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Abstract

Comparing with the standard L2-norm support vector machine (SVM), the L1-norm SVM
enjoys the nice property of simultaneously preforming classification and feature selection.
In this paper, we investigate the statistical performance of L1-norm SVM in ultra-high
dimension, where the number of features p grows at an exponential rate of the sample size n.
Different from existing theory for SVM which has been mainly focused on the generalization
error rates and empirical risk, we study the asymptotic behavior of the coefficients of L1-
norm SVM. Our analysis reveals that the estimated L1-norm SVM coefficients achieve
near oracle rate, that is, with high probability, the L2 error bound of the estimated L1-
norm SVM coefficients is of order Op(

√
q log p/n), where q is the number of features with

nonzero coefficients. Furthermore, we show that if the L1-norm SVM is used as an initial
value for a recently proposed algorithm for solving non-convex penalized SVM (Zhang
et al., 2016b), then in two iterative steps it is guaranteed to produce an estimator that
possesses the oracle property in ultra-high dimension, which in particular implies that with
probability approaching one the zero coefficients are estimated as exactly zero. Simulation
studies demonstrate the fine performance of L1-norm SVM as a sparse classifier and its
effectiveness to be utilized to solve non-convex penalized SVM problems in high dimension.

Keywords: feature selection, L1-norm SVM; non-convex penalty, oracle property, error
bound, support vector machine, ulta-high dimension

1. Introduction

Support vector machine (SVM), originally introduced by Boser et al. (1992) and Vapnik
(1995) and subsequently investigated by many others, is a popular and highly powerful
technique for classification and has a solid mathematical foundation in statistical learning.
In modern applications, we often face the challenge of classification at the presence of a
very large number of redundant features. For example, in genomics it is of fundamental
importance to build a classifier using a small number of genes from thousands of candidate
genes for the purpose of disease diagnosis and drug discovery; in spam email classification,
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it is desirable to build an accurate classifier using a relatively small number of words from
a dictionary that contains a huge number of different words. For such applications, the
standard L2-norm SVM suffers from some potential drawbacks. First, L2-norm SVM does
not automatically build in dimension reduction and hence usually does not yield an inter-
pretable sparse decision rule. Second, the generalization performance of L2-norm SVM can
deteriorate by including many redundant features (e.g., Zhu et al., 2004).

The standard L2-norm SVM has the well known hinge loss+L2 norm penalty formula-
tion. An effective way to preform simultaneous variable selection and classification using
SVM is to replace the L2-norm penalty with the L1-norm penalty, which results in the
L1-norm SVM. See the earlier work of Bradley and Mangasarian (1998) and Song et al.
(2002). Important advancement on the methodology and theory of L1-norm SVM has been
obtained in recent years, for example, Zhu et al. (2004) proposed a path-following algo-
rithm and effectively demonstrated the advantages of L1-norm SVM in high-dimensional
sparse scenario; Tarigan and van de Geer (2004) investigated the adaptivity of SVMs with
L1 penalty and derived its adaptive rates; Tarigan, Van De Geer, et al. (2006) obtained an
oracle inequality involving both model complexity and margin for L1-norm SVM; Wang and
Shen (2007) extended L1-norm SVM to multi-class classification problems; Zou (2007) pro-
posed to use adaptive L1 penalty with the SVM; and Wegkamp and Yuan (2011) considered
L1-norm SVM with a built-in reject option.

The existing theory in the literature on SVM has been largely focused on the analysis of
generalization error rate and empirical risk, see Greenshtein et al. (2006), Wang and Shen
(2007), Van de Geer (2008), among others. These results neither contain nor directly imply
the transparent error bound of the estimated coefficients of L1-norm SVM studied in this
paper. Our work makes a significant departure from most of the existing literature and is
motivated by the recent growing interest of understanding the statistical properties of the
estimated SVM coefficients (also referred to as the weight vector). For a linear binary SVM,
the decision function is a hyperplane that separates two classes. The coefficients of SVM
describe this hyperplane which directly predicts which class a new observation point belongs
to. Moreover, the magnitudes of the SVM coefficients provide critical information on the
importance of the features and can be used for feature ranking (Chang and Lin, 2008; Guyon
et al., 2002). Koo et al. (2008) derived a novel Bahadur type representation of the coefficients
of the L2-norm SVM and established the asymptotic normality of the estimated coefficients
when the number of features p is fixed. Park et al. (2012) studied the oracle properties of
SCAD-penalized SVM coefficients, also for the fixed p case. The aforementioned worked
has only considered small, fixed number of features. More recently, Zhang et al. (2016b)
proposed a systemic framework for non-convex penalized SVM regarding variable selection
consistency and oracle property in high dimension. Zhang et al. (2016a) investigated a
consistent information criterion for tuning parameter selection for support vector machine
in the diverging model space. Both of these two papers directly assume an appropriate
initial value exists in the high-dimensional setting.

In this paper, we study the asymptotic behavior of the estimated L1-norm SVM coef-
ficients and derive that the error bound is of near-oracle rate O(

√
q log p/n), where q is

the number of features with nonzero coefficients, n is the sample size, and the number of
candidate features p can be of exponential order of n (i.e., the ultra-high dimensional case).
Furthermore, in Section 4 we show that this sharp error bound helps greatly extend the
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applicability of the recent algorithm and theory of high-dimensional non-convex-penalized
SVM (Zhang et al., 2016b) by providing a statistically valid and computationally conve-
nient initial value. The use of non-convex penalty function aims to further reduce the bias
associated with the L1 penalty and accurately identify the set of relevant features for classi-
fication. However, the presence of non-convex penalty results in computational complexity.
Zhang et al. (2016b) proposed an algorithm and showed that given an appropriate initial
value, in two iterative steps the algorithm is guaranteed to produce an estimator that pos-
sesses the oracle property in the ultra-high dimension and consequently with probability
approaching one the zero coefficients are estimated as exactly zero. However, the availabil-
ity of a qualified initial estimator is itself a challenging issue in high dimension. Zhang et al.
(2016b) provided an initial estimator that would satisfy the requirement when p = o(

√
n).

Our result shows that the L1-norm SVM can be a valid initial estimator under general
conditions when p grows at an exponential rate of n, which completes the algorithm and
theory of Zhang et al. (2016b).

The rest of the paper is organized as follows. In Section 2, we introduce the basics and
computation of the L1-norm penalized support vector machine. Section 3 derives the near-
oracle error bound for the estimated L1-norm SVM coefficients in the ultra-high dimension.
Section 4 investigates the application of the result in Section 3 for non-convex penalized
SVM in the ultra-high dimension. Section 5 demonstrates through Monte Carlo experiments
the effectiveness of L1-norm SVM coefficients both as a sparse classifier and as an initial
value for the non-convex penalized SVM algorithm. Technical proofs and additional notes
are given in the appendices.

2. L1-norm support vector machine

We consider the classical binary classification problem. Let {Yi,Xi}ni=1 be a random sample
from an unknown distribution P (X, Y ). The response variable (class label) Yi ∈ {1,−1}
has the marginal distribution: P (Yi = 1) = π+ and P (Yi = −1) = π−, where π+, π− > 0
and π+ + π− = 1. We write Xi = (Xi0, Xi1, . . . , Xip)

T = (Xi0, (Xi−)T )T , where Xi0 = 1
corresponds to the intercept term. Let f and g be the conditional density functions of
Xi− given Yi = 1 and Yi = −1, respectively. Moreover, in this paper we use the following
notation for vector norms: for x = (x1, . . . , xk)

T ∈ Rk and a positive integer m, we define

||x||m =
(∑k

i=1 |xi|m
)1/m

, ||x||∞ = max(|x1|, . . . , |xk|) and ||x||0 =
∑k

i=1 I(xi 6= 0).

