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Abstract

We study the problem of identifying unreliable and adversarial workers in crowdsourc-
ing systems where workers (or users) provide labels for tasks (or items). Most existing
studies assume that worker responses follow specific probabilistic models; however, recent
evidence shows the presence of workers adopting non-random or even malicious strategies.
To account for such workers, we suppose that workers comprise a mixture of honest and
adversarial workers. Honest workers may be reliable or unreliable, and they provide la-
bels according to an unknown but explicit probabilistic model. Adversaries adopt labeling
strategies different from those of honest workers, whether probabilistic or not. We propose
two reputation algorithms to identify unreliable honest workers and adversarial workers
from only their responses. Our algorithms assume that honest workers are in the major-
ity, and they classify workers with outlier label patterns as adversaries. Theoretically, we
show that our algorithms successfully identify unreliable honest workers, workers adopting
deterministic strategies, and worst-case sophisticated adversaries who can adopt arbitrary
labeling strategies to degrade the accuracy of the inferred task labels. Empirically, we show
that filtering out outliers using our algorithms can significantly improve the accuracy of
several state-of-the-art label aggregation algorithms in real-world crowdsourcing datasets.

Keywords: crowdsourcing, reputation, adversary, outliers

1. Introduction

The growing popularity of online crowdsourcing services like Amazon Mechanical Turk and
CrowdFlower has made it easy to collect low-cost labels from the crowd to generate training
datasets for machine learning applications. Unfortunately, these labels are typically of low
quality because of unintentional or intentional inaccuracies introduced by unreliable and
malicious workers (Kittur et al., 2008; Le et al., 2010). Determining correct labels of tasks
from such noisy labels is challenging because the reliabilities or qualities of workers are
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often unknown. While one may use “gold standard” tasks—whose true label is already
known—to identify low-reliability workers (Snow et al., 2008; Downs et al., 2010; Le et al.,
2010), accessing true labels for a sufficient number of tasks can be difficult and expensive.
To address these challenges, a common solution is to use redundancy (Sheng et al., 2008),
that is, collecting multiple labels for each task and assigning multiple tasks to each worker.
Given the redundant labels, most existing studies make specific probabilistic assumptions on
how individual workers provide labels and propose techniques to infer true task labels given
workers’ responses. Common probabilistic models include the one-coin model (Zhang et al.,
2014), two-coin model (Raykar and Yu, 2012), and the general Dawid-Skene model (Dawid
and Skene, 1979). For example, the “one-coin” model assumes that each worker w provides
the correct label to an assigned task with probability pw and (an) incorrect label with
probability 1− pw. The parameter pw thus measures the reliability of worker w.

While most existing work relies on explicit probabilistic models, recent studies (Vuurens
et al., 2011; Difallah et al., 2012) and anecdotal evidence show that worker labeling strategies
may not be probabilistic in practice. For instance, for binary classification tasks, workers
may adopt strategies that: (a) uniformly label all tasks +1 if it is known that +1 labels are
more prevalent than −1 among true labels in the corpus of tasks; 1 (b) provide accurate
labels to the first few tasks and random labels to remaining ones; and (c) systematically
provide +1 labels to certain types of tasks and −1 to other types. Vuurens et al. (2011)
recently provided real-world empirical evidence of similar worker strategies. In addition,
workers may be malicious and may adopt sophisticated strategies for explicitly altering
inferred labels of tasks. For instance, Wang et al. (2014) showed that malicious crowd-
sourcing campaigns, called “crowdturfing”, are increasing in popularity in both dedicated
and generic crowdsourcing websites (Motoyama et al., 2011; Wang et al., 2012). Further,
evidence indicates the presence of malicious users in online content rating systems (such
as Digg, Amazon, and Yelp) in which users can choose items to rate and the ratings are
public. Specifically, users have been observed to explicitly alter the popularity of adver-
tisements and phishing articles (Tran et al., 2009) and collaboratively target products on
Amazon (Mukherjee et al., 2012).

This paper focuses on the problem of explicitly identifying unreliable and adversarial
workers in crowdsourced labeling tasks by using only the labels provided by workers as an
input. We consider a general crowdsourcing setting in which users/workers provide labels to
items/tasks. The setting may be a crowdsourced classification application (such as Mechan-
ical Turk) in which labels are collected for tasks by assigning 2 them to workers; or a public
crowdsourcing system (such as Digg, Amazon, or Yelp) in which users provide labels/ratings
to a collection of items they choose. For brevity, we use the generic terms “worker” and
“task” for both types of applications. We make the following assumptions. The tasks have
binary true labels in the set {−1,+1}; for cases in which the notion of true task labels is
subjective, we consider it to be the population’s majority opinion. We distinguish between
two types of workers: honest and adversarial. The population of workers is mostly honest,
with adversaries comprising a “small” fraction. Honest workers provide responses according

1. Note that the one-coin model cannot capture this strategy, but the more general two-coin model (Raykar
and Yu, 2012) can

2. Workers can still choose from among assigned tasks; however, the assignment can be done to ensure that
the graph representing workers’ assignment to tasks has particular structures—see Section 4.1.
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to a well-defined probabilistic model, say, M (e.g. the one-coin model introduced above),
and therefore, they can make mistakes. However, the model M is not known. Motivated by
the presence of non-random worker strategies, we go beyond standard probabilistic models
and consider a much broader class of adversarial worker strategies. Specifically, adversaries
adopt strategies different from those of honest workers, whether probabilistic or not, that
is, their responses are not generated according to model M . Further, different adversaries
may adopt distinct strategies.

Our work differs from most prior literature (Dawid and Skene, 1979; Smyth et al., 1995;
Whitehill et al., 2009; Raykar et al., 2010; Welinder et al., 2010; Ghosh et al., 2011; Karger
et al., 2011; Liu et al., 2012; Zhou et al., 2012; Dalvi et al., 2013; Zhang et al., 2014) that
primarily focused on designing label aggregation algorithms to maximize the accuracy of
recovered task labels. Only a few studies have explicitly focused on identifying unreliable
workers based on their responses; these either relied on access to true task labels (Snow
et al., 2008; Downs et al., 2010; Le et al., 2010) or did not assume any form of adversarial
behavior (Vuurens et al., 2011; Raykar and Yu, 2012; Hovy et al., 2013). We aim to identify
unreliable and adversarial workers using only their responses and do not assume access to
any true task labels. Furthermore, to the best of our knowledge, we are unaware of previous
studies that have addressed the problem of identifying adversarial workers who can adopt
arbitrary strategies in crowdsourcing systems. Refer to Section 1.2 for further discussion
on this aspect.

For the above setting, we design a scoring algorithm that computes “reputation scores”
for workers to indicate the degree to which their labeling patterns are adversarial. We base
our algorithms on the intuition that as the population is mostly honest and adversaries’
labeling patterns differ from those of honest workers, adversary labeling patterns should
be statistical outliers. The reputation score then indicates the degree to which a worker’s
labeling pattern is a statistical outlier. The adversaries identified by our algorithms may
be discarded or processed separately depending on the application. Section 5 shows that
discarding adversary labels can enable standard label aggregation algorithms to infer true
task labels more accurately.

We note that the problem of identifying unreliable honest workers and adversaries from
only their responses is nontrivial, especially because we cannot access true labels for any of
the tasks. In particular, even in the simple and commonly observed case where adversaries
always provide the label +1, the natural approach of classifying workers who only give +1
labels as adversaries can have arbitrarily bad performance (see Lemma 2). Furthermore,
because we do not restrict the adversary strategy in any way, differentiating them from
honest workers can be difficult. In fact, we show (see Theorem 14) that by carefully choosing
their responses, sophisticated adversarial workers can render themselves indistinguishable
from honest ones and ensure that the true labels of some fraction of tasks cannot be inferred
better than a random guess.

1.1 Main contributions

Our work makes algorithmic, theoretical, and empirical contributions: 3

3. This work expands on the results described in a previous version (Jagabathula et al., 2014)
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Algorithmic contributions. Our main algorithmic contribution is a reputation algorithm
that is designed to identify outlier labeling patterns. This algorithm takes as inputs the
set of workers, set of tasks, and binary labels provided by each worker. Each worker may
label only a subset of the tasks. Because the algorithm makes no specific assumptions on
the worker labeling strategies, it identifies outliers by penalizing workers for the number of
“conflicts” they are involved in. Specifically, suppose each task receives both +1 and −1
labels. For each task tj , the algorithm maintains the number d+

j of +1 labels, number d−j of

−1 labels, and a penalty budget of 2. Intuitively, if d+
j > d−j , then the worker assigning −1

to tj is “more” of an outlier than a worker assigning label +1. Accordingly, the algorithm
makes the following decisions: (a) how much of the penalty budget to allocate to each
worker for each task and (b) how to aggregate the penalties allocated to each worker to
arrive at the final reputation score.

We propose two algorithms that differ in how they make these two decisions. The
first algorithm (Algorithm 1) performs a “soft” assignment: it allocates a penalty of 1/d+

j

(resp. 1/d−j ) to every worker who has provided the label +1 (resp. −1) to task tj and com-
putes the net penalty as the average of the penalties allocated across all tasks assigned to
a worker. 4 The second algorithm (Algorithm 2) performs a “hard” assignment: instead of
spreading the penalty score of 1 over all workers who provide the label +1 (resp. −1), it iden-
tifies one “representative” worker among the workers who provide the label +1 (resp. −1)
to task tj and allocates the entire penalty of 1 to the representative worker. The net penalty
for the worker is computed by summing the accrued penalties across all assigned tasks. If
the representative worker is chosen uniformly at random, then a worker who agrees with the
majority is less likely to be chosen and therefore less likely to receive the penalty. However,
we show that it is more appropriate to choose the representative worker in a “load-balanced”
fashion by using the concept of optimal semi-matching (Harvey et al., 2003), where the semi-
matching is defined on the bipartite graph between the workers and tasks, in which every
worker is connected to the tasks that it has labeled. Both penalty assignments are based
on the intuition that when there are more honest workers than adversaries, the former are
more likely to agree with the majority and therefore receive lower penalties.

Theoretical contributions. We analyze our algorithms under three settings: (a) there
are no adversaries and honest workers adopt the one-coin model; (b) honest workers adopt
the one-coin model and adversaries, the Uniform strategy in which they label all assigned
tasks +1; and (c) honest workers adopt the spammer-hammer model (Karger et al., 2011)
and the adversaries are sophisticated, having infinite computational capacity and knowledge
of honest workers’ labels. For the first two settings, we derive guarantees for the soft-penalty
algorithm and show that these guarantees extend to a random, normalized approximation
of the hard-penalty algorithm; we analyze this approximation because the hard-penalty
algorithm is not analytically tractable in these settings. For the last setting, we show
that the hard-penalty algorithm is robust to sophisticated adversary strategies but the
soft-penalty algorithm is vulnerable. Specifically, the example at the end of Section 3.1
shows an instance of an adversary strategy for which the soft-penalty algorithm misclassifies

4. We do not explicitly define the reputation score. It can be interpreted as the inverse of the net penalty—
higher the penalty, the lower is the reputation, and vice-versa.
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all adversaries as honest. We also show (see Lemma 13) that existing label aggregation
algorithms can perform very poorly in the presence of sophisticated adversaries.

For the first two settings, we analyze our algorithms under a standard probabilistic
model for crowdsourcing in which there are n workers; the worker-task assignment graph
is (l, r)-regular, that is, each worker labels l tasks and each task is labeled by r workers;
and the population is described by three parameters: fraction q of honest workers, fraction
γ of tasks with +1 true labels, and average reliability µ of honest workers under the one-
coin model. Recall that the reliability of an honest worker is defined as the probability of
providing the correct response for any given task. This setup best represents the setting
of crowdsourced classification in which tasks may be assigned according to an (l, r)-regular
graph. An (l, r)-regular graph is analytically tractable, and Karger et al. (2014) showed
that it achieves order-optimal performance (with respect to the best combination of task
assignment and inference algorithm) when given a task assignment budget. We derive the
expected penalties received by honest and adversarial workers and bound the asymptotic
error rate or misclassification rate of a threshold classifier: given a penalty threshold θ,
the threshold classifier classifies a worker as honest if its penalty is less than or equal to
θ and as adversarial otherwise. Then, the misclassification rate is defined as the expected
fraction of errors made by this classifier. This is non-trivial, especially because the natural
approach that classifies all workers that provide only +1 labels as adversaries can have a
misclassification rate arbitrarily close to 1 (see Lemma 2).

For the last setting, we make no assumptions on the structure of the worker-task assign-
ment graph and derive performance guarantees as a function of the graph structure. This
setup is reflective of public crowdsourced settings in which workers choose which tasks to
label and the assumption of sophisticated adversaries is most relevant.

Formally, we establish the following results:

1. No adversaries. We show that the penalties assigned by the soft-penalty algorithm are
consistent with worker reliabilities in the one-coin model—the higher the reliability,
the lower is the penalty (see Theorem 3). When l = log n and r is constant, we
show that the misclassification rate scales as O(1/n2ε2) for some small enough ε ∈
(0, 1√

2
) as n → ∞, where a worker is said to be misclassified if it has high reliability

(exceeding a threshold) but is classified as adversarial (see Theorem 6). In other
words, our algorithm classifies all highly reliable workers as honest as n → ∞. For
this, the number of labels collected from each worker must tend to infinity, but only
logarithmically in n.

2. Uniform adversaries. We derive necessary and sufficient conditions under which the
soft-penalty algorithm assigns lower expected penalties to honest workers than to
adversaries (see Theorem 4). Our conditions essentially require a sufficient majority
of honest workers; specifically, for fixed µ and γ, we need the fraction of honest
workers q > max

{
1/2, h−1

µ (γ/(1− γ))
}

, where h−1
µ (·) is an increasing function (see

Theorem 4). This result shows that as γ increases, it becomes harder to separate
honest workers from adversaries. This is because as the proportion γ of tasks with
true labels +1 increases, the adversaries (who always provide the label +1) become
more accurate, making it harder to distinguish them from honest workers. Further,
when l = log n and r is constant, we show that the misclassification rate scales as
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O(1/n2ε2) for adversaries and as F (µ̃)+O(1/n2ε2) for honest workers, for some µ̃ < µ
and small enough ε > 0 as n → ∞ (see Theorem 10). Here, F (·) is the cumulative
distribution function (CDF) of honest workers’ reliabilities. Our result essentially
shows that asymptotically, we correctly classify all adversaries and honest workers with
above average reliabilities. We argue that the presence of the term F (µ̃) is necessary
because it is difficult to distinguish low-reliability honest workers from adversaries.

3. Sophisticated adversaries. We suppose that the goal of sophisticated adversaries is
to maximize the number of tasks they affect, that is, cause to receive labels different
from those they would have received otherwise. When honest workers are perfectly
reliable, we show that k sophisticated adversaries can render themselves indistin-
guishable from k honest workers, so that a random guess misclassifies workers with
probability (1/2). We use this to provide a lower bound on the minimum number
of tasks that k adversaries can affect (the true label cannot be inferred better than
a random guess) irrespective of the label aggregation algorithm used to aggregate
the worker labels (as long as it is agnostic to worker/task identities). The bound
depends on the graph structure between honest workers and tasks (see Theorem 14
for details). Our result is valid across different labeling patterns and a large class
of label aggregation algorithms, and therefore, it provides fundamental limits on the
damage that k adversaries can cause. Furthermore, we propose a label aggregation
algorithm (Algorithm 3) utilizing worker reputations computed by the hard-penalty
algorithm and prove the existence of an upper bound on the worst-case number of
affected tasks (see Theorem 17), under the assumption that honest workers adopt the
popular spammer-hammer model. This combined with the result of Theorem 14 shows
that our proposed label aggregation algorithm is optimal (up to a constant factor) in
recovering the true labels of tasks.

Empirical contributions. We conducted two numerical studies to demonstrate the prac-
tical value of our methods (see Section 5). The first study illustrates a concrete application
of our methods. With five real-world crowdsourcing datasets, it shows that discarding the
labels of adversaries identified by our methods allows standard label aggregation algorithms
to infer true task labels more accurately. These improvements are demonstrated for the fol-
lowing six label aggregation algorithms: (a) simple majority, (b) expectation-maximization
(EM) for the two-coin model (Raykar and Yu, 2012), (c) KOS (Karger et al., 2011), (d)
a normalized variant of KOS 5, (e) spectral EM (Zhang et al., 2014), and (f) regularized
minimax conditional entropy (Zhou et al., 2015). Our results show that by removing up to
10 workers, our methods can improve predictive accuracy by 9.8% on average. These im-
provements suggest that the label patterns of discarded workers do not conform to standard
probabilistic models.

The second study is designed to complement our theoretical analysis. By using syn-
thetic data, we show that both soft- and hard-penalty algorithms successfully identify Uni-
form adversaries who label all assigned tasks +1 and low-reliability honest workers when
the worker-task assignment graph has a power-law degree distribution. These degree dis-
tributions commonly arise in crowdsourcing systems when workers organically choose the

5. This variant was designed to capture non-uniform worker and task degrees because the standard KOS
algorithm is designed to operate on (l, r)-regular worker-task assignment graphs.
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tasks to label, with some workers labeling many tasks and some tasks receiving many la-
bels (Franklin et al., 2011). This study also offers insights into the settings under which
the soft- or hard-penalty algorithm is appropriate; specifically, these algorithms are more
appropriate when the adversaries have lower and higher degrees, respectively.

1.2 Related Work

Our work is part of the literature on crowdsourcing that proposes statistical techniques to
exploit the redundancy in collected labels to simultaneously infer the latent reliabilities of
workers and true task labels. In particular, our work is related to three broad streams.
The first stream focuses on “crowdsourced classification”, namely, inferring underlying true
labels of tasks when workers adopt specific probabilistic labeling strategies. Our reputation
algorithm can work in conjunction with any of these methods, possibly by filtering out
low reputation workers. The second stream proposes methods to explicitly filter out low-
reliability workers; it is similar in spirit to our approach. The third stream focuses on
methods to address sophisticated attacks in online settings; it is related to our treatment
of sophisticated adversaries.

Crowdsourced classification. The literature on crowdsourced classification is vast. Most
studies are based on the worker model proposed by Dawid and Skene (1979), which is a
generalization of the one-coin model to tasks with more than two categories. The standard
solution is to use the expectation-maximization (EM) algorithm (or its variants) to estimate
worker reliability parameters and true task labels (Smyth et al., 1995; Raykar et al., 2010).
The methods proposed in Liu et al. (2012) and Chen et al. (2013) take a Bayesian approach
by assuming different priors over the worker reliability parameters. Whitehill et al. (2009)
included task difficulty as an additional parameter in the model, and Welinder et al. (2010)
studied a model with multi-dimensional latent variables for each worker, such as compe-
tence, expertise, and bias. Zhou et al. (2012, 2015) introduced a natural generalization of
the Dawid-Skene model that captures tasks with differing difficulties and proposed a min-
imax entropy based approach which works well in real datasets. Although most of these
approaches show improved performance on real-world datasets, they offer no theoretical
guarantees on the resulting estimates of true task labels and model parameters.

From a theoretical perspective, the crowdsourced classification problem has been studied
in two distinct regimes: dense and sparse. In the dense regime, it is assumed that each
worker has a certain probability of labeling each task. As the problem size (or number of
workers) increases, each task receives an increasing number of responses; therefore, the true
labels of all tasks are eventually identified correctly (with high probability). The theoretical
analysis therefore focuses on identifying the rate at which the algorithm estimates converge
to the true task labels under different settings. The dense regime was first studied by Ghosh
et al. (2011), who proposed a spectral method to infer task labels. More recently, Gao and
Zhou (2016) studied the minimax optimal error rate of a projected EM algorithm under the
one-coin model, and Li and Yu (2014) provided upper bounds on the error rate of weighted
majority voting algorithms for the Dawid-Skene model. Zhang et al. (2014) showed that
the EM algorithm for the Dawid-Skene model achieves the optimal convergence rate when
initialized using a spectral method.
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In the sparse regime, each task is assigned a “small” number of workers, that is, of size
O(1), so that the accuracy does not increase with problem size. Karger et al. (2014) were the
first to analyze this scenario; they proposed an iterative message-passing algorithm for esti-
mating true task labels as well as a task assignment scheme that minimizes the total price
that must be paid to achieve an overall target accuracy. They showed that their algorithm
is optimal by comparing it against an oracle estimator that knows the reliability of every
worker. Dalvi et al. (2013) proposed methods based on singular-value decomposition (SVD)
and analyzed the consistency of their estimators for the one-coin model. Recently, Khetan
and Oh (2016) analyzed the “Generalized Dawid-Skene Model” introduced by Zhou et al.
and showed that spectral approaches achieve near-optimal performance, whereas Ok et al.
(2016) proved that belief propagation (BP) is optimal, that is, it matches the performance
of the MAP estimator, under the one-coin model when each worker is assigned at most two
tasks. In our theoretical analysis, we focus on this regime. The key distinction of our work
from previous studies is that we focus on characterizing the misclassification rate of our
algorithm in classifying workers, as opposed to the accuracy of recovering true task labels.

