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Abstract

Ranking and comparing items is crucial for collecting information about preferences in many
areas, from marketing to politics. The Mallows rank model is among the most successful
approaches to analyze rank data, but its computational complexity has limited its use to
a particular form based on Kendall distance. We develop new computationally tractable
methods for Bayesian inference in Mallows models that work with any right-invariant dis-
tance. Our method performs inference on the consensus ranking of the items, also when
based on partial rankings, such as top-k items or pairwise comparisons. We prove that
items that none of the assessors has ranked do not influence the maximum a posteriori con-
sensus ranking, and can therefore be ignored. When assessors are many or heterogeneous,
we propose a mixture model for clustering them in homogeneous subgroups, with cluster-
specific consensus rankings. We develop approximate stochastic algorithms that allow a
fully probabilistic analysis, leading to coherent quantifications of uncertainties. We make
probabilistic predictions on the class membership of assessors based on their ranking of
just some items, and predict missing individual preferences, as needed in recommendation
systems. We test our approach using several experimental and benchmark data sets.
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1. Introduction

Various types of data have ranks as their natural scale. Companies recruit panels to rank
novel products, market studies are often based on interviews where competing services or
items are compared or ranked. In recent years, analyzing preference data collected over the
internet (for example, movies, books, restaurants, political candidates) has been receiving
much attention, and often these data are in the form of partial rankings.

Some typical tasks for rank or preference data are: (i) aggregate, merge, summarize
multiple individual rankings to estimate the consensus ranking; (ii) predict the ranks of
unranked items at individual level; (iii) partition the assessors into classes, each sharing a
consensus ranking of the items, and classify new assessors to a class. In this paper we phrase
all these tasks (and their combinations) in a unified Bayesian inferential setting, which allows
us to also quantify posterior uncertainty of the estimates. Uncertainty evaluations of the
estimated preferences and class memberships are a fundamental aspect of information in
marketing and decision making. When predictions are too unreliable, actions based on
these might better be postponed until more data are available and safer predictions can be
made, so as not to unnecessarily annoy users or clients.

There exist many probabilistic models for ranking data which differ both in the data
generation mechanism and in the parametric space. Two of the most commonly used are the
Plackett-Luce, PL, (Luce, 1959; Plackett, 1975) and the Mallows models (Mallows, 1957).
The PL model is a stage-wise probabilistic model on permutations, while the Mallows model
is based on a distance function between rankings. Inferring the parameters of the PL dis-
tribution is typically done by maximum likelihood estimation, using a minorize/maximize
algorithm (Hunter, 2004). A Bayesian approach was first proposed by Guiver and Snelson
(2009). Caron and Teh (2012) perform Bayesian inference in a Plackett-Luce model with
time-dependent preference probabilities, and further develop the framework in Caron et al.
(2014), where a Dirichlet process mixture is used to cluster assessors based on their pref-
erences. The parameters in the PL model are continuous, which gives to this model much
flexibility. Volkovs and Zemel (2014) develop a generalization of the PL model, called multi-
nomial preference model, which deals with pairwise preferences, even inconsistent ones, and
extends to supervised problems. One difficulty of this method is the use of gradient optimiza-
tion in a non-convex problem (which can lead to local optima), and the somewhat arbitrary
way of imputing missing ranks. Compared to the PL model, the Mallows model has the
advantage of being flexible in the choice of the distance function between permutations.
It is also versatile in its ability to adapt to different kinds of data (pairwise comparisons,
partial rankings). However, for some distances exact inference is very demanding, because
the partition function normalizing the model is very expensive to compute. Therefore most
work on the Mallows has been limited to a few particular distances, like the Kendall dis-
tance, for which the partition function can be computed analytically. Maximum Likelihood
inference about the consensus ranking in the Mallows model is generally very difficult, and
in many cases NP-hard, which lead to the development of heuristic algorithms. The inter-
esting proposal of Lu and Boutilier (2014) makes use of the Generalized Repeated Insertion
Model (GRIM), based on the EM algorithm, and allows also for data in the form of pairwise
preferences. Their model focuses on the Kendall distance only, and it provides no uncer-
tainty quantification. Another interesting EM-based approach is Khan et al. (2014), which
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is driven by expectation propagation approximate inference, and scales to very large data
sets without requiring strong factorization assumptions. Among probabilistic approaches,
Meilǎ and Chen (2010) use Dirichlet process mixtures to perform Bayesian clustering of
assessors in the Mallows model, but they again focus on the Kendall distance only. Jacques
and Biernacki (2014) also propose clustering based on partial rankings, but in the context
of the Insertion Sorting Rank (ISR) model. Hence, the approach is probabilistic but it is
far from the general form of the Mallows, even though it has connections with the Mal-
lows with Kendall distance. See Section 5 for a more detailed presentation of related work.
For the general background on statistical methods for rank data, we refer to the excellent
monograph by Marden (1995), and to the book by Alvo and Yu (2014).

The contributions of this paper are summarized as follows. We develop a Bayesian
framework for inference in Mallows models that works with any right-invariant metric. In
particular, the method is able to handle some of the right-invariant distances poorly con-
sidered in the existing literature, because of their well-known intractability. In this way the
main advantage of the Mallows models, namely its flexibility in the choice of the distance,
is fully exploited. We propose a Metropolis-Hastings iterative algorithm, which converges
to the Bayesian posterior distribution, if the exact partition function is available. In case
the exact partition function is not available, we propose to approximate it using an off-line
importance sampling scheme, and we document the quality and efficiency of this approx-
imation. Using data augmentation techniques, our method handles incomplete rankings,
like the important cases of top-k rankings, pairwise comparisons, and ranks missing at ran-
dom. For the common situation when the pool of assessors is heterogeneous, and cannot
be assumed to share a common consensus, we develop a Bayesian clustering scheme which
embeds the Mallows model. Our approach unifies clustering, classification and preference
prediction in a single inferential procedure, thus leading to coherent posterior credibility
levels of learned rankings and predictions. The probabilistic Bayesian setting allows us to
naturally compute complex probabilities of interest, like the probability that an item has
consensus rank higher than a given level, or the probability that the consensus rank of an
item is higher than that of another item of interest. For incomplete rankings this can be
done also at the individual assessor level, allowing for individual recommendations.

In Section 2, we introduce the Bayesian Mallows model for rank data. In Section 2.1,
we discuss how the choice of the distance function influences the calculation of the partition
function, and Section 2.2 is devoted to the choice of the prior distributions. In Sections
2.3 and 2.4, we show how efficient Bayesian computation can be performed for this model,
using a novel leap-and-shift proposal distribution. The tuning of the hyperparameters is
discussed in the Supplementary Material, Section 1. In Section 3 we develop and test
an importance sampling scheme for computing the partition function, based on a pseudo-
likelihood approximation of the Mallows model. We carefully test and study this importance
sampling estimation of the partition function (Section 3.1), and the effect of this estimation
on inference, both theoretically (Section 3.2) and by simulations (Section 3.3). Section
4 is dedicated to partial rankings and clustering of assessors. In Section 4.1 we extend
the Bayesian Mallows approach to partial rankings, and we prove some results on the
effects of unranked items on the consensus ranking (Section 4.1.1). Section 4.2 considers
data in the form of ordered subsets or pairwise comparisons of items. In Section 4.3 we
describe a mixture model to deal with the possible heterogeneity of assessors, finding cluster-
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specific consensus rankings. Section 4.4 is dedicated to prediction in a realistic setup, which
requires both the cluster assignment and personalized preference learning. We show that
our approach works well in a simulation context. In Section 5 we review related methods
which have been proposed in the literature, and compare by simulation some algorithms
with our procedure (Section 5.1). In Section 6, we then move to the illustration of the
performance of our method on real data: the selected case studies illustrate the different
incomplete data situations considered. This includes the Sushi (Section 6.3) and Movielens
(Section 6.4) benchmark data. Section 7 presents some conclusions and extensions.

2. A Bayesian Mallows Model for Complete Rankings

Assume we have a set of n items, labelled A = {A1, A2, . . . , An}. We first assume that
each of N assessors ranks all items individually with respect to a considered feature. The
ordering provided by assessor j is represented by Xj , whose n components are items in A.
The item with rank 1 appears as the first element, up to the item with rank n appearing
as the n-th element. The observations X1, . . . ,XN are hence N permutations of the labels
in A. Let Rij = X−1

j (Ai), i = 1, . . . , n, j = 1, . . . , N , denote the rank given to item Ai by
assessor j, and let Rj = (R1j , R2j , . . . , Rnj), j = 1, . . . , N , denote the ranking (that is the
full set of ranks given to the items), of assessor j. Letting Pn be the set of all permutations
of {1, . . . , n}, we have Rj ∈ Pn, j = 1, . . . , N . Finally, let d(·, ·) : Pn × Pn → [0,∞) be a
distance function between two rankings.

The Mallows model (Mallows, 1957) is a class of non-uniform joint distributions for a
ranking r on Pn, of the form P (r|α,ρ) = Zn(α,ρ)−1 exp{−(α/n)d(r,ρ)}1Pn(r), where ρ ∈
Pn is the latent consensus ranking, α is a scale parameter, assumed positive for identification
purposes, Zn(α,ρ) =

∑
r∈Pn e

−α
n
d(r,ρ) is the partition function, and 1S(·) is the indicator

function of the set S. We assume that theN observed rankings R1, . . . ,RN are conditionally
independent given α and ρ, and that each of them is distributed according to the Mallows
model with these parameters. The likelihood takes then the form

P (R1, . . . ,RN |α,ρ) =
1

Zn(α,ρ)N
exp

−αn
N∑
j=1

d(Rj ,ρ)


N∏
j=1

{1Pn(Rj)} . (1)

For a given α, the maximum likelihood estimate of ρ is obtained by computing

argmax
ρ∈Pn

exp
{
−α
n

∑N
j=1 d(Rj ,ρ)

}
Zn(α,ρ)N

. (2)

For large n this optimization problem is not feasible, because the space of permutations has
n! elements. This has impact both on the computation of Zn(α,ρ), and on the minimization
of the sum in the exponential of (2), which is typically NP-hard (Bartholdi et al., 1989).

2.1 Distance Measures and Partition Function

Right-invariant distances (Diaconis, 1988) play an important role in the Mallows models.
A right-invariant distance is unaffected by a relabelling of the items, which is a reason-
able assumption in many situations. For any right-invariant distance it holds d(ρ1,ρ2) =
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d(ρ1ρ
−1
2 ,1n), where 1n = {1, 2, ..., n}, and therefore the partition function Zn(α,ρ) of

(1) is independent on the latent consensus ranking ρ. We write Zn(α,ρ) = Zn(α) =∑
r∈Pn exp{−α

nd(r,1n)}. All distances considered in this paper are right-invariant. Im-
portantly, since the partition function Zn(α) does not depend on the latent consensus ρ,
it can be computed off-line over a grid for α, given n (details in Section 3). For some
choices of right-invariant distances, the partition function can be analytically computed.
For this reason, most of the literature considers the Mallows model with Kendall distance
(Lu and Boutilier, 2014; Meilǎ and Chen, 2010), for which a closed form of Zn(α) is given
in Fligner and Verducci (1986), or with the Hamming (Irurozki et al., 2014) and Cayley
(Irurozki et al., 2016b) distances. There are important and natural right-invariant distances
for which the computation of the partition function is not feasible, in particular the footrule
(l1) and the Spearman’s (l2) distances. For precise definitions of all distances involved in
the Mallows model we refer to Marden (1995). Following Irurozki et al. (2016a), Zn(α)
can be written in a more convenient way. Since d(r,1n) takes only the finite number of
discrete values D = {d1, ..., da}, where a depends on n and on the distance d(·, ·), we define
Li = {r ∈ Pn : d(r,1n) = di} ⊂ Pn, i = 1, ..., a, to be the set of permutations at the same
given distance from 1n, and |Li| corresponds to its cardinality. Then

Zn(α) =
∑
di∈D
|Li| exp{−(α/n)di}. (3)

In order to compute Zn(α) one thus needs |Li|, for all values di ∈ D. In the case of
the footrule distance, the set D includes all even numbers, from 0 to bn2/2c, and |Li|
corresponds to the sequence A062869 available for n ≤ 50 on the On-Line Encyclopedia of
Integer Sequences (OEIS) (Sloane, 2017). In the case of Spearman’s distance, the set D
includes all even numbers, from 0 to 2

(
n
3

)
, and |Li| corresponds to the sequence A175929

available for n ≤ 14 in the OEIS. When the partition function is needed for larger values
of n, we suggest an importance sampling scheme which efficiently approximates Zn(α) to
an arbitrary precision (see Section 3). An interesting asymptotic approximation for Zn(α),
when n→∞, has been studied in Mukherjee (2016), and we apply it in an example where
n = 200 (see Section 6.4, and Section 2 in the Supplementary Material).

2.2 Prior Distributions

To complete the specification of the Bayesian model for the rankings R1, . . . ,RN , a prior
for its parameters is needed. We assume a priori that α and ρ are independent.

An obvious choice for the prior for ρ in the context of the Mallows likelihood is to utilize
the Mallows model family also in setting up a prior for ρ, and let π(ρ) = π(ρ|α0,ρ0) ∝
exp

{
−α0

n d(ρ,ρ0)
}

. Here α0 and ρ0 are fixed hyperparameters, with ρ0 specifying the
ranking that is a priori thought most likely, and α0 controlling the tightness of the prior
around ρ0. Since α0 is fixed, Zn(α0) is a constant. Note that combining the likelihood
with the prior π(ρ|α0,ρ0) above has the same effect on inference as involving an additional
hypothetical assessor j = 0, say, who then provides the ranking R0 = ρ0 as data, with α0

fixed.

If we were to elicit a value for α0, we could reason as follows. Consider, for ρ0 fixed, the
prior expectation gn(α0) := Eπ(ρ)(d(ρ,ρ0)|α0,ρ0). Because of the assumed right invariance
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of the distance d(·, ·), this expectation is independent of ρ0, which is why gn(·) depends
only on α0. Moreover, gn(α0) is obviously decreasing in α0. For the footrule and Spearman
distances, which are defined as sums of item specific deviations |ρ0i − ρi| or |ρ0i − ρi|2,
gn(α0) can be interpreted as the expected (average, per item) error in the prior ranking
π(ρ|α0,ρ0) of the consensus. A value for α0 is now elicited by first choosing a target level
τ0, say, which would realistically correspond to such an a priori expected error size, and then
finding the value α0 such that gn(α0) = τ0. This procedure requires numerical evaluation
of the function gn(α0) over a range of suitable α0 values. In this paper, we employ only
the uniform prior π(ρ) = (n!)−11Pn(ρ) in the space Pn of n−dimensional permutations,
corresponding to α0 = 0.

For the scale parameter α we have in this paper used a truncated exponential prior,
with density π(α|λ) = λe−λα1[0,αmax](α)/(1 − e−λαmax), where the cut-off point αmax < ∞
is large compared to the values supported by the data. In practice, in the computations
involving sampling of values for α, truncation was never applied. We show in Figure 3 of
Section 3.3 on simulated data, that the inferences on ρ are almost completely independent
of the choice of the value of λ. Also a theoretical argument for this is provided in that same
section, although it is tailored more specifically to the numerical approximations of Zn(α).
For these reasons, in all our data analyses, we assigned λ a fixed value. We chose values
for λ close to 0, depending on the complexity of the data, thus implying a prior density
for α which is quite flat in the region supported in practice by the likelihood. If a more
elaborate elicitation of the prior for α for some reason were preferred, this could be achieved
by computing, by numerical integration, values of the function Eπ(α)(gn(α)|λ), selecting a
realistic target τ , and solving Eπ(α)(gn(α)|λ) = τ for λ. In a similar fashion as earlier, also
Eπ(α)(gn(α)|λ) can be interpreted as an expected (average, per item) error in the ranking,
but now by errors is meant those made by the assessors, relative to the consensus, and
expectation is with respect to the prior π(α|λ).

