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Abstract

We consider the problem of efficiently computing the maximum likelihood estimator in
Generalized Linear Models (GLMs) when the number of observations is much larger than
the number of coefficients (n � p � 1). In this regime, optimization algorithms can
immensely benefit from approximate second order information. We propose an alternative
way of constructing the curvature information by formulating it as an estimation problem
and applying a Stein-type lemma, which allows further improvements through sub-sampling
and eigenvalue thresholding. Our algorithm enjoys fast convergence rates, resembling that
of second order methods, with modest per-iteration cost. We provide its convergence
analysis for the general case where the rows of the design matrix are samples from a sub-
Gaussian distribution. We show that the convergence has two phases, a quadratic phase
followed by a linear phase. Finally, we empirically demonstrate that our algorithm achieves
the highest performance compared to various optimization algorithms on several data sets.

Keywords: Optimization, Generalized Linear Models, Newton’s method, Sub-sampling

1. Introduction

Generalized Linear Models (GLMs) play a crucial role in numerous statistical and machine
learning problems. GLMs formulate the natural parameter in exponential families as a linear
model and provide a miscellaneous framework for statistical methodology and supervised
learning tasks. Celebrated examples include linear, logistic, multinomial regressions and
applications to graphical models (Nelder and Baker, 1972; McCullagh and Nelder, 1989;
Koller and Friedman, 2009).

In this paper, we focus on how to solve the maximum likelihood problem efficiently in
the GLM setting when the number of observations n is much larger than the dimension
of the coefficient vector p, i.e., n � p � 1. GLM optimization task is typically expressed
as a minimization problem where the objective function is the negative log-likelihood that
is denoted by `(β) where β ∈ Rp is the coefficient vector. Many optimization algorithms
are available for such minimization problems (Bishop, 1995; Boyd and Vandenberghe, 2004;
Nesterov, 2004). However, only a few uses the special structure of GLMs. In this paper, we
consider updates that are specifically designed for GLMs, which are of the from

β ← β − γQ∇β`(β) , (1)

where γ is the step size and Q is a scaling matrix which provides curvature information.
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For the updates of the form Equation 1, the performance of the algorithm is mainly
determined by the scaling matrix Q. Classical Newton’s method and natural gradient descent
can be recovered by simply taking Q to be the inverse Hessian and the inverse Fisher’s
information at the current iterate, respectively (Amari, 1998; Nesterov, 2004). Second
order methods may achieve quadratic convergence rate, yet they suffer from excessive cost
of computing the scaling matrix at every iteration. On the other hand, if we take Q to be the
identity matrix, we recover the standard gradient descent which has a linear convergence
rate. Although the convergence rate of gradient descent is considered slow compared to
that of second order methods such as Newton’s method, modest per-iteration cost makes it
practical for large-scale optimization.

The trade-off between convergence rate and per-iteration cost has been extensively stud-
ied (Bishop, 1995; Boyd and Vandenberghe, 2004; Nesterov, 2004). In n � p � 1 regime,
the main objective is to construct a scaling matrix Q that is computational feasible which
also provides sufficient curvature information. For this purpose, several Quasi-Newton meth-
ods have been proposed (Bishop, 1995; Nesterov, 2004). Updates given by Quasi-Newton
methods satisfy an equation which is often called the Quasi-Newton relation. A well-known
member of this class of algorithms is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

In this paper, we propose a Newton-type algorithm that utilizes the special structure of
GLMs by relying on a Stein-type lemma (Stein, 1981). It attains fast convergence rates with
low per-iteration cost. We call our algorithm Newton-Stein method which we abbreviate as
NewSt . Our contributions can be summarized as follows:

• We recast the problem of constructing a scaling matrix as an estimation problem and
apply a Stein-type lemma along with the sub-sampling technique to form a computa-
tionally feasible Q.

• Newton-Stein method allows further improvements through eigenvalue shrinkage, eigen-
value thresholding, sub-sampling and various other techniques that are available for
covariance estimation.

• Excessive per-iteration cost of O(np2 +p3) of Newton’s method is replaced by O(np+
p2) per-iteration cost and a one-time O(|S|p2) cost, where |S| is the sub-sample size.

• Assuming that the rows of the design matrix are i.i.d. and have bounded support (or
sub-Gaussian), and denoting the iterates of Newton-Stein method by {β̂t}t, we prove
a bound of the form∥∥β̂t+1 − β∗

∥∥
2
≤ τ1

∥∥β̂t − β∗∥∥2
+ τ2

∥∥β̂t − β∗∥∥2

2
, (2)

where β∗ is the true minimizer and τ1, τ2 are the convergence coefficients. The above
bound implies that the local convergence starts with a quadratic phase and transitions
into linear as the iterate gets closer to the true minimizer. We further establish a global
convergence result of Newton-Stein method coupled with a line search algorithm.

• We demonstrate the performance of Newton-Stein method on real and synthetic data
sets by comparing it to commonly used optimization algorithms.
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The rest of the paper is organized as follows: Section 1.1 surveys the related work
and Section 1.2 introduces the notations we use throughout the paper. Section 2 briefly
discusses the GLM framework and its relevant properties. In Section 3, we introduce
Newton-Stein method, develop its intuition, and discuss the computational aspects. Section
4 covers the theoretical results and in Section 4.4 we discuss how to choose the algorithm
parameters. Section 5 provides the empirical results where we compare the proposed algo-
rithm with several other methods on four data sets. Finally, in Section 6, we conclude with
a brief discussion along with a few future research directions.

1.1 Related Work

There are numerous optimization techniques that can be used to find the maximum like-
lihood estimator in GLMs. For moderate values of n and p, the classical second order
methods such as Newton’s method (also referred to as Newton-Raphson) are commonly
used. In large-scale problems, data dimensionality is the main factor while determining
the optimization method, which typically falls into one of two major categories: online and
batch methods. Online methods use a gradient (or sub-gradient) of a single, randomly
selected observation to update the current iterate (Robbins and Monro, 1951). Their per-
iteration cost is independent of n, but the convergence rate might be extremely slow. There
are several extensions of the classical stochastic descent algorithms, providing significant
improvement and improved stability (Bottou, 2010; Duchi et al., 2011; Schmidt et al., 2013;
Kolte et al., 2015).

On the other hand, batch algorithms enjoy faster convergence rates, though their per-
iteration cost may be prohibitive. In particular, second order methods enjoy quadratic
convergence, but constructing the Hessian matrix generally requires excessive amount of
computation. To remedy this issue, most research is focused on designing an approximate
and cost-efficient scaling matrix. This idea lies at the core of Quasi-Newton methods such
as BFGS (Bishop, 1995; Nesterov, 2004).

Another approach to construct an approximate Hessian makes use of sub-sampling tech-
niques (Martens, 2010; Byrd et al., 2011; Vinyals and Povey, 2011; Erdogdu and Montanari,
2015; Roosta-Khorasani and Mahoney, 2016a,b). Many contemporary learning methods rely
on sub-sampling as it is simple and it provides significant boost over the first order meth-
ods. Further improvements through conjugate gradient methods and Krylov sub-spaces are
available. Sub-sampling can also be used to obtain an approximate solution, with certain
large deviation guarantees (Dhillon et al., 2013).

There are many composite variants of the aforementioned methods, that mostly com-
bine two or more techniques. Well-known composite algorithms are the combinations of
sub-sampling and Quasi-Newton (Schraudolph et al., 2007; Byrd et al., 2016), stochastic
and deterministic gradient descent (Friedlander and Schmidt, 2012), natural gradient and
Newton’s method (Le Roux and Fitzgibbon, 2010), natural gradient and low-rank approx-
imation (Le Roux et al., 2008), sub-sampling and eigenvalue thresholding (Erdogdu and
Montanari, 2015).

Lastly, algorithms that specialize on certain types of GLMs include coordinate descent
methods for the penalized GLMs (Friedman et al., 2010), trust region Newton-type methods
(Lin et al., 2008), and approximation methods (Erdogdu et al., 2016b,a).
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1.2 Notation

Let [n] = {1, 2, ..., n} and denote by |S|, the size of a set S. The gradient and the Hessian
of f with respect to β are denoted by ∇βf and ∇2

βf , respectively. The j-th derivative of

a function f(w) is denoted by f (j)(w). For a vector x and a symmetric matrix X, ‖x‖2
and ‖X‖2 denote the `2 and spectral norms of x and X, respectively. ‖x‖ψ2 denotes the
sub-Gaussian norm, which will be defined later. Sp−1 denotes the p-dimensional sphere.
PC denotes the projections onto the set C, and Bp(R) ⊂ Rp denotes the p-dimensional ball
of radius R. For a random variable x and density f , x ∼ f means that the distribution
of x follows the density f . Multivariate Gaussian density with mean µ ∈ Rp and covari-
ance Σ ∈ Rp×p is denoted as Np(µ,Σ). For random variables x, y, d(x, y) and D(x, y)
denote probability metrics (will be explicitly defined) measuring the distance between the
distributions of x and y. N[](· · · ) and Tε denote the bracketing number and ε-net.

2. Generalized Linear Models

Distribution of a random variable y ∈ R belongs to an exponential family with natural
parameter η ∈ R if its density can be written as

f(y|η) = eηy−φ(η)h(y),

where φ is the cumulant generating function and h is the carrier density. Let y1, y2, ..., yn
be independent observations such that ∀i ∈ [n], yi ∼ f(yi|ηi). Denoting η = (η1, ..., ηn)T ,
the joint likelihood can be written as

f(y1, y2, ..., yn|η) = exp

{
n∑
i=1

[yiηi − φ(ηi)]

}
n∏
i=1

h(yi). (3)

We consider the problem of learning the maximum likelihood estimator in the above expo-
nential family framework, where the vector η ∈ Rn is modeled through the linear relation,

η = Xβ,

for some design matrix X ∈ Rn×p with rows xi ∈ Rp, and a coefficient vector β ∈ Rp.
This formulation is known as Generalized Linear Models (GLMs) with canonical links. The
cumulant generating function φ determines the class of GLMs, i.e., for ordinary least squares
(OLS) φ(z) = z2/2, for logistic regression (LR) φ(z) = log(1+ez), and for Poisson regression
(PR) φ(z) = ez.

Finding the maximum likelihood estimator in the above formulation is equivalent to
minimizing the negative log-likelihood function `(β),

`(β) =
1

n

n∑
i=1

[φ(〈xi, β〉)− yi〈xi, β〉] , (4)

where 〈x, β〉 is the inner product between the vectors x and β. The relation to OLS and LR
can be seen much easier by plugging in the corresponding φ(z) in Equation 4. The gradient
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and the Hessian of `(β) can be written as:

∇β`(β) =
1

n

n∑
i=1

[
φ(1)(〈xi, β〉)xi − yixi

]
, ∇2

β`(β) =
1

n

n∑
i=1

φ(2)(〈xi, β〉)xixTi . (5)

For a sequence of scaling matrices {Qt}t>0 ∈ Rp×p, we consider iterations of the form

β̂t+1 = β̂t − γtQt∇β`(β̂t)

where γt is the step size. The above iteration is our main focus, but with a new approach
on how to compute the sequence of matrices {Qt}t>0. We will formulate the problem of
finding a scalable Qt as an estimation problem and apply a Stein-type lemma that provides
us with a computationally efficient update rule.

3. Newton-Stein Method

Classical Newton-Raphson (or simply Newton’s) method is the standard approach for train-
ing GLMs for moderately large date sets. However, its per-iteration cost makes it imprac-
tical for large-scale optimization. The main bottleneck is the computation of the Hessian
matrix that requires O(np2) flops which is prohibitive when n� p� 1. Numerous methods
have been proposed to achieve the fast convergence rate of Newton’s method while keeping
the per-iteration cost manageable. To this end, a popular approach is to construct a scaling
matrix Qt, which approximates the inverse Hessian at every iteration t.

The task of constructing an approximate Hessian can be viewed as an estimation prob-
lem. Assuming that the rows of X are i.i.d. random vectors, the Hessian of the negative
log-likelihood of GLMs with a cumulant generating function φ has the following sample
average form [

Qt
]−1

=
1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β〉) ≈ E[xxTφ(2)(〈x, β〉)] .

We observe that
[
Qt
]−1

is just a sum of i.i.d. matrices. Hence, the true Hessian is nothing
but a sample mean estimator to its expectation. Another natural estimator would be the
sub-sampled Hessian method which is extensively studied by Martens, 2010; Byrd et al.,
2011; Erdogdu and Montanari, 2015; Roosta-Khorasani and Mahoney, 2016a. Therefore, our
goal is to propose an estimator for the population level Hessian that is also computationally
efficient. Since n is large, the proposed estimator will be close to the true Hessian.

We use the following Stein-type lemma to find a more efficient estimator to the expec-
tation of the Hessian.

