, rather than the generalized least squares technique, to derive the
estimator. It can be shown that our method is equivalent with the generalized least squares
estimator for their model. As expected, we find that our proposed estimator performs slight-
ly better in terms of the finite sample than the least squares estimator. In addition their
asymptotic variances and biases are equivalent for the first-order term. For the boundary
points, our second-order estimator also maintains the same advantages over the existing
estimators as discussed in Section 2.2 for the first-order estimators.
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3.2 Tuning parameter selection

As shown in Figure 1, the order, r, and the bias-reduction level, q, are both critical to the
proposed estimators. For practical implementation, (r, q) should be chosen to achieve a
better trade-off between the estimation variance and bias.

By Theorem 2, the approximated MSE of m̂
(p)
q (xi+l) is

MSE[m̂(p)
q (xi+l)] ' (p!)2n2pV

(l)
(p+1,p+1)σ

2 +

 p!

q!nq−p

q−1∑
j=0

V
(l)
(j+1,p+1)I

(l)
j+qm

(q)(xi+l)

2

.

We define the averaged mean squared error (AMSE) as a measure of the goodness of fit for
all the design points,

AMSE(m̂(p)
q ) =

1

n

n∑
i=1

MSE[m̂(p)
q (xi)].

A uniform sequence is preferred for the estimate at most points (all the interior points
for example) over different sequences for each design point. Hence, we can choose the
parameters (r, q) minimizing the AMSE. To achieve this, we replace the unknown quantities,
σ2 and m(q)(xi+l), with their consistent estimates. The error variance can be estimated by
the method in Tong and Wang (2005) and Tong et al. (2013) and m(q)(xi) can be estimated
by the local polynomial regression of order q + 2. For the high-order derivatives at the
boundary points, we recommend replacing the AMSE for all the points with the following
adjusted form:

AMSEadj(m̂
(p)
q ) =

1

n− r

n−r/2∑
i=1+r/2

MSE[m̂(p)
q (xi)] ' B1σ

2 +
B2

n− r

n−r/2∑
i=1+r/2

[m(q)(xi)]
2, (5)

where B1 = (p!)2n2pV
(r/2)
(p+1,p+1) and B2 =

[
p!

q!nq−p

∑q−1
j=0 V

(r/2)
(j+1,p+1)I

(r/2)
j+q

]2
. Given all the

parameters for a specific problem, B1 and B2 are available quantities. The adjusted AMSE
includes only derivatives at the interior points that share the identical difference sequence

for an even r and l = r/2. Another advantage is that we only need V (r/2) and I
(r/2)
j+q instead

of V (l) and I
(l)
j+q for l = 0, . . . , r, which greatly reduces the computation time.

For the tuning parameter space of the sequence order, we recommend r ∈ O = {2i : 1 ≤
i ≤ k0}, where k0 < [n/4], to keep a symmetric form (l = r/2) for the interior points and to
make sure that the number of boundary points will be less than that of the interior points.

For the bias-reduction level of m̂
(p)
q , we consider q ∈ Q = {p+ 2ν : ν = 1, 2, . . . , ν0}, where

p+ 2ν0 is the highest level chosen by users. Only even differences are considered for q − p,
since m̂

(p)
p+2ν0−1 = m̂

(p)
p+2ν0

when we use the recommended symmetric form.

4. Simulation study

In this section, we conduct simulation studies to assess the finite sample performance of

the proposed estimators, m̂
(p)
q , and make comparisons with the empirical estimator, m̂

(p)
emp,

11
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in De Brabanter et al. (2013) and the least squares estimator, m̂
(p)
lse , in Wang and Lin

(2015). We apply the three methods to both interior (Int) and boundary (Bd) areas, where
Int = {xi : k0 + 1 ≤ i ≤ n − k0} and Bd = {xi : 1 ≤ i ≤ k0 or n − k0 + 1 ≤ i ≤ n}.
Throughout the simulation, we set k0 = [n/10], which means that we treat ten percent of
the design points on both sides of the interval as boundary points. We also tried some other
proportions and the results were similar. For the interior part, we keep the symmetric form

for m̂
(p)
q by setting r as an even number and l = r/2, as suggested in the theoretical results.

For the boundary part, we apply the following criterion for the proposed estimators:

m̂(p)
q (xi) =

{
DY1 1 ≤ i ≤ [r/2],
DYn−r n− [r/2] + 1 ≤ i ≤ n.

