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Abstract

Inference methods are often formulated as variational approximations: these approxima-
tions allow easy evaluation of statistics by marginalization or linear response, but these
estimates can be inconsistent. We show that by introducing constraints on covariance, one
can ensure consistency of linear response with the variational parameters, and in so doing
inference of marginal probability distributions is improved. For the Bethe approximation
and its generalizations, improvements are achieved with simple choices of the constraints.
The approximations are presented as variational frameworks; iterative procedures related
to message passing are provided for finding the minima.

Keywords: variational inference, graphical models, message passing algorithms, statisti-
cal physics, linear response

1. Introduction

Given a probability distribution p(x), estimation of marginal probability distributions such
as p(xi) and p(xi;xj) is one of the most important inference tasks addressed in graphi-
cal models, alongside estimation of the maximum probability state and the log partition
function (see Wainwright and Jordan, 2008; Mezard and Montanari, 2009; MacKay, 2004).
The challenge is addressed in many research fields by a variety of methods. In Boltz-
mann machine learning and probabilistic independent component analysis the expectation-
maximization algorithm requires such estimates (see Wainwright and Jordan, 2008; Miskin
and MacKay, 2000). In heuristic optimization, a branch and bound search (or decimation
procedure) over a high dimensional space can be made more efficient, by branching on xi
(or some small set of variables) in an informed manner using approximate probabilities (see
Montanari et al., 2007). In channel coding we wish to determine the likely state of a bit sent
over a noisy channel, which can be inferred with a measure of certainty from the marginal
probability (see Richardson and Urbanke, 2008). In statistical physics, marginal probability
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distributions provide insight into phase transitions and thermodynamic phases (see Parisi,
1987).

Approximation of marginal probability distributions (called marginals henceforth) with
high accuracy is NP-hard even in the case of Ising spins (binary variables) with pairwise
interactions (see Dagum and Luby, 1993; Long and Servedio, 2010), but in practice, many
schemes might be applied successfully. Approximate inference of marginal distributions is
often performed by Markov chain Monte Carlo (MCMC) procedures (see Andrieu et al.,
2003). These methods are a workhorse of inference, but have some disadvantages: the esti-
mates are achieved with an accuracy that decays only slowly with time resources (exploiting
the central limit theorem), the result is stochastic, and takes a non-parametric form. For
these reasons variational approximations are often preferred, the price being a (difficult
to quantify) bias in the approximations (see Wainwright and Jordan, 2008; Mezard and
Montanari, 2009; MacKay, 2004).

In a basic variational approximation an intractable probability distribution p(x) is ap-
proximated by a tractable one q(x), the parameters of q are determined by minimizing
the Kullback Leibler (KL) divergence DKL[p||q]. The challenge of marginalization is thus
replaced by two linked challenges: appropriate construction of q, and minimization of a
KL-divergence. An example of a tractable distribution is a factorized one: q(x) =

∏
i q(xi),

which leads to a mean-field variational approximation; KL-divergence could then typically
be minimized by an iteration of fixed point equations (see Wainwright and Jordan, 2008;
Mezard and Montanari, 2009). It is common for the estimates obtained by variational ap-
proximations to be over-confident, the uncertainty in some variables is reduced since the
structure of the approximation q discounts some sources of variance.

A given variational framework may be minimized by several algorithms, and it is in-
teresting that many famous heuristic algorithms developed independently of variational
frameworks have been shown to be particular solutions to variational approximations. Most
notably loopy belief propagation has been shown to be one method to solve the Bethe
variational approximation, and expectation propagation was shown to be one method to
solve the expectation consistent variational approximation. This connection to variational
frameworks has allowed interesting insight into algorithm construction, proofs of solution
existence and convergence (see Yedidia et al., 2005; Wainwright and Jordan, 2008; Yuille,
2002).

We have so far identified one mechanism by which to estimate marginals: we can di-
rectly marginalize our approximation q(x), which is tractable by construction. These same
estimates (when not extremal) can be found as first derivatives of the variational function
(in the above description, the KL-divergence), as we later show. Second order derivatives
of the KL-divergence are also possible and can give covariance estimates. These covariance
estimates are called linear responses, since they measure the response of some expectation
(the first derivative estimate) to an infinitesimal linear perturbation (the second derivative).
Linear response and marginalization estimates are tractable for variational approximations;
and for some statistics, we can use either method to obtain an estimate for the same quan-
tity.
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Variational Methods and Linear Response

We will consider variational approximations applied to a model of N discrete variables
xi defined by probability 1

p(x) =
1

Z

M∏
a=1

ψa(xa) , (1)

where ψa are the potentials (also called factors) and are non-negative functions of the
variables indexed by subset a, xa = {xi : i ∈ a}, Z is the partition function. Probabilities of
this kind can be represented as a factor graph (see Wainwright and Jordan, 2008; Mezard
and Montanari, 2009), as shown in Figure 1. Our aim is to demonstrate a mechanism
whereby existing variational schemes can be leveraged for improved inference of marginals.

This paper considers a new self-consistent approximation to improve variational meth-
ods, with an emphasis on the Bethe approximation and its generalizations (called region-
based, or cluster-variational, approximations). We propose the addition of constraints re-
quiring the consistency of estimates obtained via direct marginalization and linear response.
We minimize the variational function subject to an agreement of these estimates and show
that the resulting unique estimate is an improvement on the two estimates that are obtained
without the constraints.

1.1 Literature Review

The linear response has been leveraged to improve estimates of marginals in a variety of
problems, the idea originating in statistical physics (see Parisi, 1987; Opper and Winther,
2003; Welling and Teh, 2004).

Physics approaches often aim to improve understanding of phase transitions for problem
classes in the limit of a large number of variables (see Parisi, 1987), rather than in develop-
ment of algorithmic approaches to solve particular finite instances. An early application of
linear response was the self-consistent Ornstein-Zernike approximation (SCOZA), proposed
by Høye and Stell (1977), which was later applied by Dickman and Stell (1996) to simple
graphical models. The SCOZA has been applied to disordered models where marginals
are not homogeneous, for example to the random field Ising model in Kierlik, Rosinberg,
and Tarjus (1999), but in the service of estimating globally averaged and disorder averages
quantities, and never in such a way as to understand particular single variable or pairwise
marginals, which is the question we address.

Opper and Winther (2001) proposed the adaptive-TAP approach as an extension of
the standard Thouless-Anderson-Palmer mean-field method; in the original formulation of
this method, a self-consistency relation between the linear response and magnetizations of
a mean-field approximation were reconciled to arrive at a more advanced mean-field the-
ory. Opper and Winther (2005) and Winther and Opper (2005) later reinterpreted this
method as a special case of expectation consistent approximate inference, that made a con-
nection between moment-matching algorithms such as expectation propagation and vari-
ational frameworks, as well as expanding the range of applications. Expansions of the
expectation consistent approximation to mitigate for errors on higher order cumulants have

1. For brevity in expressions we will use the notation x both for a random variable and its realization,
relying on context for the distinction.
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shown promise in Opper, Paquet, and Winther (2013) and Paquet, Winther, and Opper
(2009), but at this point come with few theoretical guarantees.

In the context of machine learning, other related approaches for improving mean-field
estimation have been successfully demonstrated in Kappen and Rodriguez (1998) and Gior-
dano, Broderick, and Jordan (2015). Mean-field variational Bayes is an important ap-
plication of variational approximations, but the absence of an accurate understanding of
covariance in the model parameters had been a weakness. Recently it was shown by Gior-
dano, Broderick, and Jordan (2015) that linear response could be used to more accurately
estimate these quantities.

The Bethe variational approximation is also an important approximation in the context
of sparse graphical models, for which loopy belief propagation (LBP) is the most famous
algorithm. Linear response has also been used to improve this approximation, examples in-
clude Montanari and Rizzo (2005) and Mooij, Wemmenhove, Kappen, and Rizzo (2007). A
large part of this development has been through loop-correction algorithms since the failure
of the approximation is known to be related to loops in the graphical model representation.
There also exist elegant loop correction methods not relying on the linear response: libDAI
is a code repository that has collected some of the methods together (see Mooij, 2010), we
developed our methods based on this library, in particular, the implementation of Heskes,
Albers, and Kappen (2003). An expansion about the loop free approximation was developed
by Chertkov and Chernyak (2006), but is cumbersome when many loops are present.

Several papers related to an extension of the Bethe approximation were published
by Yasuda and Tanaka (2013), Raymond and Ricci-Tersenghi (2013b),Raymond and Ricci-
Tersenghi (2013a) and Yasuda (2013). The idea was very similar to that of adaptive-TAP, to
minimize the variational function subject to the constraint of statistical consistency. When
applied to the mean-field approximation it was realized these methods were equivalent to
adaptive-TAP, but in the context of Bethe and region-based free energies improved perfor-
mance was identified. In Raymond and Ricci-Tersenghi (2013b) and Huang and Kabashima
(2013) linear response frameworks were also leveraged in the reverse direction to solve the
inverse-Ising problem (inferring parameters from statistics).

These variational frameworks were applied initially to Bethe and mean-field approxima-
tions on pairwise binary state models, in Yasuda (2013) an extension to general discrete
states was provided, whereas Raymond and Ricci-Tersenghi (2013b) applied the technique to
region-based variational frameworks and a broader range of constraint types. In this paper,
we consider generic discrete alphabets, region-based free energies (inclusive of the Bethe ap-
proximation) and both single-variable and pairwise variable consistency constraints. Build-
ing on a belief propagation approach we derive tools for minimizing constrained variational
free energies.