Lemma 1 (Stein-type lemma) Assume that x ∼ Np(0,Σ) and β ∈ Rp is a constant
vector. Then for any function f : R→ R that is twice “weakly” differentiable, we have

E
[
xxT f(〈x, β〉)

]
= E [f(〈x, β〉)] Σ + E

[
f (2)(〈x, β〉)

]
ΣββTΣ . (6)

Proof The proof will follow from integration by parts. Let g(x|Σ) denote the density of a
multivariate normal random variable x with mean 0 and covariance Σ. We recall the basic
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Algorithm 1 Newton-Stein Method

Input: β̂0, |S|, ε, {γt}t≥0.

1. Estimate the covariance using a random sub-sample S ⊂ [n]:

Σ̂S = 1
|S|
∑

i∈S xix
T
i .

2. while
∥∥β̂t+1 − β̂t

∥∥
2
> ε do

µ̂2(β̂t) = 1
n

∑n
i=1 φ

(2)(〈xi, β̂t〉), µ̂4(β̂t) = 1
n

∑n
i=1 φ

(4)(〈xi, β̂t〉),

Qt =
1

µ̂2(β̂t)

[
Σ̂
−1

S −
β̂t[β̂t]T

µ̂2(β̂t)/µ̂4(β̂t) + 〈Σ̂S β̂t, β̂t〉

]
,

β̂t+1 = β̂t − γt Qt∇β`(β̂t),

t← t+ 1.

3. end while

Output: β̂t.

identity xg(x|Σ)dx = −Σdg(x|Σ) and write

E[xxT f(〈x, β〉)] =

∫
xxT f(〈x, β〉)g(x)dx,

=Σ

{∫
f(〈x, β〉)g(x|Σ)dx+

∫
βxT f (1)(〈x, β〉)g(x|Σ)dx

}
,

=Σ

{
E[f(〈x, β〉)] +

∫
ββT f (2)(〈x, β〉)g(x|Σ)dxΣ

}
,

=E[f(〈x, β〉)]Σ + E
[
f (2)(〈x, β〉)

]
ΣββTΣ.

The right hand side of Equation 6 is a rank-1 update to the first term. Hence, its inverse
can be computed with O(p2) cost. Quantities that change at each iteration are the ones
that depend on β, i.e.,

µ2(β) = E[φ(2)(〈x, β〉)], and µ4(β) = E[φ(4)(〈x, β〉)].

Note that µ2(β) and µ4(β) are scalar quantities and they can be estimated by their cor-
responding sample means µ̂2(β) and µ̂4(β) (explicitly defined at Step 2 of Algorithm 1)
respectively, with only O(np) computation.

To complete the estimation task suggested by Equation 6, we need an estimator for
the covariance matrix Σ. A natural estimator is the sample mean where, we only use a
sub-sample of the indices S ⊂ [n] so that the cost is reduced to O(|S|p2) from O(np2).
Sub-sampling based sample mean estimator is denoted by Σ̂S = 1

|S|
∑

i∈S xix
T
i , which is
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Figure 1: The left plot demonstrates the accuracy of proposed Hessian estimation
over different distributions. Number of observations is set to be n =
O(p log(p)). The right plot shows the phase transition in the convergence rate
of Newton-Stein method (NewSt ). Convergence starts with a quadratic rate and
transitions into linear. Plots are obtained using Covertype data set.

widely used in large-scale problems (Vershynin, 2010). We highlight the fact that Lemma 1
replaces O(np2) per-iteration cost of Newton’s method with a one-time cost of O(np2). We
further use sub-sampling to reduce this one-time cost to O(|S|p2), and obtain the following
Hessian estimator at β

[
Qt
]−1︸ ︷︷ ︸

∈ Rp×p

= µ̂2(β)︸ ︷︷ ︸
∈ R

Σ̂S︸︷︷︸
∈ Rp×p

+ µ̂4(β)︸ ︷︷ ︸
∈ R

rank-1 update︷ ︸︸ ︷
Σ̂Sββ

T Σ̂S︸ ︷︷ ︸
∈ Rp×p

(7)

We emphasize that any covariance estimation method can be applied in the first step of
the algorithm. There are various estimation techniques most of which rely on the concept
of shrinkage (Cai et al., 2010; Donoho et al., 2013). This is because, important curvature
information is generally contained in the largest few spectral features (Erdogdu and Monta-
nari, 2015). In particular, for a given threshold r, we suggest to use the largest r eigenvalues
of the sub-sampled covariance estimator Σ̂S , and setting rest of them to (r + 1)-th eigen-
value. This operation helps denoising and provides additional computational benefits when
inverting the covariance estimator (Erdogdu and Montanari, 2015).

Inverting the constructed Hessian estimator can make use of the low-rank structure.
First, notice that the updates in Equation 7 are based on rank-1 matrix additions. Hence, we
can simply apply Sherman–Morrison inversion formula to Equation 7 and obtain an explicit
equation for the scaling matrix Qt (Step 2 of Algorithm 1). This formulation would impose
another inverse operation on the covariance estimator. We emphasize that this operation is
performed once. Therefore, instead of O(p3) per-iteration cost of Newton’s method due to
inversion, Newton-Stein method (NewSt) requiresO(p2) per-iteration and a one-time cost of
O(p3). Assuming that Newton-Stein and Newton methods converge in T1 and T2 iterations
respectively, the overall complexity of Newton-Stein is O

(
npT1 + p2T1 + (|S|+ p)p2

)
≈
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O
(
npT1 + p2T1 + |S|p2

)
whereas that of Newton is O(np2T2 + p3T2). We show both em-

pirically and theoretically that the quantities T1 and T2 are close to each other.
The convergence rate of Newton-Stein method has two phases. Convergence starts

quadratically and transitions into linear rate when it gets close to the true minimizer.
The phase transition behavior can be observed through the right plot in Figure 1. This is a
consequence of the bound provided in Equation 2, which is the main result of our theorems
on the local convergence (given in Section 4).

Even though Lemma 1 assumes that the covariates are multivariate Gaussian random
vectors, in Section 4, the only assumption we make on the covariates is either bounded
support or sub-Gaussianity, both of which cover a wide class of random variables including
Bernoulli, elliptical distributions, bounded variables etc. The left plot of Figure 1 shows
that the estimation is accurate for many distributions. This is a consequence of the fact
that the proposed estimator in Equation 7 relies on the distribution of x only through inner
products of the form 〈x, v〉, which in turn results in an approximate normal distribution
due to the central limit theorem. To provide more intuition, we explain this through zero-
biased transformations which is a general version of Stein’s lemma for arbitrary distributions
(Goldstein and Reinert, 1997).

Definition 2 Let z be a random variable with mean 0 and variance σ2. Then, there exists
a random variable z∗ that satisfies E[zf(z)] = σ2E[f (1)(z∗)], for all differentiable functions
f . The distribution of z∗ is said to be the z-zero-bias distribution.

The normal distribution is the unique distribution whose zero-bias transformation is itself
(i.e. the normal distribution is a fixed point of the operation mapping the distribution of z
to that of z∗). The distribution of z∗ is referred to as z-zero-bias distribution and is entirely
determined by the distribution of z. Properties such as existence can be found, for example,
in Chen et al., 2010.

To provide some intuition behind the usefulness of Lemma 1 even for arbitrary distri-
butions, we use zero-bias transformations. For simplicity, assume that the covariate vector
x has i.i.d. entries from an arbitrary distribution with mean 0, and variance 1. Then the
zero-bias transformation applied twice to the entry (i, j) of matrix E[xxT f(〈x, β〉)] yields

E[xixjf(〈x, β〉)] =


E[f(βix

∗
i + Σ

k 6=i
xkβk)] + β2

i E
[
f (2)(βix

∗∗
i + Σ

k 6=i
xkβk)

]
if i = j,

βiβjE
[
f (2)(βix

∗
i + βjx

∗
j + Σ

k 6=i,j
xkβk)

]
if i 6= j,

where x∗i and x∗∗i have xi-zero-bias and x∗i -zero-bias distributions, respectively. For each
entry (i, j) at most two summands of 〈x, β〉 = Σkxkβk change their distributions. Therefore,
if β is well spread and p is sufficiently large, the sums inside the expectations will behave
similar to the inner product 〈x, β〉. Correspondingly, the above equations will be close to
their Gaussian counterpart as given in Equation 6.

4. Theoretical Results

We start by introducing the terms that will appear in the theorems. Then we will provide
two technical results on bounded and sub-Gaussian covariates. The proofs of the theorems
are technical and provided in Appendix.
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4.1 Preliminaries

Hessian estimation described in the previous section relies on a Gaussian approximation.
For theoretical purposes, we use the following probability metric to quantify the gap between
the distribution of xi’s and that of a normal vector.

Definition 3 Given a family of functions H, and random vectors x, y ∈ Rp, for H and any
h ∈ H, define

dH(x, y) = sup
h∈H

dh(x, y) where dh(x, y) =
∣∣E [h(x)]− E [h(y)]

∣∣.
Many probability metrics can be expressed as above by choosing a suitable function

class H. Examples include Total Variation (TV), Kolmogorov and Wasserstein metrics
(Gibbs and Su, 2002; Chen et al., 2010). Based on the second and the fourth derivatives of
the cumulant generating function, we define the following function classes:

H1 =
{
h(x) = φ(2)(〈x, β〉) : β ∈ C

}
, H2 =

{
h(x) = φ(4)(〈x, β〉) : β ∈ C

}
,

H3 =
{
h(x) = 〈v, x〉2φ(2)(〈x, β〉) : β ∈ C, ‖v‖2 = 1

}
,

where C ∈ Rp is a closed, convex set that is bounded by the radius R. Exact calculation
of such probability metrics are often difficult. The general approach is to upper bound the
distance by a more intuitive metric. In our case, we observe that dHj (x, y) for j = 1, 2, 3,
can be easily upper bounded by dTV(x, y) up to a scaling constant, when the covariates
have bounded support.

In our theoretical results, we rely on projected updates onto a closed convex set C, which
are of the form

β̂t+1 = PtC
(
β̂t − γQt∇β`(β̂t)

)
where the projection is defined as PtC(β) = argminw∈C

1
2‖w − β‖

2
Qt−1 , with C bounded by

R. This is a special case of proximal Newton-type algorithms and further generalization is
straightforward (See Lee et al., 2014). We will further assume that the covariance matrix
has full rank and its smallest eigenvalue is lower bounded by a positive constant.

4.2 Bounded Covariates

We have the following per-step bound for the iterates generated by the Newton-Stein
method, when the covariates are supported on a ball.

Theorem 4 (Local convergence) Assume that the covariates x1, x2, ..., xn are i.i.d. ran-
dom vectors supported on a ball of radius

√
K with

E[xi] = 0 and E
[
xix

T
i

]
= Σ.

Further assume that the cumulant generating function φ has bounded 2nd-5th derivatives
and that the set C is bounded by R. For

{
β̂t
}
t>0

given by the Newton-Stein method for
γ = 1, define the event

E =

{
inf
‖u‖2=1

∣∣∣µ2(β̂t)〈u,Σu〉+ µ4(β̂t)〈u,Σβ̂t〉2
∣∣∣ > 2κ−1 ∀t, β∗ ∈ C

}
(8)
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for some positive constant κ, and the optimal value β∗. If n, |S| and p are sufficiently large,
then there exist constants c, c1, c2 depending on the radii K,R, P(E) and the bounds on φ(2)

and |φ(4)| such that conditioned on the event E, with probability at least 1− c/p2, we have∥∥β̂t+1 − β∗
∥∥

2
≤ τ1

∥∥β̂t − β∗∥∥2
+ τ2

∥∥β̂t − β∗∥∥2

2
, (9)

where the coefficients τ1 and τ2 are deterministic constants defined as

τ1 = κD(x, z) + c1κ

√
p

min {p/ log(p)|S|, n/ log(n)}
, τ2 = c2κ, (10)

and D(x, z) is defined as

D(x, z) = ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z) + dH3(x, z), (11)

for a multivariate Gaussian random variable z with the same mean and covariance as xi’s.

The bound in Equation 9 holds with high probability, and the coefficients τ1 and τ2 are
deterministic constants which will describe the convergence behavior of the Newton-Stein
method. Observe that the coefficient τ1 is sum of two terms: D(x, z) measures how accurate
the Hessian estimation is, and the second term depends on the sub-sampling size |S| and
the data dimensions n, p.

Theorem 4 shows that the convergence of Newton-Stein method can be upper bounded
by a compositely converging sequence, that is, the squared term will dominate at first pro-
viding us with a quadratic rate, then the convergence will transition into a linear phase as
the iterate gets close to the optimal value. The coefficients τ1 and τ2 govern the linear and
quadratic terms, respectively. The effect of sub-sampling appears in the coefficient of linear
term. In theory, there is a threshold for the sub-sampling size |S|, namely O(n/ log(n)), be-
yond which further sub-sampling has no effect. The transition point between the quadratic
and the linear phases is determined by the sub-sampling size and the properties of the data.
The phase transition behavior can be observed through the right plot in Figure 1.

