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Abstract

Algorithms for inferring the structure of Bayesian networks from data have become an in-
creasingly popular method for uncovering the direct and indirect influences among variables
in complex systems. A Bayesian approach to structure learning uses posterior probabil-
ities to quantify the strength with which the data and prior knowledge jointly support
each possible graph feature. Existing Markov Chain Monte Carlo (MCMC) algorithms
for estimating these posterior probabilities are slow in mixing and convergence, especially
for large networks. We present a novel Markov blanket resampling (MBR) scheme that
intermittently reconstructs the Markov blanket of nodes, thus allowing the sampler to
more effectively traverse low-probability regions between local maxima. As we can derive
the complementary forward and backward directions of the MBR proposal distribution, the
Metropolis-Hastings algorithm can be used to account for any asymmetries in these propos-
als. Experiments across a range of network sizes show that the MBR scheme outperforms
other state-of-the-art algorithms, both in terms of learning performance and convergence
rate. In particular, MBR achieves better learning performance than the other algorithms
when the number of observations is relatively small and faster convergence when the number
of variables in the network is large.

Keywords: probabilistic graphical models, directed acyclic graph, Bayesian inference,
Markov chain Monte Carlo

1. Introduction

A Bayesian network (BN) is a compact graphical representation of a multivariate joint
probability distribution of variables. A BN is represented in the form of a directed acyclic
graph (DAG), with nodes representing variables and directed edges representing probabilis-
tic dependencies. An important feature of a BN is that each variable represented by a node
is understood to be conditionally independent of the set of all its predecessors in the DAG,
given the states of its parents (Neapolitan, 2004). In other words, the absence of a directly
connecting edge between any two nodes implies that the two corresponding variables are
independent given the states of the variables represented by intermediate nodes along a
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directed path. Thus, direct dependence between variables can be graphically distinguished
from simple correlation mediated by other variables.

Algorithms have been developed to attempt to uncover the BN structures consistent
with data from complex systems, with the goal of better understanding the direct and
indirect mechanisms of action (Daly et al., 2011). This is particularly the case in systems
biology, where diverse data on genes, gene expression, environmental exposure, and disease
might be used to reveal the mechanistic links between genotype and phenotype (Su et al.,
2013). Early attempts to learn BN structures from data focused on identifying the single
best-fitting model. However, when the amount of data is relatively small compared to the
number of variables, there are likely to be many different structures that fit the available
data nearly equally well. The single best-fitting model is often an arbitrary result of the
particular states of the variables that happen to have been observed. Further, presentation
of this single best model provides no indication of the relative confidence one can have in
its particular structural features (i.e., presence or absence of edges).

A Bayesian approach to structure learning allows for a quantification of the strength
with which the data and any available prior knowledge jointly support each possible graph
structure, in the form of posterior probabilities. Unfortunately, the number of possible
DAGs grows super-exponentially with the number of variables being represented, making
a full comparison of Bayesian posterior probabilities associated with alternative structures
intractable. The Markov Chain Monte Carlo (MCMC) method as applied to graphical
structures provides a numerical solution to this problem. In the original version of this
algorithm, proposed by Madigan and York (1995), each transition in the Markov Chain
consists of essentially a single edge change to the current graph. While this performs rela-
tively well in small domains with 5-15 variables, it is rather slow in mixing and convergence
with a larger number of variables. As the size of the structural search space grows, the
chain is prone to getting trapped in local high probability regions separated by regions of
lower probability regions. As a result, the samples obtained may not be representative of
the true posterior distribution.

Friedman and Koller (2003) proposed a variation on the MCMC algorithm that explores
the space of topological node orders rather than exact structures. The space of node orders
is much smaller than the space of structures and is also likely to be smoother, allowing
for better mixing. Thus, order MCMC is generally observed to converge more reliably
to the same posterior probability estimates. More recently, Niinimki et al. (2012)intro-
duced an algorithm based on partial, rather than linear, orders to create a still smaller and
smoother posterior sampling space. Given a sample of (linear or partial) node orders, it
is then straightforward to obtain a sample of graphs consistent with each order. However,
as graphs can be consistent with more than one order, the effective prior probability over
graphs involves marginalization over orders. This order-modular prior means that it is dif-
ficult to explicitly specify priors over graphs (Grzegorczyk and Husmeier, 2008) and that
commonly-used order priors, such as the uniform, introduce bias by generating misrepresen-
tative graph priors. Several variants of the order MCMC algorithm have been developed to
address this prior bias (Koivisto and Sood, 2004; Eaton and Murphy, 2007; Ellis and Wong,
2008; Niinimki and Koivisto, 2013). Unfortunately, these approaches all incur substantial
computational costs, making them impractical for learning the structure of networks with
more than about 20 nodes. Recently Masegosa and Moral (2013) proposed a skeleton-based
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approach, in which samples are restricted in the DAG space constrained by a given BN
skeleton. This method scales to larger networks but performs poorly for small sample sizes.