1.2 Outline

In Section 2, we define a set of variational approximations and motivate the inclusion of addi-
tional constraints. In Section 3, we describe methods to minimize the free energy subject to
these constraints. In Section 4, we compare the performance of constrained approximations
against exact results on some standard models, demonstrating a significant advantage in
many cases. In Section 5, we discuss our findings in the context of all experimental results
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Figure 1: The constrained variational approximations we present can be applied to models
with multi-variable interactions, as represented by factor graphs. Two examples are shown.
Top: the alarm network is a well-known toy example of a Bayesian net, here represented
as a factor graph. Squares denote factors ψa(xa), which act over subsets of variables xa,
each variable represented by a circle. Bottom: N = 10 variables interacting according to a
random cubic graph is represented, each coupling (J) is represented by a factor with two
connections, each field (h) by a singly connected factor.

and other insights gained, before concluding in Section 6. Appendices include exact ex-
pressions for the fully connected ferromagnet example, pseudocode and algorithmic details,
proofs of convergence for some methods, discussion of solution existence and convergence,
and how to select constraints for inclusion.

2. Constrained Variational Approximations

Variational free energy approximations are powerful tools for approximate inference (see
Yedidia et al., 2005; Opper and Winther, 2005; Wainwright and Jordan, 2008; Mezard and
Montanari, 2009). We introduce in this section the mean-field, Bethe, and region-based
(also called Kikuchi) approximations. A set of simplified expressions appropriate to the
Bethe approximation for an Ising model is given alongside the general expressions. We first
introduce a generalization of the probability over the N variables x, introducing auxiliary
parameters ν,

pν(x) =
1

Z(ν)

M∏
a=1

ψa(xa)

N∏
i=1

[∏
y

exp (νi,yδxi,y)

]
. (2)

This coincides with (1) in the limit ν → 0. The product on y is over all possible states
of xi. For our method to apply the probability needs to be differentiable with respect to
the parameters ν, though modifications allow for the more general case2. The choice of
statistics {δxi,y} simplifies our presentation, but more generally we might consider a set of
single variable functions {φy(xi)}, this is discussed in Appendix B.2.

A Boltzmann machine will be presented as a running example. The model3 has Ising
spin variables x ∈ {−1, 1}N , fields h and pairwise couplings J . A connected graphical model
will be assumed for notational simplicity, so each variable has connectivity ki ≥ 1, and a
unique connected component exists. If an edge set E = {(i, j)} specifies the interacting

2. Special care should be taken in cases where ψa(xa) = 0 for some xa, in such cases it may not be
meaningful to perturb by ν. Furthermore, we note that ν are a redundant set of parameters since
variation of

∑
y νi,y leaves the probability unchanged.

3. For binary variables, we will use Ising spins s = ±1 in place of binary states b ∈ {0, 1}. The transforma-
tion s = 1− 2b allows conversion between these two conventions.
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variables, then

pν(x) =
1

Z(ν)

∏
(i,j)∈E

exp(Jijxixj)
∏
i

exp[(hi + νi)xi] , (3)

where we use a non-redundant set of auxiliary parameters νi = νi,1 − νi,−1.
In a variational approximation a trial probability distribution q(x) is related to the

log-partition function of the full model, derived from the Kullback-Leibler divergence

DKL[q||pν ] =
∑
x

q(x)

log q(x)−
∑
i,y

νi,yδxi,y −
∑
a

logψa(xa)

+ logZ(ν) . (4)

The variational free energy (VFE) is defined

Fν(q) = DKL[q||pν ]− logZ(ν) , (5)

which is the tractable part of (4). The optimal variational parameters q∗ are those mini-
mizing (5).

In the simplest mean-field approximation a factorized variational form is considered
q(x) =

∏N
i=1 qi(xi). The parameters {qi} are precisely marginal distributions on single

variables. Iterative methods are often successful in minimizing the VFE.

In another class of approximations the entropy term in the VFE, −
∑

x q(x) log q(x), is
decomposed as a truncated sum of marginal entropies. In the Bethe approximation a redun-
dant set of marginal probability distributions {qa(xa); qi(xi)}4 are introduced in one-to-one
correspondence with the model factors and variables, and the entropy is approximated as

−
∑
x

q(x) log q(x) ≈ −
∑
a

∑
xa

qa(xa) log qa(xa)−
∑
i

(1− ki)
∑
xi

qi(xi) log qi(xi) , (6)

with ki equal to the variable connectivity (the number of factors in which variable i partici-
pates). The reason this approximation may improve upon mean-field is that through qa(xa)
some correlations amongst variables may be explicitely represented, which are absent in
the factorial form of mean-field. The variational parameters, qa and qi, are referred to as
beliefs.

The Bethe approximation is a special case of the more general region-based approxima-
tion (see Yedidia et al., 2005), where the entropy approximation is implied by a choice of
outer regions. Each outer region is defined by a set of variables xα, and a generalized factor
ψα(xα) that describes the interactions between those variables. The outer regions must
be chosen to span all variables, and the factors (as well as auxiliary parameters ν) can be
distributed amongst the generalized factors such that

∏
α ψα(x) ∝ pν(x). Some examples

of region selections discussed in this paper are shown in Figure 2.

The entropy approximation is implied by the choice of outer regions: it is the sum of
the entropy on the outer regions α corrected by a weighted sum of entropies on region

4. qA(xA) denotes a variational parameter, that can be interpreted as an approximation to the marginal
probability p(xA).
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(d)

(c)

Square lattice Kikuchi

(b)(a)

Generic Bethe Region−basedPairwise Bethe

Figure 2: In a region-based approximation (Bethe is a special case), the assignment of
outer regions determines the entropy approximation. Sensible choices collect nearby sets
of strongly dependent variables. A region graph has outer regions (blue) and intersection
regions (red), such that every factor is associated to exactly one outer region; the set of
factors in a region α define an auxiliary interaction (8). Selection (a) is a Bethe approx-
imation, the outer regions are pairs of variables, that intersect on single variables. (b)
Alternatively, for a square lattice, we might consider outer regions of 4 variables (the cen-
tral interaction could be assigned to either the right or left region), that intersect on pairs
of variables, which in turn intersect on single variables. This approximation is powerful for
square lattice models (see Raymond and Ricci-Tersenghi, 2013b; Domı́nguez et al., 2011;
Lage-Castellanos et al., 2013). (c) The Bethe approximation on a factor graph with mixed
(multi-variable) interaction types has outer regions containing exactly one factor and its
variables, the intersections are single variables. (d) On a locally tree-like graph, we can also
make an interesting approximation: outer regions are stars that intersect on edge regions.
This approximation relates to the loop-correction algorithm of Montanari and Rizzo (2005).

intersections (β). The region based free energy is defined

Fν(q) =
∑
α

∑
xα

qα(xα) log

(
qα(xα)

ψα(xα)

)
+
∑
β

cβ
∑
xβ

qβ(xβ) log qβ(xβ) , (7)

where cβ take integer values according to a simple rule (see Yedidia et al., 2005; Heskes
et al., 2003). Larger regions are capable of capturing more correlations between variables
explicitely, but at a computational cost that scales (in the absence of further approxima-
tions) exponentially with region size. This trade-off determines the choice of regions.

In the Bethe approximation, the outer regions (α) are in one-to-one correspondence
with the factors (a) of the model, and intersection regions are single variables. In our
running example of the Boltzmann machine (3), a Bethe approximation has edges as regions.
Generalized factors can be chosen as

ψ(i,j)(xi, xj) = exp

(
Jijxixj +

hi + νi
ki

+
hj + νj
kj

)
. (8)

We can define marginal variational parameters for each marginal probability in the free
energy and then minimize (7) subject to local consistency constraints∑

xα

qα(xα) = 1 ; ∀α , (9)∑
xα\xβ

qα(xα) = qβ(xβ) ; ∀α,∀β ⊂ α . (10)
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Minimization of this free energy is a well-studied problem. Heuristic approaches normally
lead to message passing algorithms, which are often convergent to good solutions even where
guarantees of convergence are lacking. It is always possible to find minima of the region
based free energy using a convex-concave procedure, which is guaranteed to converge to a
local minima (see Yuille, 2002; Heskes et al., 2003).

Having found a minimum of the free energy at q = q∗, we can define the linear response
in the beliefs to a perturbation in νi,y, as

q∗α,(i,y)(xα) =
∂qα(xα)

∂νi,y

∣∣∣∣
q=q∗

.

Whereas the variational parameters q have an interpretation away from the fixed point, the
linear response is only defined about a global (or heuristically, local) minima. Notation ∗

will be used to denote an evaluation at such a fixed point.
The entropy approximations (6-7) can be interpreted as truncated series (see Pelizzola,

2005; Wainwright and Jordan, 2008), that can be made good either by considering suffi-
ciently large regions (those defining a junction tree, see Wainwright and Jordan, 2008), or
including loop corrections (see Chertkov and Chernyak, 2006). The made-good approaches
are not tractable in many interesting models of modest scale. The region based methods
most often lead to improvements over mean-field, but entropy expansion can also lead to
counterintuitive features. For example, the entropy estimate can be negative under such an
approximation.

2.1 Inconsistency of Covariance Approximations

The covariance of a pair of statistics φ1 and φ2, under probability distribution p is defined
as

Vp(φ1, φ2) = Ep(φ1φ2)− Ep(φ1)Ep(φ2) ,

with Ep(φ) =
∑
x

p(x)φ(x) .

