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Abstract
The scalability of statistical estimators is of increasing importance in modern applications. One
approach to implementing scalable algorithms is to compress data into a low dimensional latent
space using dimension reduction methods. In this paper, we develop an approach for dimension
reduction that exploits the assumption of low rank structure in high dimensional data to gain both
computational and statistical advantages. We adapt recent randomized low-rank approximation
algorithms to provide an efficient solution to principal component analysis (PCA), and we use this
efficient solver to improve estimation in large-scale linear mixed models (LMM) for association
mapping in statistical genomics. A key observation in this paper is that randomization serves a
dual role, improving both computational and statistical performance by implicitly regularizing the
covariance matrix estimate of the random effect in an LMM. These statistical and computational
advantages are highlighted in our experiments on simulated data and large-scale genomic studies.
Keywords: dimension reduction, generalized eigendecompositon, low-rank, genomics, linear
mixed models, supervised, random projections, randomized algorithms, Krylov subspace methods

1. Introduction

In the current era of information, large amounts of complex high dimensional data are routinely
generated across science and engineering disciplines. One perspective is that the signal in high
dimensional data is often concentrated in low dimensional structure, and estimating and exploring
this latent structure is of fundamental importance in a variety of applications. As the size of the data
sets increases, the problem of statistical inference and computational feasibility become inextricably
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linked. Dimension reduction is a natural approach to summarizing massive data and has historically
played a central role in data analysis, visualization, and predictive modeling. Dimension reduction
has had a significant impact on both statistical inference (Adcock, 1878; Edegworth, 1884; Fisher,
1922; Hotelling, 1933; Young, 1941), and on numerical analysis research and applications (Golub,
1969; Golub and Van Loan, 1996; Gu and Eisenstat, 1996; Golub et al., 2000); for a recent review
see Mahoney (2011). Historically, statisticians have focused on the study of theoretical properties of
estimators often in the context of asymptotically large number of samples. Numerical analysts and
computational mathematicians, on the other hand, have been instrumental in the development of use-
ful and tractable algorithms with provable stability and convergence guarantees. Naturally, many of
these algorithms have been successfully applied to compute estimators grounded on solid statistical
foundations. A classic example of this interplay is principal component analysis (PCA) (Hotelling,
1933). In PCA, an objective function is defined based on statistical considerations about the sample
variance, which can then be efficiently computed using a variety of singular value decomposition
(SVD) algorithms developed by the numerical analysis community.

In this paper, we consider the problem of dimension reduction, focusing on the integration of
i) statistical considerations of estimation accuracy and out-of-sample prediction error of matrices
with latent low-rank, and ii) computational considerations of run time and numerical accuracy. The
methodology that we develop builds on a classical approach to modeling large data, which first com-
presses the data, minimizing the loss of relevant information, and then applies statistical estimators
appropriate for small-scale problems. In particular, we focus on dimension reduction via general-
ized eigendecomposition as the means for data compression, and on out-of-sample residual error as
the measure of information loss. The scope of this work includes applications to a large number
of dimension reduction methods, which can be implemented as solutions to truncated generalized
eigendecomposition problems (Hotelling, 1933; Fisher, 1936; Li, 1991; Wu et al., 2010). In this pa-
per our first focus is on the increasing need to compute an SVD of massive data using randomized
algorithms developed in the numerical analysis community (Drineas et al., 2006; Sarlos, 2006; Lib-
erty et al., 2007; Boutsidis et al., 2009; Rokhlin et al., 2009; Halko et al., 2011) to simultaneously
reduce the dimension and regularize, or control the impact of independent random noise.

The second focus in this paper is to provide efficient solvers for the linear mixed models that
arise in statistical and quantitative genomics. In high-throughput genomics experiments, a vast
amount of sequencing data is collected—on the order of tens of millions of genetic variants. The
goal of genome-wide association studies (GWAS) is to test for a statistical association at each ge-
netic variant (polymorphic position) to a response of interest (e.g., gene expression levels or disease
status) in a sample cohort. However, as the dimension of these genomic data and sample sizes con-
tinue to increase, there is an urgent need to improve the statistical and computational performance
of standard tests.

It is typical to collect several thousand individuals for one study. These individuals may come
from several genetically heterogeneous populations. It has been recognized since 2001 (Pritchard
and Donnelly, 2001) that the ancestry makeup of the individuals in the study has great potential
to influence study results—in particular, spurious associations arise when genetic variants with
differential frequencies may appear to be associated with the biased response variable via latent
population structure.

The earliest methods (e.g., genomic control) accounted for population structure by using co-
variate estimates to correct for these confounding signals. More recently, linear mixed models have
been used successfully to correct spurious results in the presence of population structure. LMMs
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have been shown to improve power in association studies while reducing false positives (Yang et al.,
2014). However, mixed models incur a high computational cost when performing association stud-
ies because of the computational burden of computing and inverting the covariance matrix for the
random effect controlling for population structure. Significant work has gone into mitigating such
costs using spectral decompositions for efficient covariance estimation (Kang et al., 2008, 2010;
Yang et al., 2011; Zhou and Stephens, 2012; Listgarten et al., 2012).

In this work we show, using simulations of genomic data with latent population structure and
real data from large-scale genomic studies, that our approach, adaptive randomized SVD (ARSVD),
is effective in terms of both computational efficiency and numerical accuracy. Under certain settings,
we find that the LMM using ARSVD outperforms current state-of-the-art approaches by implicitly
performing regularization of the covariance matrix.

There are three key contributions of this paper:

(i) We develop an adaptive algorithm for randomized singular value decomposition (SVD) in
which both the number of relevant singular vectors and the number of iterations of the algo-
rithm are inferred from the data based on informative statistical criteria.

(ii) We use our adaptive randomized SVD (ARSVD) algorithm to construct truncated generalized
eigendecomposition estimators for PCA and linear mixed models (LMMs) (Listgarten et al.,
2012; Zhou and Stephens, 2012).

(iii) We demonstrate on simulated and real data examples that the randomized estimators provide
a computationally efficient solution, and, furthermore, often improve statistical accuracy of
the predictions. We show that, in an over-parametrized setting, this improvement in accuracy
is due to implicit regularization imposed by the randomized approximation.

In Section 2, we describe the adaptive randomized SVD procedure we use for the various dimen-
sion reduction methods. In Section 2.5, we provide randomized estimators for linear mixed models
used in statistical genetics. In Section 3, we give an explanation for why the randomized estimator
for linear (mixed) models imposes regularization. In Section 4, we validate the proposed method-
ology on simulated and real data and compare our approach with state-of-the-art approaches. In
particular, we show results from our approach for estimating low dimensional geographic structure
in genomic data and for genetic association mapping applications.

2. Randomized Algorithms for Dimension Reduction

In this section, we develop algorithmic extensions for PCA. We state an algorithm that provides a
numerically efficient and statistically robust estimate of the highest variance directions in the data
using a randomized algorithm for singular value decomposition (Randomized SVD) (Rokhlin et al.,
2009; Halko et al., 2011). In this problem, the objective is linear unsupervised dimension reduction
with the low-dimensional subspace estimated via an eigendecomposition. Randomized SVD will
serve as the core computational engine for the other estimators we develop in this paper.

2.1 Notation

Given positive integers p and d with p � d, Rp×d denotes the class of all matrices of dimension
p× d with real entries. We denote symmetric positive semi-definite matrices as Sp+. For B ∈ Rp×d,
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span(B) denotes the subspace of Rp spanned by the columns of B. A basis matrix for a subspace S
is any full column rank matrix B ∈ Rp×d such that S = span(B), where d = dim(S). We denote
the data matrix X = (x1, . . . , xn)T ∈ Rn×p with observations drawn from p-dimensional marginal
distribution, xi ∼ PX . When we consider supervised problems such as regression we denote the
response vector as either a quantitative response Y ∈ Rm or a categorical response Y ∈ {1, . . . , C},
here C is the number of categories. For the joint setting of response and predictor variables we
assume a joint distribution, (X,Y ) ∼ PX×Y . We denote the orthonormal left eigenvector basis of
the data matrix X as eigen-basis(X).

