On Perturbed Proximal Gradient Algorithms

Yves F. Atchadé
University of Michigan,
1085 South University,
Ann Arbor, 48109, MI, United States,
yvesa@umich.edu

Gersende Fort
LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay,
46, rue Barrault 75013 Paris, France,
gersende.fort@telecom-paristech.fr

Eric Moulines
CMAP, INRIA XPOP, Ecole Polytechnique,
91128 Palaiseau, France,
eric.moulines@polytechnique.edu

Editor: Leon Bottou

Abstract

We study a version of the proximal gradient algorithm for which the gradient is intractable and is approximated by Monte Carlo methods (and in particular Markov Chain Monte Carlo). We derive conditions on the step size and the Monte Carlo batch size under which convergence is guaranteed: both increasing batch size and constant batch size are considered. We also derive non-asymptotic bounds for an averaged version. Our results cover both the cases of biased and unbiased Monte Carlo approximation. To support our findings, we discuss the inference of a sparse generalized linear model with random effect and the problem of learning the edge structure and parameters of sparse undirected graphical models.

Keywords: Proximal Gradient Methods; Stochastic Optimization; Monte Carlo approximations; Perturbed Majorization-Minimization algorithms.

1. Introduction

This paper deals with statistical optimization problems of the form:

\[(P) \quad \min_{\theta \in \mathbb{R}^d} F(\theta) \quad \text{with} \quad F = f + g.\]

This problem occurs in a variety of statistical and machine learning problems, where \(f\) is a measure of fit depending implicitly on some observed data and \(g\) is a regularization term that imposes structure to the solution. Typically, \(f\) is a differentiable function with a Lipschitz gradient, whereas \(g\) might be non-smooth (typical examples include sparsity inducing penalty).

H1 The function \(g : \mathbb{R}^d \to [0, +\infty]\) is convex, not identically \(+\infty\), and lower semi-continuous. The function \(f : \mathbb{R}^d \to \mathbb{R}\) is convex, continuously differentiable on \(\mathbb{R}^d\) and there exists a finite non-negative constant \(L\) such that, for all \(\theta, \theta' \in \mathbb{R}^d\),

\[\|\nabla f(\theta) - \nabla f(\theta')\| \leq L\|\theta - \theta'\|,\]

©2017 Yves Atchadé, Gersende Fort and Eric Moulines.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/ Attribution requirements are provided at http://jmlr.org/papers/v18/15-038.html.
where \(\nabla f \) denotes the gradient of \(f \).

We denote by \(\Theta \) the domain of \(g \): \(\Theta \equiv \{ \theta \in \mathbb{R}^d : g(\theta) < \infty \} \).

H2 The set \(\text{argmin}_{\theta \in \Theta} F(\theta) \) is a non empty subset of \(\Theta \).

In this paper, we focus on the case where \(f + g \) and \(\nabla f \) are both intractable. This setting has not been widely considered despite the considerable importance of such models in statistics and machine learning. Intractable likelihood problems naturally occur for example in inference for bayesian networks (e.g. learning the edge structure and the parameters in an undirected graphical models), regression with latent variables or random effects, missing data, etc. In such applications, \(f \) is the negated log-likelihood of a conditional Gibbs measure \(\pi_{\theta} \) known only up to a normalization constant and the gradient of \(\nabla f(\theta) \) is typically expressed as a very high-dimensional integral w.r.t. the associated Gibbs measure \(\nabla f(\theta) = \int H_\theta(x) \pi_\theta(dx) \). Of course, this integral cannot be computed in closed form and should be approximated. Most often, some forms of Monte Carlo integration (such as Markov Chain Monte Carlo, or MCMC) is the only option.

To cope with problems where \(f + g \) is intractable and possibly non-smooth, various methods have been proposed. Some of these works focused on stochastic sub-gradient and mirror descent algorithms; see Nemirovski et al. (2008); Duchi et al. (2011); Cotter et al. (2011); Lan (2012); Juditsky and Nemirovski (2012a b). Other authors have proposed algorithms based on proximal operators to better exploit the smoothness of \(f \) and the properties of \(g \) (see e.g. Combettes and Wajs (2005); Hu et al. (2009); Xiao (2010); Juditsky and Nemirovski (2012a b)).

The current paper focuses on the proximal gradient algorithm (see e.g. Beck and Teboulle (2010); Combettes and Pesquet (2011); Parikh and Boyd (2013) for literature review and further references). The proximal map (Moreau (1962)) associated to \(g \) is defined for \(\gamma > 0 \) and \(\theta \in \mathbb{R}^d \) by:

\[
\text{Prox}_{\gamma,g}(\theta) \equiv \arg\min_{\vartheta \in \Theta} \left\{ g(\vartheta) + \frac{1}{2\gamma} \| \vartheta - \theta \|^2 \right\}.
\]

(1)

Note that under H1, there exists an unique point \(\vartheta \) minimizing the RHS of (1) for any \(\theta \in \mathbb{R}^d \) and \(\gamma > 0 \). The proximal gradient algorithm is an iterative algorithm which, given an initial value \(\theta_0 \in \Theta \) and a sequence of positive step sizes \(\{\gamma_n, n \in \mathbb{N}\} \), produces a sequence of parameters \(\{\theta_n, n \in \mathbb{N}\} \) as follows:

Algorithm 1 (Proximal gradient algorithm) Given \(\theta_n \), compute

\[
\theta_{n+1} = \text{Prox}_{\gamma_{n+1},g}(\theta_n - \gamma_{n+1} \nabla f(\theta_n)).
\]

(2)

When \(\gamma_n = \gamma \) for any \(n \), it is known that the iterates of the proximal gradient algorithm \(\{\theta_n, n \in \mathbb{N}\} \) (Algorithm 1) converges to \(\theta_\infty \), this point is a fixed point of the proximal-gradient map

\[
T_\gamma(\theta) \equiv \text{Prox}_{\gamma,g}(\theta - \gamma \nabla f(\theta)).
\]

(3)
Under H1 and H2, when $\gamma_n (0, 2/L]$ and $\inf_n \gamma_n > 0$, it is indeed known that the iterates of the proximal gradient algorithm $\{\theta_n, n \in \mathbb{N}\}$ defined in (2) converges to a point in the set \mathcal{L} of the solutions of (P) which coincides with the fixed points of the mapping T_γ for any $\gamma \in (0, 2/L)$

$$\mathcal{L} \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} F(\theta) = \{\theta \in \Theta : \theta = T_\gamma(\theta)\} . \quad (4)$$

(see e.g. (Combettes and Wajs, 2005, Theorem 3.4. and Proposition 3.1.(iii))).

Since $\nabla f(\theta)$ is intractable, the gradient $\nabla f(\theta_n)$ at n-th iteration is replaced by an approximation $H_{n+1}:

Algorithm 2 (Perturbed Proximal Gradient algorithm) Let $\theta_0 \in \Theta$ be the initial solution and $\{\gamma_n, n \in \mathbb{N}\}$ be a sequence of positive step-sizes. For $n \geq 1$, given $(\theta_0, \ldots, \theta_n)$ construct an approximation H_{n+1} of $\nabla f(\theta_n)$ and compute

$$\theta_{n+1} = \text{Prox}_{\gamma_{n+1}, \gamma}(\theta_n - \gamma_{n+1} H_{n+1}) . \quad (5)$$

We provide in Theorem 2 sufficient conditions on the perturbation $\eta_{n+1} = H_{n+1} - \nabla f(\theta_n)$ to obtain the convergence of the perturbed proximal gradient sequence given by (5). We then consider an averaging scheme of the perturbed proximal gradient algorithm: given non-negative weights $\{a_n, n \in \mathbb{N}\}$, Theorem 3 provides non-asymptotic bound of the deviation between $\sum_{k=1}^n a_k F(\theta_k)/\sum_{k=1}^n a_k$ and the minimum of F. Our results complement and extend Rosasco et al. (2014); Nitanda (2014); Xiao and Zhang (2014).

We then consider the case where the gradient $\nabla f(\theta) = \int_X H_\theta(x) \pi_\theta(dx)$ is defined as an expectation (see H3 in section 3). In this case, at each iteration $\nabla f(\theta_n)$ is approximated by a Monte Carlo average $H_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)})$ where m_{n+1} is the size of the Monte Carlo batch and $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is the Monte Carlo batch. Two different settings are covered. In the first setting, the samples $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ are conditionally independent and identically distributed (i.i.d.) with distribution π_{θ_n}. In such case, the conditional expectation of H_{n+1} given all the past iterations, denoted by $\mathbb{E}[H_{n+1} | \mathcal{F}_n]$ (see section 3), is equal to $\nabla f(\theta_n)$. In the second setting, the Monte Carlo batch $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is produced by running a MCMC algorithm. In such case, the conditional distribution of $X_{n+1}^{(j)}$ given the past is no longer exactly equal to π_{θ_n} which implies that $\mathbb{E}[H_{n+1} | \mathcal{F}_n] \neq \nabla f(\theta_n)$.

Theorem 4 (resp. Theorem 6) establish the convergence of the sequence $\{\theta_n, n \in \mathbb{N}\}$ when the batch size m_n is either fixed or increases with the number of iterations n. When the Monte Carlo batch $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is i.i.d. conditionally to the past the two theorems essentially say that with probability one, $\{\theta_n, n \in \mathbb{N}\}$ converges to an element of the set of minimizer \mathcal{L} as soon as $\sum_n \gamma_n = +\infty$ and $\sum_n \gamma_n^2/m_{n+1} < \infty$. Hence, one can choose either a fixed step size $\gamma_n = \gamma$ and a batch size $\{m_n, n \in \mathbb{N}\}$ increasing at least linearly (up to a logarithmic factor); or a decreasing step size and a fixed batch size $m_n = m$. When $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is produced by a MCMC algorithm (under appropriate assumptions) our theorems essentially say that the same convergence result holds if $\sum_n \gamma_n = \infty$ and $\sum_n \gamma_n^2 < \infty$ when $m_n = m$ is constant across iterations or $\sum_n \gamma_{n+1}/m_{n+1} < \infty$ if the batch size is increased.

3
Theorem 4 and Theorem 6 also provide non asymptotic bounds for the difference
\[\Delta_n = \sum_{k=1}^{n} a_k F(\theta_k) / \sum_{k=1}^{n} a_k - \min F \] in \(L^q \)-norm for \(q \geq 1 \). When the batch size
sequence \(m_{n+1} \) increases linearly at each iteration while the step size \(\gamma_{n+1} \) is held
constant, \(\Delta_n = O(\ln n / n) \). We recover (up to a logarithmic factor) the rate of the
proximal gradient algorithm. If we now compare the complexity of the algorithms
in terms of the number of simulations \(N \) needed (and not the number of iterations),
the error bound decreases like \(O(N^{-1/2}) \). The same error bound can be achieved by
choosing a fixed batch size and a decreasing step size \(\gamma_n = O(1 / \sqrt{n}) \).

In section 4, these results are illustrated with the problem of estimating a high-
dimensional discrete graphical models. In section 5, we consider high-dimensional
random effect logistic regression model. All the proofs are postponed to section 6.

2. Perturbed proximal gradient algorithms

The key property to study the behavior of the sequence the perturbed proximal
gradient algorithm is the following elementary lemma which might be seen as a deter-
ministic version of the Robbins-Siegmund lemma (see e.g. (Polyak, 1987, Lemma 11,
Chapter 2)). It replaces in our analysis (Combettes, 2001, Lemma 3.1) for quasi-Fejer
sequences and modified Fejer monotone sequences (see Lin et al. (2015)). Compared
to the Robbins-Siegmund Lemma, the sequence \(\{\xi_n\} \) is not assumed to be nonnega-
tive. When applied in the stochastic context as in Section 3, the fact that the result
is purely deterministic and deals with signed perturbations \(\xi_n \) allows more flexibility
in the study of the dynamics.

Lemma 1 Let \(\{v_n, n \in \mathbb{N}\} \) and \(\{\chi_n, n \in \mathbb{N}\} \) be non-negative sequences and \(\{\xi_n, n \in \mathbb{N}\} \) be such that \(\sum_n \xi_n \) exists. If for any \(n \geq 0 \),
\[
v_{n+1} \leq v_n - \chi_{n+1} + \xi_{n+1}
\]
then \(\sum_n \chi_n < \infty \) and \(\lim_n v_n \) exists.