2.3 Inference

Given the prior distributions π(ρ) and π(α), and assuming prior independence of these
variables, the posterior distribution for ρ and α is given by

P (ρ, α|R1, . . . ,RN ) ∝ π (ρ)π (α)

Zn (α)N
exp

−αn
N∑
j=1

d (Rj ,ρ)

 . (4)

Often one is interested in computing posterior summaries of this distribution. One such
summary is the marginal posterior mode of ρ (the maximum a posteriori, MAP) from (4),
which does not depend on α, and in case of uniform prior for ρ coincides with the ML
estimator of ρ in (2). The marginal posterior distribution of ρ is given by

P (ρ|R1, . . . ,RN ) ∝ π (ρ)

∫ ∞
0

π (α)

Zn (α)N
exp

−αn
N∑
j=1

d (Rj ,ρ)

dα. (5)

Given the data, R = {R1, . . . ,RN} and the consensus ranking ρ, the sum of distances,
T (ρ, R) =

∑N
j=1 d (Rj ,ρ), takes only a finite set of discrete values {t1, t2, ...tm}, where m
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depends on the distance d(·, ·), on the sample size N , and on n. Therefore, the set of all
permutations Pn can be partitioned into the sets Hi = {r ∈ Pn : T (r, R) = ti} for each
distance ti. These sets are level sets of the posterior marginal distribution in (5), as all
r ∈ Hi have the same posterior marginal probability. The level sets do not depend on α
but the posterior distribution shared by the permutations in each set does.

In applications, the interest often lies in computing posterior probabilities of more com-
plex functions of the consensus ρ, for example the posterior probability that a certain item
has consensus rank lower than a given level (“among the top 5”, say), or that the consensus
rank of a certain item is higher than the consensus rank of another one. These probabilities
cannot be readily obtained within the maximum likelihood approach, while the Bayesian
setting very naturally allows to approximate any posterior summary of interest by means of
a Markov Chain Monte Carlo algorithm, which at convergence samples from the posterior
distribution (4).

2.4 Metropolis-Hastings Algorithm for Complete Rankings

In order to obtain samples from the posterior in equation (4), we iterate between two steps.
In one step we update the consensus ranking. Starting with α ≥ 0 and ρ ∈ Pn, we first
update ρ by proposing ρ′ according to a distribution which is centered around the current
rank ρ.

Definition 1 Leap-and-Shift Proposal (L&S). Fix an integer L ∈ {1, . . . , b(n− 1)/2c} and
draw a random number u ∼ U{1, . . . , n}. Define, for a given ρ, the set of integers S =
{max(1, ρu − L),min(n, ρu + L)} \ {ρu}, S ⊆ {1, . . . , n}, and draw a random number r
uniformly in S. Let ρ∗ ∈ {1, 2, ...n}n have elements ρ∗u = r and ρ∗i = ρi for i ∈ {1, . . . , n} \
{u}, constituting the leap step. Now, define ∆ = ρ∗u − ρu and the proposed ρ′ ∈ Pn with
elements

ρ′i =


ρ∗u if ρi = ρu

ρi − 1 if ρu < ρi ≤ ρ∗u and ∆ > 0

ρi + 1 if ρu > ρi ≥ ρ∗u and ∆ < 0

ρi else ,

for i = 1, . . . , n, constituting the shift step.

The probability mass function associated to the transition is given by

PL(ρ′|ρ) =
n∑
u=1

PL(ρ′|U = u,ρ)P (U = u)

=
1

n

n∑
u=1

{
1{ρ−u}(ρ

∗
−u) · 1{0<|ρu−ρ∗u|≤L}(ρ

∗
u) ·

[
1{L+1,...,n−L}(ρu)

2L
+

L∑
l=1

1{l}(ρu) + 1{n−l+1}(ρu)

L+ l − 1

]}

+
1

n

n∑
u=1

{
1{ρ−u}(ρ

∗
−u) · 1{|ρu−ρ∗u|=1}(ρ

∗
u) ·

[
1{L+1,...,n−L}(ρ

∗
u)

2L
+

L∑
l=1

1{l}(ρ
∗
u) + 1{n−l+1}(ρ

∗
u)

L+ l − 1

]}
,

where ρ−u = {ρi; i 6= u}.
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Proposition 1 The leap-and-shift proposal ρ′ ∈ Pn is a local perturbation of ρ, separated
from ρ by a Ulam distance 1 .

Proof From the definition and by construction, ρ∗ /∈ Pn, since there exist two indices i 6= j
such that ρ∗i = ρ∗j . The shift of the ranks by ∆ brings ρ∗ to ρ′ back into Pn. The Ulam
distance d(ρ,ρ′) is the number of edit operations needed to convert ρ to ρ′, where each edit
operation involves deleting a character and inserting it in a new place. This is equal to 1,
following Gopalan et al. (2006).

The acceptance probability when updating ρ in the Metropolis-Hastings algorithm is

min

1,
PL(ρ|ρ′)π (ρ′)

PL(ρ′|ρ)π (ρ)
exp

−α
n

N∑
j=1

{
d
(
Rj ,ρ

′)− d (Rj ,ρ)
} . (6)

The leap-and-shift proposal is not symmetric, thus the ratio PL(ρ|ρ′)/PL(ρ′|ρ) does not
cancel in (6). The parameter L is used for tuning this acceptance probability.

The term
∑N

j=1 {d (Rj ,ρ
′)− d (Rj ,ρ)} in (6) can be computed efficiently, since most

elements of ρ and ρ′ are equal. Let ρi = ρ′i for i ∈ E ⊂ {1, . . . , n}, and ρi 6= ρ′i for i ∈ Ec.
For the footrule and Spearman distances, we then have

N∑
j=1

{
d
(
Rj ,ρ

′)− d (Rj ,ρ)
}

=
N∑
j=1

{∑
i∈Ec

∣∣Rij − ρ′i∣∣p −∑
i∈Ec
|Rij − ρi|p

}
, (7)

for p ∈ {1, 2}. For the Kendall distance, instead, we get

N∑
j=1

{
d
(
Rj ,ρ

′)− d (Rj ,ρ)
}

=

=

N∑
j=1

 ∑
1≤k<l≤n

1
[
(Rkj −Rlj)

(
ρ′k − ρ′l

)
> 0
]
− 1 [(Rkj −Rlj) (ρk − ρl) > 0]


=

N∑
j=1

 ∑
k∈Ec\{n}

∑
l∈{Ec∩{l>k}}

1
[
(Rkj −Rlj)

(
ρ′k − ρ′l

)
> 0
]
− 1 [(Rkj −Rlj) (ρk − ρl) > 0]

 .

Hence, by storing the set Ec at each MCMC iteration, the computation of (6) involves a
sum over fewer terms, speeding up the algorithm consistently.

The second step of the algorithm updates the value of α. We sample a proposal α′ from
a lognormal distribution logN (log(α), σ2

α) and accept it with probability

min

1,
Zn (α)N π (α′)α′

Zn (α′)N π (α)α
exp

−(α′ − α)

n

N∑
j=1

d (Rj ,ρ)

 , (8)

where σ2
α can be tuned to obtain a desired acceptance probability. A further parameter,

named αjump, can be used to update α only every αjump updates of ρ: the possibility to
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tune this parameter ensures a better mixing of the MCMC in the different sparse data
applications. The above described MCMC algorithm is summarized as Algorithm 1 of
Appendix B. Note that the MCMC Algorithm 1 using the exact partition function Zn (α)
samples from the Mallows posterior in equation (4), as the number of MCMC iterations
tends to infinity.

Section 3 investigates approximations of Zn (α) , and how they affect the MCMC and
the estimate of the consensus ρ. In Section 1 of the Supplementary Material we instead
focus on aspects related to the practical choices involved in the use of our MCMC algorithm,
and in particular we aim at defining possible strategies for tuning the MCMC parameters
L and σα.

3. Approximating the Partition Function Zn(α) via Off-line Importance
Sampling

For Kendall’s, Hamming and Cayley distances, the partition function Zn (α) is available in
close form, but this is not the case for footrule and Spearman distances. To handle these
cases, we propose an approximation of the partition function Zn(α) based on importance
sampling. Since we focus on right-invariant distances, the partition function does not depend
on ρ. Hence, we can obtain an off-line approximation of the partition function on a grid
of α values, interpolate it to yield an estimate of Zn(α) over a continuous range, and then
read off needed values to compute the acceptance probabilities very rapidly.

We study the convergence of the importance sampler theoretically (Section 3.2) and
numerically (Sections 3.1, 3.3), with a series of experiments aimed at demonstrating the
quality of the approximation, and its impact in inference. We here show the results obtained
with the footrule distance, but we obtained similar results with the Spearman distance. We
also summarize in the Supplementary Material (Section 2) a further possible approximation
of Zn(α), namely the asymptotic proposal in Mukherjee (2016).

We briefly discuss the pseudo-marginal approaches for tackling intractable Metropolis-
Hastings ratios, which could in principle be an interesting alternative. We refer to Beaumont
(2003), Andrieu and Roberts (2009), and Murray et al. (2012) for a full description of the
central methodologies. The idea is to replace P (ρ, α|R) in (4) with a non-negative unbiased
estimator P̂ , such that for some C > 0 we have E[P̂ ] = CP . The approximate acceptance
ratio then uses P̂ , but this results in an algorithm still targeting the exact posterior. An
unbiased estimate of the posterior P can be obtained via importance sampling if it is
possible to simulate directly from the likelihood. This is not the case in our model, as
there are no algorithms available to sample from the Mallows model with, say, the footrule
distance. Neither is use of exact simulation possible for our model. The approach in Murray
et al. (2012) extends the model by introducing an auxiliary variable, and uses a proposal
distribution in the MCMC such that the partition functions cancel. A useful proposal for
this purpose would in our case be based on the Mallows likelihood, so that again one would
need to be able to sample from it, which is not feasible.

Our suggestion is instead to estimate the partition function directly, using an Importance
Sampling (IS) approach. For K rank vectors R1, . . . ,RK sampled from an IS auxiliary
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distribution q(R), the unbiased IS estimate of Zn(α) is given by

Ẑn(α) = K−1
K∑
k=1

exp{−(α/n)d(Rk,1n)}q(Rk)−1. (9)

The more q(R) resembles the Mallows likelihood (1), the smaller is the variance of Ẑn(α).
On the other hand, it must be computationally feasible to sample from q(R). We use the
following pseudo-likelihood approximation of the target (1). Let {i1, . . . , in} be a uniform
sample from Pn, which gives the order of the pseudo-likelihood factorization. Then

P (R|1n) = P (Ri1 |Ri2 , . . . , Rin ,1n)P (Ri2 |Ri3 , . . . , Rin ,1n) · · ·P (Rin−1 |Rin ,1n)P (Rin |1n),

and the conditional distributions are given by

P (Rin |1n) =
exp {−(α/n)d (Rin , in)} · 1[1,...,n](Rin)∑

rn∈{1,...,n} exp {−(α/n)d (rn, in)}
,

P
(
Rin−1 |Rin ,1n

)
=

exp
{
−(α/n)d

(
Rin−1 , in−1

)}
· 1[{1,...,n}\{Rin}](Rin−1)∑

rn−1∈{1,...,n}\{Rin} exp {−(α/n)d (rn−1, in−1)}
,

...

P (Ri2 |Ri3 , . . . , Rin ,1n) =
exp {−(α/n)d (Ri2 , i2)} · 1[{1,...,n}\{Ri3 ,...,Rin}]

(Ri2)∑
r2∈{1,...,n}\{Ri3 ,...,Rin}

exp {−(α/n)d (r2, i2)}
,

P (Ri1 |Ri2 , . . . , Rin ,1n) = 1[{1,...,n}\{Ri2 ,...,Rin}]
(Ri1).

Each factor is a simple univariate distribution. We sample Rin first, and then conditionally
on that, Rin−1 and so on. The k-th full sample Rk has probability q(Rk) = P (Rkin |1n)
P (Rkin−1

|Rkin ,1n) · · ·P (Rki2 |R
k
i3
, . . . , Rkin ,1n). We observe that this pseudo-likelihood con-

struction is similar to the sequential representation of the Plackett-Luce model with a
Mallows parametrization of probabilities.

Note that, in principle, we could sample rankings Rk from the Mallows model with a
different distance than the one of the target model (for example Kendall), or use the pseudo-
likelihood approach with a different “proposal distance” other than the target distance. We
experimented with these alternatives, but keeping the pseudo-likelihood with the same
distance as the one in the target was most accurate and efficient (results not shown). In
what follows the distance in (9) is the same as the distance in (4).

3.1 Testing the Importance Sampler

We experimented by increasing the number K of importance samples in powers of ten, over
a discrete grid of 100 equally spaced α values between 0.01 and 10 (this is the range of α
which turned out to be relevant in all our applications, typically α < 5). We produced a
smooth partition function simply using a polynomial of degree 10. The ratio ẐKn (α)/Zn(α)
as a function of α is shown in Figure 1 for n = 10, 20, 50 and when using different values of
K: the ratio quickly approaches 1 when increasing K; for larger n, a larger K is needed to
ensure precision, but K = 106 seems enough to give very precise estimates.
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Figure 1: Ratio of the approximate partition function computed via IS to the exact,
Ẑn(α)/Zn(α), as a function of α, when using the footrule distance. From left
to right, n = 10, 20, 50; different colors refer to different values of K, as stated in
the legend.

K 102 103 104 105 106 107 108

n = 75 152.036 0.921 0.373 0.084 0.056 0.005 0.004
n = 100 67.487 1.709 0.355 0.187 0.045 0.018 0.004

Table 1: Approximation of the partition function via the IS for the footrule model: maxi-
mum relative error εK from equation (10), between the current and the previous
K, for n = 75 and 100.

When n is larger than 50, no exact expression for Zn(α) is available. Then, we directly
compare the estimated ẐKn (α) for increasing K, to check whether the estimates stabilize.
We thus inspect the maximum relative error

εK = max
α


∣∣∣ẐKn (α)− ẐK/10

n (α)
∣∣∣∣∣∣ẐK/10

n (α)
∣∣∣

 (10)

for K = 102, . . . , 108. Results are shown in Table 1 for n = 75 and 100. For both values of
n we see that the estimates quickly stabilize, and K = 106 appears to give good approx-
imations. The computations shown here were performed on a desktop computer, and the
off-line computation with K = 106 samples for n = 10 took less than 15 minutes, with no
efforts for parallelizing the algorithm, which would be easy and beneficial. K = 106 samples
for n = 100 were obtained on a 64-cores computing cluster in 12 minutes.

3.2 Effect of Ẑn(α) on the MCMC

In this Section we report theoretical results regarding the convergence of the MCMC, when
using the IS approximation of the partition function.
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Proposition 2 Algorithm 1 of Appendix B using Ẑn(α) in (9) instead of Zn(α) converges
to the posterior distribution proportional to

1

Ĉ(R)
π(ρ)π(α)Ẑn(α)−N exp

−αn
N∑
j=1

d(Rj ,ρ)

 , (11)

with the normalizing factor Ĉ(R) =
∫ π(α)

Ẑn(α)N

∑
ρ∈Pn π(ρ) exp

{
−α
n

∑N
j=1 d(Rj ,ρ)

}
dα.