The modified version of m̂
(p)
emp in De Brabanter et al. (2013) and the one-side weighted

least squares estimators in Wang and Lin (2015) are investigated for the empirical and
least squares estimators, respectively on the boundary points. We consider estimators for
both first- and second-order derivatives, which are of most interest in practice. Similar to
De Brabanter et al. (2013) and Wang and Lin (2015), the mean absolute error (MAE) is
used as a measure of estimation accuracy. It is defined as follows:

MAE =
1

#A
∑
xi∈A
|m̂(p)(xi)−m(p)(xi)|,

where A = Int or Bd and #A denotes the number of elements in set A.

We consider the following regression function,

m(x) = 5 sin(wπx),

with ω = 1, 2, 4 corresponding to different levels of oscillations. The n = 100 and 500
sample sizes are investigated. We set the design points as xi = i/n and generate the
random errors, εi, independently from N(0, σ2). For each regression function, we consider
σ = 0.1, 0.5 and 2 to capture the small, moderate and large variances, respectively. In total,
we have 18 combinations of simulation settings. Following the definitions of Int and Bd,
we select the sequence order r from O = {2i : 1 ≤ i ≤ k0}. We choose the bias-reduction
level, q, from Q = {p + 2, p + 4, p + 6}, with q = p + 2 and q = p + 4 corresponding to

m̂
(p)
emp and m̂

(p)
lse , respectively, and q = p + 6 as an even higher level. We denote by m̂

(p)
opt

the estimator with the selected tuning parameters. For m̂
(p)
emp and m̂

(p)
lse , the parameter k

is chosen from {i : 1 ≤ i ≤ k0}. We investigate two scenarios (for the tuning parameters
selection criterion): oracle and plug-in (see below). For each run of the simulation, we
compute the MAE of the estimators at both Int and Bd and repeat the procedure 1000
times for each setting. The simulation results for w = 2 are reported as box-plot figures.
Other results are provided in the supplementary materials.

Oracle parameters

Oracle parameters are selected by assuming that we know the true regression (deriva-
tive) function, the purpose of which is to illustrate the possible best performance of each

12
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estimator. Specifically for m̂
(p)
q , the pair of tuning parameters is chosen as

(r, q)opt = argmin
r∈O,q∈Q

(
MAE(m̂(p)

q )
)
.

The bandwidths of m̂
(p)
emp and m̂

(p)
lse are selected through a similar procedure.

For the first-order derivative, we investigate m̂′opt, m̂
′
emp and m̂′lse and report the sim-

ulation results in Figure 3. On the interior points, m̂′opt always possesses the same MAE
as the smaller one of m̂′emp and m̂′lse , due to the fact that m̂′emp and m̂′lse are two special
cases of m̂′q in this area. On the boundary points, m̂′opt is uniformly better than the other
two methods. To further explore the reason for the boundary behavior, we use an example
from De Brabanter et al. (2013) and Wang and Lin (2015). The fitted results for the three
estimators are illustrated in Figure 4, where the red points represent the boundary parts.
The empirical estimator suffers a lot from the increasing variance when the estimated points
get close to the endpoints of the interval. The least squares estimator simply estimates the
boundary parts by shifting the estimates of the interior points nearby, which results in very
serious estimation bias. Our estimator fits the boundary points very well, resulting from the
flexibility brought by the parameter l, the relative location of the estimated point within
the interval [xi, xi+r].

For the second-order derivative, we include another two estimators, m̂′′4 and m̂′′6, which
have the same bias-reduction level as m̂′′emp and m̂′′lse, respectively. The sequence order,
r, of the two additional estimators is optimally chosen by minimizing MAE as well. The
simulation results are presented in Figure 5. The relationships between m̂′′opt, m̂

′′
emp and

m̂′′lse remain the same as those observed for the first-order derivative. We also observe that
MAE(m̂′′4) is significantly smaller than MAE(m̂′′emp) and that MAE(m̂′′6) is almost the same
as MAE(m̂′′lse), consistent with our theoretical results in Section 3.

Plug-in parameters

Plug-in parameters are chosen via minimizing the adjusted AMSE in (5) after replacing
all the unknown quantities with their consistent estimates. In this simulation, we estimate
σ2 using Tong and Wang’s (2005) method with the recommended bandwidth [n1/3]. Here,
m̂(q)(xi) (1 + k0 ≤ i ≤ n − k0) are calculated with the function locpol in the R package

locpol (Ojeda Cabrera, 2012) with the parameter deg = q + 2. The bandwidths of m̂
(p)
emp

and m̂
(p)
lse are selected accordingly.

