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Abstract

In many applications, not all the features used to represent data samples are important. Often
only a few features are relevant for the prediction task. The choice of dependence measures of-
ten affect the final result of many feature selection methods. To select features that have complex
nonlinear relationships with the response variable, the dependence measure should be equitable, a
concept proposed by Reshef et al. (2011); that is, the dependence measure treats linear and non-
linear relationships equally. Recently, Kinney and Atwal (2014) gave a mathematical definition of
self-equitability. In this paper, we introduce a new concept of robust-equitability and identify a
robust-equitable copula dependence measure, the robust copula dependence (RCD) measure. RCD
is based on the L1-distance of the copula density from uniform and we show that it is equitable
under both equitability definitions. We also prove theoretically that RCD is much easier to esti-
mate than mutual information. Because of these theoretical properties, the RCD measure has the
following advantages compared to existing dependence measures: it is robust to different relation-
ship forms and robust to unequal sample sizes of different features. Experiments on both synthetic
and real-world data sets confirm the theoretical analysis, and illustrate the advantage of using the
dependence measure RCD for feature selection.

Keywords: dependence measure, feature selection, copula, equitability, mutual information

1. Introduction

The performance of machine learning algorithms is dependent on the input features representing
each data sample. Often not all of these features are useful: some may be irrelevant and some may
be redundant. Feature selection is thus needed to help improve the performance of learning tasks.
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Moreover, feature selection can decrease the computational cost of algorithms, and provide domain
experts with an increased understanding of which factors are important.

Feature selection algorithms can be categorized based on how the learning algorithms is incor-
porated into the selection algorithm: filter, wrapper, or embedded methods (Kohavi and John, 1997;
Guyon and Elisseeff, 2003; Yu and Liu, 2004). Filter methods (Kira and Rendell, 1992; Yu and Liu,
2004; Peng et al., 2005; He et al., 2005; Song et al., 2007) pre-select features, without running the
learning algorithm. Features are evaluated only through the intrinsic properties of the data. Wrapper
methods (Kohavi and John, 1997; Guyon et al., 2002; Dy and Brodley, 2004) “wraps” the search
around the learning algorithm and evaluate candidate feature subsets based on learning performance
in each candidate feature subset. Embedded methods (Tibshirani, 1996; Vapnik and Vapnik, 1998)
incorporate feature search and the learning algorithm into a single optimization problem formula-
tion. Wrapper and embedded methods, contrary to filter methods, select features specific to the
learning algorithm; thus, they are most likely to be more accurate than filter methods on a particular
learning algorithm, but the features they choose may not be appropriate for other algorithms. An-
other limitation of wrapper methods is that they are computationally expensive because they need
to train and test the learning algorithm for each feature subset candidate, which can be prohibitive
when working with high-dimensional data.

Filter methods rely on measures based on intrinsic properties of the data. More specifically,
they evaluate features based on some dependence measure criterion between features and the target
variable and select the subset of features that optimizes this criterion. Let d be the number of orig-
inal features. An exhaustive search, which involves 2d possible feature subsets is computationally
impractical. Thus, one commonly employs heuristic search strategies, such as greedy approaches
(e.g., sequential forward/backward search (Pudil et al., 1994)). However, these strategies can lead
to local optima. Random search methods, such as genetic algorithms, add some randomness to help
escape from local optima. When the dimensionality is very high, one can only afford an individual
search. Individual search methods (Guyon and Elisseeff, 2003; He et al., 2005) evaluate each feature
individually according to a criterion and then select features, which either satisfies a condition or
are top-ranked. The problem with individual search methods is that they ignore feature interaction
and dependencies. To account for such interactions and dependencies, Yu and Liu (2004) selects
relevant features individually and then add a separate redundancy removal step to account for linear
correlation between features; Peng et al. (2005) suggests another way, by maximizing relevance and
minimizing redundancy (mRMR) together.

In addition to search strategies, the performance of filter methods depend heavily on the choice
of dependence measures. The ability to measure the dependence between random variables is a
fundamental problem in statistics and machine learning. One of the simplest and most common
dependence measure is the Pearson correlation coefficient (ρlin). However, this measure only cap-
tures linear relationships. Another popular measure is mutual information (MI). MI can capture
nonlinear dependencies but is difficult to estimate (Fernandes and Gloor, 2010; Reshef et al., 2011)
(see Theorem 3 in Section 4). Kernel-based dependence measures (Gretton et al., 2005a; Fukumizu
et al., 2007) (e.g., the Hilbert-Schmidt Independence Criterion (HSIC)) have been introduced as an
alternative to MI which does not require explicitly learning joint distributions. However, HSIC de-
pends on the choice of kernels. Hilbert-Schmidt Normalized Information Criterion (HSNIC), also
known as normalized conditional cross-covariance operator (NOCCO) (Fukumizu et al., 2007), is
kernel-free, meaning it does not depend on the choice of kernels in the limit of infinite data. Even
though HSNIC is kernel-free, both HSIC and HSNIC’s values may vary when we use different
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scales. Poczos et al. (2012) applied Maximum Mean Discrepancy (MMD) after empirical copula
transformation to make the kernel-based dependence measure invariant to strictly monotone trans-
formation of the marginal variables. The Copula-MMD (CMMD) can also be written in HSIC
formulation after empirical copula transformation. Similarly, Reddi and Póczos (2013) applied
HSNIC after empirical copula transformation (CHSNIC). Other dependence measures can also
be applied after empirical copula transformation, resulting in measures that are also invariant to
strictly monotone transformations. However, they (e.g., CMMD and CHSNIC) may fail to treat
non-monotonic relations equally.