For the case φ1(xα) = δxi1 ,y1 and φ2(xα) = δxi2 ,y2 , we can replace the probability of interest
p by qα to obtain

Vp(δxi1 ,y1 , δxi2 ,y2) ≈ C(i1,y1),(i2,y2) := Vqα [δxi1 ,y1 , δxi2 ,y2 ] .

C will be called the marginal approximation to the covariance, and is a function of the
variational parameter qα. The optimal value C∗ = C(q∗) is independent of the region α,
owing to the consistency constraints (9)-(10).

Alternatively, we can begin with a second derivative identity. By introducing parameters
ν conjugate to each statistics (2), we have

Vp(δxi1 ,y1 , δxi2 ,y2) =
∂2 logZ(ν)

∂νi1,y1∂νi2,y2
.

We obtain a tractable approximation replacing logZ(ν) by −Fν(q∗)

Vp(δxi1 ,y1 , δxi2 ,y2) ≈ χ(i1,y1),(i2,y2) :=
∑
xα

q∗α,(i1,y1)(xα)δxi2 ,y2 , (11)
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for any α containing i2, which is called the linear response estimate. χ will be called the
linear response approximation to the covariance, it is defined only at the minima q∗, and
is a symmetric matrix. We do not need to make explicit reference to the region α used in
Eq. (11) since the linear response χ does not depend on that choice.

The name ‘linear response’ for the quantity χ comes from the fact it can be interpreted
as

χ(i1,y1),(i2,y2) ≈
∂Ep[δxi1 ,y1 ]

∂νi2,y2

∣∣∣∣
ν=0

=
∂Ep[δxi2 ,y2 ]

∂νi1,y1

∣∣∣∣
ν=0

, (12)

that is the linear variation of the mean value of a single variable statistic to a small pertur-
bation in the the parameter ν conjugated to another single variable statistic.

We denote the difference of these estimates for two statistics on variables (i1, i2) con-
tained in region α as

∆(i1,y1),(i2,y2),α(qα, q
∗
α,(i1,y1)

) = C(i1,y1),(i2,y2) − χ(i1,y1),(i2,y2) . (13)

Except for some simple models C∗ − χ is non-zero, exposing an inconsistency in the varia-
tional method. The best marginal approximation does not match the best linear response
estimate. To decide which estimate to use, either connected correlations or linear responses,
we might consider the distance of these two different estimates from the correct value:

∆
(1)
(i1,y1),(i2,y2)

= C∗(i1,y1),(i2,y2) − Vp
(
δxi1 ,y1 , δxi2 ,y2

)
, (14)

∆
(2)
(i1,y1),(i2,y2)

= χ(i1,y1),(i2,y2) − Vp
(
δxi1 ,y1 , δxi2 ,y2

)
. (15)

Graphical models in which the Bethe approximation is most successful have relatively weak
correlations and/or few short loops. In these cases it is known that the linear response
estimate (15) improves significantly upon (14) for i1 6= i2 (see Welling and Teh, 2004;
Raymond and Ricci-Tersenghi, 2013a). However, as the approximation breaks down (due
to poor approximations of loops in the graphical model), the response estimate can be
much worse, even giving infinite values for bounded statistics. For pairs with i1 = i2 (called
diagonal), bounds can be violated even in regimes where the approximation is good. A
simple example is the model of Section 4.1 with zero field (h = 0): whilst it is true that
Vp(xi, xi) ≤ 1 for any model, χi,i > 1 for in the weakly coupled (high temperature) regime.

2.2 Covariance Constraints

We would like to use the linear response information, in a safe manner to select the best
covariance estimate, but also to make the approximation self-consistent. Rather than
simply minimizing the free energy to determine q∗, we do this in the subspace where
{∆(i1,y1),(i2,y2),α = 0} for a subset of the covariances.

An important question will be which covariances to constrain. Expansion methods indi-
cate that adding all constraints is best when the approximation is very good (see Raymond
and Ricci-Tersenghi, 2013a). More generally we wish to add important constraints in so
far as it does not prevent solution existence and allows algorithmic stability as discussed in
Appendices B.1-B.3.

Although general expressions are derived, experimental sections in this paper are re-
stricted principally to the Bethe approximation, and with simple patterns of constraints
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discussed in Appendix B.2. The Bethe approximation with the addition of all possible con-
straints (called on and off diagonal5) is considered, as well as the Bethe approximation with
addition of only constraints for which i1 = i2 (diagonal). In Section 4.1 we also present re-
sults for the mean-field approximation with all possible constraints (since i1 = i2 in all cases,
this is also called diagonal), as well as the Bethe approximation including only constraints
for which i1 6= i2 (off-diagonal). In other experiments, we do not present these latter two
regimes since they performed consistently worse except in some narrow parameter ranges
where all regimes were performing poorly.

2.3 Bethe Approximation to the Boltzmann Machine

In the case of our running example of the Boltzmann machine (3) we are considering a
variation of νi = νi,1 − νi,−1, accordingly we can abbreviate notation everywhere (i, y) to i.
In the diagonal constraint approximations, we will require consistency of V(xi, xi) ∀ i. In
the on and off diagonal constrained approximations, we require in addition consistency of
V(xi, xj) for all coupled pairs of variables.

The quantities made consistent are written more concisely as

Vp(xi, xj) ≈ Ci,j := Vq(ij)(xi, xj) ,

Vp(xi, xj) ≈ χi,j :=
∑
xi,xj

q∗(ij),i(xi, xj)xj .

When evaluated at minima of the free energy, both the approximation by marginalization
C∗, and approximation by linear response χ, are symmetric.

3. Minimizing with Respect to the Constraints

We choose a Lagrangian formulation for minimizing the constrained free energy, introducing
a Lagrange multiplier for each constraint connecting a linear response approximation to
a marginalization approximation. Each statistic pair constraint will be associated with
some unique outer region α, as this allows for a cavity heuristic that we later introduce.
This association is not unique and may affect (to a limited extent) the convergence of
the algorithms we will develop, but not the fixed points that might be achieved. This is
discussed further in Appendix B.3. The set of constraints associated to region α are denoted
ωα = {[(i1, y1), (i2, y2)]} with an associated set of Lagrange multipliers λα = {λ(i1,y1),(i2,y2)}.
The constrained minimization is then achieved by minimizing the Lagrangian

Fν(q, λ, χ) = Fν(q)+
∑
α

 ∑
[(i1,y1),(i2,y2)]∈ωα

λ(i1,y1),(i2,y2)∆α,(i1,y1),(i2,y2)(qα, q
∗
α,(i1,y1)

)

 , (16)

with Lagrange multipliers set to meet the constraints. The global minima q∗ for fixed λ can
often be found. In cases where local minima can be avoided this is done either heuristically
following a constrained loopy belief propagation (CLBP) approach, or in a more robust
manner using a provably convergent method, as discussed in Appendix B. CLBP has the
same (asymptotic) computational complexity as belief propagation, and is procedurally
similar.

5. This terminology arises by considering which elements of the covariance matrix are constrained.
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Compute the minima q*

of the free energy F(q,

Compute Lagrange multipliers

by solving {C*  =  } on outer regionsχ
λCompute the linear responses χ

λ,χ)

Figure 3: The basic scheme for minimizing our constrained variational free energy. The
first stage is solved by a procedure closely related to belief propagation (that minimizes a
convex-concave function), the second by a procedure related to susceptibility propagation
(that solves a system of linear equations), and the final stage by a cavity approximation.
In our experiments, we take λ = 0 as the initial condition. In the experiments presented
we gradually increase or decrease T using the solution at T ± δT as an initial condition for
the next experiment, this enables a solution to evolve continuously from a well-understood
limit, but is not necessary for convergence in general.

It is shown in Appendix B.6 that given such a fixed point, whether a local or global mini-
mum, it is subsequently relatively easy to calculate the linear response. The method we pro-
pose is procedurally similar to susceptibility propagation, originally introduced in Mezard
and Mora (2008), which is a computational procedure that minimizes the variational pa-
rameters. If the number of constraints is linear in the size of the system the computational
complexity is quadratic in system size. We call the linear response scheme constrained loopy
susceptibility propagation (CLSP). Yasuda and Tanaka (2013) proposed a closely related
approach, specific to the case of diagonal constraints in the Bethe approximation.

Suppose we also have a method for iteratively determining λ, then we can approach the
problem of finding a constrained local minima by a 3-stage iterative procedure (the same
as proposed in Yasuda and Tanaka (2013)), and shown schematically in Figure 3. We also
experimented with other minimization schemes, but found this to be algorithmically the
most stable, and also pleasing in that we move all uncertainty in convergence of the method
onto the two questions: (1) does there exist a fixed point at all and (2) does the iterative
scheme for λ converge. These two questions are unfortunately very difficult to answer in
general. To determine λ a heuristic cavity method is proposed in Section 3.1.

We found that in weakly correlated regimes the CLBP and CLSP, and iterative updating
of λ quickly converges. However, in some other regimes where the variational approximation
is less accurate, we found that the effect of non-zero λ could be either a help or a hindrance
to the convergence of the CLBP. We also found that λ would sometimes not converge, even
with strong damping (implementation of damping is discussed in Appendix C). Associated
with regimes of non-convergence, we normally find a divergence of some λ values as discussed
in the experimental section. This indicates that failure of the method is most likely related
to non-existence (or criticality) of constrained solutions, the issue of solution existence is
discussed in Appendix B.1.
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3.0.1 Bethe Approximation to the Boltzmann Machine

For the on-and-off diagonal constrained case, the Lagrangian for the Boltzmann machine
can be written in the form6.