Using the above theorem, we state the following corollary.

Corollary 5 Assume that the assumptions of Theorem 4 hold. For a constant δ ≥ P
(
EC
)
,

and a tolerance ε satisfying

ε ≥ 20R
{
c/p2 + δ

}
,

and for an iterate satisfying E
[
‖β̂t−β∗‖2

]
> ε, the following inequality holds for the iterates

of Newton-Stein method,

E
[
‖β̂t+1 − β∗‖2

]
≤ τ̃1E

[
‖β̂t − β∗‖2

]
+ τ2E

[
‖β̂t − β∗‖22

]
,

where τ̃1 = τ1 + 0.1 and τ1, τ2 are as in Theorem 4.

The bound stated in the above corollary is an analogue of composite convergence (given
in Equation 9) in expectation. Note that our results make strong assumptions on the
derivatives of the cumulant generating function φ. We emphasize that these assumptions

10
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are valid for linear and logistic regressions. An example that does not fit in our scheme is
Poisson regression with φ(z) = ez. However, we observed empirically that the algorithm
still provides significant improvement.

The following theorem characterizes the local convergence behavior of a compositely
converging sequence.

Theorem 6 Assume that the assumptions of Theorem 4 hold with τ1 < 1 and for ϑ =
∥∥β̂0−

β∗
∥∥

2
define the interval Ξ =

(
τ1ϑ

1−τ2ϑ , ϑ
)

. Conditioned on the event E ∩
{
ϑ < (1 − τ1)/τ2

}
,

there exists a constant c such that with probability at least 1−c/p2, the number of iterations
to reach a tolerance of ε cannot exceed

inf
ξ∈Ξ
J (ξ) := log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
+

log(ε/ξ)

log(τ1 + τ2ξ)
, (12)

where the constants τ1 and τ2 are as in Theorem 4.

The expression in Equation 12 has two terms: the first one is due to the quadratic phase
whereas the second one is due to the linear phase. To obtain the properties of local con-
vergence, a locality constraint is required. We note that τ1 < 1 is a necessary assumption,
which is satisfied for sufficiently large n and |S|.

In the following, we establish the global convergence of the Newton-Stein method coupled
with a backtracking line search—which is explicitly given in Section 4.4.

Theorem 7 (Global Convergence) Assume that the assumptions of Theorem 4 hold and
at each step, the step size γt of the Newton-Stein method is determined by the backtracking
line search with parameters a and b. Then conditioned on the event E, there exists a constant
c such that with probability at least 1 − c/p2, the sequence of iterates {β̂t}t>0 generated by
the Newton-Stein method converges globally.

4.3 Sub-Gaussian Covariates

In this section, we carry our analysis to the more general case, where the covariates are
sub-Gaussian vectors.

Theorem 8 (Local convergence) Assume that x1, x2, ..., xn are i.i.d. sub-Gaussian ran-
dom vectors with sub-Gaussian norm K such that

E[xi] = 0, E[‖xi‖2] = µ and E
[
xix

T
i

]
= Σ.

Further assume that the cumulant generating function φ is uniformly bounded and has
bounded 2nd-5th derivatives and that C is bounded by R. For

{
β̂t
}
t>0

given by the Newton-
Stein method and the event E in Equation 8, if we have n, |S| and p sufficiently large and

n0.2/ log(n) & p,

then there exist constants c1, c2, c3, c4 depending on the eigenvalues of Σ, the radius R, µ,
P(E) and the bounds on φ(2) and |φ(4)| such that conditioned on the event E, with probability
at least 1− c1e

−c2p, the bound given in Equation 9 holds for constants

τ1 = κD(x, z) + c3κ

√
p

min {|S|, n0.2/ log(n)}
, τ2 = c4κp

1.5, (13)

where D(x, z) defined as in Equation 11.

11
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The above theorem is more restrictive than Theorem 4. We require n to be much larger than
the dimension p. Also note that a factor of p1.5 appears in the coefficient of the quadratic
term. We also notice that the threshold for the sub-sample size reduces to n0.2/ log(n).

We have the following analogue of Corrolary 5.

Corollary 9 Assume that the assumptions of Theorem 8 hold. For a constant δ ≥ P
(
EC
)
,

and a tolerance ε satisfying

ε ≥ 20R
√
c1e−c2p + δ,

and for an iterate satisfying E
[
‖β̂t − β∗‖2

]
> ε, the iterates of Newton-Stein method will

satisfy,

E
[
‖β̂t+1 − β∗‖2

]
≤ τ̃1E

[
‖β̂t − β∗‖2

]
+ τ2E

[
‖β̂t − β∗‖22

]
,

where τ̃1 = τ1 + 0.1 and τ1, τ2 are as in Theorem 8.

When the covariates are in fact multivariate normal, we have D(x, z) = 0 which implies that
the coefficient τ1 is smaller. Correspondingly, the quadratic phase lasts longer providing
better performance.

We conclude this section by noting that the global convergence properties of the sub-
Gaussian case is very similar to the previous section where we had bounded covariates.

4.4 Algorithm Parameters

Newton-Stein method takes two input parameters and for those, we suggest near-optimal
choices based on our theoretical results. We further discuss the choice of a covariance
estimation method which provides additional improvements to the proposed algorithm.

• Sub-sample size: Newton-Stein method uses a subset of indices to approximate the
covariance matrix Σ. Corollary 5.50 of Vershynin, 2010 proves that a sample size of
O(p) is sufficient for sub-Gaussian covariates and that of O(p log(p)) is sufficient for
arbitrary distributions supported in some ball to estimate a covariance matrix by its
sample mean estimator. In the regime we consider, n� p, we suggest to use a sample
size of |S| = O(p log(p)) for this task.

• Covariance estimation method: Many methods have been suggested to improve the
estimation of the covariance matrix and almost all of them rely on the concept of
shrinkage (Cai et al., 2010; Donoho et al., 2013). Therefore, we suggest to use a
thresholding based approach suggested by Erdogdu and Montanari, 2015. For a given
threshold r, we take the largest r eigenvalues of the sub-sampled covariance estima-
tor, setting rest of them to (r + 1)-th eigenvalue. Eigenvalue thresholding can be
considered as a shrinkage operation which will retain only the important second order
information. Choosing the rank threshold r can be simply done on the sample mean
estimator of Σ. After obtaining the sub-sampled estimate of the mean, one can either
plot the spectrum and choose manually or use an optimal technique from Donoho

12
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et al., 2013. The suggested method requires a single time O(rp2) computation and re-
duces the cost of inversion from O(p3) to O(rp2). We highlight that the Newton-Stein
method was originally presented with the eigenvalue thresholding in an early version
of this paper (Erdogdu, 2015).

• Step size: Step size choices for the Newton-Stein method are quite similar to those
of Newton-type methods (i.e., see Boyd and Vandenberghe, 2004). In the damped
phase, one should use a line search algorithm such as backtracking with parameters
a ∈ (0, 0.5) and b ∈ (0, 1). Defining the modified gradient (or composite gradient Lee
et al., 2014) Dγ(β̂t) = 1

γ

{
β̂t − PtC(β̂t − γQt∇`(β̂t))

}
, we compute the step size via

γ = γ̄; while: `
(
β̂t − γDγ(β̂t)

)
> `(β̂t)− aγ〈∇`(β̂t), Dγ(β̂t)〉, γ ← γb.

The above line search algorithm leads to global convergence with high probability as
stated in Theorem 7.

The step size choice for the local phase depends on the use of eigenvalue thresholding.
If no shrinkage method is applied, line search algorithm should be initialized with
γ̄ = 1. If a shrinkage method (e.g. eigenvalue thresholding) is applied, then choosing
a larger local step size may provide faster convergence. If the data follows the r-spiked
model, the optimal step size will be close to 1 if there is no sub-sampling. However,
due to fluctuations resulting from sub-sampling, starting with γ̄ = 1.2 will provide
faster local rates. This case has been explicitly studied in a preliminary version of
this work (Erdogdu, 2015). A heuristic derivation and a detailed discussion can also
be found in Section E in the Appendix.

5. Experiments

In this section, we validate the performance of Newton-Stein method through extensive
numerical studies. We experimented on two commonly used GLM optimization problems,
namely, Logistic Regression (LR) and Linear Regression (OLS). LR minimizes Equation 4
for the logistic function φ(z) = log(1 + ez), whereas OLS minimizes the same equation
for φ(z) = z2/2. In the following, we briefly describe the algorithms that are used in the
experiments:

• Newton’s Method (NM) uses the inverse Hessian evaluated at the current iterate, and
may achieve local quadratic convergence. NM steps require O(np2 + p3) computation
which makes it impractical for large-scale data sets.

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) forms a curvature matrix by cultivating
the information from the iterates and the gradients at each iteration. Under certain
assumptions, the convergence rate is locally super-linear and the per-iteration cost is
comparable to that of first order methods.

• Limited Memory BFGS (L-BFGS) is similar to BFGS, and uses only the recent few
iterates to construct the curvature matrix, gaining significant performance in terms
of memory usage.
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Figure 2: Performance of various optimization methods on two different simulated data
sets. Red straight line represents the Newton-Stein method (NewSt ). y and x
axes denote log10(‖β̂t − β∗‖2) and time elapsed in seconds, respectively.

• Gradient Descent (GD) update is proportional to the negative of the full gradient
evaluated at the current iterate. Under smoothness assumptions, GD achieves a locally
linear convergence rate, with O(np) per-iteration cost.

• Accelerated Gradient Descent (AGD) is proposed by Nesterov (Nesterov, 1983), which
improves over the gradient descent by using a momentum term. Performance of AGD
strongly depends of the smoothness of the function.

For all the algorithms, we use a constant step size that provides the fastest convergence.
We use the Newton-Stein method with eigenvalue thresholding as described in Section
4.4. The parameters such as sub-sample size |S|, and rank r are selected by following
the guidelines described in Section 4.4. The rank threshold r (which is an input to the
eigenvalue thresholding) is specified at the title of each plot.

5.1 Simulations With Synthetic Data Sets

Synthetic data sets, S3, S10, and S20 are generated through a multivariate Gaussian dis-
tribution where the covariance matrix follows r-spiked model, i.e., r = 3 for S3 and r = 20
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Figure 3: Performance of various optimization methods on two different real data sets ob-
tained from Lichman, 2013. Red straight line represents the Newton-Stein method
(NewSt ). y and x axes denote log10(‖β̂t − β∗‖2) and time elapsed in seconds,
respectively.

for S20. To generate the covariance matrix, we first generate a random orthogonal matrix,
say M. Next, we generate a diagonal matrix Λ that contains the eigenvalues, i.e., the first
r diagonal entries are chosen to be large, and rest of them are equal to 1. Then, we let
Σ = MΛMT . For dimensions of the data sets, see Table 2. We also emphasize that the
data dimensions are chosen so that Newton’s method still does well.

The simulation results are summarized in Figure 2. Further details regarding the exper-
iments can be found in Table 1. We observe that Newton-Stein method (NewSt) provides
a significant improvement over the classical techniques.

Observe that the convergence rate of NewSt has a clear phase transition point in the
top left plot in Figure 2. As argued earlier, this point depends on various factors including
sub-sampling size |S| and data dimensions n, p, the rank threshold r and structure of the
covariance matrix. The prediction of the phase transition point is an interesting line of
research. However, our convergence guarantees are conservative and we believe that they
cannot be used for this purpose.
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5.2 Experiments With Real Data Sets

We experimented on two real data sets where the data sets are downloaded from UCI
repository (Lichman, 2013). Both data sets satisfy n � p, but we highlight the difference
between the proportions of dimensions n/p. See Table 2 for details.

We observe that Newton-Stein method performs better than classical methods on real
data sets as well. More specifically, the methods that come closer to NewSt is Newton’s
method for moderate n and p and BFGS when n is large.

The optimal step-size for Newton-Stein method will typically be larger than 1 which is
mainly due to eigenvalue thresholding operation. This feature is desirable if one is able to
obtain a large step-size that provides convergence. In such cases, the convergence is likely
to be faster, yet more unstable compared to the smaller step size choices. We observed
that similar to other second order algorithms, Newton-Stein method is also susceptible to
the step size selection. If the data is not well-conditioned, and the sub-sample size is not
sufficiently large, algorithm might have poor performance. This is mainly because the sub-
sampling operation is performed only once at the beginning. Therefore, it might be good
in practice to sub-sample once in every few iterations.