Proof See Section 6.2.1

Applied with \(v_n = \|\theta_n - \theta_*\| \) for some \(\theta_* \in \mathcal{L} \), this lemma is the key result for the proof of the following theorem, which provides sufficient conditions on the stepsize
sequence \(\{\gamma_n, n \in \mathbb{N}\} \) and on the approximation error:
\[
\eta_{n+1} \overset{\text{def}}{=} H_{n+1} - \nabla f(\theta_n),
\]
for the sequence \(\{\theta_n, n \in \mathbb{N}\} \) to converge to a point \(\theta_\infty \) in the set \(\mathcal{L} \) of the minimizers
of \(F \). Denote by \(\langle \cdot, \cdot \rangle \) the usual inner product on \(\mathbb{R}^d \) associated to the norm \(\| \cdot \| \).

Theorem 2 Assume H1 and H2. Let \(\{\theta_n, n \in \mathbb{N}\} \) be given by Algorithm 2 with step
sizes satisfying \(\gamma_n \in (0, 1/L] \) for any \(n \geq 1 \) and \(\sum_n \gamma_n = +\infty \). If the following series
converge
\[
\sum_{n \geq 0} \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n), \eta_{n+1} \rangle, \quad \sum_{n \geq 0} \gamma_{n+1} \eta_{n+1}, \quad \sum_{n \geq 0} \gamma_{n+1}^2 \|\eta_{n+1}\|^2,
\]
then there exists \(\theta_\infty \in \mathcal{L} \) such that \(\lim_n \theta_n = \theta_\infty \).
Proof See Section 6.2.2.

Theorem 2 applied with \(\eta_{n+1} = 0 \) provides sufficient conditions for the convergence of Algorithm 1 to \(\mathcal{L} \): the algorithm converges as soon as \(\gamma_n \in (0, 1/L) \) and \(\sum_n \gamma_n = +\infty \).

Sufficient conditions for the convergence of \(\{\theta_n, n \in \mathbb{N}\} \) are also provided in Combettes and Wajs (2005). When applied to our settings (Combettes and Wajs, 2005. Theorem 3.4.) requires \(\sum_n \|\eta_{n+1}\| < \infty \) and \(\inf_n \gamma_n > 0 \), which for instance cannot accommodate the fixed Monte Carlo batch size stochastic algorithms considered in this paper. The same limitation applies to the analysis of the stochastic quasi-Fejer iterations (see Combettes and Pesquet (2015a)) which in our particular case requires \(\sum_n \gamma_{n+1}\|\eta_{n+1}\| < \infty \). These conditions are weakened in Theorem 2. However in all fairness we should mention that unlike the present work, Combettes and Wajs (2005) and Combettes and Pesquet (2015a) deal with infinite-dimensional problems which raises additional technical difficulties, and study algorithms that include a relaxation parameter. Furthermore, in the case where \(\eta_n \equiv 0 \), larger values of the stepsize \(\gamma_n \) are allowed \((\gamma_n \in (0, 2/L)). \)

Let \(\{a_0, \cdots, a_n\} \) be non-negative real numbers. Theorem 3 provides a control of the weighted sum \(\sum_{k=1}^n a_k(F(\theta_k) - \min F) \).

Theorem 3 Assume H1 and H2. Let \(\{\theta_n, n \in \mathbb{N}\} \) be given by Algorithm 2 with \(\gamma_n \in (0, 1/L) \) for any \(n \geq 1 \). For any non-negative weights \(\{a_0, \cdots, a_n\} \), any \(\theta_* \in \mathcal{L} \) and any \(n \geq 1 \),

\[
\sum_{k=1}^n a_k \{F(\theta_k) - \min F\} \leq U_n(\theta_*)
\]

where \(T_\gamma \) and \(\eta_n \) are given by (3) and (6) respectively and

\[
U_n(\theta_*) \overset{\text{def}}{=} \frac{1}{2} \sum_{k=1}^n \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right) \|\theta_{k-1} - \theta_*\|^2 + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_*\|^2
\]

\[
- \sum_{k=1}^n a_k \langle T_{\gamma_k}(\theta_{k-1}) - \theta_*, \eta_k\rangle + \sum_{k=1}^n a_k \gamma_k \|\eta_k\|^2. \tag{8}
\]

Proof See Section 6.2.3.

When applied with \(\eta_n = 0 \), Theorem 3 gives an explicit bound of the difference \(\Delta_n = A_n^{-1} \sum_{j=1}^n a_j F(\theta_j) - \min F \) where \(A_n = \sum_{k=1}^n a_k \) for the (exact) proximal gradient sequence \(\{\theta_n, n \in \mathbb{N}\} \) given by Algorithm 1. When the sequence \(\{a_n/\gamma_n, n \geq 1\} \) is non-decreasing, (8) shows that \(\Delta_n = O(a_n A_n^{-1} \gamma_n^{-1}) \).

Taking \(a_k = 1 \) for any \(k \geq 0 \) provides a bound for the cumulative regret. When \(a_k = 1, \gamma_k = 1/L \) for any \(k \geq 0 \), (Schmidt et al., 2011. Proposition 1) provides a bound of order \(O(1) \) under the assumption that \(\sum_n \|\eta_{n+1}\| < \infty \). Using the inequality \(|\langle T_{1/L}(\theta_k) - \theta_*, \eta_{k+1}\rangle| \leq \|\theta_k - \theta_*\| \|\eta_{k+1}\| \) (see Lemma 9), the upper bound \(U_n(\theta_*) \) in (8) is also \(O(1) \).

When \(a_n = \gamma_n \) for any \(n \geq 0 \), then \(\sup_n U_n(\theta_*) < \infty \) under the assumptions that the series

\[
\sum_n \gamma_n \langle T_{\gamma_n}(\theta_{n-1}) - \theta_*, \eta_n\rangle, \quad \sum_n \gamma_n^2 \|\eta_n\|^2,
\]

\[
5
\]
converge. In this case, we have

\[
\left(\frac{\sum_{k=1}^{n} \gamma_k F(\theta_k)}{\sum_{k=1}^{n} \gamma_k} - \min F \right) = O\left(\left(\sum_{k=1}^{n} \gamma_k \right)^{-1} \right).
\]

Consider the weighted averaged sequence \(\{\tilde{\theta}_n, n \in \mathbb{N}\} \) defined by

\[
\tilde{\theta}_n \overset{\text{def}}{=} \frac{1}{A_n} \sum_{k=1}^{n} a_k \theta_k .
\]

Under H1 and H2, \(F \) is convex so that \(F(\tilde{\theta}_n) \leq A_n^{-1} \sum_{k=1}^{n} a_k F(\theta_k) \). Therefore, Theorem 3 also provides convergence rates for \(F(\tilde{\theta}_n) - \min F \).

3. Stochastic Proximal Gradient algorithm

In this section, it is assumed that \(H_{n+1} \) is a Monte Carlo approximation of \(\nabla f(\theta_n) \), where \(\nabla f(\theta) \) satisfies the following assumption:

H3 for all \(\theta \in \Theta \),

\[
\nabla f(\theta) = \int_{X} H_\theta(x) \pi_\theta(dx) ,
\]

for some probability measure \(\pi_\theta \) on a measurable space \((X, \mathcal{X})\) and an integrable function \((\theta, x) \mapsto H_\theta(x) \) from \(\Theta \times X \) to \(\Theta \).

Note that \(X \) is not necessarily a topological space, even if, in many applications, \(X \subseteq \mathbb{R}^d \).

Assumption H3 holds in many problems (see section 4 and section 5). To approximate \(\nabla f(\theta) \), several options are available. Of course, when the dimension of the state space \(X \) is small to moderate, it is always possible to perform a numerical integration using either Gaussian quadratures or low-discrepancy sequences. Another possibility is to approximate these integrals: nested Laplace approximations have been considered recently for example in Schelldorfer et al. (2014) and further developed in Ogden (2015). Such approximations necessarily introduce some bias, which might be difficult to control. In addition, these techniques are not applicable when the dimension of the state space \(X \) becomes large. In this paper, we rather consider some form of Monte Carlo approximation.

When sampling \(\pi_\theta \) is doable, then an obvious choice is to use a naive Monte Carlo estimator which amounts to sample a batch \(\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\} \) independently of the past values of the parameters \(\{\theta_j, j \leq n\} \) and of the past draws i.e. independently of the \(\sigma \)-algebra

\[
\mathcal{F}_n \overset{\text{def}}{=} \sigma(\theta_0, X_{k}^{(j)}, 0 \leq k \leq n, 0 \leq j \leq m_k) .
\]

We then form

\[
H_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)}) .
\]
Conditionally to \mathcal{F}_n, H_{n+1} is an unbiased estimator of $\nabla f(\theta_n)$. The batch size m_{n+1} can either be chosen to be fixed across iterations or to increase with n at a certain rate. In the first case, H_{n+1} is not converging. In the second case, the approximation error is vanishing. The fixed batch-size case is closely related to Robbins-Monro stochastic approximation (the mitigation of the error is performed by letting the stepsize $\gamma_n \to 0$); the increasing batch-size case is related to Monte Carlo assisted optimization; see for example Geyer (1994).

The situation that we are facing in section 4 and section 5 is more complicated because direct sampling from π_θ is not an option. Nevertheless, it is fairly easy to construct a Markov kernel P_θ with invariant distribution π_θ. Monte Carlo Markov Chains (MCMC) provide a set of principled tools to sample from complex distributions over large dimensional spaces. In such case, conditional to the past, $\{X^{(j)}_{n+1}, 1 \leq j \leq m_{n+1}\}$ is a realization of a Markov chain with transition kernel P_θ and started from $X^{(m_n)}_{n}$ (the last sample draws in the previous minibatch).

Recall that a Markov kernel P is an application on $\mathcal{X} \times \mathcal{X}$, taking values in $[0, 1]$ such that for any $x \in \mathcal{X}$, $P(x, \cdot)$ is a probability measure on \mathcal{X}; and for any $A \in \mathcal{X}$, $x \mapsto P(x, A)$ is measurable. Furthermore, if P is a Markov kernel on \mathcal{X}, we denote by P^k the k-th iterate of P defined recursively as

$$P^0(x, A) \overset{\text{def}}{=} \mathbb{1}_A(x), \quad P^k(x, A) \overset{\text{def}}{=} \int P^{k-1}(x, dz)P(z, A), \quad k \geq 1.$$

Finally, the kernel P acts on probability measure: for any probability measure μ on \mathcal{X}, μP is a probability measure defined by

$$\mu P(A) \overset{\text{def}}{=} \int \mu(dx)P(x, A), \quad A \in \mathcal{X};$$

and P acts on positive measurable functions: for a measurable function $f : \mathcal{X} \to \mathbb{R}_+$, Pf is a function defined by

$$Pf(x) \overset{\text{def}}{=} \int f(y)P(x, dy).$$

We refer the reader to Meyn and Tweedie (2009) for the definitions and basic properties of Markov chains.

In this Markovian setting, it is possible to consider the fixed batch case and the increasing batch case. From a mathematical standpoint, the fixed batch case is trickier, because H_{n+1} is no longer an unbiased estimator of $\nabla f(\theta_n)$, i.e. the bias B_n defined by

$$B_n \overset{\text{def}}{=} \mathbb{E}[H_{n+1} | \mathcal{F}_n] - \nabla f(\theta_n) = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} \mathbb{E} \left[H_{\theta_n}(X^{(j)}_{n+1}) | \mathcal{F}_n \right] - \nabla f(\theta_n)$$

$$= m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} P^j_{\theta_n} H_{\theta_n}(X^{(0)}_{n+1}) - \nabla f(\theta_n), \quad (12)$$

does not vanish. When $m_n = m$ is small, the bias can even be pretty large, and the way the bias is mitigated in the algorithm requires substantial mathematical developments, which are not covered by the results currently available in the literature (see e.g. Combettes and Pesquet (2015a); Rosasco et al. (2014); Combettes and Pesquet (2015b); Rosasco et al. (2015); Lin et al. (2015)).