In the present paper, we seek to improve the poor convergence of the structure MCMC
algorithm without substantially increasing the computational costs. One way to do this is
to introduce transitions that take larger steps in the structural search space, thus allow-
ing the sampler to more effectively traverse low-probability regions when moving between
local maxima and ridges (Koller and Friedman, 2009). With this intent, Grzegorczyk and
Husmeier (2008) propose a new edge reversal move which selects an edge from the current
MCMC iteration, reverses the direction of this edge, and then resamples new parents for the
two nodes at either end of this edge. The idea is to implement a substantial modification to
the current DAG that is customized to the new direction of the edge being reversed. The
experimental results of Grzegorczyk and Husmeier (2008) indicate that this approach is an
improvement over traditional structure MCMC with regard to convergence and mixing and
is as computationally efficient as order MCMC.

We see an opportunity to take the approach of Grzegorczyk and Husmeier (2008) a step
further by intermittently resampling the Markov blanket of randomly selected nodes. The
Markov blanket of a node contains its parents, children, and the other parents of its children.
These nodes comprise a module of local relations that shield a node from the rest of the
network. These local relations are sometimes too sturdy to modify through small changes,
causing the Markov Chain to linger in a region of the structural space for an unnecessarily
long time. Our premise is that, by reconstructing the Markov blanket of a node, our search
could more readily escape from local maxima, thus substantially improving the mixing of
the Markov chain. For ease of comparison, we employ the same notation as Grzegorczyk
and Husmeier (2008) and report similar diagnostic results.

2. BN Structure Learning Using MCMC

There are many ways to learn a BN from data. Since the size of search space of BNs is
super exponential in the number of variables, it is impractical to do an exhaustive search.
Many approaches therefore employ a score-based heuristic search algorithm, which starts
with a random or seeded DAG and then proceeds by adding, reversing or deleting one edge
at a time to obtain new DAGs. For each DAG, a score is calculated that indicates how well
the DAG fits the data. The Bayesian approach to inference specifies that the consistency
of a graph with data D is calculated as:

P (G | D) =
P (D | G) · P (G)∑

G∗∈Ω P (D | G∗) · P (G∗)
, (1)

where P (G|D) is the posterior probability of a particular graph, P (D|G) is the likelihood
of the data given that graph and P(G) is the prior probability over the space of all possible
graphs (G ∈ Ω). Given the independence assumptions employed by a BN, and a nonin-
formative graph prior (Grzegorczyk and Husmeier, 2008), the Bayesian score of a DAG,
P (G|D), can be factored into a product of local scores for each node Xn given its parents
πn as:

P (G | D) =
1

ZN

N∏
n=1

exp(Ψ[(Xn, πn | D]), (2)
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where ZN is a normalization term, N is the number of nodes, and Ψ[Xn, πnD] are the local
scores defined by the probability model chosen for the likelihood P (D|G). The multinomial
distribution with a Dirichlet prior is often adopted, as it leads to a closed form expression
for the local scores (Cooper and Herskovits, 1992).

The structure MCMC algorithm of Madigan and York (1995) seeks to generate a set of
samples of possible structures with relative frequencies that correspond to the Bayesian pos-
terior distribution. These samples can then be used, for example, to estimate the posterior
probabilities of particular features of interest (marginalizing over the various structures).
Implementations of the structure MCMC algorithm typically employ a Metropolis-Hastings
sampler (Giudici and Castelo, 2003). At each step of the Markov chain, a candidate
graph G

′
is proposed that will replace the current graph G with a probability equal to

µ = min{1, R(G
′ | G)} where

R(G
′ | G) =

P (G
′ | D)

P (G | D)
· Q(G | G′)
Q(G′ | G)

. (3)

Q(G
′ | G) is the proposal probability for a move from G to G

′
and Q(G|G′) is the probability

of a reverse move from G
′

to G. The ratio of these probabilities is referred to as the Hastings
factor and serves to correct for any asymmetries that might be present in the proposal moves.