Data set S3 S20

Type LR LS LR LS

Method Time(sec) Iter Time(sec) Iter Time(sec) Iter Time(sec) Iter

NewSt 10.637 2 8.763 4 23.158 4 16.475 10
BFGS 22.885 8 13.149 6 40.258 17 54.294 37
LBFGS 46.763 19 19.952 11 51.888 26 33.107 20
Newton 55.328 2 38.150 1 47.955 2 39.328 1
GD 865.119 493 155.155 100 1204.01 245 145.987 100
AGD 169.473 82 65.396 42 182.031 83 56.257 38

Data set CT Slices Covertype

Type LR LS LR LS

Method Time(sec) Iter Time(sec) Iter Time(sec) Iter Time(sec) Iter

NewSt 4.191 32 1.799 11 16.113 31 2.080 5
BFGS 4.638 35 4.525 37 21.916 48 2.238 3
LBFGS 26.838 217 22.679 180 30.765 69 2.321 3
Newton 5.730 3 1.937 1 122.158 40 2.164 1
GD 96.142 1156 61.526 721 194.473 446 22.738 60
AGD 96.142 880 45.864 518 80.874 186 32.563 77

Table 1: Details of the experiments presented in Figures 2 and 3.

Data set n p Reference, UCI repo (Lichman, 2013)

CT slices 53500 386 Graf et al., 2011
Covertype 581012 54 Blackard and Dean, 1999
S3 500000 300 3-spiked model, (Donoho et al., 2013)
S10 500000 300 10-spiked model, (Donoho et al., 2013)
S20 500000 300 20-spiked model, (Donoho et al., 2013)

Table 2: Data sets used in the experiments.
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5.3 Analysis of Number of Iterations

We provide additional plots to better understand the convergence behavior of the algo-
rithms. Plots in Figure 4 show the decrease in log10(‖β̂t − β0‖2) error over iterations
(instead of time elapsed).

S3	Dataset:	 S20	S10	
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Figure 4: Figure shows the convergence behavior over the number of iterations. y and x
axes denote log10(‖β̂t − β∗‖2) and the number iterations, respectively.

We observe from the plots that Newton’s method enjoys the fastest convergence rate as
expected. The one that is closest to Newton’s method is the Newton-Stein method. This
is because the Hessian estimator used by Newton-Stein method better approximates the
true Hessian as opposed to Quasi-Newton methods. We emphasize that x axes in Figure 4
denote the number of iterations whereas in figures shown previously in this section x axes
were the time elapsed.

6. Discussion

In this paper, we proposed an efficient algorithm for training GLMs. We call our algorithm
Newton-Stein method (NewSt ) as it takes a Newton-type step at each iteration relying on
a Stein-type lemma. The algorithm requires a one time O(|S|p2) cost to estimate the co-
variance structure and O(np) per-iteration cost to form the update equations. We observe
that the convergence of Newton-Stein method has a phase transition from quadratic rate
to linear rate. This observation is justified theoretically along with several other guaran-
tees for the bounded as well as the sub-Gaussian covariates such as per-step convergence
bounds, conditions for local rates and global convergence with line search, etc. Parame-
ter selection guidelines of Newton-Stein method are based on our theoretical results. Our
experiments show that Newton-Stein method provides significant improvement over the
classical optimization methods.

Relaxing some of the theoretical constraints is an interesting line of research. In partic-
ular, strong assumptions on the cumulant generating functions might be loosened. Another
interesting direction is to determine when the phase transition point occurs, which would
provide a better understanding of the effects of sub-sampling and eigenvalue thresholding.
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Appendix A. Preliminary Concentration Inequalities

In this section, we provide several concentration bounds that will be useful throughout the
proofs. We start by defining a special class of random variables.

Definition 10 (Sub-Gaussian) A random variable x ∈ R is called sub-Gaussian if it
satisfies

E[|x|m]1/m ≤ K
√
m, m ≥ 1,

for some finite constant K. The smallest such K is the sub-Gaussian norm of x and it is
denoted by ‖x‖ψ2. Similarly, a random vector y ∈ Rp is called sub-Gaussian if there exists
a constant K ′ > 0 such that

sup
v∈Sp−1

‖〈y, v〉‖ψ2 ≤ K ′.

Definition 11 (Sub-exponential) A random variable x ∈ R is called sub-exponential if
it satisfies

E[|x|m]1/m ≤ Km, m ≥ 1,

for some finite constant K. The smallest such K is the sub-exponential norm of x and it
is denoted by ‖x‖ψ1. Similarly, a random vector y ∈ Rp is called sub-exponential if there
exists a constant K ′ > 0 such that

sup
v∈Sp−1

‖〈y, v〉‖ψ1 ≤ K ′.

We state the following Lemmas from Vershynin, 2010 for the convenience of the reader
(i.e., See Theorem 5.39 and the following remark for sub-Gaussian distributions, and The-
orem 5.44 for distributions with arbitrary support):

Lemma 12 (Vershynin, 2010) Let S be an index set and xi ∈ Rp for i ∈ S be i.i.d.
sub-Gaussian random vectors with

E[xi] = 0, E[xix
T
i ] = Σ, ‖xi‖ψ2 ≤ K.

There exists constants c, C depending only on the sub-Gaussian norm K such that with
probability 1− 2e−ct

2
,∥∥∥Σ̂S −Σ

∥∥∥
2
≤ max

(
δ, δ2

)
where δ = C

√
p

|S|
+

t√
|S|

.

Remark 13 We are interested in the case where δ < 1, hence the right hand side becomes
max

(
δ, δ2

)
= δ. In most cases, we will simply let t =

√
p and obtain a bound of order√

p/|S| on the right hand side. For this, we need |S| = O(C2p) which is a reasonable
assumption in the regime we consider.

18



Newton-Stein Method

The following lemma is an analogue of Lemma 12 for covariates sampled from arbitrary
distributions with bounded support.

Lemma 14 (Vershynin, 2010) Let S be an index set and xi ∈ Rp for i ∈ S be i.i.d.
random vectors with

E[xi] = 0, E
[
xix

T
i

]
= Σ, ‖xi‖2 ≤

√
K a.s.

Then, for some absolute constant c, with probability 1− pe−ct2, we have

∥∥Σ̂S −Σ
∥∥

2
≤ max

(
‖Σ‖1/22 δ, δ2

)
where δ = t

√
K

|S|
.

Remark 15 We will choose t =
√

3 log(p)/c which will provide us with a probability of
1− 1/p2. Therefore, if the sample size is sufficiently large, i.e.,

|S| ≥ 3K log(p)

c‖Σ‖2
= O(K log(p)/‖Σ‖2),

we can estimate the true covariance matrix quite well for arbitrary distributions with bounded
support. In particular, with probability 1− 1/p2, we obtain

∥∥Σ̂S −Σ
∥∥

2
≤ c′

√
log(p)

|S|
,

where c′ =
√

3K‖Σ‖2/c.

In the following, we will focus on empirical processes and obtain uniform bounds for
proposed Hessian approximation. To that extent, we provide a few basic definitions which
will be useful later in the proofs. For a more detailed discussion on the machinery used
throughout the next section, we refer reader to Van der Vaart, 2000.

Definition 16 On a metric space (X, d), for ε > 0, Tε ⊂ X is called an ε-net over X if
∀x ∈ X, ∃t ∈ Tε such that d(x, t) ≤ ε.

In the following, we will use L1 distance between two functions f and g, namely d(f, g) =∫
|f −g|. Note that the same distance definition can be carried to random variables as they

are simply real measurable functions. The integral takes the form of expectation.

Definition 17 Given a function class F , and any two functions l and u (not necessarily
in F), the bracket [l, u] is the set of all f ∈ F such that l ≤ f ≤ u. A bracket satisfying
l ≤ u and

∫
|u− l| ≤ ε is called an ε-bracket in L1. The bracketing number N[](ε,F , L1) is

the minimum number of different ε-brackets needed to cover F .

The preliminary tools presented in this section will be utilized to obtain the concentra-
tion results in Section B.

19



Erdogdu

Appendix B. Main Lemmas

B.1 Concentration of Covariates With Bounded Support

Lemma 18 Let xi ∈ Rp, for i = 1, 2, ..., n, be i.i.d. random vectors supported on a ball
of radius

√
K, with mean 0, and covariance matrix Σ. Further, let f : R → R be a

uniformly bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz
continuous with constant L. Then, for sufficiently large n, there exist constants c1, c2, c3

such that

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where the constants depend only on the bound B.

Proof We start by using the Lipschitz property of the function f , i.e., ∀β, β′ ∈ Bp(R),∣∣f(〈x, β〉)− f(〈x, β′〉)
∣∣ ≤L‖x‖2‖β − β′‖2,
≤L
√
K‖β − β′‖2,

where the first inequality follows from Cauchy-Schwartz. Now let T∆ be a ∆-net over Bp(R).
Then ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that the right hand side of the above inequality is smaller
than ∆L

√
K. Then, we can write∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β′〉)− E[f(〈x, β′〉)]

∣∣∣∣∣+ 2∆L
√
K. (14)

By choosing

∆ =
ε

4L
√
K
,

and taking supremum over the corresponding β sets on both sides, we obtain the following
inequality

sup
β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ ≤ max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣+
ε

2
.

Now, since we have ‖f‖∞ ≤ B and for a fixed β and i = 1, 2, ..., n, the random variables
f(〈xi, β〉) are i.i.d., by the Hoeffding’s concentration inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε/2

)
≤ 2 exp

(
− nε

2

8B2

)
.

Combining Equation 14 with the above result and a union bound, we easily obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)

≤ P

(
max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε/2

)
≤ 2|T∆| exp

(
− nε

2

8B2

)
,
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where ∆ = ε/4L
√
K.

Next, we apply Lemma 33 and obtain that

|T∆| ≤
(
R
√
p

∆

)p
=

(
R
√
p

ε/4L
√
K

)p
.

We require that the probability of the desired event is bounded by a quantity that
attains an exponential decay with rate O(p). This can be attained if

ε2 ≥ 8B2p

n
log
(

4eLR
√
K
√
p/ε
)
.

Assuming that n is sufficiently large, and using Lemma 34 with a = 8B2p/n and b =
4eLR

√
Kp, we obtain that ε should be

ε =

√
4B2p

n
log

(
30L2R2Kn

B2

)
= O

(√
p log(n)

n

)
.

When n > 30L2R2K/B2, we obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > 3B

√
p log(n)

n

)
≤2e−p.

In the following, we state similar bounds on functions of the following form

x→ f(〈x, β〉)〈x, v〉2,

which appear in the summation that form the Hessian matrix.

Lemma 19 Let xi ∈ Rp, for i = 1, ..., n, be i.i.d. random vectors supported on a ball of
radius

√
K, with mean 0, and covariance matrix Σ. Also let f : R → R be a uniformly

bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz con-
tinuous with constant L. Then, for v ∈ Sp−1 and sufficiently large n, there exist constants
c1, c2, c3 such that

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > c1

√
p log (n)

n

)
≤ c2e

−c3p,

where the constants depend only on the bound B and the radius
√
K.

Proof As in the proof of Lemma 18, we start by using the Lipschitz property of the
function f , i.e., ∀β, β′ ∈ Bp(R),

‖f(〈x, β〉)〈x, v〉2 − f(〈x, β′〉)〈x, v〉2‖2 ≤L‖x‖32‖β − β′‖2,
≤LK1.5‖β − β′‖2.
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For a net T∆, ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that right hand side of the above inequality
is smaller than ∆LK1.5. Then, we can write∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2−E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣≤
∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β′〉)〈xi, v〉2− E[f(〈x, β′〉)〈x, v〉2]

∣∣∣∣∣
+ 2∆LK1.5. (15)

This time, we choose

∆ =
ε

4LK1.5
,

and take the supremum over the corresponding feasible β-sets on both sides,

sup
β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣
≤ max

β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣+
ε

2
.

Now, since we have ‖f‖∞ ≤ B and for fixed β and v, i = 1, 2, ..., n, f(〈xi, β〉)〈xi, v〉2 are
i.i.d. random variables. By the Hoeffding’s concentration inequality, we write

P

(∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε/2

)
≤ 2 exp

(
− nε2

8B2K2

)
.

Using Equation 15 and the above result combined with the union bound, we easily obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)

≤ P

(
max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε/2

)

≤ 2|T∆| exp

(
− nε2

8B2K2

)
,

where ∆ = ε/4LK1.5. Using Lemma 33, we have

|T∆| ≤
(
R
√
p

∆

)p
=

(
R
√
p

ε/4LK1.5

)p
.

As before, we require that the right hand side of above inequality gets a decay with
rate O(p). Using Lemma 34 with a = 8B2K2p/n and b = 100LRK1.5√p, we obtain that ε
should be

ε =

√
4B2K2p

n
log

(
502L2R2Kn

B2

)
= O

(√
p log(n)

n

)
.
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When n > 50LRK1/2/B, we obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > 4BK

√
p log(n)

n

)
≤ 2e−3.2p.

The rate −3.2p will be important later.

B.2 Concentration of Sub-Gaussian Covariates

In this section, we derive the analogues of the Lemmas 18 and 19 for sub-Gaussian covariates.
Note that the Lemmas in this section are more general in the sense that they also cover
the case where the covariates have bounded support. As a result, the resulting convergence
coefficients are worse compared to the previous section.