Proof The acceptance probability of the MCMC in Algorithm 1 with the approximate
partition function is given by (8) using Ẑn(α) in (9) instead of Zn(α), which is exactly the
acceptance probability needed for (11).

That Ĉ(R) <∞ is an obvious consequence of our assumption, in Section 2.2, that the prior
π(α) is supported by a finite interval [0, αmax]. The IS approximation Ẑn(α) converges to
Zn(α) as the number K of IS samples converges to infinity. In order to study this limit,
let us change the notation to explicitly show this dependence and write ẐKn (α). Clearly,
the approximate posterior (11) converges to the correct posterior (4) if K increases with N ,
K = K(N), and

lim
N→∞

(
Ẑ
K(N)
n (α)

Zn(α)

)N
= 1, for all α. (12)

Proposition 3 There exists a factor c(α, n, d(·, ·)) not depending on N , such that, if K =
K(N) tends to infinity as N →∞ faster than c(α, n, d(·, ·)) ·N2, then (12) holds.

Proof We see that(
Ẑ
K(N)
n (α)

Zn(α)

)N
= exp

{
N log

(
1 +

Ẑ
K(N)
n (α)− Zn(α)

Zn(α)

)}

tends to 1 in probability as K(N)→∞ when N →∞ if

Ẑ
K(N)
n (α)− Zn(α)

Zn(α)
(13)

tends to 0 in probability faster than 1/N. Since (9) is a sum of i.i.d. variables, there exists
a constant c = c(α, n, d(·, ·)) depending on α, n and the distance d(·, ·) (but not on N) such
that √

K(N)(ẐK(N)
n (α)− Zn(α))

L→ N (0, c2),

in law as K(N) → ∞. Therefore, for (13) tending to 0 faster than 1/N , it is sufficient
that K(N) grows faster than N2. The speed of convergence to 1 of (12) depends on
c = c(α, n, d(·, ·)).
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Figure 2: Results of the simulations described in Section 3.3, when n = 20. In each plot,
posterior density of α (the black vertical line indicates αtrue) obtained for various
choices of N (different colors), and for different choices of the prior for α (different
line types), as stated in the legend. From left to right, MCMC run with the
exact Zn(α), with the IS approximation ẐKn (α) with K = 108, and with the IS
approximation ẐKn (α) with K = 104. First row: αtrue = 1; second row: αtrue = 3.

3.3 Testing Approximations of the MCMC in Inference

We report results from extensive simulation experiments carried out in several different
parameter settings, to investigate if our algorithm provides correct posterior inferences. In
addition, we study the sensitivity of the posterior distributions to differences in the prior
specifications, and demonstrate their increased precision when the sample size N grows.
We explore the robustness of inference when using approximations of the partition function
Zn(α), both when obtained by applying our IS approach, and when using, for large n, the
asymptotic approximation Zlim(α) proposed in Mukherjee (2016). We focus here on the
footrule distance since it allows us to explore all these different settings, being also the
preferred distance in the experiments reported in Section 6. Some model parameters are
kept fixed in the various cases: αjump = 10, σα = 0.15, and L = n/5 (for the tuning of the
two latter parameters, see the simulation study in the Supplementary Material, Section 1).
Computing times for the simulations, performed on a laptop computer, varied depending
on the value of n and N , from a minimum of 24′′ in the smallest case with n = 20 and
N = 20, to a maximum of 3′22′′ for n = 100 and N = 1000.

First, we generated data from a Mallows model with n = 20 items, using samples from
N = 20, 50, and 100 assessors, a setting of moderate complexity. The value of αtrue was
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Figure 3: Results of the simulations described in Section 3.3, when n = 20. In each plot,
posterior CDF of d(ρ,ρtrue) obtained for various choices of N (different colors),
and for different choices of the prior for α (different line types), as stated in
the legend. From left to right, MCMC run with the exact Zn(α), with the IS
approximation ẐKn (α) with K = 108, and with the IS approximation ẐKn (α) with
K = 104. First row: αtrue = 1; second row: αtrue = 3.

chosen to be either 1 or 3, and ρtrue was fixed at (1, . . . , n). To generate the data, we run
the MCMC sampler (see Appendix C) for 105 burn-in iterations, and collected one sample
every 100 iterations after that (these settings were kept in all data generations). In the
analysis, we considered the performance of the method when using the IS approximation
ẐKn (α) with K = 104 and 108, then comparing the results with those based on the exact
Zn(α). In each case, we run the MCMC for 106 iterations, with 105 iterations for burn-in.
Finally, we varied the prior for α to be either the nonintegrable uniform or the exponential
using hyperparameter values λ = 0.1, 1 and 10. The results are shown in Figures 2 for
α and 3 for ρ. As expected, we can see the precision and the accuracy of the marginal
posterior distributions increasing, both for α and ρ, with N becoming larger. For smaller
values of αtrue, the marginal posterior for α is more dispersed, and ρ is stochastically farther
from ρtrue. These results are remarkably stable against varying choices of the prior for α,
even when the quite strong exponential prior with λ = 10 was used (with one exception:
in the case of N = 20 the rather dispersed data generated by αtrue = 1 were not sufficient
to overcome the control of the exponential prior with λ = 10, which favored even smaller
values of α; see Figure 2, top panels). Finally and most importantly, we see that inference
on both α and ρ is completely unaffected by the approximation of Zn(α) already when
K = 104.
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Figure 4: Results of the simulations described in Section 3.3, when n = 50. Left, posterior
density of α (the black vertical line indicates αtrue) obtained for various choices
of N (different colors), and when using the exact, or different approximations
to the partition function (different line types), as stated in the legend. Right,
posterior CDF of d(ρ,ρtrue) in the same settings. First row: αtrue = 1; second
row: αtrue = 5.

In a second experiment, we generated data using n = 50 items, N = 50 or 500 assessors,
and scale parameter αtrue = 1 or 5. This increase in the value of n gave us some basis for
comparing the results obtained by using the IS approximation of Zn(α) with those from
the asymptotic approximation Zlim(α) of Mukherjee (2016), while still retaining also the
possibility of using the exact Zn(α). For the analysis, all the previous MCMC settings were
kept, except for the prior for α: since results from n = 20 turned out to be independent of the
choice of the prior, here we used the same exponential prior with λ = 0.1 in all comparisons
(see the discussion in Section 2.2). The results are shown in Figures 4 and 5. Again, we
observe substantially more accurate results for larger values of N and αtrue. Concerning
the impact of approximations to Zn(α), we notice that, even in this case of larger n, the
marginal posterior of ρ appears completely unaffected by the partition function not being
exact (see Figure 4, right panels, and Figure 5). In the marginal posterior for α (Figure 4,
left panels), there are no differences between using the IS approximations and the exact,
but there is a difference between Zlim and the other approximations: Zlim appears to be
systematically slightly worse.

Finally, we generated data from the Mallows model with n = 100 items, N = 100 or
1000 assessors, and using αtrue = 5 or 10. Because of this large value of n we were no
longer able to compute the exact Zn(α), hence we only compared results from the different

15



Vitelli, Sørensen, Crispino, Frigessi and Arjas

10 20 30 40 50

10
20

30
40

50

Exact

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

IS K = 108

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

IS K = 104

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

Asymptotics

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

Exact

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50
IS K = 108

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50

IS K = 104

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50

Asymptotics

0.0

0.2

0.4

0.6

0.8

Figure 5: Results of the simulations described in Section 3.3, when n = 50 and αtrue =
5. In the x-axis items are ordered according to the true consensus ρtrue. Each
column j represents the posterior marginal density of item j in the consensus ρ.
Concentration along the diagonal is a sign of success of inference. From left to
right, results obtained with the exact Zn(α), with the IS approximation ẐKn (α)
with K = 108, with the IS approximation ẐKn (α) with K = 104, and with Zlim(α).
First row: N = 50; second row: N = 500.

approximations. We kept the same MCMC settings as for n = 50, both in data generation
and analysis. The results are shown in Figures 3 and 4 of the Supplementary Material,
Section 3. Also in this case, we observe substantially more accurate estimates with larger
values of N and αtrue, establishing an overall stable performance of the method. Here,
using the small number K = 104 of samples in the IS approximation has virtually no
effect on the accuracy of the marginal posterior for α, while a small effect can be detected
from using the asymptotic approximation (Figure 3 of the Supplementary Material, left
panels). However, again, the marginal posterior for ρ appears completely unaffected by the
considered approximations in the partition function (Figure 3, right panels, and Figure 4
of the Supplementary Material).

In conclusion, the main positive result from the perspective of practical applications was
the relative lack of sensitivity of the posterior inferences to the specification of the prior for
the scale parameter α, and the apparent robustness of the marginal posterior inferences on
ρ on the choice of the approximation of the partition function Zn(α). The former property
was not an actual surprise, as it can be understood to be a consequence of the well-known
Bernstein-von Mises principle: with sufficient amounts of data, the likelihood dominates
the influence of the prior.
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The second observation deserves a somewhat closer inspection, however. The margi-
nal posterior P (α|R), considered in Figures 2 and 4 (left), and in Figure 3 (left) of the
Supplementary Material, is obtained from the joint posterior (4) by simple summation over
ρ, then getting the expression

P (α|R) ∝ π(α)C(α; R)/(Zn(α))N , (14)

where C(α; R) =
∑

ρ∈Pn π(ρ) exp
{
−α
n

∑N
j=1 d(Rj ,ρ)

}
. For a proper understanding of the

structure of the joint posterior and its modification (11), it is helpful to first factorize (4)
into the product

P (α,ρ|R) = P (α|R)P (ρ|α,R), (15)

where then

P (ρ|α,R) = [C(α; R)]−1π(ρ) exp

−αn
N∑
j=1

d(Rj ,ρ)

 . (16)

The joint posterior (11), which arises from replacing the partition function Zn(α) by its
approximation Ẑn(α), can be similarly expressed as the product

P̂ (α,ρ|R) = P̂ (α|R)P (ρ|α,R), (17)

where
P̂ (α|R) = [Ĉ(R)]−1(Zn(α)/Ẑn(α))NP (α|R). (18)

This requires that the normalizing factor Ĉ(R) already introduced in (11), and here ex-
pressed as

Ĉ(R) ≡
∫

(Zn(α)/Ẑn(α))NP (α|R)dα, (19)

is finite. By comparing (15) and (17) we see that, under this condition, the posterior
P̂ (α,ρ|R) arises from P (α,ρ|R) by changing the expression (14) of the marginal posterior
for α into (18), while the conditional posterior P (ρ|α,R) for ρ, given α, remains the same
in both cases. Thus, the marginal posteriors P (ρ|R) and P̂ (ρ|R) for ρ arise as mixtures of
the same conditional posterior P (ρ|α,R) with respect to two different mixing distributions,
P (α|R) and P̂ (α|R).

It is obvious from (18) and (19) that P̂ (α|R) = P (α|R) would hold if the ratio Zn(α)/
Ẑn(α) would be exactly a constant in α, and this would also entail the exact equality
P̂ (ρ|R) = P (ρ|R). It was established in (12) that, in the IS scheme, Zn(α)/Ẑn(α)→ 1 as
K → ∞. Thus, for large enough K, (Zn(α)/Ẑn(α))N ≈ 1 holds as an approximation (see
Proposition 3). Importantly, however, (18) shows that the approximation is only required
to hold well on the effective support of P (α|R), and this support is narrow when N is large.
This is demonstrated clearly in Figures 2 and 4 (left), and in Figure 3 (left) of the Supple-
mentary Material. On this support, because of uniform continuity in α, also the integrand
P (ρ|α,R) in (16) remains nearly a constant. In fact, experiments (results not shown) per-
formed by varying α over a much wider range of fixed values, while keeping the same R,
gave remarkably stable results for the conditional posterior P (ρ|α,R). This contributes to
the high degree of robustness in the posterior inferences on ρ, making requirements of using
large values of K much less stringent.
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In Figures 3 and 4 (right), and in Figure 3 (right) of the Supplementary Material, we
considered and compared the marginal posterior CDF’s of the distance d(ρ,ρtrue) under
the schemes P (·|R) and P̂ (·|R). Using the shorthand d∗ = d(ρ,ρtrue), let

Fd∗(x|α,R) ≡ P (d(ρ,ρtrue) ≤ x|α,R) =
∑

{ρ:d(ρ,ρtrue)≤x}

P (ρ|α,R), (20)

Fd∗(x|R) ≡
∑

{ρ:d(ρ,ρtrue)≤x}

P (ρ|R) =

∫
Fd∗(x|α,R)P (α|R)dα,

F̂d∗(x|R) ≡
∑

{ρ:d(ρ,ρtrue)≤x}

P̂ (ρ|R) =

∫
Fd∗(x|α,R)P̂ (α|R)dα.

For example, in Figure 3 we display, for different priors, the CDF’s Fd∗(x|R) on the left, and
F̂d∗(x|R) in the middle and on the right, corresponding to two different IS approximations
of the partition function. Like the marginal posteriors P (ρ|R) and P̂ (ρ|R) above, Fd∗(x|R)
and F̂d∗(x|R) can be thought of as mixtures of the same function, here Fd∗(x|α,R), but with
respect to two different mixing distributions, P (α|R) and P̂ (α|R). The same arguments,
which were used above in support of the robustness of the posterior inferences on ρ, apply
here as well. Extensive empirical evidence for their justification is provided in Figures 3 and
4 (right), and in Figure 3 (right) of the Supplementary Material. Finally note that these
arguments also strengthen considerably our earlier conclusion of the lack of sensitivity of
the posterior inferences on ρ to the specification of the prior for α. For this, we only need to
consider alternative priors, say, π(α) and π̂(α), in place of the mixing distributions P (α|R)
and P̂ (α|R).

4. Extensions to Partial Rankings and Heterogeneous Assessor Pool

We now relax two assumptions of the previous Sections, namely that each assessor ranks all
n items and that the assessors are homogeneous, all sharing a common consensus ranking.
This allows us to treat the important situation of pairwise comparisons, and of multiple
classes of assessors, as incomplete data cases, within the same Bayesian Mallows framework.

4.1 Ranking of the Top Ranked Items

Often only a subset of the items is ranked: ranks can be missing at random, the assessors
may only have ranked the, in-their-opinion, top-k items, or can be presented with a subset of
items that they have to rank. These situations can be handled conveniently in our Bayesian
framework, by applying data augmentation techniques. We start by explaining the method
in the case of the top-k ranks, and then show briefly how it can be generalized to the other
cases mentioned.

Suppose that each assessor j has ranked the subset of items Aj ⊆ {A1, A2, . . . , An},
giving them top ranks from 1 to nj = |Aj |. Let Rij = X−1

j (Ai) if Ai ∈ Aj , while for Ai ∈ Acj ,
Rij is unknown, except for the constraint Rij > nj , j = 1, . . . , N, and follows a symmetric
prior on the permutations of (nj +1, . . . , n). We define augmented data vectors R̃1, . . . , R̃N

by assigning ranks to these non-ranked items randomly, using an MCMC algorithm, and
do this in a way which is compatible with the rest of the data. Let Sj = {R̃j ∈ Pn : R̃ij =
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X−1
j (Ai) if Ai ∈ Aj}, j = 1, . . . , N , be the set of possible augmented random vectors, that

is the original partially ranked items together with the allowable “fill-ins” of the missing
ranks. Our goal is to sample from the posterior distribution

P (α,ρ|R1, . . . ,RN ) =
∑

R̃1∈S1

· · ·
∑

R̃N∈SN

P
(
α,ρ, R̃1, . . . , R̃N |R1, . . . ,RN

)
.