Fν(q,λ, χ) =
∑

(i,j)∈E

∑
xi,xj

qij(xi, xj) log qij(xi, xj) +
∑
i

(1− ki)
∑
xi

qi(xi) log qi(xi)

+
1

2

∑
i

λi,i
[
(1−M2

i )− χi,i
]

+
∑

(i,j)∈E

λ(i,j)

∑
xi,xj

qij(xi, xj)xixj −MiMj − χi,j

 , (17)

introducing abbreviations for single variable magnetization Mi :=
∑

xi
qi(xi)xi. We recover

the diagonal constraint regime when λi,j = 0 ∀i, j, and the unconstrained regime when
all multipliers are zero. Constraints introduce quadratic functions of q, but terms are neither
convex nor concave.

For given λ, a set of message passing equations can be written as a generalization of
loopy belief propagation, a simplification of the general case in Appendix B.5 is presented
here. At time t the edge-belief is approximated as the solution to the equation

qtij(xi, xj) ∝ µti→(i,j)(xi)µ
t
j→(i,j)(xj)

exp
[
(Jij − λij)xixj + (hi + λijM

t
ij,j + λiM

t
ij,i)xi + (hj + λijM

t
ij,i + λjM

t
ij,j)xj

]
,

where we introduce two auxiliary magnetization parameters per edge7

M t
ij,i =

∑
xixj

xiq
t
ij(xi, xj) . (18)

Then we can define messages8 µ which are determined iteratively as

µt(i,j)→i(xi) ∝
∑
xj

µtj→(i,j)(xj)

exp
[
(Jij − λij)xixj + (hj + λjM

t
ij,j + λijM

t
ij,i)xj + λijM

t
ij,jxi

]
,

µt+1
i→(i,j)(xi) =

∏
k∈∂i\j

µt(i,k)→i(xi) , (19)

where ∂i are the variables interacting with i. Following message updates qt and M t must
be made consistent, in the examples of this paper (and in general for small λ) this can be
achieved simply by iterating Equations (18) and (19). For the experiments messages and
beliefs are initialized as constants.

There are several methods by which linear response can be established. One standard
approach is susceptibility propagation, which simply involves linearizing the above equations
accounting for a small perturbation in some component of ν, this is the approach taken for
the examples of this paper; for the general case, expressions are provided in Appendix B.6.

6. To maintain consistency with published research on Ising spin models a factor 1/2 precedes the diagonal
constraint term.

7. Note that at intermediate stages of the message passing, magnetizations for variable i on different beliefs
(say Mij,i, Mik,i) may not agree, but will agree after convergence.

8. These differ by a simple transformation from the messages of the Appendix B.5, so that the limiting case
(λ = 0) agrees with standard presentations for Ising models in the literature.
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λ α

Inward responses

(to perturbations of

variables in alpha).

Inward messages

a

i

j

Region α

Figure 4: Given C∗ and χ, determination of λ breaks into a set of independent problems on
outer regions α. This can be understood as a cavity approximation. Assuming the incom-
ing messages, and responses, to be fixed and approximately independent of the Lagrange
multipliers to be set (λα), we can independently, on each region, solve the system of equa-
tions ∆α = 0 for λα. A similar assumption often justifies message passing and mean-field
iterative heuristics.

3.1 Determination of λ

To determine λ we propose the following scheme. We wish to solve at each α a set of non-
linear equations {∆α(qα, q

∗
α,(·)) = 0}, where qα and q∗α,(·) are functions of all λ (through the

system of message passing equations). One possibility is to linearize these equations about
the current estimate (that is apply Newton’s method), but this leads to an impractical
O(N3) procedure, dominating other algorithmic time-scales for moderately sized systems.

Instead, we resort to a locally consistent and parallelizable approximation: For some
λ we find a minimum defined by messages µ (Appendix B.5), and the linear response for
these messages (Appendix B.6). If λ is approximately correct then the messages passing
into the region α should be weakly dependent on any changes to λα in that region. Since
we can define ∆α in terms of the local parameters λα, and the incoming messages (which
we argue are unchanged by an update of λα) the problem for determining λ is reduced to
solving for λα independently on every region.

In this way, we arrive at a cavity-approximation style argument common in the moti-
vation of message passing algorithms, see Figure 4. However, it is noteworthy that unlike
LBP, incoming messages and responses depend on λα locally. There is a direct feedback
that exists even in the absence of loops.

Unfortunately, ∆α = 0 remains a (small) system of non-linear equations in λα, that does
not allow a closed form solution in general. One exception is when only diagonal constraints
are applied (see Yasuda, 2013; Yasuda and Tanaka, 2013), and the cavity argument is applied
to single-variable regions. More generally we use Newton’s method to solve these equations[

∂∆α(q∗, q∗(·))

∂λα

]−1
∆α

∣∣∣∣∣∣
λ=λt

δλt+1
α = −∆α(q∗, q∗(·))

∣∣∣
λ=λt

, (20)

where the dependence of q∗ and q∗(·) on λ follows from (??) and (28) with messages fixed.

An alternative expression based on a closed form for the covariance matrix approxima-
tion χ is discussed in Appendix C, alongside some other technical details on the determi-
nation of λ.
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4. Results

In this section, we study the performance of our method on well-understood toy model
frameworks. The scale and/or symmetries of these models mean they are exactly solvable,
allowing precise statistical estimates to evaluate the method quality.

In Section 4.1 we study a fully connected ferromagnetic model (that is a model with a
positive coupling between any pair of variables) with symmetry broken (that is with a non-
zero mean value for each variable). This is a simple model for which we can present analytic
results and understanding. There is either no mode (for weak coupling), or one dominating
mode (for strong couplings). We expect the method to be weakest for intermediate coupling
strength since the Bethe approximation becomes exact (with corrections O(1/N)) in the
limit of strong (a single mode) or weak (no modes) coupling. In Section 4.2 we study
a model with frustration (that is couplings have different signs and it is not possible to
find a configuration satisfying them all at the same time) and a random distribution of
optima and sub-optima. The problem is multi-modal in the limit of strong couplings and
the Bethe approximation breaks down. In Section 4.3 we consider a simple model with an
expanded discrete alphabet, where randomness is introduced through a random graphical
structure. Like the ferromagnetic example, a single mode dominates for strong couplings.
We anticipate the Bethe approximation to become exact in the limit of large problems, but
for smaller problems the presence of short loops leads to inaccuracy. In the final example of
Section 4.4 we consider a well-studied toy model involving both multi-variable interactions
and multi-states, both the Bethe approximation and linear response perform poorly on this
model. These examples cover a range of scenarios in which our method might be applied.
Special cases of the variational approximation we present have previously been applied to
lattice models commonly studied in statistical physics, and sparse prior models in Bayesian
image modeling (see Raymond and Ricci-Tersenghi, 2013b,a; Yasuda and Tanaka, 2013;
Yasuda, 2013).

We present behaviour of the Lagrange multipliers λ, the self-consistency error (13),
errors on the pair statistics when using either marginals (14) or linear responses (15), and
errors on the marginal estimates

∆
(0)
(i,y)(q

∗) = q∗(xi = y)− p(xi = y) .

The maximum absolute deviation (MAD) on the marginals is defined as the largest error
over all variables, or pairs of variables, depending on error type.

It is interesting to understand how the quality of approximation changes as a function
of the goodness of the approximation, to do this we introduce a temperature parameter T
in each model, that can sharpen or flatten the distribution.

pT (x) ∝ p(x)1/T .

We can minimize with relative ease both the constrained and unconstrained free ener-
gies in the large T regime, and expect approximations to be correct at leading order
in 1/T (see Raymond and Ricci-Tersenghi, 2013a). In some cases of small T , in which
the probability is well described by a single mode, concentrated about some unique value
xGS = argmax pT (x), the approximations we present are also exact up to O(T ) corrections.
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We find that in many of the models, minimization of the constrained free energy is slow
or impossible for T over some intermediate range, or below some threshold. To extend the
range of T for which solutions could be found, an annealing procedure is employed: begin-
ning at large (or small) T and proceeding through a sequence of models slowly changing
T , and using the solution to the previous model as the initial condition for the subsequent
minimization. Under this procedure, we find that λ(T ) and the variational parameters q
evolve smoothly, but that there appears still to be a limit in the accessible temperature
range. In the applications presented we did not find fixed points that appeared discontin-
uously. Solutions are reached by annealing from low temperature, from high temperature,
or are absent.

Our motivation for introducing T is threefold: to study the breakdown of the approx-
imation (absence of solutions), to mitigate for non-convergence, and to increase the speed
of convergence. The annealing procedure introduces additional computational costs. We
have not made timing comparisons against loopy belief propagation or other competitors,
for either the simple or annealed procedure. Instead, we have prioritized an exploration of
the nature of solutions that can be discovered, and we have sought very accurate estimates
to the parameters describing those solutions. Compromises in the accuracy of constraint
satisfaction, annealing rate (or absence of annealing), and damping can all have a significant
impact on the speed of the method.