The standard linear SVM can be expressed as the following regularization problem

min
β

n−1
n∑
i=1

(1− YiXT
i β)+ + λ||β−||22, (1)

where (1−u)+ = max{1−u, 0} is often called the hinge loss function, λ is a tuning parameter
and β = (β0, (β−)T )T with β− = (β1, β2, . . . , βp)

T . Generally for a given vector e, we use e−
to denote the subvector with the first entry of e omitted. Actually, optimization problem in
(1) is known as the primal problem of the SVM, which can be efficiently solved by quadratic
programming algorithms.
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The L1-norm SVM replaces the L2 penalty in (1) by the L1 penalty. That is, we consider
the objective function

ln(β, λ) = n−1
n∑
i=1

(1− YiXT
i β)+ + λ||β−||1, (2)

and define

β̂(λ) = arg min
β

ln(β, λ). (3)

For a given data pointXi, it is classified into class + (corresponding to Ŷi = 1) if XT
i β̂(λ) > 0

and into class − (corresponding to Ŷi = −1) if XT
i β̂(λ) < 0.

By introducing the slack variables, we can transform our optimization problem (3) as a
linear programming problem (Zhu et al., 2004)

min
ξ,ζ,β

 1

n

n∑
i=1

ξi + λ

p∑
j=1

ζj

 (4)

subject to ξi ≥ 0, i = 1, 2, . . . , n,

ξi ≥ 1− YiXT
i β, i = 1, 2, . . . , n,

ζj ≥ βj , ζj ≥ −βj , j = 1, 2, . . . , p.

Several R packages are available to solve such a standard linear programming problem, such
as lpSolve and linprog.

3. An error bound of L1-norm SVM in ultra-high dimension

In this section, we will describe the near-oracle error bound for the estimated L1-norm SVM
coefficients under the ultra-high dimensional setting. The choice of the tuning parameter λ
will be studied to achieve this error bound.

3.1 Preliminaries

The key result of the paper is an error bound of ||β̂(λ)− β∗||2, where β∗ is the minimizer
of the population version of the hinge loss function, that is,

β∗ = arg min
β

L(β), (5)

where L(β) = E(1−YXTβ)+. Lin (2002) suggested that there is a close connection between
the minimizer of the population hinge loss function and the Bayes rule. The definition of β∗

above is also used in Koo et al. (2008) and Park et al. (2012), both of which only considered
the fixed p case. We are interested in the error bound of ||β̂(λ)−β∗||2 when p� n. In the
ultra-high dimensional settings, it is often reasonable to assume that β∗ = (β∗0 , β

∗
1 , . . . , β

∗
p)T

is sparse in the sense that most of its components are exactly zero. We define the index set
of active features as T = {1 ≤ j ≤ p : β∗j 6= 0}. We denote the cardinality of T by |T | = q.
To incorporate the intercept term, we also define T+ = T

⋃
{0}.
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Next, we introduce the gradient vector and Hessian matrix of the population hinge loss
function L(β). We define

S(β) = −E(I(1− YXTβ ≥ 0)YX) (6)

as the (p+ 1)-dimensional gradient vector and

H(β) = E(δ(1− YXTβ)XXT ) (7)

as the (p+ 1)× (p+ 1)-dimensional Hessian matrix where I(·) is the indicator function and
δ(·) is the Dirac delta function. Section 6.1 in Koo et al. (2008) has explained more details
and theoretical properties of S(β) and H(β) under certain conditions.

Throughout the paper, we assume the following regularity condition.

(A1) The densities f and g are continuous with common support S ⊂ Rp and have finite
second moments. In addition, there exists a constant M > 0 such that |Xj | ≤ M ,
j ∈ {1, . . . , p}.

Remark 1. Condition (A1) ensures that H(β) is well defined and continuous in β. The
bound of X− can be relaxed with further technical complexity. More details can be found
in Park et al. (2012) and Koo et al. (2008).

3.2 The choice of the tuning parameter λ and a fact about β̂

The estimated L1-norm SVM parameter β̂(λ) defined in (3) depends on the tuning param-
eter λ. We will first show that a universal choice

λ = c
√

2A(α) log p/n, (8)

where c is some given constant, α is a small probability and A(α) > 0 is a constant such

that 4p−
A(α)

M2 +1 ≤ α, can provide theoretical guarantee on the good performance of β̂(λ).
The above choice of λ is motivated by a principle in the setting of penalized least squares

regression (Bickel et al., 2009), which advocates to choose the penalty level λ to dominate
the subgradient of the loss function evaluated at the true value. Intuitively, the subgradient
evaluated at β∗ summarizes the estimation noise. See also the application of the same
principle to choose the penalty level for quantile regression (Belloni and Chernozhukov,
2011; Wang, 2013). Another more technical motivation of this principle comes from the
KKT condition in convex optimization theory. Let β̃ be the oracle estimator (formally
defined in Section 4) that minimizes the sample hinge loss function when the index set T is
known in advance. Define the subgradient function

Ŝ(β) = −n−1
n∑
i=1

I(1− YiXT
i β ≥ 0)YiXi.

Then it follows from the argument as in Theorem 3.1 of Zhang et al. (2016b) that under
some weak regularity conditions ||Ŝ(β̃)||∞ ≤ λ with probability approaching one. It follows
from Koo et al. (2008) that the oracle estimator β̃ provides a consistent and asymptotically
normal estimate of β∗.
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Hence, in the ideal case where the population parameter β∗ is known, an intuitive choice
of λ is to set its value to be larger than the supremum norm of Ŝ(β∗) with large probability,
that is

P (λ ≥ c||Ŝ(β∗)||∞) ≥ 1− α, (9)

where c > 1 is some given constant and α is a small probability. Lemma 1 below shows
that the choice of λ given in (8) satisfies this requirement.

Lemma 1 Assume that condition (A1) is satisfied. Suppose λ = c
√

2A(α) log p/n, we have

P (λ ≥ c||Ŝ(β∗)||∞) ≥ 1− α

with α being a given small probability defined earlier in this section.

The proof of Lemma 1 is given in the Appendix A. The crux of the proof is to bound the
tail probability of

∑n
i=1 I(1−YiXT

i β
∗ ≥ 0)YiXi by applying Hoeffding’s inequality and the

union bound. Later in this section, we will show that this choice of λ warrants near-oracle
rate performance of β̂(λ). Let h = β∗− β̂(λ). We state below an interesting fact about h.

Lemma 2 For λ ≥ c||Ŝ(β∗)||∞ and C̄ = c−1
c+1 , we have

h ∈ ∆C̄ ,

where

∆C̄ =
{
γ ∈ Rp+1 : ||γT+

||1 ≥ C̄||γT c+ ||1,where T+ = T∪{0}, T ⊂ {1, 2, . . . , p} and |T | ≤ q
}
,

with T c+ denoting the complement of T+, and γT+
denoting the (p + 1)-dimensional vector

that has the same coordinates as γ on T+ and zero coordinates on T c+.

We call ∆C̄ the restricted set. The proof of Lemma 2 is also given in Appendix A.

3.3 Regularity conditions

Let X = (X1,X2, . . . ,Xn)T denote the feature design matrix. We define restricted eigen-
values as follows

λmax = max
d∈Rp+1:||d||0≤2(q+1)

dTX TXd

n||d||22
(10)

and

λmin(H(β∗); q) = min
d∈∆C̄

dTH(β∗)d

||d||22
. (11)

These are similar to the sparse eigenvalue notion in Bickel, Ritov, and Tsybakov (2009)
and Meinshausen and Yu (2009) for analyzing sparse least squares regression, see also Cai,
Wang, and Xu (2010).

In addition to condition (A1) introduced in Section 2, we require the following regularity
conditions for the main theory of this paper.