Our MCMC algorithm alternates between sampling the augmented ranks given the current
values of α and ρ, and sampling α and ρ given the current values of the augmented ranks.
For the latter, we sample from the posterior P (α,ρ|R̃1, . . . , R̃N ) as in Section 2.4. For the
former, fixing α and ρ and the observed ranks R1, . . . ,RN , we see that R̃1, . . . , R̃N are
conditionally independent, and moreover, that each R̃j only depends on the corresponding
Rj . This enables us to consider the sampling of new augmented vectors R̃′j separately

for each j, j = 1, . . . , N . Specifically, given the current R̃j (which embeds information
contained in Rj) and the current values for α and ρ, R̃′j is sampled in Sj from a uniform
proposal distribution, meaning that the highest ranks from 1 to nj have been reserved for
the items in Aj , while compatible ranks are randomly drawn for items in Acj . The proposed

R̃′j is then accepted with probability

min
{

1, exp
[
−α
n

(
d(R̃′j , ρ)− d(R̃j , ρ)

)]}
. (21)

The MCMC algorithm described above and used in the case of partial rankings is given
in Algorithm 3 of Appendix B. Our algorithm can also handle situations of generic partial
ranking, where each assessor is asked to provide the mutual ranking of some subset Aj ⊂
{A1, ..., An} consisting of nj ≤ n items, not necessarily the top-nj . In this case, we can only
say that in R̃j = (R̃1j , ..., R̃nj) the order between items Ai ∈ Aj must be preserved as in
Rj , whereas the ranks of the augmented “fill-ins” Ai ∈ Acj are left open. More exactly, the

latent rank vector R̃j takes values in the set Sj = {R̃j ∈ Pn : if Ri1j < Ri2j , with Ai1 , Ai2 ∈
Aj ⇒ R̃i1j < R̃i2j}. The MCMC is then easily adjusted so that the sampling of each R̃j is
restricted to the corresponding Sj , thus respecting the mutual rank orderings in the data.

4.1.1 Effects of Unranked Items on the top-k Consensus Ranking

In applications in which the number of items is large there are often items which none of
the assessors included in their top-list. What is the exact role of such “left-over” items in
the top-k consensus ranking of all items? Can we ignore such “left-over” items and consider
only the items explicitly ranked by at least one assessor? In the following we first show
that only items explicitly ranked by the assessors appear in top positions of the consensus
ranking. We then show that, when considering the MAP consensus ranking, excluding the
left-over items from the ranking procedure already at the start has no effect on how the
remaining ones will appear in such consensus ranking.

For a precise statement of these results, we need some new notation. Suppose that
assessor j has ranked a subset Aj of nj items. Let A =

⋃
j=1,...,N Aj , and denote n = |A|.

Let n∗ be the total number of items, including left-over items which have not been explicitly
ranked by any assessor. Denote by A∗ = {Ai; i = 1, . . . , n∗} the collection of all items, and
by Ac = A∗ \ A the left-over items. Each rank vector Rj for assessor j contains, in some
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order, the ranks from 1 to nj given to items in Aj . In the original data the ranks of all
remaining items are left unspecified, apart from the fact that implicitly, for assessor j, they
would have values which are at least as large as nj + 1.

The results below are formulated in terms of the two different modes of analysis, which
we need to compare and which correspond to different numbers of items being included.
The first alternative is to include in the analysis the complete set A∗ of n∗ items, and
to complement each data vector Rj by assigning (originally missing) ranks to all items
which are not included in Aj ; their ranks will then form some permutation of the sequence
(nj + 1, . . . , n∗). We call this mode of analysis full analysis, and denote the corresponding
probability measure by Pn∗ . The second alternative is to include in the analysis only the
items which have been explicitly ranked by at least one assessor, that is, items belonging
to the set A. We call this second mode restricted analysis, and denote the corresponding
probability measure by Pn. The probability measure Pn is specified as before, including the
uniform prior on the consensus ranking ρ across all n! permutations of (1, 2, . . . , n), and
the uniform prior of the unspecified ranks Rij of items Ai ∈ Acj across the permutations
of (nj + 1, . . . , n). The definition of Pn∗ is similar, except that then the uniform prior
distributions are assumed to hold in the complete set A∗ of items, that is, over permutations
of (1, 2, . . . , n∗) and (nj + 1, . . . , n∗), respectively. In the posterior inference carried out in
both modes of analysis, the augmented ranks, which were not recorded in the original data,
are treated as random variables, with values being updated as part of the MCMC sampling.

Proposition 4 Consider two latent consensus rank vectors ρ and ρ′ such that

(i) in the ranking ρ all items in A have been included among the top-n-ranked, while
those in Ac have been assigned ranks between n+ 1 and n∗,

(ii) ρ′ is obtained from ρ by a permutation, where the rank in ρ of at least one item
belonging to A has been transposed with the rank of an item in Ac.

Then, Pn∗(ρ|data) ≥ Pn∗(ρ′|data), for the footrule, Kendall and Spearman distances in the
full analysis mode.

Remark. The above proposition says, in essence, that any consensus lists of top-n ranked
items, which contains one or more items with their ranks completely missing in the data
(that is, the item was not explicitly ranked by any of the assessors), can be improved
locally, in the sense of increasing the associated posterior probability with respect to Pn∗ .
This happens by trading such an item in the top-n list against another, which had been
ranked but which had not yet been selected to the list. In particular, the MAP estimate(s)
for consensus ranking assign n highest ranks to explicitly ranked items in the data (which
corresponds to the result in Meilǎ and Bao (2010) for Kendall distance). The following
statement is an immediate implication of Proposition 4, following from a marginalization
with respect to Pn∗ .

Corollary 1 Consider, for k ≤ n, collections {Ai1 , Ai2 , . . . , Aik} of k items and the corre-
sponding ranks {ρi1 , ρi2 , . . . , ρik}. In full analysis mode, the maximal posterior probability
Pn∗({ρi1 , ρi2 , . . . , ρik} = {1, 2, . . . , k}|data), is attained when {Ai1 , Ai2 , . . . , Aik} ⊂ A.
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Another consequence of Proposition 4 is the coincidence of the MAP estimates under the
two probability measures Pn and Pn∗ .

Corollary 2 Denote by ρMAP∗ the MAP estimate for consensus ranking obtained in a full
analysis, ρMAP∗ := argmaxρ∈Pn∗ Pn∗(ρ|data), and by ρMAP the MAP estimate for con-

sensus ranking obtained in a restricted analysis, ρMAP := argmaxρ∈Pn Pn(ρ|data). Then,

ρMAP∗|i:Ai∈A ≡ ρMAP .

Remark. The above result is very useful in the context of applications, since it guarantees
that the top-n items in the MAP consensus ranking do not depend on which version of the
analysis is performed. Recall that a full analysis cannot always be carried out in practice,
due to the fact that left-over items might be unknown, or their number might be too large
for any realistic computation.

4.2 Pairwise Comparisons

In many situations, assessors compare pairs of items rather than ranking all or a subset
of items. We extend our Bayesian data augmentation scheme to handle such data. Our
approach is an alternative to Lu and Boutilier (2014), who treated preferences by applying
their Repeated Insertions Model (RIM). Our approach is simpler, it is fully integrated into
our Bayesian inferential framework, and it works for any right-invariant distance.

As an example of paired comparisons, assume assessor j stated the preferences Bj =
{A1 ≺ A2, A2 ≺ A5, A4 ≺ A5}. Here Ar ≺ As means that As is preferred to Ar, so that
As has a lower rank than Ar. Let Aj be the set of items constrained by assessor j, in
this case Aj = {A1, A2, A4, A5}. Differently from Section 4.1, the items which have been
considered by each assessor are now not necessarily fixed to a given rank. Hence, in the
MCMC algorithm, we need to propose augmented ranks which obey the partial ordering
constraints given by each assessor, to avoid a large number of rejections, with the difficulty
that none of the items is now fixed to a given rank. Note that we can also handle the case
when assessors give ties as a result of some pairwise comparisons: in such a situation, each
pair of items resulting in a tie is randomized to a preference at each data augmentation step
inside the MCMC, thus correctly representing the uncertainty of the preference between
the two items. None of the experiments included in the paper involves ties, thus this
randomization is not needed.

We assume that the pairwise orderings in Bj are mutually compatible, and define by
tc(Bj) the transitive closure of Bj , containing all pairwise orderings of the elements in Aj
induced by Bj . In the example, tc(Bj) = Bj ∪{A1 ≺ A5}. For the case of ordered subsets of
items, the transitive closure is simply the single set of pairwise preferences compatible with
the ordering, for example, {A1 ≺ A2 ≺ A5} yields tc(Bj) = {A1 ≺ A2, A2 ≺ A5, A1 ≺ A5}.
The R packages sets (Meyer and Hornik, 2009) and relations (Meyer and Hornik, 2014)
efficiently compute the transitive closure.

The main idea of our method for handling such data remains the same as in Section
4.1, and the algorithm is the same as Algorithm 3. However, here a “modified” leap-
and-shift proposal distribution, rather than a uniform one, is used to sample augmented
ranks which are compatible with the partial ordering constraint. Suppose that, from the
latest step of the MCMC, we have a full augmented rank vector R̃j for assessor j, which is
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compatible with tc(Bj). Draw a random number u uniformly from {1, . . . , n}. If Au ∈ Aj ,
let lj = max{R̃kj : Ak ∈ Aj , k 6= u, (Ak � Au) ∈ tc(Bj)}, with the convention that lj = 0
if the set is empty, and rj = min{R̃kj : Ak ∈ Aj , k 6= u, (Ak ≺ Au) ∈ tc(Bj)}, with the
convention that rj = n + 1 if the set is empty. Now complete the leap step by drawing a
new proposal R̃′uj uniformly from the set {lj + 1, . . . , rj − 1}. Otherwise, if Au ∈ Acj , we

complete the leap step by drawing R̃′uj uniformly from {1, . . . , n}. The shift step remains
unchanged. Note that this modified leap-and-shift is symmetric.

4.3 Clustering Assessors Based on their Rankings of All Items

So far we have assumed that there exists a unique consensus ranking shared by all assessors.
In many cases the assumption of homogeneity is unrealistic: the possibility of dividing
assessors into more homogeneous subsets, each sharing a consensus ranking of the items,
brings the model closer to reality. We then introduce a mixture of Mallows models, able to
handle heterogeneity. We here assume that the data consist of complete rankings.

Let z1, . . . , zN ∈ {1, . . . , C} assign each assessor to one of C clusters. The assessments
within each cluster c ∈ {1, . . . , C} are described by a Mallows model with parameters αc
and ρc, the cluster consensus. Assuming conditional independence across the clusters, the
augmented data formulation of the likelihood for the observed rankings R1, . . . ,RN is given
by

P
(
R1, . . . ,RN | {ρc, αc}c=1,...,C , z1, . . . , zN

)
=

N∏
j=1

1Pn(Rj)

Zn(αzj )
exp

{
−
αzj
n
d(Rj ,ρzj )

}
.

For the scale parameters, we assume the prior π(α1, . . . , αC) ∝
∏C
c=1 π(αc), where π(αc) =

λ exp(−λαc)1[0,αmax](αc)/(1−e−λαmax). We further assume that the cluster labels are a priori

distributed according to P (z1, . . . , zN |τ1, . . . , τC) =
∏N
j=1 τzj , where τc is the probability

that an assessor belongs to the c-th subpopulation; τc ≥ 0, c = 1, . . . , C and
∑C

c=1 τc =
1. Finally τ1, . . . , τC are assigned the standard symmetric Dirichlet prior π(τ1, . . . , τC) =

Γ(ψC)Γ(ψ)−C
∏C
c=1 τ

ψ−1
c , using the gamma function Γ(·).

The number of clusters C is often not known, and the selection of C can be based on
different criteria. Here we inspect the posterior distribution of the within-cluster sum of
distances of the observed ranks from the corresponding cluster consensus (see Section 6.3
for more details). This approach is a Bayesian version of the more classical within-cluster
sum-of-squares criterion for model selection, and we expect to observe an elbow in the
within-cluster distance posterior distribution as a function of C, identifying the optimal
number of clusters.

Label switching is not explicitly handled inside our MCMC, to ensure full convergence
of the chain (Jasra et al., 2005; Celeux et al., 2000). MCMC iterations are re-ordered after
convergence is achieved, as in Papastamoulis (2015). The MCMC algorithm alternates
between sampling ρ1, . . . ,ρC and α1, . . . , αC in a Metropolis-Hastings step, and τ1, . . . , τC
and z1, . . . , zN in a Gibbs sampler step. The former is straightforward, since (ρc, αc)c=1,...,C

are conditionally independent given z1, . . . , zN . In the latter, we exploit the fact that the
Dirichlet prior for τ1, . . . , τC is conjugate to the multinomial conditional prior for z1, . . . , zN
given τ1, . . . , τC . Therefore in the Gibbs step for τ1, . . . , τC , we sample fromD(ψ+n1, . . . , ψ+
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nC), where D(·) denotes the Dirichlet distribution and nc =
∑N

j=1 1c(zj), c = 1, . . . , C.
Finally, in the Gibbs step for zj , j = 1, . . . , N , we sample from P (zj = c|τc,ρc, αc, Rj) ∝
τcP (Rj |ρc, αc) = τcZn(αc)

−1 exp{−(αc/n)d(Rj ,ρc)}. The pseudo-code of the clustering
algorithm is sketched in Algorithm 2 of Appendix B.

It is not difficult to treat situations where data are incomplete (in any way described
before) and the assessors must be divided into separate clusters. Algorithms 2 and 3 are
merged in an obvious way, by iterating between augmentation, clustering, and α and ρ up-
dates. The MCMC algorithm for clustering based on partial rankings or pairwise preferences
is sketched in Algorithm 4 of Appendix B.

4.4 Example: Preference Prediction

Consider a situation in which the assessors have expressed their preferences on a collection
of items, by performing only partial rankings. Or, suppose that they have been asked
to respond to some queries containing different sets of pairwise comparisons. One may
then ask how the assessors would have ranked some subset of items of interest when such
ranking could not be concluded directly from the data they provided. Sometimes the
interest is to predict the assessors’ top preferences, accounting for the possibility that such
top lists could contain items which some assessors had not seen. Problems of this type
are commonly referred to as personalized ranking, or preference learning (Fürnkranz and
Hüllermeier, 2010), being a step towards personalized recommendation. There is a large and
rapidly expanding literature describing a diversity of methods in this area.

Our framework, based on the Bayesian Mallows model, and its estimation algorithms as
described in the previous Sections, form a principled approach for handling such problems.
Assuming a certain degree of similarity in the individual preferences, and with different as-
sessors providing partly complementary information, it is natural to try to borrow strength
from such partial preference information from different assessors for forming a consensus.
Expanding the model to include clusters allows handling heterogeneity that may be present
in the assessment data (Francis et al., 2010). The Bayesian estimation procedure provides
then the joint posterior distribution, expressed numerically in terms of the MCMC out-
put consisting of sampled values of all cluster membership indicators, zj , and of complete
individual rankings, R̃j . For example, if assessor j did not compare A1 to A2, we might
be interested in computing P (A1 ≺j A2|data), the predictive probability that this assessor
would have preferred item A2 to item A1. This probability is then readily obtained from
the MCMC output, as a marginal of the posterior P (R̃j |data).

