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Abstract

We reconsider randomized algorithms for the low-rank approximation of symmetric pos-
itive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in
data analysis and machine learning applications. Our main results consist of an empir-
ical evaluation of the performance quality and running time of sampling and projection
methods on a diverse suite of SPSD matrices. Our results highlight complementary as-
pects of sampling versus projection methods; they characterize the effects of common data
preprocessing steps on the performance of these algorithms; and they point to important
differences between uniform sampling and nonuniform sampling methods based on leverage
scores. In addition, our empirical results illustrate that existing theory is so weak that it
does not provide even a qualitative guide to practice. Thus, we complement our empirical
results with a suite of worst-case theoretical bounds for both random sampling and ran-
dom projection methods. These bounds are qualitatively superior to existing bounds—e.g.,
improved additive-error bounds for spectral and Frobenius norm error and relative-error
bounds for trace norm error—and they point to future directions to make these algorithms
useful in even larger-scale machine learning applications.

Keywords: Nyström approximation, low-rank approximation, kernel methods, random-
ized algorithms, numerical linear algebra

1. Introduction

We reconsider randomized algorithms for the low-rank approximation of symmetric posi-
tive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data
analysis and machine learning applications. Our goal is to obtain an improved understand-
ing, both empirically and theoretically, of the complementary strengths of sampling versus
projection methods on realistic data. Our main results consist of an empirical evaluation of
the performance quality and running time of sampling and projection methods on a diverse
suite of dense and sparse SPSD matrices drawn both from machine learning as well as more
general data analysis applications. These results are not intended to be comprehensive but
instead to be illustrative of how randomized algorithms for the low-rank approximation
of SPSD matrices behave in a broad range of realistic machine learning and data analysis
applications.
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Our empirical results point to several directions that are not explained well by existing
theory. (For example, that the results are much better than existing worst-case theory
would suggest, and that sampling with respect to the statistical leverage scores leads to
results that are complementary to those achieved by projection-based methods.) Thus, we
complement our empirical results with a suite of worst-case theoretical bounds for both
random sampling and random projection methods. These bounds are qualitatively superior
to existing bounds—e.g., improved additive-error bounds for spectral and Frobenius norm
error and relative-error bounds for trace norm error. By considering random sampling
and random projection algorithms on an equal footing, we identify within our analysis
deterministic structural properties of the input data and sampling/projection methods that
are responsible for high-quality low-rank approximation.

In more detail, our main contributions are fourfold.

• First, we provide an empirical illustration of the complementary strengths and weak-
nesses of data-independent random projection methods and data-dependent random
sampling methods when applied to SPSD matrices. We do so for a diverse class of
SPSD matrices drawn from machine learning and data analysis applications, and we
consider reconstruction error with respect to the spectral, Frobenius, and trace norms.
Depending on the parameter settings, the matrix norm of interest, the data set un-
der consideration, etc., one or the other method might be preferable. In addition,
we illustrate how these empirical properties can often be understood in terms of the
structural nonuniformities of the input data that are of independent interest.
• Second, we consider the running time of high-quality sampling and projection algo-

rithms. For random sampling algorithms, the computational bottleneck is typically
the exact or approximate computation of the importance sampling distribution with
respect to which one samples; and for random projection methods, the computa-
tional bottleneck is often the implementation of the random projection. By exploiting
and extending recent work on “fast” random projections and related recent work on
“fast” approximation of the statistical leverage scores, we illustrate that high-quality
leverage-based random sampling and high-quality random projection algorithms have
comparable running times. Although both are slower than simple (and in general
much lower-quality) uniform sampling, both can be implemented more quickly than
a näıve computation of an orthogonal basis for the top part of the spectrum.
• Third, our main technical contribution is a set of deterministic structural results that

hold for any “sketching matrix” applied to an SPSD matrix. We call these “determin-
istic structural results” since there is no randomness involved in their statement or
analysis and since they depend on structural properties of the input data matrix and
the way the sketching matrix interacts with the input data. In particular, they high-
light the importance of the statistical leverage scores, which have proven important
in other applications of random sampling and random projection algorithms.
• Fourth, our main algorithmic contribution is to show that when the low-rank sketch-

ing matrix represents certain random projection or random sampling operations, then
we obtain worst-case quality-of-approximation bounds that hold with high probabil-
ity. These bounds are qualitatively better than existing bounds and they illustrate
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how high-quality random sampling algorithms and high-quality random projection
algorithms can be treated from a unified perspective.

A novel aspect of our work is that we adopt a unified approach to these low-rank ap-
proximation questions—unified in the sense that we consider both sampling and projection
algorithms on an equal footing, and that we illustrate how the structural nonuniformities
responsible for high-quality low-rank approximation in worst-case analysis also have im-
portant empirical consequences in a diverse class of SPSD matrices. By identifying deter-
ministic structural conditions responsible for high-quality low-rank approximation of SPSD
matrices, we highlight complementary aspects of sampling and projection methods; and
by illustrating the empirical consequences of structural nonuniformities, we provide theory
that is a much closer guide to practice than has been provided by prior work. We note also
that our deterministic structural results could be used to check, in an a posteriori manner,
the quality of a sketching method for which one cannot establish an a priori bound.

Our analysis is timely for several reasons. First, in spite of the empirical successes of
Nyström-based and other randomized low-rank methods, existing theory for the Nyström
method is quite modest. For example, existing worst-case bounds such as those of Drineas
and Mahoney (2005) are very weak, especially compared with existing bounds for least-
squares regression and general low-rank matrix approximation problems (Drineas et al.,
2008, 2010; Mahoney, 2011).1 Moreover, many other worst-case bounds make very strong
assumptions about the coherence properties of the input data (Kumar et al., 2012; Gittens,
2012). Second, there have been conflicting views in the literature about the usefulness of
uniform sampling versus nonuniform sampling based on the empirical statistical leverage
scores of the data in realistic data analysis and machine learning applications. For example,
some work has concluded that the statistical leverage scores of realistic data matrices are
fairly uniform, meaning that the coherence is small and thus uniform sampling is appropri-
ate (Williams and Seeger, 2001; Kumar et al., 2012); while other work has demonstrated
that leverage scores are often very nonuniform in ways that render uniform sampling inap-
propriate and that can be essential to highlight properties of downstream interest (Paschou
et al., 2007; Mahoney and Drineas, 2009). Third, in recent years several high-quality nu-
merical implementations of randomized matrix algorithms for least-squares and low-rank
approximation problems have been developed (Avron et al., 2010; Meng et al., 2014; Woolfe
et al., 2008; Rokhlin et al., 2009; Martinsson et al., 2011). These have been developed from
a “scientific computing” perspective, where condition numbers, spectral norms, etc. are of
greater interest (Mahoney, 2012), and where relatively strong homogeneity assumptions can
be made about the input data. In many “data analytics” applications, the questions one
asks are very different, and the input data are much less well-structured. Thus, we expect
that some of our results will help guide the development of algorithms and implementations
that are more appropriate for large-scale analytics applications.

In the next section, Section 2, we start by presenting some notation, preliminaries,
and related prior work. Then, in Section 3 we present our main empirical results; and in

1. This statement may at first surprise the reader, since an SPSD matrix is an example of a general matrix,
and one might suppose that the existing theory for general matrices could be applied to SPSD matrices.
While this is true, these existing methods for general matrices do not in general respect the symmetry
or positive semi-definiteness of the input.
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Section 4 we present our main theoretical results. We conclude in Section 5 with a brief
discussion of our results in a broader context.

2. Notation, Preliminaries, and Related Prior Work

In this section, we introduce the notation used throughout the paper, and we address several
preliminary considerations, including reviewing related prior work.

2.1 Notation

Let A ∈ Rn×n be an arbitrary SPSD matrix with eigenvalue decomposition A = UΣUT ,
where we partition U and Σ as

U =
(
U1 U2

)
and Σ =

(
Σ1

Σ2

)
. (1)

Here, U1 has k columns and spans the top k-dimensional eigenspace of A, and Σ1 ∈ Rk×k
is full-rank.2 We denote the eigenvalues of A with λ1(A) ≥ . . . ≥ λn(A).

Given A and a rank parameter k, the statistical leverage scores of A relative to the best
rank-k approximation to A equal the squared Euclidean norms of the rows of the n × k
matrix U1:

`j = ‖(U1)j‖2. (2)

The leverage scores provide a more refined notion of the structural nonuniformities of A
than does the notion of coherence, µ = n

k maxi∈{1,...,n} `i, which equals (up to scale) the
largest leverage score; and they have been used historically in regression diagnostics to
identify particularly influential or outlying data points. Less obviously, the statistical lever-
age scores play a crucial role in recent work on randomized matrix algorithms: they define
the key structural nonuniformity that must be dealt with in order to obtain high-quality
low-rank and least-squares approximation of general matrices via random sampling and
random projection methods (Mahoney, 2011). Although Equation (2) defines them with
respect to a particular basis, the statistical leverage scores equal the diagonal elements of
the projection matrix onto the span of that basis, and thus they can be computed from any
basis spanning the same space. Moreover, they can be approximated more quickly than the
time required to compute that basis with a truncated SVD or a QR decomposition (Drineas
et al., 2012).

We denote by S an arbitrary n × ` “sketching” matrix that, when post-multiplying a
matrix A, maps points from Rn to R`. We are most interested in the case where S is a
random matrix that represents a random sampling process or a random projection process,
but we do not impose this as a restriction unless explicitly stated. We let

Ω1 = UT
1 S and Ω2 = UT

2 S (3)

denote the projection of S onto the top and bottom eigenspaces of A, respectively.

2. Variants of our results hold trivially if the rank of A is k or less, so we focus on this more general case
here.
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Recall that, by keeping just the top k singular vectors, the matrix Ak := U1Σ1U
T
1 is

the best rank-k approximation to A, when measured with respect to any unitarily-invariant
matrix norm, e.g., the spectral, Frobenius, or trace norm. For a vector x ∈ Rn, let ‖x‖ξ,
for ξ = 1, 2,∞, denote the 1-norm, the Euclidean norm, and the ∞-norm, respectively, and
let Diag(A) denote the vector consisting of the diagonal entries of the matrix A. Then,
‖A‖2 = ‖Diag(Σ)‖∞ denotes the spectral norm of A; ‖A‖F = ‖Diag(Σ)‖2 denotes the
Frobenius norm of A; and ‖A‖? = ‖Diag(Σ)‖1 denotes the trace norm (or nuclear norm)
of A. Clearly,

‖A‖2 ≤ ‖A‖F ≤ ‖A‖? ≤
√
n ‖A‖F ≤ n ‖A‖2 .

We quantify the quality of our algorithms by the “additional error” (above and beyond that
incurred by the best rank-k approximation to A). In the theory of algorithms, bounds of
the form provided by (16) below are known as additive-error bounds, the reason being that
the additional error is an additive factor of the form ε times a size scale that is larger than
the “base error” incurred by the best rank-k approximation. In this case, the goal is to
minimize the “size scale” of the additional error. Bounds of this form are very different
and in general weaker than when the additional error enters as a multiplicative factor, such
as when the error bounds are of the form ‖A − Ã‖ ≤ f(n, k, η)‖A − Ak‖, where f(·) is
some function and η represents other parameters of the problem. These latter bounds are
of greatest interest when f = 1 + ε, for an error parameter ε, as in (18) and (19) below.
These relative-error bounds, in which the size scale of the additional error equals that of the
base error, provide a much stronger notion of approximation than additive-error bounds.

2.2 Preliminaries

In many machine learning and data analysis applications, one is interested in symmetric
positive semi-definite (SPSD) matrices, e.g., kernel matrices and Laplacian matrices. One
common column-sampling-based approach to low-rank approximation of SPSD matrices is
the so-called Nyström method (Williams and Seeger, 2001; Drineas and Mahoney, 2005; Ku-
mar et al., 2012). The Nyström method—both randomized and deterministic variants—has
proven useful in applications where the kernel matrices are reasonably well-approximated
by low-rank matrices; and it has been applied to Gaussian process regression, spectral
clustering and image segmentation, manifold learning, and a range of other common ma-
chine learning tasks (Williams and Seeger, 2001; Williams et al., 2002; Fowlkes et al., 2004;
Talwalkar et al., 2008; Zhang and Kwok, 2010; Kumar et al., 2012). The simplest Nyström-
based procedure selects columns from the original data set uniformly at random and then
uses those columns to construct a low-rank SPSD approximation. Although this procedure
can be effective in practice for certain input matrices, two extensions (both of which are
more expensive) can substantially improve the performance, e.g., lead to lower reconstruc-
tion error for a fixed number of column samples, both in theory and in practice. The first
extension is to sample columns with a judiciously-chosen nonuniform importance sampling
distribution; and the second extension is to randomly mix (or combine linearly) columns
before sampling them. For the random sampling algorithms, an important question is what
importance sampling distribution should be used to construct the sample; while for the
random projection algorithms, an important question is how to implement the random
projections. In either case, appropriate consideration should be paid to questions such as
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whether the data are sparse or dense, how the eigenvalue spectrum decays, the nonunifor-
mity properties of eigenvectors, e.g., as quantified by the statistical leverage scores, whether
one is interested in reconstructing the matrix or performing a downstream machine learning
task, and so on.

The following sketching model subsumes both of these classes of methods.

• SPSD Sketching Model. Let A be an n × n positive semi-definite matrix, and let S
be a matrix of size n× `, where `� n. Take

C = AS and W = STAS.

Then CW†CT is a low-rank approximation to A with rank at most `.

We should note that the SPSD Sketching Model, formulated in this way, is not guaranteed
to be numerically stable: if W is ill-conditioned, then instabilities may arise in forming the
product CW†CT . For simplicity in our presentation, we do not describe the generalizations
of our results that could be obtained for the various algorithmic tweaks that have been
considered to address this potential issue (Drineas et al., 2008; Mahoney and Drineas, 2009;
Chiu and Demanet, 2013).

The choice of distribution for the sketching matrix S leads to different classes of low-
rank approximations. For example, if S represents the process of column sampling, either
uniformly or according to a nonuniform importance sampling distribution, then we refer to
the resulting approximation as a Nyström extension; if S consists of random linear combi-
nations of most or all of the columns of A, then we refer to the resulting approximation
as a projection-based SPSD approximation. In this paper, we focus on Nyström extensions
and projection-based SPSD approximations that fit the above SPSD Sketching Model. In
particular, we do not consider adaptive schemes, which iteratively select columns to pro-
gressively decrease the approximation error. While these methods often perform well in
practice (Belabbas and Wolfe, 2009b,a; Farahat et al., 2011; Kumar et al., 2012), rigorous
analyses of them are hard to come by—interested readers are referred to the discussion in
(Farahat et al., 2011; Kumar et al., 2012).

2.3 The Power Method

One can obtain the optimal rank-k approximation to A by forming an SPSD sketch where
the sketching matrix S is an orthonormal basis for the range of Ak, because with such
a choice,

CW†CT = AS(STAS)†STA = A(SSTASST )†A = A(PAk
APAk

)†A = AA†kA = Ak.

Of course, one cannot quickly obtain such a basis; this motivates considering sketching
matrices Sq obtained using the power method: that is, taking Sq = AqS0 where q is a
positive integer and S0 ∈ Rn×` with l ≥ k. As q → ∞, assuming UT

1 S0 has full row-rank,
the matrices Sq increasingly capture the dominant k-dimensional eigenspaces of A (see
Golub and Van Loan, 1996, Chapter 8), so one can reasonably expect that the sketching
matrix Sq produces SPSD sketches of A with lower additional error.

SPSD sketches produced using q iterations of the power method have lower error than
sketches produced without using the power method, but are roughly q times more costly to
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produce. Thus, the power method is most applicable when A is such that one can compute
the product AqS0 fast. We consider the empirical performance of sketches produced using
the power method in Section 3, and we consider the theoretical performance in Section 4.