To capture in a common unifying framework these two different situations we assume that

7
H4 H_{n+1} is a Monte Carlo approximation of the expectation $\nabla f(\theta_n) :$

$$H_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)}) ;$$

for all $n \geq 0$, conditionally to the past, $\{X_n^{(j)}, 1 \leq j \leq m_{n+1}\}$ is a Markov chain started from $X_n^{(m_n)}$ and with transition kernel P_{θ_n} (we set $X_0^{(m_n)} = x_0 \in X$). For all $\theta \in \Theta$, P_θ is a Markov kernel with invariant distribution π_θ.

For a measurable function $V : X \to [1, \infty)$, a signed measure μ on the σ-field of X, and a function $f : X \to \mathbb{R}$, define

$$|f|_V = \sup_{x \in X} \frac{|f(x)|}{V(x)}, \quad \|\mu\|_V = \sup_{\int f \, d\mu \leq 1} \int f \, d\mu .$$

H5 There exist $\lambda \in (0, 1)$, $b < \infty$, $p \geq 2$ and a measurable function $W : X \to [1, +\infty)$ such that

$$\sup_{\theta \in \Theta} |H_\theta|_W < \infty , \quad \sup_{\theta \in \Theta} P_\theta W^p \leq \lambda W^p + b .$$

In addition, for any $\ell \in (0, p]$, there exist $C < \infty$ and $\rho \in (0, 1)$ such that for any $x \in X$,

$$\sup_{\theta \in \Theta} \|P_\theta^n (x, \cdot) - \pi_\theta\|_{W^\ell} \leq C \rho^n W^\ell(x) . \quad (13)$$

Sufficient conditions for the uniform-in-θ ergodic behavior (13) are given e.g. in (Fort et al., 2011, Lemma 2.3), in terms of aperiodicity, irreducibility and minorization conditions on the kernels $\{P_\theta, \theta \in \Theta\}$. Examples of MCMC kernels P_θ satisfying this assumption can be found in (Andrieu and Moulines, 2006, Proposition 12), (Saksman and Vihola, 2010, Proposition 15), (Fort et al., 2011, Proposition 3.1.), (Schreck et al., 2013, Proposition 3.2.), (Allassonnière and Kuhn, 2015, Proposition 1), and (Fort et al., 2015, Proposition 3.1.).

The proof of the results below consists in verifying the conditions of Theorem 2 with the error term defined by $\eta_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)}) - \nabla f(\theta_n)$. If the approximation is unbiased in the sense that $\mathbb{E} [\eta_{n+1} | F_n] = 0$, then $\{\eta_n, n \in \mathbb{N}\}$ is a martingale increment sequence. In all the other cases, we decompose η_{n+1} as the sum of a martingale increment term and a remainder term. When the batch size $\{m_n, n \in \mathbb{N}\}$ is increasing, the martingale increment sequence can be set to $\eta_{n+1} - \mathbb{E} [\eta_{n+1} | F_n]$ and the remainder term $\mathbb{E} [\eta_{n+1} | F_n]$ will be shown to be vanishingly small. When the batch size $\{m_n, n \in \mathbb{N}\}$ is constant, then $\mathbb{E} [\eta_{n+1} | F_n]$ does not vanish. A more subtle definition of the martingale increment has to be done, introducing the Poisson equation for Markov chain (see Proposition 19 in section 6).

3.1 Monte Carlo approximation with fixed batch-size

We first study the case when $m_n = m$ for any $n \in \mathbb{N}$. Theorem 4 provides sufficient conditions for the convergence towards the limiting set \mathcal{L} and for a bound for $\sum_{k=1}^{n} a_k F(\theta_k) - \min F$. Consider the following assumption
H6 (i) there exists a constant C such that for any $\theta, \theta' \in \Theta$
\[
|H_\theta - H_{\theta'}|_W + \sup_x \left\| \frac{P_\theta(x, \cdot) - P_{\theta'}(x, \cdot)}{W(x)} \right\|_W + \| \pi_\theta - \pi_{\theta'} \|_W \leq C \| \theta - \theta' \|.
\]
(ii) $\sup_{\gamma \in (0,1/L]} \sup_{\theta \in \Theta} \gamma^{-1} \| \text{Prox}_{\gamma, g}(\theta) - \theta \| < \infty$.
(iii) $\sum_n |\gamma_{n+1} - \gamma_n| < \infty$.

Assumption H6-(i) requires a Lipschitz-regularity in the parameter θ of the Markov kernel P_θ which, for MCMC algorithms, is inherited under mild additional conditions from the Lipschitz regularity in W-norm of the target distribution. Such conditions have been worked out for general families of MCMC kernels including Hastings-Metropolis dynamics, Gibbs samplers, and hybrid MCMC algorithm; see for example Proposition 12 in Andrieu and Moulines (2006), the proof of Theorem 3.4. in Fort et al. (2011), Lemmas 4.6. and 4.7. in Fort et al. (2015) and the references therein. It is a classical assumption when studying Stochastic Approximation with conditionally Markovian dynamic (see e.g. Benveniste et al. (1990), Andrieu et al. (2005), Fort et al. (2014)).

We prove in Proposition 11 that when g is proper, convex, Lipschitz on Θ, then H6-(ii) is satisfied. In particular, if Θ is a closed convex set, H6-(ii) is satisfied with the Lasso or fused Lasso penalty. If Θ is a compact convex set, then H6-(ii) is satisfied by the elastic-net penalty.

For a random variable Y, denote by $\|Y\|_{L^q} = (\mathbb{E}[|Y|^q])^{1/q}$.

Theorem 4 Assume Θ is bounded. Let $\{\theta_n, n \geq 0\}$ be given by Algorithm 2 with $\gamma_n \in (0,1/L]$ for any $n \geq 0$. Assume H1–H5, $m_n = m \geq 1$ and, if the Monte Carlo approximation is biased, assume also H6.

(i) Assume that $\sum_n \gamma_n = \infty$ and $\sum_n \gamma_n^2 < \infty$. With probability one, there exists $\theta_\infty \in \mathcal{L}$ such that $\lim_{n \to \infty} \theta_n = \theta_\infty$.

(ii) For any $q \in (1, p/2]$ there exists a constant C such that for any non-negative numbers $\{a_0, \cdots, a_n\}$
\[
\left\| \sum_{k=1}^n a_k \{ F(\theta_k) - \min F \} \right\|_{L^q} \leq C \left(\frac{a_0}{\gamma_0} + \sum_{k=1}^n \left| \frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right| + \left(\sum_{k=1}^n a_k^2 \right)^{1/2} + \sum_{k=1}^n a_k \gamma_k + v \sum_{k=1}^n |a_k - a_{k-1}| \right)
\]
and
\[
\sum_{k=1}^n a_k \{ \mathbb{E}[F(\theta_k)] - \min F \} \leq C \left(\frac{a_0}{\gamma_0} + \sum_{k=1}^n \left| \frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right| + \sum_{k=1}^n a_k \gamma_k + v \sum_{k=1}^n |a_k - a_{k-1}| \right)
\]
where $v = 0$ if the Monte Carlo approximation is unbiased and $v = 1$ otherwise.
The proof is postponed to Section 6.3.

When $a_n = 1$ and $\gamma_n = (n + 1)^{-1/2}$, Theorem 4 shows that when $n \to \infty$,
\[
\left\| \frac{1}{n} \sum_{k=1}^{n} F(\theta_k) - \min F \right\|_{L^q} = O \left(\frac{1}{\sqrt{n}} \right).
\]
An upper bound $O(\ln n / \sqrt{n})$ can be obtained from Theorem 4 by choosing $a_n = \gamma_n = (n + 1)^{-1/2}$.

3.2 Monte Carlo approximation with increasing batch size

The key property to discuss the asymptotic behavior of the algorithm is the following result.

Proposition 5 Assume $H3$, $H4$ and $H5$. There exists a constant C such that w.p. 1 for any $n \geq 0$,
\[
\| E[\eta_{n+1} | F_n] \| \leq C m_{n+1}^{-1} W(X_n^{(m_n)}) , \quad E[\|\eta_{n+1}\|^p | F_n] \leq C m_{n+1}^{-p/2} W^p(X_n^{(m_n)}) .
\]

Proof The first inequality follows from (12) and (13). The second one is established in (Fort and Moulines, 2003, Proposition 12).

Theorem 6 Assume Θ is bounded. Let $\{\theta_n, n \geq 0\}$ be given by Algorithm 2 with $\gamma_n \in (0, 1/L]$ for any $n \geq 0$. Assume $H1$–$H5$.

(i) Assume $\sum_n \gamma_n = +\infty$, $\sum_n \gamma_{n+1} m_{n+1}^{-1} < \infty$ and, if the approximation is biased, $\sum_n \gamma_{n+1} m_{n+1}^{-1} < \infty$. With probability one, there exists $\theta_\infty \in \mathcal{L}$ such that $\lim_{n \to \infty} \theta_n = \theta_\infty$.

(ii) For any $q \in (1, p/2]$, there exists a constant C such that for any non-negative numbers $\{a_0, \cdots, a_n\}$
\[
\left\| \sum_{k=1}^{n} a_k \{F(\theta_k) - \min F\} \right\|_{L^q} \leq C \left(\frac{a_0}{\gamma_0} + \sum_{k=1}^{n} \left| \frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right| + \left(\sum_{k=1}^{n} \frac{a_k^2}{\gamma_k m_k^{-1}} \right)^{1/2} + \sum_{k=1}^{n} a_k \gamma_k m_k^{-1} + v \sum_{k=1}^{n} a_k m_k^{-1} \right)
\]
and
\[
\sum_{k=1}^{n} a_k \{E[F(\theta_k)] - \min F\} \leq C \left(\frac{a_0}{\gamma_0} + \sum_{k=1}^{n} \left| \frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right| + \sum_{k=1}^{n} a_k \gamma_k m_k^{-1} + v \sum_{k=1}^{n} a_k m_k^{-1} \right),
\]
where $v = 0$ if the Monte-Carlo approximation is unbiased and $v = 1$ otherwise.
Proof See Section 6.4.

Theorem 6 shows that when $n \to \infty$,

$$
\left\| \left(\sum_{k=1}^{n} a_k \right)^{-1} \sum_{k=1}^{n} a_k F(\theta_k) - \min_{\theta} F \right\|_{L^q} = O \left(\frac{\ln n}{n} \right)
$$

by choosing a fixed stepsize $\gamma_n = \gamma$, a linearly increasing batch-size $m_n \sim n$, and a uniform weight $a_n = 1$. Note that this is the rate after n iterations of the Stochastic Proximal Gradient algorithm but $\sum_{k=1}^{n} m_k = O(n^2)$ Monte Carlo samples. Therefore, the rate of convergence expressed in terms of complexity is $O(\ln n/\sqrt{n})$.

4. Application to network structure estimation

To illustrate the algorithm we consider the problem of fitting discrete graphical models in a setting where the number of nodes in the graph is large compared to the sample size. Let X be a nonempty finite set, and $p \geq 1$ an integer. We consider a graphical model on X^p with joint probability mass function

$$
f_\theta(x_1, \ldots, x_p) = \frac{1}{Z_\theta} \exp \left\{ \sum_{k=1}^{p} \theta_{kk} B_0(x_k) + \sum_{1 \leq j < k \leq p} \theta_{kj} B(x_k, x_j) \right\},
$$

for a non-zero function $B_0 : X \to \mathbb{R}$ and a symmetric non-zero function $B : X \times X \to \mathbb{R}$. The term Z_θ is the normalizing constant of the distribution (the partition function), which cannot (in general) be computed explicitly. The real-valued symmetric matrix θ defines the graph structure and is the parameter of interest. It has the same interpretation as the precision matrix in a multivariate Gaussian distribution.

We consider the problem of estimating θ from N realizations $\{x^{(i)}, 1 \leq i \leq N\}$ from (14) where $x^{(i)} = (x^{(i)}_1, \ldots, x^{(i)}_p) \in X^p$, and where the true value of θ is assumed sparse. This problem is relevant for instance in biology (Ekeberg et al. (2013); Kamisetty et al. (2013); and has been considered by many authors in statistics and machine learning (Banerjee et al. (2008); Höfling and Tibshirani (2009); Ravikumar et al. (2010); Guo et al. (2010); Xue et al. (2012)).