In the conventional structure MCMC algorithm, each step represents a move to a neigh-
boring DAG, which is different in one edge from the current DAG. When Q is a uniform
probability over the current structure’s neighbors, the Hastings factor is equal to the ratio of
number of neighbors for the reverse and forward moves, and the Markov chain is guaranteed
to have a stationary distribution equal to the posterior distribution P (G | D). Unfortu-
nately, the space of DAGs is super exponential in the number of variables and the posterior
landscape is characterized by ridges (representing equally well fitting graphs) separated by
valleys. This makes it difficult for the chain to explore the space, making it slow to mix.

Grzegorczyk and Husmeier’s (2008) ‘new edge reversal’(REV) move replaces the simple
single edge addition, removal, or reversal of Madigan and York’s algorithm with a more
substantial structural change. First, an edge in the current graph G is selected at random
for reversal. The nodes at either end of this edge are then orphaned by removing all incoming
edges. Next, a new parent set is sampled for each of these edges which contains the reversal
of the originally selected edge and does not introduce any directed cycles to the graph. This
then becomes the proposed graph G

′
. Grzegorczyk and Husmeier specify the acceptance

probability of the REV move, including the appropriate Hastings factor, thus guaranteeing
convergence to the correct posterior distribution under ergodicity. As ergodicity is not
assured, they intersperse their REV move with traditional structure MCMC moves in their
final algorithm

3. Markov Blanket Resampling

Given the success of REV at improving mixing and convergence without added significant
computational burden, we believe that there may be value to introducing more extreme
steps into the structure MCMC algorithm. In particular, the traditional sampler may
rarely leave regions of the structure space that have a similar posterior probability score.
Graphs belonging to the same equivalence class, for example, comprise equiprobable ridges.
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Figure 1: Illustration of the Markov Blanket Resampling (MBR) move. In this example,
node C is selected as the target node (top left). Its Markov blanket includes nodes
A, D, E, and F. First, all edges pointing to itself and to its children from other
nodes are removed (top right). New nodes are next randomly selected as its new
parents, in this case nodes B and H (bottom left). Finally, new additional parents
are selected for its children, in this case G for D and I for E (bottom right).

Single edge reversals only lead to a new equivalence class when they involve a V-structure.
REV improves on this by orphaning two nodes as an intermediate step, but in most cases
the chain can easily revert to the same equivalence class within an iteration or two. Thus,
even with REV, low probability valleys between ridges may not be readily traversed. As
the Markov blanket of a node represents all the variables that can directly influence the
state of that node, its entire reconstruction represents the most substantial change that can
be made with respect to any single node. Thus, we believe that intermittent resampling of
the Markov blanket could further improve the mixing and convergence of a Markov chain.

3.1 Overview

The idea of our Markov Blanket Resampling (MBR) move is shown in Figure 1. We start
with the current DAG (upper left). First, a node is selected at random (node C, in this
example). All edges pointing into this node are deleted, as well as edges pointing into
its children from nodes other than itself (upper right, dotted edges), thus disconnecting
much of the node’s Markov blanket. New parents for this target node are then sampled
disallowing any of its previous parents (bottom left), as are new additional parents, without
any restrictions, for all the target node’s children (bottom right), both under the condition
of not creating any cycles.
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3.2 Mathematical Details

Step 1: A node Xi is selected from a DAG, G, according to a uniform distribution over
all nodes N in G. Orphaning this node and removing edges pointing into its children from
nodes other than Xi creates a new DAG, G0. (If Xi has no children, then only Step 2 is
implemented and the products involving Xj in eq. (9) are set equal to 1.)
Step 2: A new parent set π

′
i is selected for Xi, disallowing its previous parents πi, to obtain

new DAG, G
Xi←π

′
i

0 . Mathematically, therefore, π
′
i conforms to the following distribution:

Γ(π
′
i | G0, πi) =

exp(Ψ[Xi, π
′
i | D]) ·H(G

Xi←π′i
0 ) · I(π

′
i, πi)

Z∗(Xi | G0, πi)
, (4)

where H(G) = 0 if the graph G contains a directed cycle and 1 otherwise, I(π
′
i, π) = 0

if π ∩ π′i 6= φ and 1 otherwise, and Z∗(Xi|G0) represents the sum of local scores over all
allowable parent sets π of Xi

Z∗(Xi | G0, πi) :=
∑

π:H(G
Xi←π
0 )=1

πi∩π
′
i 6=φ

exp(Ψ[Xi, π | D]). (5)

This yields graph G1.