2.4 Related Prior Work

Motivated by large-scale data analysis and machine learning applications, recent theoretical
and empirical work has focused on “sketching” methods such as random sampling and
random projection algorithms. A large part of the recent body of this work on randomized
matrix algorithms has been summarized in the recent monograph by Mahoney (2011) and
the recent review article by Halko et al. (2011). Here, we note that, on the empirical
side, both random projection methods (e.g., Bingham and Mannila, 2001; Fradkin and
Madigan, 2003; Venkatasubramanian and Wang, 2011; Banerjee et al., 2012) and random
sampling methods (e.g., Paschou et al., 2007; Mahoney and Drineas, 2009) have been used
in applications for clustering and classification of general data matrices; and that some of
this work has highlighted the importance of the statistical leverage scores that we use in
this paper (Paschou et al., 2007; Mahoney and Drineas, 2009; Mahoney, 2011; Yip et al.,
2014). In parallel, so-called Nyström-based methods have also been used in machine learning
applications. Originally used by Williams and Seeger to solve regression and classification
problems involving Gaussian processes when the SPSD matrix A is well-approximated by a
low-rank matrix (Williams and Seeger, 2001; Williams et al., 2002), the Nyström extension
has been used in a large body of subsequent work. For example, applications of the Nyström
method to large-scale machine learning problems include the work of Talwalkar et al. (2008);
Kumar et al. (2009a,c); Mackey et al. (2011b) and Zhang et al. (2008); Li et al. (2010); Zhang
and Kwok (2010), and applications in statistics and signal processing include the work of
Parker et al. (2005); Belabbas and Wolfe (2007a,b); Spendley and Wolfe (2008); Belabbas
and Wolfe (2008, 2009b,a).

Much of this work has focused on new proposals for selecting columns (e.g., Zhang
et al., 2008; Zhang and Kwok, 2009; Liu et al., 2010; Arcolano and Wolfe, 2010; Li et al.,
2010) and/or coupling the method with downstream applications (e.g., Bach and Jordan,
2005; Cortes et al., 2010; Jin et al., 2013; Homrighausen and McDonald, 2011; Machart
et al., 2011; Bach, 2013). The most detailed results are provided by Kumar et al. (2012) as
well as the conference papers on which it is based (Kumar et al., 2009a,b,c). Interestingly,
they observe that uniform sampling performs quite well, suggesting that in the data they
considered the leverage scores are quite uniform, which also motivated the related works
of Talwalkar and Rostamizadeh (2010); Mohri and Talwalkar (2011). This is in contrast
with applications in genetics (Paschou et al., 2007), term-document analysis (Mahoney and
Drineas, 2009), and astronomy (Yip et al., 2014), where the statistical leverage scores were
seen to be very nonuniform in ways of interest to the downstream scientist; we return to
this issue in Section 3.

On the theoretical side, much of the work has followed that of Drineas and Mahoney
(2005), who provided the first rigorous bounds for the Nyström extension of a general SPSD
matrix. They show that when Ω(kε−4 ln δ−1) columns are sampled with an importance
sampling distribution that is proportional to the square of the diagonal entries of A, then

‖A−CW†CT ‖ξ ≤ ‖A−Ak‖ξ + ε
∑n

k=1
(A)2ii (4)
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holds with probability 1 − δ, where ξ = 2, F represents the Frobenius or spectral norm.
(Actually, they prove a stronger result of the form given in Equation (4), except with W†

replaced with W†
k, where Wk represents the best rank-k approximation to W (Drineas and

Mahoney, 2005).) Subsequently, Kumar, Mohri, and Talwalkar show that if µk ln(k/δ))
columns are sampled uniformly at random with replacement from an A that has exactly
rank k, then one achieves exact recovery, i.e., A = CW†CT , with high probability (Kumar
et al., 2009a). Gittens (2012) extends this to the case where A is only approximately low-
rank. In particular, he shows that if ` = Ω(µk ln k) columns are sampled uniformly at
random (either with or without replacement), then∥∥∥A−CW†CT

∥∥∥
2
≤ ‖A−Ak‖2

(
1 +

2n

`

)
(5)

with probability exceeding 1− δ and∥∥∥A−CW†CT
∥∥∥
2
≤ ‖A−Ak‖2 +

2

δ
· ‖A−Ak‖? (6)

with probability exceeding 1− 2δ.
We have described these prior theoretical bounds in detail to emphasize how strong,

relative to the prior work, our new bounds are. For example, Equation (4) provides an
additive-error approximation with a very large scale; the bounds of Kumar, Mohri, and
Talwalkar require a sampling complexity that depends on the coherence of the input matrix
(Kumar et al., 2009a), which means that unless the coherence is very low one needs to sample
essentially all the rows and columns in order to reconstruct the matrix; Equation (5) provides
a bound where the additive scale depends on n; and Equation (6) provides a spectral norm
bound where the scale of the additional error is the (much larger) trace norm. Table 1
compares the bounds on the approximation errors of SPSD sketches derived in this work to
those available in the literature. We note further that Wang and Zhang recently established
lower-bounds on the worst-case relative spectral and trace norm errors of uniform Nyström
extensions (Wang and Zhang, 2013). Our Lemma 8 provides matching upper bounds,
showing the optimality of these estimates.

A related stream of research concerns projection-based low-rank approximations of gen-
eral (i.e., non-SPSD) matrices (Halko et al., 2011; Mahoney, 2011). Such approximations
are formed by first constructing an approximate basis for the top left invariant subspace of
A, and then restricting A to this space. Algorithmically, one constructs Y = AS, where
S is a sketching matrix, then takes Q to be a basis obtained from the QR decomposition
of Y, and then forms the low-rank approximation QQTA. The survey paper Halko et al.
(2011) proposes two schemes for the approximation of SPSD matrices that fit within this
paradigm: Q(QTAQ)QT and (AQ)(QTAQ)†(QTA). The first scheme—for which Halko
et al. (2011) provides quite sharp error bounds when S is a matrix of i.i.d. standard Gaus-
sian random variables—has the salutary property of being numerically stable. In Wang and
Zhang (2013), the authors show that using the first scheme with an adaptively sampled
S results in approximations with expected Frobenius error within a factor of 1 + ε of the
optimal rank-k approximation error when O(k/ε2) columns are sampled.

Halko et al. (2011) does not provide any theoretical guarantees for the second scheme,
but observes that this latter scheme produces noticeably more accurate approximations in
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Source ` ‖A−CW†CT ‖2 ‖A−CW†CT ‖F ‖A−CW†CT ‖?
Prior works

Drineas and Ma-
honey (2005)

Ω(ε−4k) opt2 + ε
∑n
i=A

2
ii optF + ε

∑n
i=1A

2
ii –

Belabbas and
Wolfe (2009b)

Ω(1) – – O
(
n−`
n

)
‖A‖?

Talwalkar and
Rostamizadeh
(2010)

Ω(µrr ln r) 0 0 0

Kumar et al.
(2012)

Ω(1) opt2 + n√
`
‖A‖2 optF + n(k` )1/4 ‖A‖2 –

This work

Lemma 8, uni-
form column
sampling

Ω
(
µkk ln k
(1−ε)2

)
opt2(1 + n

ε` ) optF + ε−1opt? opt?(1 + ε−1)

Lemma 5
leverage-based
column sam-
pling

Ω
(
k ln(k/β)
βε2

)
opt2 + ε2opt? optF + εopt? (1 + ε2)opt?

Lemma 6,
Fourier-based
projection

Ω(ε−1k lnn)
(
1 + 1

1−
√
ε

)
opt2 +

εopt?

(1−
√
ε)k

optF +
√
εopt? (1 + ε)opt?

Lemma 7,
Gaussian-based
projection

Ω(kε−1) (1 + ε2)opt2 + ε
kopt? optF + εopt? (1 + ε2)opt?

Table 1: Comparison of our bounds on the approximation errors of several types of SPSD
sketches with those provided in prior works. Only the asymptotically largest terms
(as ε→ 0) are displayed and constants are omitted, for simplicity. Here, ε ∈ (0, 1),
optξ is the smallest ξ-norm error possible when approximating A with a rank-k
matrix (k ≥ lnn), r = rank(A), ` is the number of column samples sufficient for
the stated bounds to hold, k is a target rank, and µs is the coherence of A relative
to the best rank-s approximation to A. The parameter β ∈ (0, 1] allows for the pos-
sibility of sampling using β-approximate leverage scores (see Section 4.2.1) rather
than the exact leverage scores. With the exception of (Drineas and Mahoney,
2005), which samples columns with probability proportional to their Euclidean
norms, and our novel leverage-based Nyström bound, these bounds are for sam-
pling columns or linear combinations of columns uniformly at random. All bounds
hold with constant probability.

practice. In Section 3, we show this second scheme is an instantiation of the power method
(as described in Section 2.3) with q = 1. Accordingly, the deterministic and stochastic error
bounds provided in Section 4 provide theoretical guarantees for this SPSD sketch.
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source, sketch pred./obs. spectral error pred./obs. Frobenius error pred./obs. trace error

Enron, k = 60

Drineas and Mahoney (2005)
nonuniform column sampling

3041.0 66.2 –

Belabbas and Wolfe (2009b)
uniform column sampling

– – 2.0

Kumar et al. (2012) uniform
column sampling

331.2 77.7 –

Lemma 5 leverage-based 1287.0 20.5 1.2
Lemma 6 Fourier-based 102.1 42.0 1.6
Lemma 7 Gaussian-based 20.1 7.6 1.4
Lemma 8 uniform column
sampling

9.4 285.1 9.5

Protein, k = 10

Drineas and Mahoney (2005),
nonuniform column sampling

125.2 18.6 –

Belabbas and Wolfe (2009b),
uniform column sampling

– – 3.6

Kumar et al. (2012), uniform
column sampling

35.1 20.5 –

Lemma 5, leverage-based 42.4 6.2 2.0
Lemma 6, Fourier-based 155.0 20.4 3.1
Lemma 7, Gaussian-based 5.7 5.6 2.2
Lemma 8, uniform column
sampling

90.0 63.4 14.3

AbaloneD, σ = .15, k = 20

Drineas and Mahoney (2005),
nonuniform column sampling

360.8 42.5 –

Belabbas and Wolfe (2009b),
uniform column sampling

– – 2.0

Kumar et al. (2012), uniform
column sampling

62.0 45.7 –

Lemma 5, leverage-based 235.4 14.1 1.3
Lemma 6, Fourier-based 70.1 36.0 1.7
Lemma 7, Gaussian-based 8.7 8.3 1.3
Lemma 8, uniform column
sampling

13.2 166.2 9.0

WineS, σ = 1, k = 20

Drineas and Mahoney (2005),
nonuniform column sampling

408.4 41.1 –

Belabbas and Wolfe (2009b),
uniform column sampling

– – 2.1

Kumar et al. (2012), uniform
column sampling

70.3 44.3 –

Lemma 5, leverage-based 244.6 12.9 1.2
Lemma 6, Fourier-based 94.8 36.0 1.7
Lemma 7, Gaussian-based 11.4 8.1 1.4
Lemma 8, uniform column
sampling

13.2 162.2 9.1

Table 3: Comparison of the empirically observed approximation errors to the guarantees
provided in this and other works, for several data sets. Each approximation was
formed using ` = 6k ln k samples. To evaluate the error guarantees, δ = 1/2 was
taken and all constants present in the statements of the bounds were replaced with
ones. The observed errors were taken to be the average errors over 30 runs of the
approximation algorithms. The data sets, described in Section 3.1, are represen-
tative of several classes of matrices prevalent in machine learning applications.
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2.5 An Overview of Our Bounds

Our bounds in Table 1 (established as Lemmas 5–8 in Section 4.2) exhibit a common
structure: for the spectral and Frobenius norms, we see that the additional error is on
a larger scale than the optimal error, and the trace norm bounds all guarantee relative
error approximations. This follows from the fact, as detailed in Section 4.1, that low-
rank approximations that conform to the SPSD sketching model can be understood as
forming column-sample/projection-based approximations to the square root of A, and thus
squaring this approximation yields the resulting approximation to A. The squaring process
unavoidably results in potentially large additional errors in the case of the spectral and
Frobenius norms— whether or not the additional errors are large in practice depends upon
the properties of the matrix and the form of stochasticity used in the sampling process. For
instance, from our bounds it is clear that Gaussian-based SPSD sketches are expected to
have lower additional error in the spectral norm than any of the other sketches considered.

From Table 1, we also see, in the case of uniform Nyström extensions, a necessary de-
pendence on the coherence of the input matrix since columns are sampled uniformly at
random. However, we also see that the scales of the additional error of the Frobenius and
trace norm bounds are substantially improved over those in prior results. The large addi-
tional error in the spectral norm error bound is necessary in the worse case (Gittens, 2012).
Lemmas 5, 6 and 7 in Section 4.2—which respectively address leverage-based, Fourier-
based, and Gaussian-based SPSD sketches—show that spectral norm additive-error bounds
with additional error on a substantially smaller scale can be obtained if one first mixes the
columns before sampling from A or one samples from a judicious nonuniform distribution
over the columns.

Table 2 compares the minimum, mean, and maximum approximation errors of several
SPSD sketches of four matrices (described in Section 3.1) to the optimal rank-k approx-
imation errors. We consider three regimes for `, the number of column samples used to
construct the sketch: ` = O(k), ` = O(k ln k), and ` = O(k lnn). These matrices exhibit a
diverse range of properties: e.g., Enron is sparse and has a slowly decaying spectrum, while
Protein is dense and has a rapidly decaying spectrum. Yet we notice that the sketches
perform quite well on each of these matrices. In particular, when ` = O(k lnn), the average
errors of the sketches are within 1 + ε of the optimal rank-k approximation errors, where
ε ∈ [0, 1]. Also note that the leverage-based sketches consistently have lower average errors
(in all of the three norms considered) than all other sketches. Likewise, the uniform Nyström
extensions usually have larger average errors than the other sketches. These two sketches
represent opposite extremes: uniform Nyström extensions (constructed using uniform col-
umn sampling) are constructed using no knowledge about the matrix, while leverage-based
sketches use an importance sampling distribution derived from the SVD of the matrix to
determine which columns to use in the construction of the sketch.

Table 3 illustrates the gap between the theoretical results currently available in the
literature and what is observed in practice: it depicts the ratio between the error bounds in
Table 1 and the average errors observed over 30 runs of the SPSD approximation algorithms
(the error bound from (Talwalkar and Rostamizadeh, 2010) is not considered in the table, as
it does not apply at the number of samples ` used in the experiments). Several trends can be
identified; among them, we note that the bounds provided in this paper for Gaussian-based
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sketches come quite close to capturing the errors seen in practice, and the Frobenius and
trace norm error guarantees of the leverage-based and Fourier-based sketches tend to more
closely reflect the empirical behavior than the error guarantees provided in prior work for
Nyström sketches. Overall, the trace norm error bounds are quite accurate. On the other
hand, prior bounds are sometimes more informative in the case of the spectral norm (with
the notable exception of the Gaussian sketches). Several important points can be gleaned
from these observations. First, the accuracy of the Gaussian error bounds suggests that
the main theoretical contribution of this work, the deterministic structural results given as
Theorems 2 through 4, captures the underlying behavior of the SPSD sketching process.
This supports our belief that this work provides a foundation for truly informative error
bounds. Given that this is the case, it is clear that the analysis of the stochastic elements of
the SPSD sketching process is much sharper in the Gaussian case than in the leverage-score,
Fourier, and uniform Nyström cases. We expect that, at least in the case of leverage and
Fourier-based sketches, the stochastic analysis can and will be sharpened to produce error
guarantees almost as informative as the ones we have provided for Gaussian-based sketches.

3. Empirical Aspects of SPSD Low-rank Approximation

In this section, we present our main empirical results, which consist of evaluating sampling
and projection algorithms applied to a diverse set of SPSD matrices. The bulk of our
empirical evaluation considers two random projection procedures and two random sampling
procedures for the sketching matrix S: for random projections, we consider using SRFTs
(Subsampled Randomized Fourier Transforms) as well as uniformly sampling from Gaussian
mixtures of the columns; and for random sampling, we consider sampling columns uniformly
at random as well as sampling columns according to a nonuniform importance sampling
distribution that depends on the empirical statistical leverage scores. In the latter case of
leverage score-based sampling, we also consider the use of both the (näıve and expensive)
exact algorithm as well as a (recently-developed fast) approximation algorithm. Section 3.1
starts with a brief description of the data sets we consider; Section 3.2 describes the details
of our SPSD sketching algorithms; Section 3.3 summarizes our experimental results to help
guide in the selection of sketching methods; in Section 3.4, we present our main results on
reconstruction quality for the random sampling and random projection methods; and, in
Section 3.5, we discuss running time issues, and we present our main results for running
time and reconstruction quality for both exact and approximate versions of leverage-based
sampling.