(A2) q = O(nc1) for some 0 ≤ c1 < 1/2.
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(A3) There exists a constant M1 such that λmax ≤M1 almost surely.

(A4) λmin(H(β∗); q) ≥M2, for some constant M2 > 0.

(A5) n(1−c2)/2 min
j∈T
|β∗j | ≥M3 for some constants M3 > 0 and 2c1 < c2 ≤ 1.

(A6) Denote the conditional density of XTβ∗ given Y = +1 and Y = −1 as f∗ and
g∗, respectively. It is assumed that f∗ is uniformly bounded away from 0 and ∞ in a
neighborhood of 1 and g∗ is uniformly bounded away from 0 and∞ in a neighborhood
of −1.

Remark 2. Conditions (A2) and (A5) are very common in high dimensional literature.
Basically, condition (A2) states that the number of nonzero variables cannot diverge at a
rate larger than

√
n. Condition (A5) controls the decay rate of true parameter β∗. Condition

(A3) is not restrictive, see the relevant discussions in Meinshausen and Yu (2009). Condition
(A4) requires the smallest restricted eigenvalue has a lower bound. This would be satisfied if
H(β∗) is positive definite. We provide a thorough discussion of this condition in Appendix
B, including an example that demonstrates the validity of this condition. Condition (A6)
warrants that there is sufficient information around the non-differentiable point of the hinge
loss, similarly to Condition (C3) in Wang, Wu, and Li (2012) for quantile regression.

3.4 An error bound of β̂(λ) in ultra-high dimension

Before stating the main theorem, we first present an important lemma, which has to do
with the empirical process behavior of the hinge loss function.

Lemma 3 Assume that conditions (A1)-(A3) are satisfied. For h ∈ Rp+1, let

B(h) =
1

n

∣∣∣ n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

n∑
i=1

(1− YiXT
i β
∗)+

−E
( n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

n∑
i=1

(1− YiXT
i β
∗)+

)∣∣∣.
Assume p > n, then for all n sufficiently large

P

(
sup

||h||0≤q+1,||h||2 6=0

B(h)

||h||2
≥ (1 + 2C1

√
M1)

√
2q log p

n

)
≤ 2p−2q(C2

1−1),

where C1 > 1 is a constant.

Lemma 3 guarantees that n−1
(∑n

i=1(1− YiXT
i β
∗ + YiX

T
i h)+ −

∑n
i=1(1− YiXT

i β
∗)+

)
is

close to its expected value with high probability. This provides an important tool to handle
the non-smoothness of the hinge loss function in proving the main theory, which is stated
below.
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Figure 1: L2-norm estimation error comparison

Theorem 4 Suppose that conditions (A1)-(A6) hold, then the estimated L1-norm SVM
coefficients vector β̂(λ) satisfies

||β̂(λ)− β∗||2 ≤
√

1 +
1

C̄

(2λ
√
q + 1

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

))
with probability at least 1−2p−2q(C2

1−1), where C is a constant, C1 is given in Lemma 3 and
C̄ is defined in Lemma 2.

From this theorem, we can easily capture the near-oracle property for l1 penalized SVM
estimator, such that with high probability,

||β̂(λ)− β∗||2 = Op

(√
q log p

n

)

when λ = c
√

2A(α) log p/n. Actually, in the inequality of Theorem 4, the first term satisfies

λ
√
q

M2
= 2

M2

√
2A(α)q log p

n = O

(√
q log p
n

)
and it is also trivial to have the second term of the

same order. Hence the near-oracle property of β̂(λ) will hold given λ above.

To numerically evaluate the above error bound of the L1-norm SVM, we consider the
simulation setting in Model 4 of Section 5.1. We choose p = 0.1 ∗ n2, q = bn1/3c and
β∗− = ((1.1, . . . , 1.1)q, 0, . . . , 0)T , which allows p and q to vary with sample size n. Figure

1 depicts the average of ||β̂(λ) − β∗||2 across 200 simulation runs for different values of n

for L1-norm SVM and compares the curve with the theoretical error bound (
√

q log p
n ). We

observe that these two curves display similar decreasing pattern and approach each other
as n gets larger.
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4. Application to non-convex penalized SVM in ultra-high dimension

In this section, we will step further to discuss the advantage of non-convex penalized SVM
in ultra-high dimension. Similarly, the oracle property of non-convex penalized SVM coef-
ficients will be investigated.

4.1 Why non-convex penalty?

Recently, several authors studied non-convex penalized SVM for simultaneous variable se-
lection and classification, see Zhang et al. (2006), Becker et al. (2011), Park et al. (2012)
and Zhang et al. (2016b). The idea is to replace the L2 norm in standard SVM (1) by
a non-convex penalty term in the form

∑p
j=1 pλ(|βj |), where pλ(·) is a symmetric penalty

function with tuning parameter λ. Two commonly used non-convex penalty functions are
the SCAD penalty and the MCP penalty. The SCAD penalty (Fan and Li, 2001) is defined
by

pλ(|β|) = λ|β|I(0 ≤ |β| < λ) +
aλ|β| − (β2 + λ2)/2

a− 1
I(λ ≤ |β| ≤ aλ) +

(a+ 1)λ2

2
I(|β| > aλ)

for some a > 2. The MCP (Zhang, 2010) is defined by

pλ(|β|) = λ(|β| − β2

2aλ
)I(0 ≤ |β| < aλ) +

aλ2

2
I(|β| ≥ aλ)

for some a > 1.

The motivation of using non-convex penalty function is to further reduce the bias re-
sulted from L1 penalty and accurately identify the set of relevant features T . The use of
non-convex penalty function was introduced in the setting of penalized least squares re-
gression (Fan and Li, 2001; Zhang, 2010). These authors observed that L1 penalized least
squares regression requires stringent conditions, often not satisfied in real data analysis, to
achieve variable selection consistency. The use of non-convex penalty function alleviates the
bias caused by L1 penalty which overpenalizes large coefficients, and leads to the so called
oracle property. That is, under regularity conditions the resulted non-convex penalized es-
timator is able to estimate zero coefficients as exactly zero with probability approaching
one, and estimate the nonzero coefficients as efficiently as if the set of relevant features is
known in advance.

4.2 Oracle property in ultra-high dimension

The oracle property of non-convex penalized SVM coefficients is investigated by Park et al.
(2012) for the case of fixed number of features and more recently by Zhang et al. (2016b)
for the large p case. The oracle estimator of β∗ is defined as

β̃ = arg min
β:βTc+

=0
l̃n(β), (12)

where l̃n(β) = n−1
∑n

i=1(1 − YiXT
i β)+ is the sample hinge loss function and βT c+ denotes

the vector containing the components of β with indices in T c+ and others to be zero.
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To solve the non-convex penalized SVM, we choose to use the local linear approximation
(LLA) algorithm. The LLA algorithm starts with an initial value β(0). At each step t, we
update the β to be β(t) by solving

min
β

{
n−1

n∑
i=1

(1− YiXT
i β)+ +

p∑
j=1

p′λ(|β(t−1)
j |)|βj |

}
, (13)

where p′λ(·) denotes the derivative of the penalty function pλ(·). Specifically, we have p′λ(0) =
p′λ(0+) = λ.

Zhang et al. (2016b) showed that if an appropriate initial estimator exists, then under
quite general regularity conditions, the LLA algorithm can identify the oracle estimator with
probability approaching one in just two iterative steps (see their Theorem 3.4). This result
provides a systematic framework for non-convex penalized SVM in high dimension. How-

ever it relies on the availability of a qualified initial value β̂
(0)

= (β̂
(0)
0 , β̂

(0)
1 , . . . , β̂

(0)
p )T that

satisfies

P (|β̂(0)
j − β

∗
j | > λ, for some 1 ≤ j ≤ p)→ 0 as n→∞. (14)

Yet the availability of such an appropriate initial value is itself a challenging problem in
ultra-high dimension. Zhang et al. (2016b) showed that such an initial estimator is guar-
anteed when p = o(

√
n). The error bound we derived on L1-norm SVM ensures that a

qualified initial value is indeed available under general conditions in ultra-high dimension
and hence greatly extends the applicability of the result of Zhang et al. (2016b). In the
following we restate Theorem 3.4 of Zhang et al. (2016b) for the ultra-high dimensional
case.