Detecting Unreliable/Adversarial workers. Some studies have aimed to explicitly
detect and/or remove unreliable workers based on observed labels. One approach is to
use “gold standard” tasks, that is, tasks whose true labels are already known, to identify
low-reliability workers (Snow et al., 2008; Downs et al., 2010; Le et al., 2010). However,
accessing true task labels can be difficult and might involve additional payment. In this
work, we do not assume access to any gold standard tasks and identify adversarial workers
based only on the provided labels. Vuurens et al. (2011) defined scores customized to specific
adversary strategies to identify and remove them. Similarly, Hovy et al. (2013) modeled the
worker population as consisting of two types—those who always provide the correct label
and spammers who provide uniformly random labels—and estimated each worker’s trust-
worthiness by using the observed labels. In contrast to these studies, we allow adversaries to
adopt arbitrary strategies. Ipeirotis et al. (2010) proposed a method for quantifying worker
quality by transforming the observed labels into soft posterior labels based on the estimated
confusion matrix (Dawid and Skene, 1979). Similar to our work, their approach computes
an expected cost for each worker, where the higher the cost, the lower is the worker’s qual-
ity. Raykar and Yu (2012) proposed an empirical Bayesian algorithm to eliminate workers
whose labels are not correlated with the true label (called spammers), and estimated con-
sensus labels from the remaining workers. Both of these works rely on the Dawid-Skene
model, whereas our algorithms do not assume knowledge of the probabilistic model used by
workers. Some studies have tried to quantify the price of having adversarial workers under
some restricted settings. Ghosh et al. (2011) (in the dense regime) and Karger et al. (2013)
(in the sparse regime) considered malicious workers who can collude and provide arbitrary
responses to degrade the performance of the aggregation algorithms and showed that their
approaches are robust to manipulation by a small constant fraction of such adversaries.
However, both these works assume specific structures on the worker-task assignment graph
and do not consider adversaries who can adapt their responses based on the labels sub-
mitted by honest workers. Our analysis considers arbitrary worker-task assignment graphs,
and we allow adversaries to choose their labels based on observed honest workers’ responses.
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Sybil attacks. Finally, our work is also broadly related to the rich literature on identifying
Sybil identities in online social networks. Most such schemes (Yu et al., 2006, 2008; Danezis
and Mittal, 2009; Tran et al., 2011; Viswanath et al., 2012) use the graph (or trust) structure
between users to limit the corruptive influences of Sybil attacks (see Viswanath et al., 2010
for a nice overview). In our context, there is no information about the network structure
or trust relationships between workers, and because most crowdsourcing tasks involve some
form of payment, it is harder to launch Sybil attacks by forging financial credentials like
credit cards or bank accounts.

2. Setup

We consider the following broad setting. There is a set T = {t1, t2, . . . , tm} of m tasks such
that each task tj is associated with a latent ground-truth binary label yj ∈ {−1,+1}. We
elicit binary labels for these tasks from a set W = {w1, w2, . . . , wn} of n workers. Each
worker typically labels only a subset of the tasks, and we generically say that the subset of
tasks is assigned to the worker. We represent this assignment by using a bipartite graph
B = (W ∪T , E) with workers on one side, tasks on the other side, and an edge (wi, tj) ∈ E
indicating that task tj is assigned to worker wi. We call B the worker-task assignment graph
and suppose that the assignment is pre-specified.

Each worker wi provides a binary response 6 wi(tj) ∈ {−1,+1} for each task tj assigned

to it. We encode the responses as the response matrix L ∈ {−1, 0,+1}|W |×|T | such that
Lij = wi(tj), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, where we set wi(tj) = 0 for any task tj not
assigned to worker wi. Wj ⊆W denotes the set of workers who labeled task tj and Ti ⊆ T ,
the set of tasks assigned to worker wi. Let d+

j (resp. d−j ) denote the number of workers
labeling task tj as +1 (resp. −1).
Worker model. We assume that the population of workers comprises two disjoint classes:
honest and adversarial. That is, W = H ∪A with H ∩A = ∅, where H is the set of honest
workers and A, the set of adversarial workers. The class memberships of the workers are
latent, so we do not know whether a worker is honest. Honest workers provide (noisy) labels
according to an unknown but explicit probabilistic model (such as the one-coin model).
Adversarial workers are those whose labeling strategy does not conform to this probabilistic
model; they can adopt arbitrary (deterministic or probabilistic) strategies. If honest workers
adopt the one-coin model, example adversary strategies include (a) the uniform strategy,
in which the worker arbitrarily provides uniform responses +1 or −1 to all assigned tasks
irrespective of the true label; (b) smart strategy, in which the adversary is smart and chooses
the uniform label in accordance with the population prevalence of the true labels so that
if more than 50% of tasks are a priori known to have label −1, then the worker chooses
−1 as the uniform label and vice-versa; or (c) sophisticated strategy, in which the worker
adopts strategies specifically designed to cause the maximum “damage” (see Section 4.2 for
details).

Most existing works only focus on honest workers, whereas our approach also considers
adversarial workers. Furthermore, our definition of “adversary” is intentionally broader
than common definitions to accommodate a wide range of labeling strategies. In fact,
some of the abovementioned example adversary strategies may be accommodated by exten-

6. We use the terms “label” and “response” interchangeably.
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sions of the one-coin model; for example, the uniform strategy is captured by the two-coin
model (Raykar and Yu, 2012), and the smart strategy can be accommodated by allowing
worker reliability parameters to depend on the population prevalence of the task labels.
While such case-by-case extensions are feasible in theory, they do not extend to general
adversary strategies, including sophisticated strategies specifically designed to inflict the
maximum “damage”.

Given the broad definition of adversaries, our approach is to design a general algorithm to
identify adversarial workers. The adversaries identified using our algorithm may be filtered
out or investigated further, depending on the application. Specifically, our objective is to
solve the following problem:

Problem 1 Given a set of workers W = H ∪A, tasks T , and response matrix L, identify
the subset of adversarial workers A.

We describe a reputation-based algorithm that only relies on the response matrix L to
detect adversaries. The algorithm relies on detecting workers whose labeling patterns are
statistical outliers among the population of workers.

3. Reputation Algorithms

We now describe the proposed algorithm for identifying adversarial workers given the re-
sponse matrix L. We suppose that no side information is available on the workers’ iden-
tities (e.g., a social network or worker-level demographic information), and therefore, the
algorithm must solely rely on the response patterns given by workers. Our approach is to
compute a “reputation” or “trust” score for each worker as a measure of the degree to which
their response pattern is a statistical outlier or an anomaly. Workers with low reputation
scores are significant outliers and are identified as adversaries.

To compute a worker’s reputation, the algorithm relies on the number of conflicts the
worker is involved in. A worker is involved in a conflict if its response to an assigned task is
in disagreement with those of other workers. Note that tasks with a consensus opinion, that
is, those having all +1 or −1 labels, do not provide any discriminative information about
the workers who labeled the task. In other words, we cannot distinguish between honest
and adversarial workers from just this specific task. Therefore, we focus on tasks that lack
consensus, that is, those having a mix of +1 and −1 labels. We call this subset of tasks the
conflict set Tcs, and workers who respond to tasks in this set are all involved in conflicts.
A conflict typically indicates the presence of low-reliability honest workers (who tend to
make mistakes) or adversaries. In the ideal case, when all honest workers are perfectly
reliable, a conflict necessarily means the presence of an adversarial worker. In this case, the
number of conflicts a worker is involved in can serve as a rough indicator of the possibility
of this worker being an adversary. However, when honest workers are not perfect and make
mistakes, a conflict indicates only a chance of the presence of an adversary. Then, simply
counting the number of conflicts may over-penalize honest workers who label a large number
of tasks.

To overcome this issue, we propose two penalty allocation techniques, resulting in two
variants of our algorithm: (a) soft-penalty and (b) hard-penalty.
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3.1 Soft Penalty

In the soft-penalty algorithm (see Algorithm 1), for any task tj in the conflict set, we
allocate a penalty of 1/d+

j and 1/d−j to all workers who provide the label +1 and −1 for tj ,
respectively. Then, for each worker, we compute the net penalty by averaging the penalties
across all assigned (conflict) tasks.

The above allocation of penalties implicitly rewards agreements among worker responses
by making the penalty inversely proportional to the number of other workers that agree
with a worker. In particular, if a worker agrees with the majority opinion on some task,
then it is allocated a lower penalty than a worker who disagrees with the majority. Fur-
ther, averaging normalizes for the number of tasks labeled by any worker. The algorithm
relies on the following intuition for allocating penalties: assuming the average reliability of
honest workers to be > 1

2 , we expect that honest workers provide the correct response to
the assigned tasks on average. Furthermore, because there are more honest workers than
adversaries, we expect the majority response to be the same as the true label of the task
for most tasks. Therefore, we expect that the above allocation of penalties assigns lower
penalties to high-reliability honest workers and higher penalties to low-reliability honest
and adversarial workers. We formalize this intuition in Section 4, where we prove theo-
retical guarantees for the soft-penalty algorithm. We show that the soft-penalty algorithm
performs well in identifying low-reliability honest workers as well as adversarial workers
employing deterministic strategies (see Theorems 3, 4, 6, and 10). Our results demonstrate
the asymptotic consistency of the soft-penalty algorithm in identifying adversaries under
standard assumptions on the structure of the worker-task assignment graph.

Although the soft-penalty algorithm can successfully identify adversarial workers adopt-
ing certain types of strategies, its performance depends on the complexity of these strategies.
If adversarial workers are non-colluding and adopt non-deliberate strategies, then the soft-
penalty algorithm can identify them from the observed responses. However, this algorithm
could be manipulated by more sophisticated adversaries who can collude together and adapt
their labeling strategy to target certain tasks to lower their penalty scores. In particular,
the soft-penalty algorithm treats each task in isolation when assigning penalties; therefore,
it is susceptible to attack by determined adversaries who can cleverly decide their responses
based on honest workers’ labels and the structure of the worker-task assignment graph to
cause maximum “damage”. For example, suppose that the subgraph of B between honest
workers and tasks is r-right regular, that is, each task receives labels from exactly r honest
workers (such graphs are commonly used in practice, see Karger et al., 2014 and Ok et al.,
2016), and all honest workers are perfectly reliable. Now, suppose that there are k > r
adversaries and that each adversary provides the incorrect response to all tasks. Then, ev-
ery task has r correct responses, all provided by honest workers, and k incorrect responses,
all provided by adversaries, resulting in net penalties of 1/r for each honest worker and
1/k for each adversary (note that the degree of the workers does not affect the net penalty
because the penalty received from each task is the same). Because k > r, adversaries re-
ceive lower penalties than do honest workers. Therefore, filtering out k workers with the
highest penalties will always filter out honest workers. Furthermore, natural aggregation
algorithms (such as simple majority or weighted majority with penalties as weights) result
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in incorrect labels for all tasks (see Lemma 13). In fact, for such worst-case adversaries, we
can establish the following result:

Theoretical Result (Refer to Theorem 14). Given any collection of honest worker
responses, there exists an adversary strategy that can achieve a lower bound on the fraction
of tasks whose true labels cannot be inferred correctly (better than a random guess) by any
label aggregation algorithm that is agnostic to the worker and task identities.

Section 4.2.2 provides a formal description of the result. The proof relies on the fact that
sophisticated adversaries can render themselves indistinguishable from honest workers by
carefully choosing their responses. This shows that identifying such worst-case adversarial
workers can be difficult. To deal with such adversarial behavior, we use the hard-penalty
algorithm.

Algorithm 1 soft penalty

1: Input: W , T , and L
2: For every task tj ∈ Tcs, allocate penalty
sij to each worker wi ∈Wj as follows:

sij =


1
d+j
, if Lij = +1

1
d−j
, if Lij = −1

3: Output: Net penalty of worker wi:

pen(wi) =

∑
tj∈Ti∩ Tcs sij

|Ti ∩ Tcs|

Algorithm 2 hard penalty

1: Input: W , T , and L
2: Create a bipartite graph Bcs as follows:

(i) Each worker wi ∈W is represented by
a node on the left (ii) Each task tj ∈ Tcs
is represented by two nodes on the right,
t+j and t−j (iii) Add the edge (wi, t

+
j ) if

Lij = +1 or edge (wi, t
−
j ) if Lij = −1

3: Compute an optimal semi-matchingM on
Bcs

4: Output: Net penalty of worker wi:
pen(wi) = degM(wi)

3.2 Hard Penalty

To deal with sophisticated adversaries, we propose a hard penalty allocation scheme (Al-
gorithm 2) in which the penalty allocation for a particular task takes into account the
structure of the worker-task assignment graph and the responses of other workers on all
other tasks. In particular, instead of distributing the penalty evenly across all workers that
respond to a given task, this algorithm chooses two “representative” workers to penalize
for each conflict task: one each among those who provide the label +1 and −1. The repre-
sentative workers are chosen in a load-balanced manner to “spread” the penalty across all
workers and thereby avoid over-penalizing workers who provide labels for a large number of
tasks. The net penalty of each worker is the sum of penalties accrued across all (conflict)
tasks assigned to this worker. Intuitively, such a hard allocation of penalties will penalize
workers with higher degrees (i.e. large number of assigned tasks) and many conflicts (who
are potential worst-case adversaries), thereby leading to a low reputation.

To choose representative workers in a load-balanced fashion, we use the concept of
optimal semi-matchings (Harvey et al., 2003) in bipartite graphs. For a bipartite graph
G = (V1 ∪ V2, E), a semi-matching in G is a set of edges M ⊆ E such that each vertex
in V2 is incident to exactly one edge in M (note that vertices in V1 could be incident to
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multiple edges in M). A semi-matching generalizes the notion of matchings on bipartite
graphs. The optimal semi-matching is the semi-matching with the minimum cost. We use
the common degree-based cost function defined as follows: for each u ∈ V1, let degM (u)
denote the degree of u, that is, the number of edges in M that are incident to u, and let
costM (u) be defined as

costM (u) :=

degM (u)∑
i=1

i =
degM (u) · (degM (u) + 1)

2

Then, an optimal semi-matching is one that minimizes
∑

u∈V1 costM (u). Intuitively, an
optimal semi-matching fairly matches V2 vertices across V1 vertices such that the “load” on
any V1 vertex is minimized. The above notion of cost is motivated by the load balancing
problem for scheduling tasks on machines. Specifically, consider a set of unit-time tasks T
and a set of machines P . Suppose that each task t can be processed on a subset of machines;
this can be specified as a bipartite graph between T and P . On any given machine, the tasks
are executed one after the other in series. An optimal semi-matching can be thought of as
an assignment of tasks to the machines such that the flow-time, that is, average completion
time of a task, is minimized. See (Harvey et al., 2003) for more details.

To determine the representative workers for each task, we compute the optimal semi-
matching in the following augmented worker-task assignment graph: we split each task tj
into two copies, t+j and t−j , and connect worker wi to t+j or t−j depending on whether this
worker labeled the task +1 or −1, respectively. By definition, the optimal semi-matching
yields two representative workers for each task tj—one connected to t+j and the other

connected to t−j . As in the soft-penalty algorithm, we only consider conflict tasks when
creating this augmented bipartite graph. The worker degrees in the optimal semi-matching
then constitute their net penalties. Algorithm 2 describes the hard-penalty algorithm.

3.3 Connection between soft-penalty and hard-penalty algorithms

Although the hard- and soft-penalty algorithms appear different, the latter can be inter-
preted as a random, normalized variant of the former. Specifically, suppose we choose a
random semi-matching M in the augmented worker-task assignment graph Bcs, defined in
Algorithm 2, and assign the penalty degM (wi)/degBcs(wi) to worker wi, where degBcs(wi) is
the degree of worker wi in Bcs. When the random semi-matching is constructed by mapping
each copy t+j (or t−j ) of task tj uniformly at random to a worker connected to it, the proba-

bility that it will be mapped to worker wi ∈Wj is equal to 1/degBcs(t
+
j ) (or 1/degBcs(t

−
j )),

or equivalently, 1/d+
j (or 1/d−j ). Therefore, the expected degree E[degM (wi)] of worker wi

is equal to
∑

tj∈Ti∩Tcs sij , where sij = 1/d+
j if Lij = +1 and 1/d−j if Lij = −1. Because the

degree degBcs(wi) of worker wi is equal to |Ti ∩ Tcs|, it follows that the expected penalty of
worker wi is equal to E[degM (wi)]/degBcs(wi) =

∑
tj∈Ti∩Tcs sij/ |Ti ∩ Tcs|, which is exactly

the penalty allocated by the soft-penalty algorithm. It thus follows that the expected penal-
ties under the above random, normalized variant of the hard-penalty algorithm are equal
to the penalties allocated by the soft-penalty algorithm. When all workers are assigned
the same number of tasks, the expected penalty assigned by the random hard-penalty al-
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gorithm is equal to the penalty assigned by the soft-penalty algorithm, but scaled by a
constant factor.

With the above interpretation of the soft-penalty algorithm, it follows that the hard-
penalty algorithm differs from the soft-penalty algorithm in two key aspects: it (a) does
not normalize the penalties by degrees and (b) uses optimal semi-matchings as opposed
to random semi-matchings. The absence of degree-based normalization of the penalties
results in significant penalization of high-degree workers. The use of the optimal semi-
matching results in a more balanced allocation of penalties by optimizing a global objective
function. Both of these effects make the hard-penalty algorithm conservative and robust
to sophisticated adversary strategies, as established theoretically in Section 4. The above
connection also suggests that the random, normalized variant of the hard-penalty algorithm
should have performance similar to that of the soft-penalty algorithm. We explore this
aspect theoretically at the end of Section 4.1.

4. Theoretical Results

Our reputation algorithms are analytically tractable, and we establish their theoretical prop-
erties below. Our analysis is aimed at deriving the conditions under which our algorithms
separate adversaries from honest workers. We use uppercase boldface letters (say, X) to
denote random variables, unless it is clear from the context. The proofs of all results are
given in Appendix A.

4.1 Soft-penalty algorithm: common adversary strategies

First, we analyze the performance of the soft-penalty algorithm. We assume that honest
workers adopt the one-coin model, where each worker w is characterized by parameter
µw ∈ [0, 1] that specifies the probability that w provides the correct response for any task.
We choose this model because it is the simplest non-trivial model to analyze, and it has
been widely studied in existing literature (Ghosh et al., 2011; Dalvi et al., 2013; Karger
et al., 2014; Zhang et al., 2014; Gao and Zhou, 2016). We focus on two settings: (a) the
classical setting in which there are no adversaries (A = ∅) and (b) the setting in which
adversaries adopt the Uniform strategy.

Definition 1 (Uniform strategy) Every adversarial worker provides the same +1 response
to all tasks assigned to it.

We consider the Uniform strategy because of its ubiquity and simplicity. It is commonly
observed in practice (Vuurens et al., 2011), and our analysis of real-world datasets (discussed
in detail in Section 5) reveals that a significant fraction of workers (≈ 30%, 17%, and 9% of
workers in the stage2, task2, and temp datasets, respectively) provide uniform labels for
all assigned tasks. Note that it is not captured by the standard one-coin model, in which
workers assign the label yj or −yj to task tj , where yj is the true label. It can be adopted
by both “lazy” and “smart” adversaries. Lazy workers adopt this strategy to maximize the
number of tasks they label and the corresponding payment they obtain. Smart adversaries
adopt this strategy if it is known a priori that the prevalence (or proportion) γ of tasks with
true labels +1 is large, say, above 90%. For instance, medical images showing tumors contain
a large proportion of benign ones and a correspondingly small proportion of malignant ones,
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T1

T2

Adv.
(A)

Honest
(H2)

Honest
(H1)

-1 true labels

+1 true labels

Figure 1: Example where filtering workers who give only +1 labels performs poorly

leading a “smart” worker to label all assigned images as benign without carefully considering
each image. Therefore, the Uniform strategy actually comprises a spectrum of strategies of
varying degrees of “smartness”, with higher values of γ indicating smarter strategies.

A natural way to identify adversaries who adopt the Uniform strategy is to classify all
workers who have labeled all assigned tasks +1 as adversaries. However, we show that this
approach can have arbitrarily large misclassification rate, because it may misclassify almost
all (asymptotic fraction approaching 1) perfectly reliable honest workers as adversarial.

Lemma 2 (Hardness of identifying Uniform adversarial workers) Consider a simple
binary classifier Înatural(·) as follows:

Înatural(wi) =

{
adversarial, if wi gives all + 1 labels

honest, o.w.

Then, the misclassification rate, that is, fraction of incorrectly classified workers, of the
above classifier can be arbitrarily close to 1.

Proof Suppose the collection of tasks partitions into two sets, T1 and T2, consisting of
tasks that have true labels −1 and +1, respectively (see Figure 1). The adversary A follows
the Uniform strategy and labels all tasks in T1 as +1. There are two groups of honest
workers—H1 and H2—who are perfectly reliable, that is, they always provide the correct
label. The workers in H1 label all tasks in T1∪T2, and workers in H2 label only the tasks in
T2. Now, because honest workers H2 give only +1 labels, the classifier Înatural misclassifies
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all honest workers in H2 as adversaries. In other words, we have

1

|H1 ∪H2|
∑

h∈H1∪H2

1
[
Înatural(h) 6= honest

]
=

|H2|
|H1 ∪H2|

where 1[·] denotes the indicator function. Suppose H2 comprises a large fraction of honest
workers, that is, |H2| = (1 − ρ) |H1 ∪H2| for some “small” ρ > 0. Then, it follows from
the above equation that the misclassification rate of the natural classifier Înatural(·) is 1−ρ,
which can be arbitrarily close to 1.