Step 3: New parent sets π
′j
i are sampled for each of Xi’s children Xj

i ∈ γi = {X1
i , ..., X

J
i }

that include node Xi and conform to the following distribution:

Γ(π
′
i | Gj) =

exp(Ψ[Xj
i , π

′j
i | D]) ·H(G

Xj
i←π

′ j
i

j ) · J(π
′j
i , Xi)

Z(Xj
i | Gj , Xi)

, (6)

where Gj is the graph that exists prior to sampling new parents for node Xj
i , J(π

′j
i , Xi) = 1

if Xi ∈ π
′j
i and 0 otherwise, and Z(Xj

i |Gj , Xi) represents the sum of local scores over all

allowable parent sets of Xj
i which contain Xi:

Z(Xj
i | Gj , Xi) :=

∑
π:H(G

X
j
i
←π

j )=1

Xi∈π

exp(Ψ[Xj
i , π | D]). (7)

It is important to note that sampling of new parent sets for each Xj
i occurs in a specified

order that is randomized for each MBR move (see Appendix), so that if another child of
Xi (i.e., a ’sibling’ of Xj

i ) becomes a parent of Xj
i in graph Gj+1, then Xj

i is not an
allowable parent of that sibling when its new parents are subsequently sampled. This can
be considered as a special case of disallowing directed cycles when sampling new parent sets
for each Xj

i .

Thus, after these three steps, the DAG G
′

has been proposed by the MBR move, with
overall proposal probability Q(G

′ | G) given by:
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Q(G
′ | G) =

1

N
· exp(Ψ[Xi, π

′
i | D]) ·H(G

Xi←π′i
0 ) · I(π

′
i, πi)

Z∗(Xi | G0, πi)

·
J∏
j=1

exp(Ψ[Xj
i , π

′j
i | D]) ·H(G

Xj
i←π

′ j
i

j ) · J(π
′j
i , Xi)

Z(Xj
i | Gj , Xi)

.

(8)

To compute the acceptance probability of the Metropolis-Hastings algorithm, the prob-
ability of performing the complementary reverse move from G′ to G, Q(G | G′), must be
articulated. This involves another MBR move for node Xi in which the node is first or-
phaned and all edges pointing into its children from nodes other than itself are removed to
yield DAG, G

′
0. In step 2, the original parent set π of Xi is selected resulting in graph G

′
1,

while in step 3 the original parent sets of each of Xi’s children are selected in graphs G
′
j

(accounting for node order) thus getting back to the original DAG G.
The numerators of the proposal distributions are cancelled out by the corresponding

terms of the posterior ratio (Grzegorczyk and Husmeier 2008), as are all local scores cor-
responding to unaffected nodes. Therefore, the critical term in the acceptance probability
can be written simply as:

R(G
′ | G) =

P (G
′ | D)

P (G | D)
· Q(G | G′)
Q(G′ | G)

=
Z∗(Xi | G0, πi)

Z∗(Xi | G
′
0, π

′
i)
·
∏J
j=1 Z(Xj

i | Gj , Xi)∏J
j=1 Z(Xj

i | G
′
j , Xi)

. (9)

An outline of the MBR algorithm is given in the Appendix.

3.3 Implementation Details

As with the order MCMC of Friedman and Koller (2003) and REV-enhanced structure
MCMC of Grzegorczyk and Husmeier (2008), computational efficiency can be obtained when
implementing the MBR algorithm by pre-computing and storing the scores associated with
all potential parent sets of each node. Further efficiency can be gained for large networks by
only considering as potential parents of each node those which have the highest local scores
when considered as sole parents. However, as this is an approximate technique, we do not
employ it in the examples presented here. We do, however, employ a fan-in restriction in
which a maximum of three parents are allowed for any one node. When we sample for new
parents for a node, we test all combinations of at most three. This approximation is used
in most applications to reduce computational complexity and improve convergence.