Theorem 5 Assume β̂(λ) is the solution to the L1-norm SVM with tuning parameter λ =
c
√

2A(α) log p/n defined above. Suppose that conditions (A1)-(A6) hold, then we have

P (|β̂j(λ)− β∗j | > λ, for some 1 ≤ j ≤ p)→ 0 as n→∞. Furthermore, the LLA algorithm

initiated by β̂(λ) finds the oracle estimator in two iterations with probability tending to 1,
i.e., P (β̂nc(λ) = β̃), where β̂nc(λ) is the solution for non-convex penalized SVM with given
λ.

5. Simulation experiments

In this section, we will investigate the finite sample performance of the L1-norm SVM. We
will also study its application to non-convex penalized SVM in high dimension.

5.1 Monte Carlo results for L1-norm SVM

We generate random data from each of the following four models.

• Model 1: Pr(Y = 1) = Pr(Y = −1) = 0.5, X−|(Y = 1) ∼ MN(µ,Σ), X−|(Y =
−1) ∼ MN(−µ,Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp,Σ = (σij) with
diagonal entries equal to 1, nonzero entries σij = −0.2 for 1 ≤ i 6= j ≤ q and other
entries equal to 0. The Bayes rule is sign(1.39X1+1.47X2+1.56X3+1.65X4+1.74X5)
with Bayes error 6.3%.
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• Model 2: Pr(Y = 1) = Pr(Y = −1) = 0.5, X−|(Y = 1) ∼ MN(µ,Σ), X−|(Y =
−1) ∼ MN(−µ,Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp,Σ = (σij) with
σij = −0.4|i−j| for 1 ≤ i, j ≤ q and other entries equal to 0. The Bayes rule is
sign(3.09X1 + 4.45X2 + 5.06X3 + 4.77X4 + 3.58X5) with Bayes error 0.6%.

• Model 3: model stays the same as Model 2, but Σ = (σij) with nonzero elements
σij = −0.4|i−j| for 1 ≤ i, j ≤ q and σij = 0.4|i−j| for q < i, j ≤ p. The Bayes rule is
still sign(3.09X1 + 4.45X2 + 5.06X3 + 4.77X4 + 3.58X5) with Bayes error 0.6%.

• Model 4: X− ∼ MN(0p,Σ), Σ = (σij) with nonzero elements σij = 0.4|i−j| for
1 ≤ i, j ≤ p, Pr(Y = 1|X−) = Φ(XT

−β
∗
−), where Φ(·) is the cumulative density

function of the standard normal distribution, β∗− = (1.1, 1.1, 1.1, 1.1, 0, . . . , 0)T and
q = 4. The Bayes rule is sign(1.1X1 +1.1X2 +1.1X3 +1.1X4) with Bayes error 10.4%.

Model 1 and Model 4 are identical to the ones in Zhang et al. (2016b). In particular,
Model 1 focuses on a standard linear discriminate analysis setting. On the other hand,
Model 4 is a typical probit regression case. Models 2 and 3 are designed with autoregressive
covariance as correlation decaying off-diagonal-wise. We consider sample size n = 100 with
p = 1000 and 1500, and n = 200 with p = 1500 and 2000. Similarly as in Cai, Liu, and Luo
(2011), we use an independent tuning data set of size 2n to tune our λ by minimizing the
prediction error using five-fold cross validation. The tuning range spans from 2−6 to 2 as
equally-spaced sequence with 100 elements. For each simulation scenario, we conduct 200
runs. Then we generate an independent test data set of size n to report the estimated test
error.

We evaluate the performance of L1-norm SVM by its testing misclassification error rate,
estimator error and variable selection ability. In particular, we measure the estimation
accuracy by two criteria: the L2 estimation error ||β̂(λ)−β∗||2 where Appendix B provides
details on the calculation of β∗ and the absolute value of the sample correlation between
XT β̂(λ) and XTβ∗. The absolute value of the sample correlation (AAC) is also used as
accuracy measure in Cook et al. (2007). To summarize, we will report

• Test error: the misclassification error rate.

• L2 error: ||β̂(λ)− β∗||2.

• AAC: Absolute absolute correlation corr(XT β̂(λ),XTβ∗).

• Signal: the average of number of nonzero regression coefficients β̂i 6= 0 with i =
1, 2, 3, 4, 5 for Model 1-3 and with i = 1, 2, 3, 4 for Model 4. This measures the ability
of L1-norm SVM selecting relevant features.

• Noise: the average of number of nonzero regression coefficients β̂i(λ) 6= 0 with i 6∈
{1, 2, 3, 4, 5} for Model 1-3 and with i 6∈ {1, 2, 3, 4} for Model 4. This measures the
ability of L1-norm SVM not selecting noise features.

Table 1 summarizes the simulation results for all four models. The numbers in the
parentheses are the corresponding standard errors based on 200 replications. Overall, the
L1-norm SVM performs satisfactorily for classification with relatively low error rates in all
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Table 1: Simulation results for L1-norm SVMs
Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.17(0.06) 0.53(0.14) 0.89(0.03) 4.84(0.41) 38.20(5.50)
100 1500 0.19(0.05) 0.59(0.14) 0.89(0.03) 4.75(0.47) 40.27(5.41)
200 1500 0.10(0.03) 0.27(0.07) 0.96(0.02) 5.00(0.07) 19.80(4.12)
200 2000 0.10(0.02) 0.27(0.06) 0.96(0.02) 5.00(0.00) 23.61(4.80)

Model 2 100 1000 0.06(0.04) 0.34(0.12) 0.95(0.02) 4.88(0.35) 21.25(4.22)
100 1500 0.07(0.04) 0.39(0.12) 0.95(0.02) 4.79(0.41) 28.80(4.61)
200 1500 0.02(0.01) 0.21(0.07) 0.97(0.01) 4.99(0.10) 5.41(2.25)
200 2000 0.02(0.02) 0.22(0.07) 0.97(0.01) 4.99(0.10) 6.88(2.50)

Model 3 100 1000 0.06(0.05) 0.36(0.14) 0.95(0.02) 4.8.(0.40) 19.93(3.87)
100 1500 0.06(0.04) 0.37(0.13) 0.95(0.02) 4.83(0.40) 27.55(4.85)
200 1500 0.02(0.02) 0.22(0.07) 0.97(0.02) 5.00(0.07) 5.18(2.19)
200 2000 0.02(0.02) 0.20(0.08) 0.97(0.02) 5.00(0.07) 6.72(2.67)

Model 4 100 1000 0.16(0.04) 0.52(0.13) 0.94(0.03) 3.88(0.33) 12.87(3.65)
100 1500 0.17(0.05) 0.55(0.14) 0.93(0.03) 3.81(0.42) 12.09(3.56)
200 1500 0.13(0.03) 0.33(0.09) 0.97(0.01) 4.00(0.00) 11.12(3.53)
200 2000 0.15(0.03) 0.43(0.07) 0.94(0.02) 4.00(0.00) 48.34(7.71)

the models. Actually, the error rates are all quite close to the Bayes errors. It is also
successful in eliminating most of the irrelevant features. The performance improves with
increased sample size. In terms of estimation accuracy, the L2 error decreases as p decreases
and n increases, which echoes the result in main theorem. We observe that AAC is greater
than 0.9 in most cases, implying that the direction of β̂(λ) matches that of the Bayes rule.