The main difficulty in dealing with this model is the fact that the log-partition function $\log Z_\theta$ is intractable in general. As a result, most of the existing works estimate θ by using the sub-optimal approach of replacing the likelihood function by a pseudo-likelihood function. One notable exception that tackles the log-likelihood function is Höfling and Tibshirani (2009), using an active set strategy (to preserve sparsity), and the junction tree algorithm for computing the partial derivatives of the log-partition function. However, the success of this strategy depends crucially on the sparsity of the solution\(^1\). We will see that Algorithm 2 implemented with a MCMC

\footnote{1. Indeed the implementation of their algorithm in the BMN package is very sensitive to the sparsity of the solution, and their solver typically fails to converge if the regularization parameter is not large enough to produce a sufficiently sparse solution. In our numerical experiments, we were not able to obtain a successful run from their package for $p = 100$.}
approximation of the gradient gives a simple and effective approach for computing the penalized maximum likelihood estimate of \(\theta \).

Let \(\mathcal{M}_p \) denote the space of \(p \times p \) symmetric matrices equipped with the (modified) Frobenius inner product

\[
\langle \theta, \vartheta \rangle \overset{\text{def}}{=} \sum_{1 \leq k \leq j \leq p} \theta_{jk} \vartheta_{jk}, \text{ with norm } \|	heta\| \overset{\text{def}}{=} \sqrt{\langle \theta, \theta \rangle}.
\]

Equipped with this norm, \(\mathcal{M}_p \) is the same space as the Euclidean space \(\mathbb{R}^d \) where \(d = p(p+1)/2 \). Using a \(\ell^1 \)-penalty on \(\theta \), we see that the computation of the penalized maximum likelihood estimate of \(\theta \) is a problem of the form (P) with \(F = -\ell + g \) where

\[
\ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(\theta, \bar{B}(x^{(i)}) \right) - \log Z_\theta \quad \text{and} \quad g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}|;
\]

the matrix-valued function \(\bar{B} : \mathcal{X}^p \to \mathbb{R}^{p \times p} \) is defined by

\[
\bar{B}_{kk}(x) = B_0(x_k) \quad \bar{B}_{kj}(x) = B(x_k, x_j), \quad k \neq j.
\]

It is easy to see that in this example, Problem (P) admits at least one solution \(\theta^*_\ast \) that satisfies \(\lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| \leq p \log |X| \), where \(|X| \) denotes the size of \(X \). To see this, note that since \(f_\theta(x) \) is a probability, \(-\ell(\theta) = -N^{-1} \sum_{i=1}^{N} \log f_\theta(x^{(i)}) \geq 0 \). Hence \(F(\theta) \geq g(\theta) \to \infty \), as \(\sum_{1 \leq k \leq j \leq p} |\theta_{jk}| \to \infty \) and since \(F \) is continuous, we conclude that it admits at least one minimizer \(\theta^*_\ast \) that satisfies \(F(\theta^*_\ast) \leq F(\theta) = \log Z_\theta = p \log |X| \). As a result, and without any loss of generality, we consider Problem (P) with the penalty \(g \) replaced by \(g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| + 1(\theta) \), where \(1(\theta) = 0 \) if \(\max_{ij} |\theta_{ij}| \leq (p/\lambda) \log |X| \), and \(1(\theta) = +\infty \) otherwise. Hence in this problem, the domain of \(g \) is \(\Theta = \{ \theta \in \mathcal{M}_p : \max_{ij} |\theta_{ij}| \leq (p/\lambda) \log |X| \} \).

Upon noting that (14) is a canonical exponential model, (Shao, 2003, Section 4.4.2) shows that \(\theta \mapsto -\ell(\theta) \) is convex and

\[
\nabla \ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \bar{B}(x^{(i)}) - \int_{\mathcal{X}^p} \bar{B}(z) f_\theta(z) \mu(dz), \quad \text{(15)}
\]

where \(\mu \) is the counting measure on \(\mathcal{X}^p \). In addition, (see section B)

\[
\|\nabla \ell(\theta) - \nabla \ell(\vartheta)\| \leq p \left((p-1) \text{osc}^2(B) + \text{osc}^2(B_0) \right) \|\theta - \vartheta\|, \quad \text{(16)}
\]

where for a function \(\bar{B} : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \), \(\text{osc}(\bar{B}) = \sup_{x,y,u,v \in \mathcal{X}} |\bar{B}(x,y) - \bar{B}(u,v)| \).

Therefore, in this example, the assumption H1 and H2 are satisfied.

The representation of the gradient in (15) shows that H3 holds, with \(\pi_\theta(dz) = f_\theta(z)\mu(dz) \), and \(H_\theta(z) = N^{-1} \sum_{i=1}^{N} B(x^{(i)}) - B(z) \). Direct simulation from the distribution \(f_\theta \) is rarely feasible, so we turn to MCMC. These Markov kernels are easy to construct, and can be constructed in many ways. For instance if the set \(\mathcal{X} \) is not too large, then a Gibbs sampler (see e.g. Robert and Casella (2005)) that samples from the full conditional distributions of \(f_\theta \) can be easily implemented. In the case of the
Gibbs sampler, since X_p is a finite set, Θ is compact, $f_\theta(x) > 0$ for all $(x, \theta) \in X_p \times \Theta$, and, $\theta \mapsto f_\theta(x)$ is continuously differentiable, the assumptions H4, H5 and H6(i)-(ii) automatically hold with $W \equiv 1$. We should point out that the Gibbs sampler is a generic algorithm that in some cases is known to mix poorly. Whenever possible we recommend the use of specialized problem-specific MCMC algorithms with better mixing properties.

Illustrative example We consider the particular case where $X = \{1, \ldots, M\}$, $B_0(x) = 0$, and $B(x, y) = 1_{\{x=y\}}$, which corresponds to the well known Potts model. We report in this section some simulation results showing the performances of the stochastic proximal gradient algorithm. We use $M = 20$, $B_0(x) = x$, $N = 250$ and for $p \in \{50, 100, 200\}$. We generate the ‘true’ matrix θ_{true} such that it has on average p non-zero elements below the diagonal which are simulated from a uniform distribution on $(-4, -1) \cup (1, 4)$. All the diagonal elements are set to 0.

By trial-and-error we set the regularization parameter to $\lambda = 2.5 \sqrt{\log(p)/n}$ for all the simulations. We implement Algorithm 2, drawing samples from a Gibbs sampler to approximate the gradient. We compare the following two versions of Algorithm 2:

1. **Solver 1**: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p n^3}.$

2. **Solver 2**: A version with increasing Monte Carlo batch size $m_n = 500 + n^{1.2}$, and fixed step size $\gamma_n = \frac{25}{p} \frac{1}{n^{3/2}}$.

We run **Solver 2** for $N_{iter} = 5p$ iterations, where $p \in \{50, 100, 200\}$ is as above. And we set the number of iterations of **Solver 1** so that both solvers draw approximately the same number of Monte Carlo samples. For stability in the results, we repeat the solvers 30 times and average the sample paths. We evaluate the convergence of each solver by computing the relative error $\|\theta_n - \theta_\infty\|/\|\theta_\infty\|$, along the iterations, where θ_∞ denotes the value returned by the solver on its last iteration. Note that we compare the optimizer output to θ_∞, not θ_{true}. Ideally, we would like to compare the iterates to the solution of the optimization problem. However in the present setting a solution is not available in closed form (and there could be more than one solution). Furthermore, whether the solution of the optimization problem approaches θ_* is a complicated statistical problem\(^2\) that is beyond the scope of this work. The relative errors are presented on Figure 1 and suggest that, when measured as function of resource used, **Solver 1** and **Solver 2** have roughly the same convergence rate.

We also compute the statistic $F_n \equiv \frac{2 \text{Sen}_n \text{Prec}_n}{\text{Sen}_n + \text{Prec}_n}$, which measures the recovery of the sparsity structure of θ_∞ along the iteration. In this definition Sen_n is the sensitivity, and Prec_n is the precision defined as

$$\text{Sen}_n = \frac{\sum_{j<i} \mathbb{1}_{\{|\theta_n,ij|>0\}} \mathbb{1}_{\{|\theta_\infty,ij|>0\}}}{\sum_{j<i} \mathbb{1}_{\{|\theta_\infty,ij|>0\}}}$$

and

$$\text{Prec}_n = \frac{\sum_{j<i} \mathbb{1}_{\{|\theta_n,ij|>0\}} \mathbb{1}_{\{|\theta_\infty,ij|>0\}}}{\sum_{j<i} \mathbb{1}_{\{|\theta_\infty,ij|>0\}}}.$$

2. this depends heavily on n, p, the actual true matrix θ_{true}, and depends also heavily the choice of the regularization parameter λ.
Figure 1: Relative errors plotted as function of computing time for Solver 1 and Solver 2.

Figure 2: Statistic F_n plotted as function of computing time for Solver 1 and Solver 2.

The values of F_n are presented on Figure 2 as function of computing time. It shows that for both solvers, the sparsity structure of θ_n converges very quickly towards that of θ_∞. We note also that Figure 2 seems to suggest that Solver 2 tends to produce solutions with slightly more stable sparsity structure than Solver 1 (less variance on the red curves). Whether such subtle differences exist between the two algorithms (a diminishing step-size and fixed Monte Carlo size versus a fixed step-size and increasing Monte Carlo size) is an interest question. Our analysis does not deal with the sparsity structure of the solutions, hence cannot offer any explanation.

5. A non convex example: High-dimensional logistic regression with random effects

We numerically investigate the extension of our results to a situation where the assumptions H2 and H3 hold but H1 is not in general satisfied and the domain Θ is not bounded. The numerical study below shows that the conclusions reached in sec-
5.1 The model
We model binary responses \(\{Y_i\}_{i=1}^N \in \{0, 1\}\) as \(N\) conditionally independent realizations of a random effect logistic regression model,

\[Y_i \mid U \overset{\text{ind.}}{\sim} \text{Ber} \left(s(x_i' \beta + \sigma z_i' U) \right), \quad 1 \leq i \leq N, \quad (17) \]

where \(x_i \in \mathbb{R}^p\) is the vector of covariates, \(z_i \in \mathbb{R}^q\) are (known) loading vector, \(\text{Ber}(\alpha)\) denotes the Bernoulli distribution with parameter \(\alpha \in [0, 1]\), \(s(x) = e^x/(1 + e^x)\) is the cumulative distribution function of the standard logistic distribution. The random effect \(U\) is assumed to be standard Gaussian \(U \sim N_q(0, I)\).