2.2 Computational Considerations

The main computational tool we use is a randomized algorithm for approximate eigendecomposi-
ton, which factorizes a n × p matrix of rank r in time O(npr) using randomized methods that
take advantage of the intrinsic low-rank of the input matrix, rather than the O(np × min(n, p))
time required by deterministic approaches. This is relevant to statistical applications to high dimen-
sional data but reflects a highly constrained process (e.g., from genomic or financial applications),
which suggests that the data have low intrinsic dimensionality, i.e., r � n < p. Further improve-
ments have been made to randomized algorithms for approximate eigendecomposition by noting
that a structured random projection (such as the subsampled random Fourier transform) can achieve
computational complexity ofO(nplog(r)+(m+p)r2) assuming the input matrix fits in main mem-
ory (Halko et al., 2011). Since we use power iterations to decay the eigenspectrum and achieve a
numerically accurate result independent of the particular spectral gaps, most of the computational
gains from subsampling methods would be lost when applied in our framework. Furthermore, since
matrix-matrix multiplies are highly optimized on many computational architectures, parallel imple-
mentations can reduce our asymptotic complexity to yield excellent run times in practice (Halko
et al., 2011).

An appealing characteristic of our randomized algorithm is the explicit control of the trade-off
between estimation accuracy relative to the exact estimates and computational efficiency. Rapid
convergence to the exact estimates has been shown both empirically as well as in theory (Rokhlin
et al., 2009). From the perspective of theoretical computer science and numerical analysis, the ob-
jective of randomized SVD algorithms is, given a matrix X , to efficiently compute an approximate
eigendecomposition that is close to the exact eigendecomposition; we call this view the approxima-
tion perspective.

2.3 Statistical Considerations

A statistical perspective will deviate from the approximation perspective in two ways: the data
matrix X is not fixed, but a noisy random sample drawn from a population, and the inferential
objective is to obtain estimates of population quantities from the sample X , not estimates of the
eigendecomposition of X itself. Taking a statistical perspective will drive two central concepts in
this paper. The first concept is that there is utility in considering randomized algorithms as statistical
models. The second concept is that many formulations of ARSVD implicitly impose regularization
constraints.

The acceptable error for the approximation perspective and the statistical perspective differ;
typically larger error is tolerated in the statistical perspective. For many statistical estimators, the
error between the estimator and the population quantity scales as ε = O( 1√

n
) where n is the sample
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size. This is much coarser than the approximation error sought in numerical analysis, where the
desired error between the exact and approximate algorithms scales as ε2, the squared error in the
statistical estimate. This observation highlights that, in the statistical setting, one can use fewer
computations than are typically considered in the numerical analysis setting because the accuracy
of the finer approximation will be lost to the error due to sampling.

This observation about error will impact the parameters of the randomized estimators that we
propose in in this paper. An important parameter in our ARSVD algorithms is the number of
power iterations t that the randomized algorithm executes (Section 2.4). Increasing the number
of power iterations results in a closer approximation to the exact solution (Rokhlin et al., 2009),
but also increases the runtime of the algorithm. The observation that we can afford coarser error
rates between the exact and approximate solutions suggests that very few power iterations may be
required. We provide empirical evidence (Section 4) that fewer power iterations of the approximate
algorithm provide results that are both faster and also more accurate with respect to out-of-sample
predictions. This observation suggests that the approximation induced by the randomized algorithm
is a form of regularization.

2.4 Adaptive Randomized Low-Rank Approximation

In this section, we provide a brief description of a randomized estimator for the best low-rank matrix
approximation, introduced by Rokhlin et al. (2009); Halko et al. (2011), which combines random
projections with numerically stable matrix factorization. We consider this numerical framework as
implementing a computationally efficient shrinkage estimator of the subspace capturing the largest
variance directions in the data. The procedure is well suited for matrices that are low rank or
matrices where the signal is low rank. Detailed discussion of the estimation accuracy of Randomized
SVD in the absence of noise is provided in Rokhlin et al. (2009).

The idea of random projection was first developed as a proof technique to study the distortion in-
duced by the low dimensional embedding of high-dimensional vectors (Johnson and Lindenstrauss,
1984), with much literature simplifying and sharpening the results (Frankl and Maehara, 1987; In-
dyk and Motwani, 1998; Achlioptas, 2001; Dasgupta and Gupta, 2003). More recently, the theoret-
ical computer science and the numerical analysis communities discovered that random projections
can be used for efficient approximation algorithms for a variety of applications (Drineas et al., 2006;
Sarlos, 2006; Liberty et al., 2007; Boutsidis et al., 2009; Rokhlin et al., 2009; Halko et al., 2011).
We focus on one such approach proposed by Rokhlin et al. (2009); Halko et al. (2011), which tar-
gets the accurate low-rank approximation of a given large data matrix X ∈ Rn×p. In particular,
we extend the randomization methodology to the noisy setting, in which the estimation error is due
to both the approximation of the low-rank structure in X and also added noise. A simple working
model capturing this scenario is

X = Xd∗ + E, Xd∗ ∈ Rn×p, rank(Xd∗) = d∗,

where Xd∗ captures the low dimensional signal and E is independent additive noise.

2.4.1 ALGORITHM FOR ARSVD

Given an upper bound on the target rank dmax and the number of necessary power iterations tmax

(tmax ∈ {5, . . . 10} is sufficient in most cases), the algorithm proceeds in two stages: (1) estimate a

5



DARNELL, GEORGIEV, MUKHERJEE, & ENGELHARDT

basis for the range of Xd∗ , (2) project the data onto this basis and apply SVD:

Algorithm: Adaptive Randomized SVD(X, tmax, dmax, ∆)

(1) Find orthonormal basis for the range of X;

(i) Set the number working directions: ` = dmax + ∆;

(ii) Generate random matrix: Ω ∈ Rn×` with Ωij
iid∼ N(0, 1);

(iii) Construct blocks: F (t) = XXTF (t−1) with F (0) = Ω for t ∈ {1, . . . , tmax};
(iv) Select the optimal block t∗ ∈ {1, . . . , tmax} and rank estimate d∗ ∈ {1, . . . , dmax},

using the stability criterion and Bi-Cross-Validation stated in Section 2.4.3;

(v) Compute a basis for the selected block: F (t∗) = QR ∈ Rn×`, QTQ = I;

(2) Project data onto the range basis and compute the SVD;

(i) Project onto the basis: B = XTQ ∈ Rp×`;

(ii) Factorize: B svd
= UΣW T , where Σ = diag(σ1, . . . , σ`);

(iii) Compute the rank d∗ approximation: X̂d∗ = Ud∗Σd∗V
T
d∗

Ud∗ = (U1| . . . |Ud∗) ∈ Rn×d∗

Σd∗ = diag(σ1, . . . , σd∗) ∈ Rd∗×d∗

Vd∗ = Q× (W1| . . . |Wd∗) ∈ Rp×d∗ ;

In stage (1), we set the number of working directions ` = dmax + ∆ to be the sum of the upper
bound on the rank of the data dmax, and a small oversampling parameter ∆, which ensures a more
stable approximation of the top dmax sample variance directions; the estimator tends to be robust
to changes in ∆, so we use ∆ = 10 as a suggested default. In step (1.iii), the random projection
matrix Ω is applied to powers of XXT to randomly sample linear combinations of eigenvectors of
the data weighted by powers of the eigenvalues:

F (t)︸︷︷︸
n×`

= (XXT )tΩ = US2tUTΩ = US2tΩ∗, where X svd
= USV T .

The power iterations shrink small eigenvalues and increase large eigenvalues while leaving the
eigenvectors unchanged. Observe that each column of F (t) can be thought of as drawn from a
multivariate normal, F (t)

j ∼ N (0, US4tUT ). The covariance structure of this matrix is biased
towards higher directions of variation as t increases. The fact that the power iterations shrink noise
directions shows that power iterations impose a form of regularization. The multivariate normal
structure of this shrinkage is related to local shrinkage priors developed in Polson and Scott (2010).
In step (iv), we select an optimal block F (t∗) for t∗ ∈ {1, . . . , tmax} and estimate an orthonormal
basis for the column space. For numerical stability, each block in the intermediate power iterations
should be orthgonalized (Halko et al., 2011; Gu, 2015). In previous work (Rokhlin et al., 2009),
the authors assumed fixed target rank d∗ and approximated X rather than Xd∗ . They showed that
the optimal strategy is to set t∗ = tmax, which typically achieves excellent d∗-rank approximation
accuracy for X , even for relatively small values of tmax.
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In stage (2), we rotate the orthogonal basisQ computed in stage (1) to the canonical eigenvector
basis and scale according to the corresponding eigenvalues. In step (2.i) the data is projected onto
the low dimensional orthogonal basis Q. Step (2.ii) computes the exact SVD in the projected space.