4.1 The Fully Connected Ferromagnet

We begin with a simple but informative case, that of a fully connected ferromagnetic Ising
model in an external field.

pT (x) =
1

Z
exp

 1

2T

(
h+

N∑
i=1

xi

)2
 . (21)

Variables are Ising spins xi = ±1. The marginals for this model can be solved up to O(1/N)
by the mean-field approximation, and up toO(1/N2) by the Bethe approximation. Accuracy
is a function of temperature; when this is large or small compared to 1/N , the accuracy is
correspondingly high. Under our method the equations to be solved and associated errors
can be expressed concisely; this is done in Appendix A.

Three kinds of constraint are considered: diagonal {∆ii = 0, ∀ i}; off-diagonal {∆ij =
0, ∀i 6= j}; and on-and-off diagonal applying both sets. Results for both the mean-field
and Bethe approximations are presented. Only diagonal constraints can be applied in the
mean-field case since the variational parameters are consistent only with zero off-diagonal
covariances.

The left panel in Figure 5 shows the behavior of the magnetizations, E(xi) for the
case N = 10 and h = 1. The most accurate estimates are obtained with on and off-
diagonal constraints applied at the Bethe approximation at high and low temperature.
The unconstrained approximations overestimate the magnetization (bias in variables). The
addition of constraints corrects this bias: in one constrained regime (off-diagonal constraints
only) the suppression is clearly too strong at intermediate T , while in all other cases effective.
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Figure 5: Results for the fully connected model (21) with N = 10 and h = 1. Re-
sults are presented for the mean-field and Bethe approximation schemes, with and without
constraints. (left) The magnetization is overestimated in the Bethe and Mean-field approx-
imations, the effect of the constraints is to suppress the magnetization. Certain solutions
exist only in the high-temperature or low-temperature regimes, those solutions are demar-
cated by ’x’. One solution to the Bethe approximation with off-diagonal constraints only
suppresses the magnetization too strongly, there is another solution that is present only at
low temperature, where the estimate is more reasonable. Where it exists, the Bethe approx-
imation with on and off-diagonal constraints is the most accurate. (right) There are at most
two independent values for λ in this model: diagonal λ0 and off-diagonal λ1. The Lagrange
multipliers deviate most from zero at T ∼ 1/N (this is related to a ferromagnetic phase
transition). λ diverge rapidly in some solutions demarcating regions where no solutions can
be found.
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In some constrained approximations there is a smooth evolution of the optimal beliefs
with T , which reflects the behavior of the exact marginals. In others, the optimal beliefs
for different T are not continuously related.

When off-diagonal constraints are applied in the Bethe approximation, either alongside
or without diagonal constraints, we see a discontinuous emergence of the strongly magne-
tized solution. In the case of only off-diagonal constraints, there is a coexistence of two
fixed points for small T . This means that as we vary the parameter T the q∗ moves discon-
tinuously from a relatively smooth approximation to one characterized by a single mode.
As N increases the domain with coexistence shrinks, and all approximation approach the
correct result for large N .

With on and off-diagonal constraints we find a range of T for which no solutions can be
found by a continuous evolution of the low or high-temperature solutions. It seems highly
likely that no solution exists, and empirically we were not able to find fixed points (for any
model) that were not continuously related to either a high or low-temperature solution.

The behaviour of λ (see right panel in Figure 5) and indeed a careful examination of
the fixed points indicate why solutions disappear in this simple case. The values of the
Lagrange multipliers diverge, and this is related to marginals approaching their boundary
values where variational inference breaks down due to the inflexibility of the parameters.
By decreasing h or N we decrease the accuracy of the Bethe approximation at intermediate
T , this can lead to discontinuity also for the diagonal constrained solution, and reduces
the range of temperatures over which the low-temperature solution (the one with a large
magnetization) can be found for constrained problems.

4.2 The Wainwright-Jordan Set-up

A common toy model on spin variables xi = ±1 is the Wainwright-Jordan set-up where
N = L× L Ising spins are arranged on a square grid (see Opper et al., 2009).

pT (x) =
∏

(i,j)∈E

exp(Jijxixj/T )
∏
i

exp(hixi/T ) .

Fields hi are independent and identically distributed (iid) samples from [−0.25, 0.25] and
couplings Jij are sampled i.i.d on [−1, 1]. The Bethe approximation fails on these models
for smaller T owing to multi-modality of the distribution, but for larger T (where corre-
lations are weaker) the approximation is a significant improvement upon the mean-field
approximation.

Diagonal {∆i,i = 0, ∀ i}, or diagonal and off-diagonal {∆i,j = 0, ∀(i, j) ∈ E} constraint
regimes are studied for the Bethe approximation.

We considered 20 instances for L = 4 and L = 7, and plot the MAD results in Figures
6 and 7. Shown are the quartiles, for cases where methods did not converge we assigned
value +Inf to the MAD so that the quartile values are truncated in cases where the fraction
of non-convergent cases exceeded the quartile. For the smaller (L = 4) system, the Bethe
approximation succeeds for typical cases to full scale (T = 1) either without constraints or
with only diagonal constraints; the on-and-off diagonal scheme fails in a larger fraction of
cases. For the larger (L = 7) system, LBP and CLBP fail at full scale: the model which
prevails to lowest temperature is CLBP with diagonal constraints; the model failing soonest
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is CLBP with on and off-diagonal constraints. The exact range of T for which methods
were convergent was sensitive to the annealing procedure, the amount of damping used,
and the convergence criteria; strong damping and slow annealing broaden the range for all
methods.

Where the algorithm is convergent, there is significant improvement adding diagonal
constraints, and more so with on and off-diagonal constraints.We find the improvement in
the maximum deviation represents well the changes seen across the entire distribution of
marginals in most models, almost all marginals are improved. The quartiles in figures 6 and
7 reflect model to model variations, and demonstrate that the MAD advantage is robust.
For N = 16, we can compare the median behavior against that reported in Opper, Paquet,
and Winther (2009); where the strongest method (tree-EP) also improves the MAD result
for marginals by approximately one order of magnitude. Expansion methods offer some
further, but modest gains (see Paquet et al., 2009; Opper et al., 2013).

On-diagonal constraints allow an increased range (in T ) for convergence. Qualitatively,
we offer the following explanation. In the constrained regimes (in the high-temperature
regime, the only one for which we demonstrate solutions) the majority of Lagrange multipli-
ers are negative. The effect is to suppress biases and decrease susceptibility (the sensitivity
of biases to small changes in the parameters). We assume that reduced susceptibility also
correlates with reduced sensitivity to small fluctuations in the messages, which should aid
algorithmic stability. With on-and-off diagonal constraints the diagonal and off-diagonal
Lagrange multipliers are strongly dependent where they constrain the same variable. The
off-diagonal multipliers are typically negative, and suppressing biases; by contrast, the diag-
onal multipliers are positive and reinforce biases. The typical net effect is to reduce biases
and susceptibility, as with the on-diagonal case. However, the strongly correlated nature of
the parameters may be the source of convergence problems.

The failure of CLBP is most often due to non-convergence of λ, rather than a failure in
the CLBP or CLSP iterative algorithms (at fixed λ). Figure 8 indicates why the iterative
update is failing: some Lagrange multipliers are diverging in a strongly correlated manner
and it seems likely there is a critical value of T close to the failure point beyond which no
solutions exist, as found in Section 4.1.

The LBP implementation follows the same procedure as the constrained cases of Ap-
pendix B, with the difference that the innermost do-while loop is always convergent in one
iteration, and λ = 0. Using a double loop procedure we might force convergence to a
minimum of the Bethe approximation, but the convergence properties of LBP are still an
interesting point of comparison.

We might seek to extend the range of convergence for CLBP by clever modifications.
However, it seems that breakdown of convergence is closely related to breakdown of the
underlying (Bethe) approximation. Algorithmic innovations would not extend significantly
the range of problems for which the constrained approximation is useful in practice; just as
the availability of double loop methods has not revolutionized the use of the Bethe approx-
imation: where LBP fails the Bethe approximation is almost always a poor approximation.

For this type of problem a significant improvement to the Bethe approximation is made
in moving to a plaquette-based Kikuchi approximations for the case of regular lattices (see
Domı́nguez et al., 2011; Lage-Castellanos et al., 2013). Limited experiments on constrained
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Figure 6: L = 4 Wainwright-Jordan set-up: The error on the marginals, and connected cor-
relations (which together provide a sufficient description of pair probabilities) are improved
everywhere by adding constraints, as long as the method converges. As discussed, the MAD
for Cij is worse than for χij , although they are becoming comparable approaching T = 1.
On the right the median over 20 models is shown, on the left the median and quartiles. The
advantage is consistent across all models.

Kikuchi approximations also indicate a modest decrease in error on marginals with the
application of constraints.

4.3 Potts Model in an External Field

Next we consider random 3-regular graphs G = {V,E} of N = |V | variables, where each
variable is allowed 3 states: xi ∈ {0, 1, 2}. The problems are defined by the probability

p(x) ∝
∏

(ij)∈E

exp
(
Jijδxi,xj/T

)∏
i∈V

exp (4δxi,0/T ) ,

where couplings are i.i.d. random variables Jij ∈ {−1, 1}. An example of a corresponding
factor graph is shown in Figure 1 (lower panel). Like the fully connected Ising model, typical
instances of this model are solved at leading in order in N by the Bethe approximation,
with finite size effects strongest at intermediate temperatures. At high temperature, the
probability is relatively flat and disperse, whereas at low temperatures there is a single
dominating mode concentrated about the value 0 = argmaxx p(x).

We consider a diagonal constrained Bethe approximation: a set of 4 non-redundant
statistic pairs are constrained per variable.