To preserve acyclicity when sampling new parent sets for a node, we can simply eliminate
invalid parent sets from the list of potential parent sets. In other words, if a parent set
contains a node that is a descendant of the target node or its children, this parent set is
removed from the current list of candidate parent sets. This method can also be used to
define the scores used in computing the function Z∗. Finally, as the DAGs resulting from
the first steps of both the forward and reverse MBR moves, G0 and G

′
0, are the same, the

identification of descendants only has to occur once during each MBR iteration.
In our applications we implement the MBR move probabilistically in the MCMC algo-

rithm, with a fixed probability of pm=1/15. The traditional structure move consisting of
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the addition, deletion or reversal of a single edge is thus performed with probability ps=1
pm. These are the same probabilities as suggested by Grzegorczyk and Husmeier (2008)
for their REV move. We experimented with different probabilities but found that 1/15
yields desirable results in terms of prediction quality and convergence rate. More frequent
implementations lead to a decline in efficiency in sampling the highest probability regions
as the chain seems to jump too often to low probability regions in the structure space, while
a lower frequency reduces the mixing of the chain in efficiency incurred by using MBR.
Since both the REV and MBR moves scores are pre-computed, MBR does not incur extra
running time relative to REV, a fact we confirmed by through time trials using our selected
data sets.

4. Experimental Testing

In this section, we test a version of the structure MCMC sampler enhanced by our MBR
move against the standard structure sampler and one enhanced by the REV move of Grze-
gorczyk and Husmeier (2008). We find that the MBR-structure sampler performs better
than the other two in terms of reliable convergence and learning performance, especially
for relatively small sample sizes. We also find that it converges much faster for large and
very large networks. These conclusions are drawn using data simulated from four models,
all with more than 30 nodes: ALARM, a BN designed for patient monitoring consisting of
37 nodes and 46 edges (Beinlich et al., 1989); Hailfinder, a BN with 56 nodes and 66 edges
developed to forecast severe weather (Abramson et al., 1996) HEPAR II, a BN built for di-
agnosis of liver disorders consisting of 70 nodes and 123 edges (Onisko, 2003), and GENS2,
a tool for simulating genetic epidemiological datasets containing 100 exposure, gene, and
disease variables (Pinelli et al., 2012). The ALARM data were used by Grzegorczyk and
Husmeier (2008) to demonstrate that the REV-structure sampler performed much better
than the standard MCMC sampler and equally well as the order sampler of Friedman and
Koller (2003). We employ the other three datasets to compare performance for even larger
networks.

Our algorithms were implemented in Matlab on a 128 GB machine with an Intel Xeon
2.00GHz processor. For the ALARM network with a simulated data set of m=1,000, pre-
computation of scores required 1017.6 sec, and implementation of 10,000 MCMC iterations
required 382.6 sec for the standard structure algorithm, 401.5 sec for REV, and 407.3 sec for
MBR. Given the 1/15 frequency of implementation, these times imply that the REV and
MBR moves require approximately twice as much computation time as the conventional
structure moves. This is consistent with the fact that the average number of children per
node being considered in each iteration of MBR for ALARM was found to be 1.60.

4.1 Convergence Reliability

To compare the reliability of convergence of the three structure samplers, we generated two
MCMC runs using datasets of various sizes (m=50, 100, 250, 500, 1000) simulated from
ALARM: one initialized with an empty DAG and another initialized with a DAG identified
as highest scoring through an independent run of the MCMC algorithm. We then compared
the estimates of the posterior probabilities of the directed edges obtained from the two runs
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using scatter plots. Points lying along the 1:1 line imply that the two runs agree, indicating
reliable convergence.

We used the same run settings as Grzegorczyk and Husmeier (2008): for the standard
structure sampler the burn-in was set to 500,000 iterations and 1000 DAGs were then
collected by storing every 1000th iteration. For both the REV and MBR moves, the burn-
in length was set to 312,500 and 1000 DAGS were collected by storing every 625th iteration.
This difference was employed to ensure approximately equal computational costs across the
three samplers, under the conservative assumption that the computational costs of the REV
and MBR moves are 10-times greater than those of standard structure iterations and that
the probability of these moves in any iteration was 1/15 (Grzegorczyk and Husmeier, 2008).

Scatter plots of the posterior probabilities of directed edges estimated from the two in-
dependent runs show that the MBR and REV structure samplers converge approximately
equally reliably, even for small sample sizes (Figure 2). There is a high correspondence
between the posterior probability estimates for the differently initialized runs. Under the
traditional structure sampler, however, the posterior probabilities of some edge features
depend on the initialization as indicated by off-diagonal points, even for very large sam-
ples, implying that this algorithm tends to get stuck at local maxima. Differences across
algorithms also imply imperfect convergence.