In this work, we focus on the noisy case, where E 6= 0, and propose to adaptively set both
d∗ and t∗, aiming to optimize the generalization or out-of-sample performance of the randomized
estimator. The estimation strategy for d∗ and t∗ is described in detail in Section 2.4.3.

2.4.2 COMPUTATIONAL COMPLEXITY

The computational complexity of the randomization step is O(np × dmax × tmax) and the factor-
izations in the lower dimensional space have complexity O(np × dmax + n × d2max). With dmax

small relative to n and p, the runtime in both steps is dominated by the multiplication by the data
matrix; in the case of sparse data, fast multiplication can further reduce the run time. We use a
normalized version of the above algorithm that has the same run time complexity but is numerically
more stable (Martinsson et al., 2010).

2.4.3 ADAPTIVE METHOD TO ESTIMATE d∗ AND t∗

We propose to use ideas of stability under random projections in combination with cross-validation
to estimate the intrinsic dimensionality of the reduced subspace d∗ and the optimal value of the
eigenvalue shrinkage parameter t∗.

2.4.4 ESTIMATION OF t∗ USING BI-CROSS-VALIDATION

We propose a procedure for selecting an optimal value for t ∈ {1, . . . , tmax} by using the Bi-Cross-
Validation procedure of Owen and Perry (2009), which was used to estimate the rank or cutoff for
SVD. For our procedure, we consider a Bi-Cross-Validation formulation that uses the generalized
Gabriel holdout pattern (Gabriel, 2002) to partition the data matrix by partitioning the rows and
columns into r = 2 and c = 2 groups respectively that are non-overlapping as suggested in Owen
and Perry (2009). We then compute the following Bi-Cross-Validation error by holding out each of
the four blocks and estimating a block using the other three blocks

BiCV(t) =
1

4

[
‖A−BD†tC|‖2F + ‖B −AC†tD‖2F + ‖B −AC†tD‖2F+ (1)

‖C −DB†tA‖2F + ‖D − CA†tB‖2F
]
, here X =

(
A B
C D

)
.

In the above equation, ‖ · ‖2F is the Frobenius norm, U †t is the Moore-Penrose pseudoinverse of U
where the SVD of U is computed using Adaptive Randomized SVD(t, d(t), δ = 10), and d(t) is set
using the stability criterion developed in the next section. We optimize over the range {1, . . . , tmax}
to estimate t∗

t̂ = arg min
t∈{1,...,tmax}

BiCV(t).

In our simulation results, the value of t∗ is estimated small enough to not incur much compu-
tational overhead, yet still yields accurate results (Results Section). The original formulation of
Bi-Cross-Validation defined the hold-out error to be the Frobenius norm between the predicted and
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true submatrix (Owen and Perry, 2009). While the Frobenius and spectral norms both have upper
bounds with respect to approximation accuracy of truncated spectral decompositions, more recent
results suggest that the spectral norm may generalize better if the goal is to produce an accurate di-
mension reduction of massive data such as principal components analysis (Mahoney, 2011; Szlam
et al., 2014). We recognize the limitation of the Frobenius norm in this context, and acknowledge
that it may be wise for Bi-Cross-Validation error to use the spectral norm.

2.4.5 ESTIMATION OF d∗ USING STABILITY CRITERION

Given the number of power iterations t, we describe a procedure to estimate the rank parameter
d∗(t) using a stability criterion based on random projections of the data. We start with rough upper-
bound estimate dmax for the dimension parameter d∗. We then apply a small number (B = 5) of
independent Gaussian random projections Ω(b) ∈ Rn×dmax , Ω

(b)
ij

iid∼ N(0, 1), for b ∈ {1, . . . , B}.
Given the projections, we compute an estimate of the eigenvector basis of the column space onto
the projected data. We then denoise the estimate by raising all the eigenvalues to the power t:

U
(t)
b ≡ (U

(t)
b1 | . . . |U

(t)
bd ) = SVD[(XXT )tΩ(b)] for b ∈ {1, . . . , B}.

The k-th principal basis left singular vector estimate (k ∈ {1, . . . , d}) is assigned a stability score:

stab(t, k, B) =
1

N

B−1∑
j1=1

B∑
j2=j1+1

∣∣∣cor
(
U

(t)
j1k
, U

(t)
j2k

)∣∣∣ , where N =
B(B − 1)

2
.

Here U (t)
rk is the estimate of the kth principal eigenvector of XTX based on the r-th random pro-

jection and cor
(
U

(t)
j1k
, U

(t)
j2k

)
denotes the Spearman rank-sum correlation between U (t)

j1k
and U (t)

j2k
.

Eigenvector directions that are not dominated by independent noise are expected to have higher
stability scores. When the data has approximately low-rank, we expect a sharp transition in the
eigenvector stability between the directions corresponding to signal and to noise. In order to esti-
mate this change point, we apply a non-parametric location shift test (Wilcoxon rank-sum) to each
of the dmax−2 stability score partitions of eigenvectors with larger versus smaller eigenvalues. The
subset of principal eigenvectors that can be stably estimated from the data for the given value of t is
determined by the change point with smallest p-value among all dmax − 2 non-parametric tests.

d̂t = arg min
k∈{2,...,dmax−1}

p-value(k, t),

where p-value(k,t) is the p-value from the Wilcoxon rank-sum test applied to the {stab(t, i, B)}k−1i=1

and {stab(t, i, B)}dmax
i=k .

2.5 Fast Linear Mixed Models

Multivariate linear mixed models (LMMs) are a workhorse in statistical and quantitative genetics
because they allow for the regression of explanatory variables on outcome variables while capturing
potentially confounding relatedness between samples (Henderson, 1984; Price et al., 2011; Krote
et al., 2012). In the context of the genetic association mapping of complex traits, LMMs are used to
control for observed (known covariates) and unobserved (random effects) statistical confounding,
particularly the presence of population structure amongst samples.
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The linear mixed models in this paper take the form

y = Xβ + Zu + e,

where y is an n×1 response vector of observed phenotypes, X is an n×q matrix of fixed effects that
includes the genotypes (SNPs) and other confounding variables, β is a q × 1 vector representing
coefficients of the fixed effects, u ∼ N(0, σ2gK) is the random vector of additive genetic effects
with incidence matrix Z, and the vector e ∼ N (0, σ2eIn) is the residual error. The matrix K is the
kinship or genetic relatedness matrix and may be computed from genotype data. Parameter σ2g is
the proportion of variance in the phenotypes explained by genetic factors. The overall phenotypic
variance-covariance matrix, integrating out the random effects, is V = σ2gZKZT + σ2eIn.

The main goal in genetic association studies is to test every genetic locus for significant asso-
ciation to the phenotype based on the effect size of the coefficient βj . For each genetic locus, we
apply the following hypothesis test:

null H0 : βj = 0 alternative H1 : βj 6= 0, for j = 1, . . . , p.

The standard procedure for inferring SNPs associated with a phenotype while correcting for
population structure using an LMM proceeds in the following steps:

(1) Construct the genetic relatedness matrix (GRM): The GRM captures the genetic relationship
between individuals in the study to model population structure, family structure, and cryptic
relatedness. There are cases where the GRM may be obtained directly if the pedigree of the
individuals in the sample is known (see Thompson, 1976). In the more common setting, we
are not given pedigree information, but instead we have the p dimensional genotype vector G
for each of the n individuals. Given the genotype matrix, we can compute the GRM matrix
as GRM = GGT . In the machine learning literature, the GRM would be defined as the Gram
matrix for a linear kernel. The biological interpretation of a GRM computed from genotype
data differs slightly from the one specified by a pedigree.