The above lemma shows that the problem of identifying adversaries is nontrivial even for
the Uniform strategy case, and our analysis below provides precise conditions under which
we can identify such adversarial workers. In particular, for the the scenario outlined in
the proof above, our soft-penalty algorithm assigns a penalty of 1

|A| to adversaries, 1
|H1| to

honest workers in H1, and zero penalty to honest workers in H2 (because they are not part
of any conflicts). Consequently, as long as |H1| > |A|, our algorithm correctly separates out

honest workers from adversaries by choosing a threshold θ ∈
(

1
|H1| ,

1
|A|

)
and classifying all

workers with penalty > θ as adversarial.
Because the performance of the algorithm depends on the specific crowdsourced clas-

sification instance (worker-task assignment graph, true task labels, reliabilities of honest
workers), we conduct a probabilistic analysis under a natural generative model. For our
analysis, we focus on worker-task assignment graphs B that are (l, r)-regular, in which each
worker is assigned l tasks and each task is labeled by r workers. These assignment graphs
are analytically tractable and have been shown by Karger et al. (2014) to achieve order-
optimal performance (with respect to the best combination of task assignment and inference
algorithm) when given a certain budget for task assignment. To generate the crowdsourcing
instance, we use the probabilistic model of crowdsourced labeling proposed by Karger et al.
(2014) but extended to incorporate adversarial workers:
Generative model. Suppose the fraction q ∈ (0, 1] of honest workers, number of tasks m,
number of workers n, worker degree l > 1, and task degree r > 1 are fixed. Let γ ∈ [0, 1]
denote the prevalence (or proportion) of tasks with true labels +1 and F (·), the cumulative
distribution function (CDF) of the honest worker reliabilities under the one-coin model,
with µ ∈ [0, 1] denoting the mean. Sample a crowdsourced classification instance as follows:

1. Worker-task assignment graph: Assign m tasks to n workers using the configuration
model—take n · l half-edges for worker nodes and m · r half-edges for the task nodes,
pick a random permutation of worker half-edges, and map them to task half-edges.

2. True task labels: For each task tj , sample the true label Yj ∈ {−1,+1} independently
according to the Bernoulli distribution with Pr[Yj = +1] = γ.

3. Worker identities: For each worker wi, set its identity to honest with probability q
and adversarial with probability 1− q.

4. Honest worker reliabilities and responses: If wi is honest, sample its reliability Mi =
µi from the distribution F (·). For each task tj assigned to wi, set the response wi(tj)
to Yj with probability µi and −Yj with probability 1− µi.
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5. Adversarial worker responses: If wi is adversarial, set the response wi(tj) = +1 for
all tasks tj assigned to wi.

The above generative model may be justified as follows. First, the configuration model is
a simple random construction to generate graphs that is popular in random graph liter-
ature (Bollobás, 2001). It may result in a graph with multi-edges (where two nodes are
connected by more than one edge); however, the number of double-edges converges to a
Poisson distribution with mean (l−1)(r−1)/2 (see Bollobás, 2001). Therefore, the propor-
tion of nodes with multi-edges is ≈ lr/n, which tends to zero as n→∞ as long as l = o(n)
and r is constant.

The model for true task labels, worker identities, and reliabilities may be justified by
supposing that the m tasks T = {t1, . . . , tm} are drawn from a “large” population of tasks
with a prevalence γ of +1 tasks and workers are drawn from a “large” population with a
proportion 1 − q of adversaries and a proportion q of honest workers, whose reliabilities
have the distribution F (·). Then, the distributional assumptions for the true task labels,
worker identities, and honest worker reliabilities will be met when the task assignment is
randomized and there is no distinction between sampling with and without replacement
because of the large population sizes. The model for generating honest worker responses
is the standard one-coin model. See Karger et al. (2014) for a detailed discussion of the
settings under which the above probabilistic model is reasonable.

For our theoretical analysis, we assume that non-conflict tasks (with all +1 or −1 labels)
are not ignored/dropped for the purposes of penalty computation. This assumption makes
the analysis less cumbersome and may be justified by noting that for a large enough r,
the probability that a task will be non-conflict is low. Even if a task is non-conflict, we
expect little impact from its inclusion because the penalty from this task will be 1/r, which
is negligible for large values of r. We also tested this assertion numerically and observed
negligible differences in the performances of the two variants (with and without dropping
high-degree non-conflict tasks) of the soft-penalty algorithm (see Section 5).

4.1.1 Analysis of expected penalties

We first analyze the expected penalties received by honest and adversarial workers under
the abovementioned generative model and identify the conditions for population parameters
q, µ, and γ under which honest workers receive lower expected penalties. Let PENi denote
the penalty assigned by the soft-penalty algorithm to worker wi; note that it is a random
variable under the abovementioned generative model.

First, we focus on the classical setting in which there are no adversarial workers; there-
fore, A = ∅. We obtain the following result:

Theorem 3 (Reputations consistent with reliabilities) When q = 1 (i.e., there are
no adversarial workers) and µ > 1

2 , we have

E [PENi |Mi = µ1] < E [PENi |Mi = µ2] ⇐⇒ µ1 > µ2

for any worker wi.

Theorem 3 shows that the expected reputation scores are consistent with honest workers’
reliabilities: as the honest worker’s reliability decreases, the expected penalty increases,
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that is, the expected reputation score decreases. As honest worker reliabilities capture
their propensities to make mistakes, our algorithm flags workers who are prone to making
mistakes, as desired. Consequently, filtering out low-reputation workers filters out workers
with low reliabilities (we make this claim precise in Section 4.1.2 below).

Next, we consider the case in which A 6= ∅ and there is a fraction 1− q of workers who
are adversarial and adopt the Uniform strategy. Let ph and pa denote the expected penalties
that a worker receives conditioned on being honest and adversarial, respectively, that is,

ph = E [PENi | wi is honest ] and pa = E [PENi | wi is adversarial ]

Because of symmetry, these expectations do not depend on worker indices. Then, we obtain
the following result:

Theorem 4 (Penalties under Uniform strategy) When q < 1, µ > 1
2 , and the adver-

saries adopt the Uniform strategy, we obtain

ph < pa ⇐⇒
(
qµ >

1

2
and

µ

1− µ
· h(µ, q) >

γ

1− γ

)
where h(µ, q) is a strictly increasing function in q for a fixed µ, and it is defined as

h(µ, q) =
g(1−Q)− g(Q)

g(P )− g(1− P )
where P := qµ+ (1− q), Q := 1− qµ, and g(x) :=

1− xr

r · (1− x)
.

The above result reveals the conditions for the parameters q, µ, and γ under which the
soft-penalty algorithm is successful in assigning lower penalties to honest workers than to
adversaries.

To understand this, we first focus on the condition qµ > 1/2. Note that because µ ≤ 1,
this condition implies that the population must consist of more honest workers than adver-
saries (q > 1/2). This is because our algorithm is designed to identify “outlier” response
patterns—those which deviate from the majority—and for adversaries to be declared out-
liers, they must necessarily be in the minority.

Furthermore, note that the necessary condition µ > 1/(2q) implies that for our algorithm
to be successful, the average reliability µ of the honest workers must be “large enough”;
specifically, it must exceed 1

2q (for a fixed q). To obtain an intuitive understanding of this
condition (the proof is given in Appendix A.1.2), note the following. Consider a task with
true label +1. Then, in expectation, there are rqµ honest workers and (1− q) · r adversaries
who provide the response +1 and rq · (1− µ) honest workers who provide the response −1.
Now, the adversaries will agree with the majority if and only if r ·(qµ+(1−q)) ≥ rq ·(1−µ),
that is, µ ≥ 1− 1/(2q). Similarly, when the true label of a task is −1, then in expectation,
there are r · (q · (1 − µ) + (1 − q)) workers providing +1 label and rqµ workers providing
−1 label. Again, the adversaries will be in the majority in expectation if and only if
µ ≤ 1/(2q). It thus follows that if µ ∈ [1 − 1

2q ,
1
2q ], then the adversaries are always in

majority in expectation, and therefore, they will receive a lower penalty. Because µ > 1/2
and 1 − 1

2q ≤ 1/2, a necessary condition for the worker to receive a lower penalty when

being honest is therefore µ > 1
2q , that is, qµ > 1

2 .
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Now assuming that the first condition is met, that is, qµ > 1/2, we focus on the second
condition: µ

1−µ · h(µ, q) > γ
1−γ . When γ = 1, this condition is not met (unless µ = 1), and

therefore, honest workers receive higher expected penalties than adversaries. This is because
if all tasks have a true label +1, then in expectation, there is a fraction qµ + 1 − q > 1/2
(because qµ > 1/2) of workers providing the label +1 to each task, implying that the
adversaries always agree with the majority label for each task. As a result, our algorithm
filters out honest workers; however, it must be noted that adversaries actually have higher
(perfect) reliabilities in this special case. Similarly, when µ = 1, that is, honest workers are
perfectly reliable, the condition is always met because honest workers are in the majority
at each task (in expectation); specifically, when the true label is +1, all responses are +1,
and when the true label is −1, all honest workers (a fraction q > 1/2) provide the label −1.

Next, we investigate the performance of our algorithm as the adversary strategies become
“smarter”. As noted above, the Uniform strategy comprises a spectrum of strategies of
varying degrees of “smartness”, with higher values of γ indicating smarter strategies.

Corollary 5 (Penalties under smarter adversary strategies) Suppose µ > 1
2 is fixed

and qµ > 1
2 . Then, it follows that

ph < pa ⇐⇒ q > h−1
µ

(
γ

1− γ

)
where hµ(q) := µ

1−µ · h(µ, q) and h−1
µ (·) is the inverse of hµ(·). In other words, for fixed

µ > 1
2 , we require a minimum fraction of honest workers to ensure that adversaries receive

a higher penalty than honest workers, and this fraction increases as γ increases.

The above result shows that as the adversary strategies become smarter, it becomes more
difficult to distinguish them from honest workers. Specifically, because h−1

µ (·) is a strictly
increasing function, we require honest workers to have a larger majority as γ increases to
ensure that they receive lower expected penalties than adversaries.

4.1.2 Asymptotic identification of adversaries and honest workers

Assuming that the expected penalties of adversaries and honest workers are separated, we
now derive the asymptotic error rates, defined as the expected fraction of errors, of the
soft-penalty algorithm as n → ∞ when (1) there are no adversaries and (2) adversaries
adopt the Uniform strategy.

To analyze the error rates, we consider the following threshold-classifier Îθ(·) based on
the soft-penalty algorithm: given a penalty threshold θ ∈ R, define the binary classifier

Îθ(wi) =

{
honest, if PENi ≤ θ
adversarial, o.w.

Let I(wi) denote the latent true identity of worker wi. Note that both I(wi) and Îθ(wi)
are random variables under our generative model.

As above, we first consider the case in which there are no adversaries, that is, q = 1, so
that I(wi) = honest for all workers wi. In this case, Theorem 3 shows that workers with
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higher reliabilities receive lower expected penalties. Furthermore, we now show that the
threshold classifier correctly classifies high-reliability workers as honest with high probability
as n→∞:

Theorem 6 (Identification of high-reliability workers) Suppose q = 1 and µ > 1
2 .

Given θ ∈ (0, 1) and ε ∈ (0, 1√
2
) such that θ−ε ∈ (g(1−µ), g(µ)), define µ̂(θ) := g(µ)+ε−θ

g(µ)−g(1−µ) ,

where the function g(·) was defined in Theorem 4. Then, under the generative model, we
obtain

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi) and Mi > µ̂(θ)

)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)
When l = log n and r is fixed, we obtain

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi) and Mi > µ̂(θ)

)
= O

(
1

n2ε2

)
as n→∞

Theorem 6 provides an upper bound for the error rate or misclassification rate of the
threshold classifier. We say that the classifier makes an error if it classifies a worker whose
reliability is higher than µ̂(θ) as adversarial, and the misclassification rate is defined as the
expected fraction of errors. As n → ∞, the first term, l2r2/(n − 1), in the error bound
goes to 0 as long as l = o(

√
n). With the task degree r fixed, the second term goes to

zero as long as l → ∞ when n → ∞. Upon combining these two observations, it follows
that taking l = log n yields the error bound of O(1/n2ε2) for a fixed ε ∈ (0, 1√

2
) and r, as

n → ∞. In other words, our result shows that as long as we collect log n labels from each
worker and a fixed number of labels for each task, we will classify workers with reliabilities
higher than µ̂(θ) as honest with a high probability as n → ∞. Although the number of
labels collected from each worker must tend to infinity, it must only grow logarithmically
in the total number of workers n. Finally, if the population reliability µ is known, we can
determine the value of threshold θ for a given reliability threshold µ̂(θ).

The proof of Theorem 6 relies on establishing that the worker penalties are concentrated
around their respective expectations, for which we need the worker-task assignment graph
B to be locally tree-like:

Definition 7 (Locally tree-like assignment graphs) An (l, r)-regular worker-task as-
signment graph B is said to be D-locally tree-like at a worker node wi if the subgraph Bwi,D,
consisting of nodes at a distance of at most D from wi, is a tree.

For our purposes, it suffices to have Bwi,2 be a tree. Note that the subgraph Bwi,2 consists
of the worker node wi; tasks labeled by wi, that is, the set Ti; and workers

⋃
j∈Ti Wj

who labeled the tasks in Ti. Karger et al. (2014) show that a random construction of the
assignment graph using the configuration model ensures that Bw,2 is a tree with a high
probability as n→∞ for a randomly chosen worker w.

Lemma 8 (Random construction ensures local tree-structure) If B is random (l, r)-
regular constructed according to the configuration model, then for a randomly chosen worker
w

Pr (Bw,2 is not a tree) ≤ l2r2

n− 1
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The proof of the above lemma is in Appendix A.2.1 and it follows the arguments in Karger
et al. (2014). Based on the result of Lemma 8, the proof of Theorem 6 proceeds in two
steps. First, whenever the configuration model generates an assignment graph B that is
not locally tree-like, we immediately declare an error, incurring an error probability that
is bounded above by l2r2/(n − 1); this yields the first term in the error bound. Second,
when Bwi,2 is indeed a tree, we obtain the second term in the error bound by invoking the
following concentration result:

Lemma 9 (Concentration of honest worker penalties) Suppose that q = 1 and Bwi,2

is a tree. Under the generative model and for a fixed reliability Mi = µi, given any ε > 0,
the penalty assigned to honest worker wi concentrates as

Pr

(
PENi ≥ E[PENi |Mi = µi] + ε

∣∣∣Mi = µi

)
≤ exp

(
−2lε2

(1− 1/r)2

)

Note that the above lemma holds for any fixed value of reliability µi. The proof of the above
result relies on expressing the penalty scores as an average of l random variables and then
invoking Hoeffding’s concentration bound. The local tree-like property of the assignment
graph B at worker node wi ensures that the l random variables are mutually independent
(which is required for Hoeffding’s inequality).

Next, we consider the case in which there is a fraction 1−q of workers who are adversaries
and adopt the Uniform strategy. Theorem 4 above provides the necessary and sufficient
conditions for an honest worker to receive a lower expected penalty than an adversary, that
is, for ph < pa. Under these conditions, we obtain the following result:

Theorem 10 (Identification of honest and adversarial workers) Suppose ph < pa
and let θ ∈ (ph + ε, pa − ε) for some ε small enough such that 0 < ε < (pa − ph)/2.
Then, under the generative model we obtain

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = honest
)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)
+ F (µ̂(q, θ))

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = adversarial
)
≤ l2r2

n− 1
+ exp

(
− 2lε2

(1− 1/r)2

)

where µ̂(q, θ) is such that µ̂(1, θ) = µ̂(θ) and µ̂(q, θ) < µ for all q ∈ (0, 1] and θ ∈ (ph +
ε, pa − ε).

When l = log n and r is fixed, we obtain

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = honest
)

= O

(
1

n2ε2

)
+ F (µ̂(q, θ))

1

n

n∑
i=1

Pr
(
Îθ(wi) 6= I(wi)

∣∣∣ I(wi) = adversarial
)

= O

(
1

n2ε2

)
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The precise expression for µ̂(q, θ) is involved and is given in Appendix A.2.4. Theorem 10
provides the misclassification rate of our algorithm when the population parameters q, µ,
and γ satisfy the conditions of Theorem 4, ensuring that honest workers receive a lower
expected penalty than adversaries. Following the arguments from the discussion under
Theorem 6 above, it can be seen that when l = log n and r is fixed, the fraction of adversaries
that is misclassified is O(1/n2ε2). On the other hand, the fraction of honest workers that
is misclassified scales as O(1/n2ε2) + F (µ̂(q, θ)). The first term tends to zero as n → ∞.
The second term denotes the probability that honest worker reliability is less than or equal
to µ̂(q, θ). In other words, our algorithm misclassifies low-reliability workers as adversaries.
In the special case when all honest workers have the same reliability µ, it immediately
follows that the probability density function is a point mass at µ, from which it follows that
F (µ̂(q, θ)) = 0 because µ̂(q, θ) < µ. In this case, the misclassification error for the honest
workers also tends to zero as n→∞.

We note that the dependence of the honest worker misclassification rate on F (µ̂(q, θ))
is fundamental to our algorithm. As an example, consider the case when the reliability
distribution is a two-point distribution with probability mass µ at 1 and the remaining
1 − µ mass at 0. This distribution results in two types of honest workers: workers who
always provide the correct response and those that always provide the incorrect response.
Note that the average reliability under this distribution is µ. Let p0 and p1 denote the
expected penalties under our generative model for a worker conditioned on being honest
with reliabilities 0 and 1, respectively. Then, it follows from Lemma 19 in the Appendix
that

p1 = γ · g(1− P ) + (1− γ) · g(Q)

pa = γ · g(1− P ) + (1− γ) · g(1−Q)

p0 = γ · g(P ) + (1− γ) · g(1−Q)

From Theorem 4, it follows that P > 1/2 and Q < 1/2 is necessary to ensure ph < pa.
Combined with the fact that g(·) is increasing, this implies that g(Q) < g(1 − Q) and
g(1−P ) < g(P ). As a result, we obtain p1 < pa < p0. It now follows that when n→∞, the
penalties of honest workers with reliability 0 concentrate around p0, and consequently, they
are classified as adversarial whenever the threshold θ < pa, resulting in a misclassification
error of 1 − µ. However, it should be noted that honest workers classified as adversaries
indeed have low reliabilities.

Similar to the proof of Theorem 6 above, the proof of Theorem 10 proceeds in two
steps. The first term in the error bound of Theorem 10 comes from Lemma 8 because we
immediately declare an error whenever the assignment graph is not locally tree-like. The
second term comes from the case when Bwi,2 is indeed a tree by invoking the following
concentration result:

Lemma 11 (Concentration of worker penalties) Suppose that q < 1 and Bwi,2 is a
tree. Under the generative model, given any reliability value µ̂ ∈ (0, 1) and ε > 0, the
penalty assigned to worker wi concentrates as

Pr

(
PENi ≥ E[PENi |Mi = µ̂] + ε

∣∣∣ I(wi) = honest

)
≤ exp

(
−2lε2

(1− 1/r)2

)
+ F (µ̂)
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and

Pr

(
PENi ≤ pa − ε

∣∣∣ I(wi) = adversarial

)
≤ exp

(
−2lε2

(1− 1/r)2

)
The proof of the above result is similar to that of Lemma 9. For the case of adversarial
workers, we use Hoeffding’s argument to establish the concentration. For the case of honest
workers, the first term follows directly from Lemma 9 when wi has reliability µi > µ̂ and
the second term is the probability that the reliability µi ≤ µ̂.

The above results establish that the soft-penalty algorithm successfully identifies low-
reliability honest workers and adversaries adopting the Uniform strategy asymptotically with
high probability. Note that all results also extend to the random, normalized variant of the
hard-penalty algorithm mentioned in Section 3.3, where the expectation is taken over the
generative model and the randomized hard-penalty algorithm (see Appendix A.3).

We would like to note that similar results can be derived if it is assumed that honest
workers employ the two-coin model (instead of the one-coin model assumed in the preceding
analysis). However, the precise error bounds require significantly more notation to explain,
without adding too much in terms of insights. Instead, we evaluate the performance of our
algorithm for the two-coin model in the numerical experiments and show that it is still able
to identify uniform adversaries and low-reliability honest workers (see Section 5.1).

4.2 Hard-penalty algorithm: sophisticated adversary strategies

In the preceding analysis, we focused on common adversary strategies in which adver-
saries were not intentionally malicious. However, existing studies provide ample evidence
for the presence of workers with malicious intent in public crowdsourcing systems, where
workers choose which tasks to label and the worker labels are public. These workers are
usually hired online by an attacker (Wang et al., 2012) to create fake accounts and manip-
ulate ratings/reviews to alter the aggregate ratings or rankings received by tasks. Specific
examples include workers on Digg altering the “popularity” of advertisements and phish-
ing articles (Tran et al., 2009), fake review groups collaboratively targeting products on
Amazon (Mukherjee et al., 2012), workers providing fake ratings and reviews to alter the
aggregate ratings of restaurants on Yelp (Molavi Kakhki et al., 2013), and malicious crowd
behavior in online surveys (Gadiraju et al., 2015). Refer to the recent work by Wang et al.
(2014) for more examples. Motivated by these examples, we study settings with sophisti-
cated adversaries, who are defined as follows:

Definition 12 (Sophisticated adversaries) Sophisticated adversaries provide responses
with the objective of maximizing the number of tasks whose inferred labels are different from
the labels they would otherwise have received from any label aggregation algorithm. They
are computationally unbounded and colluding, and they possess knowledge about the labels
provided by honest workers; therefore, they can adopt arbitrary response strategies.