Reshef et al. (2011) proposed the concept of equitability, which states that a dependence mea-
sure should give equal importance to all relations: linear and nonlinear. For example, we expect
a fair dependence measure to treat a perfectly linear relationship and a perfectly sinusoid rela-
tionship equally. Kinney and Atwal (2014) mathematically defined equitability by proposing self-
equitability—under a nonlinear regression model with additive noise, a dependence measure should
be invariant to any deterministic transformation of the marginal variables, under a nonlinear re-
gression model with additive noise (a formal definition is provided in Definition 1, Section 2). A
self-equitable dependence measure will treat all forms of relationships equally in the large data
limit for the additive noise model. Kinney and Atwal (2014) proved that MI is self-equitable, and
recommended its usage.

To choose among the many self-equitable dependence measures, we further propose a new
robust-equitability concept such that the measure also treats all forms of relationships equally in
the mixture noise model. That is, in a mixture distribution with p proportion of deterministic
signal hidden in continuous independent background noise, the measure should reflect the signal
strength p. The mixture noise model reflects real applications where measurements (features) are
often corrupted with noise. For example, sensor data maybe corrupted by noise from hardware
and environmental factors. Reshef et al. (2011, 2015b) considered equitability for a statistic. Our
robust-equitability, as well as Kinney and Atwal (2014)’s self-equitability, is defined on the pop-
ulation quantity instead. Particularly, in the mixture distribution above, we define a dependence
measure as weakly-robust-equitable if it is a monotone transformation of the proportion p, and is
robust-equitable if it equals to p exactly.

In this paper, we show that among a class of self-equitable copula-based dependence measures,
only robust copula dependence (RCD), defined as the total variational distance (the half of the
L1 distance) between copula density and uniform (independence) density, is also weakly-robust-
equitable (and robust-equitable). Without referring to the copula density, RCD can be equivalently
stated as the total variational distance between the probability distribution and the (independent)
product of its marginal distributions, and is equivalent to the Silvey’s Delta measure (Silvey, 1964).
In the literature, the Silvey’s Delta (RCD) was only cited as an abstract benchmark. Here, we
propose a k-nearest-neighbor (KNN)-based estimator for RCD and prove its consistency. Besides
the L1 distance RCD, we also investigated properties of the L2 distance between copula density and
the uniform density (we call CD2). CD2 is the theoretical value of HSNIC in the large data limit
(Fukumizu et al., 2007).

In addition, the robust-equitability study in this paper provides insights on the difficulty of es-
timating MI. Some authors studied the convergence of MI estimators by imposing the Hölder con-
dition on the copula density. This Hölder condition, while being a standard condition for density
estimations, does not hold for any commonly used copula (Omelka et al., 2009; Segers, 2012).
Under a more realistic Hölder condition on the bounded region of copula density, we provide a the-
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oretical proof that the mutual information (MI)’s minimax risk is infinite. This provides a theoretical
explanation on the statistical difficulty of estimating MI observed by practitioners (Fernandes and
Gloor, 2010; Reshef et al., 2011). Moreover, we prove that although both MI and CD2 are self-
equitable, they are not robust-equitable. Therefore, MI and CD2 may not rank the features correctly
by dependence strength in some cases, even in the large data limit. We confirm this phenomena on
both synthetic and real-world data sets. In contrast, RCD is consistently estimable under the same
condition. As for kernel-based dependence measures, HSIC and CMMD are neither self-equitable
nor robust-equitable, HSNIC and CHSNIC are self-equitable but not robust-equitable and their
estimators converge very slowly. Since RCD is the only measure that is both self-equitable and
robust-equitable among these measures, it can be very useful for feature selection.