It is worth noting that the earlier literature have already performed thorough numerical
analysis to compare the performance of L1-norm SVM with L2-norm SVM and logistic
regression. For example, Zhu et al. (2004) observes that the performance of L1-norm SVM
and L2-norm SVM is similar when there is no redundant features; however, the performance
of L2-norm SVM can be adversely affected by the presence of redundant features. Rocha
et al. (2009) numerically compared L1-norm SVM with logistic regression classifier and
discovered that they are comparable but their relative finite-sample advantage depends on
the sample size and design. See similar observation in Zou (2007), Zhang et al. (2016b),
among others. Although L1-norm SVM can outperform regular L2-norm SVM when there
are many redundant features, it shares the drawback of L1 penalized least squares regression
that it overpenalizes large coefficients and tends to have larger false positives (including more
noise features) comparing with the non-convex penalized SVM, which will be investigated
in Section 5.2.

5.2 Monte Carlo results for non-convex penalized SVM

In this subsection, we consider the same four models as in Section 5.1. Instead of the
L1-norm SVM, we use it as the initial value for the non-convex penalized SVM algorithm
proposed in Zhang et al. (2016b). We consider two popular choices of non-convex penalty
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functions: SCAD penalty (with a = 3.7) and MCP penalty (with a = 3). As suggested
in Zhang et al. (2016b), we used the recently developed high-dimensional BIC criterion
to choose the tuning parameter for non-convex penalized SVMs. More specifically, the
SVM-extended BIC is defined as

SVMICγ(T ) =
n∑
i=1

2ξi + log(n)|T |+ 2γ

(
p

|T |

)
, 0 ≤ γ ≤ 1,

where in practice we can set γ = 0.5 as suggested by Chen and Chen (2008) and choose the
λ that minimizes the above SVMICγ for non-convex penalized SVM.

Table 2: Simulation results for SCAD penalized SVM
Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.10(0.05) 0.25(0.17) 0.95(0.04) 4.88(0.38) 4.92(5.82)
100 1500 0.12(0.06) 0.35(0.20) 0.93(0.05) 4.84(0.53) 9.31(8.89)
200 1500 0.08(0.03) 0.15(0.10) 0.98(0.03) 4.99(0.12) 0.48(0.51)
200 2000 0.07(0.02) 0.10(0.05) 0.99(0.01) 5.00(0.00) 0.66(0.80)

Model 2 100 1000 0.04(0.05) 0.25(0.17) 0.95(0.05) 4.73(0.51) 1.47(1.38)
100 1500 0.05(0.05) 0.28(0.18) 0.94(0.05) 4.64(0.55) 1.42(1.38)
200 1500 0.03(0.03) 0.19(0.10) 0.96(0.03) 4.91(0.29) 2.77(3.53)
200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.07) 1.40(1.81)

Model 3 100 1000 0.05(0.04) 0.30(0.16) 0.94(0.04) 4.53(0.58) 0.58(0.84)
100 1500 0.04(0.04) 0.24(0.15) 0.95(0.04) 4.75(0.46) 1.08(1.15)
200 1500 0.02(0.01) 0.14(0.06) 0.98(0.01) 4.99(0.10) 1.30(1.53)
200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.00) 1.32(1.83)

Model 4 100 1000 0.15(0.05) 0.51(0.20) 0.94(0.04) 3.50(0.59) 7.54(5.20)
100 1500 0.17(0.05) 0.61(0.18) 0.93(0.04) 3.57(0.71) 8.86(6.37)
200 1500 0.12(0.03) 0.19(0.10) 0.99(0.01) 3.98(0.14) 3.19(2.45)
200 2000 0.14(0.03) 0.39(0.19) 0.97(0.03) 3.69(0.51) 0.95(1.07)

Tables 2 and 3 summarize the simulation results for SCAD and MCP penalty functions,
respectively. We observe that the SCAD-penalized SVM and MCP-penalized MCP have
similar performance, both demonstrating a clear advantage of selecting the relevant features
and excluding irrelevant ones over L1-norm SVM. The Noise size decreases dramatically to
less than 3 as the sample size gets larger. The Signal size is almost 5 when n = 200 for
Model 1-3 and 4 for Model 4, implying the success of selecting the exact true model. We
also observe that non-convex penalized SVM has uniformly smaller L2 error and larger AAC
than L1-norm SVM. This resonates with the observation in the literature that eliminating
irrelevant features enhances classification performance. The Monte Carlo study confirms
the effectiveness of the algorithm of Zhang et al. (2016b) for feature selection for SVM in
high dimension when using L1-norm SVM as an initial value.
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Table 3: Simulation results for MCP penalized SVM
Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.11(0.05) 0.28(0.17) 0.95(0.04) 4.87(0.42) 5.46(5.45)
100 1500 0.13(0.07) 0.36(0.20) 0.93(0.05) 4.84(0.47) 9.00(8.49)
200 1500 0.07(0.02) 0.11(0.07) 0.99(0.02) 4.99(0.10) 0.48(0.51)
200 2000 0.07(0.02) 0.10(0.04) 0.99(0.01) 5.00(0.00) 0.83(0.83)

Model 2 100 1000 0.03(0.03) 0.20(0.12) 0.96(0.03) 4.84(0.38) 0.88(0.97)
100 1500 0.11(0.10) 0.47(0.27) 0.89(0.08) 4.08(0.85) 3.56(2.65)
200 1500 0.02(0.01) 0.14(0.05) 0.98(0.01) 5.00(0.00) 1.50(2.22)
200 2000 0.02(0.01) 0.14(0.06) 0.98(0.02) 5.00(0.07) 1.38(1.80)

Model 3 100 1000 0.04(0.04) 0.26(0.15) 0.95(0.04) 4.67(0.54) 0.60(0.82)
100 1500 0.04(0.04) 0.24(0.15) 0.95(0.04) 4.75(0.46) 1.01(1.07)
200 1500 0.02(0.01) 0.14(0.06) 0.98(0.01) 5.00(0.07) 1.27(1.72)
200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.00) 1.47(2.04)

Model 4 100 1000 0.15(0.05) 0.50(0.20) 0.94(0.04) 3.66(0.52) 7.20(4.49)
100 1500 0.17(0.05) 0.62(0.16) 0.92(0.04) 3.35(0.68) 4.96(3.58)
200 1500 0.12(0.03) 0.20(0.12) 0.99(0.01) 3.98(0.12) 1.99(1.72)
200 2000 0.13(0.03) 0.34(0.17) 0.97(0.02) 3.83(0.43) 0.86(0.80)

6. Conclusion and discussion

We investigate the statistical properties of L1-norm SVM coefficients in ultra-high dimen-
sion. We proved that L1-norm SVM coefficients achieve a near-oracle rate of estimation
error. To deal with the non-smoothness of the hinge loss function, we employ empirical
processes techniques to derive the theory. Furthermore, we showed that under some general
regularity conditions, the L1-norm SVM provides an appropriate initial value for the recent
algorithm developed by Zhang et al. (2016b) for non-convex penalized SVM in high dimen-
sion. Combined with the theory in that paper, we extended the applicability and validity
of their result to the ultra-high dimension.