We emphasize that we don’t intend these results to be “comprehensive” but instead to
be “illustrative” case-studies—that are representative of a much wider range of applications
than have been considered previously. In particular, we would like to illustrate the tradeoffs
between these methods in different realistic applications in order, e.g., to provide directions
for future work. In addition to clarifying some of these issues, our empirical evaluation also
illustrates ways in which existing theory is insufficient to explain the success of sampling and
projection methods. This motivates our improvements to existing theory that we describe
in Section 4.

All of our computations were conducted using 64-bit MATLAB R2012a under Ubuntu
on a 2.6–GHz quad-core Intel i7 machine with 6Gb of RAM. To allow for accurate timing
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comparisons, all computations were carried out in a single thread. When applied to an
n× n SPSD matrix A, our implementation of the SRFT requires O(n2 lnn) operations, as
it applies MATLAB’s fft to the entire matrix A and then it samples ` columns from the
resulting matrix. A more rigorous implementation of the SRFT algorithm could reduce this
running time to O(n2 ln `), but due to the complexities involved in optimizing pruned FFT
codes, we did not pursue this avenue.

3.1 Data Sets

Table 4 provides summary statistics for the data sets used in our empirical evaluation.
We consider four classes of matrices commonly encountered in machine learning and data
analysis applications: normalized Laplacians of very sparse graphs drawn from “informatics
graph” applications; dense matrices corresponding to Linear Kernels from machine learning
applications; dense matrices constructed from a Gaussian Radial Basis Function Kernel
(RBFK); and sparse RBFK matrices constructed using Gaussian radial basis functions,
truncated to be nonzero only for nearest neighbors. This collection of data sets represents
a wide range of data sets with very different (sparsity, spectral, leverage score, etc.) prop-
erties that have been of interest recently not only in machine learning but in data analysis
more generally.

To understand better the Laplacian data, recall that, given an undirected graph with
weighted adjacency matrix W, its normalized graph Laplacian is

A = I−D−1/2WD−1/2,

where D is the diagonal matrix of weighted degrees of the nodes of the graph, i.e., Dii =∑
j 6=iWij .
The remaining data sets are kernel matrices associated with data drawn from a variety

of application areas. Recall that, given given points x1, . . . ,xn ∈ Rd and a function κ :
Rd × Rd → R, the n× n matrix with elements

Aij = κ(xi,xj)

is called the kernel matrix of κ with respect to x1, . . . ,xn. Appropriate choices of κ ensure
that A is positive semidefinite. When this is the case, the entries Aij can be interpreted
as measuring, in a sense determined by the choice of κ, the similarity of points i and j.
Specifically, if A is SPSD, then κ determines a so-called feature map Φκ : Rd → Rn such
that

Aij = 〈Φκ(xi),Φκ(xj)〉

measures the similarity (correlation) of xi and xj in feature space (Schölkopf and Smola,
2001).

When κ is the usual Euclidean inner-product, so that

Aij = 〈xi,xk〉,

A is called a Linear Kernel matrix. Gaussian RBFK matrices, defined by

Aσij = exp

(−‖xi − xj‖22
σ2

)
,
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Name Description n d %nnz

Laplacian Kernels

HEP arXiv High Energy Physics collaboration graph 9877 NA 0.06
GR arXiv General Relativity collaboration graph 5242 NA 0.12
Enron subgraph of the Enron email graph 10000 NA 0.22
Gnutella Gnutella peer to peer network on Aug. 6, 2002 8717 NA 0.09

Linear Kernels

Dexter bag of words 2000 20000 83.8
Protein derived feature matrix for S. cerevisiae 6621 357 99.7
SNPs DNA microarray data from cancer patients 5520 43 100
Gisette images of handwritten digits 6000 5000 100

Dense RBF Kernels

AbaloneD physical measurements of abalones 4177 8 100
WineD chemical measurements of wine 4898 12 100

Sparse RBF Kernels

AbaloneS physical measurements of abalones 4177 8 82.9/48.1
WineS chemical measurements of wine 4898 12 11.1/88.0

Table 4: The data sets used in our empirical evaluation (Leskovec et al., 2007; Klimt and
Yang, 2004; Guyon et al., 2005; Gustafson et al., 2006; Nielsen et al., 2002; Corke,
1996; Asuncion and Newman, 2012). Here, n is the number of data points, d is
the number of features in the input space before kernelization, and %nnz is the
percentage of nonzero entries in the matrix. For Laplacian “kernels,” n is the
number of nodes in the graph (and thus there is no d since the graph is “given”
rather than “constructed”). The %nnz for the Sparse RBF Kernels depends on
the σ parameter; see Table 5.

correspond to the similarity measure κ(x,y) = exp(−‖x− y‖22/σ2). Here σ, a nonnegative
number, defines the scale of the kernel. Informally, σ defines the “size scale” over which
pairs of points xi and xj “see” each other. Typically σ is determined by a global cross-
validation criterion, as Aσ is generated for some specific machine learning task; and, thus,
one may have no a priori knowledge of the behavior of the spectrum or leverage scores of
Aσ as σ is varied. Accordingly, we consider Gaussian RBFK matrices with different values
of σ.

Finally, given the same data points, x1, . . . ,xn, one can construct sparse Gaussian RBFK
matrices

A
(σ,ν,C)
ij =

[(
1−
‖xi − xj‖2

C

)ν]+
· exp

(−‖xi − xj‖22
σ2

)
,

where [x]+ = max{0, x}. When ν is larger than (d + 1)/2, this kernel matrix is positive
semidefinite (Genton, 2002). Increasing ν shrinks the magnitudes of the off-diagonal entries
of the matrix toward zero. As the cutoff point C decreases the matrix becomes more sparse;
in particular, C → 0 ensures that A(σ,ν,C) → I. On the other hand, C → ∞ ensures that
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Name %nnz
⌈
‖A‖2F
‖A‖22

⌉
k

λk+1

λk
100

‖A−Ak‖F
‖A‖F

100
‖A−Ak‖?
‖A‖?

kth-largest
leverage score
scaled by n/k

HEP 0.06 3078 20 0.998 7.8 0.4 128.8
HEP 0.06 3078 60 0.998 13.2 1.1 41.9
GR 0.12 1679 20 0.999 10.5 0.74 71.6
GR 0.12 1679 60 1 17.9 2.16 25.3
Enron 0.22 2588 20 0.997 7.77 0.352 245.8
Enron 0.22 2588 60 0.999 12.0 0.94 49.6
Gnutella 0.09 2757 20 1 8.1 0.41 166.2
Gnutella 0.09 2757 60 0.999 13.7 1.20 49.4

Dexter 83.8 176 8 0.963 14.5 .934 16.6
Protein 99.7 24 10 0.987 42.6 7.66 5.45
SNPs 100 3 5 0.928 85.5 37.6 2.64
Gisette 100 4 12 0.90 90.1 14.6 2.46

AbaloneD (dense, σ = .15) 100 41 20 0.992 42.1 3.21 18.11
AbaloneD (dense, σ = 1) 100 4 20 0.935 97.8 59 2.44
WineD (dense, σ = 1) 100 31 20 0.99 43.1 3.89 26.2
WineD (dense, σ = 2.1) 100 3 20 0.936 94.8 31.2 2.29

AbaloneS (sparse, σ = .15) 82.9 400 20 0.989 15.4 1.06 48.4
AbaloneS (sparse, σ = 1) 48.1 5 20 0.982 90.6 21.8 3.57
WineS (sparse, σ = 1) 11.1 116 20 0.995 29.5 2.29 49.0
WineS (sparse, σ = 2.1) 88.0 39 20 0.992 41.6 3.53 24.1

Table 5: Summary statistics for the data sets from Table 4 that we used in our empirical
evaluation.

A(σ,ν,C) approaches the (dense) Gaussian RBFK matrix Aσ. For simplicity, in our empirical
evaluations, we fix ν = d(d+ 1)/2e and C = 3σ, and we vary σ.

To illustrate the diverse range of properties exhibited by these four classes of data sets,
consider Table 5. Several observations are particularly relevant to our discussion below.

• All of the Laplacian Kernels drawn from informatics graph applications are extremely
sparse in terms of number of nonzeros, and they all tend to have very slow spectral
decay, as illustrated both by the quantity

⌈
‖A‖2F / ‖A‖

2
2

⌉
(this is the stable rank,

which is a numerically stable (under)estimate of the rank of A) as well as by the
relatively small fraction of the Frobenius norm that is captured by the best rank-k
approximation to A.

• Both the Linear Kernels and the Dense RBF Kernels are much denser and are much
more well-approximated by moderately to very low-rank matrices. In addition, both
the Linear Kernels and the Dense RBF Kernels have statistical leverage scores that are
much more uniform—there are several ways to illustrate this, none of them perfect.
Here, we illustrate this by considering the kth largest leverage score, scaled by the
factor n/k (if A were exactly rank k, this would be the coherence of A). For the
Linear Kernels and the Dense RBF Kernels, this quantity is typically one to two
orders of magnitude smaller than for the Laplacian Kernels.
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• For the Dense RBF Kernels, we consider two values of the σ parameter, again chosen
(somewhat) arbitrarily. For both AbaloneD and WineD, we see that decreasing σ from
1 to 0.15, i.e., letting data points “see” fewer nearby points, has two important effects:
first, it results in matrices that are much less well-approximated by low-rank matrices;
and second, it results in matrices that have much more heterogeneous leverage scores.

• For the Sparse RBF Kernels, there are a range of sparsities, ranging from above the
sparsity of the sparsest Linear Kernel, but all are denser than the Laplacian Kernels.
Changing the σ parameter has the same effect (although it is even more pronounced)
for Sparse RBF Kernels as it has for Dense RBF Kernels. In addition, “sparsifying”
a Dense RBF Kernel also has the effect of making the matrix less well approximated
by a low-rank matrix and of making the leverage scores more nonuniform.

As we see below, when we consider the RBF Kernels as the width parameter and sparsity
are varied, we observe a range of intermediate cases between the extremes of the (“nice”)
Linear Kernels and the (very “non-nice”) Laplacian Kernels.

3.2 SPSD Sketching Algorithms

The sketching matrix S may be selected in a variety of ways. For sampling-based sketches,
the sketching matrix S contains exactly one nonzero in each column, corresponding to a
single sample from the columns of A. For projection-based sketches, S is dense, and mixes
the columns of A before sampling from the resulting matrix.

In more detail, we consider two types of sampling-based SPSD sketches (i.e. Nyström
extensions): those constructed by sampling columns uniformly at random with replacement,
and those constructed by sampling columns from a distribution based upon the leverage
scores of the matrix filtered through the optimal rank-k approximation of the matrix. In
the case of column sampling, the sketching matrix S is simply the first ` columns of a matrix
that was chosen uniformly at random from the set of all permutation matrices.

In the case of leverage-based sampling, S has a more complicated distribution. Recall
that the leverage scores relative to the best rank-k approximation to A are the squared
Euclidean norms of the rows of the n× k matrix U1 :

`j = ‖(U1)j‖2.

It follows from the orthonormality of U1 that
∑

j(`j/k) = 1, and the leverage scores can thus
be interpreted as a probability distribution over the columns of A. To construct a sketching
matrix corresponding to sampling from this distribution, we first select the columns to
be used by sampling with replacement from this distribution. Then, S is constructed as
S = RD where R ∈ Rn×` is a column selection matrix that samples columns of A from the
given distribution—i.e., Rij = 1 iff the ith column of A is the jth column selected—and
D is a diagonal rescaling matrix satisfying Djj = 1√

`pi
iff Rij = 1. Here, pi = `i/k is the

probability of choosing the ith column of A. It is often expensive to compute the leverage
scores exactly; in Section 3.5, we consider the performance of sketches based on several
leverage score approximation algorithms.

The two projection-based sketches we consider use Gaussians and the real Fourier trans-
form. In the former case, S is a matrix of i.i.d. N (0, 1) random variables. In the latter case,
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S is a subsampled randomized Fourier transform (SRFT) matrix; that is, S =
√

n
`DFR,

where D is a diagonal matrix of Rademacher random variables, F is the real Fourier trans-
form matrix, and R restricts to ` columns.

For conciseness, we do not present results for sampling-based sketches where rows are
selected with probability proportional to their row norms. This form of sampling can be
similar to leverage-score sampling for sparse graphs with highly connected vertices (Ma-
honey and Drineas, 2009), and in cases where the matrix has been preprocessed to have
uniform row lengths, reduces to uniform sampling.

In the figures, we refer to sketches constructed by selecting columns uniformly at ran-
dom with the label ‘unif’, leverage score-based sketches with ‘lev’, Gaussian sketches with
‘gaussian’, and Fourier sketches with ‘srft’.

3.3 Guidelines for Selecting Sketching Schemes

In the remainder of this section of the paper, we provide empirical evaluations of the sam-
pling and projection-based sketching schemes just described, with an eye towards identifying
the aspects of the datasets that affect the relative performance of the sketching schemes.
However our experiments also provide some practical guidelines for selecting a particular
sketching scheme.

• Despite the theoretical result that the worst-case spectral error in using Nyström
sketches obtained via uniform column-samples can be much worse than that of using
projection or leverage-based sketches, on the corpus of data sets we considered, such
sketches perform within a small multiple of the error of more computationally expen-
sive leverage-based and projection-based sketches. For data sets with more nonuni-
form leverage score properties, random projections and leverage-based sampling will
do better (Ma et al., 2014).

• In the case where parsimony of the sketch is of primary concern, i.e. where the
primary concern is to maintain ` ≈ k, leverage sketches are an attractive option.
In particular, when an RBF kernel with small bandwidth is used, or the data set
is sparse, leverage-based sketches often provide higher accuracy than projection or
uniform-sampling based sketches.

• The norm in which the error is measured should be taked into consideration when
selecting the sketching algorithm. In particular, sketches which use power iterations
are most useful when the error is measured in the spectral norm, and in this case,
projection-based sketches (in particular, prolonged sketches– see Section 3.6) notice-
ably outperform uniform sampling-based sketches.

3.4 Reconstruction Accuracy of Sampling and Projection Algorithms

Here, we describe the performances of the SPSD sketches described in Section 3.2—column
sampling uniformly at random without replacement, column sampling according to the
nonuniform leverage score probabilities, and sampling using Gaussian and SRFT mixtures
of the columns—in terms of reconstruction accuracy for the data sets described in Sec-
tion 3.1. We describe general observations we have made about each class of matrices in
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turn, and then we summarize our observations. We consider only the use of exact leverage
scores here, and we postpone until Section 3.5 a discussion of running time issues and sim-
ilar reconstruction results when approximate leverage scores are used for the importance
sampling distribution. The relative errors∥∥∥A−CW†CT

∥∥∥
ξ
/ ‖A−Ak‖ξ (7)

are plotted, with each point in the figures of this section representing the average errors
observed over 30 trials.

3.4.1 Graph Laplacians

Figure 1 and Figure 2 show the reconstruction error results for sampling and projection
methods applied to several normalized graph Laplacians. The former shows GR and HEP,
each for two values of the rank parameter, and the latter shows Enron and Gnutella, again
each for two values of the rank parameter. Both figures show the spectral, Frobenius, and
trace norm approximation errors, as a function of the number of column samples `, relative
to the error of the optimal rank-k approximation of A.
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(b) GR, k = 60
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(c) HEP, k = 20
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Figure 1: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, as a function of the number of column
samples `, for the GR and HEP Laplacian data sets, with two choices of the rank
parameter k.
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(a) Enron, k = 20
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(b) Enron, k = 60
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(c) Gnutella, k = 20
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Figure 2: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, as a function of the number of column
samples `, for the Enron and Gnutella Laplacian data sets, with two choices of
the rank parameter k.

These and subsequent figures contain a lot of information, some of which is peculiar to
the given data sets and some of which is more general. In light of subsequent discussion,
several observations are worth making about the results presented in these two figures.

• All of the SPSD sketches provide quite accurate approximations—relative to the best
possible approximation factor for that norm, and relative to bounds provided by
existing theory, as reviewed in Section 2.4—even with only k column samples (or
in the case of the Gaussian and SRFT mixtures, with only k linear combinations of
columns). Upon examination, this is partly due to the extreme sparsity and extremely
slow spectral decay of these data sets which means, as shown in Table 4, that only a
small fraction of the (spectral or Frobenius or trace) mass is captured by the optimal
rank 20 or 60 approximation. Thus, although an SPSD sketch constructed from 20 or
60 vectors also only captures a small portion of the mass of the matrix, the relative
error is small, since the scale of the residual error is large.