Lemma 20 Let xi ∈ Rp, for i = 1, ..., n, be i.i.d. sub-Gaussian random vectors with mean
0, covariance matrix Σ and sub-Gaussian norm K. Also let f : R → R be a uniformly
bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz contin-
uous with constant L. Then, there exists absolute constants c1, c2, c3 such that

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where the constants depend only on the eigenvalues of Σ, bound B and radius R and sub-
Gaussian norm K.

Proof We start by defining the brackets of the form

lβ(x) =f(〈x, β〉)− ε ‖x‖2
4E [‖x‖2]

,

uβ(x) =f(〈x, β〉) + ε
‖x‖2

4E [‖x‖2]
.

Observe that the size of bracket [`β, uβ] is ε/2, i.e., E[uβ − `β] = ε/2. Now let T∆ be a
∆-net over Bp(R) where we use ∆ = ε/(4LE [‖x‖2]). Then ∀β ∈ Bp(R), ∃β′ ∈ T∆ such
that f(〈·, β〉) falls into the bracket [`β′ , uβ′ ]. This can be seen by writing out the Lipschitz
property of the function f . That is,

|f(〈x, β〉)− f(〈x, β′〉)| ≤L‖x‖2‖β − β′‖2,
≤∆L‖x‖2,

where the first inequality follows from Cauchy-Schwartz. Therefore, we conclude that

N[](ε/2,F , L1) ≤ |T∆|
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for the function class F = {f(〈·, β〉) : β ∈ Bp(R)}. We further have ∀β ∈ Bp(R), ∃β′ ∈ T∆

such that

1

n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)] ≤ 1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)] +
ε

2
,

1

n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)] ≥ 1

n

n∑
i=1

lβ′(xi)− E[lβ′(x)]− ε

2
.

Using the above inequalities, we have, ∀β ∈ Bp(R), ∃β′ ∈ T∆{[
1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)]

]
> ε/2

}
∪

{[
− 1

n

n∑
i=1

lβ′(xi) + E[lβ′(x)]

]
> ε/2

}
⊃{∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

}
.

By the union bound, we obtain

P

(
max
β∈T∆

[
1

n

n∑
i=1

uβ(xi)− E[uβ(x)]

]
> ε/2

)
+ P

(
max
β∈T∆

[
− 1

n

n∑
i=1

lβ(xi) + E[lβ(x)]

]
> ε/2

)

≥ P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)
. (16)

In order to complete the proof, we need concentration inequalities for uβ and lβ. We state
the following lemma.

Lemma 21 There exists a constant C depending on the eigenvalues of Σ and B such that,
for each β ∈ Bp(R) and for some 0 < ε < 1, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

uβ(xi)− E[uβ(x)]

∣∣∣∣∣ > ε/2

)
≤ 2e−Cnε

2
,

P

(∣∣∣∣∣ 1n
n∑
i=1

lβ(xi)− E[lβ(x)]

∣∣∣∣∣ > ε/2

)
≤ 2e−Cnε

2
,

where

C =
c(

B +
√

2K
4µ/
√
p

)2

for an absolute constant c.

Remark 22 Note that µ = E[‖x‖2] = O(
√
p) and hence µ/

√
p = O(1).
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Proof By the relation between sub-Gaussian and sub-exponential norms, we have

‖‖x‖2‖2ψ2
≤ ‖‖x‖22‖ψ1 ≤

p∑
i=1

‖x2
i ‖ψ1 , (17)

≤2

p∑
i=1

‖xi‖2ψ2
,

≤2K2p.

Therefore ‖x‖2 − E[‖x‖2] is a centered sub-Gaussian random variable with sub-Gaussian
norm bounded above by 2K

√
2p. We have,

E[‖x‖2] = µ.

Note that µ is actually of order
√
p. Assuming that the left hand side of the above equality

is equal to
√
pK ′ for some constant K ′ > 0, we can conclude that the random variable

uβ(x) = f(〈x, β〉) + ε ‖x‖2
4E[‖x‖2] is also sub-Gaussian with

‖uβ(x)‖ψ2 ≤B +
ε

4E [‖x‖2]
‖‖x‖2‖ψ2

≤ B +
ε

4
√
pK ′

K
√

2p

≤ B + C ′

where C ′ =
√

2K/4K ′ is a constant and we also assumed ε < 1. Now, define the function

gβ(x) = uβ(x)− E[uβ(x)].

Note that gβ(x) is a centered sub-Gaussian random variable with sub-Gaussian norm

‖gβ(x)‖ψ2 ≤ 2B + 2C ′.

Then, by the Hoeffding-type inequality for the sub-Gaussian random variables, we obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

gβ(xi)

∣∣∣∣∣ > ε/2

)
≤2e−cnε

2/(B+C′)2

where c is an absolute constant. The same argument also holds for lβ(x).

Using the above lemma with the union bound over the set T∆, we can write

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 4|T∆|e−Cnε

2
.
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Since we can also write, by Lemma 33

|T∆| ≤
(
R
√
p

∆

)p
≤
(

4RLE[‖x‖2]
√
p

ε

)p
,

≤

(
4
√

2RLKp

ε

)p
,

and we observe that, for the constant c′ = 4
√

2RLK,

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 4

(
4
√

2RLKp

ε

)p
e−Cnε

2
,

= 4 exp
{
p log(c′p/ε)− Cnε2

}
.

We will obtain an exponential decay of order p on the right hand side. For some constant
h depending on n and p, if we choose ε = hp, we need

h2 ≥ 1

Cnp
log(c′/h).

By the Lemma 34, choosing h2 = log(2c′2Cnp)/(2Cnp), we satisfy the above requirement.
Note that for n large enough, the condition of the lemma is easily satisfied. Hence, for

ε2 =
p log(2c′2Cnp)

2Cn
= O

(
p log(n)

n

)
,

we obtain that there exists constants c1, c2, c3 such that

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where

c1 =

3

(
B +

√
2K

4
√

Tr(Σ)/p−16K2

)2

2c
,

c2 =4,

c3 =
1

2
log(7) ≤ 1

2
log(log(64R2L2K2C) + 6 log(p)).

when p > e and 64R2L2K2C > e.

In the following, we state the concentration results on the unbounded functions of the
form

x→ f(〈x, β〉)〈x, v〉2.

Functions of this type form the summands of the Hessian matrix in GLMs.

26



Newton-Stein Method

Lemma 23 Let xi, for i = 1, ..., n, be i.i.d sub-Gaussian random variables with mean 0,
covariance matrix Σ and sub-Gaussian norm K. Also let f : R→ R be a uniformly bounded
function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz continuous with
constant L. Further, let v ∈ Rp such that ‖v‖2 = 1. Then, for n, p sufficiently large
satisfying

n0.2/ log(n) & p,

there exist constants c1, c2 depending on L,B,R and the eigenvalues of Σ such that, we
have

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > c1

√
p

n0.2
log (n)

)
≤ c2e

−p.

Proof We define the brackets of the form

lβ(x) =f(〈x, β〉)〈x, v〉2 − ε ‖x‖32
4E
[
‖x‖32

] ,
uβ(x) =f(〈x, β〉)〈x, v〉2 + ε

‖x‖32
4E
[
‖x‖32

] , (18)

and we observe that the bracket [`β, uβ] has size ε/2 in L1, that is,

E [|uβ(x)− lβ(x)|] = ε/2.

Next, for the following constant

∆ =
ε

4LE
[
‖x‖32

] ,
we define a ∆-net over Bp(R) and call it T∆. Then, ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that
f(〈·, β〉)〈·, v〉2 belongs to the bracket [`β′ , uβ′ ]. This can be seen by writing the Lipschitz
continuity of the function f , i.e.,∣∣f(〈x, β〉)〈x, v〉2 − f(〈x, β′〉)〈x, v〉2

∣∣ =〈x, v〉2
∣∣{f(〈x, β〉)− f(〈x, β′〉)

}∣∣ ,
≤L‖x‖22 ‖v‖22

∣∣〈x, β − β′〉∣∣ ,
≤L‖x‖32‖β − β′‖2,
≤∆L‖x‖32,

where we used Cauchy-Schwartz to obtain the above inequalities. Hence, we may conclude
that for the bracketing functions given in Equation 18, the corresponding bracketing number
of the function class

F = {f(〈·, β〉)〈·, v〉2 : β ∈ Bp(R)}

is bounded above by the covering number of the ball of radius R for the given scale ∆ =
ε/(4LE

[
‖x‖32

]
), i.e.,

N[](ε/2,F , L1) ≤ |T∆|.
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Next, we will upper bound the target probability using the bracketing functions uβ, lβ.
We have ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that

1

n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2] ≤ 1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)] +
ε

2
,

1

n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2] ≥ 1

n

n∑
i=1

lβ′(xi)− E[lβ′(x)]− ε

2
.

Using the above inequalities, ∀β ∈ Bp(R), ∃β′ ∈ T∆, we can write{[
1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)]

]
> ε/2

}
∪

{[
− 1

n

n∑
i=1

lβ′(xi) + E[lβ′(x)]

]
> ε/2

}
⊃{∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

}
.

Hence, by the union bound, we obtain

P

(
max
β∈T∆

[
1

n

n∑
i=1

uβ(xi)− E[uβ(x)]

]
> ε/2

)
+ P

(
max
β∈T∆

[
− 1

n

n∑
i=1

lβ(xi) + E[lβ(x)]

]
> ε/2

)

≥ P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)
. (19)

In order to complete the proof, we need one-sided concentration inequalities for uβ and lβ.
Handling these functions is somewhat tedious since ‖x‖32 terms do not concentrate nicely.
We state the following lemma.

Lemma 24 For given α, ε > 0, and n sufficiently large such that, ν(nα, p, ε, B,K,Σ) < ε/4
where

ν(nα, p, ε, B,K,Σ) =:2

(
nα +

6BK2p

c

)
exp

(
−c nα

6BK2p

)
+ 2

{
nα +

3K2p

cTr(Σ)
nα/3ε2/3

+
3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

Then, there exists constants c′, c′′, c′′′ depending on the eigenvalues of Σ, B and K such
that ∀β, we have,

P

(
1

n

n∑
i=1

uβ(xi)− E[uβ(x)] > ε/2

)
≤2 exp

(
−c′nα/p

)
+ 2 exp

(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
,

and

P

(
− 1

n

n∑
i=1

lβ(xi) + E[lβ(x)] > ε/2

)
≤2 exp

(
−c′nα/p

)
+

2 exp
(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
.
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Proof For the sake of simplicity, we define the functions

ũβ(w) = uβ(w)− E[uβ(x)],

l̃β(w) = lβ(w)− E[lβ(x)].

We will derive the result for the upper bracket, ũ, and skip the proof for the lower bracket
l̃ as it follows from the same steps. We write,

P

(
1

n

n∑
i=1

ũβ(xi) > ε/2

)
≤P

(
1

n

n∑
i=1

ũβ(xi) > ε/2, max
1≤i≤n

|ũβ(xi)| < nα

)

+ P
(

max
1≤i≤n

|ũβ(xi)| ≥ nα
)
. (20)

We need to bound the right hand side of the above equation. For the second term, since
ũβ(xi)’s are i.i.d. centered random variables, we have

P
(

max
1≤i≤n

|ũβ(xi)| ≥ nα
)

=1− P
(

max
1≤i≤n

|ũβ(xi)| < nα
)
,

=1− P (|ũβ(x)| < nα)n ,

=1− (1− P (|ũβ(x)| ≥ nα))n ,

≤nP (|ũβ(x)| ≥ nα) .

Also, note that

|ũβ(x)| ≤B‖x‖22 + ε
‖x‖32

4E
[
‖x‖32

] + E[uβ(x)],

≤B‖x‖22 + ε
‖x‖32

4E
[
‖x‖32

] +Bλmax(Σ) + ε/4.

Therefore, if t > 3Bλmax(Σ) and for ε small, we can write

{|ũβ(x)| > t} ⊂
{
B‖x‖22 > t/3

}
∪

{
ε
‖x‖32

4E
[
‖x‖32

] > t/3

}
. (21)

Since x is a sub-Gaussian random variable with ‖x‖ψ2 = K, we have

K = sup
w∈Sp−1

‖〈w, x〉‖ψ2 = ‖x‖ψ2 .

Using this and the relation between sub-Gaussian and sub-exponential norms as in Equa-
tion 17, we have ‖‖x‖2‖2ψ2

≤ 2K2p. This provides the following tail bound for ‖x‖2,

P (‖x‖2 > s) ≤ 2 exp

(
− cs2

2pK2

)
, (22)
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where c is an absolute constant. Using the above tail bound, we can write,

P
(
‖x‖22 >

1

3B
t

)
≤ 2 exp

(
−c t

6BK2p

)
.