4.2 Convergence Rate

Having established that, when added to the traditional MCMC structure sampler, the
MBR move improves convergence reliability to the same degree as the REV move, we next
compared the convergence rate for networks over a range of sizes: ALARM (37 nodes),
HEPAR II (70 nodes), GENS2 (100 nodes). From each network, we generated sets of
1000 simulated observations and applied each of the MCMC algorithms described in the
previous section, starting with an empty DAG. Trace plots reveal the speed and reliability
of convergence.

For all three networks, the MBR-enhanced algorithm improves the convergence rate
substantially over the REV-enhanced version (Figure 3). The highest scoring structures
are found in approximately half the number of iterations of REV and in one tenth the
number of the traditional structure sampler. In fact, it appears that both the REV and the
traditional sampler may be getting stuck at local maxima for the largest networks, while
the MBR sampler quickly converges.

4.3 Learning Performance

When the true graph network underlying a dataset is known, we can evaluate the perfor-
mance of a structure learning algorithm using the concept of AUROC values. If we take the
directed edges that have an estimated posterior probability greater than some threshold ε
to be positive assertions of the existence of that feature, then a comparison against the true
network will yield the number of true positive (TP), false positive (FP) and false negative
(FN) assertions corresponding to that value of ε. The corresponding sensitivity, or true pos-
itive rate, TPR=TP/(TP+FN) and the complement of the specificity, or false positive rate,
FPR=FP/(TN+FP) can then be calculated, and a plot of these two metrics for varying
values of ε yields the Receiver Operator Characteristic (ROC) curve. Integrating the ROC
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Figure 2: Scatter plots of posterior probability estimates for directed edges in the ALARM
network, inferred from simulated datasets of various sizes. In each plot, the x-axis
represents the posterior probabilities estimated from an MCMC run initialized
with an empty DAG, and the y-axis represents the probability estimates obtained
from an MCMC initialized with a high scoring DAG found from an independent
run of the MCMC algorithm. When points lie along the diagonal, the two runs
have results that agree, indicating reliable convergence. Values clustering near 0
and 1 for larger sample sizes indicate a reduction in inference uncertainty. Left
column: traditional structure sampler; center column: REV-enhanced sampler;
right column: MBR-enhanced sampler.
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Figure 3: Trace plots of the first 10,000 iterations of five MCMC runs from each algorithm
(MBR, REV, Structure) on data sets simulated from networks ranging in size.
All runs involved 1000 simulated observations.

11



Su and Borsuk

False Positive Rate (1-specificity)
0 0.2 0.4 0.6 0.8 1

T
ru

e 
P

o
si

ti
v
e 

R
at

e 
(s

en
si

ti
v
it

y
)

0

0.2

0.4

0.6

0.8

1

Figure 4: Hypothetical ROC curve. The hatched area represents the AUROC0.5 corre-
sponding to an upper limit of ε=0.5.

curve from 0 to an upper value of FPR=ε then gives the Area under the Receiver Operator
Characteristic (AUROCε) curve as a summary of learning performance, with high values
indicating better performance (Figure 4). AUROCε values corresponding to low levels of
the upper limit are of particular interest, as we are generally concerned with limiting the
false positive rate.

For the ALARM network, we calculated AUROCε values for graphs learned from
datasets of size m = 50, 100, 250, 500, and 1000 observations using each of the three
MCMC algorithms and each of the two initializations, as described above. AUROCε values
were calculated for ε = 1.0, 0.1, 0.05, and 0.01. Plots of these values (Figure 5) show that,
as expected, learning performance tends to increase with the number of observations. The
three algorithms perform nearly comparably at sample sizes of m=250 and greater, with
the structure MCMC being somewhat less consistent between initializations, supporting
the results shown in Fig. 2. At smaller sample sizes and lower values of ε, the traditional
structure sampler performs poorly, the REV-enhanced version performs somewhat better,
and the MBR-enhanced version performs the best of the three algorithms. Additionally,
performance differs very little between the two independent initializations.