The log-likelihood of the observations at \(\theta = (\beta, \sigma) \in \mathbb{R}^p \times (0, \infty)\) is given by

\[\ell(\theta) = \log \int \prod_{i=1}^N s(x_i' \beta + \sigma z_i' u) Y_i \left(1 - s(x_i' \beta + \sigma z_i' u) \right)^{1-Y_i} \phi(u) du, \quad (18) \]

where \(\phi\) is the density of a \(\mathbb{R}^q\)-valued standard Gaussian random vector. The number of covariates \(p\) is possibly larger than \(N\), but only a very small number of these covariates are relevant which suggests to use the elastic-net penalty

\[g(\theta) = \lambda \left(\frac{1 - \alpha}{2} \| \beta \|_2^2 + \alpha \| \beta \|_1 \right), \quad (19) \]

where \(\lambda > 0\) is the regularization parameter, \(\| \beta \|_r = (\sum |\beta_i|^r)^{1/r}\) and \(\alpha \in [0, 1]\) controls the trade-off between the \(\ell^1\) and the \(\ell^2\) penalties. In this example,

\[g(\theta) = \lambda \left(\frac{1 - \alpha}{2} \| \beta \|_2^2 + \alpha \| \beta \|_1 \right) + 1_{(0, +\infty)}(\sigma), \quad (20) \]

where \(1_A(x) = +\infty\) is \(x \notin A\) and 0 otherwise. Define the conditional log-likelihood of \(Y = (Y_1, \ldots, Y_N)\) given \(U\) (the dependence upon \(Y\) is omitted) by

\[\ell_c(\theta \mid u) = \sum_{i=1}^N \left[Y_i \left(x_i' \beta + \sigma z_i' u \right) - \ln \left(1 + \exp \left(x_i' \beta + \sigma z_i' u \right) \right) \right]_+, \]

and the conditional distribution of the random effect \(U\) given the observations \(Y\) and the parameter \(\theta\)

\[\pi_\theta(u) = \exp \left(\ell_c(\theta \mid u) - \ell(\theta) \right) \phi(u). \quad (21) \]

The Fisher identity implies that the gradient of the log-likelihood (18) is given by

\[\nabla \ell(\theta) = \int \nabla_\theta \ell_c(\theta \mid u) \pi_\theta(u) du = \int \left\{ \sum_{i=1}^N \left[Y_i - s(x_i' \beta + \sigma z_i' u) \right] \right\} \pi_\theta(u) du. \]

15
The Hessian of the log-likelihood ℓ is given by (see e.g. (McLachlan and Krishnan, 2008, Chapter 3))
\[
\nabla^2 \ell(\theta) = \mathbb{E}_{\pi_\theta} \left[\nabla^2 \ell_c(\theta|U) \right] + \text{Cov}_{\pi_\theta} \left(\nabla \ell_c(\theta|U) \right)
\]
where \mathbb{E}_{π_θ} and Cov_{π_θ} denotes the expectation and the covariance with respect to the distribution π_θ, respectively. Since
\[
\nabla^2 \ell_c(\theta|u) = - \sum_{i=1}^N s(x'_i \beta + \sigma z'_i u) \left(1 - s(x'_i \beta + \sigma z'_i u) \right) \left[\begin{array}{c} x_i \\ z'_i u \end{array} \right] \left[\begin{array}{c} x_i \\ z'_i u \end{array} \right]',
\]
and $\sup_{\theta \in \Theta} \int \|u\|^2 \pi_\theta(u) du < \infty$ (see section A), $\nabla^2 \ell(\theta)$ is bounded on Θ. Hence, $\nabla \ell(\theta)$ satisfies the Lipschitz condition showing that H_1 is satisfied.

5.2 Numerical application

The assumption H_3 is satisfied with π_θ given by (21) and
\[
H_\theta(u) = - \sum_{i=1}^N (Y_i - F(x'_i \beta + \sigma z'_i u)) \left[\begin{array}{c} x_i \\ z'_i u \end{array} \right].
\]
(22)

The distribution π_θ is sampled using the MCMC sampler proposed in Polson et al. (2013) based on data-augmentation. We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^d \times \mathbb{R}^N} H_\theta(u) \pi_\theta(u, w) \, du \, dw$ where $\pi_\theta(u, w)$ is defined for $u \in \mathbb{R}^d$ and $w = (w_1, \ldots, w_N) \in \mathbb{R}^N$ by
\[
\pi_\theta(u, w) = \left(\prod_{i=1}^N \pi_{PG}(w_i; x'_i \beta + \sigma z'_i u) \right) \pi_\theta(u);
\]
in this expression, $\pi_{PG}(:,c)$ is the density of the Polya-Gamma distribution on the positive real line with parameter c given by
\[
\pi_{PG}(w; c) = \cosh(c/2) \exp \left(-wc^2/2 \right) \rho(w) \mathbb{1}_{\mathbb{R}^+}(w),
\]
where $\rho(w) \propto \sum_{k \geq 0} (-1)^k (2k + 1) \exp(- (2k + 1)^2 / (8w)) w^{-3/2}$ (see (Biane et al., 2001, Section 3.1)). Thus, we have
\[
\pi_\theta(u, w) = C_\theta \phi(u) \prod_{i=1}^N \exp \left(\sigma(Y_i - 1/2) z'_i u - w_i (x'_i \beta + \sigma z'_i u)^2/2 \right) \rho(w_i) \mathbb{1}_{\mathbb{R}^+}(w_i),
\]
where $\ln C_\theta = -N \ln 2 - \ell(\theta) + \sum_{i=1}^N (Y_i - 1/2)x'_i \beta$. This target distribution can be sampled using a Gibbs algorithm: given the current value (u^t, w^t) of the chain, the next point is obtained by sampling u^{t+1} under the conditional distribution of u given w^t, and w^{t+1} under the conditional distribution of w given u^t. In the present case, these conditional distributions are given respectively by
\[
\pi_\theta(u|w) \equiv N_q(\mu_\theta(w); \Gamma_\theta(w)) \quad \pi_\theta(w|u) = \prod_{i=1}^N \pi_{PG}(w_i; |x'_i \beta + \sigma z'_i u|)
\]
with
\[
\Gamma_{\theta}(w) = \left(I + \sigma^2 \sum_{i=1}^{N} w_i z_i z_i' \right)^{-1}, \quad \mu_{\theta}(w) = \sigma \Gamma_{\theta}(w) \sum_{i=1}^{N} \left((Y_i - 1/2) - w_i x_i' \beta \right) z_i.
\]

(23)

Exact samples of these conditional distributions can be obtained (see (Polson et al., 2013, Algorithm 1) for sampling under a Polya-Gamma distribution). It has been shown by Choi and Hobert (2013) that the Polya-Gamma Gibbs sampler is uniformly ergodic. Hence \(H5 \) is satisfied with \(W \equiv 1 \). Checking \(H6 \) is also straightforward.

We test the algorithms with \(N = 500, p = 1,000 \) and \(q = 5 \). We generate the \(N \times p \) covariates matrix \(X \) columnwise, by sampling a stationary \(\mathbb{R}^N \)-valued autoregressive model with parameter \(\rho = 0.8 \) and Gaussian noise \(\sqrt{1 - \rho^2} \mathcal{N}(0, I) \). We generate the vector of regressors \(\beta_{\text{true}} \) from the uniform distribution on \([1, 5]\) and randomly set 98% of the coefficients to zero. The variance of the random effect is set to \(\sigma^2 = 0.1 \).

We consider a repeated measurement setting so that \(z_i = e^\lceil i q/N \rceil \) where \(\{e_j, j \leq q\} \) is the canonical basis of \(\mathbb{R}^q \) and \(\lceil \cdot \rceil \) denotes the upper integer part. With such a simple expression for the random effect, we will be able to approximate the value \(F(\theta) \) in order to illustrate the theoretical results obtained in this paper. We use the Lasso penalty (\(\alpha = 1 \) in (19)) with \(\lambda = 30 \).

We first illustrate the ability of Monte Carlo Proximal Gradient algorithms to find a minimizer of \(F \). We compare the Monte Carlo proximal gradient algorithm

(i) with fixed batch size: \(\gamma_n = 0.01/\sqrt{n} \) and \(m_n = 275 \) (Algo 1); \(\gamma_n = 0.5/n \) and \(m_n = 275 \) (Algo 2).

(ii) with increasing batch size: \(\gamma_n = \gamma = 0.005, m_n = 200 + n \) (Algo 3); \(\gamma_n = \gamma = 0.001, m_n = 200 + n \) (Algo 4); and \(\gamma_n = 0.05/\sqrt{n} \) and \(m_n = 270 + \lceil \sqrt{n} \rceil \) (Algo 5).

Each algorithm is run for 150 iterations. The batch sizes \(\{m_n, n \geq 0\} \) are chosen so that after 150 iterations, each algorithm used approximately the same number of Monte Carlo samples. We denote by \(\beta_{\infty} \) the value obtained at iteration 150. A path of the relative error \(\|\beta_n - \beta_{\infty}\|/\|\beta_{\infty}\| \) is displayed on Figure 3[right] for each algorithm; a path of the sensitivity \(\text{Sen}_n \) and of the precision \(\text{Prec}_n \) (see section 4 for the definition) are displayed on Figure 4. All these sequences are plotted versus the total number of Monte Carlo samples up to iteration \(n \). These plots show that with a fixed batch-size (Algo 1 or Algo 2), the best convergence is obtained with a step size decreasing as \(O(1/\sqrt{n}) \); and for an increasing batch size (Algo 3 to Algo 5), it is better to choose a fixed step size. These findings are consistent with the results in section 3. On Figure 3[left], we report on the bottom row the indices \(j \) such that \(\beta_{\text{true},j} \) is non null and on the rows above, the indices \(j \) such that \(\beta_{\infty,j} \) given by Algo 1 to Algo 5 is non null.

We now study the convergence of \(\{F(\theta_n), n \in \mathbb{N}\} \) where \(\theta_n \) is obtained by one of the algorithms described above. We repeat 50 independent runs for each algorithm and estimate \(\mathbb{E}[F(\theta_n)] \) by the empirical mean over these runs. On Figure 5[left], \(n \mapsto F(\theta_n) \) is displayed for several runs of Algo 1 and Algo 3. The figure shows
Figure 3: [left] The support of the sparse vector β_∞ obtained by Algo 1 to Algo 5; for comparison, the support of β_{true} is on the bottom row. [right] Relative error along one path of each algorithm as a function of the total number of Monte Carlo samples.

Figure 4: The sensitivity Sen_n [left] and the precision Prec_n [right] along a path, versus the total number of Monte Carlo samples up to time n.
that all the paths have the same limiting value, which is approximately $F_\star = 311$; we observed the same behavior on the 50 runs of each algorithm. On Figure 5[right], we report the Monte Carlo estimation of $E[F(\theta_n)]$ versus the total number of Monte Carlo samples used up to iteration n for the best strategies in the fixed batch size case (Algo 1) and in the increasing batch size case (Algo 3 and Algo 4).

6. Proofs

6.1 Preliminary lemmas

Lemma 7 Assume that g is lower semi-continuous and convex. For $\theta, \theta' \in \Theta$ and $\gamma > 0$,

$$g\left(\text{Prox}_{\gamma,g}(\theta)\right) - g(\theta') \leq -\frac{1}{\gamma} \langle \text{Prox}_{\gamma,g}(\theta) - \theta', \text{Prox}_{\gamma,g}(\theta) - \theta\rangle .$$

(24)

For any $\gamma > 0$ and for any $\theta, \theta' \in \Theta$,

$$\|\text{Prox}_{\gamma,g}(\theta) - \text{Prox}_{\gamma,g}(\theta')\|^2 + \|\text{Prox}_{\gamma,g}(\theta) - \text{Prox}_{\gamma,g}(\theta')\|^2 \leq \|\theta - \theta'\|^2 .$$

(25)

Proof See (Bauschke and Combettes, 2011, Propositions 4.2., 12.26 and 12.27).

Lemma 8 Assume H1 and let $\gamma \in (0, 1/L]$. Then for all $\theta, \theta' \in \Theta$,

$$-2\gamma \left(F(\text{Prox}_{\gamma,g}(\theta)) - F(\theta')\right) \geq \|\text{Prox}_{\gamma,g}(\theta) - \theta'\|^2 + 2 \langle \text{Prox}_{\gamma,g}(\theta) - \theta', \theta' - \gamma \nabla f(\theta') - \theta\rangle .$$

(26)

If in addition f is convex, then for all $\theta, \theta', \xi \in \Theta$,

$$-2\gamma \left(F(\text{Prox}_{\gamma,g}(\theta)) - F(\theta')\right) \geq \|\text{Prox}_{\gamma,g}(\theta) - \theta'\|^2$$

$$+ 2 \langle \text{Prox}_{\gamma,g}(\theta) - \theta', \xi - \gamma \nabla f(\xi) - \theta\rangle - \|\theta' - \xi\|^2 .$$

(27)
Proof Since ∇f is Lipschitz, the descent lemma implies that for any $\gamma^{-1} \geq L$

$$f(p) - f(\theta') \leq \langle \nabla f(\theta'), p - \theta' \rangle + \frac{1}{2\gamma} \|p - \theta'\|^2. \quad (28)$$

This inequality applied with $p = \text{Prox}_{\gamma,g}(\theta)$ combined with (24) yields (26). When f is convex, $f(\xi) + \langle \nabla f(\xi), \theta' - \xi \rangle - f(\theta') \leq 0$ which, combined again with (24) and (28) applied with $(p, \theta') \leftarrow (\text{Prox}_{\gamma,g}(\theta), \xi)$ yields the result.