• The scale of the Y axes is different between different figures and subfigures. This is to
highlight properties within a given plot, but it can hide several things. In particular,
note that the scale for the spectral norm is generally larger than for the Frobenius
norm, which is generally larger than for the trace norm, consistent with the size of
those norms; and that the scale is larger for higher-rank approximations, e.g. compare
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GR k = 20 with GR k = 60. This is also consistent with the larger amount of mass
captured by higher-rank approximations.

• For ` > k, the errors tend to decrease (or at least not increase, as for GR and HEP
the spectral norm error is flat as a function of `), which is intuitive.

• The X axes ranges from k to 9k for the k = 20 plots and from k to 3k for the k = 60
plots. As a practical matter, choosing ` between k and (say) 2k or 3k is probably
of greatest interest. In this regime, there is an interesting tradeoff: for moderately
large values of ` in this regime, the error for leverage-based sampling is moderately
better than for uniform sampling or random projections, while if one chooses ` to be
much larger then the improvements from leverage-based sampling saturate and the
uniform sampling and random projection methods are better. This is most obvious
in the Frobenius norm plots, although it is also seen in the trace norm plots, and
it suggests that some combination of leverage-based sampling and uniform sampling
might be best.

• The behavior of the approximations with respect to the spectral norm is quite different
from the behavior in the Frobenius and trace norms. In the latter, as the number of
samples ` increases, the errors tend to decrease; while for the former, the errors tend
to be much flatter as a function of increasing ` for at least the Gaussian, SRFT, and
uniformly sampled sketches.

All in all, there seems to be quite complicated behavior for low-rank sketches for these
Laplacian data sets. Several of these observations can also be made for subsequent figures;
but in some other cases the (very sparse and not very low rank) structural properties of the
data are primarily responsible.

3.4.2 Linear Kernels

Figure 3 shows the reconstruction error results for sampling and projection methods applied
to several Linear Kernels. The data sets (Dexter, Protein, SNPs, and Gisette) are all quite
low-rank and have fairly uniform leverage scores. Several observations are worth making
about the results presented in this figure.

• All of the methods perform quite similarly: all have errors that decrease smoothly
with increasing `, and in this case there is little advantage to using methods other
than uniform sampling (since they perform similarly and are more expensive). Also,
since the ranks are so low and the leverage scores are so uniform, the leverage score
sketch is no longer significantly distinguished by its tendency to saturate quickly.

• The scale of the Y axes is much larger than for the Laplacian data sets, mostly since
the matrices are much more well-approximated by low-rank matrices, although the
scale decreases as one goes from spectral to Frobenius to trace reconstruction error,
as before.

These linear kernels (and also to some extent the dense RBF kernels below that have larger
σ parameter) are examples of relatively “nice” machine learning data sets that are similar
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(b) Protein, k = 10
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(c) SNPs, k = 5
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(d) Gisette, k = 12

Figure 3: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, as a function of the number of column
samples `, for the Linear Kernel data sets.

to matrices where uniform sampling has been shown to perform well previously (Talwalkar
et al., 2008; Kumar et al., 2009a,c, 2012); for these matrices our empirical results agree with
these prior works.

3.4.3 Dense and Sparse RBF Kernels

Figure 4 and Figure 5 present the reconstruction error results for sampling and projection
methods applied to several dense RBF and sparse RBF kernels. Several observations are
worth making about the results presented in these figures.

• All of the methods have errors that decrease with increasing `, but for larger values of σ
and for denser data, the decrease is somewhat more regular, and the four methods tend
to perform similarly. For larger values of σ and sparser data, leverage score sampling
is somewhat better. This parallels what we observed with the Linear Kernels, except
that here the leverage score sampling is somewhat better for all values of `.

• For smaller values of σ, leverage score sampling tends to be much better than uniform
sampling and projection-based methods. For sparse data, however, this effect satu-
rates; and we again observe (especially when σ is smaller in AbaloneS and WineS)
the tradeoff we observed previously with the Laplacian data—leverage score sampling
is better when ` is moderately larger than k, while uniform sampling and random
projections are better when ` is much larger than k.
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(a) AbaloneD,
σ = .15, k = 20
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(b) AbaloneD, σ = 1, k = 20
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(c) WineD, σ = 1, k = 20
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(d) WineD, σ = 2.1, k = 20

Figure 4: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, as a function of the number of column
samples `, for several dense RBF data sets.

Recall from Table 5 that for smaller values of σ and for sparser kernels, the SPSD matrices
are less well-approximated by low-rank matrices, and they have more heterogeneous leverage
scores. Thus, they are more similar to the Laplacian data than the Linear Kernel data; this
suggests (as we have observed) that leverage score sampling should perform relatively better
than uniform column sampling and projection-based schemes when in these two cases.

3.4.4 Summary of Comparison of Sampling and Projection Algorithms

Before proceeding, there are several summary observations that we can make about sampling
versus projection methods for the data sets we have considered.

• Linear Kernels and to a lesser extent Dense RBF Kernels with larger σ parameter
have relatively low rank and relatively uniform leverage scores, and in these cases
uniform sampling does quite well. These data sets correspond most closely with those
that have been studied previously in the machine learning literature, and for these
data sets our results are in agreement with that prior work.

• Sparsifying RBF Kernels and/or choosing a smaller σ parameter tends to make these
kernels less well-approximated by low-rank matrices and to have more heterogeneous
leverage scores. In general, these two properties need not be directly related—the
spectrum is a property of eigenvalues, while the leverage scores are determined by the
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(a) AbaloneS,
σ = .15, k = 20
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(b) AbaloneS, σ = 1, k = 20
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(c) WineS, σ = 1, k = 20
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(d) WineS, σ = 2.1, k = 20

Figure 5: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, as a function of the number of column
samples `, for several sparse RBF data sets.

eigenvectors—but for the data we examined they are related, in that matrices with
more slowly decaying spectra also often have more heterogeneous leverage scores.

• For Dense RBF Kernels with smaller σ and Sparse RBF Kernels, leverage score
sampling tends to do much better than other methods. Interestingly, the Sparse
RBF Kernels have many properties of very sparse Laplacian Kernels corresponding to
relatively-unstructured informatics graphs, an observation which should be of inter-
est for researchers who construct sparse graphs from data using, e.g., “locally linear”
methods, to try to reconstruct hypothesized low-dimensional manifolds.

• Reconstruction quality under leverage score sampling saturates, as a function of choos-
ing more samples `. As a consequence, there can be a tradeoff between leverage score
sampling or other methods being better, depending on the values of ` that are chosen.

In general, all of the sampling and projection methods we considered perform much better
on the SPSD matrices we considered than previous worst-case bounds (e.g., (Drineas and
Mahoney, 2005; Kumar et al., 2012; Gittens, 2012)) would suggest. Specifically, even the
worst results correspond to single-digit approximation factors in relative scale. This obser-
vation is intriguing, because the motivation of leverage score sampling (recall that in this
context random projections should be viewed as performing uniform random sampling in a
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randomly-rotated basis where the leverage scores have been approximately uniformized (Ma-
honey, 2011)) is very much tied to the Frobenius norm, and so there is no a priori reason to
expect its good performance to extend to the spectral or trace norms. Motivated by this,
we revisit the question of proving improved worst-case theoretical bounds in Section 4.

Before describing these improved theoretical results, however, we address in Section 3.5
running time questions. After all, a näıve implementation of sampling with exact leverage
scores is slower than other methods (and much slower than uniform sampling). As shown
below, by using the recently-developed approximation algorithm of Drineas et al. (2012), not
only does this approximation algorithm run in time comparable with random projections
(for certain parameter settings), it also leads to approximations that soften the strong bias
that the exact leverage scores provide toward the best rank-k approximation to the matrix,
thereby leading to improved reconstruction results in many cases.

3.5 Reconstruction Accuracy of Leverage Score Approximation Algorithms

A näıve view might assume that computing probabilities that permit leverage-based sam-
pling requires an O(n3) computation of the full SVD, or at least the full computation of
a partial SVD, and thus that it would be much more expensive than recently-developed
random projection methods. Indeed, an “exact” computation of the leverage scores with a
truncated SVD takes roughly O(n2k) time. Recent work, however, has shown that relative-
error approximations to all the statistical leverage scores can be computed more quickly
than this exact algorithm (Drineas et al., 2012). Here, we implement and evaluate a version
of this algorithm. We evaluate it both in terms of running time and in terms of reconstruc-
tion quality on the diverse suite of real data matrices we considered above. This is the first
work to provide an empirical evaluation of an implementation of the leverage score approx-
imation algorithms of Drineas et al. (2012), illustrating empirically the tradeoffs between
cost and efficiency in a practical setting.

3.5.1 Description of the Fast Approximation Algorithm of Drineas et al.
(2012)

Algorithm 1 (which originally appeared as Algorithm 1 in Drineas et al. (2012)) takes
as input an arbitrary n × d matrix A, where n � d, and it returns as output a 1 ± ε
approximation to all of the statistical leverage scores of the input matrix. The original
algorithm of Drineas et al. (2012) uses a subsampled Hadamard transform and requires r1
to be somewhat larger than what we state in Algorithm 1. That an SRFT with a smaller
value of r1 can be used instead is a consequence of the fact that (Drineas et al., 2012, Lemma
3) is also satisfied by an SRFT matrix with the given r1; this is established in (Tropp, 2011;
Boutsidis and Gittens, 2013).

The running time of this algorithm, given in the caption of the algorithm, is roughly
O(nd ln d) when d = Ω(lnn). Thus Algorithm 1 generates relative-error approximations to
the leverage scores of a tall and skinny matrix A in time o(nd2), rather than the Ω(nd2) time
that would be required to compute a QR decomposition or a thin SVD of the n×d matrix A.
The basic idea behind Algorithm 1 is as follows. If we had a QR decomposition of A, then
we could postmultiply A by the inverse of the “R” matrix to obtain an orthogonal matrix
spanning the column space of A; and from this n× d orthogonal matrix, we could read off
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Input: A ∈ Rn×d (with SVD A = UΣVT ), error parameter ε ∈ (0, 1/2].

Output: ˜̀
i, i = 1, . . . , n, approximations to the leverage scores of A.

1. Let Π1 ∈ Rr1×n be an SRFT with

r1 = Ω(ε−2(
√
d+
√

lnn)2 ln d)

2. Compute Π1A ∈ Rr1×d and its QR factorization Π1A = QR.

3. Let Π2 ∈ Rd×r2 be a matrix of i.i.d. standard Gaussian random variables,
where

r2 = Ω
(
ε−2 lnn

)
.

4. Construct the product Ω = AR−1Π2.

5. For i = 1, . . . , n compute ˜̀
i =

∥∥Ω(i)

∥∥2
2
.

Algorithm 1: Algorithm (Drineas et al., 2012, Algorithm 1) for approximating the lever-
age scores `i of an n×d matrix A, where n� d, to within a multiplicative factor of 1± ε.
The running time of the algorithm is O(nd ln(

√
d +
√

lnn) + ndε−2 lnn + d2ε−2(
√
d +√

lnn)2 ln d).

the leverage scores from the Euclidean norms of the rows. Of course, computing the QR
decomposition would require O(nd2) time. To get around this, Algorithm 1 premultiplies
A by a structured random projection Π1, computes a QR decomposition of Π1A, and
postmultiplies A by R−1, i.e., the inverse of the “R” matrix from the QR decomposition
of Π1A. Since Π1 is an SRFT, premultiplying by it takes roughly O(nd ln d) time. In
addition, note that Π1A needs to be post multiplied by a second random projection in
order to compute all of the leverage scores in the allotted time; see (Drineas et al., 2012) for
details. This algorithm is simpler than the algorithm in which we are primarily interested
that is applicable to square SPSD matrices, but we start with it since it illustrates the
basic ideas of how our main algorithm works and since our main algorithm calls it as a
subroutine. We note, however, that this algorithm is directly useful for approximating the
leverage scores of Linear Kernel matrices A = XXT , when X is a tall and skinny matrix.

Consider, next, Algorithm 2 (which originally appeared as Algorithm 4 in (Drineas
et al., 2012)), which takes as input an arbitrary n × d matrix A and a rank parameter k,
and returns as output a 1± ε approximation to all of the statistical leverage scores (relative
to the best rank-k approximation) of the input. An important technical point is that the
problem of computing the leverage scores of a matrix relative to a low-dimensional space is
ill-posed, essentially because the spectral gap between the kth and the (k+ 1)st eigenvalues
can be small, and thus Algorithm 2 actually computes approximations to the leverage scores
of a matrix that is near to A in the spectral norm (or the Frobenius norm if q = 0). See
(Drineas et al., 2012) for details. Basically, this algorithm uses Gaussian sampling to find
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Input: A ∈ Rn×d, a rank parameter k, and an error parameter ε ∈ (0, 1/2].

Output: ˆ̀
i, i = 1, . . . , n, approximations to the leverage scores of A filtered

through its dominant dimension-k subspace.

1. Construct Π ∈ Rd×2k with i.i.d. standard Gaussian entries.

2. Compute B =
(
AAT

)q
AΠ ∈ Rn×2k with

q ≥


ln
(

1 +
√

k
k−1 + e

√
2
k

√
min {n, d} − k

)
2 ln (1 + ε/10)− 1/2

 .
3. Approximate the leverage scores of B by calling Algorithm 1 with inputs B

and ε; let ˆ̀
i for i = 1, . . . , n be the outputs of Algorithm 1.

Algorithm 2: Algorithm (Drineas et al., 2012, Algorithm 4) for approximating the lever-
age scores (relative to the best rank-k approximation to A) of a general n × d matrix
A with those of a matrix that is close by in the spectral norm (or the Frobenius norm
if q = 0). This algorithm runs in time O(ndkq) + T1, where T1 is the running time of
Algorithm 1.

a matrix close to A in the Frobenius norm or spectral norm, and then it approximates the
leverage scores of this matrix by using Algorithm 1 on the smaller, very rectangular matrix
B. When A is square, as in our applications, Algorithm 2 is typically more costly than
direct computation of the leverage scores, at least for dense matrices (but it does have the
advantage that the number of iterations is bounded, independent of properties of the matrix,
which is not true for typical iterative methods to compute low-rank approximations).

Of greater practical interest is Algorithm 3, which is a modification of Algorithm 2 in
which the Gaussian random projection is replaced with an SRFT. That is, Algorithm 3
uses an SRFT projection to find a matrix close by to A in the Frobenius norm or spectral
norm (depending on the value of q), and then it exactly computes the leverage scores of this
matrix. This improves the running time to O(n2 ln(

√
k+
√

lnn) +n2(
√
k+
√

lnn)2 ln(k)q+
n(
√
k +
√

lnn)4 ln2(k)), which is o(n2k) when q = 0. Thus an important point for Al-
gorithm 3 (as well as for Algorithm 2) is the parameter q which describes the number of
iterations. For q = 0 iterations, we get an inexpensive Frobenius norm approximation;
while for higher q, we get better spectral norm approximations that are more expensive.3

This flexibility is of interest, as one may want to approximate the actual leverage scores
accurately or one may simply want to find crude approximations useful for obtaining SPSD
sketches with low reconstruction error.

3. Observe that since A is rectangular in Algorithms 2 and 3, we approximate the leverage scores of A
with those of B = (AAT )qAΠ; in particular the case q = 0 corresponds to taking B = AΠ. By way of
contrast, when we use the power method to construct sketches of an SPSD matrix, we take C = AqS,
so the case q = 1 corresponds to C = AS.
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Input: A ∈ Rn×d, a rank parameter k, and an iteration parameter q.

Output: ˆ̀
i, i ∈= 1, . . . , n, approximations to the leverage scores of A filtered

through its dominant dimension-k subspace.

1. Construct an SRHT matrix Π ∈ Rd×r, where

r ≥
⌈
36ε−2[

√
k +

√
8 ln(kd)]2 ln(k)

⌉
.

2. Compute B =
(
AAT

)q
AΠ ∈ Rn×r, where q ≥ 0 is an integer.