Our work is motivated by the importance of identifying individual features for SVM in
analyzing high-dimensional data, which frequently arise in genomics and many other fields.
We not only closed a theoretical gap on the estimation error bound on L1-SVM when p� n,
but also verified that (Section 4) this leads to consistently identifying important features
when combined with a two-step iterative algorithm in the ultra-high dimensional setting.
Hence, we have guarantee for both algorithm convergence and theoretical performance. We
believe such results are of direct interest to JMLR readers given the popularity of SVM in
practice. Our work has substantial difference from the existing work in the literature. The
existing theory on SVM has been largely focused on the analysis of generalization error rate
and empirical risk. These results neither contain nor directly imply the transparent error
bound of the estimated coefficients of L1-norm SVM studied in this paper. Furthermore, the
techniques used in the paper for deriving the L2 error bound when p � n are completely
different from those used in p < n setting. Although our approach for deriving the L2-
error bound is inspired by the recent work in the literature for Lasso. There is substantial
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new technical challenge to deal with the nonsmooth Hinge loss function and requires more
delicate application of empirical process techniques. Also, unlike Lasso, we do not require
Gaussian or sub-Gaussian conditions in the technical derivation.
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Appendix A: Technical Proofs

Proof of Lemma 1. By the union bound, we have

P
(
c
√

2A(α) log p/n ≤ c||Ŝ(β∗)||∞
)

≤
p∑
j=0

P
(√

2A(α) log p/n ≤ n−1
∣∣ n∑
i=1

I(1− YiXT
i β
∗ ≥ 0)YiXij

∣∣).
Notice that we have S(β∗) = 0 because of minimizer β∗ and the definition of gradient
vector. Then, for each i and j, E(YiXijI(1− YiXT

i β
∗ ≥ 0)) = 0, by Hoeffding’s inequality,

P
(√

2A(α) log p/n ≤ n−1
∣∣ n∑
i=1

I(1− YiXT
i β
∗ ≥ 0)YiXij

∣∣)
≤ 2 exp(−4A(α)n log p

4nM2
) = 2p−

A(α)

M2 .

Terefore P
(
c
√

2A(α) log p/n ≤ c||Ŝ(β∗)||∞
)
≤ (p+ 1) · 2p−

A(α)

M2 ≤ α.

Proof of Lemma 2. Since β̂ minimizes ln(β), we have

1

n

n∑
i=1

(1− YiXT
i β̂)+ + λ||β̂−||1 ≤

1

n

n∑
i=1

(1− YiXT
i β
∗)+ + λ||β∗−||1,

1

n

n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

1

n

n∑
i=1

(1− YiXT
i β
∗)+ ≤ λ||β∗−||1 − λ||β̂−||1.

Recalling T = {1 ≤ j ≤ p : β∗j 6= 0} and T+ = T
⋃
{0}, we have

||β∗−||1 − ||β̂−||1 ≤ ||β∗T+
||1 − ||β̂−||1

≤ ||hT+ ||1 − ||hT c+ ||1.

This implies

1

n

n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

1

n

n∑
i=1

(1− YiXT
i β
∗)+ ≤ λ(||hT+ ||1 − ||hT c+ ||1). (15)
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Since the subdifferential of ln(β) at the point of β∗ is Ŝ(β∗) and recall the assumption
λ ≥ c||Ŝ(β∗)||∞, we have

1

n

n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

1

n

n∑
i=1

(1− YiXT
i β
∗)+

≥ ŜT (β∗)h

≥ −||h||1 · ||Ŝ(β∗)||∞

≥ −λ
c

(||hT+ ||1 + ||hT c+ ||1).

Hence, we have

λ(||hT+ ||1 − ||hT c+ ||1) ≥ −λ
c

(||hT+ ||1 + ||hT c+ ||1),

||hT+ ||1 ≥ C̄||hT c+ ||1,

where C̄ = c−1
c+1 . We have thus proved that h ∈ ∆C̄ .

Proof of Lemma 3. We first consider a fixed h ∈ Rp+1 such that ||h||0 ≤ q + 1 and
||h||2 6= 0. Note that the Hinge loss function is Lipschitz continuous and we have∣∣(1− YiXT

i β
∗ + YiX

T
i h)+ − (1− YiXT

i β
∗)+

∣∣
||h||2

≤ |X
T
i h|
||h||2

.

By Hoeffding’s inequality, we have ∀ t > 0,

P

(
B(h)

||h||2
≥ t√

n

∣∣X) ≤ 2 exp
(
− 2nt2

4||Xh||22/||h||22

)
.

Hence by assumption (A3),

P

(
B(h)

||h||
≥ t√

n

∣∣X) ≤ 2 exp
(
− t2

2λmax

)
≤ 2 exp

(
− t2

2M1

)
.

Let t = C
√

2q log p, where C is an arbitrary given positive constant. Then

P
(B(h)

||h||
≥ C

√
2q log p

n

)
≤ 2 exp

(
− C2q log p

M1

)
≤ 2p−C

2q/M1 ≤ 2p−C
2(q+1)/(2M1).

Next we will derive an upper bound for sup
||h||0≤q+1,||h||2 6=0

B(h)
||h|| . We consider covering {h ∈

Rp+1, ||h||0 ≤ q + 1} with ε-balls such that for any h1 and h2 in the same ball we have∣∣ h1
||h1||2 −

h2
||h2||2

∣∣ ≤ ε, where ε is a small positive number. The number of ε-balls that is

required to cover a k-dimensional unit ball is bounded by (3/ε)k, see for example Rogers
(1963) and Bourgain and Milman (1987). Since h is a (p + 1)-dimensional vector with at
most q+1 nonzero coordinates and h/||h||2 has unit length in L2 norm, the covering number
we require is at most (3p/ε)q+1. Let N denote such an ε-net. By the union bound,

P

(
sup
h∈N

B(h)

||h||2
≥ C

√
2q log p

n

)
≤ 2

(
3p

ε

)q+1

p−C
2(q+1)/(2M1) = 2

(3

ε
p1−C2/(2M1)

)q+1
,
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for any given positive constant C. Furthermore, for any h1,h2 ∈ Rp+1 such that ||h1||0 ≤
q + 1, ||h2||0 ≤ q + 1, ||h1||2 6= 0 and ||h2||2 6= 0, we have∣∣∣B(h1)

||h1||2
− B(h2)

||h2||2

∣∣∣ ≤ 2

n
||X
(
h1/||h1||2 − h2/||h2||2

)
||1

≤ 2√
n
||X
(
h1/||h1||2 − h2/||h2||2

)
||2

≤ 2
√
M1ε.

Therefore,

sup
||h||0≤q+1,||h||2 6=0

B(h)

||h||
≤ sup

h∈N

B(h)

||h||
+ 2
√
M1ε.

Let ε =
√

q log p
2M1n

, we have

P

(
sup

||h||0≤q+1,||h||2 6=0

B(h)

||h||2
≥ C

√
2q log p

n

)

≤ P

(
sup
h∈N

B(h)

||h||2
≥ (C − 1)

√
2q log p

n

)

≤ 2
( 2M1n

q log p

) q+1
2
(
3p1−(C−1)2/(2M1)

)q+1

≤ 2
(√

2M1n3p1−(C−1)2/(2M1)
)q+1

.

Since p > n, take C = 1 + 2C1

√
M1 for some C1 > 1, then for all n sufficiently large,

P
(

sup
||h||0≤q+1,||h||2 6=0

B(h)

||h||
≥ (1 + 2C1

√
M1)

√
2q log p

n

)
≤ 2p−2q(C2

1−1).

Lemma 6 For any x ∈ Rn,

||x||2 −
||x||1√
n
≤
√
n

4

(
max

1≤i≤n
|xi| − min

1≤i≤n
|xi
∣∣).

Proof. This proof was given in Cai, Wang, and Xu (2010). We include it here for complete-
ness and easy reference. It is obvious that the result holds when |x1| = |x2| = . . . = |xn|.
Without loss of generality, we now assume that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 and not all xi are
equal. Let

f(x) = ||x||2 −
||x||1√
n
.

Note that for any i ∈ {2, 3, . . . , n− 1}

∂f

∂xi
=

xi
||x||2

− 1√
n
.
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This implies that when xi ≤ ||x||2√n , f(x) is decreasing w.r.t xi; otherwise f(x) is increasing

w.r.t xi. Hence, if we fix x1 and xn, when f(x) achieves its maximum, x must be of the
form that x1 = x2 = . . . = xk and xk+1 = . . . = xn for some 1 ≤ k ≤ n. Now,

f(x) =
√
k(x2

1 − x2
n) + nx2

n −
k√
n

(x1 − xn)−
√
nxn.