Lemma 9 Assume $H1$. Then for any $\gamma > 0$, $\theta, \theta' \in \Theta$,

$$\|\theta - \gamma \nabla f(\theta) - \theta' + \gamma \nabla f(\theta')\| \leq (1 + \gamma L)\|\theta - \theta'\|, \quad (29)$$

$$\|T_\gamma(\theta) - T_\gamma(\theta')\| \leq (1 + \gamma L)\|\theta - \theta'\|. \quad (30)$$

If in addition f is convex then for any $\gamma \in (0, 2/L]$,

$$\|\theta - \gamma \nabla f(\theta) - \theta' + \gamma \nabla f(\theta')\| \leq \|\theta - \theta'\|, \quad (31)$$

$$\|T_\gamma(\theta) - T_\gamma(\theta')\| \leq \|\theta - \theta'\|. \quad (32)$$

Proof (30) and (32) follows from (29) and (31) respectively by the Lipschitz property of the proximal map $\text{Prox}_{\gamma,g}$ (see Lemma 7). (29) follows directly from the Lipschitz property of f. It remains to prove (31). Since f is a convex function with Lipschitz-continuous gradients, (Nesterov, 2004, Theorem 2.1.5) shows that, for all $\theta, \theta' \in \Theta$, $L \langle \nabla f(\theta) - \nabla f(\theta'), \theta - \theta' \rangle \geq \|\nabla f(\theta) - \nabla f(\theta')\|^2$. The result follows.

Lemma 10 Assume $H1$. Set $S_\gamma(\theta) \overset{\text{def}}{=} \text{Prox}_{\gamma,g}(\theta - \gamma H)$ and $\eta \overset{\text{def}}{=} H - \nabla f(\theta)$. For any $\theta \in \Theta$ and $\gamma > 0$, $\|T_\gamma(\theta) - S_\gamma(\theta)\| \leq \gamma \|\eta\|. \quad (33)$

Proof We have $\|T_\gamma(\theta) - S_\gamma(\theta)\| = \|\text{Prox}_{\gamma,g}(\theta - \gamma \nabla f(\theta)) - \text{Prox}_{\gamma,g}(\theta - \gamma H)\|$ and (33) follows from Lemma 7.

6.2 Proof of section 2

6.2.1 Proof of Lemma 1

Set $w_n = v_n + \sum_{k \geq n+1} \xi_k + M$ with $M \overset{\text{def}}{=} -\inf_n \sum_{k \geq n} \xi_k$ so that $\inf_n w_n \geq 0$. Then

$$0 \leq w_{n+1} \leq v_n - \chi_{n+1} + \xi_{n+1} + \sum_{k \geq n+2} \xi_k + M \leq w_n - \chi_{n+1}.$$

$\{w_n, n \in \mathbb{N}\}$ is non-negative and non increasing; therefore it converges. Furthermore, $0 \leq \sum_{k=0}^n \chi_k \leq w_0$ so that $\sum_n \chi_n < \infty$. The convergence of $\{w_n, n \in \mathbb{N}\}$ also implies the convergence of $\{v_n, n \in \mathbb{N}\}$. This concludes the proof.
6.2.2 Proof of Theorem 2

Let \(\theta_* \in \mathcal{L} \), which is not empty by H2; note that \(F(\theta_*) = \min F \). We have by (27) applied with \(\theta \leftarrow \theta_n - \gamma_{n+1} H_{n+1}, \xi \leftarrow \theta_n, \theta' \leftarrow \theta_*, \gamma \leftarrow \gamma_{n+1} \)

\[
\| \theta_{n+1} - \theta_* \|^2 \leq \| \theta_n - \theta_* \|^2 - 2 \gamma_{n+1} (F(\theta_{n+1}) - \min F) - 2 \gamma_{n+1} \langle \theta_{n+1} - \theta_*, \eta_{n+1} \rangle .
\]

We write \(\theta_{n+1} - \theta_* = \theta_{n+1} - T_{\gamma_{n+1}}(\theta_n) + T_{\gamma_{n+1}}(\theta_n) - \theta_* \). By Lemma 10, \(\| \theta_{n+1} - T_{\gamma_{n+1}}(\theta_n) \| \leq \gamma_{n+1} \| \eta_{n+1} \| \) so that,

\[
- \langle \theta_{n+1} - \theta_*, \eta_{n+1} \rangle \leq \gamma_{n+1} \| \eta_{n+1} \|^2 - \langle T_{\gamma_{n+1}}(\theta_n) - \theta_*, \eta_{n+1} \rangle .
\]

Hence,

\[
\| \theta_{n+1} - \theta_* \|^2 \leq \| \theta_n - \theta_* \|^2 - 2 \gamma_{n+1} (F(\theta_{n+1}) - \min F) + 2 \gamma_{n+1}^2 \| \eta_{n+1} \|^2 - 2 \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n) - \theta_*, \eta_{n+1} \rangle .
\]

(34)

Under (7) and (34), Lemma 1 shows that \(\sum_n \gamma_n (F(\theta_n) - \min F) < \infty \) and \(\lim_n \| \theta_n - \theta_* \| \) exists. This implies that \(\sup_n \| \theta_n \| < \infty \). Since \(\sum_n \gamma_n = +\infty \), there exists a subsequence \(\{ \theta_{\phi_n}, n \in \mathbb{N} \} \) such that \(\lim_n F(\theta_{\phi_n}) = \min F \). The sequence \(\{ \theta_{\phi_n}, n \geq 0 \} \) being bounded, we can assume without loss of generality that there exists \(\theta_{\infty} \in \mathbb{R}^d \) such that \(\lim_n \theta_{\phi_n} = \theta_{\infty} \).

Let us prove that \(\theta_{\infty} \in \mathcal{L} \). Since \(g \) is lower semi-continuous on \(\Theta \), \(\liminf_n g(\theta_{\phi_n}) \geq g(\theta_{\infty}) \) so that \(\theta_{\infty} \in \Theta \). Since \(F \) is lower semi-continuous on \(\Theta \), we have

\[
\min F = \liminf_{n \to \infty} F(\theta_{\phi_n}) \geq F(\theta_{\infty}) \geq \min F ,
\]

showing that \(F(\theta_{\infty}) = \min F \).

By (34), for any \(m \) and \(n \geq \phi_m \)

\[
\| \theta_{n+1} - \theta_{\infty} \|^2 \leq \| \theta_{\phi_m} - \theta_{\infty} \|^2 - 2 \sum_{k=\phi_m}^n \gamma_{k+1} \{ \langle T_{\gamma_{k+1}}(\theta_k) - \theta_{\infty}, \eta_{k+1} \rangle + \gamma_{k+1} \| \eta_{k+1} \|^2 \} .
\]

For any \(\epsilon > 0 \), there exists \(m \) such that the RHS is upper bounded by \(\epsilon \). Hence, for any \(n \geq \phi_m \), \(\| \theta_{n+1} - \theta_{\infty} \|^2 \leq \epsilon \), which proves the convergence of \(\{ \theta_n, n \in \mathbb{N} \} \) to \(\theta_{\infty} \).

6.2.3 Proof of Theorem 3

Let \(\theta_* \in \mathcal{L} \); note that \(F(\theta_*) = \min F \). We first apply (27) with \(\theta \leftarrow \theta_j - \gamma_{j+1} H_{j+1}, \xi \leftarrow \theta_j, \theta' \leftarrow \theta_*, \gamma \leftarrow \gamma_{j+1} \):

\[
F(\theta_{j+1}) - \min F \leq (2 \gamma_{j+1})^{-1} (\| \theta_j - \theta_* \|^2 - \| \theta_{j+1} - \theta_* \|^2) - \langle \theta_{j+1} - \theta_*, \eta_{j+1} \rangle .
\]

Multiplying both sides by \(a_{j+1} \) gives:

\[
a_{j+1} (F(\theta_{j+1}) - \min F) \leq \frac{1}{2} \left(\frac{a_{j+1}}{\gamma_{j+1}} - \frac{a_j}{\gamma_j} \right) \| \theta_j - \theta_* \|^2 + \frac{a_j}{2 \gamma_j} \| \theta_j - \theta_* \|^2 - \frac{a_{j+1}}{2 \gamma_{j+1}} \| \theta_{j+1} - \theta_* \|^2 - a_{j+1} \langle \theta_{j+1} - \theta_*, \eta_{j+1} \rangle .
\]

21
Summing from $j = 0$ to $n - 1$ gives

\[
\frac{a_n}{2\gamma_n} \|\theta_n - \theta_*\|^2 + \sum_{j=1}^{n} a_j \{F(\theta_j) - \min F\} \leq \frac{1}{2} \sum_{j=1}^{n} \left(\frac{a_j}{\gamma_j} - \frac{a_j-1}{\gamma_j-1}\right) \|\theta_{j-1} - \theta_*\|^2 - \sum_{j=1}^{n} a_j \langle \theta_j - \theta_*, \eta_j \rangle + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_*\|^2.
\] (35)

We decompose $\langle \theta_j - \theta_*, \eta_j \rangle$ as follows:

\[
\langle \theta_j - \theta_*, \eta_j \rangle = \langle \theta_j - T\gamma_j(\theta_{j-1}), \eta_j \rangle + \langle T\gamma_j(\theta_{j-1}) - \theta_*, \eta_j \rangle.
\]

By Lemma 10, we get $|\langle \theta_j - T\gamma_j(\theta_{j-1}), \eta_j \rangle| \leq \gamma_j \|\eta_j\|^2$ which concludes the proof.

6.3 Proof of Section 3.1

The proof of Theorem 4 is given in the case $m = 1$; we simply denote by X_n the sample $X_n^{(1)}$. The proof for the case $m > 1$ can be adapted from the proof below, by substituting the functions $H_\theta(x)$ and $W(x)$ by

\[
\bar{H}_\theta(x_1, \cdots, x_m) = \frac{1}{m} \sum_{k=1}^{m} H_\theta(x_k) \quad \bar{W}(x_1, \cdots, x_m) = \frac{1}{m} \sum_{k=1}^{m} W(x_k);
\]

the kernel P_θ and its invariant measure π_θ by

\[
\bar{P}_\theta(x_1, \cdots, x_m; B) = \int \cdots \int P_\theta(x_m, dy_1) \prod_{k=2}^{m} P_\theta(y_{k-1}, dy_k) \mathbf{1}_B(y_1, \cdots, y_m),
\]

\[
\bar{\pi}_\theta(B) = \int \cdots \int \pi_\theta(dy_1) \prod_{k=2}^{m} P_\theta(y_{k-1}, dy_k) \mathbf{1}_B(y_1, \cdots, y_m),
\]

for any $(x_1, \cdots, x_m) \in X^n$ and $B \in \mathcal{X}^n$.