To illustrate how this is possible with our approach, we present a small simulated ex-
periment, corresponding to a heterogeneous collection of assessors expressing some of their
pairwise preferences, and then want to predict the full individual ranking R̃j of all items,
for all j. For this, we generated pairwise preference data from a mixture of Mallows mod-
els with footrule distance, using the procedure explained in Appendix C. We generated
the data with N = 200, n = 15, C = 3, α1, ..., αC = 4, ψ1, ..., ψC = 50, obtaining the
true R̃j,true for every assessor. Then, we assigned to each assessor j a different number,
Tj ∼ TruncPoiss(λT , Tmax), of pair comparisons, sampled from a truncated Poisson distri-
bution with λT = 20, denoting by Tmax = n(n − 1)/2 the total number of possible pairs
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Figure 6: Results of the simulation in Section 4.4. Boxplots of the posterior distribution
of the within-cluster sum of footrule distances (left), and of the within-cluster
indicator of mis-fit to the data (right), for different choices of C.

from n items. Each pair comparison was then ordered according to the true R̃j,true. The
average number of pairs per assessor was around 20, less than 20% of Tmax.

In the analysis, we run Algorithm 4 of Appendix B on these data, using the exact
partition function, for 105 iterations (of which 104 were for burn-in). Separate analyses were
performed for C ∈ {1, . . . , 6}. Then, in order to inspect if our method correctly identified
the true number of clusters we computed two quantities: the within-cluster sum of footrule
distances, given by

∑C
c=1

∑
j:zj=c

d(R̃j ,ρc), and a within-cluster indicator of mis-fit to the

data,
∑C

c=1

∑
j:zj=c

|{B ∈ tc(Bj) : B is not consistent with ρc}|, where a pair comparison

B ∈ tc(Bj), B = (Ar ≺ As) is not consistent with ρc if ρc,s > ρc,r. The number of such non-
consistent pairs in Bj gives an indication of the mis-fit of the j-th assessor to its cluster.
Notice that, while the latter measure takes into account the data directly, the former is
based on the augmented ranks R̃j only. Hence, the within-cluster sum of footrule distances
could be more sensitive to possible misspecifications in R̃j when the data are very sparse.
Notice also that the second measure is a ‘modified’ version of the Kendall distance between
the data and the cluster centers. The boxplots of the posterior distributions of these two
quantities are shown in Figure 6: the two measures are very consistent in indicating a clear
elbow at C = 3, thus correctly identifying the value we used to generate the data.

We then studied the success rates of correctly predicting missing individual pairwise
preferences. A pairwise preference between items Ai1 and Ai2 was considered missing for
assessor j if it was not among the sampled pairwise comparisons included in the data as
either Ai1 ≺j,true Ai2 or Ai2 ≺j,true Ai1 , nor could such ordering be concluded from the data
indirectly by transitivity. Thus we computed, for all assessors j, the predictive probabilities
P (Ai1 ≺j Ai2 |data) for all pairs of items {Ai1 , Ai2} not ordered in tc(Bj). The rule for
practical prediction was to always bet on the ordering with the larger predictive probability
of these two probabilities, then at least 0.5. Each resulting predictive probability is a direct
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Figure 7: Results of the simulation in Section 4.4. Barplots of the frequency of successes (red
columns) and failures (blue columns) obtained fixing C = 1 (left), 3 (middle), and
5 (right), for the data generated with λT = 20. For C = 1, 75% of all predictions
were correct, for C = 3, 79.1%, and for C = 5, 79%.

quantification of the uncertainty in making the bet: a value close to 0.5 expresses a high
degree of uncertainty, while a value close to 1 would signal greater confidence in that the bet
would turn out right. In the experiment, these bets were finally compared to the orderings
of the same pairs in the simulated true rankings R̃j,true. If they matched, this was registered
as a success, and if not, then as a failure.

In Figure 7 are shown the barplots of the results from this experiment, expressed
in terms of the frequency of successes (red columns) and failures (blue columns), ob-
tained by combining the outcomes from all individual assessors. For this presentation,
the predictive probabilities used for betting were grouped into the respective intervals
[0.50, 0.55], (0.55, 0.60], . . . , (0.95, 1.00] on the horizontal axis, so that pair preferences be-
come more difficult to predict the more one moves to the left, along the x-axis. On top of
each column the percentage of successes, or failures, of the corresponding bets is shown.
For the results considered on the left, the predictions were made without assuming a cluster
structure (C = 1) in the analysis, in the middle graph the same number (C = 3) of clusters
was assumed in the analysis as in the data generation, and on the right, we wanted to study
whether assuming an even larger number (C = 5) of clusters in the analysis might influence
the performance of our method for predicting missing preferences.

Two important conclusions can be made from the results of this experiment. First, from
comparing the three graphs, we can see that not assuming a cluster structure (C = 1) in the
data analysis led to an overall increased proportion of uncertain bets, in the sense of being
based on predictive probabilities closer to the 0.5 end of the horizontal axis, than if either
C = 3 or C = 5 was assumed. On the other hand, there is almost no difference between the
graphs corresponding to C = 3 and C = 5. Thus, moderate overfitting of clusters neither
improved nor deteriorated the quality of the predictions (this seems consistent with the very
similar within-cluster distances in these two cases, shown in Figure 6). A second, and more
interesting, observation is that, in all three cases considered, the predictive probabilities
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used for betting turned out to be empirically very well calibrated (see, for example, Dawid
(1982) and Little (2011)). For example, of the bets based on predictive probabilities in
the interval (0.70, 0.75], 74% were successful for C = 1, 73% when C = 3, and 75% when
C = 5. By inspection, such correspondence can be seen to hold quite well on all intervals in
all three graphs. That the same degree of empirical calibration holds also when an incorrect
number of clusters was fitted to the data as with the correct one, signals a certain amount
of robustness of this aspect towards variations in the modeling.

We repeated the same experiment with less data, namely using λT = 10. This gives
an average number of pairs per assessor around 10% of Tmax. Results are displayed in
Figure 5 of the Supplementary Material, Section 3. Predictive probabilities are still very
well calibrated, but of course the quality of prediction is worse. Nonetheless, for C = 3,
76.8% of all predictions were correct.

5. Related Work

We briefly review the literature which uses the Mallows model, or is based on other proba-
bilistic approaches, as these are most closely related to our method.

The Mallows model was studied almost exhaustively in the case of Kendall distance, of
which the partition function is easy to compute. Among probabilistic approaches, one of the
most interesting is Meilǎ and Chen (2010), who proposed a Dirichlet process mixture of the
Generalized Mallows model of Fligner and Verducci (1986) over incomplete rankings. In this
paper two Gibbs sampling techniques for estimating the posterior density were studied. This
framework was further extended in Meilǎ and Bao (2010), who developed an algorithm for
the ML estimation of their Generalized Mallows model for infinite rankings (IGM), based
on Kendall distance. They also considered Bayesian inference with the conjugate prior,
showing that such inference is much harder.

In terms of focus and aim, the proposal in Lu and Boutilier (2014) is very close to
our approach: they develop a method to form clusters of assessors and perform preference
learning and prediction from pairwise comparison data in the Mallows model framework.
Their approach is connected to our extension to preference data (Section 4.2), but differs
most notably in the general model and algorithm. Their generalized repeated insertion
model (GRIM), based on Kendall distance only, generalizes the repeated insertion method
for unconditional sampling of Mallows models of Doignon et al. (2004). Lu and Boutilier
(2014) perform ML estimation of the consensus ranking using a method based on the EM
algorithm, thus not providing uncertainty quantification for their estimates. Our target, on
the other hand, is the full posterior distribution of the unknown consensus ranking. The fact
that, for the uniform prior, the MAP estimates and the ML estimates coincide, establishes
a natural link between these inferential targets. Two of our illustrations, in Sections 6.3
and 6.4, use the same data as in Lu and Boutilier (2014).

In the frequentist framework, the Mallows model with other distances than Kendall
was studied by Irurozki et al. (2014) and Irurozki et al. (2016b), who also developed the
PerMallows R package (Irurozki et al., 2016a). Moreover, mixtures of Mallows models have
been used to analyze heterogeneous rank data by several authors. Murphy and Martin
(2003) studied mixtures of Mallows with Kendall, footrule and Cayley distances, apply-
ing their method to the benchmark American Psychological Association (Diaconis, 1988)
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election data set, where only n = 5 candidates (items) are ranked. The difficulties in the
computation of the partition function for the footrule distance, which arise for larger values
of n, were not discussed. Gormley and Murphy (2006) use mixtures of Plackett-Luce mod-
els in a maximum likelihood framework for clustering. Lee and Yu (2012) use mixtures of
weighted distance-based models to cluster ranking data. Also Busse et al. (2007) proposed
a mixture approach for clustering rank data, but focusing on the Kendall distance only.

Other probabilistic approaches, less related to the Mallows model, include the Insertion
Sorting Rank (ISR) model of Jacques and Biernacki (2014). It is implemented in the R
package rankcluster (Jacques et al., 2014), and allows clustering of partial rankings. Sun
et al. (2012) developed a non-parametric probabilistic model on preferences, which can
handle also heterogeneous assessors. This work extends the non-parametric kernel density
estimation approach over rankings introduced by Lebanon and Mao (2008), enabling it
then to handle ranking data of arbitrary incompleteness and tie structure. However, the
approach is based on a random-censoring assumption, which could be easily violated in
practice.

Among machine learning approaches, those pertaining to the area of learning to rank, or
rank aggregation, are also related to ours. Their aim is to find the best consensus ranking
by optimizing some objective function (for example Kemeny or Borda rankings), but they
generally do not provide uncertainty quantifications of the derived point estimates. A simple
comparison of our approach to two such methods is shown below, in Section 5.1.

5.1 Comparisons with Other Methods

The procedure we propose is Bayesian, and one of its strengths is its ability to quantify the
uncertainty related to the parameter estimates and predictions. In order to compare our
results with the ones obtained by other methods which provide only point estimates, we need
to summarize the posterior density of the model parameters into a single point estimate, for
example MAP, mode, mean, cumulative probability consensus. The cumulative probability
(CP) consensus ranking is the ranking arising from the following sequential scheme: first
select the item which has the maximum a posteriori marginal probability of being ranked
1st; then the item which has the maximum a posteriori marginal posterior probability of
being ranked 1st or 2nd among the remaining ones, etc. The CP consensus can be seen
as a sequential MAP. We generated the data from the Mallows model (for details refer to
Appendix C) with Kendall distance, since this is the unique distance handled by existing
competitors based on the Mallows model. We compare our procedure (here denoted by
BayesMallows) with the following methods:

- PerMallows (Irurozki et al., 2016a): MLE of the Mallows and the Generalized Mallows
models, with some right-invariant distance functions, but not footrule nor Spearman.

- rankcluster (Jacques et al., 2014): Inference for the Insertion Sorting Rank (ISR)
model.

- RankAggreg (Pihur et al., 2009): Rank aggregation via several different algorithms.
Here we use the Cross-Entropy Monte Carlo algorithm.

- Borda count (de Borda, 1781): Easy and classic way to aggregate ranks. Basically
equivalent to the average rank method, thus not a probabilistic approach.
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αT method α̂ or π̂ 1
nd(ρ̂,ρT) T (ρ̂, R)

1

BayesMallows - CP
1.01 (0.22)

0.53 (0.26) 19.07 (0.54)
BayesMallows - MAP 0.57 (0.31) 19.07 (0.56)
PerMallows 1.10 (0.19) 0.54 (0.26) 19.12 (0.56)
rankcluster 0.60 (0.02) 0.86 (0.34) 19.4 (0.58)
RankAggreg n.a. 0.66 (0.27) 19.25 (0.58)
Borda n.a. 0.54 (0.27) 19.12 (0.56)

2

BayesMallows - CP
2.05 (0.18)

0.17 (0.12) 16.29 (0.47)
BayesMallows - MAP 0.18 (0.13) 16.28 (0.47)
PerMallows 2.07 (0.17) 0.23 (0.13) 16.33 (0.46)
rankcluster 0.66 (0.02) 0.37 (0.22) 16.52 (0.54)
RankAggreg n.a. 0.29 (0.14) 16.41 (0.49)
Borda n.a. 0.23 (0.14) 16.33 (0.46)

3

BayesMallows - CP
3.02 (0.07)

0.06 (0.08) 13.88 (0.5)
BayesMallows - MAP 0.07 (0.09) 13.87 (0.5)
PerMallows 3.02 (0.21) 0.09 (0.08) 13.9 (0.51)
rankcluster 0.72 (0.01) 0.15 (0.11) 13.96 (0.49)
RankAggreg n.a. 0.14 (0.11) 13.94 (0.52)
Borda n.a. 0.09 (0.08) 13.91 (0.51)

4

BayesMallows - CP
3.96 (0.20)

0.02 (0.05) 11.83 (0.41)
BayesMallows - MAP 0.02 (0.04) 11.83 (0.41)
PerMallows 3.95 (0.20) 0.03 (0.05) 11.85 (0.4)
rankcluster 0.76 (0.01) 0.08 (0.08) 11.9 (0.44)
RankAggreg n.a. 0.06 (0.05) 11.87 (0.42)
Borda n.a. 0.03 (0.05) 11.85 (0.4)

Table 2: Results of the simulations of Section 5.1. α̂ refers to the posterior mean (row:
BayesMallows) or to MLE (row: PerMallows). π̂ is the dispersion parameter of
ISR. ρ̂ is the consensus ranking estimated by the different procedures: MAP (row:
BayesMallows (MAP)), CP (row: BayesMallows (CP)), MLE (row: PerMallows

and rankcluster), point estimate (row: RankAggreg and Borda). Standard devi-
ations are reported in parenthesis. Parameters setting: N = 100, n = 10.

The results of the comparisons are shown in Table 2. The BayesMallows estimates are
obtained through Algorithm 1 of Appendix B, with the available exact partition function
corresponding to Kendall distance, and for 105 iterations (after a burn-in of 104 iterations).
All quantities shown are averages over 50 independent repetitions of the whole simulation
experiment. α̂ is the posterior mean (for BayesMallows) or the MLE (for PerMallows),
while π̂ is the MLE estimate of the dispersion parameter of ISR (for rankcluster). ρ̂ is
the consensus ranking estimated by the different procedures: for BayesMallows it is either
given by the CP consensus (BayesMallows - CP), or by the MAP (BayesMallows - MAP).
We compare the goodness of fit of the methods by evaluating two quantities: first, the
normalized Kendall distance between the estimated consensus ranking and the true one,
used to generate the data, d(ρ̂,ρT)/n. Second, the average of Kendall distances between
the data points and the estimated consensus ranking, T (ρ̂, R) = 1

N

∑N
j=1 d(ρ̂,Rj). This

quantity makes sense here, being independent on the likelihood assumed by the different
models.
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The first remark about the results in Table 2 is the clear improvement of the perfor-
mance in terms of 1

nd(ρ̂,ρT), of all the methods, for increasing α. This obvious result
is a consequence of the easier task of rank aggregation when the assessors are more con-
centrated around the consensus. Because the data were generated with the same model
which BayesMallows and PerMallows used for inference, we expected that the Mallows-
based methods would perform better than the rank aggregation methods we considered.
The results of Table 2 confirm this claim: BayesMallows and PerMallows outperform the
other rank aggregation methods, with the exception of Borda count, which gives the same
results as PerMallows. This is not surprising, since the PerMallows MLE of the consen-
sus is approximated though the Borda algorithm. Moreover, when the summary of the
Bayesian posterior is the CP consensus, the performance of BayesMallows, both in terms
of 1

nd(ρ̂,ρT) and T (ρ̂, R), was better than the others. This is another advantage of our
approach on the competitors: being the output a full posterior distribution of the consensus,
we can select any strategy to summarize it, possibly driven by the application at hand. To
conclude, our approach gives slightly better results than the other existing methods, and in
the worst cases the performance is still equivalent. In Section 6 we will compare inferential
results on real data, not necessarily generated from the Mallows model.