3. Return the exact leverage scores of B.

Algorithm 3: Algorithm for approximating the leverage scores (relative to the best
rank-k approximation to A) of a general n × d matrix A with those of a matrix that
is close by in the spectral norm. This is a modified version of Algorithm 2, in which
the random projection is implemented with an SRFT rather than a Gaussian random
matrix, and where the number of “iterations” q is prespecified. This algorithm runs in
time O(nd ln r + ndrq + nr2) since AΠ can be computed in time O(nd ln r).

Finally, note that although choosing the number of iterations q as we did in Algorithm 2
is convenient for worst-case analysis, as a practical implementational matter it is easier either
to choose q based on spectral gap information revealed during the running of the algorithm
or to prespecify q to be a small integer, e.g., 2 or 3, before the algorithm runs. Both of
these have an interpretation of accelerating the rate of decay of the spectrum with a power
iteration, but they behave somewhat differently due to the different stopping conditions.
Below, we consider both variants.

3.5.2 Running Time Comparisons

Here, we describe the performances of the various random sampling and random projection
low-rank sketches considered in Section 3.4 in terms of their running time, where the method
that involves using the leverage scores to construct the importance sampling distribution is
implemented both by computing the leverage scores “exactly” by calling a truncated SVD,
as a black box, as well as computing them approximately by using one of several versions
of Algorithm 3. Our running time results are presented in Figure 6 and Figure 7.

We start with the results described in Figure 6, which shows the running times, as a
function of `, for the low-rank approximations described in Section 3.4: i.e., for column
sampling uniformly at random without replacement; for column sampling according to the
exact nonuniform leverage score probabilities; and for sketching using Gaussian and SRFT
mixtures of the columns. Several observations are worth making about the results presented
in this figure.
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(a) GR, k = 20
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(b) GR, k = 60
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(c) HEP, k = 20
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(d) HEP, k = 60
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(e) Dexter, k = 8
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(f) Protein, k = 10
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(g) SNPs, k = 5
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(h) Gisette, k = 12
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(i) AbaloneD,
σ = .15, k = 20
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(j) AbaloneD, σ = 1, k = 20
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(k) WineD, σ = 1, k = 20
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(l) WineD, σ = 2.1, k = 20
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(m) AbaloneS,
σ = .15, k = 20
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(n) AbaloneS, σ = 1, k = 20
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(o) WineS, σ = 1, k = 20

20 40 60 80 100 120 140 160
10

−3

10
−2

10
−1

10
0

10
1

` (column samples)

tim
e 

(s
)

 

 

unif
srft
gaussian
levscore

(p) WineS, σ = 2.1, k = 20

Figure 6: The times required to compute SPSD sketches, as a function of the number of
column samples ` for several data sets and two choices of the rank parameter k.
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(b) GR, k = 60
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(c) HEP, k = 20
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(d) HEP, k = 60
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(e) Dexter, k = 8
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(f) Protein, k = 10
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(g) SNPs, k = 5
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(h) Gisette, k = 12
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(i) AbaloneD,
σ = .15, k = 20
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(j) AbaloneD, σ = 1, k = 20
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(k) WineD, σ = 1, k = 20
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(l) WineD, σ = 2.1, k = 20
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(m) AbaloneS,
σ = .15, k = 20
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(n) AbaloneS, σ = 1, k = 20
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(o) WineS, σ = 1, k = 20
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Figure 7: The times required to compute approximate leverage score-based SPSD sketches,
as a function of the number of column samples ` for several data sets.

30



Revisiting the Nyström method

• Uniform sampling is always less expensive and typically much less expensive than
the other methods, while (with one minor exception) sampling according to the exact
leverage scores is always the most expensive method.

• For most matrices, using the SRFT is nearly as expensive as exact leverage score
sampling. This is most true for the very sparse graph Laplacian Kernels, largely since
the SRFT does not respect sparsity. The main exception to this is for the dense and
relatively well-behaved Linear Kernels, where especially for large values of ` the SRFT
is quite fast and usually not too much more expensive than uniform sampling.

• The “fast Fourier” methods underlying the SRFT can take advantage of the structure
of the Linear Kernels to yield algorithms that are similar to Gaussian projections and
much better than exact leverage score computation. Note that the reason that SRFT
is worse than Gaussians here is that the matrices we are considering are not extremely
large, and we are not considering very large values of the rank parameter. Extending
in both those directions leads to Gaussian projections being slower than SRFT, as the
trends in the figures clearly indicate.

• Gaussian projections are not too much slower than uniform sampling for the extremely
sparse Laplacian Kernels—this is due to the sparsity of the Laplacian Kernels, since
Gaussian projections can take advantage of fast matrix-vector multiplies, while the
SRFT-based scheme cannot—but this advantage is lost for the (denser) Sparse RBF
Kernels, to the extent that there is little running time improvement relative to the
Dense RBF Kernels. In addition, Gaussian projections are relatively slower, when
compared to the SRFT and uniform sampling, for the Dense RBF Kernels than for
the Linear Kernels, although both of those data sets are maximally dense.

We next turn to the results described in Figure 7, which shows the running times, as a
function of `, for several variants of approximate leverage-based sampling. For ease of
comparison, the timings for uniform sampling (“unif”) and exact leverage score sampling
(“levscore”) are depicted in Figure 7 using the same shading as used in Figure 6. In addition
to these two baselines, Figure 7 shows running time results for the following three variants
of approximate leverage score sampling: “frob levscore” (which is Algorithm 3 with q = 0
and r = 2k); “spec levscore” (Algorithm 3 with q = 4 and r = 2k); and “power”. The
“power” scheme is a version of Algorithm 3 where r = k and q is determined by monitoring
the convergence of the leverage scores of A2q+1Π and terminating when the change in the
leverage scores between iterations, as measured in the infinity norm, is smaller than 10−2.
This is simply a version of subspace iteration with a convergence criterion appropriate for
the task at hand. Since “frob levscore” requires one application of an SRFT, its timing
results are depicted using the same shade as the SRFT timing results in Figure 6. (There
are no other correspondences between the shadings in the two figures.) Several observations
are worth making about the results presented in this figure.

• These approximate leverage score-based algorithms can be orders of magnitude faster
than exact leverage score computation; but, especially for “spec levscore” when q is
not prespecified to be 2 or 3, they can even be somewhat slower. Exactly which is
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Figure 8: The running time of SPSD sketches computed using Algorithm 1 compared with
that of other approximate leverage score-based SPSD sketches, as a function of
the number of column samples ` for two Linear Kernel datasets. The parameters
in Algorithm 1 were taken to be r1 = ε−2 ln(dδ−1)(

√
d +

√
ln(nδ−1))2 and r2 =

ε−2(lnn+ ln δ−1) with ε = 1 and δ = 1/10.

the case depends upon the properties of the matrix and the parameters used in the
approximation algorithm, including especially the number of power iterations.

• The “frob levscore” approximation method has running time comparable to the run-
ning time of the SRFT, which is expected, given that the computation of the SRFT
is the theoretical bottleneck for the running time of the “frob levscore” algorithm. In
particular, for larger values of ` for Linear Kernels, “frob levscore” is not much slower
than uniform sampling.

• The “spec levscore” and “power” approximations with q > 0 are more expensive
than the q = 0 “frob lev” approximation, which is a result of the relatively-expensive
matrix-matrix multiplication. For the Linear Kernels, both are much better than
the exact leverage score computation, and for most other data at least “power” is
somewhat less expensive than the exact leverage score computation. For example,
this is particularly true for the Laplacian Kernels.

Recall that the cost associated with these SPSD sketches is two-fold: first, the cost to con-
struct the sample—by sampling columns uniformly at random, by computing a nonuniform
importance sampling distribution, or by performing a random projection to uniformize the
leverage scores; and second, the cost to construct the low-rank approximation from the sam-
ple. For uniform sampling, the latter step dominates the cost, while for more sophisticated
methods the former step typically dominates the cost. The approximate leverage score
sampling methods are still sufficiently expensive that the cost of computing the sampling
probabilities still dominates the cost to construct the low-rank approximation.

Finally, Algorithm 1 can be used to approximate quickly the leverage scores of matrices
of the form A = XXT , when X ∈ Rn×d is a rectangular matrix of sufficent aspect ratio, and
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Figure 9: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of SPSD sketches computed using Algorithm 1 compared with
those of other approximate leverage score-based sketching schemes, as a function
of the number of column samples `, for two Linear Kernel data sets. The param-
eters in Algorithm 1 were taken to be r1 = ε−2 ln(dδ−1)(

√
d +

√
ln(nδ−1))2 and

r2 = ε−2(lnn+ ln δ−1) with ε = 1 and δ = 1/10.
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in such cases it is faster than Algorithm 3. Specifically, for the first dimensional reduction
step in Algorithm 1 to be beneficial (i.e., to ensure r1 < n), the condition n = Ω(d ln d) is
necessary; for the second dimensional reduction step to be beneficial (i.e., to ensure r2 < d),
the condition d = Ω(lnn) must be satisfied. Figure 8 summarizes our main results for the
run time of Algorithm 1 applied to rectangular matrices with n� d. Among other things,
Figure 8 illustrates, using the Linear Kernel datasets Protein and SNPs (which satisfy these
constraints), two points.

• Most importantly, the running time of Algorithm 1 on these rectangular matrices is
faster than performing a QR decomposition on A and is comparable to applying a
SRFT to A. This is expected, since the running time bottleneck for Algorithm 1 is
the application of the SRFT.

• In addition, the running time of Algorithm 1 is significantly faster than the other
approximate leverage score algorithms. This too is expected, since these other algo-
rithms are applied to A and ignore the rectangular structure of X.

Figure 9 shows that these improved running time gains for Algorithm 1 can come at the
cost of a slight loss in the reconstruction accuracy (relative to the exact computation of
the leverage scores) of the low-rank approximations; the accuracy of the other approximate
leverage score algorithms is discussed in the following subsection.

3.5.3 Reconstruction Accuracy Results

Here, we describe the performances of the various low-rank approximations that use ap-
proximate leverage scores in terms of reconstruction accuracy for the data sets described in
Section 3.1. The results are presented in Figure 10 through Figure 14. The setup for these
results parallels that for the low-rank approximation results described in Section 3.4, and
these figures parallel Figure 1 through Figure 5. To provide a baseline for the comparison,
we also plot the previous reconstruction errors for sampling with the exact leverage scores
as well as the uniform column sampling sketch. Several observations are worth making
about the results presented in these figures.

For Laplacian Kernels, “frob levscore” is only slightly better than uniform sampling,
while “power” and “spec levscore” are substantially better than uniform sampling; all of
those methods also lead to even better reconstruction results than using the exact leverage
scores (suggesting that some form of implicit regularization is taking place): the recon-
struction quality is higher for a given ` and, also, using approximate leverage scores does
not lead to the saturation effect observed when using the exact leverage scores. For the
Linear Kernels, all the methods perform similarly. For both the dense and the sparse RBF
data sets, the approximate leverage score algorithms tend to parallel the exact leverage
score algorithm, and they are not substantially better. In particular, both “power” and
“spec levscore” tend to saturate when the exact method saturates, but in those cases “frob
levscore” tends not to saturate.

Note that the difference between different approximate leverage score algorithms often
corresponds to a difference in the spectral gaps of the corresponding matrices. From Table 5,
if we fix k and use the approximate leverage scores filtered through rank k to form a Nyström
approximation to A, the accuracy of that approximation has a strong dependence on the
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(b) GR, k = 60
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(c) HEP, k = 20
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Figure 10: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several approximate leverage score-based SPSD sketches, as
a function of the number of column samples `, for the GR and HEP Laplacian
data sets, with two choices of the rank parameter k.

spectral gap of A at rank k, as measured by λk
λk+1

. In general, the larger the spectral

gap, the more accurate the approximation. This phenomena can also be understood in
terms of the convergence of the approximate leverage scores: the approximation algorithms
(Algorithm 2 and Algorithm 3) are essentially truncated versions of the subspace iteration
method for computing the top k eigenvectors of A. It is a classical result that the spectral
gap determines the rate of convergence of the subspace iteration process to the desired
eigenvectors: the larger it is, the fewer iterations of the process are required to get accurate
approximations of the top eigenvectors. It follows immediately that the larger the spectral
gap, the more accurate the approximate leverage scores generated by these approximation
algorithms are. Our empirical results illustrate the complexities and subtle consequences of
these properties in realistic machine learning applications of even modestly-large size.

3.5.4 Summary of Leverage Score Approximation Algorithms

Before proceeding, there are several summary observations that we can make about the
running time and reconstruction quality of approximate leverage score sampling algorithms
for the data sets we have considered.

• The running time of computing the exact leverage scores is generally much worse
than that of uniform sampling and both SRFT-based and Gaussian-based random
projection methods.
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60 80 100 120 140 160 180

1.25

1.3

1.35

1.4

` (column samples)

‖A −CW
†
C

T‖2/‖A −Ak‖2

60 80 100 120 140 160 180
0.995

1

1.005

` (column samples)

‖A−CW
†
C

T‖F/‖A−Ak‖F

60 80 100 120 140 160 180
0.99

0.995

1

1.005

` (column samples)

‖A −CW
†
C

T‖?/‖A −Ak‖?

 

 

levscore
unif
power
frob levscore
spec levscore

(b) Enron, k = 60
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(c) Gnutella, k = 20
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(d) Gnutella, k = 60

Figure 11: The spectral, Frobenius, and trace norm errors (top to bottom, respectively,
in each subfigure) of several approximate leverage score-based SPSD sketches,
as a function of the number of column samples `, for the Enron and Gnutella
Laplacian data sets, with two choices of the rank parameter k.
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(a) Dexter, k = 8

20 40 60 80 100
0.5

1

1.5

2

2.5

` (column samples)

‖A −CW
†
C

T‖2/‖A −Ak‖2

20 40 60 80 100
0.8

0.9

1

1.1

1.2

` (column samples)

‖A−CW
†
C

T‖F/‖A−Ak‖F

20 40 60 80 100

0.7

0.8

0.9

1

1.1

1.2

1.3

` (column samples)

‖A −CW
†
C

T‖?/‖A −Ak‖?

 

 

levscore
unif
power
frob levscore
spec levscore

(b) Protein, k = 10
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(c) SNPs, k = 5
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(d) Gisette, k = 12

Figure 12: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several approximate leverage score-based SPSD sketches, as a
function of the number of column samples `, for the Linear Kernel data sets.

• The running time of computing approximations to the leverage scores can, with appro-
priate choice of parameters, be much faster than the exact computation of the leverage
scores; and, especially for “frob levscore,” can be comparable to the running time of
the random projection (SRFT or Gaussian) used in the leverage score approximation
algorithm. For the methods that involve q > 0 iterations to compute stronger approx-
imations to the leverage scores, the running time can vary considerably depending on
details of the stopping condition.

• The leverage scores computed by the “frob levscore” procedure are typically very
different than the “exact” leverage scores, but they are leverage scores for a low-rank
space that is near the best rank-k approximation to the matrix. This is often sufficient
for good low-rank approximation.

• The approximate leverage scores computed from “power” and “spec levscore” ap-
proach those of the exact leverage scores, as q is increased; and they obtain recon-
struction accuracy that is no worse, and in many cases is better, than that obtained
by the exact leverage scores. This suggests that, by not fitting exactly to the empirical
statistical leverage scores, we are observing a form of implicit regularization.

• The running time of Algorithm 1, when applied to “tall” matrices for which n� d, is
faster than the running time of performing a QR decomposition of the matrix A; and
it is comparable to the running time of applying a random projection to A (which is
the computational bottleneck of applying Algorithm 1). Thus, in particular, one could
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(a) AbaloneD,
σ = .15, k = 20
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(b) AbaloneD,
σ = 1, k = 20
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(c) WineD, σ = 1, k = 20
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(d) WineD,
σ = 2.1, k = 20

Figure 13: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several approximate leverage score-based SPSD sketches, as a
function of the number of column samples `, for several dense RBF data sets.
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(a) AbaloneS,
σ = .15, k = 20
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(b) AbaloneS,
σ = 1, k = 20
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(c) WineS, σ = 1, k = 20
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(d) WineS,
σ = 2.1, k = 20

Figure 14: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several approximate leverage score-based SPSD sketches, as a
function of the number of column samples `, for several sparse RBF data sets.
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use this algorithm to compute approximations to the leverage scores to obtain a sketch
that provides a relative-error approximation to a least-squares problem involving A
(Drineas et al., 2008, 2010; Mahoney, 2011); or one could use the sketch thereby
obtained as a preconditioner to an iterative method to solve the least-squares problem,
in a manner analogous to how Blendenpik or LSRN do so with a random projection
(Avron et al., 2010; Meng et al., 2014).