Treat this as a function of k for k ∈ (0, n).

g(x) =
√
k(x2

1 − x2
n) + nx2

n −
k√
n

(x1 − xn)−
√
nxn.

By taking the derivatives, it is easy to see that

g(k) ≤ g

(
n

(x1+xn
2 )2 − x2

n

x2
1 − x2

n

)

=
√
n(x1 − xn)

(
1

2
− x1 + 3xn

4(x1 + xn)

)
.

Since 1
2 −

x1+3xn
4(x1+xn) ≥

1
4 , we have

||x||2 ≤
||x||1√
n

+

√
n

4
(x1 − xn).

We can also see that the above inequality becomes an equality if and only if xk+1 = . . . =
xn = 0 and k = n

4 .

Proof of Theorem 4. Let h = β∗−β̂, then it follows from Lemma 2 that h ∈ ∆C̄ . Assume
without loss of generality that |h0| ≥ |h1| ≥ . . . ≥ |hp|. Create a partition of {0, 1, 2, . . . , p}
as

S0 = {0, 1, 2, . . . , q}, S1 = {q + 1, q + 2 . . . , 2q + 1}, S2 = {2q + 2, 2q + 3 . . . , 3q + 2}, . . .

where Si, i = 1, 2, . . ., has cardinality q+1, except the last set which may have cardinality
smaller than q+1. This partition leads to the following decomposition
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(1− YiXT
i β
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)
, (16)
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where the first equation follows from the definition of hSk , k ≥ 0; the second equation holds
by observing that the intermediate terms cancel out each other. The purpose of the above
decomposition is to obtain more accurate probability bounds by appealing to Lemma 3.
This is made possible by noting that the jth term in the sum of the above decomposition
has the increment indexed by hSj , which has at most q+1 nonzero coordinates. Lemma 3

implies that uniformly for j = 1, 2, . . ., with probability at least 1− 2p−2q(C2
1−1),

1

n

(
n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i

j∑
k=0

hSk)+ −
n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i

j−1∑
k=0

hSk)+

)

≥ 1

n
E

(
n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i

j∑
k=0

hSk)+ −
n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i

j−1∑
k=0

hSk)+

)

−C
√

2q log p

n
||hSj ||2,

where C = 1 + 2C1

√
M1. Hence by (16), with probability at least 1− 2p−2q(C2

1−1),

1

n

( n∑
i=1

(1− YiXT
i β
∗ + YiX

T
i h)+ −

n∑
i=1

(1− YiXT
i β
∗)+

)
≥M(h)− C

√
2q log p

n

∑
j≥0

||hSj ||2

(17)

where M(h) = 1
nE(

∑n
i=1(1− YiXT

i β
∗ + YiX

T
i h)+ −

∑n
i=1(1− YiXT

i β
∗)+).

It is straightforward to show that ||hS0 ||1 ≥ ||hT+ ||1 ≥ C̄||hTC+ ||1 ≥ C̄||hSC0 ||1. By

Lemma 6, we have ∑
j≥1

||hSj ||2 ≤
∑
j≥1

||hSj ||1√
q + 1

+

√
q + 1

4
|hq|

≤
||hSC0 ||1√
q + 1

+
||hS0 ||1
4
√
q + 1

≤
( 1√

q + 1C̄
+

1

4
√
q + 1

)
||hS0 ||1

≤
(1

4
+

1

C̄

)
||hS0 ||2. (18)

By the definition of h, (15), (17) and (18), we have

M(h) ≤ λ(||hT+ ||1 − ||hTC+ ||1) +
(1

4
+

1

C̄

)
C

√
2q log p

n
||hS0 ||2 + C

√
2q log p

n
||hS0 ||2

≤ λ
√
q + 1||hS0 ||2 + C

√
2q log p

n

(5

4
+

1

C̄

)
||hS0 ||2. (19)

Condition (A4) imply that

M(h) =
1

2
hTH(β∗)h + o(||h||22) ≥ 1

2
M2||h||22 + o(||h||22). (20)
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Combining (19) and (20), we have

1

2
M2||h||22 + o(||h||22) ≤ λ

√
q + 1||hS0 ||2 + C

√
2q log p

n

(5

4
+

1

C̄

)
||hS0 ||2.

Note that ||h||22 = ||hS0 ||22 +
∑

j≥1 ||hSj ||22 ≥ ||hS0 ||22, and

∑
j≥1

||hSj ||22 ≤ |hq|
∑
j≥1

||hSj ||1 ≤
1

C̄
|hq|||hS0 ||1 ≤

1

C̄
||hS0 ||22.

So ||h||22 ≤ (1 + 1
C̄

)||hS0 ||22. This implies o(||h||22) = o(||hS0 ||22). To wrap up, we have

||hS0 ||2 + o(||hS0 ||2) ≤ 2λ
√
q + 1

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

)
.

Hence,

||h||2 + o(||h||2) ≤
√

1 +
1

C̄

(
2λ
√
q + 1

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

))
.

We therefore have

||β̂ − β∗||2 ≤
√

1 +
1

C̄

(2λ
√
q + 1

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

))
with probability at least 1− 2p−2q(C2

1−1).

Proof of Theorem 5. It follows by combining the result of Theorem 3.3 with that of
Theorem 4 in of Zhang et al. (2016b).

Appendix B: Discussions of Condition (A4)

We note that Condition (A4) is satisfied if the smallest eigenvalues of H(β∗) has a positive
lower bound. In the following, we provide a set of sufficient conditions to guarantee the
positive definiteness of H(β∗).

(A1∗) For some 1 ≤ k ≤ p,∫
S
I(Xk ≥ V −k )Xig(X)dX <

∫
S
I(Xk ≤ U+

k )Xif(X)dX

or ∫
S
I(Xk ≤ V +

k )Xig(X)dX >

∫
S
I(Xk ≥ U−k )Xif(X)dX

Here U+
k , V +

k ∈ [−∞,+∞] are upper bounds such that
∫
S I(Xk ≤ U+

k )f(X)dX =
min(1, π−π+

) and
∫
S I(Xk ≤ V +

k )f(X)dX = min(1, π+

π−
). Similarly, lower bounds U−k ,

V −k ∈ [−∞,+∞] and are defined as
∫
S I(Xk ≥ U−k )f(X)dX = min(1, π−π+

) and∫
S I(Xk ≥ V −k )g(X)dX = min(1, π+

π−
).
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(A2∗) For an orthogonal transformation Aj that maps
β∗

−
||β∗

−||2
to the j-th unit vector ej for

some j ∈ {1, 2, 3, . . . , p}, there exists rectangles

D+ = {x ∈M+ : li ≤ (Ajx)i ≤ vi with li < vi for i 6= j}

and

D− = {x ∈M− : li ≤ (Ajx)i ≤ vi with li < vi for i 6= j}

such that f(x) ≥ B1 > 0 on D+, and g(x) ≥ B2 > 0 on D−, where M+ = {x ∈
Rp|xTβ∗− + β∗0 = 1} and M− = {x ∈ Rp|xTβ∗− + β∗0 = −1}.

Also with some technical modification, Condition (A1) in our paper can be further relaxed
to

(A3∗) The densities f and g are continuous with common support S ⊂ Rp and have finite
second moments.

As an interesting side result, Lemma 5 in Koo et al. (2008) showed that Condition (A4)
holds under (A1∗)-(A3∗). Although their paper’s results on the Bahadur representation of
L1-norm SVM coefficients are restricted to the classical fixed p case, a careful examination
of the derivation showed that this particular lemma holds irrespective of the dimension of
p.