In summary, the contributions of this paper are: (1) the introduction of the concept of robust-
equitability; (2) the identification of RCD as a dependence measure that is both self- and robust-
equitable and the proposal of a practical consistent estimator for RCD; (3) theoretically proving
that non-robust-equitable measures MI and CD2 cannot be consistently estimated and showing that
this can lead to incorrect selection of features when sample size is large or when sample sizes are
unequal for different features; and finally, (4) demonstrating that the robust-equitable RCD is a bet-
ter dependence measure for feature selection compared to existing dependence measures through
experiments on synthetic and real-world data sets, in terms of robustness to function types, cor-
rectness in large sample size and correctness in unequal sample sizes. This paper is a substantially
extended version of our conference version (Chang et al., 2016). In particular, this work includes
the following additional materials: (1) a more complete treatment of the motivation and rationale
of equitability definitions—we discuss the relationship of equitability to Renyi’s theorems, to more
copula-based dependence measures, and to independence tests; (2) a more complete theoretical
treatment of the difficulty in estimation of mutual information (MI) versus RCD; in particular, we
add a theorem showing that the difficulty of MI estimation is not due to the unboundedness of
its definition, but is intrinsic due its being non-robust-equitable; and (3) more extensive empirical
studies illustrating how equitability helps in feature selection.

The rest of this paper is organized as follows. In Section 2, we motivate the equitability con-
cepts, discussing different equitability definitions and relationship to copula and Renyi’s theorems.
Particularly, we propose the concept of robust-equitability, and define a robust-equitable dependence
measure called robust copula dependence. In Section 3, we prove MI and CD2 are not consistently
estimable. We also prove RCD can be consistently estimated and provide its estimators based on
kernel density estimation (KDE) and k-nearest-neighbors (KNN). In Section 4, we provide feature
selection experiments on synthetic and real data sets to demonstrate the advantage of RCD com-
pared to existing dependence measures. We end with conclusions and discussions in Section 5.

2. A Robust-Equitable Dependence Measure

In this section, we investigate the theoretical properties of different dependence measures. In par-
ticular, we would like the dependence measures to have the following characteristics. We would
like the dependence measures to rank a feature with less noise as having a stronger dependence with
the response variable compared to features with more noise. We do not want measures that prefer a
particular type of relationship (e.g., linear). Moreover, we do not want the measures to be too sensi-
tive to sample size (i.e., when different features have unequal sample sizes, the dependence measure
should not prefer a feature simply because it has more samples, but should still rank the features
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based on the strength of the deterministic signal compared to noise). Note that it is becoming more
common for databases to have features that have unequal sample sizes due to the prevalence of data
collection from heterogeneous sources. For example, a clinical database may have more samples
with clinical features compared to samples with genomic information. In such as setting, we would
like to use all the data available to perform feature selection rather than to create equal sample sizes
by throwing away samples from the larger set. In this paper, we formalize these ideas through the
recently proposed equitability concept: We want to use dependence measures that reflect the noise
level, regardless of relationship type.

2.1 Self-equitability, Rényi’s Axioms and Copula-based Dependence Measures

Reshef et al. (2011) proposed that an equitable measure should “give similar scores to equally noisy
relationships of different types.” Kinney and Atwal (2014) mathematically defined self-equitability
through invariance under all nonlinear relationships in the regression model

Y = f(X) + ε, (1)

where f is a deterministic function, ε is the random noise variable whose distribution may depend
on f(X) as long as ε has no additional dependence on X .

Definition 1 A dependence measureD[X;Y ] is self-equitable if and only ifD[X;Y ] = D[f(X);Y ]
whenever f is the function in model (1).

Kinney and Atwal (2014) recommended usage of a self-equitable measure: mutual information
(MI).

To understand self-equitability better, we notice that Definition 1 is very similar to Rényi’s Sixth
Axiom A6, both are defined through the invariance of the dependence measure under transforma-
tions. Rényi (1959) proposed seven axioms for dependence measures D[X;Y ]. (A1) D[X;Y ]
is defined for any random variables X and Y ; (A2) symmetric D[X;Y ] = D[Y ;X]; (A3) 0 ≤
D[X;Y ] ≤ 1; (A4) D(X;Y ) = 0 if and only if X and Y are statistically independent; (A5)
D(X;Y ) = 1 if eitherX = f(Y ) or Y = g(X) for some Borel-measurable functions f and g; (A6)
If f and g are Borel-measurable, one-one mappings of the real line into itself thenD[f(X); g(Y )] =
D[X;Y ]; (A7) If the joint distribution of X and Y is bivariate Gaussian, with linear correlation co-
efficient ρ, then D[X;Y ] = |ρ|.

For a symmetric dependence measure (satisfying Axiom A2), Axiom A6 can be rewritten as
D[f(X);Y ] = D[X;Y ] for all Borel-measurable f . Hence self-equitability is a weaker version
requiring an extra assumption that f satisfies the model (1).

