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Abstract

Distributed training of l1 regularized classifiers has received great attention recently. Most
existing methods approach this problem by taking steps obtained from approximating the
objective by a quadratic approximation that is decoupled at the individual variable level.
These methods are designed for multicore systems where communication costs are low.
They are inefficient on systems such as Hadoop running on a cluster of commodity ma-
chines where communication costs are substantial. In this paper we design a distributed
algorithm for l1 regularization that is much better suited for such systems than existing al-
gorithms. A careful cost analysis is used to support these points and motivate our method.
The main idea of our algorithm is to do block optimization of many variables on the actual
objective function within each computing node; this increases the computational cost per
step that is matched with the communication cost, and decreases the number of outer itera-
tions, thus yielding a faster overall method. Distributed Gauss-Seidel and Gauss-Southwell
greedy schemes are used for choosing variables to update in each step. We establish global
convergence theory for our algorithm, including Q-linear rate of convergence. Experiments
on two benchmark problems show our method to be much faster than existing methods.

Keywords: Distributed learning, l1 regularization

1. Introduction

The design of sparse linear classifiers using l1 regularization is an important problem that
has received great attention in recent years. This is due to its value in scenarios where the
number of features is large and the classifier representation needs to be kept compact. Big
data is becoming common nowadays. For example, in online advertising one comes across
datasets with about a billion examples and a billion features. A substantial fraction of the
features is usually irrelevant; and, l1 regularization offers a systematic way to choose the
small fraction of relevant features and form the classifier using them. In the future, one can
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foresee even bigger sized datasets to arise in this and other applications. For such big data,
distributed storage of data over a cluster of commodity machines becomes necessary. Thus,
fast training of l1 regularized classifiers over distributed data is an important problem.

A number of algorithms have been recently proposed for parallel and distributed train-
ing of l1 regularized classifiers; see section 3 for a review.1 Most of these algorithms are
based on coordinate-descent and they assume the data to be feature-partitioned. They are
designed for multicore systems in which data communication costs are negligible. Recently,
distributed systems with Hadoop running on a cluster of commodity machines have become
popular. In such systems, communication costs are generally high; current methods for l1
regularization are not optimally designed for such systems. Recently there has been been in-
creased attention given to designing communication-efficient algorithms (Jaggi et al., 2014;
Ma et al., 2015). In this paper we develop a distributed block coordinate descent (DBCD)
method that is efficient on distributed platforms in which communication costs are high.

Following are the main contributions of this paper.

1. Most methods for the parallel training of l1 regularized classifiers (including the ones
proposed in this paper) fall into a generic algorithm format (see algorithm 1 in sec-
tion 2). We make careful choices for the three key steps of this algorithm, leading to
the development of a distributed block coordinate descent (DBCD) method that is
very efficient on distributed platforms with high communication cost.

2. We provide a detailed cost analysis (section 5) that brings out the computation and
communication costs of the generic algorithm clearly for different methods. In the
process we motivate the need for new efficient methods such as DBCD that are suited
to communication heavy settings.

3. We establish convergence theory (subsection 4.4) for our method using the results
of Tseng and Yun (2009) and Yun et al. (2011). It is worth noting the following: (a)
though Tseng and Yun (2009) and Yun et al. (2011) cover algorithms using quadratic
approximations for the total loss, we use a simple trick to apply them to general non-
linear approximations, thus bringing more power to their results; and (b) even these
two works use only per-feature decoupled quadratic models in their implementations
whereas we work with more powerful approximations that couple features.

4. We give an experimental evaluation (section 6) that shows the strong performance of
DBCD against key current methods in scenarios where communication cost is signifi-
cant. Based on the experiments we make a final recommendation for the best method
to employ for such scenarios.

The paper is organized as follows. The generic algorithm format is described in section 2.
This gives a clear view of existing methods and allows us to motivate the new method. In
section 3 we discuss the key related work in some detail. In section 4 we describe the
DBCD method in detail and prove its convergence. The analysis of computation and com-
munication costs in section 5 gives a firmer motivation of our DBCD method. Experiments

1. In this paper we only consider synchronous distributed training algorithms in which various computing
nodes share their information and complete one update. Asynchronous methods (Li et al., 2014) form
another important class of methods that needs a separate study.
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comparing our method with several existing methods on a few large scale datasets are given
in section 6. These experiments strongly demonstrate the efficiency of one version of our
method that chooses update variables greedily. This best version of the DBCD method is
described in section 7. Section 8 contains some concluding comments.

2. A generic algorithm

Various distributed solvers of the l1 regularization problem can be put in a generic algorithm
format. We begin this section by describing the problem formulation. Then we state the
generic algorithm format. We follow this by discussing the choices various methods make
for the steps and point out how new choices for the steps can lead to a better design.

2.1 Problem formulation

Let w be the weight vector with m variables, wj , j = 1, . . . ,m, and xi ∈ Rm denote the i-th
example. Let there be n training examples and let X denote the n×m data matrix, whose
i-th row is xTi . Note that we have denoted vector components by subscripts, e.g., wj is the
j-th component of w; we have also used subscripts for indexing examples, e.g., xi is the
i-th example, which itself is a vector. But this will not cause confusion anywhere. A linear
classifier produces the output yi = wTxi. The loss is a nonlinear convex function applied
on the output. For binary class label ci ∈ {1,−1}, the loss is given by `(yi; ci). Let us
simply view `(yi; ci) as a function of yi with ci acting as a parameter. We will assume that
` is non-negative and convex, ` ∈ C1, the class of continuously differentiable functions, and
that `′ is Lipschitz continuous2. Loss functions such as least squares loss, logistic loss, SVM
squared hinge loss and Huber loss satisfy these assumptions. All experiments reported in
this paper use the squared hinge loss, `(yi; ci) = max{0, 1− ciyi}2. The total loss function,
f : Rm → R is f(w) = 1

n

∑
i `(yi; ci). Let u be the l1 regularizer given by u(w) = λ

∑
j |wj |,

where λ > 0 is the regularization constant. Our aim is to solve the problem

min
w∈Rm

F (w) = f(w) + u(w). (1)

Let g = ∇f . The optimality conditions for (1) are:

∀j : gj + λ sign(wj) = 0 if |wj | > 0; |gj | ≤ λ if wj = 0. (2)

For problems with a large number of features, it is natural to randomly partition the
columns of X and place the parts in P computing nodes. Let {Bp}Pp=1 denote this partition
of M = {1, . . . ,m}, i.e., Bp ⊂ M ∀p and ∪pBp = M. We will assume that this feature
partitioning is given and that all algorithms operate within that constraint. The variables
associated with a particular partition get placed in one node. Given a subset of variables
S, let XS be the submatrix of X containing the columns corresponding to S. For a vector
z ∈ Rm, zS will denote the vector containing the components of z corresponding to S.

2. A function h is Lipschitz continuous if there exists a (Lipschitz) constant L ≥ 0 such that
‖h(a)− h(b)‖ ≤ L‖a− b‖ ∀ a, b.
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2.2 Generic algorithm

Algorithm 1 gives the generic algorithm. In each iteration t, the following steps happen, in
parallel, in each node (p): (a) a subset of variables, Stp is chosen; (b) a suitable approximating
function, f tp is formed and the chosen variables are optimized so as to define a direction;
(c) a step size is chosen along that direction to update the weight vector on the chosen
variables. The outputs of all examples are then computed using an AllReduce operation
(step (d)) and the algorithm is terminated if optimality conditions are satisfied (step (e)).

Items such as Bp, S
t
p, wBp , dtBp

, XBp stay local in node p and do not need to be

communicated. Step (d) can be carried out using an AllReduce operation (Agarwal et al.,
2013) over the nodes and then y becomes available in all the nodes. The gradient subvector
gtBp

(which is needed for solving (3)) can then be computed locally as gtBp
= XT

Bp
b where

b ∈ Rn is a vector with {`′(yi)} as its components.

Algorithm 1: A generic distributed algorithm

Choose w0 and compute y0 = Xw0;
for t = 0, 1 . . . do

for p = 1, . . . , P do
(a) Select a working subset of variables3, Stp ⊂ Bp;
(b) Form f tp(wBp), an approximation of f and minimize, exactly or
approximately, f tp + u over only the weights corresponding to Stp:

min f tp(wBp) + u(wBp) s.t. wj = wtj ∀ j ∈ Bp \ Stp (3)

to get w̄tBp
and set direction: dtBp

= w̄tBp
− wtBp

;

(c) Choose αt and update: wt+1
Bp

= wtBp
+ αtdtBp

;

end
(d) Update yt+1 = yt + αt

∑
pXBpd

t
Bp

;

(e) Terminate if optimality conditions hold;

end

Steps (d) and (e) of Algorithm 1 are quite straight-forward. But the first three steps,
(a)-variable sampling, (b)-function approximation, and (c)-step size determination, can be
implemented in various ways and require a detailed discussion.