Previous work has showed that one can implement random projection algorithms to provide
low-rank approximations with error comparable to that of the SVD in less time than state-
of-the art Krylov solvers and other “exact” numerical methods (Halko et al., 2011; Mahoney,
2011). Our empirical results show that these random projection algorithms can be used in
two complementary ways to approximate SPSD matrices of interest in machine learning:
first, they can be used directly to compute a projection-based low-rank approximation; and
second, they can be used to compute approximations to the leverage scores, which can
be used to compute a sampling-based low-rank approximation. With the right choice of
parameters, the two complementary approaches have roughly comparable running times,
and neither one dominates the other in terms of reconstruction accuracy.

3.6 Projection-based Sketches

Finally, for completeness, we consider the performance of the two projection-based SPSD
sketches proposed by Halko et al. (2011), and we show how they perform when compared
with the sketches we have considered. Recall that the idea of these sketches is to construct
low-rank approximations by forming an approximate basis Q for the top eigenspace of A
and then restricting A to that eigenspace. In more detail, given a sketching matrix S,
form the matrix Y = AS and take the QR decomposition of Y to obtain Q, a matrix
with orthonormal columns. The first sketch, which we eponymously refer to as the pinched
sketch, is simply A pinched to the space spanned by Q :

Q(QTAQ)QT . (8)

The second sketch, which we refer to as the prolonged sketch, is

AQ(QTAQ)†QTA. (9)

It is clear that the prolonged sketch can be constructed using our SPSD Sketching Model
by taking Q as the sketching matrix. In fact, a stronger statement can be made. As stated
in Lemma 1 below, it is the case, for any sketching matrix X, that when C = AX and
W = XTAX,

CW†CT = A1/2PA1/2XA1/2.

By considering the sketching matrix X = A1S, we see that in fact the prolonged sketch is
exactly the sketch obtained by applying the power method with q = 1 :

AQ(QTAQ)†QTA = A1/2PA1/2QA1/2

= A1/2PA1/2(AS)A
1/2

= A2S(STA3S)†STA2

= AX(XTAX)†XTA.
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(a) Gnutella, k = 20
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(b) Dexter, k = 8
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(c) AbaloneD,
σ = .15, k = 20
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(d) WineS, σ = 1, k = 20

Figure 15: The spectral, Frobenius, and trace norm errors (top to bottom, respectively, in
each subfigure) of several SPSD sketches, including the pinched and prolonged
sketches, as a function of the number of column samples `, for several datasets.
Pinched and prolonged sketches, respectively indicated by “pn.” and “pr.”, are
defined in Equations (8) and (9).

It follows that the bounds we provide in Section 4 on the performance of sketches obtained
using the power method pertain also to prolonged sketches.

In Figure 15, we compare the empirical performances of several of the SPSD sketches con-
sidered earlier with their pinched and prolonged variants. Specifically, we plot the errors of
pinched and prolonged sketches for several choices of sketching matrices—corresponding to
uniform column sampling, gaussian column mixtures, and SRFT-based column mixtures—
along with the errors of non-pinched, non-prolonged sketches constructed using the same
choices of S. In the interest of brevity, we provide results only for several of the datasets
listed in Table 4.

Some trends are clear from Figure 15.

• In the spectral norm, the prolonged sketches are considerably more accurate than the
pinched and standard sketches for all the datasets considered. Without exception,
the prolonged Gaussian and SRFT column-mixture sketches are the most accurate
in the spectral norm, of all the sketches considered. Only in the case of the Dexter
Linear Kernel is the prolonged uniformly column-sampled sketch nearly as accurate in
the spectral norm as the prolonged Gaussian and SRFT sketches. To a lesser extent,
the prolonged sketches are also more accurate in the Frobenius and trace norms than
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the other sketches considered. The increased Frobenius and trace norm accuracy is
particularly notable for the two RBF Kernel datasets; again, the prolonged Gaussian
and SRFT sketches are considerably more accurate than the prolonged uniformly
column-sampled sketches.

• After the prolonged sketches, the pinched Gaussian and SRFT column-mixture sketches
exhibit the least spectral, Frobenius, and trace norm errors. Again, however, we see
that the pinched uniformly column-sampled sketches are considerably less accurate
than the pinched Gaussian and SRFT column-mixture sketches. Particularly in the
spectral and Frobenius norms, the pinched uniformly column-sampled sketches are
not any more accurate than the basic uniformly column-sampled sketches.

From these considerations, it seems evident that the benefits of pinched and prolonged
sketches are most prominent when the spectral norm is the error metric, or when the dataset
is an RBF Kernel. In particular, pinched and prolonged sketches are not significantly more
accurate (than the sketches considered in the previous subsections) in the Frobenius and
trace norms for any of the datasets considered.

It is also evident from Figure 15 that the pinched sketches often have a much slighter
increase in accuracy over the basic sketches than do the prolonged sketches. To understand
why the pinched sketches are less accurate than the prolonged sketches, observe that the
pinched sketches satisfy

Q(QTAQ)QT = PASAPAS

= (PASA1/2)(A1/2PAS),

while, as noted above, the prolonged sketches can be written in the form

AQ(QTAQ)†QTA = (A1/2PA3/2S)(PA3/2SA1/2).

Thus, pinched and prolonged sketches approximate the square root of A by projecting,
respectively, onto the ranges of AS and A3/2S. The spectral decay present in A is increased
when A is raised to a power larger than one; consequently, the range of A3/2S is more biased
towards the top k-dimensional invariant subspace of A than is the range of AS. It follows
that the approximate square root used to construct the prolonged sketches more accurately
captures the top k-dimensional subspace of A than does that used to construct the pinched
sketches.

4. Theoretical Aspects of SPSD Low-rank Approximation

In this section, we present our main theoretical results, which consist of a suite of bounds
on the quality of low-rank approximation under several different sketching methods. As
mentioned above, these were motivated by our empirical observation that all of the sampling
and projection methods we considered perform much better on the SPSD matrices we
considered than previous worst-case bounds (e.g., Drineas and Mahoney, 2005; Kumar et al.,
2012; Gittens, 2012) would suggest. We start in Section 4.1 with deterministic structural
conditions for the spectral, Frobenius, and trace norms. In Section 4.2, we use these results
to provide our bounds for several random sampling and random projection procedures.
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4.1 Deterministic Error Bounds for Low-rank SPSD Approximation

In this section, we present three theorems that provide error bounds for the spectral, Frobe-
nius, and trace norm approximation errors under the SPSD Sketching Model of Section 2.2.
These bounds hold for any, e.g., deterministic or randomized, sketching matrix S. Thus,
e.g., one could use them to check, in an a posteriori manner, the quality of a sketching
method for which one cannot establish an a priori bound. Rather than doing this, we
use these results (in Section 4.2 below) to derive a priori bounds for when the sketching
operation consists of common random sampling and random projection algorithms. We
note that the bounds can be interpreted geometrically in terms of the angles between the
subspace spanned by the sampling matrix S and the dominant eigenspaces of A; we refer
the interested reader to the technical report (Gittens and Mahoney, 2013) for details.

Our results are based on the fact that approximations which satisfy our SPSD Sketching
Model can be written in terms of a projection onto a subspace of the range of the square
root of the matrix being approximated. The following fact appears in the proof of (Gittens,
2012, Proposition 1).

Lemma 1 Let A be an SPSD matrix and S be a conformal sketching matrix. Then when
C = AS and W = STAS, the corresponding low-rank SPSD approximation satisfies

CW†CT = A1/2PA1/2SA1/2.

4.1.1 Spectral Norm Bounds

We start with a bound on the spectral norm of the residual error. Although this result is
trivial to prove given prior work, it highlights several properties that we use in the analysis
of our subsequent results.

Theorem 2 Let A be an n × n SPSD matrix with eigenvalue decomposition partitioned
as in Equation (1), S be a sketching matrix of size n × `, q be a positive integer, and Ω1

and Ω2 be as defined in Equation (3). Then when C = AqS and W = STA2q−1S, the
corresponding low-rank SPSD approximation satisfies∥∥∥A−CW†CT

∥∥∥
2
≤ ‖Σ2‖2 +

∥∥∥Σq−1/2
2 Ω2Ω

†
1

∥∥∥2/(2q−1)
2

,

assuming Ω1 has full row rank.

Proof Apply Lemma 1 with the sampling matrix S′ = Aq−1S (where, recall, q ≥ 1) to see
that

CW†CT = A1/2PAq−1/2SA1/2.

It follows that ∥∥∥A−CW†CT
∥∥∥
2

=

∥∥∥∥A1/2

(
I−P

(A1/2)
2q−1

S

)
A1/2

∥∥∥∥2
2

. (10)
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Next, recall that Ωi = UT
i S and that A1/2 has eigenvalue decomposition A1/2 = UΣ1/2UT ,

where

U =
(
U1 U2

)
and Σ1/2 =

(
Σ

1/2
1

Σ
1/2
2

)
.

It can be shown (see Halko et al., 2011, Theorems 9.1 and 9.2) that, because Ω1 has full
row rank,

∥∥∥∥A1/2

(
I−P

(A1/2)
2q−1

S

)
A1/2

∥∥∥∥2
2

≤

(∥∥∥∥(Σ
1/2
2

)2q−1∥∥∥∥2
2

+

∥∥∥∥(Σ
1/2
2

)2q−1
Ω2Ω

†
1

∥∥∥∥2
2

)1/(2q−1)

.

(11)
Equations (10) and (11) imply that

∥∥∥A−CW†CT
∥∥∥
2
≤
(∥∥∥Σq−1/2

2

∥∥∥2
2

+
∥∥∥Σq−1/2

2 Ω2Ω
†
1

∥∥∥2
2

)1/(2q−1)

≤ ‖Σ2‖2 +
∥∥∥Σq−1/2

2 Ω2Ω
†
1

∥∥∥2/(2q−1)
2

The latter inequality follows from the fact that the 2q − 1 radical function is subadditive

when q ≥ 1 and the identity
∥∥∥Σq−1/2

2

∥∥∥2
2

= ‖Σ2‖2q−12 . This establishes the stated bound.

Remark. The assumption that Ω1 has full row rank is very non-trivial. It is, however,
satisfied by our algorithms below. See Section 4.1.4 for more details on this point.

Remark. The proof of Theorem 2 proceeds in two steps. The first step relates low-rank
approximation of an SPSD matrix A under the SPSD Sketching Model of Section 2.2 to
column sketching (e.g., sampling or projecting) from the square-root of A. A weaker relation
of this type was used by Drineas and Mahoney (2005), but the stronger form that we use
here in Equation (10) was first proved in (Gittens, 2012). The second step is to use a
deterministic structural result that holds for sampling/projecting from an arbitrary matrix.
The structural bound of the form of Equation (11) was originally proven for q = 1 by
Boutsidis et al. (2009), who applied it to the Column Subset Selection Problem. The bound
was subsequently improved by Halko et al. (2011), who applied it to a random projection
algorithm and extended it to apply when q > 1. Although the analyses of our next two
results are more complicated, they follow the same high-level two-step approach.

4.1.2 Frobenius Norm Bounds

Next, we state and prove the following bound on the Frobenius norm of the residual error.
The proof parallels that for the spectral norm bound, in that we divide it into two analogous
parts, but the analysis is somewhat more complex.

The multiplicative eigengap γ = λk+1(A)/λk(A) that appears in the statement of this
theorem predicts the effect of using the power method when constructing sketches. Specif-
ically, the additional errors of sketches constructed using C = AqS are at least a factor of
γq−1 times smaller than those constructed using C = AS.
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Theorem 3 Let A be an n× n SPSD matrix with eigenvalue decomposition partitioned as
in Equation (1), S be a sketching matrix of size n × `, q be a positive integer, Ω1 and Ω2

be as defined in Equation (3), and define

γ =
λk+1(A)

λk(A)
.

Then when C = AqS and W = STA2q−1S, the corresponding low-rank SPSD approxi-
mation satisfies∥∥∥A−CW†CT

∥∥∥
F
≤ ‖Σ2‖F + γq−1

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
2
·
(√

2 Tr (Σ2) + γq−1
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
F

)
,

assuming Ω1 has full row rank.

Proof Apply Lemma 1 with the sampling matrix S′ = Aq−1S to see that

CW†CT = A1/2PAq−1/2SA1/2.

It follows that

E :=
∥∥∥A−CW†CT

∥∥∥
F

=
∥∥∥A1/2 (I−PAq−1/2S) A1/2

∥∥∥
F
.

To bound this quantity, we first use the unitary invariance of the Frobenius norm and the
fact that

PAq−1/2S = UPΣq−1/2UTSUT

to obtain

E2 =
∥∥∥A1/2 (I−PAq−1/2S) A1/2

∥∥∥2
F

=
∥∥∥Σ1/2

(
I−PΣq−1/2UTS

)
Σ1/2

∥∥∥2
F
.

Then we take

Z = Σq−1/2UTSΩ†1Σ
−(q−1/2)
1 =

(
I
F

)
, (12)

where I ∈ Rk×k and F ∈ Rn−k×k is given by F = Σ
q−1/2
2 Ω2Ω

†
1Σ
−(q−1/2)
1 . The latter equality

in Equation (12) holds because of our assumption that Ω1 has full row rank. Since the range
of Z is contained in the range of Σq−1/2UTS,

E2 ≤
∥∥∥Σ1/2(I−PZ)Σ1/2

∥∥∥2
F
.

By construction, Z has full column rank, thus Z(ZTZ)−1/2 is an orthonormal basis for the
span of Z, and

I−PZ = I− Z(ZTZ)−1ZT = I−
(

I
F

)
(I + FTF)−1

(
I FT

)
=

(
I− (I + FTF)−1 −(I + FTF)−1FT

−F(I + FTF)−1 I− F(I + FTF)−1FT

)
. (13)
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This implies that

E2 ≤
∥∥∥∥Σ1/2

(
I− (I + FTF)−1 −(I + FTF)−1FT

−F(I + FTF)−1 I− F(I + FTF)−1FT

)
Σ1/2

∥∥∥∥2
F

=
∥∥∥Σ1/2

1

(
I− (I + FTF)−1

)
Σ

1/2
1

∥∥∥2
F

+ 2
∥∥∥Σ1/2

1 (I + FTF)−1FTΣ
1/2
2

∥∥∥2
F

+
∥∥∥Σ1/2

2

(
I− F(I + FTF)−1FT

)
Σ

1/2
2

∥∥∥2
F

:= T1 + T2 + T3.

(14)

Next, we provide bounds for T1, T2, and T3. Using the fact that 0 � I−F(I+FTF)−1FT � I,
we can bound T3 with

T3 ≤ ‖Σ2‖2F .

Likewise, the fact that I− (I + FTF)−1 � FTF (easily seen with an SVD) implies that we
can bound T1 as

T1 ≤
∥∥∥Σ1/2

1 FTFΣ
1/2
1

∥∥∥2
F
≤
∥∥∥FΣ

1/2
1

∥∥∥2
2

∥∥∥FΣ
1/2
1

∥∥∥2
F

=
∥∥∥Σq−1/2

2 Ω2Ω
†
1Σ
−(q−1)
1

∥∥∥2
2

∥∥∥Σq−1/2
2 Ω2Ω

†
1Σ
−(q−1)
1

∥∥∥2
F

≤
∥∥∥Σq−1

2

∥∥∥4
2

∥∥∥Σ−(q−1)1

∥∥∥4
2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F

= (‖Σ2‖2
∥∥Σ−11

∥∥
2
)4(q−1)
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2

∥∥∥Σ1/2
2 Ω2Ω
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F

=

(
λk+1(A)

λk(A)

)4(q−1) ∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
.