For the next term in Equation 21, we need a lower bound for E
[
‖x‖32

]
. We use a modified

version of the Hölder’s inequality and obtain

E
[
‖x‖32

]
≥ E

[
‖x‖22

]3/2
= Tr(Σ)3/2.

Using the above inequality, we can write

P

(
ε
‖x‖32

4E
[
‖x‖32

] > t/3

)
≤P
(
‖x‖32 >

4

3ε
Tr(Σ)3/2t

)
,

=P

(
‖x‖2 >

(
4t

3ε

)1/3

Tr(Σ)1/2

)
,

≤2 exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
,

where c is the same absolute constant as in Equation 22.
Now for α > 0 such that t = nα > 3Bλmax(Σ) (we will justify this assumption for a

particular choice of α later), we combine the above results,

P (|ũβ(x)| > t) ≤ 2 exp

(
−c t

6BK2p

)
+ 2 exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
. (23)

Next, we focus on the first term in Equation 20. Let µ = E[ũβ(x)I{|ũβ(x)|<nα}], and
write

P

(
1

n

n∑
i=1

ũβ(xi) >
ε

2
; max

1≤i≤n
|ũβ(xi)| < nα

)
≤P

(
1

n

n∑
i=1

ũβ(xi)I{|ũβ(xi)|<nα} >
ε

2

)
,

=P

(
1

n

n∑
i=1

ũβ(xi)I{|ũβ(xi)|<nα} − µ >
ε

2
− µ

)

≤ exp

{
−n

1−2α

2

( ε
2
− µ

)2
}
,

where we used the Hoeffding’s concentration inequality for the bounded random variables.
Further, note that

0 = E[ũβ(x)] = µ+ E
[
ũβ(x)I{|ũβ(x)|>nα}

]
.

By Lemma 30, we can write

|µ| =
∣∣∣E [ũβ(x)I{|ũβ(x)|>nα}

]∣∣∣ ≤nαP(|ũβ(x)| > nα) +

∫ ∞
nα

P(|ũβ(x)| > t)dt.
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The first term on the right hand side can be easily bounded by using Equation 23, i.e.,

nαP(|ũβ(x)| > nα) ≤ 2nα exp

(
−c nα

6BK2p

)
+ 2nα exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

For the second term, using Equation 23 once again, we obtain

∫ ∞
nα

P(|ũβ(x)| > t)dt ≤2

∫ ∞
nα

exp

(
−c t

6BK2p

)
dt+ 2

∫ ∞
nα

exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt,

=
12BK2p

c
exp

(
−c nα

6BK2p

)
+ 2

∫ ∞
nα

exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt.

Next, we apply Lemma 31 to bound the second term on the right hand side. That is, we
have ∫ ∞

nα
exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt

≤
{

3K2p

cTr(Σ)
nα/3ε2/3 +

3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

Combining the above results, we can write

|µ| ≤2

(
nα +

6BK2p

c

)
exp

(
−c nα

6BK2p

)
+ 2

{
nα +

3K2p

cTr(Σ)
nα/3ε2/3 +

3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
,

=:ν(nα, p, ε, B,K,Σ).

Notice that, the upper bound on |µ|, namely ν(nα, p, ε, B,K,Σ), is close to 0 when n is
large. This is because of exponentially decaying functions that dominates the other terms.
We assume that n is sufficiently large that the upper bound for |µ| is less than ε/4. For the
value of α, we will choose α = 0.4 later in the proof.

Applying this bounds in Equation 20, we obtain

P

(
1

n

n∑
i=1

ũβ(xi) > ε/2

)
≤2 exp

(
−c nα

6BK2p

)

+ 2 exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
+ exp

(
−n

1−2α

32
ε2
)
,

=2 exp
(
−c′nα/p

)
+ 2 exp

(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
,
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where

c′ =
c

6BK2
,

c′′ =
cTr(Σ)/p

2K2
≥ cλmin(Σ)

2K2
,

c′′′ =
1

32
.

Hence, the proof is completed for the upper bracket.
The proof for the lower brackets lβ(x) follows from exactly the same steps and omitted

here.

Applying the above lemma on Equation 19, for α > 0, we obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)
(24)

≤ 4|T∆| exp
(
−c′nα/p

)
+ 4|T∆| exp

(
−c′′n2α/3ε−2/3

)
+ 2|T∆| exp

(
−c′′′n1−2αε2

)
.

Observe that we can write, by Lemma 33

|T∆| ≤
(
R
√
p

∆

)p
=

(
4
√
pRLE[‖x‖32]

ε

)p
.

Also, recall that ‖x‖2 was a sub-Gaussian random variable with ‖‖x‖2‖ψ2 ≤ K
√

2p. Using
the definition of sub-Gaussian norm, we have

1√
3
E[‖x‖32]1/3 ≤‖‖x‖2‖ψ2 ≤

√
2pK, =⇒ E[‖x‖32] ≤ 15K3p3/2.

Therefore, we have E[‖x‖32] = O(p3/2) (recall that we had a lower bound of the same order).
We define a constant K ′, and as ε is small, we have

|T∆| ≤
(

60RLK3p2

ε

)p
=

(
K ′p2

ε

)p
,

where we let K ′ = 60RLK3. We will show that each term on the right hand side of
Equation 24 decays exponentially with a rate of order p. For the first term, for s > 0, we
write

|T∆| exp
(
−c′nα/p

)
= exp

(
−c′nα/p+ p log(K ′) + 2p log(p) + p log(ε−1)

)
,

≤ exp
(
−c′nα/p+ 2p log(K ′p/ε)

)
. (25)

Similarly for the second and third terms, we write

|T∆| exp
(
−c′′n2α/3ε−2/3

)
≤ exp

(
−c′′n2α/3ε−2/3 + 2p log(K ′p/ε)

)
, (26)

|T∆| exp
(
−c′′′n1−2αε2

)
≤ exp

(
−c′′′n1−2αε2 + 2p log(K ′p/ε)

)
.
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We will seek values for ε and α to obtain an exponential decay with rate p on the right sides
of Equations 25 and 26. That is, we need

c′nα/p ≥2p log(K ′′p/ε), (27)

c′′n2α/3 ≥2p log(K ′′p/ε)ε2/3,

c′′′n1−2αε2 ≥2p log(K ′′p/ε),

where K ′′ = eK ′.
We apply Lemma 34 for the last inequality in Equation 27. That is,

ε2 =
p

c′′′n1−2α
log
(
c′′′K ′′

2
pn1−2α

)
, (28)

=O
( p

n1−2α
log (n)

)
.

where we assume that n is sufficiently large. The above statement holds for α < 1/2.
In the following, we choose α = 0.4 and use the assumption that

n0.2/ log(n) & p, (29)

which provides ε < 1. Note that this choice of α also justifies the assumption used to
derive Equation 23. One can easily check that α = 0.4 implies that the first and the second
statements in Equation 27 are satisfied for sufficiently large n.

It remains to check whether ν(nα, p, ε, B,K,Σ) < ε/4 (in Lemma 24) for this particular
choice of α and ε. It suffices to consider only the dominant terms in the definition of ν. We
use the assumption on n, p and write

ν(n0.4, p, ε, B,K,Σ) .n0.4 exp

(
− cn0.4

6BK2p

)
+ n0.4 exp

(
−cTr(Σ)/p n0.8/3

2K2

)
, (30)

.n0.4 exp
(
− c

6BK2
n0.2

)
+ n0.4 exp

(
−cλmin(Σ)

2K2
n0.8/3

)
.

For n sufficiently large, due to exponential decay in n0.2, the above quantity can be made
arbitrarily small. Hence, for some constants c1, c2, we obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > c1

√
p

n0.2
log (n)

)
≤ c2e

−p.

Appendix C. Proofs of Theorems 4 and 8

We will provide the proofs of Theorems 4 and 8 in parallel as they follow from similar steps.
The only difference is the application of the lemmas that are provided in the previous
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sections. On the event E , we write,

β̂t − β∗ − γQt∇β`(β̂t) = β̂t − β∗ − γQt

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ(β̂t − β∗), (31)

=

(
I − γQt

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

)
(β̂t − β∗) .

In the following, we will work on the event that Σ̂S is invertible and that [Qt]−1 is positive
definite. We later show that conditioned on E , this event holds with very high probability
when |S| is sufficiently large.

We use the nonexpensiveness of the projection PtC , i.e., for any u, u′ ∈ Rp and v = PtC(u),
v′ = PtC(u′) we have 〈u − u′, [Qt]−1(u − u′)〉 ≥ 〈v − v′, [Qt]−1(v − v′)〉. This simply means
that the projection decreases the distance. Therefore, we can write∥∥∥β̂t+1 − β∗

∥∥∥
Qt−1

≤
∥∥∥β̂t − β∗ − γQt∇β`(β̂t)

∥∥∥
Qt−1

≤
∥∥∥∥[Qt]−1/2 − γ[Qt]1/2

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

∥∥∥β̂t − β∗∥∥∥
2
. (32)

The coefficient of ‖β̂t−β∗‖2 in Equation 32 determines the convergence behavior of the
algorithm. Switching back to `2 norm, we obtain an upper bounded of the form∥∥∥β̂t+1 − β∗

∥∥∥
2
≤
∥∥Qt

∥∥
2

∥∥∥∥[Qt]−1 −
∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

∥∥∥β̂t − β∗∥∥∥
2
,

where we have set step size γ = 1. First, we will bound the second term on the right hand
side. We define the following,

E(β) = E
[
φ(2)(〈x, β〉)

]
Σ + E

[
φ(4)(〈x, β〉)

]
ΣββTΣ .

Note that for a function f and fixed β, E[f(〈x, β〉)] = h(β) is a function of β. With a slight
abuse of notation, we write E[f(〈x, β̂〉)] = h(β̂) as a random variable. We have∥∥∥[Qt]−1 −

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2
≤
∥∥∥[Qt]−1 − E(β̂t)

∥∥∥
2

(33)

+
∥∥∥[E[xxTφ(2)(〈x, β̂t〉)]− E(β̂t)

∥∥∥
2

+

∥∥∥∥∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ − E

[
xxT

∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

+

∥∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

.

For the first term on the right hand side, we state the following lemma.

Lemma 25 When the covariates are sub-Gaussian, there exist constants C1, C2 such that,
with probability at least 1− C1/p

2,
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∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2
≤ C2

√
p

min {|S|p/ log(p), n/ log(n)}
.

Similarly, when the covariates are sampled from a distribution with bounded support, there
exist constants C ′1, C

′
2, C

′
3 such that, with probability 1− C ′1e−C

′
2p,∥∥∥[Qt]−1 − E(β̂t)

∥∥∥
2
≤ C ′3

√
p

min {|S|, n/ log(n)}
,

where the constants depend on K, B and the radius R.

Proof In the following, we will only provide the proof for the bounded support case. The
proof for the sub-Gaussian covariates follows from the same steps, by only replacing Lemma
14 with Lemma 12, and Lemma 18 with Lemma 20.

Using a uniform bound on the feasible set, we write∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2

≤ sup
β∈C

∥∥∥µ̂2(β)Σ̂S + µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − E[φ(2)(〈x, β〉)]Σ− E[φ(4)(〈x, β〉)]ΣββTΣ
∥∥∥

2
.

We will find an upper bound for the quantity inside the supremum. By denoting the
expectations of µ̂2(β) and µ̂4(β), with µ2(β) and µ4(β) respectively, we write∥∥∥µ̂2(β)Σ̂S + µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − E[φ(2)(〈x, β〉)]Σ− E[φ(4)(〈x, β〉)]Σβ(Σβ)T

∥∥∥
2

≤
∥∥∥µ̂2(β)Σ̂S − µ2(β)Σ

∥∥∥
2

+
∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T

∥∥∥
2
.

For the first term on the right hand side, we have∥∥∥µ̂2(β)Σ̂S − µ2(β)Σ
∥∥∥

2
≤|µ̂2(β)|

∥∥∥Σ̂S −Σ
∥∥∥

2
+ ‖Σ‖2 |µ̂2(β)− µ2(β)| ,

≤B2

∥∥∥Σ̂S −Σ
∥∥∥

2
+K |µ̂2(β)− µ2(β)| .

By the Lemmas 14 and 18, for an absolute constant c, we have with probability 1− 1/p2,

sup
β∈C

∥∥∥µ̂2(β)ζr(Σ̂S)− µ2(β)Σ
∥∥∥

2
≤B2c

√
K‖Σ‖2

√
log(p)

|S|
+ 3B2K

√
p log(n)

n
,

≤3cB2K

√
p

min {p/ log(p)|S|, n/ log(n)}
,

=O
(√

p

min {p/ log(p)|S|, n/ log(n)}

)
.
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For the second term, we have

∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T
∥∥∥

2

≤ |µ̂4(β)|
∥∥∥Σ̂Sββ

T Σ̂S −ΣββTΣ
∥∥∥

2
+ |µ̂4(β)− µ4(β)|

∥∥ΣββTΣ
∥∥

2
,

≤ B4R
2
{
‖Σ̂S‖2 + ‖Σ‖2

}∥∥∥Σ̂S −Σ
∥∥∥

2
+R2‖Σ‖22|µ̂4(β)− µ4(β)|,

≤ B4R
2
{
‖Σ̂S‖2 +K

}∥∥∥Σ̂S −Σ
∥∥∥

2
+R2K2|µ̂4(β)− µ4(β)|.