Step (a) - variable sampling. Some choices are:

• (a.1) random selection (Bradley et al., 2011; Richtárik and Takáč, 2014);

• (a.2) random cyclic: over a set of consecutive iterations (t) all variables are touched
once (Bian et al., 2013);

• (a.3) greedy: always choose a set of variables that, in some sense violate (2) the most
at the current iterate (Peng et al., 2013; Facchinei et al., 2014); and,

• (a.4) greedy selection using the Gauss-Southwell rule (Tseng and Yun, 2009; Yun
et al., 2011).
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Step (b) - function approximation. It would be ideal to choose f tp to be f it-
self. However, to make the solution simple and efficient, most methods choose a quadratic
approximation that is decoupled at the individual variable level:

f tp(w
t
Bp

) =
∑
j∈Bp

gj(w
t)(wj − wtj) +

Lj
2

(wj − wtj)2 (4)

The main advantages of (4) are its simplicity and closed-form minimization when used
in (3). Choices for Lj that have been tried are:

• (b.1) Lj = a Lipschitz constant for gj (Bradley et al., 2011; Peng et al., 2013);

• (b.2) Lj = a large enough bound on the Lipschitz constant for gj to suit the sampling
in step (a) (Richtárik and Takáč, 2014);

• (b.3) adaptive adjustment of Lj (Facchinei et al., 2014); and

• (b.4) Lj = Ht
jj , the j-th diagonal term of the Hessian at wt (Bian et al., 2013).

Step (c) - step size. The choices are:

• (c.1) always fix αt = 1 (Bradley et al., 2011; Richtárik and Takáč, 2014; Peng et al.,
2013);

• (c.2) use stochastic approximation ideas to choose {αt} so that
∑

t(α
t)2 < ∞ and∑

t |αt| =∞ (Facchinei et al., 2014); and

• (c.3) choose αt by line search that is directly tied to the optimization of F in (1) (Bian
et al., 2013).

2.3 Discussion of choices for steps (a)-(c)

To understand the role of the various choices better, let us first focus on the use of (4)
for f tp. Algorithm 1 may not converge to the optimal solution due to one of the following
decisions: (i) choosing too many variables (|Stp| large) for parallel updating in step (a); (ii)
choosing small values for the proximal coefficient Lj in step (b); and (iii) not controlling
αt to be sufficiently small in step (c). This is because each of the above has the potential
to cause large step sizes leading to increases in F value and, if this happens uncontrolled
at all iterations then convergence to the minimum cannot occur. Different methods control
against these by making suitable choices in the steps.

The choice made for step (c) gives a nice delineation of methods. With (c.1), one has
to do a suitable mix of large enough Lj and small enough |Stp|. Choice (c.2) is better
since the proper control of {αt} → 0 takes care of convergence; however, for good practical
performance, Lj and αt need to be carefully adapted, which is usually messy. Choice
(c.3) is good in many ways: it leads to monotone decrease in F ; it is good theoretically and
practically; and, it allows both, small Lj as well as large |Stp| without hindering convergence.

3. We will refer to the working subset size, i.e., |St
p|, as WSS.
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Except for Bian et al. (2013), Tseng and Yun (2009) and Yun et al. (2011)4, (c.3) has
been unused in other methods because it is considered as ‘not-in-line’ with a proper parallel
approach as it requires a separate αt determination step requiring distributed computations
and also needing F computations for several αt values within one t. With line search, the
actual implementation of Algorithm 1 merges steps (c) and (d) and so it deviates slightly
from the flow of Algorithm 1. Specifically, we compute δy =

∑
pXBpd

t
Bp

before line search
using AllReduce. Then each node can compute f at any α locally using y + α δy. Only
a scalar corresponding to the l1 regularization term needs to be communicated for each
α. This means that the communication cost associated with line search is minimal.5 But
truly, the slightly increased computation and communication costs is amply made up by
a reduction in the number of iterations to reach sufficient optimality. So we go with the
choice (c.3) in our method.

The choice of (4) for f tp in step (b) (in particular, (b.4)) is pretty much unanimously
used in all previous works. This is done to make the optimization simple. While this is
fine for communication friendly systems such as multicore, it is not the right choice when
communication costs are high. Such a setting permits more per-node computation time,
and there is much to be gained by using a more complex f tp. We propose the use of a
function f tp that couples the variables in Stp. We also advocate an approximate solution
of (3) (e.g., a few rounds of coordinate descent within each node) in order to control the
computation time.

Crucial gains are also possible via resorting to the greedy choices, (a.3) and (a.4) for
choosing Stp. On the other hand, with methods based on (c.1), one has to be careful in
using (a.3): apart from difficulties in establishing convergence, practical performance can
also be bad, as we show in section 6.

3. Related Work

Our interest is mainly in parallel/distributed computing methods. There are many paral-
lel algorithms targeting a single machine having multi-cores with shared memory (Bradley
et al., 2011; Richtárik and Takáč, 2015; Bian et al., 2013; Peng et al., 2013). In contrast,
there exist only a few efficient algorithms to solve (1) when the data is distributed (Richtárik
and Takáč, 2016; Ravazzi et al., 2013) and communication is an important aspect to con-
sider. In this setting, the problem (1) can be solved in several ways depending on how the
data is distributed across machines (Peng et al., 2013; Boyd et al., 2011): (A) example (hori-
zontal) split, (B) feature (vertical) split and (C) combined example and feature split (a block
of examples/features per node). While methods such as distributed FISTA (Peng et al.,
2013) or ADMM (Boyd et al., 2011) are useful for (A), the block splitting method (Parikh
and Boyd, 2013) is useful for (C). We are interested in (B), and the most relevant and im-
portant class of methods is parallel/distributed coordinate descent methods, as abstracted
in algorithm 1. Most of these methods set f tp in step (b) of algorithm 1 to be a quadratic

4. Among these three works, Tseng and Yun (2009) and Yun et al. (2011) mainly focus on general theory
and little on distributed implementation.

5. Later, in section 5 when we write costs, we write it to be consistent with Algorithm 1. The total cost of
all the steps is the same for the implementation described here for line search. For genericity sake, we
keep Algorithm 1 as it is even for the line search case. The actual details of the implementation for the
line search case will become clear when we layout the final algorithm in section 7.
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approximation that is decoupled at the individual variable level. Table 3 compares these
methods along various dimensions.6

Most dimensions arise naturally from the steps of algorithm 1, as explained in section
2. Two important points to note are: (i) except Richtárik and Takáč (2016) and our
method, none of these methods target and sufficiently discuss distributed setting involving
communication and, (ii) from a practical view point, it is difficult to ensure stability and get
good speed-up with no line search and non-monotone methods. For example, methods such
as Bradley et al. (2011); Richtárik and Takáč (2014, 2015); Peng et al. (2013) that do not
do line search are shown to have the monotone property only in expectation and that too
only under certain conditions. Furthermore, variable selection rules, proximal coefficients
and other method-specific parameter settings play important roles in achieving monotone
convergence and improved efficiency. As we show in section 6, our method and the parallel
coordinate descent Newton method (Bian et al., 2013) (see below for a discussion) enjoy
robustness to various settings and come out as clear winners.

It is beyond the scope of this paper to give a more detailed discussion, beyond Table 3,
of the methods from a theoretical convergence perspective on various assumptions and
conditions under which results hold. We only briefly describe and comment on them below.

Generic Coordinate Descent Method (Scherrer et al., 2012a,b) Scherrer et al.
(2012a) and Scherrer et al. (2012b) presented an abstract framework for coordinate descent
methods (GenCD) suitable for parallel computing environments. Several coordinate de-
scent algorithms such as stochastic coordinate descent (Shalev-Shwartz and Tewari, 2011),
Shotgun (Bradley et al., 2011) and GROCK (Peng et al., 2013) are covered by GenCD.
GROCK is a thread greedy algorithm (Scherrer et al., 2012a) in which the variables are
selected greedily using gradient information. One important issue is that algorithms such
as Shotgun and GROCK may not converge in practice due to their non-monotone na-
ture with no line search; we faced convergence issues on some datasets in our experiments
with GROCK (see section 6). Therefore, the practical utility of such algorithms is limited
without ensuring necessary descent property through certain spectral radius conditions on
the data matrix.