(2) Estimate variance components: We first use the restricted maximum likelihood estimation
(REML) method to estimate σ2g , the proportion of phenotypic variance attributable to additive
genetic effects. Given the estimate σ̂2g , we estimate σ2ε , the proportion of phenotypic variance
attributable to environmental factors. There are several efficient algorithms for computing
the REML (Johnson and Thompson, 1995; Gilmour et al., 1995; Lin et al., 2013; Matilainen
et al., 2013). If one computes the random effects first and then the fixed effects, unbiased
estimates of the random effects can be found; this is typically the order of computations in
genomics.

(3) Compute an association statistic at each genotype location: There are a variety of procedures
to test for the significance of a genotype j using coefficients β̂j . One approach is to use an
F -statistic to test for whether (Gβ)j = 0 for each j = 1, . . . , p (Kang et al., 2008; Kennedy
et al., 1992; Henderson, 1984). Another approach is to use a likelihood ratio test considering
the variance components. Denote `1(σ̂1 as the likelihood under the alternate hypothesis with
σ̂1 = σ̂2g as the estimate of the additive genetic variance component under the alternate model.
Then denote `0(σ̂0) as the likelihood under the null (β = 0) with σ̂0 = σ̂2g the estimate of
the additive genetic variance component under the null model. The log ratio test statistic
2 log `1(σ̂1)

`0(σ̂0)
follows a χ2 distribution and may be used as a test statistic (Kang et al., 2008,

2010; Zhou and Stephens, 2012).
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Reducing the computational complexity of the LMM has been an active area of research driven
by the increasing size of association studies. A variety of methods have been proposed to increase
computational speed (see Kang et al., 2008, 2010; Lippert et al., 2011; Zhou and Stephens, 2012;
Lippert et al., 2013). The software we implemented for the results in this paper as well as our
methodology is based on EMMAX (Kang et al., 2010). EMMAX improved on EMMA (Kang
et al., 2008), which dramatically reduced the computational cost of a standard LMM by exploiting
properties of a spectral decomposition of the genotype matrix. EMMAX improves on EMMA by
approximating the variance component for each SNP based on an estimate that is computed only
once rather than for each SNP. Although we will speed up the model used in EMMAX, our approach
can be applied to other fast LMM solvers.

Our contribution to accelerating parameter estimation is using ARSVD to reduce the computa-
tional complexity of estimating the random effect u associated with the design matrix Z. An SVD
of the matrix Z has complexity O(n3). If we instead apply ARSVD to Z, we reduce the compu-
tational complexity to O(np × dmax + n × d2max). In addition, using ARSVD to decompose the
design matrix serves to denoise the GRM by retaining the low-rank structure present in the GRM.
This avoids the need to manually or heuristically subset the data to achieve a low-rank representa-
tion. We will observe in both simulated and real data examples that this application of the ARSVD
leads to both a substantial acceleration of the computational speed and an implicit regularization of
the design matrix, which reduces type I errors substantially.

3. Regularization of ARSVD

The idea of adding randomness or noise to algorithms for the purpose of regularization has been
repeatedly rediscovered (Bishop, 1995; Simard et al., 1993; Mahoney, 2011; Srivastava et al., 2014).
Adding independent and identical noise to input variables was observed and rigorously shown to
be identical to Tikhonov regularization (Bishop, 1995). Furthermore, Tikhonov regularization is
closely related to early stopping, as both regularization methods act as low pass filters (Yao et al.,
2007). On the other hand, early stopping is not subject to saturation (Vito et al., 2005; Smale and
Zhou, 2007; Yao et al., 2007). In this section we explain why principal components regression
(PCR) using ARSVD is a form of regularization. We are confident more refined analyses as well
as sharper statements and bounds can be made; our results are more motivational than a detailed
analysis.

We will use the spectral filtering framework. In particular, we will use kernel least squares ridge
regression (KRR) to illustrate spectral filtering. We then show that PCR using ARSVD is also a
spectral filter, and regularization is imposed by weighting and truncating eigenvalues of a positive
semidefinite matrix that the algorithm constructs.

3.1 Kernel Ridge Regression

We consider the regression setting, where the number of variables is much larger than the number
of observations, p� n. Given an n× p design matrix X , the ordinary least squares solution (OLS)
is computed based on the normal equations:

β̂ = (XTX)−1XTY,
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where Y is an n × 1 vector of responses and β̂ is the OLS estimate for the regression coefficients.
When p � n, the OLS estimator does not work because XTX is not invertible. In this high-
dimensional p � n setting, ridge regression (Hoerl and Kennard, 1970) addresses many of the
shortcomings of OLS. The estimation problem in ridge regression is formulated as

α̂ = (XXT + nλI)−1Y,

where λ is a regularization parameter and the induced regression function is

ŷ =

p∑
j=1

α̂jx
T
j x = β̂Tx, β̂ =

p∑
j=1

α̂jxj .

When λ = 0, we recover the OLS estimator, and, when λ = ∞, one obtains the zero solution
α̂ = 0; λ trades off between fitting the observations and shrinking the solution towards zero.

A standard nonlinear extension to ridge regression is kernel ridge regression (Poggio and Girosi,
1990; Williams and Seeger, 2001) where the regression function takes the form

f(x) =
n∑
i=1

αik(x, xi),

and k(u, v) is a positive (semi) definite function called a kernel. One example of a kernel function
is the Gaussian kernel, k(u, v) = exp(−h2‖u − v‖2). The parameters α to be estimated in kernel
ridge regression (KRR) are given by the formula

α̂ = (K + nλI)−1Y,

where the kernel matrix K is defined as Kij = k(xi, xj).

3.2 KRR as a Spectral Filter

For the purposes of this paper we will consider spectral filtering as a procedure to filter or smooth a
signal (vector) by filtering the eigenvalues of a positive (semi) definite matrix. A signal processing
perspective of KRR as a filtering operation is as follows: given the response signal Y and matrix
K, the filtering procedure is a map F (K) : Rn → Rn, where

Ŷ = FY, F = K(K + nλI)−1. (2)

The basic idea behind spectral filtering is that the filter F operates on the spectrum of the positive
(semi) definite matrix, K. In the KRR setting, a natural basis for the matrix F is the eigenvectors
of K, and we define the orthonormal matrix V = [v1 · · · vm] with (vj)

m
j=1 the m eigenvectors of K

with nonzero eigenvalues. The filter F can be written as

F = (v1 v2 · · · vm)


f(σ1)

f(σ2) 0
. . .

0 . . .
f(σm)




vT1
vT2
...
vTm

 , (3)
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where the spectrum of K is filtered by the function f(σi) = σi
σi+λ

. The filter given in equation
(3) can be thought of as a low pass filter that is smoothing the signal Y by shrinking higher fre-
quency eigenvectors—those eigenvectors corresponding to small eigenvalues. In the case of the
linear kernel, which is the focus of our paper, K is the Gram matrix, Kij = xTi xj .

3.3 Randomized Principal Component Regression as a Spectral Filter

The standard formulation of principal components regression (PCR) is specified by the model

yi = βT zi + εi, εi
iid∼ N(0, σ2), (4)

where zi = xTi V with xi an observation in Rp and V = [v1 · · · vm] are the m eigenvectors corre-
sponding to the top eigenvalues of the empirical covariance matrix. The idea of PCR is that pro-
jection onto the top principal component reduces variance without much loss in bias. The nonzero
eigenvalues of the Gram matrix and the empirical covariance matrix are identical, so one can com-
pute V from the Gram matrix Kij = xTi xj .

Again, we consider the case where p� n and assume that the ARSVD procedure sets the max-
imum rank dmax � n � p. In the following, we will formulate principal components regression
as a spectral filter analogous to a filtering formulation of KRR in (2). We will make some approxi-
mations in this analysis as the form of the filter in the case of ARSVD is not straightforward due to
randomization. The randomization and power iterations of ARSVD impact the spectral filter F in
two ways: The filter no longer operates on the eigenvalues of the Gram matrix, and the eigenvectors
of the spectral filter are not given by the eigenvalues of the Gram matrix.