6. Experiments

The experiments considered in this section illustrate the use of our approach in various
situations corresponding to different data structures.

6.1 Meta-Analysis of Differential Gene Expression

Studies of differential gene expression between two conditions produce lists of genes, ranked
according to their level of differential expression as measured by, for example, p-values.
There is often little overlap between gene lists found by independent studies comparing the
same condition. This situation raises the question of whether a consensus top list over all
available studies can be found.

We handle this situation in our Bayesian Mallows model by considering each study
j ∈ {1, . . . , N} to be an assessor, providing a top-nj list of differentially expressed genes,
which are the ranked items. This problem was studied by DeConde et al. (2006), Deng
et al. (2014), and Lin and Ding (2009), who all used the same 5 studies comparing prostate
cancer patients with healthy controls (Dhanasekaran et al., 2001; Luo et al., 2001; Singh
et al., 2002; True et al., 2006; Welsh et al., 2001). We consider the same 5 studies, and we
aim at estimating a consensus with uncertainty. Data consist of the top-25 lists of genes
from each study, in total 89 genes. Here we perform a restricted analysis (see 4.1.1), and in
this case nj = 25 for all j = 1, . . . , 5, and n = 89.

Table 3 shows the result of analyzing the five gene lists with the Mallows footrule model
for partial data (Section 4.1). We run 20 different chains, for a total of 107 iterations
(computing time was 16′4′′), and discarded the first 5 · 104 iterations of each as burn-in.
For the partition function, we used the IS approximation ZKn (α) with K = 107, computed
off-line on a grid of α’s in (0, 40]. After some tuning, we set L = 40, σα = 0.95, λ = 0.05
and αjump = 1, and used the footrule distance. Like DeConde et al. (2006), Deng et al.
(2014), and Lin and Ding (2009), our method ranked the genes HPN and AMACR first and
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Figure 8: Heat plot of the posterior prob-
abilities, for 89 genes, for being
ranked as the k−th most pre-
ferred, for k = 1, ..., 89. On the x-
axis the genes are ordered accord-
ing to the estimated CP consensus.

Rank MAP P (ρ ≤ i) P (ρ ≤ 10) P (ρ ≤ 25)
1 HPN 0.58 0.72 0.84
2 AMACR 0.59 0.69 0.8
3 NME2 0.26 0.56 0.64
4 GDF15 0.32 0.67 0.79
5 FASN 0.61 0.65 0.76
6 SLC25A6 0.19 0.63 0.71
7 OACT2 0.61 0.63 0.71
8 UAP1 0.62 0.64 0.74
9 KRT18 0.6 0.61 0.72

10 EEF2 0.64 0.64 0.75
11 GRP58 0.13 0.07 0.61
12 NME1 0.68 0.15 0.79
13 STRA13 0.49 0.06 0.56
14 ALCAM 0.33 0.05 0.65
15 SND1 0.51 0.07 0.71
16 CANX 0.59 0.07 0.64
17 TMEM4 0.34 0.05 0.58
18 DAPK1 0.15 0.04 0.21
19 CCT2 0.59 0.05 0.62
20 MRPL3 0.36 0.06 0.6
21 MTHFD2 0.43 0.06 0.58
22 PPIB 0.51 0.06 0.57
23 SLC19A1 0.42 0.06 0.53
24 FMO5 0.58 0.05 0.59
25 TRAM1 0.14 0.04 0.14

Table 3: Top-25 genes in the MAP con-
sensus ranking from a total of 89
genes. The cumulative probabil-
ity of each gene in the top-25 po-
sitions in the MAP of being in
that position, or higher, is shown
in the third column of the Table,
P (ρ ≤ i). The probabilities of be-
ing among the top-10 and top-25
are also shown for each gene.

second in the MAP consensus ranking. The low value of the posterior mean of α, being
0.56 (mode 0.43, high posterior density, HPD, interval (0.04, 1.29)), is an indicator of a
generally low level of agreement between the studies. In addition, the fact that n > N , and
having partial data, both contribute to keeping α small. However, the posterior probability
for each gene to be among the top-10 or top-25 is not so low, thus demonstrating that our
approach can provide a valid criterion for consensus. In the hypothetical situation in which
we had included in our analysis all n∗ genes following a full analysis mode, with n∗ being
at least 7567, the largest number of genes included in in any of the five original studies
(DeConde et al., 2006), this would have had the effect of making the posterior probabilities
in Table 3 smaller. On the other hand, because of Corollary 2, the ranking order obtained
from such hypothetical analysis based on all n∗ genes would remain the same as in Table 3.

Next we compared the result shown in Table 3 with other approaches: Table 4 (left)
reports results obtained with RankAggreg (Pihur et al., 2009), which is specifically tar-
geted to meta-analysis problems, while in Table 4 (right) different aggregation methods
implemented in TopKLists (Schimek et al., 2015) are considered. The results obtained via
RankAggreg turned out unstable, with the final output changing in every run, and the list
shown in Table 4 differs from that in Pihur et al. (2009). Overall, apart from the genes
ranked to the top−2 places, there is still considerable variation in the exact rankings of
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rank CE algorithm GA algorithm
1 HPN HPN
2 AMACR AMACR
3 FASN NME2
4 GDF15 0ACT2
5 NME2 GDF15
6 0ACT2 FASN
7 KRT18 KRT18
8 UAP1 SLC25A6
9 NME1 UAP1

10 EEF2 SND1
11 STRA13 EEF2
12 ALCAM NME1
13 GRP58 STRA13
14 CANX ALCAM
15 SND1 GRP58
16 SLC25A6 TMEM4
17 TMEM4 CCT2
18 PPIB FM05
19 CCT2 CANX
20 MRPL3 DYRK1A
21 MTHFD2 MTHFD2
22 SLC19A1 CALR
23 FM05 MRPL3
24 PRSS8 TRA1
25 NACA NACA

rank mean median geo.mean l2norm
1 HPN HPN HPN HPN
2 AMACR AMACR AMACR AMACR
3 GDF15 FASN FASN GDF15
4 FASN KRT18 GDF15 NME1
5 NME1 GDF15 NME2 FASN
6 KRT18 NME1 SLC25A6 KRT18
7 EEF2 EEF2 EEF2 EEF2
8 NME2 UAP1 0ACT2 NME2
9 0ACT2 CYP1B1 OGT UAP1

10 SLC25A6 ATF5 KRT18 0ACT2
11 UAP1 BRCA1 NME1 SLC25A6
12 CANX LGALS3 UAP1 STRA13
13 GRP58 MYC CYP1B1 CANX
14 STRA13 PCDHGC3 ATF5 GRP58
15 SND1 WT1 CBX3 SND1
16 OGT TFF3 SAT ALCAM
17 ALCAM MARCKS CANX TMEM4
18 CYP1B1 OS-9 BRCA1 MTHFD2
19 MTHFD2 CCND2 GRP58 MRPL3
20 ATF5 DYRK1A MTHFD2 PPIB
21 CBX3 TRAP1 STRA13 OGT
22 SAT FM05 LGALS3 CYP1B1
23 BRCA1 ZHX2 ANK3 SLC19A1
24 MRPL3 RPL36AL GUCY1A3 ATF5
25 LGALS3 ITPR3 LDHA CBX3

Table 4: Results given by the RankAggreg R package (left) and by the TopKLists R package
(right).

the genes. Rather than considering such exact rankings, however, it may in practice be
of more interest to see to what extent the same genes are shared between different top−k
lists. Here the results are more positive. For example, of the 10 genes on top of the MAP
consensus list of Table 3, always 9 genes turned out to be in common with each of the lists
of Table 4, with the exception of the median (column 3 of Table 4, right), where only 7
genes are shared. Column 4 of Table 3 provides additional support to the MAP selection of
the top−10: all genes included in that list have posterior probability at least 0.56 for being
among the top−10, while for those outside the list it is maximally 0.15.

In order to have a quantification of the quality of the different estimates, we compute
the footrule distance for partial data (Critchlow, 2012, p. 30) between ρ and Rj , averaged
over the assessors, defined as follows

Tpartial(ρ, R) =
1

N

N∑
j=1

n∑
i=1

|νRij − νρi |,

where νρ, νRj ∈ Pn are equal to ρ and Rj in their top−nj ranks (top−25 in the case of

gene lists), while the rank
n+nj+1

2 is assigned to the items whose rank in ρ and Rj is not

in their top−nj . Note that
n+nj+1

2 (equal to 57.5 in this case) is the average of the ranks
of the excluded items. Table 5 reports the values of Tpartial for the various methods. We
notice that the minimum value is achieved by the Mallows MAP consensus list.

6.2 Beach Preference Data

Here we consider pair comparison data (Section 4.2) generated as follows: first we chose
n = 15 images of tropical beaches, shown in Figure 9, such that they differ in terms of
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MAP CE GA mean median geo.mean l2norm
Tpartial(ρ, R) 12.56 12.67 12.98 13.52 15.26 14.05 13.04

Table 5: Values of the average footrule distance for partial data Tpartial between the partial
gene lists and the different estimated consensus rankings.

Figure 9: The 15 images used for producing
the Beach data set.

ρ CP P (ρi ≤ i) 95% HPDI

1 B9 0.81 (1,2)
2 B6 1 (1,2)
3 B3 0.83 (3,4)
4 B11 0.75 (3,5)
5 B15 0.68 (4,7)
6 B10 0.94 (4,7)
7 B1 1 (6,7)
8 B13 0.69 (8,10)
9 B5 0.55 (8,10)
10 B7 1 (8,10)
11 B8 0.41 (11,14)
12 B4 0.62 (11,14)
13 B14 0.81 (11,14)
14 B12 0.94 (12,15)
15 B2 1 (14,15)

Table 6: Results of the pair com-
parisons. Beaches ar-
ranged according to the
CP consensus ordering
together with the cor-
responding 95% highest
posterior density inter-
vals.

presence of building and people. For example, beach B9 depicts a very isolated scenery,
while beach B2 presents a large hotel seafront.

The pairwise preference data were collected as follows. Each assessor was shown a
sequence of 25 pairs of images, and asked on every pair the question: ”Which of the two
beaches would you prefer to go to in your next vacation?”. Each assessor was presented with
a random set of pairs, arranged in random order. As there are 105 possible pairs, 25 pairs is
less than 25% of the total. We collected N = 60 answers. Seven assessors did not answer to
all questions, but we kept these responses as our method is able to analyze also incomplete
data. Nine assessors returned orderings which contained at least one non-transitive pattern
of comparisons. In this analysis we dropped the non-transitive patterns from the data.
Systematic methods for dealing with non-transitive rank data will be considered elsewhere.

We run the MCMC for 106 iterations, and discarded the first 105 iterations as burn-in.
We set L = 2, σα = 0.1, λ = 0.1 and αjump = 100. Computing time was less than 2′.
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ρ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BT B6 B9 B3 B11 B10 B15 B1 B5 B7 B13 B4 B8 B14 B12 B2

PR B6 B9 B10 B15 B3 B1 B11 B13 B7 B5 B8 B12 B4 B14 B2

Table 7: Consensus ordering given by other methods: BT is the Bradley Terry given by the
BradleyTerry2 R package (Firth and Turner, 2012), PR is the popular Google
PageRank output (Brin and Page, 1998) given by the igraph R package (Csardi
and Nepusz, 2006). Most preferred to the left.

Figure 10: Posterior probability, for each beach, of being ranked among the top-3 in ρ
(column 1), and in Rj , j = 1, ..., 60 (next columns).

The posterior mean of α was E(α|data) = 3.38 (2.94, 3.82). In Table 6 we report the CP
consensus ranking of the beaches (column 2), the cumulative probability of each item i to
be in the top−i positions, i.e., P (ρi ≤ i) (column 3), and the 95% HPDI for each item
(column 4), which represents the posterior uncertainty. In Table 7 we give the consensus
ranking obtained by two other methods, for comparison.

With our method we also estimate the latent full ranking of each assessor. Figure 10 was
obtained as follows: in the separate column on the left, we display the posterior probability
P (ρBi ≤ 3|data) that a given beach Bi, i = 1, ..., 15, is among the top−3 in the consensus
ρ. In the other columns we show, for each beach Bi, the individual posterior probabilities
P (R̃j,Bi ≤ 3|data), of being among the top−3 for each assessor j, j = 1, ..., 60. We see for
example that beach B5, which was ranked only 9th in the consensus, had, for 4 assessors,
posterior probability very close to 1 of being included among their top−3 beaches.

6.3 Sushi Data

We illustrate clustering based on full rankings using the benchmark data set of sushi prefer-
ences collected across Japan (Kamishima, 2003), see also Lu and Boutilier (2014). N = 5000
people were interviewed, each giving a complete ranking of n = 10 sushi variants. Cultural
differences among Japanese regions influence food preferences, so we expect the assessors to
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Mallows model with footrule distance
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Figure 11: Results of the Sushi experiment. Boxplots of the posterior distributions of the
within-cluster sum of footrule distances of assessors’ ranks from the correspond-
ing cluster consensus for different choices of C (note the y-axis break, for better
visualization).

be clustered according to different shared consensus rankings. We analyzed the sushi data
using mixtures of Mallows models (Section 4.3) with the footrule distance (with the exact
partition function of the Mallows model, see Section 2.1). We run the MCMC for 106 iter-
ations, and discarded the first 105 iterations as burn-in. After some tuning, we set L = 1,
σα = 0.1, λ = 0.1 and αjump = 100. In the Dirichlet prior for τ , we set the hyper-parameter
ψ = N/C, thus favoring high-entropy distributions. Computing time varied depending on
C, from order of minutes to an hour. For each possible number of clusters C ∈ {1, . . . , 10},
we used a thinned subset of MCMC samples to compute the posterior footrule distance be-
tween ρc and the ranking of each assessor assigned to that cluster,

∑C
c=1

∑
j:zj=c

d(Rj ,ρc).
The posterior of this quantity, over all assessors and cluster centers, was then used for
choosing the appropriate value for C, see Figure 11. We found an elbow at C = 6, which
was then used to further inspect results.

Table 8 shows the results when the number of clusters is set to C = 6: for each cluster,
the MAP estimates for τ and α, together with their 95% HPDIs, are shown on the top of
the table. Table 8 also shows the sushi items, arranged in cluster-specific lists according
to the MAP consensus ordering (in this case equal to the CP consensus). Our results
can be compared with the ones in Lu and Boutilier (2014) (Table 1 in Section 5.3.2): the
correspondence of ours-Lu and Boutilier (2014) clusters could be 1-4, 2-1, 3-2, 4-5, 5-4, 6-0.
Note that the dispersion parameter α in our Bayesian Mallows model is connected to the
dispersion parameter φ in Lu and Boutilier (2014) by the link α = −n log(φ). Hence, we
can also observe that the cluster-specific α values reported in Table 8 are quite comparable
to the dispersion parameters of Lu and Boutilier (2014).