We proceed to bound T2 by using the estimate

T2 ≤ 2
∥∥∥Σ1/2

1 (I + FTF)−1FT
∥∥∥2
2

∥∥∥Σ1/2
2

∥∥∥2
F
. (15)

To develop the term involving a spectral norm, observe that for any SPSD matrix M with
eigenvalue decomposition M = VDVT ,

(I + M)−1M(I + M)−1 = (VVT + VDVT )−1VDVT (VVT + VDVT )−1

= V(I + D)−1D(I + D)−1VT

� VDVT = M.
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It follows that∥∥∥Σ1/2
1 (I + FTF)−1FT

∥∥∥2
2

=
∥∥∥Σ1/2

1 (I + FTF)−1FTF(I + FTF)−1Σ
1/2
1

∥∥∥
2

≤
∥∥∥Σ1/2

1 FTFΣ
1/2
1

∥∥∥
2

=
∥∥∥FΣ

1/2
1

∥∥∥2
2

=
∥∥∥Σq−1/2

2 Ω2Ω
†
1Σ
−(q−1)
1

∥∥∥2
2

≤
∥∥∥Σq−1

2

∥∥∥2
2

∥∥∥Σ−(q−1)1

∥∥∥2
2

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2

=

(
λk+1(A)

λk(A)

)2(q−1) ∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2
.

Using this estimate in Equation (15), we conclude that

T2 ≤ 2

(
λk+1(A)

λk(A)

)2(q−1) ∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2

∥∥∥Σ1/2
2

∥∥∥2
F
.

Combining our estimates for T1, T2, and T3 with Equation (14) gives

E2 =
∥∥∥A1/2 (I−PAq−1/2S) A1/2

∥∥∥2
F
≤ ‖Σ2‖2F

+

(
λk+1(A)

λk(A)

)2(q−1) ∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
2
·

(
2
∥∥∥Σ1/2

2

∥∥∥2
F

+

(
λk+1(A)

λk(A)

)2(q−1) ∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F

)
.

The claimed bound follows by identifying γ and applying the subadditivity of the square-
root function:

E ≤ ‖Σ2‖F + γq−1
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
2
·
(√

2 Tr (Σ2) + γq−1
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
F

)
.

Remark. The quality of approximation guarantee provided by Theorem 3 depends on the

quantities
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
2

and
∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
F
; these quantities reflect the extent to which the

sketching matrix is aligned with the eigenspaces of A. The dependence on γ captures the
facts that the power method is effective only when there is spectral decay, and that larger
gaps between the k and k + 1 eigenvalues lead to smaller errors when the power method is
used.
Remark. To obtain a greater understanding of the additional error term in Theorem 3,

assume that S is a particularly effective sketching matrix, so that
∥∥∥Ω2Ω

†
1

∥∥∥
2

= O(1). Then∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
2

= O
(
‖Σ2‖1/22

)
and

√
2 Tr (Σ2) +

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
F

= O
(
‖Σ2‖1/2?

)
,

and the theorem guarantees that the additional error is on the order of
√
‖Σ2‖2 ‖Σ2‖?.

This is an upper bound on the optimal Frobenius error:

‖Σ2‖F ≤
√
‖Σ2‖2 ‖Σ2‖?.

We see, in particular, that if the residual spectrum is flat, i.e. λk+1(A) = · · · = λn(A), then
equality holds and the additional error is on the scale of the optimal error.
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4.1.3 Trace Norm Bounds

Finally, we state and prove the following bound on the trace norm of the residual error.
The proof method is analogous to that for the spectral and Frobenius norm bounds.

As in the case of the Frobenius norm error, we see that the multiplicative eigengap γ =
λk+1(A)/λk(A) predicts the effect of using the power method when constructing sketches.

Theorem 4 Let A be an n× n SPSD matrix with eigenvalue decomposition partitioned as
in Equation (1), S be a sketching matrix of size n × `, q be a positive integer, Ω1 and Ω2

be as defined in Equation (3), and define

γ =
λk+1(A)

λk(A)
.

Then when C = AqS and W = STA2q−1S, the corresponding low-rank SPSD approximation
satisfies ∥∥∥A−CW†CT

∥∥∥
?
≤ Tr (Σ2) + γ2(q−1)

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F
,

assuming Ω1 has full row rank.

Proof Since A−CW†CT = A1/2(I−PAq−1/2S)A1/2 � 0, its trace norm simplifies to its
trace. Thus∥∥∥A−CW†CT

∥∥∥
?

= Tr
(
A−CW†CT

)
= Tr

(
Σ1/2

(
I−PΣq−1/2S

)
Σ1/2

)
≤ Tr

(
Σ1/2(I−PZ)Σ1/2

)
,

where Z =

(
I
F

)
is defined in Equation (12). The expression for I − PZ given in Equa-

tion (13) implies that

Tr
(
Σ1/2(I−PZ)Σ1/2

)
= Tr

(
Σ

1/2
1 (I− (I + FTF)−1)Σ

1/2
1

)
+ Tr

(
Σ

1/2
2 (I− F(I + FTF)−1FT )Σ

1/2
2

)
.

Recall the estimate I−(I+FTF)−1 � FTF and the basic estimate I−F(I+FTF)−1FT � I.
Together these imply that

Tr
(
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)
≤ Tr
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Σ

1/2
1 FTFΣ
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+ Tr (Σ2)
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.
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The first equality follows from substituting the definition of F and identifying the squared
Frobenius norm. The last equality follows from identifying γ. We have established the
claimed bound.

Remark. Since the identity ‖X‖2F =
∥∥XXT

∥∥
?

holds for any matrix X, the squared Frobenius
norm term present in the deterministic error bound for the trace norm error is on the scale
of ‖Σ2‖? when

∥∥Ω2Ω
†
1

∥∥
2

is O(1).

4.1.4 Additional Remarks on Our Deterministic Structural Results

Before applying these deterministic structural results in particular randomized algorithmic
settings, we pause to make several additional remarks about these three theorems.

First, for some randomized sampling schemes, it may be difficult to obtain a sharp
bound on

∥∥Ω2Ω
†
1

∥∥
ξ

for ξ = 2, F . In these situations, the bounds on the excess error
supplied by Theorems 2, 3, and 4 may be quite pessimistic. On the other hand, since
A −CW†CT = A1/2(I − P

(A1/2)
2q−1

S
)A1/2, it follows that 0 � A −CW†CT � A. This

implies that the errors of any approximation generated used the SPSD Sketching Model,
deterministic or randomized, satisfy at least the crude bound

∥∥A−CW†CT
∥∥
ξ
≤ ‖A‖ξ.

Second, we emphasize that these theorems are deterministic structural results that
bound the additional error (beyond that of the optimal rank-k approximation) of low-rank
approximations which follow our SPSD sketching model. That is, there is no randomness
in their statement or analysis. In particular, these bounds hold for deterministic as well as
randomized sketching matrices S. In the latter case, the randomness enters only through
S, and one needs to show that the condition that Ω1 has full row rank is satisfied with
high probability; conditioned on this, the quality of the bound is determined by terms that
depend on how the sketching matrix interacts with the subspace structure of the matrix A.

In particular, we remind the reader that (although it is beyond the scope of this paper
to explore this point in detail) these deterministic structural results could be used to check,
in an a posteriori manner, the quality of a sketching method for which one cannot establish
an a priori bound.

Third, we also emphasize that the assumption that Ω1 has full row rank (equivalently,
that tan(S,U1) <∞) is very non-trivial; and that it is false, in worst-case at least and for
non-trivial parameter values, for common sketching methods such as uniform sampling. To
see that some version of leverage-based sampling is needed to ensure this condition, recall
that UT

1 U1 = I and thus that Ω1Ω
T
1 = UT

1 SSTU1 can be viewed as approximating I with
a small number of rank-1 components of UT

1 U1. The condition that Ω1 has full row rank is
equivalent to

∥∥UT
1 U1 −UT

1 SSTU1

∥∥
2
< 1. Work on approximating the product of matrices

by random sampling shows that to obtain non-trivial bounds one must sample with respect
to the norm of the rank-1 components (Drineas et al., 2006), which here (since we are
approximating the product of two orthogonal matrices) equal the statistical leverage scores.
From this perspective, random projections satisfy this condition since (informally) they
rotate to a random basis where the leverage scores of the rotated matrix are approximately
uniform and thus where uniform sampling is appropriate (Drineas et al., 2010; Mahoney,
2011).
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Finally, as observed recently in Bach (2013), methods that use knowledge of a matrix
square root Φ (i.e., a Φ such that A = ΦΦT ) typically lead to Ω(n2) complexity. An
important feature of our approach is that we only use the matrix square root implicitly—
that is, inside the analysis, and not in the statement of the algorithm—and thus we do not
incur any such cost.

4.2 Stochastic Error Bounds for Low-rank SPSD Approximation

In this section, we apply the three theorems from Section 4.1 to bound the reconstruction
errors for several random sampling and random projection methods that conform to our
SPSD Sketching Model. In particular, we consider two variants of random sampling and two
variants of random projections: sampling columns according to an importance sampling dis-
tribution that depends on the statistical leverage scores (in Section 4.2.1); randomly project-
ing by using subsampled randomized Fourier transformations (in Section 4.2.2); randomly
projecting by uniformly sampling from Gaussian mixtures of the columns (in Section 4.2.3);
and, finally, sampling columns uniformly at random (in Section 4.2.4).

The results are presented for the general case of SPSD sketches constructed using the
power method, i.e., sketches constructed using C = AqS for a positive integer q. The ad-
ditive errors of these sketches decrease proportionally to the number of iterations q, where
the constant of proportionality is given by the multiplicative eigengap γ = λk+1(A)/λk(A).
Accordingly, the bounds involve the terms γq−1 and γ2(q−1). The bounds simplify consider-
ably when q = 1 (i.e., when there are no additional iterations) or γ = 1 (i.e., when there is
no eigengap). In either of these cases, the terms γq−1 and γ2(q−1) all become the constant 1.

Before establishing these results, we pause here to provide a brief review of running
time issues, some of which were addressed empirically in Section 3. The computational
bottleneck for random sampling algorithms (except for uniform sampling that we address
in Section 4.2.4, which is trivial to implement) is often the exact or approximate compu-
tation of the importance sampling distribution with respect to which one samples; and the
computational bottleneck for random projection methods is often the implementation of
the random projection. For example, if the sketching matrix S is a random projection con-
structed as an n× ` matrix of i.i.d. Gaussian random variables, as we use in Section 4.2.3,
then the running time of dense data in RAM is not substantially faster than computing U1,
while the running time can be much faster for certain sparse matrices or for computation
in parallel or distributed environments. Alternately, if the sketching matrix S is a Fourier-
based projection, as we use in Section 4.2.2, then the running time for data stored in RAM
is typically O(n2 ln k), as opposed to the O(n2k) time that would be needed to compute
U1. These running times depend sensitively on the size of the data and the model of data
access; see Mahoney (2011); Halko et al. (2011) for detailed discussions of these issues.

In particular, for random sampling algorithms that use a leverage-based importance
sampling distribution, as we use in Section 4.2.1, it is often said that the running time
is no faster than that of computing U1. (This O(n2k) running time claim is simply the
running time of the näıve algorithm that computes U1 “exactly,” e.g., with a variant of
the QR decomposition, and then reads off the Euclidean norms of the rows.) However, the
randomized algorithm of Drineas et al. (2012) that computes relative-error approximations
to all of the statistical leverage in a time that is qualitatively faster—in worst-case theory
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and, by using existing high-quality randomized numerical code (Avron et al., 2010; Meng
et al., 2014; Halko et al., 2011), in practice—gets around this bottleneck, as was shown
in Section 3. The computational bottleneck for the algorithms of Drineas et al. (2012)
is that of applying a random projection, and thus the running time for leverage-based
Nyström extension is that of applying a (“fast” Fourier-based or “slow” Gaussian-based, as
appropriate) random projection to A (Drineas et al., 2012). See Section 3 or (Avron et al.,
2010; Meng et al., 2014; Halko et al., 2011) for additional details.

4.2.1 Sampling with Leverage-based Importance Sampling Probabilities

Here, the columns of A are sampled with replacement according to a nonuniform proba-
bility distribution determined by the (exact or approximate) statistical leverage scores of
A relative to the best rank-k approximation to A, which in turn depend on nonuniformity
properties of the top k-dimensional eigenspace of A. To add flexibility (e.g., in case the
scores are computed only approximately with the fast algorithm of Drineas et al. (2012)), we
formulate the following lemma in terms of any probability distribution that is β-close to the
leverage score distribution. In particular, consider any probability distribution satisfying

pj ≥
β

k
‖(U1)j‖22 and

∑n

j=1
pj = 1,

where β ∈ (0, 1]. Given these (β-approximate) leverage-based probabilities, the sketching
matrix is S = RD where R ∈ Rn×` is a column selection matrix that samples columns
of A from the given distribution—i.e., Rij = 1 iff the ith column of A is the jth column
selected—and D is a diagonal rescaling matrix satisfying Djj = 1√

`pi
iff Rij = 1. For this

case, we can prove the following.

Lemma 5 Let A be an n × n SPSD matrix, q be a positive integer, and S be a sampling
matrix of size n × ` corresponding to a leverage-based probability distribution derived from
the top k-dimensional eigenspace of A, satisfying

pj ≥
β

k
‖(U1)j‖22 and

∑n

j=1
pj = 1

for some β ∈ (0, 1]. Fix a failure probability δ ∈ (0, 1] and approximation factor ε ∈ (0, 1],
and let

γ =
λk+1(A)

λk(A)
.

If ` ≥ 3200(βε2)−1k ln(4k/(βδ)), then, when C = AqS and W = STA2q−1S, the corre-
sponding low-rank SPSD approximation satisfies∥∥∥A−CW†CT

∥∥∥
2
≤ ‖A−Ak‖2 +

(
ε2
∥∥(A−Ak)

2q−1∥∥
?

)1/(2q−1)
, (16)∥∥∥A−CW†CT

∥∥∥
F
≤ ‖A−Ak‖F +

(√
2εγq−1 + ε2γ2(q−1)

)
‖A−Ak‖? , and (17)∥∥∥A−CW†CT

∥∥∥
?
≤ (1 + γ2(q−1)ε2) ‖A−Ak‖? , (18)

simultaneously with probability at least 1− 6δ − 0.6.
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Proof In (Mackey et al., 2011a, proof of Proposition 22) it is shown that if ` satisfies
the given bound and the samples are drawn from an approximate subspace probability
distribution, then for any SPSD diagonal matrix D,∥∥∥DΩ2Ω

†
1

∥∥∥
F
≤ ε ‖D‖F

with probability at least 1− 2δ − 0.2. Thus, the estimates∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
F
≤ ε

∥∥∥Σ1/2
2

∥∥∥
F

= ε
√

Tr (Σ2) = ε
√
‖A−Ak‖?,

and (∥∥∥Σq−1/2
2 Ω2Ω

†
1

∥∥∥
2

)2/(2q−1)
≤
(∥∥∥Σp−1/2

2 Ω2Ω
†
1

∥∥∥
F

)2/(2q−1)
≤
(
ε2
∥∥∥Σq−1/2

2

∥∥∥2
F

)1/(2q−1)

=
(
ε2 Tr

(
Σ2q−1

2

))1/(2q−1)
=
(
ε2
∥∥(A−Ak)

2q−1∥∥
?

)1/(2q−1)
each hold, individually, with probability at least 1 − 2δ − 0.2. In particular, taking q = 1,
we see that ∥∥∥Σ1/2

2 Ω2Ω
†
1

∥∥∥
2
≤ ε
√
‖A−Ak‖?

with the same probability.

These three estimates used in Theorems 2, 3, and 4 yield the bounds given in the state-
ment of the theorem.

Remark. The additive scale factors for the spectral and Frobenius norm bounds are much
improved relative to the prior results of Drineas and Mahoney (2005). At root, this is since
the leverage score importance sampling probabilities highlight structural properties of the
data (e.g., how to satisfy the condition in Theorems 2, 3, and 4 that Ω1 has full row rank)
in a more refined way than the importance sampling probabilities of Drineas and Mahoney
(2005).

Remark. These improvements come at additional computational expense, but we remind
the reader that leverage-based sampling probabilities of the form used by Lemma 5 can be
computed faster than the time needed to compute the basis U1 (Drineas et al., 2012). The
computational bottleneck of the algorithm of Drineas et al. (2012) is the time required to
perform a random projection on the input matrix.