In the following, we demonstrate that Conditions (A1∗)-(A3∗) hold in a nontrivial exam-
ple where we have two multivariate normal distributions inRp. The marginal distribution of
Y is given by π+ = π− = 1/2. Let f and g be the density functions of X− given Y = 1 and
−1, respectively. Here, we assume f and g are multivariate normal densities with different
mean vectors µ and ν and a common covariance matrix Σ. This setup was also considered
in Koo et al. (2008) but we will provide more details to show condition (A4) is satisfied in
our high-dimensional setting. In particular, we will provide some details for deriving the
analytic forms of β∗ and H(β∗), which complements the results in Koo et al. (2008).

For normal density functions f and g, it is straightforward to check Condition (A3∗) is
satisfied. While U+

k = V +
k = +∞ and U−k = V −k = −∞, Condition (A1∗) also holds. Since

D+ and D− are bounded rectangles in Rp, the normal densities f and g are always bounded
away from zero on D+ and D−. Thus (A2∗) is satisfied. Denote the density and cumulative
distribution function of standard normal distribution N(0, 1) as φ and Φ, respectively. Then
we have S(β∗) = 0, where S(·) is defined in (6), that is

Ef (I(1−XTβ∗ ≥ 0)) = Eg(I(1 + XTβ∗ ≥ 0)) (21)

and

Ef (I(1−XTβ∗ ≥ 0)X−) = Eg(I(1 + XTβ∗ ≥ 0)X−) (22)

For left hand of equation (21), we have XT
−β
∗
− ∼ N(µTβ∗−,β

∗T
− Σβ∗−), thus

Ef (I(1−XTβ∗ ≥ 0)) = Pf (1− β∗0 −XT
−β
∗
− ≥ 0) = Φ(cf ), (23)

where cf =
1−β∗

0−µTβ∗
−

||Σ1/2β∗
−||2

. Similarly, Eg(I(1 + XTβ∗ ≥ 0)) = Φ(cg). where cg =
1+β∗

0+νTβ∗
−

||Σ1/2β∗
−||2

.
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To obtain an analytic expression of Ef (I(1 − XTβ∗ ≥ 0)), we consider an orthogo-

nal matrix P that satisfies
PΣ1/2β∗

−

||Σ1/2β∗
−||2

= (1, 0, 0, . . . , 0)T . Such a matrix P can always

be constructed. Actually, let P = (P1,P2, . . . ,Pp)
T and P1 =

Σ1/2β∗
−

||Σ1/2β∗
−||2

. By using

Gram-Schmidt process, we can generate other orthogonal vectors Pi based on P1 with
i = 2, 3, . . . , p. Since PΣ−1/2(X−−µ) = Z, a standard multivariate normal random vector,
we have I −XTβ∗ = cf ||Σ1/2β∗−||2 − ZTPΣ1/2β∗−. Thus

Ef (I(1−XTβ∗ ≥ 0)X−) = Eφ(I(cf − Z1 ≥ 0)(Σ1/2PTZ + µ))

= Eφ(I(cf − Z1 ≥ 0)µ) + Eφ(I(cf − Z1 ≥ 0)Σ1/2PTZ).

where φ is the joint probability density function of a p-dimensional standard multivariate
normal distribution. We will compute the above expectation componentwise. Let Σ1/2 =
Λ = (Λ1,Λ2, . . . ,Λp)

T . For k = 1, . . . , p, we have

Ef (I(1−XTβ∗ ≥ 0)Xk) = µkΦ(cf ) + Eφ
(
I(cf − Z1 ≥ 0)ΛTk

p∑
i=1

PiZi
)

where. Since Z2, . . . , Zp have mean zero and are independent of Z1,

Eφ
(
I(cf − Z1 ≥ 0)ΛTk

p∑
i=1

(PiZi)
)

= Eφ
(
I(cf − Z1 ≥ 0)ΛTk P1Z1

)
= ΛTk

Σ1/2β∗−

||Σ1/2β∗−||2
Eφ
(
I(cf − Z1 ≥ 0)Z1

)
= ΛTk

Σ1/2β∗−

||Σ1/2β∗−||2

∫ +∞

−∞
I
(
cf − x ≥ 0

)
xφ(x)dx

= ΛTk
Σ1/2β∗−

||Σ1/2β∗−||2

∫ cf

−∞
xφ(x)dx

Since xφ(x) is an odd function and φ(x) is symmetric, we have∫ cf

−∞
xφ(x)dx =

∫ |cf |
−∞

xφ(x)dx = − 1√
2π

∫ +∞

c2f

1

2
exp(−z

2
)dz = −φ(cf ).

Therefore, for k = 1, . . . , p, Ef
(
I(1−XTβ∗ ≥ 0)Xk

)
= µkΦ(cf )−ΛTk

Σ1/2β∗
−

||Σ1/2β∗
−||2

φ(cf ). Hence

Ef (I(1−XTβ∗ ≥ 0)X−) = µΦ(cf )− φ(cf )Σ1/2P1.

Similarly,

Eg(I(1 + XTβ∗ ≥ 0)X−) = νΦ(cg) + φ(cg)Σ
1/2P1
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Then, we have

Φ(cf ) = Φ(cg) (24)

and

µΦ(cf )− φ(cf )Σ1/2P1 = νΦ(cg) + φ(cg)Σ
1/2P1 (25)

From (24), we have c̃ = cf = cg, which implies

β∗T− (µ + ν) = −2β∗0 (26)

From (25),

β∗−

||Σ1/2β∗−||2
=

Φ(c̃)

2φ(c̃)
Σ−1(µ− ν) (27)

Let dΣ(µ,ν) = ((µ−ν)TΣ−1(µ−ν))1/2 be the Mahalanobis distance between µ and ν and

R(x) = φ(x)
Φ(x) . As Σ1/2 β∗

−

||Σ1/2β∗
−||2

has l2 norm equal to 1, we have || Φ(c̃)
2φ(c̃)Σ

−1/2(µ−ν)||2 = 1,

i.e., R(c̃) =
dΣ(µ,ν)

2 . R(x) is a monotonically decreasing function, thus we have c̃ =

R−1
(dΣ(µ,ν)

2

)
. Meanwhile, c̃ = cf =

1−β∗
0−µTβ∗

−

||Σ1/2β∗
−||2

, we can solve the problem based on (26)

and (27),

β∗0 = − (µ− ν)TΣ−1(µ + ν)

2c̃dΣ(µ,ν) + d2
Σ(µ,ν)

(28)

From (25),

β∗− =
2Σ−1(µ− ν)

2c̃dΣ(µ,ν) + d2
Σ(µ,ν)

(29)

By plugging (28) and (29) into (7), we can calculate H(β∗) as

H(β∗) =
φ(c̃)

4
(2c̃+ dΣ(µ,ν))

(
2 (µ + ν)T

µ + ν H22(β∗)

)
(30)

where

H22(β∗) = µµT + ννT + 2Σ + 2

((
c̃

dΣ(µ,ν)

)2

+
c̃

dΣ(µ,ν)
− 1

d2
Σ(µ,ν)

)
(µ− ν)(µ− ν)T

As we have obtained the analytic form of H(β∗), we consider Model 1 in Section
5.1 as an example. In Model 1, q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T and ν =
(−0.1,−0.2,−0.3,−0.4,−0.5, 0, . . . , 0)T ∈ Rp and π+ = π− = 1/2. The covariance ma-
trix Σ = (σij) consists of nonzero entries σij = −0.2 for 1 ≤ i 6= j ≤ q and other entries
equal to 0. From (28) and (29), we have β∗ = (0, 1.39, 1.47, 1.56, 1.65, 1.74, 0, . . . , 0)T . Based
on (30), we derived H(β∗) and numerically validated its positive-definiteness.
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