To assess learning performance on a different and somewhat larger network, we made
comparable calculations with Hailfinder, using simulated datasets of size m = 500, 750,
1000, 1250, and 1500 observations (Figure 6). The traditional structure MCMC again
shows increased learning performance with increasing number of observations. Yet, while
the REV and MBR-enhanced versions show comparable performance with large datasets,
they both yield even better performance with small datasets, as measured by AUROC1,
AUROC0.01, and AUROC0.05 values. This occurs because the Hailfinder network was origi-
nally constructed based, in part, on expert judgment. Therefore, the original network is not
necessarily the best scoring one. For small sample sizes, the algorithms each find networks
that fit the data better (i.e., more concisely) than the original network. Others working
with similar-sized networks employing expert judgment or hidden nodes have found similar
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Figure 5: Learning performance of the three MCMC samplers as applied to simulated data
from the ALARM network. Each panel shows AUROCε values corresponding to
a different upper limit on the inverse specificity (ε = 1, 0.1, 0.05, 0.01). Within
each panel, results are shown for each sampler with a different symbol, as applied
to varying numbers of simulated observations (m = 50, 100, 250, 500, 1000)
across the x-axis. For each sampler, there are two values, corresponding to runs
initialized with an empty DAG (slightly left) and a high scoring DAG found from
an independent run of the MCMC algorithm (slightly right).
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Figure 6: Learning performance of the three MCMC samplers as applied to simulated data
from the Hailfinder network. Each panel shows AUROCε values corresponding
to a different upper limit on the inverse specificity (ε = 1, 0.1, 0.05, 0.01). Within
each panel, results are shown for each sampler with a different symbol, as applied
to varying numbers of simulated observations (m = 50, 100, 250, 500, 1000)
across the x-axis. For each sampler, there are two values, corresponding to runs
initialized with an empty DAG (slightly left) and a high scoring DAG found from
an independent run of the MCMC algorithm (slightly right).
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AUROC 1 0.1 0.05 0.01

Test Statistic 3.52 7.71 6.09 7.78

P-value 0.0065 2.96e-05 1.80e-04 2.74e-05

Table 1: Paired t-test results comparing MBR and REV as applied to the Alarm Data

behavior (Masegosa and Moral, 2013). The MBR version appears to perform somewhat
better than the REV version at the smallest sample sizes with the possible exception of ε
= 0.01.

To rigorously compare the learning performance of the three algorithms, we employed
a statistical hypothesis testing procedure. First, we produced 10 independent data samples
from the Alarm network and generated 10 corresponding MCMC runs for each algorithm
starting with an empty structure. AUROCε values were calculated from these 10 runs for
each algorithm. We then performed paired-sample t-tests in Matlab with null hypothesis
that the differences in AUROCε values between each pair of algorithms have mean equal to
zero (assuming a normal distribution with unknown variance), with a two-sided alternative
hypothesis. A paired test was used because we were able to calculate AUROCε values for all
three algorithms using the same random data sample. Our hypothesis test was implemented
for a data sample size of 100.

Results (Figure 7) show that MBR gives consistently greater AUROCε values across
all four values of and that the within algorithm variance is relatively small compared to
the between-algorithm variance, suggesting that the differences are statistically significant.
Indeed, results shown in Table 1 indicate that our MBR algorithm statistically outperforms
the other two algorithms for the Alarm data of 100 observations. Q-Q plots (not shown)
confirm the approximate normality of the AUROCε value differences.

5. Conclusions

We have presented a novel MCMC sampling scheme to improve the mixing and convergence
of the traditional MCMC algorithm used for probabilistically inferring the structure of BNs
from observational data. The idea is to occasionally introduce major moves in the structural
search space, thus allowing the sampler to more effectively traverse low-probability regions
between local maxima and ridges. Our moves are more extreme than the new edge reversal
(REV) move of Grzegorczyk and Husmeier (2008) in that we propose resampling much of
the Markov blanket of nodes. As the Markov blanket contains all the variables that can
directly influence the state of a node, its resampling represents a substantial change. Yet,
as we can derive the complementary forward and backward moves of MBR, the Metropolis-
Hastings algorithm can be used to account for any asymmetries that might be present in
these proposal moves.