Our definition allows sophisticated adversaries to not just be malicious but also be capable
of executing the most complex strategies. In practice, an adversary may adopt feasible
strategies with varying complexities depending on the application context and their objec-
tives. Focusing on the most sophisticated adversary makes our analysis broadly applicable,
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independent of the application context. Further, we do not restrict the structure of the
worker-task assignment graph because unlike in a crowdsourced-classification task, we have
no control on which tasks each worker labels.

We first note that existing label aggregation algorithms can have arbitrarily bad per-
formance in the presence of sophisticated adversaries, even if we assume that all honest
workers are perfectly reliable:

Lemma 13 (Hardness of recovering true task labels) Suppose honest workers are per-
fectly reliable, that is, they always provide the correct response. Let the assignment graph
between honest workers and tasks be such that each task receives responses from at most
r > 1 honest workers. Suppose there are k > r sophisticated adversaries, and each ad-
versary provides the incorrect label on all tasks. Then, both the simple majority and EM
(initialized by majority estimates) label aggregation algorithms output the incorrect label for
all tasks.

Note that the above lemma characterizes the performance of label aggregation algo-
rithms, which are designed to infer true task labels as opposed to identifying adversarial
workers. Because sophisticated adversaries aim to maximize the number of tasks whose in-
ferred labels are incorrect, the lemma shows that for standard label aggregation algorithms
like simple majority and EM, the adversaries can cause arbitrarily bad “damage”. Con-
sequently, in our theoretical analysis below, we focus on the accuracy of label aggregation
algorithms in the presence of sophisticated adversaries, as opposed to the misclassification
rate, as was done in Section 4.1.

Lemma 13 holds for r-right regular graphs, that is, each task receives exactly r honest
worker labels, which are commonly used in practice (see the discussion in Section 4.1).
Therefore, standard label aggregation algorithms can have very poor accuracy in recovering
true task labels in the presence of sophisticated adversaries. In fact, we can actually establish
something much stronger—in the presence of sophisticated adversaries, there exists a lower
bound on the number of tasks whose true label cannot be inferred correctly (better than
random guess) irrespective of the label aggregation algorithm used to aggregate the worker
responses.

4.2.1 Lower bound on number of tasks that receive incorrect labels

To state our result, we need the following additional notation. We represent any label
aggregation algorithm as a decision rule R : L → {−1,+1}m, which maps the observed
labeling matrix L to a set of output labels for each task. Because of the absence of any
auxiliary information about the workers or the tasks, the class of decision rules, say C, is
invariant to permutations of the identities of workers and/or tasks. More precisely, C denotes
the class of decision rules that satisfy R(PLQ) = R(L)Q for any n×n permutation matrix
P and m×m permutation matrix Q. We say that a task is affected if a decision rule outputs
the incorrect label for the task, and we define the quality of a decision rule R(·) as the worst-
case number of affected tasks over all possible true labelings of the tasks and adversary
strategies given a fixed set of honest worker responses. Fixing the responses provided by
honest workers allows isolation of the effect of the adversary strategy on the accuracy of
the decision rule. Considering the worst-case over all possible true task labelings makes the
quality metric robust to ground-truth assignments, which are typically application specific.
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To formally define the quality, let BH denote the subgraph of the worker-task assign-
ment graph restricted to honest workers H and y = (y1, y2, . . . , ym) denote the vector of
true labels for the tasks. Because the number of affected tasks depends on the actual honest
worker responses, we focus on the case when all the honest workers are perfectly reliable,
that is, they always provide the correct response. Focusing on completely reliable hon-
est workers allows us to isolate the impact of adversaries because any misidentification is
caused by the presence of adversaries. Finally, let Sk denote the strategy space of k < |H|
adversaries, where each strategy σ ∈ Sk specifies the k ×m response matrix given by the
adversaries. Because we do not restrict the adversary strategy in any way, it follows that
Sk = {−1, 0,+1}k×m. The quality of a decision rule R ∈ C is then defined as

Aff(R,BH , k) = max
σ∈Sk,y∈{−1,+1}m

∣∣∣{tj ∈ T : Ry,σ
tj
6= yj)

}∣∣∣
where Ry,σ

t ∈ {−1,+1} is the label output by the decision rule R for task t when the true
label vector is y and the adversary strategy is σ. Note that our notation Aff(R,BH , k)
makes the dependence of the quality measure on the honest worker subgraph BH and the
number of adversaries k explicit.

We obtain the following result, which establishes a lower bound on the quality of any
decision rule:

Theorem 14 (Lower bound on number of affected tasks) Suppose that |A| = k and
all honest workers provide correct responses. Let PreIm(T ′) denote the set of honest workers
who label at least one task in T ′ ⊆ T . Then, given any honest worker-task assignment
graph BH , there exists an adversary strategy σ∗ ∈ Sk that is independent of any decision
rule R ∈ C, such that

max
y∈{−1,+1}m

Aff(R, σ∗,y) ≥ L ∀R ∈ C, where

L :=
1

2
·

 max
T ′⊆T :

|PreIm(T ′)|≤k

∣∣T ′∣∣


and Aff(R, σ∗,y) denotes the number of affected tasks under adversary strategy σ∗, decision
rule R, and true label vector y (with the assumption that the maximum over an empty set
is zero). In particular, this means that Aff(R,BH , k) ≥ L for all decision rules R ∈ C.
In addition, there exist honest worker-task assignment graphs such that σ∗ renders the
adversaries A indistinguishable from a set of k honest workers, so that a random guess
misclassifies 2k workers with probability (1/2).

We describe the main idea of the proof. The proof proceeds in two steps: (i) we provide
an explicit construction of adversary strategy σ∗ that depends only on BH and (ii) we
show the existence of two possible true labelings ỹ 6= y such that R outputs exactly the
same labels in both scenarios. The adversary labeling strategy we construct uses the idea
of indistinguishability, which captures the fact that by carefully choosing their responses,
adversaries can render themselves indistinguishable from honest workers. In the simple case
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when there is only one honest worker, the adversary simply flips the response provided by
the honest worker, so that each task will have two labels of opposite parity. It can be argued
that because there is no other discriminatory information, it is impossible for any decision
rule R ∈ C to distinguish the honest worker from the adversary and to therefore identify
the true label of any task (better than a random guess). We extend this to the general
case, where the adversary “targets” at most k honest workers and derives a strategy based
on the subgraph of BH restricted to the targeted workers. The resultant strategy can be
shown to result in incorrectly identified labels for at least L tasks for some ground-truth
label assignment.

Note that Theorem 14 holds for any honest worker-task assignment graph BH . This is
particularly remarkable given that the analysis of aggregation algorithms becomes extremely
complicated for general graphs (a fact observed in previous studies; see Dalvi et al., 2013).
The bound L itself depends on the structure of BH , and therefore, it can be difficult to
interpret in general. However, it becomes interpretable for (r, γ, α)-bipartite expanders, as
defined next.

Definition 15 (Expanders) An honest worker-task assignment graph BH = (H ∪ T ;E),
with edges E between the honest workers H and tasks T , is (r, γ, α)-bipartite expander if
(i) BH is r-right regular, that is, each task is labeled by r honest workers and (ii) for all
T ′ ⊆ T such that |T ′| ≤ γ |T |, the pre-image of T ′ satisfies |PreIm(T ′)| ≥ α |T ′|, where
PreIm(T ′) is the set of all honest workers who label at least one task in T ′.

Note that the definition entails that α ≤ r. We have the following corollary of Theorem 14
when BH is (r, γ, α)-bipartite expander.

Corollary 16 (Lower bound for expanders) Suppose BH is (r, γ, α)-bipartite expander.
Then, k adversary identities can affect at least L tasks such that bkr c ≤ 2L ≤ d kαe, provided

d kαe + 1 < γ · |T |. Furthermore, given any constant r, there exists γ > 0 such that a uni-
formly random BH is (r, γ, r − 2)-bipartite expander with probability at least 1/2, in which
case the lower bound L = 1

2d
k
r−2e.

The proof is provided in Appendix A.5. The above statement says that if the honest
worker-task assignment graph BH is constructed randomly, then k adversary identities can
affect at least 1

2b
k
r c tasks. The bound implies that the ability of the adversaries to affect

tasks increases linearly as the number of identities k increases. Further, the damage that
k adversaries can do decreases inversely with the number of honest workers r who provide
labels for each task. Both implications are intuitive. As can be seen from the proof, the
lower bound 1

2b
k
r c on L in Corollary 16 holds for all r-right regular graphs, even if they are

not expanders.

Having established the above lower bound and in light of Lemma 13, the natural question
to ask is as follows: does there exist a label aggregation algorithm for which we can prove
an upper bound on the number of affected tasks, irrespective of the strategy employed by
the sophisticated adversaries? Below, we show such a label aggregation algorithm that is a
natural extension of the hard-penalty algorithm.
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4.2.2 Accuracy of hard-penalty algorithm

We introduce the penalty-based label aggregation algorithm (see Algorithm 3) for our anal-
ysis, which is a natural extension of the hard-penalty algorithm to also perform label ag-
gregation:

Algorithm 3 penalty-based label aggregation

1: Input: W , T , and L
2: Perform steps 2 and 3 of the hard-penalty algorithm
3: For each task tj , let wt+j

, wt−j
be worker nodes that task nodes t+j , t

−
j are respectively

mapped to in optimal semi-matching M in Step 2
4: Output

ŷj =


+1 if degM(wt+j

) < degM(wt−j
)

−1 if degM(wt+j
) > degM(wt−j

)

← {−1,+1} otherwise

(here ŷj refers to the output label for task tj and ← {−1,+1} means that ŷj is drawn
uniformly at random from {−1,+1})

For our analysis, we consider the following model for honest worker responses that is
based on the spammer-hammer model popularly used in previous studies (Karger et al.,
2011; Liu et al., 2012; Ok et al., 2016; Khetan and Oh, 2016): 0 ≤ ε < 1 fraction of honest
workers are “spammers,” that is, they make mistakes in their responses, and the remaining
1 − ε fraction are “hammers,” that is, they are perfectly reliable and always provide the
correct response. In the theorem below, BcsH refers to the bipartite graph created as follows:
(i) each honest worker h is represented by a node on the left; (ii) each task tj ∈ T is
represented by (at most) two nodes on the right, t+j and t−j ; and (iii) add the edge (h, t+j )

(resp. (h, t−j )) if honest worker h labels task tj as +1 (resp. −1). Then, we can show the
following:

Theorem 17 (Accuracy of penalty-based label aggregation) Suppose that |A| = k
and let ε ∈ [0, 1) denote the fraction of honest workers who make mistakes in their responses.
Furthermore, let d1 ≥ d2 ≥ · · · ≥ d|H| denote the degrees of honest workers in the optimal
semi-matching on BcsH . For any true labeling y of the tasks and under Algorithm 3 (with
the convention that di = 0 for i > |H|):

1. If ε = 0, there exists an adversary strategy σ∗ such that the number of affected tasks
is at least 1

2

∑k−1
i=1 di

2. Assuming that each task receives at least one correct response from the honest workers,
no adversary strategy can affect more than U tasks where

(a) U =
k+ε·|H|∑
i=1

di, when at most one adversary provides correct responses

(b) U =
2k+ε·|H|∑
i=1

di, in the general case
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A few remarks are in order. First, it can be shown that for optimal semi-matchings, the
degree sequence d1, d2, . . . , d|H| is unique (see the proof in Appendix A.7), and therefore,
the bounds in the theorem above are uniquely defined given BcsH . The result of Theorem 17
provides both a lower and upper bound for the number of tasks that can be affected by
k adversaries under the penalty-based label aggregation algorithm, irrespective of the ad-
versary strategy. This is remarkable, especially because we established that existing label
aggregation algorithms can be arbitrarily bad (Lemma 13). Assuming honest workers are
always correct, that is, ε = 0, our characterization is reasonably tight when all but (at
most) one adversary provide incorrect responses. In this case, the gap between the upper
and a constant factor of the lower bound is dk, which can be “small” for large enough k.
However, our characterization is loose in the general case when adversaries can provide
arbitrary responses. Here, the gap is

∑2k
i=k di; we attribute this to our proof technique and

conjecture that the upper bound of
∑k

i=1 di also applies to the more general case. When
ε > 0, the upper bound U increases because there are more incorrect responses and, in
turn, the scope for adversaries to affect a larger number of tasks.

One might wonder whether we could perform a similar analysis for the case when hon-
est workers follow the one-coin model. Given the complexity of analyzing optimal semi-
matchings, our current proof technique does not readily extend to this scenario, and there-
fore, there is an opportunity to improve the analysis in future work.

Optimality of penalty-based label aggregation. We now compare the upper bound U in
Theorem 17 to the lower bound L in Theorem 14 in the case when honest workers are
perfectly reliable, that is, ε = 0. We show that (see Appendix A.8) when the degrees
d1, d2, . . . , d|H| are all distinct, L ≥ 1

2

∑k−1
i=1 di. Combined with Theorem 14, this shows

that k adversaries can affect at least 1
2

∑k−1
i=1 di tasks irrespective of the label aggregation

algorithm used to aggregate the worker responses. From Theorem 17, we also have that
under the penalty-based label aggregation algorithm, k adversaries can affect at most U =∑2k

i=1 di ≤ 3(
∑k−1

i=1 di) tasks (as long as k ≥ 2). Therefore, our algorithm achieves constant
factor optimality in recovering the true labels of tasks irrespective of the adversary’s strategy.

5. Numerical analysis

We conducted two empirical studies to demonstrate the practical value of our methods.
The first study illustrates a concrete real-world application of our methodology. By us-
ing standard crowdsourcing datasets (as described below), it shows that filtering out the
adversaries identified by our methods allows existing label aggregation algorithms to infer
true task labels more accurately. Such improvements in accuracy by discarding labels from
certain workers suggests that their label patterns do not conform to standard probabilis-
tic assumptions. Although not illustrated in our study, instead of being filtered out, the
adversary labels may also be used by fitting a model different from that of honest work-
ers in applications where such assumptions are reasonable. The second study is designed
to assess the ability of our methods to successfully identify adversaries and low-reliability
honest workers. It is a simulation study in which we injected a standard crowdsourcing
task with “spammers” (workers who label a task +1 and −1 with probability 1/2 each irre-
spective of the true label) and workers adopting the Uniform strategy. It demonstrates that
both soft- and hard-penalty algorithms successfully identify adversaries and low-reliability
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honest workers when the worker-task assignment graph has a power-law degree distribu-
tion for workers and tasks, thus complementing the results in Section 4.1 which focused on
(l, r)-regular worker-task assignment graphs.

For the purposes of our studies, we focused on the following six label aggregation algo-
rithms: (a) simple majority algorithm mv; (b) em algorithm for the two-coin model (Raykar
and Yu, 2012); (c) kos algorithm (Karger et al., 2014); (d) kos(norm), a normalized vari-
ant of kos in which messages are scaled by the corresponding worker and task degrees
to account for non-regular node degrees in the assignment graph (see Appendix B for the
precise description); (e) spec-em, the spectral EM algorithm of Zhang et al. (2014); and
(f) mmce, the regularized minimax conditional entropy approach of Zhou et al. (2015).
We implemented both variants of our reputation algorithm: (a) soft-penalty (soft) and
(b) hard-penalty (hard). As removing workers alters the penalties of the remaining work-
ers, we filtered the workers iteratively. In each iteration, we recomputed the penalties of
the remaining workers, removed the worker with the highest penalty, and repeated until a
prespecified number of workers was removed. 7

Finally, as mentioned in Section 4.1, we implemented two variants of the soft-penalty
algorithm: one in which non-conflict tasks are dropped for assigning worker penalties and
another in which they are retained. The results were essentially the same, so we only report
the results for the variant in which the non-conflict tasks were dropped.

Dataset Workers Tasks Responses

rte 164 800 8000
temp 76 462 4620
stage2 68 711 2035
task2 386 2269 12435
tweets 66 1000 4977

Table 1: Summary of real datasets used in the experiments

5.1 Accuracy improvements on real-world crowdsourcing datasets

We focused on the following standard datasets:

• stage2 and task2: consisting of a collection of topic-document pairs labeled as rel-
evant or non-relevant by workers on Amazon Mechanical Turk (see Tang and Lease,
2011). These datasets were collected as part of the TREC 2011 crowdsourcing track.

• rte and temp: consisting of annotations by Amazon Mechanical Turk workers for
different natural language processing (NLP) tasks. rte consists of binary judgments
for textual entailment (whether one sentence can be inferred from another) and temp

for temporal ordering of events (see Snow et al., 2008).

• tweets: consisting of sentiment (positive or negative) labels for 1000 tweets (see Moza-
fari et al., 2014).

7. The performance was similar for the non-iterative variant discussed in Section 3—we report the results
for the iterative version because it had marginally better performance.
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As inferring the reliabilities of workers who labeled very few tasks 8 is difficult, we prepro-
cessed the datasets to remove all workers who labeled less than three tasks. Table 1 shows
summary statistics of the datasets after our preprocessing.

Table 2 reports the accuracies of various label aggregation algorithms for inferring true
task labels. For each benchmark label aggregation algorithm, the column base reports
the accuracy of the algorithm in isolation. The columns soft and hard report the best
accuracy of the algorithms for filtering k = 1, 2, . . . , 10 workers using the soft- and hard-
penalty algorithms, respectively; the numbers in parentheses indicate the k value for which
we observed the best performance. 9

Algorithm rte temp stage2 task2 tweets

base soft hard base soft hard base soft hard base soft hard base soft hard

mv 91.9 92.1(7) 92.5(3) 93.9 93.9 94.4(5) 74.3 75.4(1) 80.5(2)∗∗∗ 64.2 64.2 67.8(10)∗∗∗ 69.6 69.8(4) 73.3(1)∗∗∗

em 93.0 93.0 93.3(5) 94.1 94.1 94.1 70.2 76.8(4) 81.2(6)∗∗∗ 67.0 67.1(6) 68.6(9)∗∗∗ 71.2 71.2 71.7(1)
kos 49.7 89.0(10) 91.6(10)∗∗∗ 56.9 69.3(4) 93.7(3)∗∗∗ 74.5 74.7(7) 75.1(2) 57.4 57.4 65.6(10)∗∗∗ 65.8 66.0(4) 70.5(1)∗∗∗

kos(norm) 91.3 92.6(5) 93.1(6)∗∗ 93.9 94.4(7) 94.4(1) 75.5 75.5 78.2(2)∗ 58.3 58.9(8) 67.7(9)∗∗∗ 68.7 68.7 71.0(2)∗∗∗

spec-em 90.1 92.4(8) 92.8(6) 56.1 94.2(7) 94.4(5) 82.8 82.8 82.8 56.1 56.1 57.6(10)∗∗∗ 67.0 67.0 69.0(1)∗∗∗

mmce 92.5 92.9(9) 93.2(3) 94.4 94.4 94.4 57.0 58.5(5) 73.3(10)∗∗∗ 66.1 66.1 66.9(10) 72.7 72.7 72.7

Table 2: Percentage accuracy in recovering true labels of benchmark algorithms in iso-
lation and when combined with our modified reputation algorithms. For each
benchmark, the best-performing combination is highlighted in bold. The number
in parentheses represents the number of workers filtered by our reputation algo-
rithm (an absence indicates that no performance improvement was achieved while
removing upto 10 workers with the highest penalties). The p-values, according to
a two-sided paired t-test, are denoted as ∗ p < 0.1, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.

The key conclusion we draw is that filtering out workers flagged by our algorithms as
adversaries boosts the predictive accuracy of state-of-the-art aggregation algorithms signifi-
cantly across the datasets: the average improvement in accuracy for mv is 3.7%, em is 3.4%,
kos is 30.2%, kos(norm) is 4.4%, spec-em is 12.6%, and mmce is 4.7% when using the
hard-penalty algorithm. The improvement is large for kos because it is designed for regular
graphs (with all workers having the same degree and all tasks having the same degree) and
suffers in performance on real-world graphs that are not regular. Second, we note that
our methods can boost the performance of the mv and kos algorithms to the level of the
popular em algorithm. The mv algorithm is simple to implement, and the kos algorithm is
designed for scenarios where the underlying assignment graph is random (l, r)-regular and
has strong theoretical guarantees and robustness to different initializations (Karger et al.,
2014). Our results suggest that implementing the mv and kos algorithms in conjunction
with our reputation algorithms can allow us to obtain their respective simplicity and ro-
bustness along with strong practical performance (even for irregular graphs) comparable

8. The datasets stage2, task2, and tweets contain several workers who provided responses for only a single
task.

9. The performance was robust to the choice of k. We matched or improved the accuracy of the underlying
label aggregation algorithm in 66% and 70% of cases on average for the soft- and hard-penalty algorithm,
respectively.
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to that of the em algorithm. 10 Finally, because discarding the labels of certain workers
improves the predictive accuracy, our results suggest that standard probabilistic models
(including the two-coin model) are insufficient to capture the labeling patterns of workers
in real-world datasets.