Remark. Not surprisingly, constant factors such as 3200 (as well as other similarly large
factors below) and a failure probability bounded away from zero are artifacts of the analysis;
the empirical behavior of this sampling method is much better. This has been observed
previously (Drineas et al., 2008; Mahoney and Drineas, 2009).
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4.2.2 Random Projections with Subsampled Randomized Fourier Transforms

Here, the columns of A are randomly mixed using a unitary matrix before the columns
are sampled. In particular, S =

√
n
`DTR, where D is a diagonal matrix of Rademacher

random variables, T is a highly incoherent unitary matrix, and R restricts to ` columns.
For concreteness, and because it has an associated fast transform, we consider the case
where T is the normalized Fourier transform of size n× n. For this case, we can prove the
following.

Lemma 6 Let A be an n × n SPSD matrix, q be a positive integer, and S =
√

n
`DFR

be a sampling matrix of size n × `, where D is a diagonal matrix of Rademacher random
variables, F is a normalized Fourier matrix of size n × n, and R restricts to ` columns.
Fix a failure probability δ ∈ (0, 1), approximation factor ε ∈ (0, 1), and assume that k ≥ 4.
Define

γ =
λk+1(A)

λk(A)
.

If ` ≥ 24ε−1[
√
k +

√
8 ln(8n/δ)]2 ln(8k/δ), then, when C = AqS and W = STA2q−1S,

the corresponding low-rank SPSD approximation satisfies∥∥∥A−CW†CT
∥∥∥
2
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·
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`
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(1−
√
ε)`

)1/(2q−1) ∥∥(A−Ak)
2q−1∥∥1/(2q−1)

?
,∥∥∥A−CW†CT

∥∥∥
F
≤ ‖A−Ak‖F +

(
7γq−1

√
ε+ 22γ2q−2ε

)
‖A−Ak‖? , and∥∥∥A−CW†CT

∥∥∥
?
≤ (1 + 22εγ2(q−1)) ‖A−Ak‖?

(19)

simultaneously with probability at least 1− 2δ.

Proof Let M = Σ
q−1/2
2 Ω2Ω

†
1 denote the matrix referenced in Theorems 2 and 4. In

(Boutsidis and Gittens, 2013, proof of Theorem 4), it is shown that for the stated choice of
S and number of samples `,

‖M‖22 ≤
1

1−
√
ε
·
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5 ‖Σ2‖2q−12 +
ln(n/δ)

`

(∥∥∥Σq−1/2
2

∥∥∥
F

+
√

8 ln(n/δ)
∥∥∥Σq−1/2

2
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)2)
=

1
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√
ε
·

(
5 ‖Σ‖2q−12 +
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`

(∥∥∥Σ2q−1
2

∥∥∥1/2
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+
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8 ln(n/δ) ‖Σ2‖q−1/22

)2
)

≤ 1

1−
√
ε
·
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5 +
16 ln(n/δ)2

`

)
‖Σ2‖2q−12 +

2 ln(n/δ)

`

∥∥∥Σ2q−1
2

∥∥∥
?

)
and

‖M‖F ≤
√

22ε
∥∥∥Σ1/2

2

∥∥∥
F

=
√

22ε ‖Σ2‖?

each hold, individually, with probability at least 1− δ. These estimates used in Theorems 2
and 4 yield the stated bounds for the spectral and trace norm errors.
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The Frobenius norm bound follows from the same estimates and a simplification of the
bound stated in Theorem 3:∥∥∥A−CW†CT

∥∥∥
F
≤ ‖Σ2‖F + γq−1

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥
2

(√
2 Tr (Σ2) + γq−1

∥∥∥Σ1/2
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†
1

∥∥∥
F

)
≤ ‖Σ2‖F + γq−1

∥∥∥Σ1/2
2 Ω2Ω

†
1
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F

√
2 Tr (Σ2) + γ2(q−1)

∥∥∥Σ1/2
2 Ω2Ω

†
1

∥∥∥2
F

≤ ‖Σ2‖F +
(
γq−1
√

44ε+ 22γ2q−2ε
)
‖Σ2‖? .

We note that a direct application of Theorem 3 gives a potentially tighter, but more un-
wieldy, bound.

Remark. Suppressing the dependence on δ and ε, the spectral norm bound ensures that
when q = 1, k = Ω(lnn) and ` = Ω(k ln k), then∥∥∥A−CW†CT

∥∥∥
2

= O

(
lnn

ln k
‖A−Ak‖2 +

1

ln k
‖A−Ak‖?

)
.

This should be compared to the guarantee established in Lemma 7 below for Gaussian-based
SPSD sketches constructed using the same number of measurements:∥∥∥A−CW†CT

∥∥∥
2

= O

(
‖A−Ak‖2 +

1

k ln k
‖A−Ak‖?

)
.

Lemma 6 guarantees that errors on this order can be achieved if one increases the number of
samples by a logarithm factor in the dimension: specifically, such a bound is achieved when
k = Ω(lnn) and ` = Ω(k ln k lnn). The difference between the number of samples necessary
for Fourier-based sketches and Gaussian-based sketches is reflective of the differing natures
of the random projections: the geometry of any k-dimensional subspace is preserved under
projection onto the span of ` = O(k) Gaussian random vectors (Halko et al., 2011), but
the sharpest analysis available suggests that to preserve the geometry of such a subspace
under projection onto the span of ` SRFT vectors, ` must satisfy ` = Ω(max{k, lnn} ln k)
(Tropp, 2011). We note, however, that in practice the Fourier-based and Gaussian-based
SPSD sketches have similar reconstruction errors.

Remark. The structure of the Frobenius and trace norm bounds for the Fourier-based
projection are identical to the structure of the corresponding bounds from Lemma 5 for
leverage-based sampling (and the bounds could be made identical with appropriate choice
of parameters). This is not surprising since (informally) Fourier-based (and other) random
projections rotate to a random basis where the leverage scores are approximately uniform
and thus where uniform sampling is appropriate (Mahoney, 2011). The disparity of the
spectral norm bounds suggests that leverage-based SPSD sketches should be expected to
be more accurate in the spectral norm than Fourier-based sketches; the empirical results
of Section 3.4 support this interpretation. The running times of the Fourier-based and the
leverage-based algorithms are the same, to leading order, if the algorithm of Drineas et al.
(2012) (which uses the same transform S =

√
n
`DTR) is used to approximate the leverage

scores.
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4.2.3 Random Projections with i.i.d. Gaussian Random Matrices

Here, the columns of A are randomly mixed using Gaussian random variables before sam-
pling. Thus, the entries of the sampling matrix S ∈ Rn×` are i.i.d. standard Gaussian
random variables.

Lemma 7 Let A be an n× n SPSD matrix, q be a positive integer, S ∈ Rn×` be a matrix
of i.i.d standard Gaussians, and define

γ =
λk+1(A)

λk(A)
.

If ` ≥ 2ε−2k ln k where ε ∈ (0, 1) and k > 4, then, when C = AqS and W = STA2q−1S,
the corresponding low-rank SPSD approximation satisfies

∥∥∥A−CW†CT
∥∥∥
2
≤

(
1 +

(
89

ε2

ln k
+ 874

ε2

k

)1/(2q−1))
‖A−Ak‖2

+

(
219

ε2

k ln k

)1/(2q−1)
· ‖A−Ak‖? ,∥∥∥A−CW†CT

∥∥∥
F
≤ ‖A−Ak‖F +

[
γq−1ε

(
42√
k

+
14√
ln k

)
+ γ2q−2ε2

(
45

ln k
+

140√
k ln k

+
219

k
√

ln k

)]√
‖A−Ak‖2 ‖A−Ak‖?

+

(
21γq−1

ε√
k ln k

+ 70γ2q−2
ε2√
k ln k

)
‖A−Ak‖?

+ γ2q−2ε2
(

140√
k ln k

+
437

k

)
‖A−Ak‖2 , and∥∥∥A−CW†CT

∥∥∥
?
≤
(

1 + 45
γ2q−2ε2

ln k

)
‖A−Ak‖? + 437

γ2q−2ε2

k
‖A−Ak‖2

simultaneously with probability at least 1− 2k−1 − 4k−k/ε
2
.

Remark. The way we have parameterized these bounds for Gaussian-based projections
makes explicit the dependence on various parameters, but hides the structural simplicity
of these bounds. In particular, note that the Frobenius norm approximation error is upper
bounded by a term that depends on the Frobenius norm error of the optimal low-rank
approximant and a term that depends on the trace norm error of the optimal low-rank
approximant; and that, similarly, the trace norm approximation error is upper bounded by
a multiplicative factor that can be set to 1 + ε with an appropriate choice of parameters.

Proof As before, this result is established by bounding the quantities involved in Theo-
rems 2, 3, and 4. The following deviation bounds, established in (Halko et al., 2011, Section
10), are useful in that regard: if D is a diagonal matrix, ` = k + p with p > 4 and u, t ≥ 1,
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then with our choice of S,

P

{∥∥∥DΩ2Ω
†
1

∥∥∥
2
> ‖D‖2

(√
3k

p+ 1
· t+

e
√
`

p+ 1
· tu

)
+ ‖D‖F

e
√
`

p+ 1
· t

}
≤ 2t−p + e−u

2/2, and

P

{∥∥∥DΩ2Ω
†
1

∥∥∥
F
> ‖D‖F

√
3k

p+ 1
· t+ ‖D‖2

e
√
`

p+ 1
· tu

}
≤ 2t−p + e−u

2/2.

(20)

Write ` = k + p. Since ` ≥ 2ε−2k ln k, we have that p ≥ ε−2k ln k. Accordingly, the
following estimates hold:√

3k

p+ 1
≤

√
3k

p
≤
√

3

ln k
ε

√
`

p+ 1
≤
√
k + p

p
≤
√

ε4

k ln2 k
+

ε2

k ln k
<

√
2

k ln k
ε.

Use these estimates and take t = e and u =
√

2 ln k in (20) to obtain that∥∥∥Σq−1/2
2 Ω2Ω

†
1

∥∥∥2
2
≤

[
ε

(
e

√
3

ln k
+ 2e2

√
1
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)
·
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2
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2

+ εe2
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with probability at least 1− k−1 − 2k−k/ε
2

and∥∥∥Σ1/2
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†
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≤
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with the same probability. Likewise,∥∥∥Σ1/2
2 Ω2Ω

†
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with the same probability.
These estimates used in Theorems 2 and 4 yield the stated spectral and trace norm

bounds. To obtain the corresponding Frobenius norm bound, define the quantities

G1 =

(
12e2

ln k
+

16e4

k

)
ε2 G3 = 3e2

ε2

ln k

G2 = 4e4
ε2

k ln k
G4 = 4e4

ε2

k
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By Theorem 3 and our estimates for
∥∥∥Σ1/2

2 Ω2Ω
†
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∥∥∥
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and
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(21)
The following estimates hold for the coefficients in this inequality:√

2G1 ≤
(

42√
k

+
14√
ln k

)
ε

√
G1G3 ≤

(
45
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140√
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140√
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)
ε2.

The Frobenius norm bound follows from using these estimates in Equation (21) and grouping
terms appropriately:∥∥∥A−CW†CT

∥∥∥
F
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)
‖Σ2‖2 .

4.2.4 Sampling Columns Uniformly at Random

Here, the columns of A are sampled uniformly at random (with or without replacement).
Such uniformly-at-random column sampling only makes sense when the leverage scores of
the top k-dimensional invariant subspace of the matrix are sufficiently uniform that no
column is significantly more informative than the others. For this case, we can prove the
following.

Lemma 8 Let A be an n × n SPSD matrix, q be a positive integer, and S be a sampling
matrix of size n× ` corresponding to sampling the columns of A uniformly at random (with
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or without replacement). Let µ denote the coherence of the top k-dimensional eigenspace of
A and fix a failure probability δ ∈ (0, 1) and accuracy factor ε ∈ (0, 1). Define

γ =
λk+1(A)

λk(A)
.

If ` ≥ 2µε−2k ln(k/δ), then, when C = AqS and W = STA2q−1S, the corresponding low-
rank SPSD approximation satisfies∥∥∥A−CW†CT

∥∥∥
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)
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simultaneously with probability at least 1− 3δ.

Proof In (Gittens, 2012), it is shown that∥∥∥Ω†1∥∥∥2
2
≤ n

(1− ε)`

with probability at least 1 − δ when ` satisfies the stated bound. Observe that ‖Ω2‖2 ≤
‖U2‖2 ‖S‖2 ≤ 1, so that∥∥∥Σq−1/2
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with at least the same probability. Observe that since S selects ` columns uniformly at
random,
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where the summands xi are distributed uniformly at random over the columns of Σ
1/2
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2 .
Regardless of whether S selects the columns with replacement or without replacement, the
summands all have the same expectation:
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Consequently,
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so by Jensen’s inequality

E
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Now applying Markov’s inequality to (22), we see that
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with probability at least 1− 2δ. Thus, we also know that∥∥∥Σ1/2
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F
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also with probability at least 1 − 2δ. These estimates used in Theorems 2 and 4 yield the
stated spectral and trace norm bounds.

To obtain the Frobenius norm bound, observe that Theorem 3 implies∥∥∥A−CW†CT
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Now substitute our estimate for
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†
1
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to obtain the stated Frobenius norm bound.

Remark. As with previous bounds for uniform sampling, (e.g., Kumar et al., 2012; Git-
tens, 2012), these results for uniform sampling are much weaker than our bounds from the
previous subsections, since the sampling complexity depends on the coherence of the input
matrix. When the matrix has small coherence, however, these bounds are similar to the
bounds derived from the leverage-based sampling probabilities. Recall that, by the algo-
rithm of Drineas et al. (2012), the coherence of an arbitrary input matrix can be computed
in roughly the time it takes to perform a random projection on the input matrix.

5. Discussion and Conclusion

We have presented a unified approach to a large class of low-rank approximations of Lapla-
cian and kernel matrices that arise in machine learning and data analysis applications. In
doing so, we have provided qualitatively-improved worst-case theory and clarified the per-
formance of these algorithms in practical settings. Our theoretical and empirical results
suggest several obvious directions for future work.

In general, our empirical evaluation demonstrates that obtaining moderately high-quality
low-rank approximations, as measured by minimizing the reconstruction error, depends in
complicated ways on the spectral decay, the leverage score structure, the eigenvalue gaps in
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relevant parts of the spectrum, etc. (Ironically, our empirical evaluation also demonstrates
that all the sketches considered are reasonably-effective at approximating both sparse and
dense, and both low-rank and high-rank matrices which arise in practice. That is, with
only roughly O(k) measurements, the spectral, Frobenius, and trace approximation errors
stay within a small multiplicative factor of around 3 of the optimal rank-k approximation
errors. The reason for this is that matrices for which uniform sampling is least appropriate
tend to be those which are least well-approximated by low-rank matrices, meaning that
the residual error is much larger.) Thus, e.g., depending on whether one is interested in `
being slightly larger or much larger than k, leverage-based sampling or a random projection
might be most appropriate; and, more generally, an ensemble-based method that draws
complementary strengths from each of these methods might be best.

In addition, we should note that, in situations where one is concerned with the quality of
approximation of the actual eigenspaces, one desires both a small spectral norm error (be-
cause by the Davis–Kahan sin Θ theorem and similar perturbation results, this would imply
that the range space of the sketch effectively captures the top k-dimensional eigenspace of
A) as well as to use as few samples as possible (because one prefers to approximate the top
k-dimension eigenspace of A with as close to a k-dimensional subspace as possible). Our
results suggest that the leverage score probabilities supply the best sampling scheme for
balancing these two competing objectives.

More generally, although our empirical evaluation consists of random sampling and ran-
dom projection algorithms, our theoretical analysis clearly decouples the randomness in the
algorithm from the structural heterogenities in the Euclidean vector space that are respon-
sible for the poor performance of uniform sampling algorithms. Thus, if those structural
conditions can be satisfied with a deterministic algorithm, an iterative algorithm, or any
other method, then one can certify (after running the algorithm) that good approxima-
tion guarantees hold for particular input matrices in less time than is required for general
matrices. Moreover, this structural decomposition suggests greedy heuristics—e.g., greed-
ily keep some number of columns according to approximate statistical leverage scores and
“residualize.” In our experience, a procedure of this form often performs quite well in prac-
tice, although theoretical guarantees tend to be much weaker; and thus we expect that,
when coupled with our results, such procedures will perform quite well in practice in many
medium-scale and large-scale machine learning applications.
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