Figure 9 demonstrates that in graphs of size N = 40, the MAD on p(xi) is significantly
improved with the addition of diagonal constraints. Furthermore, we see that as the Bethe
approximation becomes accurate (high and low temperature, or large N) it becomes easier
to enforce the constraints, as indicated by smaller values for the Lagrange multipliers.
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Figure 7: L = 7 Wainwright-Jordan set up: Trends are comparable to the smaller system in
Figure 6. Where solutions exist, significant gains are made in all models with the addition
of constraints. However, all approximations are now failing to reach full scale (T = 1). The
method which is stable to lowest temperature is the model with diagonal constraints only,
while the one with on-and-off constraints is the most accurate.

4.4 The Alarm Network

The alarm net is a pedagogical example of a graphical model that has been studied in
the context of loop correction algorithms and is available in libDAI repository (see Mooij
et al., 2007; Mooij, 2010). It has 37 variables, each variable takes either 2, 3 or 4 states
(a mixture of Ising and Potts spins). Variables have biases, and participate in 2, 3 and
4 point interactions as shown in Figure 1 (upper graph). The model involves a mixture
of factor types and variables. The Bethe approximation performs relatively poorly, due to
short loops. We can again add a temperature and consider solutions up to the full scale
T = 1 that defines the model.

Two constraint regimes were applied: in the first pure-diagonal constraints were ap-
plied: {(i, y), (i, y) : ∀i, y}, and in the second all block-diagonal constraints were applied
{(i, y1), (i, y2) : ∀i, y1, y2}. The ability of both methods to improve local statistics were
comparable and modest; for both the local diagonal and off-diagonal statistics as shown in
Figure 10. Other schemes such as tree-EP and LCBP show improvements of one or two
orders of magnitude on this problem (see Mooij et al., 2007; Opper et al., 2009). However,
the Bethe approximation and linear response estimates are known to be poor on this model,
so it is not a surprise to see modest gains for our scheme.
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Figure 8: A typical problem in the Wainwright Jordan set up for N = 16. (left) Negative
λ has the effect of effectively reducing the coupling strength; as with the fully connected
ferromagnetic model, a mode of failure for the approximation is to over-estimate the bias
in variables, and constraints appear to work by mitigating this effect. Bars indicate the 3
quartiles of the distribution, and the extremal values are also plotted. In the Bethe approx-
imation with only diagonal constraints, most λ including the extremal value are negative.
With on and off-diagonal constraints λ with a net effect of reducing interaction strength,
values diverge approaching the point of algorithmic failure. (right) Adding diagonal con-
straints not only removes the diagonal self-consistency error, but also reduces the error in
the unconstrained (off-diagonal) statistic. Adding both on and off diagonal constraints re-
moves inconsistency for both types. The self consistency errors (13) grow with decreasing
temperature.
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Figure 9: Errors and Lagrange multipliers are shown for the 3-states Potts model on 3-
regular random graphs. (left) The diagonal constraint regime yields a significant improve-
ment in maximum absolute deviation of p(xi) over the raw approximation on graphs with
N = 40. (right) The Bethe approximation improves as N → ∞ at all temperatures (due
to the disappearance of many short loops). The Lagrange multipliers enforcing diagonal
consistency typically decrease (in mean squared value) as system size increase. Quartiles
are based on at least 20 samples per system size.
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Figure 10: Results for the alarm network. (left) The diagonal and block-diagonal constraint
regimes have indistinguishable performance in the MAD for p(xi), and improve modestly
on the unconstrained problem. (inset) At intermediate T there is a qualitative change in
the self-consistency error, as some variable subsets become strongly polarized. (right) The
values for λ are for the most part small, with extreme values diverging as T approaches 1;
a mixture of positive and negative Lagrange multipliers are required to enforce constraints.

5. Discussion

The aim of this paper is to show that for a range of models and variational methods we
can have improved accuracy in marginal estimates by inclusion of a set of self-consistent
constraints, and to propose this as a general mechanism by which to improve approximations
with inconsistency between marginalization (first derivative) and linear response (second
derivative) approximations.

We have expanded upon results for rather simple approximations, in easy to understand
model frameworks: the marginals are improved in all cases, and in many scenarios by
amounts measurable in orders of magnitude. The combination of a weak approximation
method with constraints may result in there being no solutions and in marginal cases in
a slow convergence of our proposed algorithm. On the other hand, if we are looking for a
mechanism by which to leverage a good approximation this approach seems appropriate.

An interesting direction for investigation would be understanding whether partially re-
ducing the violation, rather than eliminating it, might yield comparable results within a
more robust algorithmic framework. There are two possibilities: (1) softening the con-
straint, introducing a penalty term that increases with |∆| rather than requiring strict
compliance; (2) expanding the range of solution existence by bounding λ. This would pre-
sumably maintain a large part of the method advantage by removing some pathologies.
Further work could also relate to the choice of constraints, especially for non-Ising models
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where the number of statistics available to constrain is large. Two directions are proposed
in Appendix B.2.

Some powerful approximation methods are not variational and so the insight we provide
cannot be leveraged. In other cases there is no inconsistency to exploit, this is true of
adaptive-TAP and some moment matching methods. These have variational free energy
frameworks, but by the Gaussian approximations therein used, there is a consistency of
pairwise approximations, making redundant the constraints we suggest. This is in line with
our thinking that good approximations should not violate these constraints.

We believe our method also sheds light on, or is inclusive of, previous attempts to
leverage linear response. Consider the region-based free energy built on the set of regions
indicated by Figure 2(d). Every outer region is a hub surrounded by leaves, and if we add
constraints over the leaves within each region, a linear expansion in the Lagrange multipliers
agrees with the linear expansion obtained in the scheme of Montanari and Rizzo (2005);
however, outside of the linearized regime there are important differences.

There are three reasons one might not want to improve a variational approximation
by adding self-consistency constraints: 1) The cost of the method which is dominated by
a linear response evaluation (a cost that can be as large as O(N2) using susceptibility
propagation), might be prohibitive in some applications. 2) Introducing such constraints
may prevent the existence of any solutions (the method may reveal the uncomfortable truth
that the approximation used is quite bad). 3) Even where a fixed point exists, it may be
slow to reach it using a local iterative scheme for λ such as (20).

6. Conclusion

We have demonstrated that adding covariance constraints, which make the linear response
and marginalization estimates consistent, improves the performance of the Bethe approx-
imation for a variety of simple model types. We have argued this is true more generally
of variational frameworks, and have provided an algorithmic framework for mean-field and
region-based frameworks, generalizing previous results. The regimes of adding all possible
constraints (on-and-off diagonal) and adding constraints only over single variable covari-
ances (diagonal) were examined. The former tends to lead to better results, whilst the
latter is simpler to implement and can yield solutions across a broader range of models.

The usefulness of this paper is not in the specific algorithm developed, but in the princi-
ple of statistical consistency. We hope it might be extended to other variational frameworks
in which inconsistencies exist between first and second derivative estimates. We have pre-
sented and tested an algorithmic framework; the framework can solve the constrained free
energy where solutions exist, but a rather expensive (annealed in T ) procedure was ex-
ploited to obtain our results. Further work is required to make this reliable and competitive
with state of the art marginal estimation.
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Appendix A. Exact Expressions for the Fully Connected Ising model

It is straightforward to calculate the exact marginal distributions for (21), for any pair of
variables

pT (xi, xj) ∝
N−2∑
n=0

(
N − 2

n

)
exp

[
(h+ [N − 2− 2n])2

2T
+

1

T
xixj+

h+ [N − 2− 2n]

T
(xi+xj)

]
.

By contrast in the Bethe approximation

qij(xi, xj) ∝ exp

[
1

T
xixj +

h→
T

(xi + xj)

]
, (22)

where the log-ratio messages h→ are defined as the solution to

h→ = h+ (N − 1)Tatanh [tanh(1/T ) tanh(h→/T )] ; h→ =
1

2
log

(
µi→(ij)(1)

µi→(ij)(−1)

)
.

Since we will place constraints on Vq(xi, xj) a convenient parameterization for the pair
probability in our approximation will be

qij(xi, xj) =
(1 +Mixi)(1 +Mjxj) + Cijxixj

4
. (23)

We can restrict attention to symmetric solutions Mi = M and Cij = C, similarly at
most two distinct Lagrange multiplier values need be considered: λi,i = λ0, when diagonal
constraints are applied, and λi,j = λ1 when off-diagonal constraints are applied. Minimizing
the variational free energy (17) with respect to M and C leads to the following pair of
equations

0 = −[(n− 1)M/T+λ0M ] + atanh(M)+(N−1)
∑
x1,x2

x1
2
qj(x2) log

(
qij(x1, x2)

qi(x1)

)
,(24)

0 = −[1/T − λ1] +
∑
x1,x2

x1x2
4

log qij(x1, x2) . (25)

If we solve this pair of equations for λ = 0, we find an alternative representation of (22).
Explicit expressions for the covariance matrix approximation χ are derived in Raymond and
Ricci-Tersenghi (2013b) and Raymond and Ricci-Tersenghi (2013a), these can be concisely
expressed in the inverse as

[χ−1]i,j =

{
1

1−M2

[
1 + (n− 1) C2

(1−M2)2−C2

]
− λ0 if i = j .

−1/T +
∑

x1,x2

[
x1x2
4 log qij(x1, x2)

]
− C

(1−M2)2−C2 otherwise.