Distributed Coordinate Descent Method (Richtárik and Takáč, 2016) The multi-
core parallel coordinate descent method of Richtárik and Takáč (2014) is a much refined
version of GenCD with careful choices for steps (a)-(c) of algorithm 1 and a supporting
stochastic convergence theory. Richtárik and Takáč (2016) extended this to the distributed
setting; so, this method is more relevant to this paper. With no line search, their algorithm
HYDRA (Hybrid coordinate descent) has (expected) descent property only for certain
sampling types of selecting variables and Lj values. One key issue is setting the right Lj
values for good performance. Doing this accurately is a costly operation; on the other hand,
inaccurate setting using cheaper computations (e.g., using the number of non-zero elements
as suggested in their work) results in slower convergence (see section 6).

Necoara and Clipici (2014) suggest another variant of parallel coordinate descent in
which all the variables are updated in each iteration. HYDRA and GROCK can be

6. Although our method will be presented only in section 4, we include our method’s properties in the last
row of Table 3. This helps to easily compare our method against the rest.
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considered as two key, distinct methods that represent the set of methods discussed above.
So, in our analysis as well as experimental comparisons in the rest of the paper, we do not
consider the methods in this set other than these two.

Flexible Parallel Algorithm (FPA) (Facchinei et al., 2014) This method has some
similarities with our method in terms of the approximate function optimized at the nodes.
Though Facchinei et al. (2014) suggest several approximations, they use only (4) in its final
implementation. More importantly, FPA is a non-monotone method using a stochastic
approximation step size rule. Tuning this step size rule along with the proximal parameter
Lj to ensure convergence and speed-up is hard. (In section 6 we conduct experiments to
show this.) Unlike our method, FPA’s inner optimization stopping criterion is unverifiable
(for e.g., with (6)); also, FPA does not address the communication cost issue.

Parallel Coordinate Descent Newton (PCD) (Bian et al., 2013) One key difference
between other methods discussed above and our DBCD method is the use of line search.
Note that the PCD method can be seen as a special case of DBCD (see subsection 5.1).
In DBCD, we optimize per-node block variables jointly, and perform line search across
the blocks of variables; as shown later in our experimental results, this has the advantage
of reducing the number of outer iterations, and overall wall clock time due to reduced
communication time (compared to PCD).

Synchronized Parallel Algorithm (Patriksson, 1998b) Patriksson (1998b) proposed
a Jacobi type synchronous parallel algorithm with line search using a generic cost approxi-
mation (CA) framework for differentiable objective functions (Patriksson, 1998a). Its local
linear rate of convergence results hold only for a class of strong monotone CA functions. If
we view the approximation function, f tp as a mapping that is dependent on wt, Patriksson
(1998b) requires this mapping to be continuous, which is unnecessarily restrictive.

ADMM Methods Alternating direction method of multipliers is a generic and popular
distributed computing method. It does not fit into the format of Algorithm 1. This method
can be used to solve (1) in different data splitting scenarios (Boyd et al., 2011; Parikh and
Boyd, 2013). Several variants of global convergence and rate of convergence (e.g., O( 1

k ))
results exist under different weak/strong convexity assumptions on the two terms of the ob-
jective function (Deng and Yin, 2016; Deng et al., 2013). Recently, an accelerated version
of ADMM (Goldstein et al., 2014) derived using the ideas of Nesterov’s accelerated gradi-
ent method (Nesterov, 2012) has been proposed; this method has dual objective function
convergence rate of O( 1

k2
) under a strong convexity assumption. ADMM performance is

quite good when the augmented Lagrangian parameter is set to the right value; however,
getting a reasonably good value comes with computational cost. In section 6 we evaluate
our method and find it to be much faster.

Based on the above study of related work, we choose HYDRA, GROCK, PCD and
FPA as the main methods for analysis and comparison with our method.7 Thus, Table 3
gives various dimensions only for these methods.

7. In the experiments of section 6, we also include ADMM.
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áč
,

20
16

),
G
R
O
C
K

(P
en

g
et

a
l.

,
20

1
3
),

F
P
A

(F
ac

ch
in

ei
et

al
.,

20
14

),
P
C
D

(B
ia

n
et

al
.,

20
13

).

9



Mahajan, Keerthi and Sundararajan

4. DBCD method

The DBCD method that we propose fits into the general format of Algorithm 1. It is
actually a class of algorithms that allows various possibilities for steps (a), (b) and (c).
Below we lay out these possibilities and establish a general convergence theory for the class
of algorithms that fall under DBCD. We recommend three specific instantiations of DBCD,
analyze their costs in section 5, empirically study them in section 6 and make one final best
recommendation in section 7. In this section, we also show the relations of DBCD to other
methods on aspects such as variable selection, function approximation, line search, etc. As
this section is traversed, it is also useful to re-visit table 3 and compare DBCD against other
key methods.

Our goal is to develop an efficient distributed learning method that jointly optimizes
the costs involved in the various steps of the algorithm. We observed in the previous
section that the methods discussed there lack this careful optimization in one or more
steps, resulting in inferior performance. This can be understood better via a cost analysis.
To avoid too much deviation, we give the gist of this cost analysis here and postpone the
full details to section 5. The cost of Algorithm 1 can be written as TP (CPcomp + CPcomm)

where P denotes the number of nodes, TP is the number of outer iterations8, and, CPcomp
and CPcomm respectively denote the computation and communication costs per-iteration.
In communication heavy situations, existing algorithms have CPcomp � CPcomm. Our

method aims to improve overall efficiency by making each iteration more complex (CPcomp
is increased) and, in the process, making TP much smaller.

4.1 Variable selection

Let us now turn to step (a) of Algorithm 1. We propose two schemes for variable selection,
i.e., choosing Stp ⊂ Bp.

Gauss-Seidel scheme. In this scheme, we form cycles - each cycle consists of a set of
consecutive iterations - while making sure that every variable is touched once in each cycle.
We implement a cycle as follows. Let τ denote the iteration where a cycle starts. Choose a
positive integer T (T may change with each cycle). For each p, randomly partition Bp into
T equal parts: {Stp}τ+T−1

t=τ . Use these variable selections to do T iterations. Henceforth, we
refer to this scheme as the R-scheme.

Distributed greedy scheme. This is a greedy scheme which is purely distributed
and so more specific than the Gauss-Southwell schemes in Tseng and Yun (2009).9 In each
iteration, our scheme chooses variables based on how badly (2) is violated for various j. For
one j, an expression of this violation is as follows. Let gt and Ht denote, respectively, the
gradient and Hessian at wt. Form the following one variable quadratic approximation:

qj(wj) = gtj(wj − wtj) +
1

2
(Ht

jj + ν)(wj − wtj)2 +

λ|wj | − λ|wtj | (5)

8. For practical purposes, one can view TP as the number of outer iterations needed to reach a specified
closeness to the optimal objective function value. We will say this more precisely in section 6.

9. Yet, our distributed greedy scheme can be shown to imply the Gauss-Southwell-q rule for a
certain parameter setting. See the appendix for details.
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where ν is a small positive constant. Let q̄j denote the optimal objective function value
obtained by minimizing qj(wj) over all wj . Since qj(w

t
j) = 0, clearly q̄j ≤ 0. The more

negative q̄j is, the better it is to choose j.

Our distributed greedy scheme first chooses a working set size, WSS (the size of Stp) and
then, in each node p, it chooses the top WSS variables from Bp according to smallness of
q̄j , to form Stp. Hereafter, we refer to this scheme as the S-scheme.

It is worth pointing out that, our distributed greedy scheme requires more computation
than the Gauss-Seidel scheme. However, since the increased computation is local, non-heavy
and communication is the real bottleneck, it is not a worrisome factor.

4.2 Function approximation

Let us begin with step (b). There are three key items involved: (i) what are some of the
choices of approximate functions possible, used by our methods and others? (ii) what is
the stopping criterion for the inner optimization (i.e., local problem), and, (iii) what is the
method used to solve the inner optimization? We discuss all these details below. We stress
the main point that, unlike previous methods, we allow f tp to be non-quadratic and also to
be a joint function of the variables in wBp . We first describe a general set of properties that
f tp must satisfy, and then discuss specific instantiations that satisfy these properties.

Condition 1. f tp ∈ C1; gtp = ∇f tp is Lipschitz continuous, with the Lipschitz constant
uniformly bounded over all t; f tp is strongly convex (uniformly in t), i.e., ∃ µ > 0 such that
f tp−

µ
2‖wBp‖2 is convex; and, f tp is gradient consistent with f at wtBp

, i.e., gtp(w
t
Bp

) = gBp(wt).