Our analysis will consist of two observations. The first is that the eigenvectors of the exact gram
matrix K and the eigenvectors of the Gram matrix induced by the ARSVD procedure are close
approximations. This observation will allow us to use the eigenvectors of the exact Gram matrix in
our analysis of the spectral filter. The second observation is based on a series of papers (Gerfo et al.,
2008; Rudi et al., 2013, 2015) that illustrated a common regularization framework for some fam-
ilies of truncation-based algorithms including truncated SVD and PCR, early stopping of iterative
procedures, and regularization algorithms such as ridge regression. The filter function for PCR is

f(σ) =

{
1 σ ≥ τ
0 otherwise,

here τ is the eigenvalue cutoff.

In the case of ARSVD, we generate a random matrix Ω with Ωij
iid∼ N(0, 1). The following

power iterations are then taken of a random projection onto the Gram matrix

G(t) = (XXT )tΩ = UΣ2tUTΩ = UΣ2tΩ∗, with X = UΣV T ,

where U , Σ, and V correspond to a standard SVD of X . A basis is computed from matrix G(t) via
QR decomposition,

G(t) = QR ∈ Rn×`, QTQ = I.

The data are then projected onto this basis B = XTQ ∈ Rp×` and a standard SVD is run on the
much lower rank matrix B. If the eigenvectors of XXT and BBT are equal, then the following

12
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spectral filter can be specified for the PCR with ARSVD based on the eigenvalues of the Gram
matrix of the data

Ŷ = FY, F = V Λf(σ) V
T , Λf(σ) = diag(f(σ1), ..., f(σn)), f(σi) =

σ2ti
σ2ti + τ

, (5)

where τ is a threshold parameter. The derivation of this spectral filter is based on results in Gerfo
et al. (2008) and Rudi et al. (2013). In the limit of infinite power iterations, the spectral filter is
simply a hard thresholding algorithm

lim
t→∞

f(σi) =

{
1 σi > 1

0 σi > 1.

This asymptotic analysis suggests that scaling each eigenvalue σi := σi/τ can be used to threshold
at the level 1/τ .

We now show that the eigenvectors for XXT and BBT are equivalent, at least for eigenvectors
corresponding to larger eigenvalues. This allows us to interpret the filter in terms of the eigenvalues
of the Gram matrix XXT . If the matrix Ω is orthogonal, then the eigenvectors corresponding to the
top ` eigenvalues of XXT and BBT would be equivalent, modulo a constant scale term, which we
can set without loss of generality. We argue that the matrix Ω is ε-quasiorthogonal. A set of unit
norm vectors µ1, ..., µM ∈ Rn is ε-quasiorthogonal (Kainen and Kůrková, 1993; Hecht-Nielsen
and Kůrková, 1992) if their inner products are small |µi · µj | ≤ ε. In Indyk and Motwani (1998,
Appendix A), it was shown that, for a random matrix with elements drawn exactly as Ω, the columns
are ε-quasiorthogonal.

Beyond principal component regression, the top eigenvalues are important to estimate for many
machine learning methods, including graph Laplacian objectives. Graph Laplacians form a key
component of practically important algorithms including computing the heat kernel of a graph and
PageRank (Mahoney and Orecchia, 2010). It has been shown that approximation algorithms such
as ARSVD solve an exact optimization problem with an explicit regularization term (Mahoney and
Orecchia, 2010; Perry and Mahoney, 2011).

3.4 Randomization and Leverage Scores

The idea of subsampling observations to generate the Gram matrix is at the heart of Nyström meth-
ods (Williams and Seeger, 2001; Drineas and Mahoney, 2005). For runtime considerations, a Gram
matrix is constructed as the approximation G̃ = CTW−1C, where C is a p × c matrix where c
is a uniform subsample of the n observations and W is an n × n incidence matrix of which rows
and columns are included in the subsample. There is a great deal of work in the machine learning
literature arguing why it is that the Nyström method results in faster algorithms, and recent work
illustrating why this numerical approximation can be formulated as a regularization method (Rudi
et al., 2013, 2015). Another subsampling perspective is based on leverage scores. Given a de-
sign matrix X and the corresponding left singular vectors U the leverage score of a sample is
`j = ||Uj ||2 (Gittens and Mahoney, 2013) and can be thought of as a measure of relevance of the
jth sample to the linear regression function. An alternative to uniformly sampling observations is
to sample them according to the leverage score, pj ∝ `j = ||Uj ||2, so points with higher leverage
scores will more likely be sampled. Indeed, it has been shown that leverage scores drive the accu-
racy of the the Nyström method, and the uniform sampling approach is optimal when the leverage
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scores are almost equal; in the case when the leverage scores are variable, importance sampling ac-
cording to the leverage score has been used (Drineas et al., 2012). It has been shown previously that
random projections project into a space where leverage scores are nearly uniform (Drineas et al.,
2012; Mahoney, 2011).

4. Results on Real and Simulated Data

We use real and simulated data to highlight the following three major contributions of this paper

1. In the presence of informative low-rank structure in the data, randomized algorithms tend to
be much faster than exact methods with minimal loss in approximation accuracy.

2. The rank and subspace containing information in the data can be reliably estimated and used
to provide efficient solutions for dimension reduction.

3. The randomized algorithms implicitly impose regularization, which can be adaptively con-
trolled in a computationally efficient manner to produce improved out-of-sample perfor-
mance.

4.1 Simulated Data

4.1.1 UNSUPERVISED DIMENSION REDUCTION

We begin with unsupervised dimension reduction of data with low-rank structure contaminated with
Gaussian noise, and we focus on evaluating the application of Adaptive Randomized SVD for PCA
(see Section 2.4). In particular, we demonstrate that the proposed method estimates the sample
singular values with exponentially decreasing relative error in t. Then we show that achieving
similar low-rank approximation accuracy to a state-of-the-art Lanczos method requires the same
run time complexity, which scales linearly in both dimensions of the input matrix. This makes our
proposed method applicable to large data matrices. Lastly, we demonstrate the ability to adaptively
estimate the underlying rank of the data, given a coarse upper bound. In all our simulations, we set
the oversampling parameter in ARSVD, ∆ = 10.

We note that the oversampling parameter is crucial in scientific computing applications such
as ours. In particular, setting this parameter will be application-specific and depend heavily on the
structure of the input data, such as sparsity and distributional properties. For worst-case matrices,
our algorithm has potential to produce sub-optimal results (Mahoney, 2011). In general, high qual-
ity results—both empirical and theoretical—are achieved by setting the oversampling parameter
between five and ten (Halko et al., 2011).

4.1.2 SIMULATION MODEL

We first state the simulation model used for most of the results in this subsection. The data matrix
X ∈ Rn×p, is generated as follows: X = USV T + E, where UTU = V TV = Id∗ . The d∗

columns of U and V are drawn uniformly at random from the corresponding unit sphere and the
singular values S = diag(s1, . . . , sd∗) are randomly generated starting from a baseline value, which is
a fraction of the maximum noise singular value, with exponential increments separating consecutive

14



ADAPTIVE RANDOMIZED DIMENSION REDUCTION ON MASSIVE DATA

entries:

sj = sj−1 + νj , for j ∈ {2, . . . , d∗}

νj
iid∼ Exp(λ), ν0 = s

(E)
1 .

The noise is iid Gaussian: Eij
iid∼ N

(
0, 1n

)
. The gaps between singular values, νj , follow an expo-

nential distribution with rate parameter λ to control the signal-to-noise ratio (Table 1). The sample
variance has the SVD decomposition E svd

= UESEV
T
E , where SE = diag

(
s
(E)
1 , . . . , s

(E)
min(n,p)

)
are

the singular values in decreasing order. While there exist other working models for the noise struc-
ture, here we chose to investigate the current model and that of latent population structure because
of its relevance to the genetic data that we wish to model (Section 4.1.4). Our simulations and ge-
netic data experiments show that the assumptions we make on this particular noise model generalize
well to genetics data.