To gain insights into the types of workers identified by our algorithms, we conducted
a qualitative analysis of the labeling patterns of the workers that were filtered out. We
observed the following key types:

1. Workers who labeled at least 10 tasks, of which more than 95% had the same label.
For instance, our algorithms detected six such workers in the temp dataset, five in the
task2 dataset, and one in the tweets dataset. For the stage2 dataset, we detected
two workers who gave all +1 labels and one worker who gave all but a single response
as −1; it should be noted that the empirically calculated prevalence γ of +1 tasks in
the stage2 dataset was 0.83, potentially suggesting that the two workers who gave
all +1 labels were adopting “smart” strategies.

2. Workers who provide labels independent of true task labels. For instance, we detected
four such workers in the rte dataset, seven workers in the temp dataset, seven in the
task2 dataset, three in the stage2 dataset, and one in the tweets dataset, whose label
patterns are such that the empirical fractions α̂ and β̂ of correct responses among the
tasks with true labels +1 and −1, respectively, satisfy |α̂+ β̂− 1| ≤ 0.05. Raykar and
Yu (2012) showed that such workers effectively assign a label of +1 with probability
α̂ and −1 with probability 1− α̂ independent of the true task label.

3. Workers with skewed reliabilities. Such workers were accurate on tasks with one type
of true label, say, +1, but not on others, say, tasks with true label −1. Such label
patterns of workers may be indicative of tasks that require subjective assessments.
For instance, we found four workers in the tweets dataset and two workers in stage2

dataset that had skewed reliabilities. In the tweets dataset, workers were asked
to rate the sentiment of a tweet as being positive or negative. As the notion of
tweet sentiment can be subjective, workers with biased views of the sentiment make
systematic errors on one type of task. A similar explanation applies to the stage2

dataset, in which workers were asked to label a topic-document pair as relevant or
not, requiring a potentially subjective assessment. See Kamar et al. (2015) for more
examples.

In summary, our reputation algorithms are successful in identifying adversarial workers
adopting a broad set of strategies. Furthermore, although not reported, the empirical
reliabilities of the workers filtered out using our algorithms were on average lower than
those of unfiltered workers. This suggests that the labels our algorithms discard are from
low-reliability workers who provide little to no information about the true task labels; this
explains the improved accuracy we obtain.

10. Note that the EM algorithm can also have theoretical guarantees with appropriate initializations (see Gao
and Zhou, 2016 and Zhang et al. 2014).
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5.2 Identifying low-reliability honest workers and adversaries

We use a simulation study to show that our reputation algorithms successfully identify low-
reliability honest workers and adversaries when the worker-task assignment graphs have
power-law degree distributions for the worker and task nodes. Such graph structures are
common in many real-world crowdsourcing scenarios (Franklin et al., 2011). The results
of the simulation study complement the theoretical results presented in Section 4.1 for
(l, r)-regular assignment graphs, which show that the soft-penalty algorithm successfully
identifies low-reliability honest workers and adversaries adopting the Uniform strategy.

For our study, we used the following broad procedure: (a) generate a random crowd-
sourcing instance from the ground-truth model, (b) generate synthetic responses from the
workers for a sample of tasks, (c) filter out workers with the highest penalties according to
our reputation algorithms, and (d) compute the precision, that is, the fraction of filtered-out
workers who are adversarial and who have low empirical reliabilities.

Setup of study. We considered a total of n = 100 workers. The probability q that a
worker is honest was set to 0.7; therefore, on average, there are 30 adversaries among the
100 workers. The prevalence γ of +1 tasks was set to 0.5. We sampled worker degrees
according to a power-law distribution (with exponent a = 2.5) with the minimum degree
equal to 5, and then, we used the Python networkx library (Hagberg et al., 2008) to generate
the worker-task assignment graph.11 Note that the number of tasks m is determined from
the total number of workers and the sampled worker degrees.

As the worker degrees are skewed, the performance of the algorithms is influenced by the
adversary degrees. To capture this, we considered two scenarios: (a) adversaries have high
degrees and (b) adversaries have low degrees. To ensure that adversaries on average have
high degrees, we set worker w in the sampled worker-task assignment graph to be honest
with probability qw = q · (dmax − dw)/(dmax − davg) and to be adversarial with probability
1 − qw, where dw is the degree of worker w and dmax, dmin, and davg are the maximum,
minimum, and average degrees, respectively. Similarly, to ensure that adversaries on average
have lower degrees, we set qw = q · (dw − dmin)/(davg − dmin). See Appendix B for details.

For each scenario, after the worker-task assignment graph and worker identities were
sampled, we generated the crowdsourcing instances as follows: (a) set the true label yj of
each task tj to be +1 with probability 1/2 and −1 with probability 1/2; (b) for each honest
worker w, sample its reliability µw u.a.r from the interval [0.8, 1.0), and set its response to
each assigned task tj to be the true label yj with probability µw and −yj with probability
1−µw; and (c) generate responses from adversarial workers according to the chosen strategy.
We focused on two adversary strategies: (a) Spammer—label each task +1 or −1 with prob.
1/2 and (b) Uniform—label every assigned task +1. The first strategy reflects the setting of
Theorem 3 because it is captured by the one-coin model, and the second strategy reflects
the setting of Theorem 4.

Results. Table 3 reports the precisions of the soft and hard algorithms when (iteratively)
removing 10 workers. The precision is defined as the fraction of filtered-out workers who
are either adversarial or honest with empirical reliabilities less than 0.85 (which is less

11. Specifically, we used the following function: https://networkx.github.io/documentation/

networkx-1.10/reference/generated/networkx.algorithms.bipartite.generators.preferential_

attachment_graph.html.

32

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.bipartite.generators.preferential_attachment_graph.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.bipartite.generators.preferential_attachment_graph.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.bipartite.generators.preferential_attachment_graph.html


Identifying Unreliable and Adversarial Crowd Workers

Spammer Uniform

Low Deg High Deg Low Deg High Deg

soft 90.03 88.70 77.13 69.57
hard 89.00 93.83 73.43 76.73

Table 3: The precisions of the soft- and hard-penalty algorithms in identifying low-
reliability honest workers and adversaries when filtering 10 workers. The rows
soft and hard correspond to the soft- and hard-penalty algorithms, respectively.
The columns Spammer and Uniform correspond to the two adversary strategies,
and for each adversary strategy, the columns “Low Deg” and “High Deg” refer to
the scenarios in which low- and high-degree workers, respectively, are more likely
to be adversaries. Refer to the text for more details.

than the mean µ = 0.9 of the honest worker reliability distribution), where the empirical
reliability of an honest worker is equal to the fraction of its responses that were correct.
The table reports the precision of the algorithms for the two adversary strategies, Spammer
and Uniform, under the two scenarios: Low Deg, in which low-degree workers are more
likely to be adversaries, and High Deg, in which high-degree workers are more likely to be
adversaries. For each combination of adversary strategy and scenario, the reported numbers
are the precision values averaged over 300 randomly generated instances.

We draw the following key conclusions. First, our algorithms have precision values
> 69% in all scenarios, indicating that they are successful in identifying adversaries and
low-reliability honest workers when the worker and task degrees have a power-law distribu-
tion. This finding complements the results of Theorem 6 and Theorem 10, which establish a
similar result when the worker-task assignment graph is (l, r)-regular. Second, our results of-
fer insights into the settings under which the soft- or hard-penalty algorithm is appropriate.
Generally, we observe that the hard-penalty algorithm is more appropriate when the ad-
versaries have higher degrees, whereas the soft-penalty algorithm is more appropriate when
the adversaries have lower degrees. We also note that when the adversaries have labeling
patterns (such as Spammer) that are probabilistically similar to those of honest workers, the
soft-penalty algorithm has a performance comparable to that of the hard-penalty algorithm
even when the adversaries have high degrees.

6. Conclusions

This study investigated the problem of identifying a broad class of adversarial workers in
crowdsourced systems, when the population of workers consists of a mixture of honest work-
ers and adversaries. Honest workers may be reliable or unreliable, and they provide labels
according to a well-defined probabilistic model. The adversaries adopt strategies different
from those of honest workers, whether probabilistic or not. Under this setting, we make al-
gorithmic, theoretical, and empirical contributions. The key algorithmic contribution is the
design of two reputation-based algorithms—soft-penalty and hard-penalty algorithms—that
analyze workers’ label patterns and assign a reputation score to each worker that indicate
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the degree to which the labeling pattern is a statistical outlier. Under standard probabilis-
tic assumptions, we show that the reputation scores assigned by the soft-penalty algorithm
are consistent with worker reliabilities (probability that a worker provides the true task
label) when there are no adversaries. We also show that under appropriate conditions, the
soft-penalty algorithm can asymptotically separate adversaries from honest workers when
adversaries adopt deterministic strategies. When adversaries are sophisticated, we derive
a lower bound for the number of tasks that k adversaries can affect (true label cannot be
inferred better than a random guess) and a corresponding upper bound for the number of
affected tasks under the hard-penalty algorithm. Empirically, we show that our algorithm
can be used to significantly enhance the accuracy of existing label aggregation algorithms
in real-world crowdsourcing datasets.

To the best of our knowledge, our work is the first to consider general worker strate-
gies in crowdsourced labeling tasks. Our work opens the doors for several exciting future
directions. Both of our penalty-based algorithms assume that the task labels are binary;
analyzing natural extensions of our algorithms to multi-class settings is an interesting di-
rection. Because our algorithm allows the identification of adversarial workers, it could
be combined with adaptive techniques to recruit more workers (Ramesh et al., 2012) and
identify the right workers (Li et al., 2014). Finally, applying our outlier detection technique
to ensemble learning approaches, in which outputs from multiple learning algorithms are
combined, could be a promising future direction; indeed there has already been some work
in this space (Wang and Yeung, 2014).
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Appendix A. Proofs of the theorems

In this section, we describe the proofs of all our theoretical results, starting with the results
stated in section 4.1.1.

A.1 Analysis of Expected Penalties under the soft-penalty algorithm

First, we introduce some additional notation. Let Pih[E] (resp. Pia[E]) denote the proba-
bility of some event E conditioned on the fact that worker wi is honest (resp. adversarial).
Similarly, Eih[X] (resp. Eia[X]) denotes the conditional expectation of the random variable
X given the event that worker wi is honest (resp. adversarial). Also, let f(·) denote the
probability density function (PDF) of the worker reliability distribution. Recall the defini-
tions P := qµ+ (1− q), Q := 1− qµ, and the function g(x) := 1−xr

r(1−x) , and note that g(·) is

strictly increasing on (0, 1). Let 1[A] denote the indicator variable taking value 1 if A is true
and 0 otherwise. Let D+

j (resp. D−j ) denote the number of workers who label task tj as +1

(resp −1). In other words, D+
j =

∑
wi∈Wj

1[Wij = +1] and D−j =
∑

wi∈Wj
1[Wij = −1],

where recall that Wj denotes the set of workers who labeled task tj . Here, Wij repre-
sents the label assigned by worker wi to task tj . Finally, let Bin(n, p) denote the Binomial
distribution with parameters n and p.

We begin by proving some important lemmas that will be repeatedly used in the proofs
below.

Lemma 18 Under the generative model in section 4.1, the probability that worker wi pro-
vides response +1 for a task tj is given by

Pr[Wij = +1
∣∣∣Yj = +1] = P

Pr[Wij = +1
∣∣∣Yj = −1] = Q

Furthermore, conditioned on Yj = +1 or Yj = −1, the random variables 1[Wij = +1]

are i.i.d. for all wi ∈ Wj. As a result, it follows that D+
j

∣∣∣Yj = +1 ∼ Bin(r, P ) and

D+
j

∣∣∣Yj = −1 ∼ Bin(r,Q).

Proof Consider the case when Yj = +1:

Pr[Wij = +1
∣∣∣Yj = +1]

= Pih[Wij = +1
∣∣∣Yj = +1] · Pr[wi is honest

∣∣∣Yj = +1]

+ Pia[Wij = +1
∣∣∣Yj = +1] · Pr[wi is adversarial

∣∣∣Yj = +1]

=

(∫ 1

0
Pih[Wij = +1

∣∣∣Mi = µi;Yj = +1] · f(µi)dµi

)
q + 1 · (1− q)

=

(∫ 1

0
µif(µi)dµi

)
q + (1− q)

= qµ+ (1− q) = P,
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where the first term of the second equality follows from the law of total expectation, the
second term because the adversary always labels a task +1, and the third equality follows
from the definition of honest worker reliability Mi.

Furthermore, it follows from our generative process that conditioned on Yj = +1, the
labels from any two workers wi 6= wi′ for task tj are generated independently. Therefore,
we have shown that, conditioned on Yj = +1, the random variables 1[Wij = +1] are
independently and identically distributed with probability P of taking the value 1. Because

D+
j =

∑
wi∈Wj

1[Wij = +1] and |Wj | = r, it follows that D+
j

∣∣∣Yj = +1 is a sum of r i.i.d.

Bernoulli random variables and, hence, D+
j

∣∣∣Yj = +1 ∼ Bin(r, P ).

A similar argument shows that Pr[Wij = +1
∣∣∣Yj = −1] = Q and consequently D+

j

∣∣∣Yj =

−1 ∼ Bin(r,Q).

Lemma 19 Under the generative model in section 4.1, suppose that worker wi is honest
with a sampled reliability µi and let Sij denote the penalty received by wi from task tj ∈ Ti
in the soft-penalty algorithm. Then, we can show

Eih[Sij

∣∣∣Mi = µi] = γ

(
µi ·g(1−P )+(1−µi) ·g(P )

)
+(1−γ)

(
µi ·g(Q)+(1−µi) ·g(1−Q)

)

Similarly, if worker wi is adversarial, then we have:

Eia[Sij ] = γ · g(1− P ) + (1− γ) · g(1−Q)

Proof We begin with the case when wi is honest. Using the law of total expectation, we
have:

Eih[Sij

∣∣∣Mi = µi]

=
∑

v1,v2∈{−1,+1}

Eih[Sij

∣∣∣Mi = µi;Wij = v1;Yj = v2] · Pih[Wij = v1;Yj = v2

∣∣∣Mi = µi]

We first consider the case when v1 = +1 and v2 = +1. In this case, because worker wi
assigns label +1 to task tj (i.e., Wij = +1), the penalty Sij assigned by the task to the
worker is equal to 1/D+

j . Furthermore, because Yj = +1 and 1[Wij = +1] = 1, it follows

from the arguments in Lemma 18 that D+
j − 1 is distributed as Bin(r− 1, P ). We can now
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write

Eih[Sij

∣∣∣Mi = µi;Wij = +1;Yj = +1]

=Eih
[
1/D+

j

∣∣∣Mi = µi;Wij = +1;Yj = +1

]
=

r−1∑
k=0

1

1 + k

(
r − 1

k

)
· P k(1− P )r−1−k

=
1

r
·
r−1∑
k=0

(
r

k + 1

)
· P k(1− P )r−1−k

=
1

rP
·

r∑
k′=1

(
r

k′

)
· P k′(1− P )r−k

′

=
1− (1− P )r

rP
= g(1− P ),

where the third equality follows because 1
k+1 ·

(
r−1
k

)
= 1

r ·
(
r

k+1

)
, the fifth equality follows

because
∑r

k′=0

(
r
k′

)
· P k′(1− P )r−k

′
= 1, and the last equality follows from the definition of

the function g(·).
Furthermore, Pih[Wij = +1,Yj = +1

∣∣∣Mi = µi] = Pih[Wij = +1
∣∣∣Yj = +1;Mi =

µi] · Pih[Yj = +1
∣∣∣Mi = µi] = µi · γ. We have thus shown that

Eih[Sij

∣∣∣Mi = µi;Wij = +1;Yj = +1] · Pih[Wij = +1;Yj = +1
∣∣∣Mi = µi] = g(1− P ) · µiγ

The case when v1 = −1 and v2 = +1 (i.e., Wij = −1 and Yj = +1) follows a symmetric
argument. In particular, because worker wi assigns the label −1 to task tj , the penalty Sij
that is assigned is equal to 1/D−j . Furthermore, it follows from the arguments in Lemma 18

that D−j − 1 is distributed as Bin(r− 1, 1−P ). It now follows from a symmetric argument

(by replacing P by 1 − P above) that Eih[Sij

∣∣∣Mi = µi;Wij = −1;Yj = +1] = g(P ) and

Pih[Yj = +1;Wij = +1
∣∣∣Mi = µi] = γ · (1− µi). We have thus shown that

Eih[Sij

∣∣∣Mi = µi;Wij = −1;Yj = +1] ·Pih[Wij = −1;Yj = +1
∣∣∣Mi = µi] = g(P ) ·(1−µi)γ

Replacing P by Q, µi by 1− µi, and γ by 1− γ yields the expressions for the other two
cases. In particular,

Eih[Sij

∣∣∣Mi = µi;Wij = +1;Yj = −1] · Pih[Yj = −1;Wij = +1
∣∣∣Mi = µi]

= g(1−Q) · (1− γ) · (1− µi)

Eih[Sij

∣∣∣Mi = µi;Wij = −1;Yj = −1] · Pih[Yj = −1;Wij = −1
∣∣∣Mi = µi]

= g(Q) · (1− γ) · µi
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Combining the above, we obtain

Eih[Sij

∣∣∣Mi = µi] = γ

(
µi ·g(1−P )+(1−µi) ·g(P )

)
+(1−γ)

(
µi ·g(Q)+(1−µi) ·g(1−Q)

)

We now consider the case when worker wi is an adversary. Because adversaries al-
ways assign the label +1, we need to consider only two cases: Yj = +1 and Yj = −1.
The conditional expectations of the penalties in both cases are identical to those above:

Eia[Sij
∣∣∣Wij = +1;Yj = +1] = g(1 − P ) and Eia[Sij

∣∣∣Wij = +1;Yj = −1] = g(1 − Q).

Further, we have Pia[Wij = +1;Yj = +1] = γ and Pia[Wij = +1;Yj = −1] = 1 − γ.
Combining these, we obtain

Eia[Sij ] = γ · g(1− P ) + (1− γ) · g(1−Q)

The result of the lemma now follows.

We are now ready to prove the theorems.

A.1.1 Proof of Theorem 3

First, note that if q = 1 then P = µ and Q = 1 − µ. Also, since all workers are honest,
we remove the explicit conditioning on worker wi being honest. Then the expected penalty
allocated to a worker wi with a reliability µi:

E[PENi

∣∣∣Mi = µi] =
1

l

∑
j∈Ti

E[Sij

∣∣∣Mi = µi]

= γ

(
µi · g(1− P ) + (1− µi) · g(P )

)
+ (1− γ)

(
µi · g(Q) + (1− µi) · g(1−Q)

)
(using lemma 19)

= γ

(
µi · g(1− µ) + (1− µi) · g(µ)

)
+ (1− γ)

(
µi · g(1− µ) + (1− µi) · g(µ)

)
= g(µ)− µi · (g(µ)− g(1− µ))

Since g(·) is strictly increasing on (0, 1) and µ > 1
2 , we have that µ > 1−µ and consequently

g(µ)− g(1− µ) > 0. The claim then follows.
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A.1.2 Proof of Theorem 4

For an honest worker wi, we have that

ph := Eih[PENi]

=
1

l

∑
j∈Ti

Eih[Sij ]

=
1

l

∑
j∈Ti

∫ 1

0

Eih[Sij

∣∣∣Mi = µi]f(µi)dµi (law of total expectation)

=

∫ 1

0

(
γ · (µi · g(1− P ) + (1− µi) · g(P )) + (1− γ) · (µi · g(Q) + (1− µi) · g(1−Q))

)
f(µi)dµi

(using lemma 19)

= γ

(
µ · g(1− P ) + (1− µ) · g(P )

)
+ (1− γ)

(
µ · g(Q) + (1− µ) · g(1−Q)

)
(since

∫ 1

0

µif(µi)dµi = µ)

Similarly, when worker wi is adversarial,

pa := Eia[PENi]

=
1

l

∑
j∈Ti

Eia[Sij ]

=
1

l

∑
j∈Ti

γ · g(1− P ) + (1− γ) · g(1−Q) (using lemma 19)

= γ · g(1− P ) + (1− γ) · g(1−Q)

Suppose qµ ≤ 1/2, then we have that Q = 1 − qµ ≥ 1/2 and P > Q ≥ 1/2. Further,
because g(·) is strictly increasing, it follows that g(1−P )−g(P ) < 0 and g(1−Q)−g(Q) ≤ 0.
Given this, and using the expressions for the expected penalty computed above, we have
that:

pa − ph
= γ · (1− µ) · (g(1− P )− g(P ))︸ ︷︷ ︸

<0

+(1− γ) · µ · (g(1−Q)− g(Q))︸ ︷︷ ︸
≤0

≤ 0
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Therefore, qµ > 1
2 is a necessary condition for ph < pa. Assuming this condition is met, we

derive the second condition:

pa > ph ⇐⇒ pa − ph > 0

⇐⇒ γ · (1− µ) ·
(
g(1− P )− g(P )

)
+ (1− γ) · µ

(
g(1−Q)− g(Q)

)
> 0

⇐⇒ (1− γ) · µ
(
g(1−Q)− g(Q)

)
> γ · (1− µ) ·

(
g(P )− g(1− P )

)

⇐⇒ µ

1− µ

(
g(1−Q)− g(Q)

)
(
g(P )− g(1− P )

) >
γ

1− γ

( since P > qµ >
1

2
and Q = 1− qµ < 1

2
)

Consider the function h(µ, q) = g(1−Q)−g(Q)
g(P )−g(1−P ) in the regime qµ > 1

2 . Note that as q increases,

Q decreases (since ∂Q
∂q = −µ < 0) and therefore g(1−Q)−g(Q) (strictly) increases. Similarly,

P decreases as q increases (since ∂P
∂q = µ− 1 ≤ 0) and therefore g(P )− g(1− P ) decreases.