This assumption is not restrictive. Gradient consistency is essential because it is the
property that connects f tp to f and ensures that a solution of (3) will make dtBp

a descent

direction for F at wtBp
, thus paving the way for a decrease in F at step (c). Strong convexity

is a technical requirement that is needed for establishing sufficient decrease in F in each
step of Algorithm 1. Our experiments indicate that it is sufficient to set µ to be a very
small positive value. Lipschitz continuity is another technical condition that is needed for
ensuring boundedness of various quantities; also, it is easily satisfied by most loss functions.

Choice of f tp. Let us now discuss some good ways of choosing f tp. For all these
instantiations, a proximal term is added to get the strong convexity required by Condition
1.

• Proximal-Jacobi. We can follow the classical Jacobi method in choosing f tp to be
the restriction of f to wtSt

p
, with the remaining variables fixed at their values in wt.

Let B̄p denote the complement of Bp, i.e., the set of variables associated with nodes
other than p. Thus we set

f tp(wBp) = f(wBp , w
t
B̄p

) +
µ

2
‖wBp − wtBp

‖2 (6)

where µ > 0 is the proximal constant. It is worth pointing out that, since each node
p keeps a copy of the full classifier output vector y aggregated over all the nodes, the
computation of f tp and gtp due to changes in wBp can be locally computed in node
p. Thus the solution of (3) is local to node p and so step (b) of Algorithm 1 can be
executed in parallel for all p.

11
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• Block GLMNET. GLMNET (Yuan et al., 2012; Friedman et al., 2010) is a sequential
coordinate descent method that has been demonstrated to be very promising for the
sequential solution of l1 regularized problems with logistic loss. At each iteration,
GLMNET minimizes the second order Taylor series of f at wt, followed by line search
along the direction generated by this minimizer. We can make a distributed version
by choosing f tp to be the second order Taylor series approximation of f(wBp , w

t
B̄p

)

with respect to wBp while keeping wB̄p
fixed at wt

B̄p
. In other words, we can choose

f tp as

f tp(wBp) = Qt(wBp) +
µ

2
‖wBp − wtBp

‖2 (7)

where Qt is the quadratic approximation of f(wBp , w
t
B̄p

) with respect to wBp at wtBp

with wt
B̄p

fixed.

• Block L-BFGS. One can keep a limited history of wtBp
and gtBp

and use an L−BFGS
approach to build a second order approximation of f in each iteration to form f tp:

f tp(wBp) = (gtBp
)T (wBp−wtBp

) +
1

2
(wBp−wtBp

)THBFGS(wBp−wtBp
) +

µ

2
‖wBp−wtBp

‖2

(8)
where HBFGS is a limited memory BFGS approximation of the Hessian of f(wBp , w

t
B̄p

)

with respect to wBp with wt
B̄p

fixed, formed using {gτBp
}τ≤t.

• Decoupled quadratic. Like in existing methods we can also form a quadratic ap-
proximation of f that decouples at the variable level - see (4). (An additional proximal
term can be added.) If the second order term is based on the diagonal elements of the
Hessian at wt, then the PCDN algorithm given in Bian et al. (2013) can be viewed as a
special case of our DBCD method. PCDN (Bian et al., 2013) is based on Gauss-Seidel
variable selection. But it can also be used in combination with the distributed greedy
scheme that we propose in subsection 4.1 below.

Approximate stopping. In step (b) of Algorithm 1 we mentioned the possibility of
approximately solving (3). This is irrelevant for previous methods which solve individual
variable level quadratic optimization in closed form, but very relevant to our method. Here
we propose an approximate relative stopping criterion and later, in subsection 4.4, also give
convergence theory to support it.

Let ∂uj be the set of subgradients of the regularizer term uj = λ|wj |, i.e.,

∂uj = [−λ, λ] if wj = 0; λ sign(wj) if wj 6= 0. (9)

A point w̄tBp
is optimal for (3) if, at that point,

(gtp)j + ξj = 0, for some ξj ∈ ∂uj ∀ j ∈ Stp. (10)

An approximate stopping condition can be derived by choosing a tolerance ε > 0 and
requiring that, for each j ∈ Stp there exists ξj ∈ ∂uj such that

δj = (gtp)j + ξj , |δj | ≤ ε|dtj | ∀ j ∈ Stp (11)

12
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A practical alternative is to replace the stopping condition (11) by simply using a fixed
number of cycles of coordinate descent to minimize f tp.

Method used for solving (3). Now (3) is an l1 regularized problem restricted to wSt
p
.

It has to be solved within node p using a suitable sequential method. Going by the state of
the art for sequential solution of such problems (Yuan et al., 2010) we use the coordinate-
descent method described in Yuan et al. (2010) for solving (3). For logistic regression loss,
it is appropriate to use the new-GLMNET method (Yuan et al., 2012).

4.3 Line search

Line search (step (c) of Algorithm 1) forms an important component for making good
decrease in F at each iteration. For non-differentiable optimization, there are several ways
of doing line search. For our context, Tseng and Yun (2009) and Patriksson (1998a) give
two good ways of doing line search based on Armijo backtracking rule. In this paper we
use ideas from the former. Let β and σ be real parameters in the interval (0, 1). (We use
the standard choices, β = 0.5 and σ = 0.01.) We choose αt to be the largest element of
{βk}k=0,1,... satisfying

F (wt + αtdt) ≤ F (wt) + αtσ∆t, (12)

∆t def
= (gt)Tdt + λu(wt + dt)− λu(wt). (13)

4.4 Convergence

We now establish convergence for the class of algorithmic choices discussed in subsec-
tions 4.2-4.3. To do this, we make use of the results of Tseng and Yun (2009). An interesting
aspect of this use is that, while the results of Tseng and Yun (2009) are stated only for f tp
being quadratic, we employ a simple trick that lets us apply the results to our algorithm
which involves non-quadratic approximations.

Apart from the conditions in Condition 1 (see subsection 4.2) we need one other technical
assumption.

Condition 2. For any given t, wBp and ŵBp , ∃ a positive definite matrix Ĥ ≥ µI (note:

Ĥ can depend on t, wBp and ŵBp) such that

ĝtBp
(wBp)− ĝtBp

(ŵBp) = Ĥ(wBp − ŵBp) (14)

In the above, ĝtBp
is the gradient with respect to wBp of the approximate function f tp formed

in step (b) of algorithm 1. Note that ĝtBp
(wtBp

) = gtBp
.

Except Proximal-Jacobi, the other instantiations of f tp mentioned in subsection 4.2 are
quadratic functions; for these, gtp is a linear function and so (14) holds trivially. Let us
turn to Proximal-Jacobi. If f tp ∈ C2, the class of twice continuously differentiable functions,
then Condition 2 follows directly from mean value theorem; note that, since f tp −

µ
2‖w‖

2

is convex, Hp ≥ µI at any point, where Hp is the Hessian of f tp. Thus Condition 2 easily
holds for least squares loss and logistic loss. Now consider the SVM squared hinge loss,
`(yi; ci) = 0.5(max{0, 1 − yici})2, which is not in C2. Condition 2 holds for it because g =∑

i `
′(yi; ci)xi and, for any two real numbers z1, z2, `′(z1; ci)−`′(z2; ci) = κ(z1, z2, ci)(z1−z2)

where 0 ≤ κ(z1, z2, ci) ≤ 1.
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The main convergence theorem can now be stated. Its proof is given in the appendix.
Theorem 1. Suppose, in Algorithm 1, the following hold:

(i) step (a) is done via the Gauss-Seidel or distributed greedy schemes of subection 5.2;

(ii) f tp in step (b) satisfies Condition 1 and Condition 2;

(iii) (11) is used to terminate (3) with ε = µ/2 (where µ is as in Condition 1); and,

(iv) in step (c), αt is chosen via Armijo backtracking of subection 5.3.

Then Algorithm 1 is well defined and produces a sequence, {wt} such that any accumulation
point of {wt} is a solution of (1). If, in addition, the total loss, f is strongly convex, then
{F (wt)} converges Q-linearly and {wt} converges at least R-linearly.10

4.5 Specific instantiations of DBCD

For function approximation we found the proximal-Jacobi choice, (6) to be powerful. This
choice, combined with variable selection done using the R-scheme and S-scheme leads to the
two specific instantiations, DBCD-R and DBCD-S. As we explained in subsection 4.2, the
PCDN algorithm given by Bian et al. (2013) (referred to as PCD) is a special case of DBCD
using a decoupled quadratic function approximation and the R-scheme for variable selection.
We also recommend the use of S-scheme with this method and call that instantiation as
PCD-S.