4.1.3 RESULTS

The first objective is to show that we can accurately estimate singular values with very few power
iterations. Our focus is on understanding the effect of the regularization parameter t controlling the
singular value shrinkage. Larger values correspond to a stronger weighting on directions with large
eigenvalues. In our first simulation we assume the rank d∗ is fixed to 50 and the input matrix is
2, 000× 5, 000. Studying the estimates of the percent relative error of the singular values averaged
over ten simulated data sets. The relative error given a singular value estimate σ̂ and singular value σ
is
(
σ−σ̂
σ

)
. We observed exponential convergence to the sample estimates with increasing t (Table 1).

This suggests that we can capture the variation in the data with a few data matrix multiplications.
We measure the error in our estimates using a signal-to-noise (S/N) metric

‖S‖2F
‖E‖2F

, S is the signal matrix and E is the error or residual matrix.

The signal matrix has a maximum of d∗ non-zero singular values, and thus the calculation of the
Frobenius norm only includes the top d∗ singular values in computing both ‖S‖2F and ‖E‖2F .

λ S/N t = 1 t = 2 t = 3 t = 4 t = 5

2 2.39 2.34± 1.23 1.18± 0.63 0.72± 0.43 0.48± 0.32 0.35± 0.25
4 0.61 3.32± 1.32 1.67± 0.47 1.00± 0.28 0.68± 0.20 0.50± 0.16
6 0.15 5.04± 1.53 2.97± 0.66 1.86± 0.41 1.30± 0.30 0.97± 0.24
8 0.13 6.26± 1.87 3.48± 0.42 2.14± 0.28 1.47± 0.21 1.08± 0.18

Table 1: Singular values from ARSVD. We report the relative error for singular value estimates
with ±1 standard deviation. A linear increase in the regularization parameter t results in a
exponential decrease in the error. S/N is the signal to noise ratio and a function of λ.

It is also of interest to characterize the decay in accuracy in estimating singular values using
the randomized method as the magnitude of the true singular values decreases. When we consider
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the rank-ordered singular values for a fixed matrix as well as the distribution of the singular values
computed via various runs of the ARSVD, an interesting observation is that the estimates are biased
for small singular values (Figure 1). Data were generated from n = 1, 000 and p = 1, 000 with
true rank d∗ = 50. For the smallest singular values, ARSVD tends to underestimate the singular
values, and the standard error is larger. This bias can be considered a form of regularization that
shrinks directions corresponding to small singular values. We will discuss this property further in
Section 4.1.4.
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Figure 1: Singular value accuracy of ARSVD. Simulation results comparing estimation accuracy
of singular values for ARSVD versus SVD on pseudo-random matrices of dimension
n = 1, 000 and p = 1, 000. The exact singular values are in red and confidence intervals
for the singular values computed using ARSVD are in blue.

We can compare the runtime of randomized SVD (RSVD) to two standard spectral decomposi-
tions methods. We denote the singular value decomposition of a data matrix X as SVD. We denote
as eig the procedure first computing Σ̂ = XXT and then computing the spectral decomposition
of Σ̂. For this simulation, we generate pseudo-random matrices that are n × p such that n = p

10 .
For the RSVD procedure we will set the rank parameter to 100. We ran the SVD procedure on
matrices with p = [2000, 40000], we did not exceed 40,000 due to computational constraints. We
ran the eigenvalue procedure on matrices with p = [2000, 80000]. We ran our RSVD procedure on
matrices with p = [2000, 100000]. Examining the runtime of the three methods in terms of CPU-
seconds compared to the size of the matrix, which we index as p, we see on a log scale that RSVD
dramatically outperforms the other two methods (Figure 2).
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Figure 2: Comparison of three spectral methods. We compare RSVD, SVD, and eig. The x-axis
indexes matrix size as p and the y-axis is the runtime in seconds. Both axes are on a log
scale.

A natural question is whether the randomization offers any advantage over well developed effi-
cient methods, such as Lanczos-Krylov Subspace estimation, which also operate on the data matrix
only through matrix multiplies (Saad, 1992; Lehoucq et al., 1998; Stewart, 2001; Baglama and
Reichel, 2006). These subspace methods are also iterative in nature, with the runtime complexity
typically scaling as O(qnp), where q is small. We compare the runtime ratio of our RSVD with
a state-of-the-art low-rank approximation algorithm, the blocked Lanczos method implemented in
the CRAN package irlba (Baglama and Reichel, 2006). Data were generated from n = 1000 and
p = 1000 with true rank d∗ = 50, and we varied t in ARSVD. We ran both ARSVD and blocked
Lanczos until the Frobenius norm reconstruction error to the original matrix was equal to one degree
of precision. We report the ratio of the runtime of ARSVD over blocked Lanczos computed on ten
simulated data sets (Table 2). The relative runtime remains approximately constant with simultane-
ous increase in both data dimensions, which suggests similar order of complexity for both methods
when the latent rank of the data (d∗) is supplied as a static parameter to each method. The relative
runtime decreases exponentially when using ARSVD to dynamically estimate the latent rank versus
using Bi-Cross-Validation to dynamically estimate the rank supplied to block Lanczos.

We now examine our ability to accurately estimate the rank of the matrix using the adaptive
stability-based approach outlined in Section 2.4.3. We generated 50 random data sets with n =

1000, p = 1000, d∗ iid∼ Uniform[10, 50]. We set the initial rank upper bound estimate to be 2×d∗ and
used the stability based method (Section 2.4.3) to estimate both optimal t∗ and the corresponding d∗.
We compared the true rank and the corresponding estimates of the regularization parameter t∗ for
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n + p 6,000 7,500 9,000 10,500 12,000
relative time
(static rank)

2.5± 0.05 1.84± 0.03 1.82± 0.03 1.83± 0.02 1.84± 0.04

n + p 2,000 3,500 5,000 6,500 8,000
relative time
(dynamic rank)

3.49± 1.10 0.58± 0.26 0.46± 0.21 0.04± 0.01 0.25± 0.11

Table 2: Runtime ratio of ARSVD versus block Lanczos. We report the sample mean and stan-
dard error of ARSVD over block Lanczos based on ten random replicate data sets across
dimensionality n+p. n is incremented by 500 and p is incremented by 1, 000. In the static
rank experiments, the latent rank d∗ is supplied as a static parameter to both methods. In
the dynamic rank experiments, ARSVD estimates the latent rank using the algorithm pre-
viously described, and we use Bi-Cross-Validation to dynamically estimate the latent rank
supplied to block Lanczos. ARSVD is run for as many iterations as needed until the sam-
ple error is equal to within one degree of precision, thus we do not dynamically estimate
the number of power iterations, t∗, in these experiments.

two different signal-to-noise scenarios (Figure 3). In both scenarios, the rank estimates agreed with
the true rank values. If the signal-to-noise ratio is low, then our procedure slightly underestimates
the rank. We suspect this underestimate is due to the fact that the few smallest variance signal
directions tend to be difficult to distinguish from the random noise and hence are less stable under
random projections. Our approach tends to select small values for t∗, especially when there is a
clear separation between the signal and the noise.
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Figure 3: Rank estimation of ARSVD. Rank estimation results after performing ARSVD on 50

pseudo-random matrices of dimension n = 10000 and p = 10000, with true rank d∗ iid∼
Uniform[10, 50]. Matrices are generated as described in Section 4.1.1. Panel A: True
rank (d∗) on the x-axis, and estimated rank (d̂∗) on the y-axis. Panel B: estimations of t∗

with max t set to ten.
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4.1.4 LATENT POPULATION STRUCTURE

We examine how accurately ARSVD can be used to correct latent or cryptic population structure.
Specifically, we compared the performance of an LMM using ARSVD versus a standard LMM. We
simulated genotype and phenotype data where the genotypes have latent population structure that,
once corrected for, there remains no association between genotype and phenotype. In other words,
the phenotype is conditionally independent of the genotype given the latent (population) structure.
This relation is sometimes called the confounding effect of cryptic structure in genomic data, and
motivates the need for LMMs in genome-wide studies. Given that simulations are entirely under
the null hypothesis of no association between genotype and phenotype, p-values should follow a
uniform distribution if the random effect controls population structure appropriately. We consider
any result exceeding an α-threshold a false positive, occurring at rate α.