We investigate the stability of the clustering in Figure 12, which shows the heatplot of the
posterior probabilities, for all 5000 assessors (on the x-axis), of being assigned to each of the
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c = 1 c = 2 c = 3 c = 4 c = 5 c = 6
τc 0.243 (0.23,0.26) 0.131 (0.12,0.14) 0.107 (0.1,0.11) 0.117 (0.11,0.12) 0.121 (0.11,0.13) 0.278 (0.27,0.29)
αc 3.62 (3.52,3.75) 2.55 (2.35,2.71) 3.8 (3.42,4.06) 4.02 (3.78,4.26) 4.46 (4.25,4.68) 1.86 (1.77,1.94)

1 fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
2 sea urchin sea eel fatty tuna salmon roe tuna tuna
3 salmon roe egg shrimp tuna tuna roll sea eel
4 sea eel squid tuna tuna roll shrimp shrimp
5 tuna cucumber roll squid shrimp squid salmon roe
6 shrimp tuna tuna roll egg sea eel tuna roll
7 squid tuna roll salmon roe squid egg squid
8 tuna roll fatty tuna cucumber roll cucumber roll cucumber roll sea urchin
9 egg salmon roe egg sea eel salmon roe egg

10 cucumber roll sea urchin sea eel sea urchin sea urchin cucumber roll

Table 8: Results of the Sushi experiment when setting C = 6. Sushi items arranged ac-
cording to the MAP consensus ranking found from the posterior distribution of
ρc, c = 1, . . . , 6. At the top of the Table, corresponding MAP estimates for τ and
α, with 95% HPDIs (in parenthesis). Results are based on 106 MCMC iterations.
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Figure 12: Heatplot of posterior probabilities for all 5000 assessors (on the x-axis) of being
assigned to each cluster (c = 1, . . . , 6 from bottom to top).

6 clusters in Table 8 (clusters c = 1, . . . , 6 from bottom to top in Figure 12): most of these
individual probabilities were concentrated on some particular preferred value of c among
the six possibilities, indicating a reasonably stable behavior in the cluster assignments.

6.4 Movielens Data

The Movielens data set1 contains movie ratings from 6040 users. In this example, we focused
on the n = 200 most rated movies, and on the N = 6004 users who rated (not equally) at

1. www.grouplens.org/datasets/.
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Figure 13: Results of the Movielens experiment. Boxplots of the posterior distributions of
the within-cluster indicator of mis-fit to the data, as introduced in Section 4.4,
for different choices of C.

least 3 movies. Each user had considered only a subset of the n movies (30.2 on average).
We converted the ratings given by each user from a 1-5 scale to pairwise preferences as
described in Lu and Boutilier (2014): each movie was preferred to all movies which the user
had rated strictly lower. We selected users whose rating included at least 3 movies, because
two of them were needed to create at least a pairwise comparison, and the third one was
needed for prediction, as explained in the following.

Since we expected heterogeneity among users, due to age/gender/social factors/education,
we applied the clustering scheme for pairwise preferences, with the footrule distance. Since
n = 200, we used the asymptotic approximation for Zn(α) described in Mukherjee (2016)
and in Section 2 of the Supplementary Material. We run the MCMC for 105 iterations, after
a burn-in of 5 · 104 iterations. We set: L = 20, σα = 0.05, αjump = 10 and λ = 0.1, after
some tuning. Note that the label switching problem only affects inference on cluster-specific
parameters, but it does not affect predictive distributions (Celeux et al., 2006). We varied
the number C of clusters in the set {1, . . . , 15}, and inspected the within-cluster indicator of
mis-fit to the data,

∑C
c=1

∑
j:zj=c

|{B ∈ tc(Bj) : B is not consistent with ρc}|, introduced
in Section 4.4, see Figure 13: the posterior within-cluster indicator shows two possible el-
bows: C = 5, and C = 11. Hence, according to these criteria, both choices seemed initially
conceivable. However, it is beyond the scope of this paper to discuss ways to decide the
number of clusters.

In order to select one of these two models, we examined their predictive performance.
Before converting ratings to preferences, we discarded for each user j one of the rated movies
at random. Then, we randomly selected one of the other movies rated by the same user, and
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Figure 14: Results of the Movielens experiment. Boxplots of the posterior probability for
correctly predicting the discarded preference conditionally on the number of
preferences stated by the user, for the model with C = 5. The histogram on the
right shows the marginal posterior probability for correct preference prediction.

used it to create a pairwise preference involving the discarded movie. This preference was
then not used for inference. After running the Bayesian Mallows model, we computed for
each user the predictive probabilities P (R̃j |data), and thereby the probabilities for correctly
predicting the discarded preference. The median, across all users, of these probabilities was
0.8225 for the model with C = 5 clusters, and 0.796 for C = 11 clusters. Moreover, for
C = 5, 88 % of these probabilities were higher than 0.5. These are very positive results,
and they suggest that the predictive performance of the model with 5 clusters is slightly
better than the one with 11 clusters. It appears that the larger number of clusters in the
latter model leads to a slight overfitting, and this is likely to be the main cause of the
loss in the predictive success. Figure 14 shows the boxplots of the posterior distribution of
the probability for correct preference prediction of the left out comparison, stratified with
respect to the number of preferences given by each user, for the model with C = 5. The
histogram on the right shows the same posterior probability for correctly predicting the
discarded preference for all users, for the same model, regardless of how many preferences
each user had expressed. Interestingly, in this data, the predictive power is rather stable
and high, irrespectively from how many movies the users rated. In other applications, we
would expect the predictions to become better the more preferences are expressed by a user.
In this case, a figure similar to Figure 14 could guide personal recommendation algorithms,
which should not rely on estimated point preferences, if these are too uncertain, as happens
for users who have given a few ratings only.

In Table 9 the MAP estimates for τ and α, together with their 95% HPDIs, are shown at
the top. The table also shows a subset of the movies, arranged in cluster-specific top−10 lists
according to the CP consensus ranking, from the posterior distribution of ρc, c = 1, . . . , 5.
We note that all α values correspond to a reasonable within-cluster variability. Moreover,
the lists reported in Table 9 characterize the users in the same cluster as individuals sharing
a reasonably well interpretable preference profile. Since in the Movielens data set additional
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c = 1 c = 2 c = 3 c = 4 c = 5
τc 0.325 (0.32,0.33) 0.219 (0.21,0.23) 0.156 (0.15,0.17) 0.145 (0.14,0.15) 0.155 (0.15,0.16)
αc 2.53 (2.36,2.7) 3.33 (3.2,3.48) 2.58 (2.27,2.81) 1.87 (1.67,2.02) 2.68 (2.47,2.89)
1 A Christmas Story Citizen Kane The Sting Indiana Jones (I) Shawshank Redemption
2 Schindler’s List The Godfather Dr. Strangelove A Christmas Story Indiana Jones (I)
3 The Godfather Pulp Fiction 2001: A Space Odyssey Star Wars (IV) Braveheart
4 Casablanca Dr. Strangelove The Maltese Falcon The Princess Bride Star Wars (IV)
5 Star Wars (IV) A Clockwork Orange Casablanca Schindler’s List Saving Private Ryan
6 Shawshank Redemption Casablanca Taxi Driver The Matrix The Green Mile
7 Saving Private Ryan The Usual Suspects Citizen Kane Shawshank Redemption Schindler’s List
8 The Sting 2001: A Space Odyssey Schindler’s List Indiana Jones (III) The Sixth Sense
9 The Sixth Sense American Beauty Chinatown The Sting The Matrix

10 American Beauty Star Wars (IV) The Godfather The Sixth Sense Star Wars (V)

Table 9: Results of the Movielens experiment. Movies arranged according to the CP con-
sensus ranking, from the posterior distribution of ρc, c = 1, . . . , 5.

information on the users is available, we compared the estimated cluster assignments with
the age, gender, and the occupation of the users. While occupation showed no interesting
patterns, the second and fifth clusters had more males than expected, in contrast to the
first and fourth clusters which included more females than average, the former above 45
and the latter below 35 of age.

7. Discussion

In this paper, we developed a fully Bayesian hierarchical framework for the analysis of
rank data. An important advantage of the Bayesian approach is that it offers coherently
propagated and directly interpretable ways to quantify posterior uncertainties of estimates
of any quantity of interest. Earlier Bayesian treatments of the Mallows rank model are
extended in many ways: we develop an importance sampling scheme for Zn(α) allowing the
use of other distances than Kendall’s, and our MCMC algorithm efficiently samples from the
posterior distribution of the unknown consensus ranking and of the latent assessor-specific
full rankings. We also develop various extensions of the model, motivated by applications
in which data take particular forms.

The Mallows model performs very well with a large number of assessors N , as we show
in the Sushi experiment of Section 6.3, and in the Movielens experiment of Section 6.4.
On the other hand, it may not be computationally feasible when the number of items
is extremely large, for example n ≥ 104, which is not uncommon in certain applications
(Volkovs and Zemel, 2014). For the footrule and Spearman distances, there exist asymptotic
approximations for Zn(α) as n → ∞ (Mukherjee, 2016), which we successfully used in
Section 6.4, although the MCMC algorithm converges slowly in such large spaces. Maximum
likelihood estimation of ρ runs into the same problem when n gets large (Aledo et al., 2013;
Ali and Meilǎ, 2012). Volkovs and Zemel (2014) developed the multinomial preference
model (MPM) for cases with very large n, which can be efficiently computed by maximizing
a concave log-likelihood function. The MPM thus seems a useful choice when n is very large
and real time performance is needed.

All methods presented have been implemented in C++, and run efficiently on a desktop
computer, with the exception of the Movielens experiment, which needed to be run on a
cluster. Obtaining a sufficiently large sample from the posterior distribution takes from
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a few seconds, for small problems, to several minutes, in the examples involving massive
data augmentation. We are also working on distributed versions of the MCMC on parallel
synchronous and asynchronous machines.

Many of the extensions we propose for solving specific problems (for example, clustering,
preference prediction, pairwise comparisons) are needed jointly in real applications, as we
illustrate for example in the Movielens data. Our general framework is flexible enough to
handle such extensions.

There are many situations in which rankings vary over time, as in political surveys
(Regenwetter et al., 1999) or book bestsellers (Caron and Teh, 2012). We have extended
our approach to this setting (Asfaw et al., 2017). We assume to observe ranks at discrete
time-points indexed by t = 0, 1, . . . , T and let ρ(t) and α(t) denote the parameters of the
Mallows model at time t. Interestingly, this model allows for prediction (with uncertainty
quantification) of rankings in future time instances.

A natural generalization of our model is to allow for item-specific α’s. This is known as
generalized Mallows’s model, first implemented in Fligner and Verducci (1986), for Kendall
and Cayley distances, and further extended in Meilǎ and Bao (2010), for Kendall distance
only, to the Bayesian framework. To our knowledge, the Mallows model with footrule and
Spearman has not yet been generalized to handle item-specific α’s, mostly because of the
obvious computational difficulties. Within our framework this appears as feasible.
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Appendix A. Proofs of Results from Section 4.1.1

Proof of Proposition 4.
Having assumed the uniform prior across all permutations of latent consensus ranks, the
desired result will hold if and only if

∑
j=1,...,N d(Rj ,ρ) ≤

∑
j=1,...,N d(Rj ,ρ

′). This is true
if d(Rj ,ρ) ≤ d(Rj ,ρ

′) holds separately for each assessor j, for j = 1, . . . , N. We consider
first the footrule distance d, and then show that the result holds also for the Kendall and
Spearman distances. This proof follows Proposition 4 in Meilǎ and Bao (2010).

Suppose first, for simplicity, that all assessors have ranked the same n items, that is,
A1 = A2 = . . . = AN = A. Later we allow the sets Aj of ranked items to be different for
different assessors. Thus there are n∗ − n items, which nobody ranked in the original data.

We now introduce synthetic rankings for all these items as well, that is, we augment
each Rj as recorded in the data by replacing the missing ranks of the items Ai ∈ Ac by
some permutation of their possible ranks from n+ 1 to n∗. We then show that the desired
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inequality holds regardless of how these ranks {Rij , Ai ∈ Ac} were assigned. The proof is
by induction, and it is carried out in several steps.

For the first step, let ρ be a rank vector were the ranks from 1 to n, in any order, have
been assigned to the items in A, and the ranks Rij between n+ 1 and n∗ are given to items
in Ac. Let ρ′ be a rank vector obtained from ρ by a transposition of the ranks of two items,
say, of Ai0 ∈ Ac and Ai1 ∈ A, with ρi0 = ρ′i1 ≥ n + 1 and ρi1 = ρ′i0 ≤ n. Fixing these
two items, we want to show that d(Rj ,ρ) ≤ d(Rj ,ρ

′). For the footrule distance we have to
show that

∑n
i=1 |Rij−ρi| ≤

∑n
i=1 |Rij−ρ′i|. Since ρ and ρ′ coincide for all their coordinates

i 6= i0, i1, it is enough to compare here the terms |Ri0j − ρi0 | and |Ri1j − ρi1 | on the left to
the corresponding terms |Ri0j − ρ′i0 | and |Ri1j − ρ′i1 | on the right. We need to distinguish
between two situations:

(i) Suppose Ri1j ≤ ρi1 . Then, ρ′i1 − Ri1j > ρi1 − Ri1j . On the other hand, ρi0 ≥ n + 1
implies that Ai0 ∈ Ac, and it is therefore ranked by assessor j with Ri0j ≥ n + 1.
Therefore, |Ri0j − ρ′i0 | ≥ |Ri0j − ρi0 |. By combining these two results we get that
|Ri0j − ρi0 |+ |Ri1j − ρi1 | ≤ |Ri0j − ρ′i0 |+ |Ri1j − ρ

′
i1
|.

(ii) Now, suppose that Ri1j > ρi1 . Then, Ri1j−ρi1 ≤ n−ρi1 ≤ Ri0j−ρ′i0 . Moreover, since
|Ri0j −ρi0 | ≤ |Ri1j −ρi0 | = |Ri1j −ρ′i1 |, we have that again |Ri0j −ρi0 |+ |Ri1j −ρi1 | ≤
|Ri0j − ρ′i0 |+ |Ri1j − ρ

′
i1
| holds.

The same reasoning holds also for the Kendall distance, since the Kendall distance between
the two rank vectors, which are obtained from each other by a transposition of a pair of
items, is the same as the footrule distance. For the Spearman distance, we only need to
form squares of the distance between pairs of items, and the inequality remains valid.

For the general step of the induction, suppose that ρ has been obtained from its original
version with all items in A ranked to the first n positions, via a sequence of transpositions
between items originally in A and items originally in Ac. Let ρ′ be a rank vector where one
more transposition of this type from ρ to ρ′ has been carried out. Then the argument of
the proof can still be carried through, and the conclusion d(Rj ,ρ) ≤ d(Rj ,ρ

′) holds. This
argument needs to be complemented by considering the uniform random permutations,
corresponding to the assumed prior of the ranks originally missing in the data, across their
possible values from n + 1 to n∗. But this is automatic, because the conclusion holds
separately for all permutations of such ranks.

Finally, the argument needs to be extended to the situation in which the sets Aj of
ranked items can be different for different assessors. In this case we are led to consider,
as a by-product of the data augmentation scheme, a joint distribution of the rank vectors
{R̃j ; j = 1, . . . , N}. Here, for each j, the nj items which were ranked first have been fixed
by the data. The remaining n−nj items are assigned augmented random ranks with values
between nj + 1 and n, where the probabilities, corresponding to the model Pn∗ , are de-
termined by the inference from the assumed Mallows model and the data. The conclusion
remains valid regardless of the particular way in which the augmentation was done, and so
it holds also when taking an expectation with respect to Pn∗ .