5. DBCD method: Cost analysis

As pointed out earlier, the DBCD method is motivated by an analysis of the costs of various
steps of algorithm 1. In this section, we present a detailed cost analysis that explains this
more clearly. Based on section 3, we select the following five methods for our study: (1)
HYDRA (Richtárik and Takáč, 2016), (2) GROCK (Greedy coordinate-block) (Peng et al.,
2013), (3) FPA (Flexible Parallel Algorithm) (Facchinei et al., 2014), (4) PCD (Parallel
Coordinate Descent Newton method) (Bian et al., 2013), and (5) DBCD. We will use the
above mentioned abbreviations for the methods in the rest of the paper.

Let nz and |S| =
∑

p |Stp| denote the number of non-zero entries in the data matrix X
and the number of variables updated in each iteration respectively. To keep the analysis
simple, we make the homogeneity assumption that the number of non-zero data elements
in each node is nz/P . Let β(� 1) be the relative computation to communication speed
in the given distributed system; more precisely, it is the ratio of the times associated with
communicating a floating point number and performing one floating point operation. On a
cluster with 10 Gbps communication bandwidth where we did our experiments, we found
the value of β to be in the range 30 − 100. Recall that n, m and P denote the number of
examples, features and nodes respectively. Table 5 gives cost expressions for different steps
of the algorithm in one outer iteration. Here c1, c2, c3, c4 and c5 are method dependent
parameters. Table 5 gives the cost constants for various methods.We briefly discuss different
costs below.

10. See chapter 9 of Ortega and Rheinboldt (1970) for definitions of Q-linear and R-linear conver-
gence.
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Cost Steps of Algorithm 1

Step (a) Step (b) Step (c) Step (d)
Variable selection Inner optimization Choosing step size Updating output

Computation c1
nz
P c2

nz
P
|S|
m c3|S|+ c4n c5

nz
P
|S|
m

Communication - - ≈ 0 ≈ βn11

Table 2: Cost of various steps of Algorithm 1. CPcomp and CPcomm are respectively, the
sums of costs in the computation and communication rows.

Method c1 c2 c3 c4 c5 Computation Communication
cost per iteration cost per iteration

Existing methods

HYDRA 0 1 1 0 1 2nzP
|S|
m + |S| βn

GROCK 1 q 1 0 q nz
P + 2q nzP

|S|
m + |S| βn

FPA 1 q 1 1 q nz
P + 2q nzP

|S|
m + |S|+ n βn

PCD 0 1 τls τls 1 2nzP
|S|
m + τls|S|+ τlsn βn

Variations of our method

PCD-S 1 q τls τls q nz
P + 2q nzP

|S|
m + τls|S|+ τlsn βn

DBCD-R 0 k τls τls 1 (k + 1)nzP
|S|
m + τls|S|+ τlsn βn

DBCD-S 1 kq τls τls q nz
P + q(k + 1)nzP

|S|
m + τls|S|+ τlsn βn

Table 3: Cost parameter values and costs for different methods. q lies in the range: 1 ≤ q ≤
m
|S| . R and S refer to variable selection schemes for step (a); see subsection 4.1.
PCD uses the R scheme and so it can also be referred to as PCD-R. Typically τls,
the number of α values tried in line search, is very small; in our experiments we
found that on average it is not more than 10. Therefore all methods have pretty
much the same communication cost per iteration.

Step a: Methods like our DBCD-S12, GROCK, FPA and PCD-S need to calculate the
gradient and model update to determine which variables to update. Hence, they need to go
through the whole data once (c1 = 1). On the other hand HYDRA, PCD and DBCD-
R select variables randomly or in a cyclic order. As a result variable subset selection cost
is negligible for them (c1 = 0).

11. Note that the communication latency cost (the time taken to communicate zero bytes) is ignored in the
communication cost expressions because it is dominated by the throughput cost for large n. Moreover,
as in Agarwal et al. (2013), the broadcast and reduce operators are pipelined over the vector entries.
This means that communication cost increases sub-linearly wrt. logP . If n is assumed to be large (as in
our case), it is almost independent of logP and can be written approximately as βn.

12. The DBCD and PCD methods have two variants, R and S corresponding to different ways of implement-
ing step a; see subsection 4.1.
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Step b: All the methods except DBCD-S and DBCD-R use the decoupled quadratic
approximation (4). For DBCD-R and DBCD-S, an additional factor of k comes in c2

since we do k inner cycles of CDN in each iteration. HYDRA, PCD and DBCD-R do a
random or cyclic selection of variables. Hence, a factor of |S|m comes in the cost since only
a subset |S| of variables is updated in each iteration. However, methods that do selection
of variables based on the magnitude of update or expected objective function decrease
(DBCD-S, GROCK, FPA and PCD-S) favour variables with low sparsity. As a result,
c2 for these methods has an additional factor q where 1 ≤ q ≤ m

|S| .

Step c: For methods that do not use line-search, c3 = 1 and c4 = 013. The overall cost is
|S| to update the variables. For methods like DBCD-S, DBCD-R, PCD and PCD-S that
do line-search, c3 = c4 = τls where τls is the average number of steps (α values tried) in one
line search. For each line search step, we need to recompute the loss function which involves
going over n examples once. Moreover, AllReduce step needs to be performed to sum over
the distributed l1 regularizer term. Since only one scalar needs to be communicated per
line search step, the communication cost is dominated by the communication latency, i.e.
the time taken to communicate zero bytes. As pointed out in Bian et al. (2013), τls can
increase with P ; but it is still negligible compared to n. Combined with the fact that n is
large in step (d), we will ignore this cost in the subsequent analysis.

Step d: This step involves computing and doing AllReduce on updated local predictions to
get the global prediction vector for the next iteration and is common for all the methods.
Note that because we are dealing with linear models, the updated predictions need to be
communicated only once in each iteration even for the methods like ours that require line
search, i.e., there is no need to communicate the updated predictions again and again for
every line search step in each iteration.

The analysis given above is only for CPcomp and CPcomm, the computation and communi-

cation costs in one iteration. If TP is the number of iterations to reach a certain optimality
tolerance, then the total cost of Algorithm 1 is: CP = TP (CPcomp +CPcomm). For P nodes,

speed-up is given by C1/CP . To illustrate the ill-effects of communication cost, let us take
the method of Richtárik and Takáč (2015). For illustration, take the case of |S| = P , i.e.,
one variable is updated per node per iteration. For large P , CP ≈ TPCPcomm = TP βn;
both β and n are large in the distributed setting. On the other hand, for P = 1, CPcomm = 0

and CP = CPcomp ≈ nz
m . Thus speedup = T 1

TP
C1

CP = T 1

TP

nz
m
βn . Richtárik and Takáč (2015)

show that T 1/TP increases nicely with P . But, the term βn in the denominator of C1/CP

has a severe detrimental effect. Unless a special distributed system with efficient commu-
nication is used, speed up has to necessarily suffer. When the training data is huge and so
the data is forced to reside in distributed nodes, the right question to ask is not whether we
get great speed up, but to ask which method is the fastest. Given this, we ask how various
choices in the steps of Algorithm 1 can be made to decrease CP . Suppose we devise choices
such that (a) CPcomp is increased while still remaining in the zone where CPcomp � CPcomm,

and (b) in the process, TP is decreased greatly, then CP can be decreased. The basic idea
of our method is to use a more complex f tp than the simple quadratic in (4), due to which,

TP becomes much smaller. The use of line search, (c.3) for step c aids this further. We see

13. For FPA, c4 = 1 since objective function needs to be computed to automatically set the proximal
term parameter.
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in table 5 that, DBCD-R and DBCD-S have the maximum computational cost. On the
other hand, communication cost is more or less the same for all the methods (except for few
scalars in the line search step) and dominates the cost. In section 6, we will see on various
datasets how, by doing more computation, our methods reduce TP substantially over the
other methods while incurring a small computation overhead (relative to communication)
per iteration. These will become amply clear in section 6; see, for example, table 6.3 in that
section.

6. Experimental Evaluation

In this section, we present experimental results on real-world datasets for the training of
l1 regularized linear classifiers using the squared hinge loss. Here training refers to the
minimization of the function F in (1). We compare our methods with several state of
the art methods, in particular, those analyzed in section 5 (see the methods in the first
column of table 5) together with ADMM, the accelerated alternating direction method of
multipliers (Goldstein et al., 2014). To the best of our knowledge, such a detailed study has
not been done for parallel and distributed l1 regularized solutions in terms of (a) accuracy
and solution optimality performance, (b) variable selection schemes, (c) computation versus
communication time and (d) solution sparsity. The results demonstrate the effectiveness of
our methods in terms of total (computation + communication) time on both accuracy and
objective function measures.