It follows that h(µ, q) is a strictly increasing function of q. The result of the theorem now
follows.

A.1.3 Proof of Corollary 5

Since qµ > 1
2 , we have that P > 1

2 and Q < 1
2 . From the proof of theorem 4 above, we have

pa > ph ⇐⇒
µ

1− µ
h(µ, q) >

γ

1− γ
⇐⇒ hµ(q) >

γ

1− γ

⇐⇒ q > h−1
µ

(
γ

1− γ

)
(since hµ(q) is strictly increasing)

A.2 Asymptotic identification of honest and adversarial workers

We begin with the proof of the lemma establishing the locally-tree like property of the
worker-task assignment graph.

A.2.1 Proof of Lemma 8

We adapt the proof from Karger et al. Consider the following (discrete time) random
process that generates the random graph Bw,2 starting from the root node w. In the first
step, we connect l task nodes to node w according to the configuration model, where l
half-edges are matched to a randomly chosen subset of mr task half-edges of size l. Let
α1 denote the probability that the resulting graph is not a tree, that is, at least one pair
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of edges are connected to the same task node. Since there are
(
l
2

)
pairs and each pair of

half-edges is connected to the same task node with probability r−1
mr−1 , we have that:

α1 ≤
(
l

2

)
r − 1

mr − 1
≤ l2

2m
=

lr

2n

where we use the fact that (a − 1)/(b − 1) ≤ a/b for all a ≤ b and the relation mr = nl.

Next, define β2 ≡ Pr[Bw,2 is not a tree
∣∣∣Bw,1 is a tree] so that we have:

Pr (Bw,2 is not a tree) ≤ α1 + β2

We can similarly bound β2. For generating Bw,2 conditioned on Bw,1 being a tree, there

are lr̂ half-edges where r̂ = r − 1. Among the
(
lr̂
2

)
pairs of these half-edges, each pair will

be connected to the same worker with probability l−1
l(n−1)−1 and therefore:

β2 ≤
l2r̂2

2

l − 1

l(n− 1)− 1

≤ l2r̂2

2

l

l(n− 1)
=

l2r̂2

2(n− 1)

Combining this with the above, we get that

Pr[Bw,2 is not a tree] ≤ α1 + β2 ≤
lr

2n
+

l2r̂2

2(n− 1)
≤ l2r2

n− 1

A.2.2 Proof of Lemma 9

Consider an honest worker wi with a given reliability µi. Recall that the penalty assigned
to wi is of the form:

PENi =
1

l

∑
j∈Ti

Sij

where Sij = 1
D+

j

if Wij = +1 and Sij = 1
D−j

when Wij = −1. For any two tasks tj 6= tj′ ∈ Ti
note that Wij and Wij′ are independent, conditioned on the reliability Mi. This is because
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for (v1, v2) ∈ {−1,+1}:

Pr[Wij = v1;Wij′ = v2 |Mi = µi]

=
∑

(x1,x2)∈{−1,+1}

Pr[Wij = v1;Wij′ = v2 |Mi = µi;Yj = x1;Yj′ = x2] Pr[Yj = x1;Yj′ = x2]

( since the true task labels are independent of Mi)

=

(
Pr[Wij = v1 |Mi = µi;Yj = +1] Pr[Yj = +1]

+ Pr[Wij = v1 |Mi = µi;Yj = −1] Pr[Yj = −1]

)
×(

Pr[Wij′ = v2 |Mi = µi;Yj′ = +1] Pr[Yj′ = +1]

+ Pr[Wij′ = v2 |Mi = µi;Yj′ = −1] Pr[Yj′ = −1]

)
= Pr[Wij = v1 |Mi = µi] · Pr[Wij′ = v2 |Mi = µi]

Note that third equality makes use of the fact that Wij (resp. Wij′) is independent
of all other random variables conditioned on the reliability Mi and the true label Yj
(resp. Yj′). The argument above can be extended for any subset of random variables
Wij1 ,Wij2 , . . . ,Wiji . Further, if the worker-task assignment graph is 2-locally tree-like at
wi, there is no other overlap in the set of workers labeling the tasks tj , tj′ apart from wi.
This combined with the above claim shows that the random variables {Sij : j ∈ Ti} are
mutually independent under our generative model. Further, note that 1

r ≤ Sij ≤ 1 for any
task tj ∈ Ti, i.e the random variables Sij are bounded. Then, we can apply Hoeffding’s

inequality to bound the difference between PENi and E[PENi

∣∣∣Mi = µi] for any ε > 0:

Pr

(
PENi ≥ E[PENi |Mi = µi] + ε

∣∣∣Mi = µi

)
≤ exp

(
−2lε2

(1− 1/r)2

)

A.2.3 Proof of Theorem 6

Suppose we draw a random worker w uniformly from the set of workers W . Then we want
to compute the average probability of error, which is the probability that we misclassify a
randomly chosen worker:

1

n

n∑
i=1

Pr
(
I(wi) 6= Îθ(wi) and Mi > µ̂(θ)

)
= Pr

(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
Let PENw denote the penalty received by the worker w. Recall the expression for

the expected penalty received by an honest worker from the proof of theorem 3 above,

E[PENw

∣∣∣Mw = µw] = g(µ) − µw · (g(µ) − g(1 − µ)). Based on the definition of µ̂(θ) in

the theorem it follows that pµ̂(θ) := E[PENw

∣∣∣Mw = µ̂(θ)] = θ − ε.
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We upper bound the probability Pr
(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
in two steps. First,

if Bw,2 is not a tree, we suppose that we always declare wi as adversarial, thereby making
an error. So supposing Bw,2 is a tree, the probability that we misclassify w is given by

Pr(PENw > θ and Mw > µ̂(θ))

= Pr(PENw > pµ̂(θ) + ε and Mw > µ̂(θ))

=

∫ 1

µ̂(θ)
Pr

(
PENw > pµ̂(θ) + ε

∣∣∣Mw = µ̃

)
f(µ̃)dµ̃

≤
∫ 1

µ̂(θ)
Pr

(
PENw > E[PENw |Mw = µ̃] + ε

∣∣∣Mw = µ̃

)
f(µ̃)dµ̃

(since µ̃ > µ̂(θ) =⇒ E[PENw |Mw = µ̃] < pµ̂(θ))

≤
∫ 1

µ̂(θ)
exp

(
−2lε2

(1− 1/r)2

)
f(µ̃)dµ̃

(from lemma 9 above)

≤ exp

(
−2lε2

(1− 1/r)2

)
Finally, combining all the claims above, we have

1

n

n∑
i=1

Pr
(
I(wi) 6= Îθ(wi) and Mi > µ̂(θ)

)
= Pr

(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

)
≤ Pr(Bw,2 is not a tree ) · 1 + Pr

(
I(w) 6= Îθ(w) and Mw > µ̂(θ)

∣∣∣Bw,2 is a tree
)
· 1

≤ l2r2

n− 1
+ exp

(
−2lε2

(1− 1/r)2

)
and the first part of the theorem follows. For the second part, when l = log n and r is fixed,
note that

exp

(
−2lε2

(1− 1/r)2

)
= exp

(
−2 log nε2

(1− 1/r)2

)
= exp

log

(
1

n

) 2ε2

(1−1/r)2

 = O

(
1

n2ε2

)

In addition, because ε < 1√
2

=⇒ 2ε2 < 1, it follows that log2 n·r2
n−1 = O

(
1

n2ε2

)
and the claim

follows.

A.2.4 Proof of Theorem 10

We follow a similar line of reasoning to that of theorem 6. As before, if Bw,2 is not a tree,
we suppose that the worker is always misclassified.

First, we focus on honest workers. Given a threshold θ, choose the reliability threshold
such that E[PENi |Mi = µ̂(q, θ)] = θ− ε where the expected penalty for an honest worker

43



Jagabathula, Subramanian and Venkataraman

conditioned on reliability was computed in lemma 19. Specifically, we have the following
expression for µ̂(q, θ):

γ

(
µ̂(q, θ) · g(1− P ) + (1− µ̂(q, θ)) · g(P )

)
+ (1− γ)

(
µ̂(q, θ) · g(Q) + (1− µ̂(q, θ)) · g(1−Q)

)
= θ − ε =⇒(
γg(1− P )− γg(P ) + (1− γ)g(Q)− (1− γ)g(1−Q)

)
µ̂(q, θ)

= θ − ε− γg(P )− (1− γ)g(1−Q) =⇒

µ̂(q, θ) =
γg(P ) + (1− γ)g(1−Q) + ε− θ

γ · (g(P )− g(1− P )) + (1− γ) · (g(1−Q)− g(Q))

Note that such a threshold always exists since (1) θ − ε > ph = E[PENi |Mi = µ] (2)
E[PENi |Mi = µi] (strictly) increases as µi decreases and (3) E[PENi |Mi = 0] ≥ pa >
θ > θ − ε. In particular, this means that µ̂(q, θ) < µ. Further, observe that if q = 1, then
we have µ̂(1, θ) = µ̂(θ).

Then, the probability that we misclassify a randomly chosen honest worker is given by

Pr(PENw > θ
∣∣∣w is honest ) ≤ Pr

(
PENw ≥ E[PENw |Mw = µ̂(q, θ)]+ε

∣∣∣w is honest

)

The claim then follows from the result of lemma 11 below.

When w is adversarial, the probability that we misclassify w is given by

Pr(PENw ≤ θ | w is adversarial) ≤ Pr(PENw ≤ pa − ε | w is adversarial) ≤ exp

(
−2lε2

(1− 1/r)
2

)

where the first inequality follows since θ < pa− ε and the second follows from the result of
lemma 11 below.

Coming to the second part of the theorem, first observe that the expected penalties ph
and pa lie between 0 and 1. As a result, we have that ε < (pa − ph)/2 ≤ 1

2 =⇒ 2ε2 < 1
and the claim follows from the sequence of arguments in the proof of theorem 6 above.
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A.2.5 Proof of Lemma 11

Suppose that worker wi is honest and let pµ̂ = E[PENi

∣∣∣Mi = µ̂]. We have the following

(conditioned on Bwi,2 being a tree):

Pr(PENi ≥ pµ̂ + ε
∣∣∣wi is honest )

=

∫ 1

0
Pr(PENi ≥ pµ̂ + ε

∣∣∣wi is honest and Mi = µi)f(µi)dµi

=

∫ µ̂

0
Pr(PENi ≥ pµ̂ + ε

∣∣∣wi is honest and Mi = µi)f(µi)dµi

+

∫ 1

µ̂
Pr(PENi ≥ pµ̂ + ε

∣∣∣wi is honest and Mi = µi)f(µi)dµi

≤
∫ µ̂

0
f(µi)dµi

+

∫ 1

µ̂
Pr(PENi ≥ E[PENi |Mi = µi] + ε

∣∣∣wi is honest and Mi = µi)f(µi)dµi

( since µi ≥ µ̂ =⇒ E[PENi |Mi = µi] ≤ pµ̂)

≤ F (µ̂) + exp

(
−2lε2

(1− 1/r)2

)
( from lemma 9)

When wi is an adversary, note that her responses {Wij : j ∈ Ti} are trivially indepen-
dent since adversarial workers always respond with +1 on all assigned tasks. Further, since
Bwi,2 is locally tree-like, there is no other overlap in the set of workers labeling any two tasks
tj , tj′ ∈ Ti apart from wi. As a result, the assigned penalties {Sij : j ∈ Ti} are mutually
independent and using the Hoeffding’s inequality we can establish the concentration bound
for adversarial workers:

Pr[PENi ≤ pa − ε
∣∣∣wi is adversarial] ≤ exp

(
−2l2ε2∑l

j=1 (1− 1/r)2

)
= exp

(
−2lε2

(1− 1/r)2

)

A.3 Extension to random, normalized hard-penalty

Here, we show that the theoretical results proved above for the soft-penalty algorithm extend
to the random, normalized variant of the hard-penalty algorithm mentioned in section 3.3.
First, we focus on the expected penalties. Since the penalty algorithm is randomized, the
expectation also takes into account the randomness in the algorithm. As above, if Sij
denotes the penalty received by worker wi from task tj , then we have that Sij ∈ {0, 1}.
Further, conditioned on the fact that Wij = +1, we have that E[Sij | Wij = +1] =
E[ 1

D+
j

| Wij = +1] using the law of iterated expectations. Similarly, for the case when

Wij = −1. Then, using the arguments above it is easy to see that the expressions for the
expected penalties are the same.
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Moving on to the concentration results, observe that Sij depends only on Wij and D+
j

(and consequently, D−j ). This is because when Wij = +1, we have

(Sij |Wij = +1) =

{
1 w.p. 1/D+

j

0 w.p. 1− 1/D+
j

Similarly, for the case when Wij = −1. Now, when B is locally tree-like at worker node wi,
the arguments in lemma 9 and 11 establish that the random variables {Sij : tj ∈ Ti} are
still mutually independent conditioned on the identity of worker wi (this also relies on the
fact that each task is treated independently when computing the random semi-matching).
Therefore, we can apply the Hoeffding’s bound to establish the concentration of the penalties
under the random, normalized variant of the hard-penalty algorithm around the expected
values.

A.4 Proof of Lemma 13

For the simple majority algorithm, it is easy to see that each task has k incorrect responses
and at most r < k correct responses and consequently, it outputs the incorrect label for all
tasks.

For the expectation-maximization (EM) algorithm, recall that the generative model
for worker ratings was as follows: the true task labels are sampled from a population
with γ ∈ [0, 1] fraction of tasks having +1 true label. Each worker wi has reliability
parameter µi ∈ [0, 1], which specifies the probability that wi provides the correct label
on any task. Then, given the response matrix L, the log-likelihood of the parameters,
Θ = (µ1, µ2, · · · , µn, γ) under this generative model can be written as:

log Pr[L |Θ] =

m∑
j=1

log (aj · γ + bj · (1− γ))

where M(j) is the set of workers who label task tj and

aj =
∏

i∈M(j)

µi
1[Lij=+1] · (1− µi)1[Lij=−1]

bj =
∏

i∈M(j)

(1− µi)1[Lij=+1] · µi1[Lij=−1]

The objective is to find the model parameters Θ∗ that maximize the log-likelihood,
i.e. Θ∗ = arg maxΘ log Pr[L |Θ]. The EM algorithm computes the maximum likelihood
estimates (MLE) of the model parameters by introducing the latent true label of each task,
denoted by the vector y = [y1, y2, . . . , ym]. The complete data log-likelihood can then be
written as:

log Pr[L,y |Θ] =
m∑
j=1

(
yj log(ajγ) + (1− yj) log(1− γ)bj

)
(1)

Each iteration x of the EM algorithm consists of two steps:
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• E-step: Given the response matrix L and the current estimate of the model parame-
ters Θ(x), the conditional expectation of the complete data log-likelihood is computed
as

E
{

log Pr[L,y |Θ(x)]
}

=
m∑
j=1

(
γ

(x)
j log(a

(x)
j γ(x)) + (1− γ(x)

j ) log(1− γ(x))b
(x)
j

)

where the expectation is w.r.t to Pr[y | L; Θ(x)] and γ
(x)
j = Pr[yj = +1 | L; Θ(x)].

Using Bayes theorem, we can compute

γ
(x)
j =

Pr[{Lij : i ∈M(j)} | yj = +1; Θ(x)] · Pr[yj = +1 |Θ(x)]

Pr[{Lij : i ∈M(j)} |Θ(x)]

=
a

(x)
j γ(x)

a
(x)
j γ(x) + b

(x)
j (1− γ(x))

(2)

where the first equality follows from the fact that labels for different tasks tj are inde-
pendent of each other and the second equality follows from the law of total probability.

• M-step: Based on the current posterior estimates of the true labels γ
(x)
j and the re-

sponse matrix L, the model parameters are updated by maximizing E
{

log Pr[L,y |Θ(x)]
}

,
which can be shown to be a lower bound on the data log-likelihood (equation (1)).
The prevalence of positive tasks γ is updated as:

γ(x+1) =

∑m
j=1 γ

(x)
j

m
(3)

Similarly, the parameter µi is updated as:

µ
(x+1)
i =

∑
j∈N(i)

(
1[Lij = +1]γ

(x)
j + 1[Lij = −1](1− γ(x)

j )
)

|N(i)|
(4)

where N(i) is the set of tasks assigned to worker wi.

These two steps are iterated until convergence of the log-likelihood log Pr[L |Θ]. After
convergence, the true labels of the tasks are estimated as:

ŷj = 2 · 1[γ
(K)
j ≥ 0.5]− 1 (5)

where K is the number of iterations to convergence.
Since the original problem is non-convex, the EM algorithm converges to a local optimum

in general. Its performance critically depends on the initialization of the posterior estimates

γ
(0)
j for each task tj . A popular approach is to use the majority estimate (see Raykar and

Yu (2012)), given by γ
(0)
j :=

∑
i∈M(j) 1[Lij=+1]

|M(j)| . We show that this initialization results in
incorrect labels for all the tasks.

Suppose that the true labels for all tasks are +1, i.e yj = +1 for all 1 ≤ j ≤ m. Then
all honest worker labels are +1 and adversary labels are −1. Further, since each task has
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more adversary than honest labels, we have that γ
(0)
j < 0.5 for all 1 ≤ j ≤ m. Given this,

it easy to see from equation (4) that µ
(1)
i < 0.5 whenever wi is honest and µ

(1)
i > 0.5 for

all adversarial workers wi. In addition, we have γ(1) < 0.5 which follows from equation (3).
With these estimates, we update the posterior probabilities γj for each task tj . Again, it

follows that γ
(1)
j < 0.5 for all 1 ≤ j ≤ m, using the update rule in equation (2). The above

sequence of claims shows that γ
(x)
j < 0.5 for all iterations x ≥ 1 and consequently, ŷj = −1

for all tasks tj (using equation (5)). Therefore, the EM algorithm outputs incorrect labels
for all tasks.

Now, let us consider the general case. If we initialize using the majority estimate, we

obtain that γ
(0)
j > 0.5 for all tasks with true label yj = −1 and γ

(0)
j < 0.5 for all tasks with

yj = +1. Then, it follows from equation (4) that µ
(1)
i < 0.5 for all honest workers wi and

µ
(1)
i > 0.5 for adversarial workers wi. In addition, if we look at the update equations (3)

and (4) together, we also get that µ
(1)
i ≥ max(1 − γ(1), γ(1)) for all adversaries wi. To see

this, first note that adversaries label on all the tasks, so that |N(i)| = m for an adversarial
worker wi. Next, let N+(i) and N−(i) denote the set of tasks for which adversary wi labels

+1 and −1 respectively. If N+(i) is empty, then we have µ
(1)
i = 1−γ(1). Also, since we have

all adversary labels as −1, we have γ
(0)
j < 0.5 for all 1 ≤ j ≤ m and therefore γ(1) < 1−γ(1).

Therefore, in this case we have µ
(1)
i ≥ max(1 − γ(1), γ(1)). A symmetric argument can be

applied when N−(i) is empty. So suppose that both N+(i) and N−(i) are non-empty, then
we have from equation (4):

µ
(1)
i =

∑
j∈N(i)

(
1[Lij = +1]γ

(0)
j + 1[Lij = −1](1− γ(0)

j )
)

|N(i)|

=

∑
j∈N+(i) γ

(0)
j +

∑
j∈N−(i)(1− γ

(0)
j )

m

>

∑
j∈N+(i) γ

(0)
j +

∑
j∈N−(i) γ

(0)
j

m

(since γ
(0)
j < 0.5 if adversaries label tj as − 1)

=

∑
j∈N(i) γ

(0)
j

m

= γ(1)

where the last equality follows from equation (3). Similarly, we can show that µ
(1)
i > 1−γ(1)

and the claim follows.

Now, let Mh(j) and Ma(j) denote the set of honest and adversarial workers labeling
task tj . Consider a task tj for which the true label yj = −1. Now, we have two cases:

Case 1: γ(1) ≥ 0.5. First observe that since µ
(1)
i < 0.5 for all honest workers wi, we

have µ
(1)
i < 1 − µ(1)

i for all honest workers wi. Similarly, we have 1 − µ(1)
i < µ

(1)
i for all
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adversarial workers wi. Then, we have

b
(1)
j · (1− γ

(1)) =

 ∏
i∈M(j)

(1− µ(1)
i )

1[Lij=+1]
· (µ(1)

i )
1[Lij=−1]

 · (1− γ(1))

=
∏

i∈Mh(j)

µ
(1)
i ·

∏
i∈Ma(j)

(1− µ(1)
i ) · (1− γ(1))

(since honest worker response is − 1 and adversary response is + 1)

<
∏

i∈Mh(j)

(1− µ(1)
i ) ·

∏
i∈Ma(j)

µ
(1)
i · γ

(1)

= a
(1)
j · γ

(1)

where the inequality follows from the observation above and the fact that γ(1) ≥ 0.5. Using

equation (2), it follows that γ
(1)
j > 0.5.