6.3.1 Preliminary results

Proposition 11 Assume that g is proper convex and Lipschitz on Θ with Lipschitz constant K. Then, for all $\theta \in \Theta$,

\[
\|\text{Prox}_{\gamma,g}(\theta) - \theta\| \leq K \gamma.
\] (36)

Proof For all $\theta \in \Theta$, we get by Lemma 7

\[
0 \leq \gamma^{-1} \|\theta - \text{Prox}_{\gamma,g}(\theta)\|^2 \leq g(\theta) - g(\text{Prox}_{\gamma,g}(\theta)) \leq K \|\theta - \text{Prox}_{\gamma,g}(\theta)\|.
\]
Proposition 12 Assume H1, H2 and \(\Theta \) is bounded. Then

\[
\sup_{\gamma \in (0, 1/L]} \sup_{\theta \in \Theta} \|T_\gamma(\theta)\| < \infty .
\]

If in addition H6-(ii) holds, then there exists a constant \(C \) such that for any \(\theta, \tilde{\theta} \in \Theta, \gamma, \tilde{\gamma} \in (0, 1/L] \)

\[
\|T_\gamma(\theta) - T_{\tilde{\gamma}}(\tilde{\theta})\| \leq C (\gamma + \tilde{\gamma} + \|\theta - \tilde{\theta}\|) .
\]

Proof Let \(\theta_* \) such that for any \(\gamma > 0, \theta_* = T_\gamma(\theta_*) \) (such a point exists by H2 and (4)). We write \(T_\gamma(\theta) = (T_\gamma(\theta) - \theta_*) + \theta_* \). By Lemma 9, there exists a constant \(C \) such that for any \(\theta \in \Theta \) and any \(\gamma \in (0, 1/L], \|T_\gamma(\theta) - \theta_*\| \leq 2 \|\theta - \theta_*\| \leq 2 \|\theta\| + 2 \|\theta_*\| . \)

This concludes the proof of the first statement. We write \(T_\gamma(\theta) - T_{\tilde{\gamma}}(\tilde{\theta}) = T_\gamma(\theta) - T_{\tilde{\gamma}}(\theta) + T_{\tilde{\gamma}}(\theta) - T_{\tilde{\gamma}}(\tilde{\theta}) \). By Lemma 7

\[
\|T_\gamma(\theta) - T_{\tilde{\gamma}}(\tilde{\theta})\| \leq \|\theta - \tilde{\theta} - \tilde{\gamma}\nabla f(\theta) + \tilde{\gamma}\nabla f(\tilde{\theta})\| \leq \|\theta - \tilde{\theta}\| + \tilde{\gamma}\sup_{\theta \in \Theta} \|\nabla f(\theta)\| .
\]

By H1 and since \(\Theta \) is bounded, \(\sup_{\theta \in \Theta} \|\nabla f(\theta)\| < \infty . \). In addition, using again Lemma 7,

\[
\|T_\gamma(\theta) - T_{\tilde{\gamma}}(\tilde{\theta})\| \leq (\gamma + \tilde{\gamma}) \sup_{\theta \in \Theta} \|\nabla f(\theta)\| + \|\text{Prox}_{\gamma,g}(\theta) - \text{Prox}_{\tilde{\gamma},g}(\theta)\| .
\]

We conclude by using

\[
\|\text{Prox}_{\gamma,g}(\theta) - \text{Prox}_{\tilde{\gamma},g}(\theta)\| \leq \|\text{Prox}_{\gamma,g}(\theta) - \theta\| + \|\theta - \text{Prox}_{\gamma,g}(\theta)\|
\]

\[
\leq (\gamma + \tilde{\gamma}) \sup_{\gamma \in (0, 1/L]} \sup_{\theta \in \Theta} \gamma^2 \|\text{Prox}_{\gamma,g}(\theta) - \theta\| .
\]

\[\blacksquare\]

Lemma 13 Assume H5 and H6 (i).

(i) There exists a measurable function \((\theta, x) \mapsto \tilde{H}_\theta(x) \) such that \(\sup_{\theta \in \Theta} \|\tilde{H}_\theta\|_W < \infty \) and for any \((\theta, x) \in \Theta \times X, \)

\[
\tilde{H}_\theta(x) - P_\theta \tilde{H}_\theta(x) = H_\theta(x) - \int H_\theta(y) \pi_\theta(dy) .
\]

(ii) There exists a constant \(C \) such that for any \(\theta, \theta' \in \Theta, \)

\[
\|P_\theta \tilde{H}_\theta - P_{\theta'} \tilde{H}_{\theta'}\|_W \leq C \|\theta - \theta'\| .
\]

Proof See (Fort et al., 2011, Lemma 4.2). \[\blacksquare\]
Lemma 14 Assume H_4 and H_5. Then, $\sup_n \mathbb{E}[W^p(X_n)] < \infty$.

Proof The conditional distribution of X_j given the past \mathcal{F}_{j-1} is $P_{\theta_{j-1}}(X_{j-1}, \cdot)$. Therefore, we write

\[
\mathbb{E}[W^p(X_n)] = \mathbb{E}[\mathbb{E}[W^p(X_n) | \mathcal{F}_{n-1}]] = \mathbb{E}[P_{\theta_{n-1}}W^p(X_{n-1})].
\]

We then use the drift inequality to obtain $\mathbb{E}[W^p(X_n)] \leq \lambda \mathbb{E}[W^p(X_{n-1})] + b$. The proof then follows from a trivial induction. \hspace{1cm} \blacksquare

Lemma 15 Assume H_1, H_6-(ii) and Θ is bounded. There exists a constant C such that w.p.1, for all $n \geq 0$,

\[
\|\theta_{n+1} - \theta_n\| \leq C \gamma_{n+1} (1 + \|\eta_{n+1}\|).
\]

Proof We write

\[
\theta_{n+1} - \theta_n = \theta_{n+1} - \text{Prox}_{\gamma_{n+1},g}(\theta_n) + \text{Prox}_{\gamma_{n+1},g}(\theta_n) - \theta_n.
\]

Since by Lemma 7, $\theta \mapsto \text{Prox}_{\gamma,g}(\theta)$ is Lipschitz for any $\gamma > 0$, we get

\[
\|\theta_{n+1} - \text{Prox}_{\gamma_{n+1},g}(\theta_n)\|
\leq \gamma_{n+1} \|\eta_{n+1} + \nabla f(\theta_n)\| \leq \gamma_{n+1} \left(\|\eta_{n+1}\| + \sup_{\theta \in \Theta} \|\nabla f(\theta)\|\right).
\]

By H_1, w.p.1. $\sup_{\theta \in \Theta} \|\nabla f(\theta)\| < \infty$; hence, there exists C_1 such that w.p.1. for all $n \geq 0$, $\|\theta_{n+1} - \text{Prox}_{\gamma_{n+1},g}(\theta_n)\| \leq C_1 \gamma_{n+1} (1 + \|\eta_{n+1}\|)$. Finally, under H_6 (ii), there exists a constant C_2 such that, w.p.1.,

\[
\sup_n \gamma_{n+1}^{-1} \|\text{Prox}_{\gamma_{n+1},g}(\theta_n) - \theta_n\| \leq \sup_{\gamma \in (0,1/L]} \sup_{\theta \in \Theta} \gamma^{-1} \|\text{Prox}_{\gamma,g}(\theta) - \theta\| \leq C_2.
\]

This concludes the proof. \hspace{1cm} \blacksquare

Lemma 16 Assume H_1, H_4, H_5 and Θ is bounded. There exists a constant C such that w.p.1, for all $n \geq 0$, $\|\eta_{n+1}\| \leq CW(X_{n+1})$.

Proof By H_4 and H_5, $\|\eta_{n+1}\| \leq (\sup_{\theta \in \Theta} |H_\theta|_W) W(X_{n+1}) + \sup_{\theta \in \Theta} \|\nabla f(\theta)\|$. The result follows since ∇f is Lipschitz by H_1, and since $W \geq 1$. \hspace{1cm} \blacksquare
6.3.2 Proof of Theorem 4

The proof of the almost-sure convergence consists in verifying the assumptions of Theorem 2. Let us start with the proof that almost-surely, \(\sum_n \gamma_n^2 \| \eta_{n+1} \|^2 < \infty \).

This property is a consequence of Lemma 17 applied with \(a_n \leftarrow \gamma_n^2 \).

It remains to prove that almost-surely

\[
\sum_n \gamma_n \eta_n < \infty, \quad \sum_n \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n), \eta_{n+1} \rangle < \infty;
\]

note that they are both of the form \(\sum_n \gamma_{n+1} A_{\gamma_{n+1}}(\theta_n) \eta_{n+1} \) with, respectively, \(A_{\gamma_n}(\theta) = I \) and \(A_{\gamma_n}(\theta) = T_{\gamma_n}(\theta) \).

In the case the Monte Carlo is unbiased, we apply Proposition 18 with

\(a_n \leftarrow \gamma_n \) and \(A_{\gamma_n}(\theta) = I \), and we obtain the almost-sure convergence of \(\sum_n \gamma_n \eta_n \);

we then apply Proposition 18 with \(a_n \leftarrow \gamma_n \) and \(A_{\gamma_n}(\theta) = T_{\gamma_n}(\theta) \), and we obtain the almost-sure convergence of \(\sum_n \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n), \eta_{n+1} \rangle \) - note that by Proposition 12, \(T_{\gamma_n}(\theta) \) satisfies the assumptions of Proposition 17.

In the case the Monte Carlo is biased, the steps are the same except we use Proposition 19 instead of Proposition 18.

For the control of the moments, we use Theorem 3 and again Lemma 17 and Proposition 18 for the unbiased case (or Proposition 19 for the biased case).

Lemma 17 Assume H1, H4, H5 and \(\Theta \) is bounded.

(i) If \(a_k \geq 0 \) and \(\sum_{k=1}^\infty a_k < \infty \) then with probability one, \(\sum_{n \geq 1} a_n \| \eta_n \|^2 < \infty \).

(ii) for any \(q \in [1,p/2] \), there exists a constant \(C \) such that for any non-negative numbers \(\{a_1, \cdots, a_n\} \),

\[
\left\| \sum_{k=1}^n a_k \| \eta_k \|^2 \right\|_{L^q} \leq C \sum_{k=1}^n a_k.
\]

Proof We write

\[
E \left[\sum_{n \geq 0} a_{n+1} \| \eta_{n+1} \|^2 \right] \leq \sup_n \left(E \left[\| \eta_{n+1} \|^2 \right] \right) \sum_{n \geq 0} a_{n+1}.
\]

By Lemma 14 and Lemma 16, \(\sup_n \| \eta_{n+1} \|_{L^2} < \infty \) so the RHS is finite. By the Minkovski inequality, we write since \(a_k > 0 \),

\[
\left\| \sum_{k=0}^n a_{k+1} \| \eta_{k+1} \|^2 \right\|_{L^q} \leq \sup_n \| \eta_n \|_{L^{2q}}^2 \sum_{k=1}^{n+1} a_k.
\]

The supremum is finite by Lemma 14 and Lemma 16.

Proposition 18 Assume H1, H3, H4, H5, \(\Theta \) is bounded and the Monte Carlo approximation is unbiased. Let \(\{a_n, n \in \mathbb{N}\} \) be a deterministic positive sequence and \(\{A_{\gamma}(\theta), \gamma \in (0, 1/L), \theta \in \Theta\} \) be deterministic matrices such that

\[
\sup_{\gamma \in (0, 1/L)} \sup_{\theta \in \Theta} \| A_{\gamma}(\theta) \| < \infty.
\]
(i) If $\sum_{n \geq 0} a_n^2 < \infty$, then the series $\sum_{n \geq 0} a_{n+1} A_{\gamma_{n+1}}(\theta_n) \eta_{n+1}$ converges \mathbb{P}-a.s.

(ii) For any $q \in (1, p/2]$, there exists a constant C such that

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_{k+1}}(\theta_k) \eta_{k+1} \right\|_{L^q} \leq C \left(\sum_{k=0}^{n} a_{k+1}^2 \right)^{1/2}.$$

Proof Since $\theta_n \in \mathcal{F}_n$, we have $\mathbb{E} \left[a_{n+1} A_{\gamma_{n+1}}(\theta_n) \eta_{n+1} | \mathcal{F}_n \right] = 0$, thus showing that $\{M_n = \sum_{k=0}^{n} a_{k+1} A_{\gamma_{k+1}}(\theta_k) \eta_{k+1}, n \in \mathbb{N}\}$ is a martingale. This martingale converges almost-surely if $S = \sum_{n \geq 0} a_{n+1}^2 \left\| A_{\gamma_{n+1}}(\theta_n) \right\|^2 \mathbb{E} \left[\eta_{n+1} \right]^2 < \infty$ \mathbb{P}-a.s. (see e.g. (Hall and Heyde, 1980, Theorem 2.17)). Using (38) and Lemma 17, $S < \infty$ \mathbb{P}-a.s.

Consider now the L^q-moment of M_n. We apply (Hall and Heyde, 1980, Theorem 2.10): for any $q \in (1, p/2]$, there exists a constant C such that for any $n \geq 0$,

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_{k+1}}(\theta_k) \eta_{k+1} \right\|_{L^q} \leq C \left(\sum_{k=0}^{n} a_{k+1}^2 A_{\gamma_{k+1}}(\theta_k) \eta_{k+1}^2 \right)^{1/2}.$$

Lemma 14 and Lemma 16 imply that $\sup_n \left\| \eta_{n+1} \right\|_{L^q} < \infty$; we then conclude with (38).