6.1 Experimental Setup

Datasets: We conducted our experiments on four datasets: KDD, URL, ADS and WEB-
SPAM14. The key properties of these datasets are given in table 6.1. These datasets have
a large number of features and l1 regularization is important. The number of examples is
large for KDD, URL and ADS. WEBSPAM has a much smaller number of examples and
hence communication costs are low for this dataset.

Dataset n m nz s = nz/m

KDD 8.41× 106 20.21× 106 0.31× 109 15.34

URL 2.00× 106 3.23× 106 0.22× 109 68.11

ADS 18.56× 106 0.20× 106 5.88× 109 29966.83

WEBSPAM 0.26× 106 16.60× 106 0.98× 109 58.91

Table 4: Properties of datasets. n is the number of examples, m is the number of features,
nz is the number of non-zero elements in the data matrix, and s is the average
number of non-zero elements per feature.

Methods and Metrics: We evaluate the performance of all the methods using (a) Area
Under Precision-Recall Curve (AUPRC) (Sonnenburg and Franc, 2010; Agarwal et al.,

14. KDD, URL and WEBSPAM are popular benchmark datasets taken from http://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/. ADS is a proprietary dataset from Microsoft.
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2013)15 and (b) Relative Function Value Difference (RFVD) as a function of time taken.

RFVD is computed as F (wt)−F ∗

F ∗ where F ∗ is taken as the best value obtained across the
methods after a long duration. We also report per node computation time statistics and
sparsity pattern behavior of all the methods.

Parameter Settings: For each dataset we used cross validation to find the optimal λ
value that gave the best AUPRC values. For each dataset we experimented with a range
of λ values centred around the optimal value that have good sparsity variations over the
optimal solution. Since the relative performance between methods was quite consistent
across different λ values, we give details of the performance only for the optimal λ value.
With respect to algorithm 1, the working set size (WSS) per node and the number of nodes
(P ) are common across all the methods. We set WSS in terms of the fraction (r) of the
number of features per node, i.e., WSS=rm/P . Note that WSS will change with P for a
given fraction r. For all datasets we give results for two r values (0.01, 0.1). Note that r does
not play a role in ADMM since all variables are optimized in each node. We experimented
with P = 25, 100. Only for ADS dataset we used P = 100, 200 because it has many more
examples than others.

Platform: We ran all our experiments on a Hadoop cluster with 379 nodes and 10 Gbit
interconnect speed. Each node has Intel (R) Xeon (R) E5-2450L (2 processors) running at
1.8 GHz and 192 GB RAM. (Though the datasets can fit in this memory configuration, our
intention is to test the performance in a distributed setting.) All our implementations were
done in C# including our binary tree AllReduce support (Agarwal et al., 2013) on Hadoop.
We implemented the pipelined AllReduce operation described in Agarwal et al. (2013) that
reduces the communication cost from βnlogP to βn for large n.

6.2 Method Specific Parameter Settings

We discuss method specific parameter setting used in our experiments and associated prac-
tical implications.

Choice of µ and k for DBCD: To get a practical implementation that gives good per-
formance in our method, we deviate slightly from the conditions of Theorem 1. First, we
find that the proximal term does not contribute usefully to the progress of the algorithm
(see the left side plot in figure 1). So we choose to set µ to a small value, e.g., µ = 10−12.
Second, we replace the stopping condition (11) by simply using a fixed number of cycles of
coordinate descent to minimize f tp. The right side plot in figure 1 shows the effect of number
of cycles, k. We found that k = 5, 10 are good choices. Since computations are heavier for
DBCD-S, we used k = 5 for it and used k = 10 for DBCD-R.

Let us begin with ADMM. We use the feature partitioning formulation of ADMM
described in subsection 8.3 of Boyd et al. (2011). ADMM does not fit into the format of
algorithm 1, but the communication cost per outer iteration is comparable to the other
methods that fit into algorithm 1. In ADMM, the augmented Lagrangian parameter (ρ)
plays an important role in getting good performance. In particular, the number of iterations
required by ADMM for convergence is very sensitive with respect to ρ. While many schemes
have been discussed in the literature (Boyd et al., 2011) we found that selecting ρ using
the objective function value gave a good estimate; we selected ρ∗ from a handful of ρ

15. We employed AUPRC instead of AUC because it differentiates methods more finely.
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Figure 1: Study of µ and k on KDD and URL. Left: the effect of µ. Right: the effect of k, the
number of cycles to minimize f tp. µ = 10−12 and k = 10 are good choices. P = 100.

values with ADMM run for 10 iterations (i.e., not full training) for each ρ value tried.16

However, this step incurred some computational/communication time. Note that each
ADMM iteration optimizes all variables and involves many inner iterations, thus causing
even the ten iterations each for several ρ values to be significantly large. In our time plots
shown later, the late start of ADMM results is due to this cost. Note that this minimal
number of ten iterations was essential to get a decent ρ∗.

Now consider GROCK, FPA and HYDRA which are based on using Lipschitz con-
stants (Lj). We found GROCK to be either unstable and diverging or extremely slow. The
left side plot in figure 2 depicts these behaviors. The solid red line shows the divergence
case. FPA requires an additional parameter (γ) setting for the stochastic approximation
step size rule. Our experience is that setting right values for these parameters to get good
performance can be tricky and highly dataset dependent. The right side plot in figure 2
shows the extremely slow convergence behavior of FPA; its objective function also shows
a non-monotone behavior. Therefore, we do not include GROCK and FPA further in our
study.

For HYDRA we tuned Lj as follows. We set the first value of Lj to the theoretical
default value proposed in Richtárik and Takáč (2016) and decreased it by a factor of β = 2
each time to create five values for Lj . Then we ran 25 iterations of HYDRA for each of
those five values to chose the best value for Lj and then used that value for all remaining
iterations. We found that this simple procedure was sufficient to arrive at a near-best single
value for Lj . Unlike ADMM, the cost of this tuning step is negligible compared to the
overall cost. Richtárik, and Takáč (Richtárik and Takáč, 2016) also showed results with
the asynchronous implementation. For fair comparison with other synchronous approaches,
we show results with the synchronous implementation only. Extending our work to the
asynchronous setting and comparing with the asynchronous variants of other algorithms is
an interesting future work.

16. These initial “tuning” iterations are not counted against the limit of 800 we set for the number of
iterations. Thus, for ADMM, the total number of iterations can go higher than 800.
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Figure 2: Left: Divergence and slow convergence of GROCK on the URL dataset (λ = 2.4×10−6

and P = 25). Right: Extremely slow convergence of FPA on the KDD dataset (λ =
4.6× 10−7 and P = 100).

6.3 Performance Evaluation

We begin by comparing the efficiency of various methods and demonstrating the superiority
of the new methods that were developed in section 4 and motivated in section 5. After this
we analyze and explain the reasons for the superiority.

Study on AUPRC and RFVD: We have compared the performance of all methods by
studying the variation of AUPRC and RFVD as a function of time, for various choices of λ,
r (note that r defines the working set size, WSS=rm/P ) and the number of nodes (P ). To
avoid cluttering with too many plots, we provide only representative ones - for each dataset,
we choose one value for λ and two values each, for r and P .

Figures 3-6 show the RFVD versus time plots for the four datasets; note the use of
log scale for RFVD in those plots. Figures 7-10 show the AUPRC versus time plots. The
following observations can be made from these plots.

Superior performance of DBCD-S. In most cases DBCD-S is the best performer.
In several of these cases, DBCD-S beats other methods very clearly; for example, on URL
with P = 100 and r = 0.01 (see the bottom left plot of figure 4), the time needed to reach
log RFVD=-0.5 is many times smaller than any other method. As another example, with
KDD and r = 0.01 (see the left side plots in figure 3), if we set the log RFVD value to
−2 as the stopping criterion, DBCD-S and PCD-S are faster than all other methods by
an order of magnitude. Even in cases where DBCD-S is not the best (e.g., the case in the
bottom left plot of figure 5), DBCD-S performs quite close to the best method.

How good is PCD-S? Recall from subsection 4.5 that PCD-S is the variation of
the PCDN method Bian et al. (2013) using the S-scheme for variable selection. In some
cases such as the last one pointed out in the previous paragraph, PCD-S gives an excellent
performance. However, in many other cases, PCD-S does not perform well. This shows that
working with quadratic approximations (like PCD-S does) can be quite inferior compared
to using the actual nonlinear objective like DBCD-S does.