We use the model stated in Mimno et al. (2014) to simulate admixed genotypes withK ancestral
populations. The genotype of an individual is generated by the following hierarchical model

θi ∼ DirK(α),

φk ∼ Beta(1, 1), k = 1, ...,K,

(z1,ij , z2,ij) ∼
(

Mult(θi),Mult(θi)
)

for j = 1, ..., p

(x1,ij , x2,ij) ∼
(

Bin(φz1,ij ),Bin(φz2,ij )
)

for j = 1, ..., p.

The first step samples the the admixture proportions for individual i. The second step samples the
allele frequency distribution for populations k = 1, . . . ,K. The third step samples the population
of origin for both allele copies over all loci, j = 1, . . . , p. The final step samples both copies
of the alleles at each locus j. We generated the phenotype using the following relation: yi ∼
Be(0.5θk + 0.1(1− θk)).

We looked at four simulation settings n = p = 1000, n = p = 5000, n = 1000, p = 5000,
and n = 5000, p = 1000. Using the p-values for a LMM using ARSVD with the rank parameter
d∗ of the ARSVD specified, we see that the standard LMM is recovered in the limit of d∗ = p
(Figure 4). Of these settings, the case where n = 1000, p = 5000 is the most similar to the standard
genomics case where the number of SNPs p is much larger than the number of observations n. A
summary of these simulation results is that the ARSVD method is much faster than the standard
LMM and performs similarly with respect to correcting for population structure and controlling
false positives. We observed that, for the simulation with n = 1000, p = 5000, using ARSVD leads
to a substantial reduction of computational complexity with similar performance. In general, we
expect the tradeoff between computational efficiency and accuracy to depend on the data. In the
case of structured genomic data, we report in these simulations and in Section 4.1.4 that massive
computational savings are accompanied by numerical accuracy.

4.2 Association Mapping in Large Genomic Data

We applied our LMM with ARSVD to a large genomic data set to illustrate that we can achieve con-
siderable computational efficiency without loss in accuracy. In particular, we applied our method
to the Wellcome Trust Case Control Consortium (WTCCC) data (Consortium, 2007). The data we
consider consist of a case-control study of 4, 684 individuals. The cases are individuals with Crohn’s
disease, and the number of features are 478,765 genetic variants across the 22 autosomal chromo-
somes in the genome. We compared our ARSVD method with state-of-the-art LMMs designed for

19



DARNELL, GEORGIEV, MUKHERJEE, & ENGELHARDT

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●●

●
●

●●●
●

●

●

●

●

●
●
●●●

●●

●

●

●
●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●
●●
●●●●●
●

●●●
●
●
●●
●
●●

●
●●
●●●
●●●●●

●

●

●

●
●
●

●●

●●
●

●

●

●

●

●

●●

●

●

●●

●●●●

●

●
●

●●

●●
●
●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●
●

●

●

●

●●●●●●

●

●●●
●
●●●●●●●●●

●

●

●●

●

●

●●

●

●●

●

●●●●

●●

●

●

●●●●●●

●

●●●●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●●●●●●

●

●
●
●●●

●

●

●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●●

●

●
●●

●

●●●

●

●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●
●
●

●
●●

●

●
●●

●

●

●

●

●●●●

●

●

●●

●

●●●
●
●●●

●

●●
●
●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●
●

●●
●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●●●
●
●●

●

●

●

●
●

●
●

●●●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●●●
●●
●

●

●●

●

●

●

●

●

●

●
●●●●

●

●●●

●

●●●●

●

●
●●

●
●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●●●●
●
●

●

●

●●●●●●●●●●
●●
●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●

●

●
●
●●
●
●●●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●

●
●●●●●

●

●●●

●

●

●

●●

●

●●●
●
●●●●●●

●

●

●

●●●●●

●

●●

●

●●

●

●

●●

●

●●●●●
●
●

●

●●●●

●

●●●●●

●

●●

●

●●

●

●

●

●●●

●
●
●

●

●●●●●

●

●●●●●●

●

●●●●●

●●
●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●
●●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●
●●●●●●

●

●●●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●

●

●

●●●●

●

●●●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●
●●●●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●●●●

●
●

●
●●

●

●

●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●

●●

●

●●

●

●
●
●●

●

●

●

●●●●●●●●●●●●●●●●●

●
●●

●

●

●●●

●

●●●
●

●●●

●

●
●
●

●

●
●●
●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●
●
●

●

●●
●
●●●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●

●

●●●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●

●

●

●

●●●●

●

●●

●

●
●●

●

●●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●●●●
●
●●

●

●

●●●●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●
●●●●

●

●

●

●●
●●●

●

●

●

●●●●

●

●●●●●●●●●●●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●
●

●

●●●●●

●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●

●

●●●
●
●●

●

●●●●●●●●●
●
●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●

●

●

●

●●
●
●

●

●

●

●

●

●●

●●●●●

●

●●●●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●

●

●●
●

●

●

●

●

●●●●

n = 1,000   p = 1,000 n = 1,000   p = 5,000

n = 5,000   p = 1,000 n = 5,000   p = 5,000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

10 100
200

300
400

500
600

700
800

900
1000

10 500
1000

1500
2000

2500
3000

3500
4000

4500
5000

10 100
200

300
400

500
600

700
800

900
1000

10 500
1000

1500
2000

2500
3000

3500
4000

4500
5000

Rank

P−
Va

lu
e

Fraction False Positives
0.0086
0.009
0.016
0.0162
0.0176
0.018
0.0198
0.021
0.03
0.0314
0.042
0.045
0.062
0.068
0.0722
0.1042
0.106
0.1622
0.167
0.2452
0.25
0.275
0.311
0.343
0.396
0.41
0.412
0.418
0.452
0.516
0.611
0.729
0.816
0.82
0.9144
0.919

Figure 4: Controlling for structure. RSVD with pylmm is applied to four simulation settings
with varying n and p. The x-axis is the setting of the ARSVD parameter d∗. The y-axis
corresponds to the p-values from the LMM for each of the p features. The color of each
box plot represents the fraction of false positive rate of the LMM using ARSVD.

association studies. Our LMM with ARSVD procedure uses EMMAX (pylmm) to solve the LMM.
The two methods we compared to are EMMAX with the addition of ARSVD and GEMMA (Zhou
et al., 2013) (GEMMA is executed with the -lmm option to most closely approximate the analysis
that pylmm performs).

ARSVD on the whole genome took 82.2 seconds, while a traditional eigendecomposition of
the covariance matrix in pylmm took 88 mins 23.9 seconds. In order to most accurately control
for the test statistic computed in a LMM and to achieve maximal statistical power, it is suggested
that a covariance matrix is constructed once per (22) chromosomes, performed by holding out the
test chromosome and concatenating the remaining chromosomes (Yang et al., 2014). Our method
performs the 22 decompositions in a total of 5 mins 4.8 secs, while the traditional decomposition
method takes 4 hrs 24 mins.

In the remainder of this subsection, we denote the culling of EMMAX with ARSVD as pylmm.
It has been observed (Zhou et al., 2013) that the effect sizes of the coefficients are similar whether
one applies linear regression or logistic regression to most case-control genomic studies. Estimates
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of β for pylmm and GEMMA are strongly correlated. The distributions of p-values computed
by pylmm show enrichment in low p-values. This suggests that the regularization in pylmm may
capture additional associations.
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Figure 5: Comparison of pylmm and GEMMA. A) A scatter plot of the β-values for GEMMA
on the x-axis versus the β-values for pylmm on the y-axis. B) Histogram of p-values for
both methods, GEMMA in red and pylmm in blue.

We compared the most significant associations that we identified to results from other analyses
of Crohn’s disease. One source of associations is from a large-scale meta-analysis of Crohn’s disease
consisting of 6,333 affected individuals (cases) and 15,056 controls, and the top association signals
were followed up on in 15,694 cases, 14,026 controls, and 414 parent-offspring trios (Franke et al.,
2010). We denote this list as MA. In Listgarten et al. (2012), the list of associated genetic variants
collected includes the MA list as well as the WTCCC list. The major histocompatibility complex
(MHC) is a region that has been previously associated to Crohn’s disease and autoimmune disease
in general. We denote the list of variants in this region as MHC. We report the overlap between the
results obtained from our method to the MA list, the union of the WTCCC and MA lists, and the
union of the WTCCC, MA, and MHC lists. (Table 3). We select our top hits using two cutoffs: the
top 0.5% with respect to negative log p-value, and the associations that pass a local false discovery
rate (LFDR) of 5% (Strimmer, 2008).