Again, by the Lemmas 14 and 18, for an absolute constant c, we have with probability
1− 1/p2,

B4R
2
{
‖Σ̂S‖2 +K

}∥∥∥Σ̂S −Σ
∥∥∥

2
≤cKB4R

2

{
2K + cK

√
log(p)

|S|

}√
log(p)

|S|
,

≤2cK2B4R
2

√
log(p)

|S|
+ c2K2B4R

2 log(p)

|S|
,

≤2cK2B4R
2

(
1 + c

√
log(p)

|S|

)√
log(p)

|S|
,

≤4cK2B4R
2

√
log(p)

|S|
,

=O

(√
log(p)

|S|

)
,

for sufficiently large |S|, i.e., |S| ≥ c2 log(p).

Further, by Lemma 18, we have with probability 1− 2e−p,

sup
β∈C
|µ̂4(β)− µ4(β)| ≤ 3B4

√
p log(n)

n
= O

(√
p log(n)

n

)
.

Combining the above results, for sufficiently large p, |S|, we have with probability at least
1− 1/p2 − 2e−p,

sup
β∈C

∥∥∥µ̂2(β)ζr(Σ̂S)− µ2(β)Σ
∥∥∥

2
+ sup

β∈C

∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T
∥∥∥

2

≤ 3B2Kc

√
p

min {p/ log(p)|S|, n/ log(n)}
+ 4cK2B4R

2

√
log(p)

|S|
+ 3B4R

2K2

√
p log(n)

n
,
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≤ 3B2Kc

√
p

min {p/ log(p)|S|, n/ log(n)}
+ 4cK2B4R

2

√
p

min {p/ log(p)|S|, n/ log(n)}
,

≤ CK max{B2, B4KR
2}
√

p

min {p/ log(p)|S|, n/ log(n)}
,

= O
(√

p

min {|S|p/ log(p), n/ log(n)}

)
.

Hence, for some constants C1, C2, with probability 1− C1/p
2, we have

∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2
≤ C2

√
p

min {|S|p/ log(p), n/ log(n)}
,

where the constants depend on K,B = max{B2, B4} and the radius R.

Lemma 26 The bias term can be upper bounded by

∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2
≤ dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z),

for both sub-Gaussian and bounded support cases.

Proof For a random variable z ∼ Np(0,Σ), by the triangle inequality, we write

∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2

≤
∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E[zzTφ(2)(〈z, β̂t〉)]

∥∥∥
2

+
∥∥∥E[zzTφ(2)(〈z, β̂t〉)]− E(β̂t)

∥∥∥
2

For the first term on the right hand side, we have

∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E[zzTφ(2)(〈z, β̂t〉)]
∥∥∥

2

≤ sup
β∈C

sup
‖v‖2=1

∣∣∣E [〈v, x〉2φ(2)(〈x, β〉)
]
− E

[
〈v, z〉2φ(2)(〈z, β〉)

]∣∣∣ ,
≤ dH3(x, z).
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For the second term, we write

∥∥∥[E[zzTφ(2)(〈z, β̂t〉)]− E(β̂t)
∥∥∥

2

≤ sup
β∈C

∥∥∥E[zzTφ(2)(〈z, β〉)]− E[φ(2)(〈x, β〉)]Σ + E
[
φ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ sup
β∈C

∥∥∥E[φ(2)(〈z, β〉)]Σ + E
[
φ(4)(〈z, β〉)

]
ΣββTΣ

− E[φ(2)(〈x, β〉)]Σ− E
[
φ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ sup
β∈C

∥∥∥E[φ(2)(〈z, β〉)]Σ− E[φ(2)(〈x, β〉)]Σ
∥∥∥

2
,

+ sup
β∈C

∥∥∥E [φ(4)(〈z, β〉)
]

ΣββTΣ− E
[
φ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ ‖Σ‖2 sup
β∈C

∣∣∣E[φ(2)(〈z, β〉)]− E[φ(2)(〈x, β〉)]
∣∣∣

+ ‖Σ‖22R2 sup
β∈C

∣∣∣E[φ(4)(〈z, β〉)]− E[φ(4)(〈x, β〉)]
∣∣∣ ,

≤ ‖Σ‖2dH1(x, z) + ‖Σ‖22R2dH2(x, z).

Hence, we conclude that

∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2
≤ dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z).

Lemma 27 There exists constants c1, c2, c3 depending on the eigenvalues of Σ, B,L and
R such that, with probability at least 1− c2e

−c3p

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∫ 1

0
φ(2)(〈xi, β∗ + ξ(β̂t − β∗)〉)dξ − E

[
xxT
∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥∥
2

≤ δ,

where δ = c1

√
p
n0.2 log (n) for sub-Gaussian covariates, and δ = c1

√
p
n log (n) for covariates

with bounded support.

Proof We provide the proof for bounded support case. The proof for sub-Gaussian case
can be carried by replacing Lemma 19 with Lemma 23.

By the Fubini’s theorem, we have
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∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∫ 1

0
φ(2)(〈xi, β∗ + ξ(β̂t − β∗)〉)dξ−E

[
xxT

∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥∥
2

,

=

∥∥∥∥∥
∫ 1

0

{
1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β∗ + ξ(β̂t − β∗)〉)−E
[
xxTφ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)

]}
dξ

∥∥∥∥∥
2

,

≤
∫ 1

0

∥∥∥∥∥
{

1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β∗ + ξ(β̂t − β∗)〉)−E
[
xxTφ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)

]}∥∥∥∥∥
2

dξ,

≤ sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β〉)−E
[
xxTφ(2)(〈x, β〉)

]∥∥∥∥∥
2

.

Using the properties of operator norm, the above bound can be written as

sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β〉)− E
[
xxTφ(2)(〈x, β〉)

]∥∥∥∥∥
2

= sup
β∈C

sup
v∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E
[
φ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ ,
where Sp−1 denotes the p-dimensional unit sphere.

For ∆ = 0.25, let T∆ be an ∆-net over Sp−1. Using Lemma 32, we obtain

P

(
sup
β∈C

sup
v∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E
[
φ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε

)
,

≤ P

(
sup
β∈C

sup
v∈T∆

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E
[
φ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
,

≤ |T∆|P

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E
[
φ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
,

= 9pP

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E
[
φ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
.

By applying Lemma 19 to the last line above, we obtain

P

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

φ(2)(〈xi, β〉)〈xi, v〉2 − E[φ(2)(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > 4B2K

√
p

n
log (n)

)
≤ 2e−3.2p.
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Notice that 3.2 − log(9) > 1. Therefore, by choosing n large enough, on the set E , we
obtain that with probability at least 1− 2e−p

sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β〉)− E
[
xxTφ(2)(〈x, β〉)

]∥∥∥∥∥
2

≤ 8B2K

√
p

n
log (n).

Lemma 28 There exists a constant C depending on K and L such that,

∥∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

≤ C̃‖β̂t − β∗‖2,

where C̃ = C for the bounded support case and C̃ = Cp1.5 for the sub-Gaussian case.

Proof By the Fubini’s theorem, we write

∥∥∥∥E[xxTφ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

,

=

∥∥∥∥∫ 1

0
E
[
xxT

{
φ(2)(〈x, β̂t〉)− φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)

}]
dξ

∥∥∥∥
2

.

Moving the integration out, right hand side of the above equation is smaller than∫ 1

0

∥∥∥E [xxT {φ(2)(〈x, β̂t〉)− φ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)
}]∥∥∥

2
dξ,

≤
∫ 1

0

∥∥∥E [xxTL|〈x, (1− ξ)(β̂t − β∗)〉|]∥∥∥
2
dξ,

≤ E
[
‖x‖32‖β̂t − β∗‖2

]
L

∫ 1

0
(1− ξ)dξ,

=
LE[‖x‖32]

2
‖β̂t − β∗‖2.

We observe that, when the covariates are supported in the ball of radius
√
K, we have

E[‖x‖32] ≤ K3/2. When they are sub-Gaussian random variables with norm K, we have
E[‖x‖32] ≤ K361.5p1.5.

By combining the above results, for bounded covariates we obtain∥∥∥[Qt]−1 −
∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2

≤ D(x, z) + c1

√
p

min {|S|p/ log(p), n/ log(n)}
+ c2‖β̂t − β∗‖2 ,
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and for sub-Gaussian covariates, we obtain

∥∥∥[Qt]−1 −
∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2

≤ D(x, z) + c1

√
p

min {|S|, n0.2/ log(n)}
+ c2p

1.5‖β̂t − β∗‖2 ,

where

D(x, z) = dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z) .

In the following, we will derive an upper bound for
∥∥Qt

∥∥
2
, which is equivalent to proving

the positive definiteness of [Qt]−1 and finding a lower bound for ‖[Qt]−1‖2. The sub-
Gaussian case is more restrictive than the bounded support case. Therefore we derive the
bound for the sub-Gaussian case. We have

λmin

(
[Qt]−1

)
= inf
‖u‖2=1

{
µ̂2(β̂t)〈u, Σ̂Su〉+ µ̂4(β̂t)〈u, Σ̂S β̂

t〉2
}
,

≥ inf
‖u‖2=1

{
µ̂2(β̂t)〈u,Σu〉+ µ̂4(β̂t)〈u,Σβ̂t〉2

}
−B2‖Σ̂S −Σ‖2 −B4R

2‖Σ̂S −Σ‖2‖Σ̂S + Σ‖2.

On the event E , the first term on the right hand side is lower bounded by κ−1. For the
other terms, we use Lemma 12 and write

λmin

(
[Qt]−1

)
≤2κ−1 − ‖Σ̂S −Σ‖2

{
B2 +B4R

2‖Σ̂S −Σ‖2 + 2B4R
2‖Σ‖2

}
,

≤2κ−1 − C
√

p

|S|

{
B2 +B4R

2C

√
p

|S|
+ 2B4R

2‖Σ‖2
}

with probability 1 − 2e−cp. When |S| > 4pC2 max
{

1, 2C(B2 + 3B4R
2λmax(Σ))κ

}2
, with

probability 1− 2e−cp, we obtain

λmin

(
[Qt]−1

)
≥ κ−1.

This proves that, with high probability, on the event E , [Qt]−1 is positive definite and
consequently we obtain

‖Qt‖2 ≤ κ.

Finally, we take into account the conditioning on the event E . Since we worked on the event
E , the probability of a desired outcome is at least P(E) − δ, where δ is either c/p2 or ce−p

depending on the distribution of the covariates. Hence, conditioned on the event E , the
probability becomes 1− δ/P(E), which completes the proof.
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C.1 Proof of Corollaries 5 and 9

In the following, we provide the proof for Corollary 5. The proof for Corollary 9 follows
from the exact same steps.

The statement of Theorem 4 holds on the probability space with a probability lower
bounded by P(E)− c/p2 for some constant c (See previous section). Let Q denote this set,
on which the statement of the theorem holds without the conditioning on the event E . Note
that Q ⊂ E and we also have

P(E) ≥ P(Q) ≥ P(E)− c/p2. (34)

This suggests that the difference between Q and E is small. By taking expectations on both
sides over the set Q, we obtain,

E
[
‖β̂t+1 − β∗‖2;Q

]
≤ κ

{
D(x, z) + c1

√
p

min {p/ log(p)|S|, n/ log(n)}

}
E
[
‖β̂t − β∗‖2

]
+κc2E

[
‖β̂t − β∗‖22

]

where we used

E
[
‖β̂t − β∗‖l2;Q

]
≤ E

[
‖β̂t − β∗‖l2

]
, l = 1, 2.

Similarly for the iterate β̂t+1, we write

E
[
‖β̂t+1 − β∗‖2

]
=E

[
‖β̂t+1 − β∗‖2;Q

]
+ E

[
‖β̂t+1 − β∗‖2;QC

]
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+ 2RP(QC),

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+ 2R

(
P(EC) +

c

p2

)
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+

ε

10
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+

E
[
‖β̂t − β∗‖2

]
10

.

Combining these two inequalities, we obtain

E
[
‖β̂t+1 − β∗‖2

]
≤
{

0.1 + κD(x, z) + c1κ

√
p

min {p/ log(p)|S|, n/ log(n)}

}
E
[
‖β̂t − β∗‖2

]
+ c2κE

[
‖β̂t − β∗‖22

]
.