S-scheme versus R-scheme. In general, the S-scheme of selecting variables (namely,
DBCD-S and PCD-S) performs much better than the R-scheme (namely, DBCD-R and
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PCD-R), Only on WEBSPAM, PCD-R does slightly better than PCD-S in some cases.
One possible reason for this is that WEBSPAM has a small number of examples, causing
the communication cost to be much lower than the computation cost; note that the S-scheme
requires more computation than the R-scheme.

Effect of r. The choice of r has an effect on the speed of various methods. But the
sensitivity is not great. For DBCD-S, a reasonable choice is r = 0.1.

Performance of HYDRA. Though HYDRA has a good rate of descent in the ob-
jective function during the very early stages, it becomes quite slow soon after, leading to
inferior performance. This shows up clearly even in the AUPRC plots.

Performance of ADMM. First note that ADMM is independent of r since all the
variables are updated. ADMM has a late start due to the time needed for tuning the
augmented lagrangian parameter, ρ. (In some cases - see the top two plots in figure 6
- the ADMM curves are not even visible due to the initial tuning cost being relatively
large.) Unfortunately, this tuning step is unavoidable; without it, ADMM’s performance
will be adversely affected. In many cases, DBCD-S reaches excellent solution accuracies
even before ADMM begins making any progress.

Consistency between RFVD and AUPRC plots. On KDD, URL and ADS
datasets there is good consistency between the two sets of plots. For example, the clear
superiority of DBCD-S seen in the top left RFVD plot of figure 4 is also seen in the top left
AUPRC plot of figure 8. Only on WEBSPAM (see figure 6 and figure 10) the two sets of
plots have some inconsistency; in particular, note that, in figure 6, the initial decrease of the
objective function is faster for HYDRA than DBCD-S, while, in figure 10, DBCD-S shows
better initial increase in AUPRC than HYDRA. This happens because DBCD-S makes
many more variables non-zero and touches many more examples than HYDRA in the initial
steps.

Overall, the results point to the choice of DBCD-S as the preferred method as it is highly
effective with an order of magnitude improvement over existing methods in many cases. Let
us now analyze the reason behind the superior performance of DBCD-S. It is very much
along the motivational ideas laid out in section 5: since communication cost dominates
computation cost in each outer iteration, DBCD-S reduces overall time by decreasing the
number of outer iterations.

Study on the number of outer iterations: We study TP , the number of outer iter-
ations needed to reach log RFVD≤ τ . Table 6.3 gives TP values for various methods in
various settings. DBCD-S clearly outperforms other methods in terms of having much
smaller values for TP . PCD-S is the second best method, followed by ADMM. The solid
reduction of TP by DBCD-S validates the design that was motivated in section 5. The in-
creased computation associated with DBCD-S is immaterial; because communication cost
overshadows computation cost in each iteration for all methods, DBCD-S is also the best
in terms of the overall computing time. The next set of results gives the details.

Computation and Communication Time: As emphasized earlier, communication plays
an important role in the distributed setting. To study this effect, we measured the compu-
tation and communication time separately at each node. Figure 11 shows the computation
time per node on the KDD dataset. In both cases, ADMM incurs significant computation
time compared to other methods. This is because it optimizes over all variables in each
node. DBCD-S and DBCD-R come next because our method involves both line search
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(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 3: KDD dataset. Relative function value difference in log scale. λ = 4.6× 10−7

and 10 inner iterations. PCD-R and PCD-S take a little more time than HYDRA because
of the line search. As seen in both DBCD and PCD cases, a marginal increase in time is
incurred due to the variable selection cost with the S-scheme compared to the R-scheme.

We measured the computation and communication time taken per iteration by each
method for different P and r settings. From table 6.3 (which gives representative results
for one situation, KDD and P = 25), we see that the communication time dominates the
cost in HYDRA and PCD-R. DBCD-R takes more computation time than PCD-R and
HYDRA since we run through 10 cycles of inner optimization. Note that the methods with
S-scheme take more time; however, the increase is not significant compared to the commu-
nication cost. DBCD-S takes the maximum computation time and is quite comparable to
the communication time. Recall our earlier observation of DBCD-S giving order of magni-
tude speed-up in the overall time compared to methods such as HYDRA and PCD-R (see
figures 3-10). Though the computation times taken by HYDRA, PCD-R and PCD-S are
lesser, they need significantly more number of iterations to reach some specified objective
function optimality criterion. As a result, these methods become quite inefficient due to
extremely large communication cost compared to DBCD. All these observations point to
the fact our DBCD method nicely trades-off the computation versus communication cost,
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(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 4: URL dataset. Relative function value difference in log scale. λ = 9.0× 10−8

and gives an excellent order of magnitude improvement in overall time. With the additional
benefit provided by the S-scheme, DBCD-S clearly turns out to be the method of choice
for the distributed setting.

The methods considered in this paper are all synchronous methods. Also, as l1-regularization
gives sparse solutions, load balancing can be prominent and lead to the “curse of last re-
ducer” issue. The increase in waiting time (in our measurement, waiting time is counted as
a part of the communication time) is higher for methods that involve greater computation;
this is clear from table 6.3 where, roughly, communication time per iteration is higher for
methods with higher computation time per iteration. In spite of this, our DBCD-S method,
which has the largest computation and communication times per iteration, wins because of
the drastically reduced number of iterations compared to other methods.

Sparsity Pattern: To study variable sparsity behaviors of various methods during op-
timization, we computed the percentage of non-zero variables (ρ) as a function of outer
iterations. We set the initial values of the variables to zero. Figure 12 shows similar be-
haviors for all the random (variable) selection methods. After a few iterations of rise they
fall exponentially and remain at the same level. For methods with the S-scheme, many
variables remain non-zero for some initial period of time and then ρ falls a lot more sharply.
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(a) P = 100, r = 0.01 (b) P = 100, r = 0.1

(c) P = 200, r = 0.01 (d) P = 200, r = 0.1

Figure 5: ADS dataset. Relative function value difference in log scale. λ = 2.65× 10−6.

It is interesting to note that such an initial behavior seems necessary to make good progress
in terms of both function value and AUPRC. In all the cases, many variables stay at zero
after initial iterations; therefore, shrinking ideas (i.e., do not consider for selection those
variables that tend to remain at zero) can be used to improve efficiency.

Remark on Speed up: Let us consider the RFVD plots corresponding to DBCD-S in
figures 3 and 4. It can be observed that the times associated with P = 25 and P = 100 for
reaching a certain tolerance, say log RFVD=-2, are close to each other. This means that
using 100 nodes gives almost no speed up over 25 nodes, which may prompt the question:
Is a distributed solution really necessary? There are two answers to this question. First,
as we already mentioned, when the training data is huge17 and so the data is generated
and forced to reside in distributed nodes, the right question to ask is not whether we get
great speed up, but to ask which method is the fastest. Second, for a given dataset, if the
time taken to reach a certain optimality tolerance is plotted as a function of P , it may
have a minimum at a value different from P = 1. In such a case, it is appropriate to
choose a P (as well as r) optimally to minimize training time. Many applications involve

17. The KDD and URL datasets are really not huge in the Big data sense. In this paper we used them only
because of lack of availability of much bigger public datasets.
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(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 6: WEBSPAM dataset. Relative function value difference in log scale. λ = 3.92× 10−5

periodically repeated model training. For example, in Advertising, logistic regression based
click probability models are retrained on a daily basis on incrementally varying datasets.
In such scenarios it is worthwhile to spend time to tune parameters such as P and r in an
early deployment phase to minimize time, and then use these parameter values for future
runs.

It is also important to point out that the above discussion is relevant to distributed
settings in which communication causes a bottleneck. If communication cost is not heavy,
e.g., when the number of examples is not large and/or communication is inexpensive such
as in multicore solution, then good speed ups are possible; see, for example, the results
in Richtárik and Takáč (2015).