We report the simulation results together with those for the oracle parameters in Figures
6 and 7. From the comparison, we observe that the plug-in parameters lead to quite similar
results with those for the oracle parameters, especially on the interior points. Since the
tuning parameters are selected based on AMSE of derivative estimates for the interior points,
the performance on the boundary is not consistent. Nevertheless, the mutual relationship
of the three estimators remains the same for most cases on both interior and boundary
points. Overall, the proposed plug-in method is quite effective for choosing the optimal
tuning parameters.

In summary, we have demonstrated the superiority of the proposed estimators over
the existing estimators through extensive simulation studies. We have further provided an
effective criterion for selection of the tuning parameters for the newly defined estimator.
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Figure 3: Mean absolute errors of three first-order derivative estimators on both interior
(2 top rows) and boundary (2 bottom rows) points for various settings. m̂′emp,
yellow box; m̂′lse, green box; m̂′opt, red box. m(x) = 5 sin(2πx) and ε ∼ N(0, σ2).
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Figure 4: The fitted point-wise derivatives by the three estimators using oracle tuning pa-
rameters. m(x) = 32e−8(1−2x)

2
(1 − 2x), εi are independent random errors from

N(0, 0.12) and n = 500. Interior points: green points. Boundary points: red
points.

5. Conclusion

We proposed a new framework for estimating derivatives without fitting the regression func-
tion. Unlike most existing methods using the symmetric difference quotients, our method
is constructed as a linear combination of the observations. It is hence very flexible and
applicable to both interior and boundary points. We obtained the variance-minimizing es-
timators for the first- and higher-order derivatives with a fixed bias-reduction level. Under
the equidistant design, we derived some theoretical results for the proposed estimators in-
cluding the optimal sequence, asymptotic variance and bias, point-wise consistency, and
boundary behavior. We illustrated that the order of the estimation bias can be reduced
while the order of variance remains unchanged. We showed that our method achieves the
optimal convergence rate for the MSE. Furthermore, we provided an effective selection pro-
cedure for the tuning parameters of the proposed estimators. Simulation studies for the
first- and second-order derivative estimators demonstrated the superiority of our proposed
method.

The method can be readily extended to unequally spaced designs. In this case, the
symmetric form is no longer valid and the choice of l also deserves further consideration.
To estimate the point-wise derivatives for unequally spaced designs, we can first find the r
nearest neighbors of the estimated point and construct the variance-minimizing estimator
with the linear combination of the r+ 1 points, say xi < · · · < xi+l < · · · < xi+r. Assuming
that m(x) is smooth enough and that xi+l is the estimated point, we have the expectation
of DYi as

E(DYi) = m(xi+l)
r∑

k=0

dk +
∞∑
j=1

m(j)(xi+l)
r∑

k=0

dk(xi+k − xi+l)j/j!.
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Figure 5: Mean absolute errors of three second-order derivative estimators on both interior
(2 top rows) and boundary (2 bottom rows) points for various settings. m̂′emp,
yellow box; m̂′lse, green box; m̂′q, red box. opt1: m̂′′4; opt2: m̂′′6; opt: m̂′′opt.
m(x) = 5 sin(2πx) and ε ∼ N(0, σ2).
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Figure 6: Comparison of the mean absolute errors on both interior (2 top rows) and bound-
ary (2 bottom rows) points between the first-order derivative estimators with
oracle tuning parameters and those with plug-in tuning parameters. m̂′emp, yel-
low box; m̂′lse, green box; m̂′opt, red box. “ s” denotes estimators using plug-in
parameters. m(x) = 5 sin(2πx) and ε ∼ N(0, σ2).
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Figure 7: Comparison of the mean absolute errors on both interior (2 top rows) and bound-
ary (2 bottom rows) points between the second-order derivative estimators with
oracle tuning parameters and those with plug-in tuning parameters. m̂′′emp, yel-
low box; m̂′′lse, green box; m̂′′opt, red box. “ s” denotes estimators using plug-in
parameters. m(x) = 5 sin(2πx) and ε ∼ N(0, σ2).
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The optimal sequence for estimating m(p)(xi+l) with a bias-reduction level q can be decided
by solving the following optimization problem:

(d0, . . . , dr)p,q = argmin
(d0,...,dr)∈Rr+1

r∑
k=0

d2k,

s.t.
r∑

k=0

dk
(xi+k − xi+l)j

j!
= 0, j = 0, . . . , p− 1, p+ 1, . . . , q − 1,

r∑
k=0

dk
(xi+k − xi+l)p

p!
= 1.