We identified several potential genetic variants associated with Crohn’s that were previously
unidentified. In particular, there are a few genetic variants within the 3.6MB region that defines
the MHC on chromosome 6 in the human genome (sequencing consortium, 1999) at an LFDR
threshold of 10%. Genetic variant rs9269186 (p ≤ 7.03 × 10−7) is below the LFDR threshold of
1% and lies within 5 kilobases (KB) of the start of the HLA-DRB5 gene, putatively acting to regulate
transcription of this protein-coding gene that produces a membrane-bound class II molecule. The
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HLA-DRB5 protein is an antigen that has an important role in the human immune system, and thus
may play a role in an autoimmune disorder such as Crohn’s disease.

source significant variants top 0.5% LFDR 5%
MA+WTCC+MHC 151 61 35
MA + WTCCC 93 48 30
MA 81 47 29

Table 3: Overlap of genetic associations with prior studies. Columns represent the number of
associations (significant variants) in the MA, WTCCC studies and the number of variants
in the MHC region; the overlap of our list with the associations in these lists with a cutoff
of the top 0.5% of our associations; and overlap at an LFDR threshold of 5%.

5. Discussion

Massively high-dimensional data sets are ubiquitous in modern data analysis settings. In this paper,
we provide a scale method for accurate computation using spectral decompositions for data analysis.
The main computational tool we use is based on recent randomized algorithms developed by the
numerical analysis community. To address the issue of noise, we provide an adaptive procedure to
estimate both the rank d∗ of the lower dimensional projection and the number of Krylov iterations
t∗ for the randomized approximate SVD. Using this adaptive estimator of low-rank structure, we
implement efficient algorithms for PCA and linear mixed models. An interesting observation both
from an empirical and theoretical perspective is that our randomized algorithm implicitly imposes
regularization.

In simulated experiments we show high accuracy in recovering the true (latent) rank of matrices
with low-rank substructure, without the need for many Krylov iterations. Additionally, we show in
simulations that our method performs implicit regularization and improves quantitative properties of
results under various types of data structure. Furthermore, our results on large genome-wide asso-
ciation studies show that our approach to using ARSVD in linear mixed models fills a critical need
for methods with computational efficiency that do not sacrifice the desirable statistical properties of
traditional LMMs.

Some important open questions still remain:

(1) There is need for a more refined theoretical framework to quantify what generalization guar-
antees the randomization algorithm can provide on out-of-sample data, and the dependence
of this bound on the noise and the structure in the data on one hand and on the parameter
settings on the other.

(2) A probabilistic interpretation of the algorithm could contribute additional insights (Mahoney,
2011) into the practical utility of the proposed approach under different assumptions. In
particular, it would be interesting to relate our work to a Bayesian model with posterior modes
that correspond to the subspaces estimated by the randomized approach.
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(3) The implicit regularization on latent factors imposed by ARSVD should be further explored
with respect to the structure of the noise, and its impact on estimates of random effects in
LMMs (Runcie and Mukherjee, 2013).
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Appendix A. Generalized Eigendecomposition and Dimension Reduction

The appendix states a variety of dimension reduction methods supervised, unsupervised, and non-
linear that can use the ARSVD engine to scale to massive data. The key requirement is a formulation
of the truncated generalized eigendecomposition problem that can be implemented by the Adaptive
Randomized SVD from Section 2.4. The dimension reduction methods we will focus on are sliced
inverse regression (SIR) and localized sliced inverse regression (LSIR).

A.1 Problem Formulation

Assume we are given Σ ∈ Sp++,Γ ∈ Sp+ that characterize pairwise relationships in the data and let
r � min(n, p) be the “intrinsic dimensionality” of the information contained in the data. In the
case of supervised dimension reduction methods this corresponds to the dimensionality of the linear
subspace to which the joint distribution of (X,Y ) assigns non-zero probability mass. Our objective
is to find a basis for that subspace. For SIR and LSIR this corresponds to the span of the generalized
eigenvectors {g1, . . . , gr} with largest eigenvalues {λmax = λ1 ≥ . . . ≥ λr}:

Γg = λΣg. (6)

An important structural constraint we impose on Γ, which is applicable to a variety of high-dimensional
data settings, is that it has low-rank: r ≤ d∗ ≡ rank(Γ) � p. It is this constraint that we will take
advantage of in the randomized methods. In the case of Σ = I (unsupervised case), r = d∗.

A.2 Sufficient Dimension Reduction

Dimension reduction is often a first step in the statistical analysis of high-dimensional data and
could be followed by data visualization or predictive modeling. If the ultimate goal is the latter,
then the statistical quantity of interest is a low dimensional summary Z ≡ R(X) which captures all
the predictive information in X relevant to Y :

Y = f(X) + ε = h(Z) + ε, X ∈ Rp, Z ∈ Rr, r � p.
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Sufficient dimension reduction (SDR) is one popular approach for estimating Z (Li, 1991; Cook
and Weisberg, 1991; Li, 1992; Li et al., 2005; Nilsson et al., 2007; Sugiyama, 2007; Cook, 2007;
Wu et al., 2010). In this appendix we focus on linear SDRs: G = (g1, . . . , gr) ∈ Rp×r ⇒ R(X) =
GTX , which provide a prediction-optimal reduction of X .

(Y | X)
d
= (Y | GTX),

d
= is equivalence in distribution.

We will consider two specific dimension reduction methods: Sliced Inverse Regression (SIR)
(Li, 1991) and Localized Sliced Inverse Regression (LSIR) (Wu et al., 2010). SIR is effective
when the predictive structure in the data is global, i.e., there is single predictive subspace over the
support of the marginal distribution of X . In the case of local or manifold predictive structure in the
data, LSIR can be used to compute a projection matrix G that contains this non-linear (manifold)
structure.

A.3 Efficient Solutions and Approximate SVD

SIR and LSIR reduce to solving a truncated generalized eigendecomposition problem as formulated
in (6). Since we consider estimating the dimension reduction based on sample data we focus on the
sample estimators Σ̂ = 1

nX
TX and Γ̂XY = XTKXYX , where KXY is symmetric and encodes

the method-specific grouping of the samples based on the response Y . In the classic statistical
setting, when n > p, both Σ̂ and Γ̂XY are positive definite almost surely. Then, a typical solution
proceeds by first sphering the data: Z = Σ̂−

1
2X , e.g., using a Cholesky or SVD representation

Σ̂ = Σ̂
1
2 (Σ̂

1
2 )T . This is followed by eigendecomposition of Γ̂ZY Li (1991); Wu et al. (2010) and

back-transformation of the top eigenvectors directions to the canonical basis. The computational
time is O(np2). When n < p, Σ̂ and Γ̂ are rank-deficient and a unique solution to the problem (6)
does not exist. One widely-used approach, which allows us to make progress in this problematic
setting, is to restrict our attention to the directions in the data with positive variance. Then we can
proceed as before, using an orthogonal projection onto the span of the data. The total computation
time in this case is O(n2p). In many modern data analysis applications both n and p are very large,
and hence algorithmic complexity of O[max(n, p) × min(n, p)2] could be prohibitive, rendering
the above approaches unusable. We propose an approximate solution that explicitly recovers the
low-rank structure in Γ using Adaptive Randomized SVD from Section 2.4. In particular, assume
rank (Γ) = d∗ ≥ r (where r is the dimensionality of the optimal dimension reduction subspace).

Then Γ
svd
= US2UT , where U ∈ Rp×d∗ . The generalized eigendecomposition problem (6) solution

becomes restricted to the subspace spanned by the columns of Γ:

S−1UTΣUS−1e =
1

λ
e, e ≡ SUT g. (7)

The dimension reduction subspace is contained in the span(G), where

G = (US−1e1, . . . , US
−1er).
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