Our experiments across a range of network sizes show that the Markov Blanket Resam-
pling (MBR) scheme outperforms the state-of-the-art new edge reversal (REV) scheme of
Grzegorczyk and Husmeier (2008), both in terms of learning performance and convergence
rate. In particular, MBR achieves better learning performance than the other algorithms
when the number of observations is relatively small and faster convergence when the number
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Figure 7: Boxplots of the AUROCε values from the three MCMC algorithms as applied to
10 independent sets of simulated data of sample size 100 from the Alarm network.
Each panel shows values of AUROCε corresponding to a different upper limit on
the inverse specificity (ε = 1, 0.1, 0.05, 0.01). Boxes indicate the middle 50%
(interquartile range, IQR) of the AUROCε values for each algorithm, central
lines indicate median values, vertical whiskers extend out to the furthest value
within 1.5*IQR of the boxes, and crosses indicate outlying values.
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of variables in the network is large. As many problems in systems biology are characterized
by a large number of variables and a relative paucity of observations (e.g. genome wide
association studies), we believe our MBR algorithm will be especially useful in this field.
Further, there typically exists prior knowledge (on gene-gene and gene-disease interactions
for example) and this prior knowledge can be readily used to improve the performance of
the structure-based MCMC algorithms (Imoto et al., 2004; Gao and Wang, 2011; Su et al.,
2014), including our MBR scheme. This is not necessarily the case for other algorithms
developed to address poor mixing and convergence, such as the order sampler of Friedman
and Koller (2003), as discussed in the introduction. Thus, we believe a promising avenue
of further research will be to improve methods for constructing informative structure priors
from published data, experimental results, and expert opinion.
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Appendix A. Markov Blanket Resampling (MBR) Algorithm

For all domain variables {X1, ..., XN}, pre-compute and store lists of scores of all valid
parent sets. We constrain the maximum number of parents a node can have to three in all
our tests.

Given the current DAG, perform an MBR move with probability pm, otherwise perform
a traditional single-edge move. If an MBR move is to be performed, then proceed as follows:

• Randomly select a node Xi in current graph G, withprobabilityN−1.

• Store the current parent set πi of node Xi.

• Delete all edges pointing into Xi and into its children Xj
i with the exception of Xi

itself, thus obtaining G0.

• Find and store the set D(Xi|G0) of all of Xi’s descendant nodes in the current graph
G0.

• In the list of pre-computed scores of possible parent sets of node Xi, mark those that
contain a node from the set D(Xi|G0). Also mark those that contain its parents i in
G0.

• Sample a new parent set π
′
i from the unmarked parents sets ofXi according to equation

(4). Store the sum of all unmarked scores as the value of Z∗(Xi|G0, πi).

• Add the new parent set π
′
i to G0 to obtain DAG G1.

• For j from 1 to J (with J being the number of Xi’s children), in a specified order that
is randomized for each MBR move:
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– Find and store the set D(Xj
i |Gj) of all of Xj

i ’s descendant nodes in the current
graph Gj .

– In the list of pre-computed scores of possible parent sets of node Xj
i , mark those

that contain a node from the set D(Xj
i |Gj). Also mark those that do not contain

Xi.

– Sample a new parent set π
′j
i from the unmarked parents sets of Xj

i according to
equation (6).

– Add the new parent set π
′j
i to Gj to obtain Gj+1

• The final graph is the DAG G
′

being proposed by the MBR move.

• To compute the terms of the complementary inverse move required for calculating the
acceptance probability, proceed as follows:

– Calculate the joint probability of again selecting Xi as N−1.

– Store the current parent set πi of node Xi in G′.

– Delete all edges in G′ pointing into Xi and into its children Xj with the exception
of Xi itself, thus obtaining G

′
0.

– In the list of pre-computed scores of possible parent sets of Xi, mark those that
contain a node in D(Xi|G0) (which is equivalent to D(Xi|G

′
0), but has already

been computed). Also mark those that contain its parents π
′
i in G

′
. Store the

sum of the unmarked scores as the value of Z∗(Xi|G
′
0, π

′
i).

– Adding the original parent set π i to G
′
0 yields DAG G

′
1 (which is equivalent to

G1).

– For j from 1 to J:

∗ Find and store the set D(Xj
i |G

′
j) of all of Xj

i ’s descendant nodes in the

current graph G
′
j .

∗ In the list of pre-computed scores of possible parent sets of node Xj
i , mark

those that contain a node from the set D(Xj
i |G

′
j). Also mark those that do

not contain Xi.

∗ Store the sum of the unmarked scores as Z(Xj
i |G

′
j , Xi).

∗ Adding the original parent set πji to G
′
j yields G′j+1.

• Calculate the overall acceptance probability of the move from G to G
′

according to
equation (9) using the stored values.

• If the move is accepted replace the current DAG G with G
′
, otherwise keep the current

DAG.
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