The optimal difference sequences are adaptively chosen for each estimated point and they
are no longer identical for all the interior design points. As a result, the parameter selection
becomes more challenging and we leave this for future research. Finally, other models
worthy of investigation include, for example, random design models (De Brabanter and
Liu, 2015) and multivariate models (Charnigo et al., 2015; Charnigo and Srinivasan, 2015).
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Appendix A. Proof of Proposition 1

To find the optimal sequence for estimating the first-order derivative with qth-order accu-
racy, we solve the following optimization problem:

(d0, . . . , dr)1,q = argmin
(d0,...,dr)∈Rr+1

r∑
k=0

d2k, s.t. condition (3) holds.

It is easy to check that condition (3) is equivalent to

r∑
k=0

dk(k − l) = n and

r∑
k=0

dk(k − l)j = 0, 0 ≤ j 6= 1 ≤ q − 1.

To apply the Lagrange multipliers method to find the optimal sequence, we transform
the above problem in the following unconstrained optimization problem:

f(d0, . . . , dr, λ0, . . . , λq−1) =
r∑

k=0

d2k + λ0C0 +

q−1∑
j=2

λj

r∑
k=0

dk(k − l)j + λ1

[
r∑

k=0

dk(k − l)− n

]
.
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Taking the partial derivative of f with respect to each parameter and setting it to zero, we
have

∂f

∂dk
= 2dk + λ0 +

q−1∑
j=1

λj(k − l)j = 0, k = 0, . . . , r, (6)

∂f

∂λj
=

r∑
k=0

dk(k − l)j = 0, 0 ≤ j 6= 1 ≤ q − 1,

∂f

∂λ1
=

r∑
k=0

dk(k − l) = n.

We further make the following transformation:

r∑
k=0

(k − l)i ∂f
∂dk

= 2

r∑
k=0

dk(k − l)i + λ0

r∑
k=0

(k − l)i +

q−1∑
j=1

λj

r∑
k=0

(k − l)i+j

= I
(l)
i λ0 +

q−1∑
j=1

I
(l)
i+jλj = 0, 0 ≤ i 6= 1 ≤ q − 1.

r∑
k=0

(k − l) ∂f
∂dk

= 2

r∑
k=0

dk(k − l) + λ0

r∑
k=0

(k − l) +

q−1∑
j=1

λj

r∑
k=0

(k − l)1+j

= 2n+ I
(l)
1 λ0 +

q−1∑
j=1

I
(l)
1+jλj = 0,

where I
(l)
i =

∑r
k=0(k − l)i for i = 1, 2, . . . .

These results can be expressed as a matrix equation,

U (l)(λ0, . . . , λq−1)
′ = −2nε2,

where U (l) is a q × q matrix with u
(l)
ij = I

(l)
i+j−2 and ε2 is a q × 1 vector with the second

element equal to 1 and the others equal to zero. Noting that U (l) is an invertible matrix,
we have

(λ0, . . . , λq−1)
′ = −2nV

(l)
(.,2),

where V (l) = (U (l))−1 and V
(l)
(.,2) denotes the second column of V (l). This leads to λj =

−2p!npV
(l)
(j+1,2) for j = 0, . . . , q − 1. Combining this result with (6), we get

(dk)1,q = n

q−1∑
j=0

V
(l)
(j+1,2)(k − l)

j , k = 0, . . . , r.

This completes the proof of Proposition 1. �

Appendix B. Proof of Theorem 1
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We can easily derive that

var[m̂′q(xi+l)] = σ2
r∑

k=0

d2k = σ2
r∑

k=0

dk

n q−1∑
j=0

V
(l)
(j+1,2)(k − l)

j


= σ2n

q−1∑
j=0

V
(l)
(j+1,2)

r∑
k=0

dk(k − l)j = σ2nV
(l)
(2,2)

r∑
k=0

dk(k − l)

= σ2n2V
(l)
(2,2),

bias[m̂′q(xi+l)] = Cq,lm
(q)(xi+l) + o(rq−1/nq−1),

where

Cq,l =
r∑

k=0

dk
(k − l)q

nqq!
=

n

q!nq

r∑
k=0

q−1∑
j=0

V
(l)
(j+1,2)(k − l)

j

 (k − l)q

=
1

q!nq−1

q−1∑
j=0

V
(l)
(j+1,2)I

(l)
j+q = O(rq−1/nq−1).