Hence the proof follows.
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C.2 Proof of Theorem 6

The iterates generated by the Newton-Stein method satisfy the following inequality,

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

on the event Q where Q is defined in the previous section. We have observed that P(Q) ≥
P(E)−c/p2 in Equation 34. Since the coefficients τ1 and τ2 are obtained by uniform bounds
on the feasible set, the above inequality holds for every t on Q. On the event we consider,
Q∩ {ϑ < (1− τ1)/τ2}, the starting point satisfies the following

τ1 + τ2‖β̂0 − β∗‖2 < 1, (35)

which implies that the sequence of iterates converges. Let ξ ∈ (ε, ϑ) and tξ be the last

iteration that ‖β̂t − β∗‖2 > ξ. Then, for t > tξ

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

≤ (τ1 + τ2ξ) ‖β̂t − β∗‖2.

This convergence behavior describes a linear rate and requires at most

log(ε/ξ)

log(τ1 + τ2ξ)

iterations to reach a tolerance of ε. For t ≤ tξ, we have

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

≤ (τ1/ξ + τ2) ‖β̂t − β∗‖22.

This describes a quadratic rate and the number of iterations to reach a tolerance of ξ can
be upper bounded by

log2

(
log (ξ (τ1/ξ + τ2))

log (τ1/ξ + τ2) ‖β̂0 − β∗‖2

)
≤ log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
.

Therefore, the overall number of iterations to reach a tolerance of ε is upper bounded by

log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
+

log(ε/ξ)

log(τ1 + τ2ξ)

which is a function of ξ. Therefore, we take the minimum over the feasible set and conclude
that on E ∩ {ϑ < (1 − τ1)/τ2}, the number of iterations to reach a tolerance of ε is upper
bounded by infξ J (ξ) with a bad event probability of c/p2. By conditioning on the event
E ∩ {ϑ < (1 − τ1)/τ2}, we conclude that with probability at least 1 − c′/p2, the statement
of the theorem holds for c′ = c/P(E ∩ {ϑ < (1− τ1)/τ2}).
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Appendix D. Proof of Theorem 7

We have the following projected updates

β̂t+1 =PC
(
β̂t − γtQt∇`(β̂t); Qt

)
= β̂t − γtDγt(β̂

t),

where we define

Dγ(β̂t) =
1

γ

(
β̂t − PC(β̂t − γQt∇`(β̂t); Qt)

)
.

For simplicity, we only consider the projection onto a convex set, i.e.,

PtC(β+) = PC(β+; Qt) =argmin
w∈C

1

2
‖w − β+‖2

Qt−1 , (36)

=argmin
w∈Rp

1

2
‖w − β+‖2

Qt−1 + IC(w),

where IC(w) is the indicator function for the convex set C, i.e.

IC(w) =

{
0 if w ∈ C,
∞ otherwise.

We note that other projection methods (such as proximal mappings) are also applicable to
our update rule.

Defining the decrement λt = 〈∇`(β̂t), Dγ(β̂t)〉, we consider the following form of back-
tracking line search with update parameters a ∈ (0, 0.5) and b ∈ (0, 1):

γ = γ̄; while: `
(
β̂t − γDγ(β̂t)

)
> `(β̂t)− aγλt, γ ← γb.

Depending on the projection choice, there are various other search methods that can be
applied. Before we move on to the convergence analysis, we first establish some properties
of the modified gradient Dγ .

For a given point w ∈ C, the sub-differential of the indicator function is the normal cone.
This together with Equation 36 implies that

β̂t − γQt∇`(β̂t)− PtC(β̂t − γQt∇`(β̂t)) ∈ Qt ∂IC(PtC(β̂t − γQt∇`(β̂t))),

which in turn implies

γ[Qt]−1
{
Dγ(β̂t)−Qt∇`(β̂t),

}
∈ ∂IC(PtC(β̂t − γQt∇`(β̂t))),

and correspondingly for any β ∈ C

〈[Qt]−1Dγ(β̂t)−∇`(β̂t),PtC(β̂t − γQt∇`(β̂t))− β〉 ≥ 0.

For β = β̂t ∈ C, this yields

κ−1‖Dγ(β̂t)‖22 ≤ 〈Dγ(β̂t), [Qt]−1Dγ(β̂t)〉 ≤ 〈∇`(β̂t), Dγt(β̂
t)〉, (37)
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with probability at least P (E)− c/p2. Also note that the Hessian of the GLM problem can
be upper bounded by∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i φ

(2)(〈xi, β̂t)

∥∥∥∥∥
2

≤ B2

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∥∥∥∥∥
2

≤ B2K.

Now we move to the convergence analysis. For a step size γ, by the convexity of the
negative log-likelihood, we can write almost surely

`(β̂t − γDγ(β̂t)) ≤`(β̂t)− γ〈∇`(β̂t), Dγ(β̂t)〉+
γ2B2K

2
‖Dγ(β̂t)‖22,

≤`(β̂t)− γ〈∇`(β̂t), Dγ(β̂t)〉
{

1− γ

2
B2Kκ

}
and notice that the exit condition for the backtracking line search algorithm is satisfied
when γ ≤ (κB2K)−1. Hence, the line search returns a step size satisfying

γt ≥ min{γ̄, b/(κB2K)}.

Using the line search condition, we have

`
(
β̂t − γtDγt(β̂

t)
)
− `(β̂t) ≤− aγtλt,

with probability at least P(E)− c/p2 which implies that the sequence {`(β̂t)}t is decreasing.
We note that this event is independent of the iteration number due to uniform positive
definite condition given in E . Since ` is continuous and C is closed, ` is a closed function.
Hence, the sequence {`(β̂t)}t must converge to a limit. This implies that aγtλ

t → 0. But
we have a > 0 and γt > min{γ̄, b/(κB2K)} > 0. Therefore, we conclude that λt → 0. Using
the inequality provided in Equation 37, we conclude that ‖Dγ(β̂t)‖2 converges to 0 which
implies that the algorithm converges with probability at least 1− c

P(E)p
−2, where in the last

step we conditioned on E .

Appendix E. Local Step Size Selection

This section provides a heuristic calculation for choosing a local step size when eigenvalue
thresholding is applied to the Newton-Stein method. We carry our analysis from Equa-
tion 32. The optimal local step size would be

γ∗ = argminγ

∥∥∥∥I − γQt

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

.

Defining the following matrix,

∇2
β

˜̀(β̂t) =

∫ 1

0
∇2
β`(β∗ + ξ(β̂t − β∗))dξ,

and we write the governing term as∥∥∥I − γQt∇2
β

˜̀(β̂t)
∥∥∥

2
.
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The above function is piecewise linear in γ and it can be minimized by setting

γ∗ =
2

λ1

(
Qt∇2

β
˜̀(β̂t)

)
+ λp

(
Qt∇2

β
˜̀(β̂t)

) .
Since we don’t have access to the optimal value β∗, we cannot determine the exact value

of ∇2
β

˜̀(β̂t). Hence, we will assume that ∇2
β

˜̀(β̂t) and the current estimate are close.
In the regime n� p, and by our construction of the scaling matrix Qt, we have

Qt ≈
[
E[xxTφ(2)(〈x, β̂t〉)]

]−1
and ∇2

β`(β̂
t) ≈ E[xxTφ(2)(〈x, β̂t〉)].

The crucial observation is that the eigenvalue thresholding suggested in Erdogdu and
Montanari, 2015 estimates the smallest eigenvalue with (r + 1)-th eigenvalue (say σ̂2)
which overestimates true value (say σ2) in general. Even though the largest eigenvalue
of Qt∇2

β
˜̀(β̂t) will be close to 1, the smallest value will be σ2/σ̂2. This will make the

optimal step size larger than 1. Hence, we suggest

γ =
2

1 + σ2/σ̂2
,

if σ2 were known. We also have, by the Weyl’s inequality,∣∣σ̂2 − σ2
∣∣ ≤ ∥∥∥Σ̂−Σ

∥∥∥
2
≤ C

√
p

|S|
,

with high probability. Whenever r is less than p/2, we suggest to use

γ =
2

1 +
σ̂2−O(

√
p/|S|)

σ̂2

,

if σ2 is unknown.

Appendix F. Useful Lemmas

Lemma 29 Let Γ denote the Gamma function. Then, for r ∈ (0, 1), we have

z1−r <
Γ(z + 1)

Γ(z + r)
< (1 + z)1−r.

Lemma 30 Let Z be a random variable with a density function f and cumulative distri-
bution function F . If FC = 1− F , then,∣∣E[ZI{|Z|>t}]

∣∣ ≤ tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz.

Proof We write,

E[ZI{|Z|>t}] =

∫ ∞
t

zf(z)dz +

∫ −t
−∞

zf(z)dz.
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Using integration by parts, we obtain∫
zf(z)dz =− zFC(z) +

∫
FC(z)dz,

=zF (z)−
∫
F (z)dz.

Since limz→∞ zF
C(z) = limz→−∞ zF (z) = 0, we have∫ ∞

t
zf(z)dz =tFC(t) +

∫ ∞
t

FC(z)dz,∫ −t
−∞

zf(z)dz =− tF (−t)−
∫ −t
−∞

F (z)dz,

=− tF (−t)−
∫ ∞
t

F (−z)dz.

Hence, we obtain the following bound,

∣∣E[ZI{|Z|>t}]
∣∣ =

∣∣∣∣tFC(t) +

∫ ∞
t

FC(z)dz − tF (−t)−
∫ ∞
t

F (−z)dz
∣∣∣∣ ,

≤t
(
FC(t) + F (−t)

)
+

(∫ ∞
t

FC(z) + F (−z)dz
)
,

≤tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz.

Lemma 31 For positive constants c1, c2, we have∫ ∞
c1

e−c2t
2/3
dt ≤

{
3c

1/3
1

2c2
+

3

4c2
2c

1/3
1

}
e−c2c

2/3
1

Proof By the change of variables t2/3 = x2, we get∫ ∞
c1

e−c2t
2/3
dt = 3

∫ ∞
c
1/3
1

x2e−c2x
2
dx.

Next, we notice that

de−c2x
2

= −2c2xe
−c2x2

dx.

Hence, using the integration by parts, we have∫ ∞
c1

e−c2t
2/3
dt =

3

2c2

{
c

1/3
1 e−c2c

2/3
1 +

∫ ∞
c
1/3
1

e−c2x
2
dx

}
.
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We will find an upper bound on the second term. Using the change of variables, x = y+c
1/3
1 ,

we obtain ∫ ∞
c
1/3
1

e−c2x
2
dx =

∫ ∞
0

e
−c2

(
y+c

1/3
1

)2

dy,

≤e−c2c
2/3
1

∫ ∞
0

e−2c2yc
1/3
1 dy,

=
e−c2c

2/3
1

2c2c
1/3
1

.

Combining the above results, we complete the proof.

Lemma 32 (Vershynin, 2010) Let X be a symmetric p×p matrix, and let Tε be an ε-net
over Sp−1. Then,

‖X‖2 ≤
1

1− 2ε
sup
v∈Tε
|〈Xv, v〉| .

Lemma 33 Let Bp(R) ⊂ Rp be the ball of radius R centered at the origin and Tε be an
ε-net over Bp(R). Then,

|Tε| ≤
(
R
√
p

ε

)p
.

Proof A similar proof appears in (Van der Vaart, 2000). The set Bp(R) can be contained
in a p-dimensional cube of size 2R. Consider a grid over this cube with mesh width 2ε/

√
p.

Then Bp(R) can be covered with at most (2R/(2ε/
√
p))p many cubes of edge length 2ε/

√
p.

If ones takes the projection of the centers of such cubes onto Bp(R) and considers the
circumscribed balls of radius ε, we may conclude that Bp(R) can be covered with at most(

2R

2ε/
√
p

)p
many balls of radius ε.

Lemma 34 For a, b > 0, and ε satisfying

ε =

{
a

2
log

(
2b2

a

)}1/2

and
2

a
b2 > e,

we have ε2 ≥ a log(b/ε). Moreover, the gap in the inequality can be written as

ε2 − a log(b/ε) =
a

2
log log

(
2b2

a

)
.
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Proof Since a, b > 0 and x → ex is a monotone increasing function, the above inequality
condition is equivalent to

2ε2

a
e

2ε2

a ≥ 2b2

a
.

Now, we use the function f(w) = wew for w > 0 (in fact this function is well-known by the
name Lambert W function). f is continuous and invertible on [0,∞). Note that f−1 is also
a continuous and increasing function for w > 0. Therefore, we have

ε2 ≥ a

2
f−1

(
2b2

a

)
Observe that the smallest possible value for ε would be simply the square root of af−1

(
2b2/a

)
/2.

For simplicity, we will obtain a more interpretable expression for ε. By the definition of
f−1, we have

log(f−1(y)) + f−1(y) = log(y).

Since the condition on a and b enforces f−1(y) to be larger than 1, we obtain the simple
inequality that

f−1(y) ≤ log(y).

Using the above inequality, if ε satisfies

ε2 =
a

2
log

(
2b2

a

)
,

we obtain the desired inequality.
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