Proof of Corollary 2.
It follows from Proposition 4 that the n top ranks in ρMAP∗ are all assigned to items Ai ∈ A.
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Therefore, using shorthand ρA = (ρi;Ai ∈ A) and ρAc = (ρi;Ai ∈ Ac) we see that ρMAP∗

must be of the form ρMAP∗ = (ρMAP∗
A ,ρMAP∗

Ac ) = (π,π′), where π is a permutation of the
set (1, 2, . . . , n), and similarly π′ is some permutation of (n+ 1, . . . , n∗).

To prove the statement, we show the following: (i) the posterior probabilities Pn∗(ρA =
π,ρAc = π′|data) and Pn∗(ρA = π|ρAc = π′, data) are invariant under permutations of
π′, and (ii) the latter conditional probabilities Pn∗(ρA = π|ρAc = π′, data) coincide with
Pn(ρA = π|data). As a consequence, a list of top-n items obtained from the full analysis
estimate ρMAP∗ qualifies also as the restricted analysis estimate ρMAP , and conversely,
ρMAP can be augmented with any permutation π′ of (n+1, . . . , n∗) to jointly form ρMAP∗.

The first part of (i) follows by noticing that the likelihood in the full analysis, when
considering consensus rankings of the form ρ = (ρA,ρAc) = (π,π′), only depends on the
observed data via π. Since the assessors act independently, each imposing a uniform prior
on their unranked items, also the posterior Pn∗(ρA = π,ρAc = π′|data) will depend only
on π. The second part follows from the first, either by direct conditioning in the joint dis-
tribution, or by first computing the marginal Pn∗(ρAc = π′|data) by summation, and then
dividing. (ii) follows then because, for both posterior probabilities, the sample space, the
prior, and the likelihood are the same.

Appendix B. Pseudo-codes of the Algorithms

We here report the pseudo-codes of the algorithms. The available distance functions are:
Kendall, footrule, Spearman. Cayley and Hamming are easy to implement. For Kendall,
Cayley and Hamming, there is no need to run the IS to approximate Zn(α), as the closed
form is available (Fligner and Verducci, 1986). For footrule (n ≤ 50) and Spearman (n ≤ 14)
the algorithm exploits the results presented in Section 2.1. For footrule (n > 50) and
Spearman (n > 14) the IS procedure has to be run off-line, before the MCMC.

Algorithm 1: Basic MCMC Algorithm for Complete Rankings
input : R1, . . . ,RN ; λ, σα, αjump, L, d(·, ·), Zn(α), M .
output: Posterior distributions of ρ and α.

Initialization of the MCMC: randomly generate ρ0 and α0.

for m← 1 to M do
M-H step: update ρ:

sample: ρ′ ∼ L&S(ρm−1, L) and u ∼ U(0, 1)
compute: ratio← equation (6) with ρ← ρm−1 and α← αm−1

if u < ratio then ρm ← ρ′

else ρm ← ρm−1

if m mod αjump = 0 then M-H step: update α:

sample: α′ ∼ logN (αm−1, σ
2
α) and u ∼ U(0, 1)

compute: ratio← equation (8) with ρ← ρm and α← αm−1

if u < ratio then αm ← α′

else αm ← αm−1

end
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Algorithm 2: MCMC Algorithm for Clustering Complete Rankings
input : R1, . . . ,RN ; C, ψ, λ, σα, αjump, L, d(·, ·), Zn(α), M .
output: Posterior distributions of ρ1, . . . ,ρC , α1, . . . , αC , τ1, . . . , τC , z1, . . . , zN .

Initialization of the MCMC: randomly generate ρ1,0, . . . ,ρC,0, α1,0, . . . , αC,0, τ1,0, . . . , τC,0, and z1,0, . . . , zN,0.

for m← 1 to M do
Gibbs step: update τ1, . . . , τC

compute: nc =
∑N
j=1 1c(zj,m−1), for c = 1, . . . , C

sample: τ1, . . . , τC ∼ D(ψ + n1, . . . , ψ + nC)

for c← 1 to C do
M-H step: update ρc
sample: ρ′c ∼ L&S(ρc,m−1, L) and u ∼ U(0, 1)
compute: ratio← equation (6) with ρ← ρc,m−1 and α← αc,m−1, and where the sum is over {j : zj,m−1 = c}
if u < ratio then ρc,m ← ρ′c
else ρc,m ← ρc,m−1

if m mod αjump = 0 then M-H step: update αc sample: α′c ∼ N (αc,m−1, σ
2
α) and u ∼ U(0, 1)

compute: ratio← equation (8) with ρ← ρc,m and α← αc,m−1, and where the sum is over {j : zj,m−1 = c}
if u < ratio then αc,m ← α′c
else αc,m ← αc,m−1

end

Gibbs step: update z1, . . . , zN
for j ← 1 to N do

foreach c← 1 to C do compute cluster assignment probabilities: pcj =
τc,m

Zn(αc,m)
exp

[−αc,m
n

d(Rj ,ρc,m)
]

sample: zj,m ∼M(p1j , . . . , pCj)

end

end

Algorithm 3: MCMC Algorithm for Partial Rankings or Pairwise Preferences
input : {S1, . . . ,SN} or {tc(B1), . . . , tc(BN )}; λ, σα, αjump, L, d(·, ·), Zn(α), M .

output: Posterior distributions of ρ, α and R̃1, . . . , R̃N .
Initialization of the MCMC: randomly generate ρ0 and α0.

if {S1, . . . ,SN} among inputs then

foreach j ← 1 to N do randomly generate R̃0
j in Sj

else

foreach j ← 1 to N do randomly generate R̃0
j compatible with tc(Bj)

end

for m← 1 to M do
M-H step: update ρ:

sample: ρ′ ∼ L&S(ρm−1, L) and u ∼ U(0, 1)
compute: ratio← equation (6) with ρ← ρm−1 and α← αm−1

if u < ratio then ρm ← ρ′

else ρm ← ρm−1

if m mod αjump = 0 then M-H step: update α:

sample: α′ ∼ N (αm−1, σ
2
α) and u ∼ U(0, 1)

compute: ratio← equation (8) with ρ← ρm and α← αm−1

if u < ratio then αm ← α′

else αm ← αm−1

M-H step: update R̃1, . . . , R̃N :
for j ← 1 to N do

if {S1, . . . ,SN} among inputs then sample: R̃′j in Sj from the leap-and-shift distribution centered at R̃m−1
j

else sample: R̃′j from the leap-and-shift distribution centered at R̃m−1
j and compatible with tc(Bj)

compute: ratio← equation (21) with ρ← ρm, α← αm and R̃j ← R̃m−1
j

sample: u ∼ U(0, 1)
if u < ratio then R̃mj ← R̃′j
else R̃mj ← R̃m−1

j

end

end
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Algorithm 4: MCMC Algorithm for Clustering Partial Rankings or Pairwise Pref-
erences

input : {S1, . . . ,SN} or {tc(B1), . . . , tc(BN )}; C, ψ, λ, σα, αjump, L, d(·, ·), Zn(α), M .

output: Posterior distributions of ρ1, . . . ,ρC , α1, . . . , αC , τ1, . . . , τC , z1, . . . , zN , and R̃1, . . . , R̃N .

Initialization of the MCMC:
randomly generate ρ1,0, . . . ,ρC,0, α1,0, . . . , αC,0, τ1,0, . . . , τC,0, and z1,0, . . . , zN,0.

if {S1, . . . ,SN} among inputs then

foreach j ← 1 to N do randomly generate R̃0
j in Sj

else

foreach j ← 1 to N do randomly generate R̃0
j compatible with tc(Bj)

end

for m← 1 to M do
Gibbs step: update τ1, . . . , τC

compute: nc =
∑N
j=1 1c(zj,m−1), for c = 1, . . . , C

sample: τ1, . . . , τC ∼ D(ψ + n1, . . . , ψ + nC)

for c← 1 to C do
M-H step: update ρc
sample: ρ′c ∼ L&S(ρc,m−1, L) and u ∼ U(0, 1)
compute: ratio← equation (6) with ρ← ρc,m−1 and α← αc,m−1, and where the sum is over

{j : zj,m−1 = c}
if u < ratio then ρc,m ← ρ′c
else ρc,m ← ρc,m−1

if m mod αjump = 0 then M-H step: update αc

sample: α′c ∼ N (αc,m−1, σ
2
α) and u ∼ U(0, 1)

compute: ratio← equation (8) with ρ← ρc,m and α← αc,m−1, and where the sum is over {j : zj,m−1 = c}
if u < ratio then αc,m ← α′c
else αc,m ← αc,m−1

end

Gibbs step: update z1, . . . , zN
for j ← 1 to N do

foreach c← 1 to C do compute cluster assignment probabilities:

pcj =
τc,m

Zn(αc,m)
exp

[−αc,m
n

d(R̃m−1
j ,ρc,m)

]
sample: zj,m ∼M(p1j , . . . , pCj)

end

M-H step: update R̃1, . . . , R̃N :
for j ← 1 to N do

if {S1, . . . ,SN} among inputs then sample: R̃′j in Sj from the leap-and-shift distribution centered at R̃m−1
j

else sample: R̃′j from the leap-and-shift distribution centered at R̃m−1
j and compatible with tc(Bj)

compute: ratio← equation (21) with ρ← ρzj,m,m, α← αzj,m,m and R̃j ← R̃m−1
j

sample: u ∼ U(0, 1)
if u < ratio then R̃mj ← R̃′j
else R̃mj ← R̃m−1

j

end

end

Appendix C. Sample from the Mallows Model

We here explain our proposed procedure to sample rankings from the Mallows model.
To sample full rankings R1, ...,RN ∼ Mallows(ρ, α), we use the following scheme

(sketched in Algorithm 5). We run a basic Metropolis-Hastings algorithm with fixed con-
sensus ρ ∈ Pn, α > 0 and with a given distance measure, d(·, ·), until convergence. Once
convergence is achieved, we continue sampling, and store the so obtained rankings at regu-
lar intervals (large enough to achieve independence) until we have reached the desired data
dimension.

In case of heterogeneous rankings, we sample from Algorithm 6. As inputs, we give
the number of clusters C, the fixed consensuses ρ1, ...,ρC, the fixed α1, ..., αC, the hyper-
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Algorithm 5: MCMC Sampler for full rankings
input : ρ, α, d, N, L
output: R1, ...,RN

Initialization of the MCMC: randomly generate R1,0, ...,RN,0
for m← 1 to M do

for j ← 1 to N do

sample R′j ∼ L&S(Rj,m−1, L)

compute: ratio =
PL(Rj |R

′
j)

PL(R′
j
|Rj)

exp
{
−α
n

∑N
j=1

[
d(R′j ,ρ)− d(Rj ,ρ)

]}
with Rj ← Rj,m−1

sample: u ∼ U(0, 1)
if u < ratio then

Rj,m ← R′j
else

Rj,m ← Rj,m−1

end

end

end

parameter ψ = (ψ1, ..., ψC) of the Dirichlet density over the proportion of assessors in the
clusters, and d(·, ·). The algorithm then returns the rankings R1, ...,RN , sampled from a
Mixture of Mallows models, as well as the the cluster assignments z1, ..., zN .

Algorithm 6: MCMC Sampler for full rankings with clusters
input : C, ρ1:C , α1:C , ψ, d, N, L
output: R1, ...,RN and z1, ..., zN

Initialization of the MCMC: randomly generate R1,0, ...,RN,0
randomly generate τ1, ..., τC ∼ Dir(ψ)
randomly generate z1, ..., zN ∼ Mn(1, τ1, ..., τC)
for m← 1 to M do

for c← 1 to C do

compute: Nc =
∑N
j=1 1c(zj),

sample Nc ranks with Algortihm 5

end

end

For generating top-k rankings, we simply generate R1, ...,RN with Algorithm 5, and
then keep only the top-k items. In case of clusters, we do the same as above, but starting
with Algorithm 6.

Finally, to sample the sets of pairwise comparisons B1, ...,BN , we first generate R1, ...,RN

with Algorithm 5. We then select the number T1, ..., TN of pairwise comparisons that each
assessor will evaluate2. Finally, given R1, ...,RN and T1, ..., TN , we randomly sample with-
out replacement Tj pairs (for each assessor j = 1, . . . , N) from the collection of all possible
n(n − 1)/2 pairs, and obtain pairwise preferences by ordering all pairs according to Rj .
For generating pairwise comparisons with clusters, we follow the previous procedure, but
starting with Algorithm 6.

2. Here it is possible to choose the same number of comparisons Tj = T ≤ n(n − 1)/2, ∀j = 1, ..., N, but
also to have a different number of pairs per assessor. In this paper, for a given mean parameter λT , we
independently sample T1, ..., TN ∼ TruncPoiss(λT , n(n− 1)/2).

44



Probabilistic Preference Learning with the Mallows Rank Model

References
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a comprehensive R package for statistical inference, stochastic aggregation, and visual-
ization of multiple omics ranked lists. Statistical Applications in Genetics and Molecular
Biology, 14(3):311–316, 2015.

D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A.
Renshaw, A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R.
Golub, and W. R. Sellers. Gene expression correlates of clinical prostate cancer behavior.
Cancer Cell, 1(2):203 – 209, 2002. ISSN 1535-6108.

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2017. URL http://oeis.

org.

48

http://CRAN.R-project.org/package=relations
http://oeis.org
http://oeis.org


Probabilistic Preference Learning with the Mallows Rank Model

M. Sun, G. Lebanon, and P. Kidwell. Estimating probabilities in recommendation systems.
Journal of the Royal Statistical Society, Series C, 61(3):471–492, 2012.

L. True, I. Coleman, S. Hawley, C.Y. Huang, D. Gifford, R. Coleman, T. M. Beer, E. Gel-
mann, M. Datta, E. Mostaghel, B. Knudsen, P. Lange, R. Vessella, D. Lin, L. Hood,
and P. S. Nelson. A molecular correlate to the Gleason grading system for prostate ade-
nocarcinoma. Proceedings of the National Academy of Sciences, 103(29):10991–10996,
2006.

M. N. Volkovs and R. S. Zemel. New learning methods for supervised and unsupervised
preference aggregation. Journal of Machine Learning Research, 15:1135–1176, 2014.

J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodriguez, C. A. Moskaluk,
H. F. Frierson, and G. M. Hampton. Analysis of gene expression identifies candidate
markers and pharmacological targets in prostate cancer. Cancer Research, 61(16):5974–
5978, 2001.

49


	Introduction
	A Bayesian Mallows Model for Complete Rankings
	Distance Measures and Partition Function
	Prior Distributions
	Inference
	Metropolis-Hastings Algorithm for Complete Rankings

	Approximating the Partition Function Zn() via Off-line Importance Sampling
	Testing the Importance Sampler
	Effect of n() on the MCMC
	Testing Approximations of the MCMC in Inference

	Extensions to Partial Rankings and Heterogeneous Assessor Pool
	Ranking of the Top Ranked Items
	Effects of Unranked Items on the top-k Consensus Ranking

	Pairwise Comparisons
	Clustering Assessors Based on their Rankings of All Items
	Example: Preference Prediction

	Related Work
	Comparisons with Other Methods

	Experiments
	Meta-Analysis of Differential Gene Expression
	Beach Preference Data
	Sushi Data
	Movielens Data

	Discussion
	Proofs of Results from Section 4.1.1
	Pseudo-codes of the Algorithms
	Sample from the Mallows Model