Abbreviating χ−1i,i = a and χ−1i,j(j 6=i) = b we can write the components of the covariance
matrix approximation

χi,j =
1

(a− b)(a+ (N − 1)b)

{
a+ (N − 2)b if i = j .
−b otherwise.
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Thus we have up to four parameters {M,C, λ0, λ1}, depending which constraints are applied.
We solve (24) and (25) in combination with either, or both, (1−M2 = χi,i) and (Cij = χi,j).
These are non-linear equations in M , C and λ0; we resort to local search to find solutions;
solutions are possible by expansions at small or large T , or for large N . For the solution to
be valid, we also check that the Hessian is positive definite, and that p(xi, xj) ≥ 0.

Solutions for the equations are trivial for large or small T , and approach the solutions of
the unconstrained approximation. By slowly varying T we can discover the solutions that
evolve continuously from these two fixed points. We did not find any solutions appearing
discontinuously, nor did we find any evidence for symmetry breaking (that is solutions in
which the magnetizations, or correlations, differed by label index).

It is also straightforward to apply the same methodology for the mean-field approx-
imation: there is one saddle-point equation, (24) with C = 0; and up to one type of
covariance constraint (χi,i = 1−M2), where the inverse covariance matrix elements become
[χ−1]i,j = −1/T , and [χ−1]i,i = 1/(1−M2)− λ0.

Appendix B. Algorithm for Finding Optimized Lagrangian Parameters,
and the Linear Responses

Our approach to find solutions depends on their existence, this is discussed generically before
we consider the impact of constraint selection strategies (and constraint representation)
on solution existence and algorithmic stablity. We then show that an exact method for
minimizing the Lagrangian exists for some fixed values of the Lagrange parameters λ. The
CLBP and CLSP algorithms are then presented in pseudocode. Finally, we discuss heuristics
for the calculation of λ.

B.1 Existence

Certain models are known to be solved at leading order in some control parameter by region-
based, Bethe or mean-field approximation. Examples are ferromagnetic random graphs or
fully connected models in the limit of large number of variables (N), arbitrary models in
the weakly interacting limit (also called high temperature T ), finite models in the limit of
strong biases on the variables (h). In these models, we find, of course, that the deviation
between the linear response and marginal estimates are small in the corresponding control
parameter. Expanding in this parameter (for example 1/T , 1/N) it is straightforward
to show the existence of solutions, and quantify the effectiveness of the constraints (see
Raymond and Ricci-Tersenghi, 2013a). However, even outside the regime where expansions
about the Bethe approximation are appropriate, we find solutions: this includes models
where the covariance matrix has divergent terms, due to a mean-field phase transition as
described in Raymond and Ricci-Tersenghi (2013b).

However, in experiments, we present it is shown that variation of the temperature (which
controls the smoothness of the probability) can lead to models with no solutions, for some
constraint sets. In the case of both on and off-diagonal constraints in Ising models defined
on some graph G = {V,E}, with |V | variables and |E| edges, we have |E|+ |V | variational
parameters but also |E|+ |V | constraints—solving a system of non-linear equations where
the number of parameters matches the number of constraints seems optimistic; and perhaps
it should not be surprising that as the Bethe approximation breaks down solutions fail to
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exist; applying all constraints is certainly a marginal case unless some are redundant. If we
move to alphabets with more than 2 states per variable the number of pair-statistics for on-
and-off diagonal constraints exceeds the number of variables (with no obvious redundancy);
certainly such a system can have no solutions. We must think carefully on which constraints
to implement, and this is discussed in Appendix B.2.

In the experiments of this paper we have introduced for all models the control parameter
T , with all models being well approximated by Bethe (and Mean-field) approximations in the
weak coupling limit (T →∞), and some models also being well approximated in the strong
coupling limit (T → 0). To extend the regime in which our algorithms are convergent, an
annealing approach was taken—slowly increasing 1/T (or T ) and following a solution which
evolved continuously in the marginals and Lagrange multipliers from the exactly solved
regime. In many cases, solutions were found to reach a critical point T ∗ beyond which
they could not be continuously evolved to new solutions. At these points we invariably
found no new solutions emerging discontinuously by simply iterating our procedures. By
undertaking annealing, it would in principle be possible to miss some solution that emerges
discontinuously; the example of Section 4.1 shows this is possible (there is coexistence of
two solutions at low temperature for the case of off-diagonal constraints only), but in the
other examples of this paper we found no evidence for this. We expect in most practical
applications, and for good choices of the constraints, coexistence will be absent.

A common feature in solution discontinuity during annealing is the divergence of some
Lagrange multiplier(s); this indicates that the failure was due to inviability of solutions
rather than a breakdown of algorithmic dynamics. Unlike the Bethe approximation, which
can be forced to converge to a local minimum at any T , replacing LBP by a convex-concave
procedure. We speculate that the constrained free energy has no solutions in strongly
coupled regimes and that where practical solutions do exist the cavity based algorithms will
be sufficient if combined with appropriate damping and/or annealing.

B.2 Selection of Constraints for Best Solutions

In this section we consider reasonable choices for the constraints, assuming a solution exis-
tents, and algorithmic convergence is possible.

Since we are applying constraints to discrete models it is clear that the apriori constraints
selection should be independent of the labeling convention. Furthermore, we note that we
made the rather arbitrary choice in (2) of perturbations in the set of statistics {δxi,y : y =
1 . . . Y }, Y being the number of states. Whilst this is invariant under relabeling, and spans
all possible perturbation directions (and one redundant direction

∑
y δxi,y), we might get

different covariances according to our choice. It would seem sensible to choose our constraint
regime so that any set of statistics that spans the set of perturbations yields the same result.
To achieve this we must pick a complete basis {φ}, and apply constraints on all-covariance
pairs.

The consideration of bases motivates the regimes we have explored: diagonal, off-
diagonal, on-and-off diagonal. These schemes are basis-independent. If the condition
C(i,·),(j,·) = χ(i,·),(j,·) is met in one basis for all elements, then a change between two (or-
thonormal) basis is a rotation, and the identities remain intact.
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We found that off-diagonal typically performed worse than on-diagonal, as well as being
computationally more challenging. In the final experiment of Section 4.4 we also tried one
basis dependent set of constraints, the so-called pure-diagonal regime. Despite breaking the
paradigm of basis independence, it performed just as well as the block-diagonal regime that
is basis independent, so this indicates that basis independence is not an essential feature in
constraint selection.

Topological distinctions amongst constraints can also be made. In a region-based ap-
proximation, we can distinguish the “2-core” from the rest of the graph. The 2-core is the
set of variables that are found by recursively removing variables that are involved in at
most one “outer region” (generalized interaction). We advise constraining variables on the
2-core only. The reason for this is that the set of variables that are not in the 2-core form a
forest—a set of disconnected trees for which the approximation is conditionally exact even
without constraints. If we have the core correct, then other constraints will be redundant.
It is only in the case of the alarm net (Figure 1, Section 4.4) that the 2-core is distinguished
from the full graph and we make this approximation. Other topological distinctions could
be applied, distinguishing constraints by the distance between variables might be one pos-
sibility (in Figure 2(b) for example there are nearest, and next nearest neighbors within the
regions); however, in the Bethe approximation (all experiments we present) only nearest
neighbors might be constrained so the example is mute.

Beyond these considerations, we did not attempt to further restrict the set of constraints
in a model specific manner, but several options might be worth exploring, in particular: (1)
Consider the covariance matrix restricted to a single variable “block”, χ(i,·),(i,·). For a
given approximation (for example Bethe) there is a unique orthonormal basis {φi} that
diagonalizes the covariance matrix. This would provide a natural choice for the statistic
basis. The eigenvalue-vector pairs determine which direction is most susceptible to a change
in parameters, and so (loosely speaking) most sensitive to approximation errors. We might,
therefore, rank constraints by this eigenvalues for inclusion. (2) If we can solve the problem
to obtain q∗i , then we can consider defining only one perturbation statistic per variable as
φ(xi) ∝ log(Y q∗(xi)). Since we know approximations tend to be overconfident, it would
seem a natural choice to constrain in line with the belief, rather than wasting resources on
unimportant directions in parameter space.

B.3 Assignment of Constraints to Regions, and Basis selection, for Best
Convergence

For our constraint regimes (diagonal, on-diagonal and on-and-off diagonal), the allocation
of constraints to specific regions, the choice of statistical basis, the initial condition of the
algorithm and the damping, leave the algorithmic fixed points unchanged. Owing to our slow
annealing approach (increasing or decreasing T ) our results were not very sensitive to the
other implementation details. However, these choices do impact convergence significantly.

We find that a non-redundant orthonormal set of statistics leads to faster convergence.
Orthonormality ensures that, at leading order, the Lagrange multipliers are independent of
one another, which is the criterium that guarantees the success of our method. A redundant
statistic is φ(xi) =

∑Y−1
y=0 δxi,y, where xi has Y states, and so only Y − 1 orthonormal
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statistics need be implemented. A nice approach to the selection of an orthonormal basis
is discussed in Yasuda (2013), for Ising spins, a unique choice per variable is xi.

We allocated constraints in a naive manner, assigning each constraint to the first avail-
able “outer region”. For diagonal constraints an approach where constraints are allocated to
single-variable regions was proposed by Yasuda et al., and this allows some simplifications
as well as implying a unique allocation (see Yasuda, 2013). Approaches that do not allocate
constraints to regions, such as iteration by linear expansion of the covariance matrix have
been attempted (29), but those were slower to converge.