7. Recommended DBCD algorithm

In section 4 we explored various options for the steps of Algorithm 1 looking beyond those
considered by existing methods and proposing new ones, and empirically analyzing the
various resulting methods in section 6. The experiments clearly show that DBCD-S is the
best method. We collect full implementation details of this method in Algorithm 2.
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Algorithm 2: Recommended DBCD algorithm

Parameters: Proximal constant µ > 0 (Default: µ = 10−12);
WSS = # variables to choose for updating per node (Default: WSS=rm/P , r = 0.1);
k = # CD iterations to use for solving (3) (Default: k = 10);
Line search constants: β, σ ∈ (0, 1) (Default: β = 0.5, σ = 0.01);
Choose w0 and compute y0 = Xw0;
for t = 0, 1 . . . do

for p = 1, . . . , P (in parallel) do
(a) For each j ∈ Bp, solve (5) to get qj . Sort {qj : j ∈ Bp} and choose WSS
indices with least qj values to form Stp;

(b) Form f tp(wBp) using (6) and solve (3) using k CD iterations to get w̄tBp

and set direction: dtBp
= w̄tBp

− wtBp
;

(c) Compute δyt =
∑

pXBpd
t
Bp

using AllReduce;

(d) α = 1;
while (12-13) are not satisfied do

α← αβ;
Check (12)-(13) using y + α δy and aggregating the l1 regularization value
via AllReduce;

end e

Set αt = α, wt+1
Bp

= wtBp
+ αtdtBp

and yt+1 = yt + αt δyt;

end f
Terminate if the optimality conditions (2) hold to the desired approximate level;

end
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(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 7: KDD dataset. AUPRC Plots. λ = 4.6× 10−7

8. Conclusion

In this paper we have proposed a class of efficient block coordinate methods for the dis-
tributed training of l1 regularized linear classifiers. In particular, the proximal-Jacobi ap-
proximation together with a distributed greedy scheme for variable selection came out as
a strong performer. There are several useful directions for the future. It would be useful
to explore other approximations such as block GLMNET and block L-BFGS suggested in
subsection 4.2. Like Richtárik and Takáč (2015), developing a complexity theory for our
method that sheds insight on the effect of various parameters (e.g., P ) on the number of
iterations to reach a specified optimality tolerance is worthwhile. It is possible to extend
our method to non-convex problems, e.g., deep net training, which has great value.

Proof of Theorem 1

First let us write δj in (11) as δj = Ejjd
t
j where Ejj = δj/(d

t
Bp

)j . Note that |Ejj | ≤ µ/2.

Use the condition (14) in Condition 2 with wBp = w̄tBp
and ŵBp = wBp in (11) together

27



Mahajan, Keerthi and Sundararajan

(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 8: URL dataset. AUPRC plots. λ = 9.0× 10−8

with the gradient consistency property of Condition 1 to get

gtSt
p

+Ht
St
p
dtSt

p
+ ξSt

p
= 0, (15)

where Ht
St
p

= ĤSt
p
−ESt

p
and ĤSt

p
is the diagonal submatrix of Ĥ corresponding to Stp. Since

Ĥ ≥ µI and |Ejj | ≤ µ/2, we get Ht
St
p
≥ µ

2 I. Let us extend the diagonal matrix EtSt
p

to EBp

by defining Ejj = 0 ∀j ∈ Bp \ Stp. This lets us extend Ht
St
p

to HBp via Ht
Bp

= ĤBp − EBp .

Now (15) is the optimality condition for the quadratic minimization,

dtBp
= arg min

dBp

(gtBp
)TdBp +

1

2
(dBp)THBpdBp +∑

j∈Bp

λ |wtj + dj | s.t. dj = 0 ∀ j ∈ Bp \ Stp (16)
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(a) P = 100, r = 0.01 (b) P = 100, r = 0.1

(c) P = 200, r = 0.01 (d) P = 200, r = 0.1

Figure 9: ADS dataset. AUPRC Plots. λ = 2.65× 10−6

Combined over all p,

dt = arg min
d

(gt)Td+
1

2
dTHd+ u(wt + d)

s.t. dj = 0 ∀ j ∈ ∪p(Bp \ Stp) (17)

where H is a block diagonal matrix with blocks, {HBp}. Thus dt corresponds to the mini-
mization of a positive definite quadratic form, exactly the type covered by the Tseng-Yun
theory (Tseng and Yun, 2009).

The line search condition (12)-(13) is a special case of the line search condition in Tseng
and Yun (2009). The Gauss-Seidel scheme of subsection 4.1 is an instance of the Gauss-
Seidel scheme of Tseng and Yun (2009). Now consider the distributed greedy scheme in
subsection 4.1. Let jmax = arg max1≤j≤m q̄j . By the way the Stp are chosen, jmax ∈ ∪pStp.
Therefore,

∑
j∈∪pSt

p
q̄j ≤ 1

m

∑m
j=1 q̄j , thus satisfying the Gauss-Southwell-q rule condition

of Tseng and Yun (2009). Now Theorems 1-4 of Tseng and Yun (2009) can be directly
applied to prove our Theorem 1. Note that Theorem 4 of Tseng and Yun (2009) ensures
that Assumption 2(a) of that paper holds; Assumption 2(b) of that paper trivially holds
because, in our case F is convex.
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(a) P = 25, r = 0.01 (b) P = 25, r = 0.1

(c) P = 100, r = 0.01 (d) P = 100, r = 0.1

Figure 10: WEBSPAM dataset. AUPRC Plots. λ = 3.92 × 10−5. Because the initial ρ tuning
time for ADMM is large, its curves are not seen in the shown time window of 0-100
secs.
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KDD, λ = 4.6× 10−7

Existing methods Our methods

P τ HYDRA PCD-R PCD-S DBCD-R DBCD-S

−1 298 294 12 236 8
25 −2 > 800 > 800 331 > 800 124

−3 > 800 > 800 > 800 > 800 688

−1 297 299 13 230 10
100 −2 > 800 > 800 311 > 800 137

−3 > 800 > 800 > 800 > 800 797

URL, λ = 9.0× 10−8

Existing methods Our methods

0 > 2000 878 201 770 23
25 −0.5 > 2000 > 2000 929 1772 42

−1 > 2000 > 2000 > 2000 > 2000 216

0 > 2000 840 197 476 27
100 −0.5 > 2000 > 2000 858 1488 55

−1 > 2000 > 2000 > 2000 > 2000 287

WEBSPAM, λ = 3.9× 10−5

Existing methods Our methods

0 521 202 56 169 13
25 −0.5 > 1500 185 109 128 25

−1.0 > 1500 532 180 439 39

0 511 203 56 180 28
100 −0.5 > 1500 308 111 265 49

−1.0 > 1500 525 235 403 74

ADS, λ = 2.6× 10−6

Existing methods Our methods

−1.0 573 > 600 10 > 600 7
100 −1.5 > 600 > 600 61 > 600 18

−2.0 > 600 > 600 169 > 600 53

−1.0 569 > 600 10 > 600 11
200 −1.5 > 600 > 600 35 > 600 46

−2.0 > 600 > 600 154 > 600 138

Table 5: TP , the number of outer iterations needed to reach log RFVD≤ τ , for various P
and τ values. We set r = 0.01. Best values are indicated in boldface. For each
dataset, the τ values were chosen to cover the region where AUPRC values are in
the process of reaching the steady state value. The methods were terminated when
the number of iterations exceeded a maximum; this maximum was set differently
for different datasets. 34
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KDD, λ = 4.6× 10−7

Method Comp. Comm. Comp. Comm.

r = 0.01 r = 0.1

HYDRA 0.033 1.665 0.250 1.404

PCD-R 0.125 1.955 0.360 2.093

PCD-S 1.483 3.046 1.598 2.703

DBCD-R 0.311 2.173 1.733 2.396

DBCD-S 4.426 2.263 5.317 2.387

URL, λ = 9.0× 10−8

Method Comp. Comm. Comp. Comm.

r = 0.01 r = 0.1

HYDRA 0.018 0.443 0.123 0.418

PCD-R 0.033 0.834 0.126 1.157

PCD-S 0.780 1.527 0.915 1.606

DBCD-R 0.124 1.380 0.741 1.956

DBCD-S 3.591 2.438 4.151 1.731

WEBSPAM, λ = 3.9× 10−5

Method Comp. Comm. Comp. Comm.

r = 0.01 r = 0.1

HYDRA 0.029 0.137 0.284 0.146

PCD-R 0.022 0.374 0.201 0.973

PCD-S 1.283 1.389 1.156 1.498

DBCD-R 0.121 0.535 1.046 0.995

DBCD-S 2.254 1.089 2.559 1.080

ADS, λ = 2.6× 10−6

Method Comp. Comm. Comp. Comm.

r = 0.01 r = 0.1

HYDRA 0.133 3.652 0.695 4.267

PCD-R 0.198 4.208 0.880 5.784

PCD-S 1.636 6.326 2.220 7.888

DBCD-R 0.197 5.923 0.965 11.05

DBCD-S 1.244 8.285 2.709 13.8

Table 6: Computation and communication costs per iteration (in secs.) for KDD, P = 25.
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