Proposition 19 Assume $H1$, $H3$–$H6$ and Θ is bounded. Let $\{a_n, n \geq 0\}$ be a positive sequence and $\{A_\gamma(\theta), \gamma \in (0, 1/L], \theta \in \Theta\}$ be (deterministic) function-valued matrices such that there exists C_A and for any $\gamma, \tilde{\gamma} \in (0, 1/L]$ and $\theta, \tilde{\theta} \in \Theta$

$$\sup_{\gamma \in (0, 1/L]} \sup_{\theta \in \Theta} \left\| A_\gamma(\theta) \right\| < \infty, \quad \left\| A_\gamma(\theta) - A_{\tilde{\gamma}}(\tilde{\theta}) \right\| \leq C_A \left(\gamma + \tilde{\gamma} + \left\| \theta - \tilde{\theta} \right\| \right). \quad (39)$$

(i) If $\sum_{n \geq 0} a_n \gamma_n < \infty$, $\sum_{n \geq 0} a_n^2 < \infty$ and $\sum_{n \geq 0} |a_{n+1} - a_n| < \infty$ then the series

$$\sum_{n \geq 0} a_{n+1} A_{\gamma_{n+1}}(\theta_n) \eta_{n+1}$$

converges \mathbb{P}-a.s.

(ii) For any $q \in (1, p/2]$, there exists a constant C such that

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_{k+1}}(\theta_k) \eta_{k+1} \right\|_{L^q} \leq C \left\{ 1 + \left(\sum_{k=0}^{n} a_{k+1}^2 \right)^{1/2} + \sum_{k=1}^{n} |a_{k+1} - a_k| + \sum_{k=1}^{n} a_k \gamma_k \right\}.$$

Proof

(i) By $H4$ and Lemma 13-(i), we write

$$\eta_{n+1} = \hat{H}_{\theta_n}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{n+1})$$

$$= \left(\hat{H}_{\theta_n}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{n}) \right) + \left(P_{\theta_n} \hat{H}_{\theta_n}(X_{n}) - P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) \right)$$

$$+ \left(P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) - P_{\theta_{n}} \hat{H}_{\theta_{n}}(X_{n+1}) \right).$$
We prove successively that w.p.1,
\[
\sum_{n} a_{n+1} A_{\gamma_{n+1}}(\theta_n) \left(\hat{H}_{\theta_n}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_n) \right) < \infty, \tag{40}
\]
\[
\sum_{n \geq 0} a_{n+1} A_{\gamma_{n+1}}(\theta_n) \left(P_{\theta_n} \hat{H}_{\theta_n}(X_n) - P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) \right) < \infty, \tag{41}
\]
\[
\sum_{n \geq 0} a_{n+1} A_{\gamma_{n+1}}(\theta_n) \left(P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{n+1}) \right) < \infty. \tag{42}
\]

Proof [Proof of (40)] By H4, \(\{\hat{H}_{\theta_n}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_n), n \in \mathbb{N}\} \) is a martingale increment w.r.t. the filtration \(\{\mathcal{F}_n, n \geq 0\} \). The proof is along the same lines as the proof of Proposition 18 upon noting that by Lemma 13 and H5, there exists \(C \) such that w.p.1 for all \(n \geq 0 \),
\[
\| \hat{H}_{\theta_n}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_n) \| \leq C \{ W(X_{n+1}) + W(X_n) \}.
\]

On the other hand, by (39), Lemma 15 and Lemma 16, there exists \(C \) such that a.s. for all \(n \geq 0 \),
\[
\| \Delta_{n+1} \| \leq C \left(|a_{n+1} - a_n| + a_n (\gamma_n + \gamma_{n+1}) \right) W(X_n).
\]
By Lemma 14, \(\sup_n \mathbb{E} \left[W^2(X_n) \right] < \infty \). Therefore, by (39) and the assumptions on \(\{a_n, n \geq 0\} \), we have \(\sum_n \mathbb{E} \left[\| \Delta_{n+1} P_{\theta_n} \hat{H}_{\theta_n}(X_n) \| \right] < \infty \); which concludes the proof.

Proof [Proof of (41)] The sum is equal to \(\sum_{n \geq 0} \Delta_{n+1} P_{\theta_n} \hat{H}_{\theta_n}(X_n) \) with \(\Delta_{n+1} = a_{n+1} A_{\gamma_{n+1}}(\theta_n) - a_n A_{\gamma_n}(\theta_{n-1}) \). On one hand, by Lemma 13 and H5, there exists \(C \) such that w.p.1 for all \(n \geq 0 \),
\[
\left\| P_{\theta_n} \hat{H}_{\theta_n}(X_n) \right\| \leq C W(X_n).
\]
On the other hand, by (39), Lemma 15 and Lemma 16, there exists \(C \) such that a.s. for all \(n \geq 0 \),
\[
\| \Delta_{n+1} \| \leq C \left(|a_{n+1} - a_n| + a_n (\gamma_n + \gamma_{n+1}) \right) W(X_n).
\]
By Lemma 14, \(\sup_n \mathbb{E} \left[W^2(X_n) \right] < \infty \). Therefore, by (39) and the assumptions on \(\{a_n, n \geq 0\} \), we have \(\sum_n \mathbb{E} \left[\| \Delta_{n+1} P_{\theta_n} \hat{H}_{\theta_n}(X_n) \| \right] < \infty \); which concludes the proof.

Proof [Proof of (42)] By (39) and Lemma 13, there exists a constant \(C \) such that w.p.1 for any \(n \)
\[
\left\| A_{\gamma_{n+1}}(\theta_n) \left(P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{n+1}) \right) \right\| \leq C \| \theta_{n+1} - \theta_n \| W(X_{n+1}).
\]
By Lemma 15 and Lemma 16, there exists a constant \(C \) such that w.p.1,
\[
\| \theta_{n+1} - \theta_n \| W(X_{n+1}) \leq C \gamma_{n+1} W^2(X_{n+1}).
\]
From Lemma 14 and the assumptions on \(\{a_n, n \geq 0\} \), \(\sum_{n} a_{n+1} \gamma_{n+1} \mathbb{E} [W^2(X_{n+1})] < \infty \) from which (42) follows.
(ii) We start from the same decomposition of η_{n+1} in three terms. The first one is a martingale, and following the same lines as in the proof of Proposition 18, we obtain

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_k+1}(\theta_k) \left(\hat{H}_{\theta_k}(X_{n+1}) - P_{\theta_{k+1}} \hat{H}_{\theta_{k+1}}(X_k) \right) \right\|_{L^q} \leq C \left(\sum_{k=0}^{n} a_{k+1}^{p+1} \right)^{1/2}.$$

For the second term, we write

$$\sum_{k=0}^{n} a_{k+1} A_{\gamma_k+1}(\theta_k) \left(P_{\theta_k} \hat{H}_{\theta_k}(X_k) - P_{\theta_{k+1}} \hat{H}_{\theta_{k+1}}(X_k) \right) \leq a_1 A_{\gamma_1}(\theta_0) P_{\theta_0} \hat{H}_{\theta_0}(X_0) - a_{n+1} A_{\gamma_{n+1}}(\theta_n) P_{\theta_{n+1}} \hat{H}_{\theta_{n+1}}(X_{n+1}) + \sum_{k=1}^{n} \Delta_{k+1} P_{\theta_k} \hat{H}_{\theta_k}(X_k).$$

By the Minkovski inequality, it is easily seen that there exists a constant C such that

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_k+1}(\theta_k) \left(P_{\theta_k} \hat{H}_{\theta_k}(X_k) - P_{\theta_{k+1}} \hat{H}_{\theta_{k+1}}(X_k) \right) \right\|_{L^q} \leq \left(1 + a_{n+1} + \sum_{k=1}^{n} \left(|a_{k+1} - a_k| + a_k (\gamma_k + \gamma_{k+1}) \right) \right).$$

Finally, for the last term, following the same computations as above, we have by the Minkovski inequality

$$\left\| \sum_{k=0}^{n} a_{k+1} A_{\gamma_k+1}(\theta_k) \left(P_{\theta_{k+1}} \hat{H}_{\theta_{k+1}}(X_{k+1}) - P_{\theta_k} \hat{H}_{\theta_k}(X_k) \right) \right\|_{L^q} \leq C \sum_{k=0}^{n} a_{k+1} \gamma_{k+1}.$$

6.4 Proof of Theorem 6

We write $\eta_{n+1} = B_n + (\eta_{n+1} - B_n)$ where B_n is given by (12). Observe that $\{\eta_{n+1} - B_n, n \in \mathbb{N}\}$ is a martingale-increment sequence. Sufficient conditions for the almost-sure convergence of a martingale and the control of L^q-moments can be found in (Hall and Heyde, 1980, Theorems 2.10 and 2.17). Then the proof follows from Proposition 5 and Lemma 14.

Appendix A. Proofs of section 4

By using the Cauchy-Schwartz inequality, it holds

$$\int \exp(\ell_c(\theta|u)) \phi(u) du \geq \left(\int \exp(0.5\ell_c(\theta|u)) \phi(u) du \right)^{1/2}$$
where the covariance is taken assuming that \(X \sim \pi\). This work is partly supported by NSF grant DMS-1228164.

This implies the inequality (16).

We are grateful to George Michailidis for very helpful discussions. This work is partly supported by NSF grant DMS-1228164.

\[
\left(\int \exp(\ell_c(\theta|u)) \|u\|^2 \phi(u) \, du \right)^2 \\
\leq \left(\int \exp(0.5\ell_c(\theta|u)) \phi(u) \, du \right) \left(\int \exp(3\ell_c(\theta|u)/2) \|u\|^4 \phi(u) \, du \right)
\]

which implies that
\[
\int \|u\|^2 \pi_\theta(u) \, du = \frac{\int \exp(\ell_c(\theta|u)) \|u\|^2 \phi(u) \, du}{\int \exp(\ell_c(\theta|v)) \phi(v) \, dv}
\leq \left(\int \exp(3\ell_c(\theta|u)/2) \|u\|^4 \phi(u) \, du \right)^{1/2}
\]

Since \(\exp(\ell_c(\theta|u)) \leq 1\) and \(\int \|u\|^4 \phi(u) \, du = q(2 + q)\), we have
\[
\sup_{\theta \in \Theta} \int \|u\|^2 \pi_\theta(u) \, du \leq \sqrt{q(2 + q)}.
\]

Appendix B. Proof of section 5

For \(\theta, \vartheta \in \Theta\), the \((i, j)\)-th entry of the matrix \(\nabla \ell(\theta) - \nabla \ell(\vartheta)\) is given by
\[
(\nabla \ell(\theta) - \nabla \ell(\vartheta))_{ij} = \int_{X^p} \bar{B}_{ij}(x) \pi_\theta(dx) - \int_{X^p} \bar{B}_{ij}(x) \pi_\vartheta(dx).
\]

For \(t \in [0, 1]\)
\[
\pi_t(dx) \overset{\text{def}}{=} \frac{\exp \left(\langle B(z), t\vartheta + (1 - t)\theta \rangle \right)}{\int \exp \left(\langle B(x), t\vartheta + (1 - t)\theta \rangle \right) \mu(dx)}
\]
defines a probability measure on \(X^p\). It is straightforward to check that
\[
(\nabla \ell(\theta) - \nabla \ell(\vartheta))_{ij} = \int \bar{B}_{ij}(x) \pi_1(dx) - \int \bar{B}_{ij}(x) \pi_0(dx),
\]
and that \(t \mapsto \int \bar{B}_{ij}(x) \pi_t(dx)\) is differentiable with derivative
\[
\frac{d}{dt} \int \bar{B}_{ij}(x) \pi_t(dx)
= \int \bar{B}_{ij}(x) \left(\bar{B}(x) - \int \bar{B}(z) \pi_t(dz), \vartheta - \theta \right) \pi_t(dx),
= \text{Cov}_{\pi_t} (\bar{B}_{ij}(X), \langle \bar{B}(X), \vartheta - \theta \rangle),
\]
where the covariance is taken assuming that \(X \sim \pi_t\). Hence
\[
\left| (\nabla \ell(\theta) - \nabla \ell(\vartheta))_{ij} \right| \leq \int_0^t dt \text{Cov}_{\pi_t} (\bar{B}_{ij}(X), \langle \bar{B}(X), \vartheta - \theta \rangle) \\
\leq \text{osc}(\bar{B}_{ij}) \sqrt{\sum_{k \leq t} \text{osc}^2(\bar{B}_{kl}) \|\vartheta - \theta\|_2}.
\]

This implies the inequality (16).

Acknowledgments: We are grateful to George Michailidis for very helpful discussions. This work is partly supported by NSF grant DMS-1228164.
References