As a general rule, we wish to group Lagrange multipliers together as much as possible.
In this way, correlations amongst the Lagrange multipliers are accounted for locally. A
potentially better approach than our fixed assignment suggestion might be to update all
Lagrange within some outer region. Where a constraint could be allocated to more than
one region, the results could be averaged, or regions could be selected differently on each
cycle to avoid conflicting assignments.

A damping factor that begins as 1 and decreases during the annealing procedure (as
required to enable convergence) is applied in the experiments. In simulations without
an annealing scheme, a rate . 0.5 could be essential to prevent oscillations that arise
from correlated updating of Lagrange multipliers. In particular, off-diagonal values λij and
diagonal values λii can be anti-correlated. If they are not updated on the same region
undamped iteration can lead to slow convergence or oscillations.

Initial conditions are chosen as λ = 0; so that the first iteration is equivalent to an un-
constrained approximation. One advantage of the annealing approach (where we first solve
the trivial model T = 0 or +∞, and then increase or decrease T , initializing by the current
solution), is that we do not require the convergence of the unconstrained approximation to
find a solution in the constrained regime.

B.4 Convex Concave Procedure

We prove that it is possible to minimize (16) in q by a convex-concave decomposition.
In Heskes, Albers, and Kappen (2003) by introducing auxiliary parameters q′ over the inner
regions, a pair of convex optimization procedures were developed that led to minima of
the region based free energy. With the addition of our constraints, we only need to make
a minor modification to their argument. Consider an auxiliary free energy F (q, q′), where
q′ are additional parameters in one to one correspondence with the original variational
parameters. Heskes et al. outline three requirements of this free energy

1 Convexity of F (q, q′) with respect to q.

2 F (q, q′ = q) = F (q)

3 F (q, q′) ≥ F (q)

that guarantee that the iterative procedure

q′t+1 = argminqF (q, q′t) , (26)

converges to values that are minimizing arguments of F (q).
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Since the violation term (13) is a quadratic function of the variational parameters q(xα),
it can be expressed by a constant A0, a vector of linear coefficients A1 and quadratic
coefficients A2 that define a symmetric matrix. A2 can be decomposed as a positive definite
and negative semi-definite part (A+

2 and A−2 ). It is then easy to define a function in vector
notation

∆+(q, q′, q∗(·)) = A0(q
∗
(·)) + qTA1 + (q′)TA2q

′ + (q − q′)TA+
2 (q − q′) . (27)

To minimize our region-based free energy with constraints (16) we substitute (27) for (13)
and follow the procedure in Heskes, Albers, and Kappen (2003) for the remaining terms.
The free energy meets the criteria for convergence under the iterative scheme (26).

The double loop procedure, despite not changing the asymptotic complexity of message
passing O(N) is often considered impractical, but, in the framework we are proposing, the
largest cost is the evaluation of the linear response, implementing a double loop proce-
dure may be sensible. In practice we have used the variation on loopy belief propagation,
rather than the double-loop procedure, to extremize the Lagrangian. Despite the absence
of theoretical guarantees, the 3-fold scheme proves to be reliable: solving for variational pa-
rameters (by CLBP); solving for the linear response (by CLSP); and update of the Lagrange
multipliers.

B.5 Pseudocode for Determining the Fixed Point of q Given λ

We determine q by the constrained loopy belief propagation (CLBP) algorithm, described
in Algorithm 1, which is a modified form of the Heskes, Albers, and Kappen (2003) loopy
belief propagation algorithm, that uses the convex-concave procedure with guaranteed con-
vergence.

In Algorithm 1 we consider an auxiliary region interaction including both interactions
and the Lagrange multiplier terms

ψα(xα;λα, qα) = ψα(xα)
∏

[(i,s1),(j,s2)]∈ωα

exp
{
−λ(i1,y1),(i2,y2)φ̂(i1,y1),(i2,y2)(xα; qα)

}
,

and

φ̂(i1,y1),(i2,y2)(xα; qα) =
(
δxi1 ,y1 − Eqα(δxi1 ,y1)

)(
δxi2 ,y2 − Eqα(δxi2 ,y2)

)
+ Eqα(δxi2 ,y2)Eqα(δxi1 ,y1) .

Simplified expressions for the Ising model are presented in the main text. Terms here have
an interpretation compatible with Heskes, Albers, and Kappen (2003), with U are the set
of outer regions, and V are the set of intersection regions (see Figure 2). In the case of a
Bethe approximation U are the set of edges, and V are the set of variables.
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Algorithm 1 λ compatible Heskes-Albers-Kappen algorithm

while ¬ converged do

for all β ∈ V do

for all α ∈ U,α ⊃ β do

qα(xβ) =
∑
xα\β

qα(xα)

µα→β(xβ) =
qα(xβ)

µβ→α(xβ)

end for

q
(num)
β (xβ) =

∏
α⊃β

µα→β(xβ)

qβ(xβ) =
q
(num)
β (xβ)∑
x′β
q
(num)
β (x′β)

for all α ∈ U,α ⊃ β do

µβ→α(xβ) =
qβ(xβ)

µα→β(xβ)

while ¬ converged (solve self-consistently) do

q(num)
α (xα) = ψα(xα;λ, qα)

∏
β⊂α

µβ→α(xβ)

qα(xα) =
q
(num)
α (xα)∑
x′α
q
(num)
α (x′α)

end while
end for

end for
end while

B.6 Linear Response about the Fixed Point

By linearizing the CLBP method, we obtain a constrained loopy susceptibility propagation
(CLSP) method. Qualitatively similar is the I-SUSP algorithm of Yasuda and Tanaka
(2013), which applies only to the case of diagonal constraints and the Bethe approximation.
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The implementation we use follows Algorithm 1, but with the following replacements
for each equation (in order):

δq̂α(xβ) =
∑
xα\β

qα(xα)

qβ(xβ)
δq̂α(xα) ;

δµ̂α→β(xβ) = δq̂α(xβ)− δµ̂β→α(xβ) ;

δq̂
(num)
β (xβ) =

∑
α⊃β

δµ̂α→β(xβ) ;

δq̂β(xβ) = δq̂
(num)
β (xβ)−

∑
xβ

qβ(xβ)δq̂
(num)
β (xβ) ;

δµ̂β→α(xβ) = δq̂β(xβ)− δµ̂α→β(xβ) ;

δq̂(num)
α (xα) =

δxi,yI(i ∈ α)

ki
+
∑
β⊂α

δµ̂β→α(xβ)

+
∑
x′α

qα(x′α)δq̂α(x′α)
∂ logψ(xα;λα, qα)

∂qα(x′α)
;

δq̂α(xα) = δq̂(num)
α (xα)−

∑
x′α

qα(x′α)δq̂(num)
α (x′α) ;

where I(i ∈ α) is an indicator function evaluating to one if i is contained in α, and ki is the
number of outer regions containing i. From the converged quantities we can identify

q∗α,(i,y)(xα) = qα(xα)δq̂α(xα) . (28)

Since the linear response is a linearized method, the innermost do-while loop of Algorithm 1
could be replaced by a method for solving linear equations. Both have been tried with similar
outcomes.

Appendix C. Solving for λ, Explicit Expressions and Simplification

The diagonal update scheme of I-SUSP relies on a similar reasoning as that undertaken
in Yasuda and Tanaka (2013) and Yasuda (2013). The difference between the two ap-
proaches is that in the works by Yasuda et al. only diagonal constraints (restricted to single
variable consistency relations) are considered. As such it is possible to choose in general a
single variable cavity i, rather than a region cavity α (see Figure 4). To consider statistics
not restricted to single variables our scheme is required. The I-SUSP method has an advan-
tage over our method in that there is a simplification of the expressions on a single variable
region that allows a closed form for updating the Lagrange multipliers. One advantage of
our scheme is that we may fix several Lagrange multipliers on a region simultaneously, thus
accounting for correlations in their values, and perhaps reducing the number of updates to
convergence.

In practice, damping within the 3-cycle of Figure 3 can be necessary for convergence.
In practice, we replace λt+1 = dλt + (1 − d)λ∗, where λ∗ is the cavity approximation. As
1/T was increased (or decreased) at a constant rate we increased d whenever the solution
failed to converge, and this modification extended the region of convergence.
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An exact expression for the correlation matrix χ as a function of the variational pa-
rameters was derived in Raymond and Ricci-Tersenghi (2013b) and Raymond and Ricci-
Tersenghi (2013a), the special case for homogeneous graphs is made explicit (Appendix A).
The inverse covariance matrix χ−1 is, in the basis where variational parameters are beliefs
q, a linear function of λ. Updating a single λ can be achieved by the Shermann-Morrison
formula, which in its linearized form becomes

χi,i δλi,j χj,j = (C∗i,j − χi,j) . (29)

It is also possible to write a similar expression blockwise (over λα). This scheme and
variations were considered, but were found to require more iterations or stronger damping
(for convergence) than the linearized cavity formula (20).

In our approach we associate each constraint to a unique region, but some statistics
such as Vp(xi, xi) may be approximated by different α for the same variational approach
(for example by qij or qik if i participates in two interactions). Though these estimates agree
finally at the solution point, they disagree at intermediate stages of CLBP. Since updates
for λ may be correlated (consider Figure 8 where diagonal and off-diagonal are strongly
anti-correlated), the grouping of λ may be very important. Updating non-disjoint sets and
averaging over results may be more stable than our scheme where closely correlated λ (for
example λi,i and λi,j) may be updated on different regions.
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