Case 2: γ(1) < 0.5. In this scenario, we have:

b
(1)
j · (1− γ

(1))

=

 ∏
i∈M(j)

(1− µ(1)
i )

1[Lij=+1]
· (µ(1)

i )
1[Lij=−1]

 · (1− γ(1))

=
∏

i∈Mh(j)

µ
(1)
i ·

∏
i∈Ma(j)

(1− µ(1)
i ) · (1− γ(1))

=
∏

i∈Mh(j)

µ
(1)
i · (1− µ

(1)
wi1

) · (1− γ(1)) ·
∏

i∈Ma(j)\{i1}

(1− µ(1)
i )

(where wi1 is some adversarial worker)

≤
∏

i∈Mh(j)

µ
(1)
i · µ

(1)
wi1
· γ(1) ·

∏
i∈Ma(j)\{i1}

(1− µ(1)
i )

(
since 1− γ(1) ≤ µ(1)

wi1
because wi1 is adversarial; see discussion before Case 1

)
<

∏
i∈Mh(j)

(1− µ(1)
i ) · µ(1)

wi1
· γ(1) ·

∏
i∈Ma(j)\{i1}

µ
(1)
i

(from Case 1 above)

= a
(1)
j · γ

(1)

Consequently, in both cases, the posterior probability γ
(1)
j > 0.5 given that the true

label was yj = −1. A symmetric argument shows that γ
(1)
j < 0.5 if yj = +1. Then, the

above sequence of claims establishes that this remains true for all iterations in the future.
Finally, step (5) implies that the output label is incorrect for all tasks.
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A.5 Proof of Theorem 14

We prove the result for the the case when there exists at least one subset T ′ ⊆ T such
that PreIm(T ′) ≤ k. Otherwise, the lower bound L = 0 by definition and the result of the
theorem is trivially true.

Let H∗ denote the set PreIm(T ∗) where

T ∗ def
= arg max
T ′⊆T : |PreIm(T ′)|≤k

∣∣T ′∣∣ .
We construct an adversary strategy σ∗ under which at least L tasks are affected for

some true labeling of the tasks, for any decision rule R ∈ C. Specifically for a fixed honest
worker-task assignment graph BH and ground-truth labeling y of the tasks, consider the
following adversary strategy (that depends on the obtained honest worker responses): letting
H∗ =

{
h1, h2, . . . , h|H∗|

}
and the set of adversaries A = {a1, a2, . . . , ak}, we have (recall the

notation in Section 2)

ai(t) =

{
−hi(t) if t ∈ T ∗

hi(t) otherwise
∀i = 1, 2, . . . , |H∗| (6)

In other words, the adversaries label flip the labels of the honest workers H∗ for tasks in T ∗
and copy their responses for all other tasks. Note that since |H∗| ≤ k by construction, the
above strategy is feasible. In addition, if |H∗| < k, then we only use |H∗| of the k adversary
identities. Let L(y) denote the n×m labeling matrix obtained for this adversary strategy,
where we explicitly denote the dependence on the true label vector y. Here n denotes the
total number of workers.

Now consider the scenario in which the true labels of all tasks in T ∗ were reversed, let
this ground-truth be denoted as ỹ. Let h̃(t) denote the response of honest worker h for task
t in the new scenario. Since, honest workers always respond correctly, we have that:

h̃(t) =

{
−h(t) if t ∈ T ∗

h(t) otherwise
∀ h ∈ H (7)

Correspondingly, according to the adversary labeling strategy σ∗ described above, the ad-
versary responses would also change. In particular, using ãi(t) to denote the adversary
response in the new scenario, we have

ãi(t) =

{
−h̃i(t) if t ∈ T ∗

h̃i(t) otherwise
∀i = 1, 2, . . . , |H∗| (8)

Finally, let L(ỹ) denote the labeling matrix in this new scenario. We now argue that
L(ỹ) = PL(y) for some n × n permutation matrix P . In order to see this, for any worker
w (honest or adversary), let r(w) and r̃(w) respectively denote the row vectors in matrices
L(y) and L(ỹ). We show that L(ỹ) can be obtained from L(y) through a permutation of
the rows.

First observe that for any honest worker h /∈ H∗, we must have by definition of PreIm
that h(t) = 0 for any t ∈ T ∗. Thus, it follows from equation (7) that h̃(t) = −h(t) = 0 = h(t)
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for any t ∈ T ∗. Furthermore, h̃(t) = h(t) for any t /∈ T ∗ by (7). Therefore, we have that
r̃(h) = r(h) for any h /∈ H∗. Next, consider an honest worker hi ∈ H∗ for some i. It can
be argued that r̃(hi) = r(ai). To see this, for any task t /∈ T ∗, we have by equation (7)
that h̃i(t) = hi(t) = ai(t), where the second equality follows from equation (6). Similarly,
for any t ∈ T ∗, we have h̃i(t) = −hi(t) = ai(t) again using equation (6). Thus, we have
shown that the rows r̃(hi) = r(ai) for any 1 ≤ i ≤ |H∗|. A symmetric argument shows that
r̃(ai) = r(hi) for all 1 ≤ i ≤ |H∗|. Consequently, L(ỹ) is obtained from L(y) by swapping
rows corresponding to hi with ai for all i = 1, 2, . . . , |H∗|.

Now that we have shown L(ỹ) = PL(y) for some permutation matrix P , it follows
from the fact that R ∈ C that R (L(ỹ)) = R (L(y)). Thus, the labels output by R for all
tasks in T ∗ is the same under both scenarios. As a result, it follows that Aff(R, σ∗,y) +
Aff(R, σ∗, ỹ) = |T ∗| = 2 ∗ L and therefore, either Aff(R, σ∗,y) ≥ L or Aff(R, σ∗, ỹ) ≥ L.

In other words, there exists a ground-truth task labeling for which the number of affected
tasks is at least L, and since we take a maximum over all possible ground-truth labelings,
the result of the theorem follows. Further, any decision rule that outputs labels randomly
in case of ties (i.e equal number of +1 and −1 responses) will achieve the lower bound L,
including the simple majority decision rule.

Misclassification of workers. Since we allow the sophisticated adversaries to adopt
arbitrary strategies, we need to assume some characteristic property that helps to identify
honest workers. In the theorem we assumed that all honest workers are perfectly reliable, so
that they agree with each other on their labels for all tasks. Given this, any ML algorithm
that is trying to separate honest workers from the sophisticated adversaries will output two
groups of workers, say W1,W2 such that W1∪W2 = H∪A and W1∩W2 = φ. Further, let us
suppose that the algorithm has knowledge of k—the number of sophisticated adversaries,
so that the output satisfies |W1| = n − k and |W2| = k where |H ∪A| = n. We call an
output (W1,W2) valid if all workers in W1 agree with each other on their labels for all tasks.
Note that the “true” output W1 = H and W2 = A is valid. We argue that for the above
adversary strategy, the output W1 = (H \H∗) ∪A and W2 = H∗ is also valid, where H∗ is
as defined in the proof above.

To see this, note that the algorithm can identify the set T ∗ of tasks for which there are
conflicts, i.e. both +1 and −1 labels, and partition the set of workers labeling these tasks
into two groups where workers in each group agree on their label for all tasks. Now, one of
these groups consists of adversarial workers A and the other honest workers, corresponding
to the set H∗ above. The remaining workers correspond to the set H \ H∗. Now, if we
consider the output W1 = (H \H∗)∪A, any two workers in W1 indeed agree with each other
on their labels for all tasks. This is because, by the definition of PreIm, workers in H \H∗
only label tasks in the set T \ T ∗. Further, since adversaries agree with honest workers H∗

on these tasks (refer to the strategy above) and honest workers are perfectly reliable, this
means that adversaries A and honest workers H \ H∗ also agree with each other on their
labels for all tasks in T \ T ∗. Consequently, we have that the output ((H \H∗) ∪A,H∗) is
also valid. Further note that this is the only other valid output, since honest workers H∗

and adversaries A do not agree with each other on their labels for tasks in T ∗ and therefore,
cannot be placed together in the set W1.
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Finally, since the ML algorithm does not have any other information, it cannot distin-
guish between the two valid outputs described above, so that a random guess will misclassify
2k workers with probability (1/2).

A.5.1 Proof of Corollary 16

We first prove that 2L ≥ bkr c. Consider T ′ ⊆ T such that |T ′| = bkr c, note that we can
always choose such a T ′ since k < |H| ≤ r · |T | =⇒ k/r < |T |. Since BH is r-right regular,
the pre-image of T ′ in BH satisfies |PreIm(T ′)| ≤ r|T ′| = rbkr c ≤ k. In other words, any

subset of tasks of size bkr c has a pre-image of size at most k. By the definition of L, we have

that 2L ≥ bkr c.
For the upper-bound, consider any T ′ ⊂ T such that |T ′| = e where e := d kαe+ 1. Since

e < γ|T |, by the expander property we have that |PreIm(T ′)| ≥ α|T ′| = α·e ≥ α·( kα+1) >
k. This means that any subset T ′ of size at least e has a pre-image of size strictly greater
than k, since the size of the pre-image can only increase with the addition of more tasks.
Therefore, this implies that 2L ≤ d kαe.

For the second part of the corollary, refer to Theorem 4.4 in Chapter 4 of Vadhan et al.
(2012).

A.6 Proof of Theorem 17

Before we can prove the theorem, we need the following definitions and lemmas.

Definition 20 A bipartite graph G = (V1, V2, E) is termed degenerate if the following
condition is satisfied:

|V1| > |V2|

Definition 21 A bipartite graph G = (V1, V2, E) is termed growth if the following condi-
tion is satisfied:

∀ V ⊆ V1, |V | ≤ |Img(V )|

where Img(V ) = {v2 ∈ V2 | ∃v ∈ V s.t. (v, v2) ∈ E}, i.e. the set of neighboring nodes of V .

Lemma 22 Any bipartite graph can be decomposed into degenerate and growth sub-graphs
where there are cross-edges only between the left nodes of the growth component and the
right nodes of the degenerate component.

Proof Let G = (V1, V2, E) be a given bipartite graph. Define V ∗ to be the largest sub-
set of V1 such that |V ∗| > |ImgG(V ∗)| where ImgG denotes the image in the graph G. If
no such V ∗ exists then the graph is already growth and we are done. If V ∗ = V1 then
the graph is degenerate and again we are done. Else, we claim that the sub-graph J of
G restricted to V1 \ V ∗ on the left and V2 \ ImgG(V ∗) on the right is growth. Suppose
not, then there exists a subset V ′ of nodes on the left such that |V ′| > |ImgJ(V ′)| where
ImgJ(V ′) ⊆ V2 \ ImgG(V ∗) denotes the image of V ′ in the sub-graph J . But then, we can
add V ′ to V ∗ to get a larger degenerate sub-graph in G which contradicts our choice of
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V ∗. To see this, consider the set V ∗ ∪ V ′ on the left and ImgG(V ∗) ∪ ImgJ(V ′) on the
right. We have |V ∗∪V ′| = |V ∗|+ |V ′| > |ImgG(V ∗)|+ |ImgJ(V ′)| = |ImgG(V ∗∪V ′)|. Also,
note that the only cross-edges are between V1\V ∗ and ImgG(V ∗). The claim then follows.

Lemma 23 Let G = (V1, V2, E) be a bipartite graph and suppose that M is any semi-
matching on G. Further, let J = (V1, V

′
2 , E

′) be the subgraph of G restricted to only the
nodes V ′2 ⊆ V2 on the right. Starting with M ′ ⊆M , we can use algorithm ASM2 in Harvey
et al. (2003) to obtain an optimal semi-matching N for the subgraph J . Let the nodes
in V1 be indexed such that degM (1) ≥ degM (2) ≥ . . . ≥ degM (|V1|) and indexed again
such that degN (1) ≥ degN (2) ≥ . . . ≥ degN (|V1|). Then for any 1 ≤ s ≤ |V1|, we have∑s

i=1 degN (i) ≤
∑s

i=1 degM (i), i.e. the sum of the top s-degrees can only decrease as we go
from M to N .

Proof Note that if we restrict M to just the nodes V ′2 , we get a feasible semi-matching
M ′ on the subgraph J . Algorithm ASM2 proceeds by the iterated removal of cost-reducing
paths. Note that when a cost-reducing path is removed, load is transferred from a node
with larger degree (in the current semi-matching) to a node with strictly smaller degree. To

see this, let P = (v
(1)
1 , v

(1)
2 , v

(2)
1 , . . . , v

(d)
1 ) be a cost-reducing path (see section 2.1 in Harvey

et al. (2003)) in some semi-matching M̄ on J . This means that degM̄ (v
(1)
1 ) > degM̄ (v

(d)
1 )+1.

When we eliminate the cost-reducing path P , the degree of v
(1)
1 decreases by 1 and that of

v
(d)
1 increases by 1, but still the new degree of v

(d)
1 is strictly lower than the old degree of

v
(1)
1 . In other words, if dbef

1 ≥ dbef
2 ≥ . . . ≥ dbef

|V1| and daft
1 ≥ daft

2 ≥ . . . ≥ daft
|V1| be the degree

sequence (in the current semi-matching) before and after the removal of a cost-reducing
path, then

∑s
i=1 d

aft
i ≤

∑s
i=1 d

bef
i for any 1 ≤ s ≤ |V1|. Since this invariant is satisfied after

every iteration of algorithm ASM2, it holds at the beginning and the end, and we have

s∑
i=1

degN (i) ≤
s∑
i=1

degM ′(i) (9)

Finally, observe that when we restrict M to only the set V ′2 , the sum of the top s-degrees
can only decrease, i.e.

s∑
i=1

degM ′(i) ≤
s∑
i=1

degM (i) (10)

Combining equations (9) and (10), the result follows.

Lemma 24 Let G = (V1, V2, E) be a bipartite graph and suppose that M is any semi-
matching on G. Further, let J = (V1∪· V3, V2, E

′) be the supergraph of G obtained by adding
nodes V3 on the left and edges E′ \ E to G. Starting with M , we can use algorithm ASM2

in Harvey et al. (2003) to obtain an optimal semi-matching N for the supergraph J . Let the
nodes in V1 be indexed such that degM (1) ≥ degM (2) ≥ . . . ≥ degM (|V1|) and the nodes in
V1 ∪· V3 indexed again such that degN (1) ≥ degN (2) ≥ . . . ≥ degN (|V1 ∪· V3|). Then for any
1 ≤ s ≤ |V1 ∪· V3|, we have

∑s
i=1 degN (i) ≤

∑s
i=1 degM (i), i.e. the sum of the top s-degrees

can only decrease as we go from M to N .
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Proof Note that M is a feasible semi-matching for the graph J , with all nodes in V3

having degree 0. We can repeat the argument from the previous lemma to show that if
dbef

1 ≥ dbef
2 ≥ . . . ≥ dbef

|V1∪· V3| and daft
1 ≥ daft

2 ≥ . . . ≥ daft
|V1∪· V3| be the degree sequence (in

the current semi-matching) before and after the removal of any cost-reducing path, then∑s
i=1 d

aft
i ≤

∑s
i=1 d

bef
i for any 1 ≤ s ≤ |V1 ∪· V3|. The result then follows.

Notation for the proofs. Let T + denote the set {t+ : t ∈ T }, and similarly T − denote
the set {t− : t ∈ T }, these are “task copies”. Now partition the set of task copies T + ∪ T −
as E ∪· F such that for any task t, if the true label is +1, we put t+ in E and t− in F ,
otherwise, we put t− in E and t+ in F . Thus, E contains task copies with true labels while
F contains task copies with incorrect labels. Let F ′ ⊆ F denote the set of tasks for which
honest workers provide incorrect responses, and denote the optimal semi-matching on the
graph BcsH byMH . Without loss of generality, suppose that honest workers are indexed such
that d1 ≥ d2 ≥ · · · ≥ d|H| where dh denotes the degree of honest worker h in semi-matching
MH .

Part 1. Adversary strategy that affects at least 1
2

∑k−1
i=1 di tasks

If ε = 0, there are no conflicts in the responses provided by honest workers, and therefore
the bipartite graph BcsH contains just “true” task copies E on the right.

Given this, the adversaries target honest workers {1, 2, . . . , k − 1}: for each i, adversary
ai labels opposite to worker hi (i.e. provides the incorrect response) on every task that hi is
mapped to in the semi-matchingMH . Furthermore, the adversary uses its last identity ak to
provide the incorrect response on every task t ∈ T for which one of the first k−1 adversaries
have not already labeled on. We argue that under the penalty-based aggregation algorithm,
this adversary strategy results in incorrect labels for at least 1

2

∑k−1
i=1 di tasks. To see this,

first note that the conflict set Tcs = T . Further, the bipartite graph Bcs decomposes into
two disjoint subgraphs: bipartite graph Bcs(E) between H and E and semi-matching M(F )
between A and F that represents the adversary labeling strategy (it is a semi-matching
because there is exactly one adversary that labels each task). Since the bipartite graph
Bcs decomposes into two disjoint bipartite graphs, computing the optimal semi-matching
on Bcs is equivalent to separately computing optimal semi-matchings on Bcs(E) and MF .
The argument above says that Bcs(E) is nothing but the graph BcsH defined in the theorem
statement and thereforeMH is the optimal semi-matching on Bcs(E). Given that M(F ) is
already a semi-matching by construction, the optimal semi-matching on Bcs is the disjoint
union of MH and M(F ). It is easy to see that in the resultant semi-matching, honest
worker hi and adversary ai have the same degrees for i = 1, 2, . . . , k − 1. Hence, for every
task mapped to honest worker hi for i = 1, 2, . . . , k − 1 in the optimal semi-matching, the
algorithm outputs a random label, and therefore outputs the correct label for at most half
of these tasks. Thus, the above adversary strategy results in incorrect labels for at least
1
2

∑k−1
i=1 di tasks.

Part 2. Upper Bound on number of affected tasks

To simplify the exposition, we assume in the arguments below that the optimal semi-
matching in the hard penalty algorithm is computed for the entire task set and not just
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the conflict set Tcs. However, the bounds provided still hold as a result of lemma 23 above.
Consequently, we abuse notation and use Bcs to denote the following bipartite graph in
the remainder of the discussion: each worker w is represented by a node on the left, each
task t is represented by at most two nodes on the right – t+ and t− – and we add an edge
(w, t+) if worker w labels task t as +1 and edge (w, t−) if w labels t as −1. Then, it is
easy to see that the subgraph of Bcs restricted to just the honest workers H on the left
and task copies E ∪ F ′ on the right, is nothing but the graph BcsH defined in the theorem
statement. Consequently, MH is a feasible semi-matching for the subgraph Bcs(E ∪ F ′),
which is obtained by restricting Bcs to nodes E ∪ F ′ on the right. Further, we can assume
that the adversary labeling strategy is always a semi-matching, i.e. there is at most one
adversary response for any task. If the adversary labeling strategy is not a semi-matching,
they can replace it with an alternate strategy where they only label for tasks to which
they will be mapped in the optimal semi-matching (the adversaries can compute this since
they have knowledge of the honest workers’ responses). The optimal semi-matching doesn’t
change (otherwise it contradicts the optimality of the original semi-matching) and hence
neither does the number of affected tasks.

We first state the following important lemma:

Lemma 25 For any adversary labeling strategy, let Bcs(E ∪ F ′) denote the bipartite graph
Bcs restricted to all the workers W = H ∪A on the left and, “true” task copies E as well as
subset F ′ of the “incorrect” task copies F on the right. LetM be the optimal semi-matching
on the bipartite graph Bcs and M(E ∪ F ′) ⊂M be the semi-matching M restricted to only
the task copies E ∪ F ′. Then, M(E ∪ F ′) is an optimal semi-matching for the sub-graph
Bcs(E ∪ F ′).