This completes the proof of Theorem 1. �

Appendix C. Proof of Proposition 2

To find the optimal sequence for estimating the pth-order derivative with qth-order accuracy,
we solve the following optimization problem:

(d0, . . . , dr)p,q = argmin
(d0,...,dr)∈Rr+1

r∑
k=0

d2k, s.t. condition (4) holds.

It is easy to check that condition (4) is equivalent to

r∑
k=0

dk(k − l)p = p!np and

r∑
k=0

dk(k − l)j = 0, 0 ≤ j 6= p ≤ q − 1.

To apply the Lagrange multipliers method to find the optimal sequence, we transform
the above problem in the following unconstrained optimization problem:

f(d0, . . . , dr, λ0, . . . , λq−1) =

r∑
k=0

d2k + λ0C0 +

p−1∑
j=1

+

q−1∑
j=p+1

λj

r∑
k=0

dk(k − l)j

+λp

[
r∑

k=0

dk(k − l)p − p!np
]
.
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Taking the partial derivative of f with respect to each parameter and setting it to zero, we
have

∂f

∂dk
= 2dk + λ0 +

q−1∑
j=1

λj(k − l)j = 0, k = 0, . . . , r, (7)

∂f

∂λj
=

r∑
k=0

dk(k − l)j = 0, 0 ≤ j 6= p ≤ q − 1,

∂f

∂λp
=

r∑
k=0

dk(k − l)p = p!np.

We further make the following transformation:

r∑
k=0

(k − l)i ∂f
∂dk

= 2

r∑
k=0

dk(k − l)i + λ0

r∑
k=0

(k − l)i +

q−1∑
j=1

λj

r∑
k=0

(k − l)i+j

= I
(l)
i λ0 +

q−1∑
j=1

I
(l)
i+jλj = 0, 0 ≤ i 6= p ≤ q − 1.

r∑
k=0

(k − l)p ∂f
∂dk

= 2

r∑
k=0

dk(k − l)p + λ0

r∑
k=0

(k − l)p +

q−1∑
j=1

λj

r∑
k=0

(k − l)p+j

= 2p!np + I(l)p λ0 +

q−1∑
j=1

I
(l)
p+jλj = 0,

where I
(l)
i =

∑r
k=0(k − l)i for i = 1, 2, . . . .

These results can be expressed as a matrix equation,

U (l)(λ0, . . . , λq−1)
′ = −2p!npεp+1,

where U (l) is a q× q matrix with u
(l)
ij = I

(l)
i+j−2 and εp+1 is a q× 1 vector with the (p+ 1)th

element equal to 1 and the others equal to zero. Noting that U (l) is an invertible matrix,
we have

(λ0, . . . , λq−1)
′ = −2p!npV

(l)
(.,p+1),

where V (l) = (U (l))−1 and V
(l)
(.,p+1) denotes the (p + 1)th column of V (l). This leads to

λj = −2p!npV
(l)
(j+1,p+1) for j = 0, . . . , q − 1. Combining this result with (7), we get

(dk)p,q = p!np
q−1∑
j=0

V
(l)
(j+1,p+1)(k − l)

j , k = 0, . . . , r.

This completes the proof of Proposition 2. �

Appendix D. Proof of Theorem 2
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We can easily derive that

var[m̂(p)
q (xi+l)] = σ2

r∑
k=0

d2k = σ2
r∑

k=0

dk

p!np q−1∑
j=0

V
(l)
(j+1,p+1)(k − l)

j


= σ2p!np

q−1∑
j=0

V
(l)
(j+1,p+1)

r∑
k=0

dk(k − l)j = σ2p!npV
(l)
(p+1,p+1)

r∑
k=0

dk(k − l)p

= σ2(p!)2n2pV
(l)
(p+1,p+1),

bias[m̂(p)
q (xi+l)] = Cq,lm

(q)(xi+l) + o(rq−p/nq−p),

where

Cq,l =
r∑

k=0

dk
(k − l)q

nqq!
=
p!np

q!nq

r∑
k=0

q−1∑
j=0

V
(l)
(j+1,p+1)(k − l)

j

 (k − l)q

=
p!

q!nq−p

q−1∑
j=0

V
(l)
(j+1,p+1)I

(l)
j+q = O(rq−p/nq−p).

This completes the proof of Theorem 2. �
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