Proof First observe that if F ′ = F , then the statement is trivially true. So we can assume
F ′ ⊂ F . Suppose the statement is not true and let N (E ∪ F ′) denote the optimal semi-
matching on Bcs(E∪F ′). We use dw(K) to denote the degree of worker w in a semi-matching
K. Note that, da(N (E ∪ F ′)) ≤ da(M(E ∪ F ′)) ≤ da(M) for all adversaries a ∈ A, where
the first inequality follows from the fact that the adversary strategy is a semi-matching
and the second inequality is true because M(E ∪ F ′) ⊂ M. The adversaries who do not
provide any responses for the task copies E ∪ F ′ will have degrees 0 in the semi-matchings
N (E ∪ F ′) and M(E ∪ F ′) but the inequality is still satisfied. Now, since N (E ∪ F ′) is an
optimal semi-matching and M(E ∪ F ′) is not, we have that

cost(N (E ∪ F ′)) < cost(M(E ∪ F ′))⇒∑
h∈H

d2
h(N (E ∪ F ′)) +

∑
a∈A

d2
a(N (E ∪ F ′)) <

∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

d2
a(M(E ∪ F ′))

Now, consider the semi-matchingN on Bcs where we start with the semi-matchingN (E∪F ′)
and then map the remaining task copies in Bcs (which belong to the set F \ F ′) to the
adversaries which they were assigned to inM. We claim that cost(N ) < cost(M) which is
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a contradiction since M was assumed to be an optimal semi-matching on Bcs. To see this:

cost(M)− cost(N )

=
∑
h∈H

d2
h(M) +

∑
a∈A

d2
a(M)−

(∑
h∈H

d2
h(N ) +

∑
a∈A

d2
a(N )

)
=
∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

(
da(M(E ∪ F ′)) + ∆a

)2
−
(∑
h∈H

d2
h(N (E ∪ F ′)) +

∑
a∈A

(
da(N (E ∪ F ′)) + ∆a

)2)
(

where ∆a
def
= da(M)− da(M(E ∪ F ′)) ≥ 0

)
=

(∑
h∈H

d2
h(M(E ∪ F ′)) +

∑
a∈A

d2
a(M(E ∪ F ′))−

∑
h∈H

d2
h(N (E ∪ F ′))−

∑
a∈A

d2
a(N (E ∪ F ′))

)
+ 2

∑
a∈A

(
da(M(E ∪ F ′))− da(N (E ∪ F ′))

)
∗∆a > 0(

since da(M(E ∪ F ′)) ≥ da(N (E ∪ F ′)) as stated above
)

Therefore, M(E ∪ F ′) is an optimal semi-matching for the sub-graph Bcs(E ∪ F ′).

Part 2a. Adversaries only provide incorrect responses or one adversary
provides correct responses

Adversaries only provide incorrect responses. Let us begin with the case when all
adversaries only provide incorrect responses.

Lemma 26 Suppose that ε = 0 and adversaries only provide incorrect responses. Let M be
an arbitrary semi-matching on the bipartite graph Bcs and suppose that this semi-matching
is used in the penalty-based aggregation Algorithm to compute the true labels of the
tasks. Further, let b1 ≥ b2 ≥ · · · ≥ b|H| denote the degrees of the honest workers in this
semi-matching where bi is the degree of honest worker hi. Then, the number of affected

tasks is at most
k∑
i=1

bi.

Proof It follows from the assumption that ε = 0 and that adversaries only provide incor-
rect responses, that there are no cross-edges between nodes H and F as well as A and E in
the bipartite graph Bcs. Thus, for any adversary labeling strategy, we can decompose Bcs
into disjoint bipartite graphs Bcs(E) and Bcs(F ), where Bcs(E) is the subgraph consisting
of honest workers H and task copies E and Bcs(F ) is the subgraph between the adversaries
A and the task copies F . This further means that the semi-matching M is a disjoint union
of semi-matchings on Bcs(E) and Bcs(F ). Let the semi-matchings on the subgraphs be
termed as M(E) and M(F ) respectively. Further, let Taff ⊆ T denote the set of tasks that
are affected under this strategy of the adversaries and when the semi-matching M is used
to compute the penalties of the workers in the penalty-based aggregation algorithm.
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We claim that |Taff | ≤
∑k

i=1 bi. To see this, for each adversary a ∈ A, let H(a) ⊂ H denote
the set of honest workers who have “lost” to a i.e., for each worker h ∈ H(a) there exists
some task t ∈ Tcs such that h is mapped to the true copy of t in M(E), a is mapped to the
incorrect copy of t in M(F ), and the degree of h in M(E) is greater than or equal to the
degree of a in M(F ). Of course, H(a) may be empty. Let Ā denote the set of adversaries
{a ∈ A : H(a) 6= ∅} and let H̄ denote the set of honest workers

⋃
a∈ĀH(a). Now define a

bipartite graph between the nodes Ā and H̄ with an edge between a ∈ Ā and h ∈ H̄ if
and only if h ∈ H(a). This bipartite graph can be decomposed into degenerate and growth
subgraphs by lemma 22 above. In the growth subgraph, by Hall’s condition, we can find
a perfect matching from adversaries to honest workers. Let (A1, H1) with A1 ⊆ Ā and
H1 = Img(A1) be the degenerate component. The number of tasks that adversaries in A1

affect is bounded above by
∑

h∈Img(A1) bh. Similarly, for A2 = Ā \ A1, we can match each
adversary to a distinct honest worker whose degree in M(E) is greater than or equal to
the degree of the adversary in M(F ). We can bound the number of affected tasks caused
due to the adversaries in A2 by the sum of their degrees, which in turn is bounded above
by the sum of the degrees of honest workers that the adversaries are matched to. Let H2

denote the set of honest workers matched to adversaries in the perfect matching. Thus, we
have upper bounded the number of affected tasks by

∑
h∈H1∪H2

bh. It is easy to see that

|H1 ∪H2| ≤ k. Therefore,
∑

h∈H1∪H2
bh ≤

∑k
i=1 bi. Therefore, the number of affected tasks

|Taff | is at most
∑k

i=1 bi.

We now extend the above lemma to the case when ε 6= 0.

Lemma 27 Suppose that adversaries only provide incorrect responses. Let M be an arbi-
trary semi-matching on the bipartite graph Bcs and suppose that this semi-matching is used
in the penalty-based aggregation Algorithm to compute the true labels of the tasks.
Further, let b1 ≥ b2 ≥ · · · ≥ b|H| denote the degrees of the honest workers in this semi-
matching where bi is the degree of honest worker hi. Then, the number of affected tasks is

at most
k+ε·|H|∑
i=1

bi.

Proof Since honest workers can make mistakes, there are cross-edges between H and F
in the bipartite graph Bcs. Observe that there are two kinds of affected tasks in this case:
(1) tasks that adversaries “win” against honest workers, say Taff(A), similar to those in the
previous lemma and (2) tasks that are affected when 2 honest workers are compared in the
final step of the penalty-based aggregation algorithm, say Taff(H). We can repeat the
argument from lemma 26 above to bound |Taff(A)| by the sum of the degrees of (some) k
honest workers, say Hk, in semi-matching M . Further, we can bound |Taff(H)| by the sum
of the degrees of honest workers who make mistakes, in the semi-matching M . By assump-
tion, there are at most ε · |H| such workers. Now if any of these workers belong to Hk, then
we have already accounted for their degree. Consequently, we have that |Taff(H)|+ |Taff(A)|
is upper bounded by the sum of the degrees of the top k + ε · |H| honest workers in the
semi-matching M , which establishes the result.
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Since the above lemmas are true for any choice of semi-matching M , they hold in
particular for the optimal semi-matching on Bcs. Therefore, it gives us an upper bound on
the number of affected tasks when the adversaries only provide incorrect responses.

One adversary provides correct responses. Next consider the case when there is
exactly 1 adversary that provides correct responses and all other adversaries only provide
incorrect responses. LetM be the optimal semi-matching on the bipartite graph Bcs result-
ing from such an adversary strategy and let ā denote the adversary who provides correct
responses. Observe that we can repeat the argument from lemma 27 above to get an upper
bound on the number of affected tasks that the adversaries “win” against honest workers as
well as those that honest workers who make mistakes “win” against other honest workers.
Let T1 be the collection of such tasks. In the proof of lemma 26, there are two possible
scenarios: either we obtain a perfect matching between the k adversaries and some k honest
workers in which case we have accounted for all of the affected tasks that come from adver-
saries winning (against honest workers or ā). In the other scenario, when the degenerate
component is non-empty, we have at most k− 1 honest workers on the right and we bound
the number of tasks that adversaries “win” by the sum of the degrees of these honest work-
ers. Note however that we may be missing out on some of the affected tasks, namely those
that the adversary ā “loses” against other adversaries (the losses against honest workers
who make mistakes are already accounted for). The tasks that we might be missing out on
correspond exactly to the task copies in E that the adversary ā is mapped to in the optimal
semi-matching M.

Next observe that in both scenarios above—all adversaries provide incorrect responses
and exactly one adversary provides correct responses—we can upper bound the total number
of affected tasks by the sum of the degrees of some k+ ε · |H| workers in the optimal semi-
matching M restricted to just the task copies E ∪ F ′ on the right (since honest workers
provide responses only on these tasks), which we denote as M(E ∪ F ′). Lemma 25 tells us
thatM(E∪F ′) is, in fact, the optimal semi-matching on the subgraph Bcs(E∪F ′) between
workers W and the task copies E ∪ F ′. In addition, lemma 24 tells us that this sum is at

most
k+ε·|H|∑
i=1

di (by starting with MH as a feasible semi-matching) and the bound follows.

Part 2b. Adversaries can provide arbitrary responses

Consider the general case when all adversaries can provide arbitrary responses. First recall
that lemma 27 was applicable to any semi-matching and in fact, we can use the argument
even when adversaries provide correct responses. Formally, consider an arbitrary adversary
strategy resulting in an optimal semi-matchingM on Bcs. LetM(E ∪F ′) denote the semi-
matching M restricted to just the task copies E ∪F ′. Suppose that the set of affected tasks
Taff under this adversary strategy is such that Taff = Taff(A1) ∪ Taff(H) ∪ Taff(A2) where
Taff(A1) are the tasks that the adversaries “win” against honest workers, Taff(H) are the
tasks that honest workers who make mistakes “win” (against other honest workers and/or
adversaries) and Taff(A2) are the tasks that are affected when 2 adversaries are compared
against each other in the final step of the penalty-based aggregation algorithm. We
can then utilize the argument in lemma 27 to bound |Taff(H)| + |Taff(A1)| by the sum of
the degrees of (some) k + ε · |H| honest workers in the optimal semi-matching M (the
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tasks affected when honest workers who make mistakes win against adversaries are also
accounted). Further, we can bound |Taff(A2)| by the sum of the degrees of the adversaries
in the semi-matching M(E), which is the semi-matching M restricted to task copies E.

Let A(H) ⊆ A denote the adversaries that have non-zero degrees in semi-matching
M(E), i.e. they are mapped to some task copy in E in semi-matching M. The above
sequence of claims implies that we can bound the number of affected tasks |Taff | by the sum
of the degrees of the top s = k+ ε · |H|+ |A(H)| workers in the semi-matchingM(E ∪F ′),
which is M restricted to the task copies E ∪ F ′ (because honest workers, by assumption,
only provide responses on task copies E ∪F ′ and the semi-matchingM(E) ⊆M(E ∪F ′)).
Now, we claim that this itself is upper bounded by the sum of the degrees of the top s honest
workers in the optimal semi-matching MH on the bipartite graph BcsH . To see this, start
with MH as a feasible semi-matching from workers W to task copies E ∪ F ′ (recall that
it is feasible since we assume that each task has at least one correct response from honest
workers). Then, lemma 24 tells us that the sum of the degrees of the top s workers in the
optimal semi-matching on Bcs(E ∪F ′) is at most the sum of the degrees of the top s honest
workers inMH . Further, lemma 25 tells us that the optimal semi-matching on the subgraph
Bcs(E ∪ F ′) is precisely the semi-matching M(E ∪ F ′). This shows that we can bound the
number of affected tasks by

∑s
i=1 di. Finally, note that |A(H)| ≤ k ⇒ s ≤ 2k + ε · |H| and

hence, we can bound the total number of affected tasks by
∑2k+ε·|H|

i=1 di.

A.7 Uniqueness of degree-sequence in optimal semi-matchings

In the arguments above, we have implicitly assumed some sort of uniqueness for the optimal
semi-matching on any bipartite graph. Clearly its possible to have multiple optimal semi-
matchings for a given bipartite graph. However, we prove below that the degree sequence
of the vertices is unique across all optimal semi-matchings and hence our bounds still hold
without ambiguity.

Lemma 28 Let M and M ′ be two optimal semi-matchings on a bipartite graph G =
(V1, V2, E) with |V1| = n and let d1 ≥ d2 · · · ≥ dn and d′1 ≥ d′2 ≥ · · · d′n be the degree
sequence for the V1-vertices in M and M ′ respectively. Then, di = d′i ∀ 1 ≤ i ≤ n, or in
other words, any two optimal semi-matchings have the same degree sequence.

Proof Let s be the smallest index such that ds 6= d′s, note that we must have s < n since
we have that

∑n
j=1 d

′
j =

∑n
j=1 dj . This means that we have dj = d′j ∀j < s. Without loss

of generality, assume that d′s > ds. Now, ∃q ∈ N such that d′qs > dqs +
∑n

j=s+1 d
q
j and since

dj = d′j ∀j < s, we have that
∑n

j=1 d
′q
j ≥

∑l
j=1 d

′q
j >

∑n
j=1 d

q
j . But, this is a contradiction

since an optimal semi-matching minimizes the Lp norm of the degree-vector of V1-vertices
for any p ≥ 1 (Section 3.4 in Harvey et al. (2003)). Hence, we have that di = d′i ∀i.

A.8 Relation between Lower bound L and Optimal semi-matching degrees

We prove here the relationship between the lower bound L in theorem 14 and the honest
worker degrees d1, d2, . . . , d|H| in the optimal semi-matching on the bipartite graph BcsH .
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Lemma 29 Suppose that honest workers are perfectly reliable and let d1 > d2 > · · · > d|H|
denote the degrees of the honest workers in the optimal semi-matching MH on BcsH . Then

the lower bound L in theorem 14 is such that L ≥
∑k−1

i=1 di.

Proof Let T1, T2, . . . , Tk−1 denote the set of tasks that are mapped to honest workers
h1, h2, . . . , hk−1 inMH and T :=

⋃k−1
j=1 Tj . Now, we claim that for any t ∈ T , the only honest

workers that provide responses for t are amongst h1, h2, . . . , hk. In other words, PreIm(T ) ⊆
{h1, h2, . . . , hk}. Suppose not, so that there exists hi ∈ PreIm(T ) such that i > k. This
would contradict the fact that MH is an optimal semi-matching. Specifically, Theorem
3.1 in Harvey et al. (2003) shows that a semi-matching M is optimal if and only if there
is no cost-reducing path relative to M . A cost-reducing path P = (h(1), t(1), h(2), . . . h(d))
for a semi-matching M on BcsH is an alternating sequence of honest workers and tasks
such that t(x) is mapped to h(x) in the semi-matching M for all 1 ≤ x ≤ d − 1 and
degM (h(1)) > degM (h(d)) + 1. Here degM () denotes the degree of a node in the semi-
matching M (see section 2.1 in Harvey et al. (2003) for a precise definition). Since i > k,
we have that ds > di+ 1 for all s ∈ {1, 2, . . . , k − 1}, which introduces a cost-reducing path.
Therefore, we have that PreIm(T ) ⊆ {h1, h2, . . . , hk}. Now

|T | = |
k−1⋃
j=1

Tj | =
k−1∑
j=1

|Tj | =
k−1∑
j=1

dj

where we have used the property of a semi-matching that a given task is mapped to only
one worker. Using the definition of the lower bound L, it follows that L ≥ |T | =

∑k−1
i=1 di.

Appendix B. Experimental Details

In this section we describe the details of our experimental setup discussed in section 5. We
start with the benchmark algorithms.

EM algorithm. We consider the EM algorithm proposed by Raykar and Yu (2012).
The worker model they consider is as follows: for each worker wi, her accuracy is modeled
separately for positive and negative tasks (referred to as the “two-coin” model). For a task
tj with true label +1, the sensitivity (true positive rate) for worker wi is defined as:

αi := Pr[wi(tj) = +1
∣∣∣ yj = +1]

Similarly, the specificity (1- false positive rate) is defined as:

βi := Pr[wi(tj) = −1
∣∣∣ yj = −1]

Let Θ = [
{

(αi, βi)
∣∣∣ i ∈ [n]

}
, γ] denote the set of all parameters. For ease of exposition,

we assume that the worker-task assignment graph is complete, i.e. all workers provide
responses for all items, but the algorithm can be immediately extended to the case of
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incomplete graphs. Given the response matrix L, the log-likelihood of the parameters Θ
can be written as:

logPr[L
∣∣∣Θ] =

m∑
j=1

log

(
n∏

i=1

αi
1[Lij=+1] · (1− αi)

1[Lij=−1] · γ +

n∏
i=1

(1− βi)1[Lij=+1] · βi1[Lij=−1] · (1− γ)

)

The MLE of the parameters can be computed by introducing the latent true label of
each task, denoted by the vector y = [y1, y2, . . . , ym]. The complete data log-likelihood can
then be written as:

logPr[L,y
∣∣∣Θ] =

m∑
j=1

(
yj log(ajγ) + (1− yj) log(1− γ)bj

)
(11)

where

aj =
n∏
i=1

αi
1[Lij=+1] · (1− αi)1[Lij=−1]

bj =
n∏
i=1

(1− βi)1[Lij=+1] · βi1[Lij=−1]

Each iteration of the EM algorithm consists of two steps:

• E-step: Given the response matrix L and the current estimate of the model parame-
ters Θ(k), the conditional expectation of the complete data log-likelihood is computed
as

E
{

log Pr[L,y
∣∣∣Θ(k)]

}
=

m∑
j=1

(
γ

(k)
j log(a

(k)
j γ(k)) + (1− γ(k)

j ) log(1− γ(k))b
(k)
j

)

where the expectation is w.r.t to Pr[y
∣∣∣L; Θ(k)] and γ

(k)
j = Pr[yj = +1

∣∣∣L; Θ(k)].

Using Bayes theorem, we can compute

γ
(k)
j ∝ Pr[L1j ,L2j , . . . ,Lnj

∣∣∣ yj = +1; Θ(k)]·Pr[yj = +1
∣∣∣Θ(k)] =

a
(k)
j γ(k)

a
(k)
j γ(k) + b

(k)
j (1− γ(k))

• M-step: Based on the current posterior estimates of the true labels γ
(k)
j and the re-

sponse matrix L, the model parameters are updated by maximizing E
{

log Pr[L,y
∣∣∣Θ(k)]

}
,

which can be shown to be a lower bound on the data log-likelihood (eq 11). The preva-
lence of positive tasks γ is updated as:

γ(k+1) =

∑m
j=1 γ

(k)
j

m
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Similarly, the parameters αi, βi are updated as:

α
(k+1)
i =

∑m
j=1 1[Lij = +1]γ

(k)
j∑m

j=1 γ
(k)
j

β
(k+1)
i =

∑m
j=1 1[Lij = −1](1− γ(k)

j )∑m
j=1(1− γ(k)

j )

These two steps are iterated until convergence of the log-likelihood Pr[L
∣∣∣Θ]. To

initialize the EM algorithm, we use the majority estimate γ
(0)
j =

∑n
i=1 1[Lij=+1]

n .

We implement the above algorithm in our experiments. Note that the model we consider
in the theoretical analysis is the simpler “one-coin” model where every worker is charac-
terized by only a single parameter µi - the probability that she labels an assigned task
correctly. The EM algorithm for that case can be derived in a similar manner to the one
described above; see the proof of Lemma 13 above.

KOS algorithms. We implemented the iterative algorithm presented in Karger et al.
(2014) which we replicate below in our notation.

Algorithm 4 kos algorithm

1: Input: L,B = (W, T , E), kmax.

2: For all (wi, tj) ∈ E, initialize m
(0)
i→j with random Zij ∼ N (1, 1)

3: For k = 1, 2, . . . , kmax,

• For all (wi, tj) ∈ E, update m
(k)
j→i =

∑
i′ 6=i Lijm

(k−1)
i→j

• For all (wi, tj) ∈ E, update m
(k)
i→j =

∑
j′ 6=j Lijm

(k)
j→i

4: For all tj , compute mj =
∑n

i=1 Lijm
(kmax−1)
i→j

5: Output: label for task tj as ŷj = sign(mj)

This algorithm was proposed for random regular graphs in the paper and we modified
it in the following way for use in non-regular graphs:

Algorithm 5 kos(norm) algorithm

1: Input: L,B = (W, T , E), kmax.

2: For all (wi, tj) ∈ E, initialize m
(0)
i→j with random Zij ∼ N (1, 1)

3: For k = 1, 2, . . . , kmax,

• For all (wi, tj) ∈ E, update m
(k)
j→i = 1

degB(tj)

∑
i′ 6=i Lijm

(k−1)
i→j

• For all (wi, tj) ∈ E, update m
(k)
i→j = 1

degB(wi)

∑
j′ 6=j Lijm

(k)
j→i

4: For all tj , compute mj =
∑n

i=1 Lijm
(kmax−1)
i→j

5: Output: label for task tj as ŷj = sign(mj)
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We chose kmax = 100 in our experiments.
Simulation Details. Here we discuss how we imposed the degree bias on adversaries

in our simulation study. Given a worker-task assignment graph, let dw denote the degree
of worker w and dmin, davg, dmax denote resp. the minimum, average and maximum worker
degrees.

• Adversaries have high degrees. For each worker w, define qw = q · dmax−dw
dmax−davg . Then,

each worker w is an adversary with probability 1− qw. First, note that the expected
number of honest workers is given by∑

w

qw =
q

dmax − davg

∑
w

(dmax − dw) = q · n

Next, we can see that workers with higher degrees have a smaller qw, which implies
that they have a greater chance of being an adversary. In an analogous manner, we
deal with the case of low degrees.

• Adversaries have low degrees. For each worker w, define qw = q · dw−dmin
davg−dmin

. Then, each
worker w is an adversary with probability 1− qw. Again, we have that the expected
number of honest workers is given by∑

w

qw =
q

davg − dmin

∑
w

(dw − dmin) = q · n

In this case, lower the degree dw, higher the chance (1− qw) that a worker is chosen
as an adversary.
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