It is known that Rényi’s maximum correlation coefficient is the only measure that satisfies all
seven Rényi’s Axioms. However, Rényi’s maximum correlation coefficient has a number of major
drawbacks, e.g., it equals 1 too often and is generally not effectively estimable (Schweizer and
Wolff, 1981; Székely and Rizzo, 2009). Hence enforcing all seven axioms is often considered too
strong a constraint on the dependence measure, while some axioms are often considered desirable.
For example, HSIC is shown to satisfy the first four axioms by Gretton et al. (2005a) and Gretton
et al. (2005b).

For comparison, another weakened version of Axiom A6 is to restrict the transformations to
monotone functions (Schweizer and Wolff, 1981), but without imposing the regression model (1).
We may call this version of Axiom (A6*) weak-equitability.
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Figure 1: Left: Bivariate Gaussian with ρ = 0.75. Middle: Data with exponential marginal for X .
Right: The Gaussian copula. The first two distributions have the same copula as in the
right figure.
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ρlin = 1 ρlin = 0.866 ρlin = 0 ρlin = 1 ρlin = 1 ρlin = 0

Table 1: Pearson correlation coefficient on three function relationships.

Definition 2 A dependence measureD[X;Y ] is weak-equitable if and only ifD[X;Y ] = D[f(X);Y ]
whenever f is a strictly monotone continuous deterministic function.

The weak-equitable dependence measures treat all monotone (but not all nonlinear) relationships
equally, and is a property shared by all copula-based dependence measures (e.g., CMMD and
CHSNIC). Sklar’s theorem ensures that, for any joint distribution function FX,Y (x, y) = Pr(X ≤
x, Y ≤ y), there exists a copula C—a probability distribution on the unit square I2 = [0, 1] ×
[0, 1]—such that

FX,Y (x, y) = C[FX(x), FY (y)] for all x, y. (2)

Here FX(x) = Pr(X ≤ x) and FY (y) = Pr(Y ≤ y) are the marginal cumulative distribution
functions (CDFs) of X and Y respectively. In other words, the copula C is the joint CDF of the two
copula-transformed, uniformly distributed, variables U = FX(X) and V = FY (Y ). In this way,
the copula decomposition separates the dependence from any marginal effects, and the copula C
captures all the dependence between X and Y . Figure 1 shows the data from two distributions with
different marginals but the same dependence structure.

Table 1 shows three simple examples and their respective copula transformations. We can
see that the linear correlation ρlin prefers the linear relationship in (A). Applying on the copula-
transformed variables on the right half of Table 1, ρlin (now equivalent to Spearman’s ρ) becomes
invariant to monotone transformation in (B), but still cannot capture the non-monotone nonlinear
relationship in (C).

While copula-based dependence measures treats the monotone functions equally, equitability
aims to also treat non-monotone functions equally. However, the original Rényi’s Axiom A6 may
be overly strong, and self-equitability aims to treat non-monotone functions equally only under the
regression model (1).
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We first consider some self-equitable copula-based dependence measures and further choose
among these measures based on a new equitability definition in the next Subsection 2.2. Mutual
information (MI), the recommended measure in Kinney and Atwal (2014), is self-equitable and is
based on copula density c(u, v),

MI =

∫
I2

log[c(u, v)]c(u, v)dudv, (3)

where I2 is the unit square. We now consider a large class of self-equitable copula-based measures.
Since the marginal variables X,Y are independent if and only if the corresponding copula distri-
bution is uniform, we measure the dependence between X,Y through the distance between their
copula distribution and the uniform distribution. Let the Copula Distance CDα be the Lα distance
between a copula density and the uniform copula density π(u, v) = 1.

CDα =

∫
I2
|c(u, v)− 1|αdudv, α > 0. (4)

Combining Eq.4 in Fukumizu et al. (2007) and Eq.(4) here, CD2 is the theoretical value of HSNIC
in the large data limit. Our first result is that, the Copula Distance is self-equitable when α ≥ 1.

Lemma 1 The Copula-Distance CDα with α ≥ 1 is self-equitable.

The proof follows from Theorems S3 and S4 of Kinney and Atwal (2014), since g(x) = |x− 1|α is
convex when α ≥ 1.

Remark: Schweizer and Wolff (1981) studied a class of dependence measures that are the Lα
distance between a joint copula C(u, v) and the uniform copula Π(u, v) = uv. The L1, L2 and L∞
distance result in, the Wolf’s σ, Hoeffding’s Φ2 and Wolf’s κ respectively. Schweizer and Wolff
(1981) showed that these measures satisfy a modified set of Rényi’s Axioms, including Axiom
(A6*) weak-equitability. In contrast to the Copula-Distance CDα (Lα distance based on copula den-
sities), these measures are based on the cumulative distribution functions and are not self-equitable.
Since C(u, v) = Pr(U ≤ u, V ≤ v) is the cumulative distribution function, such measures cu-
mulate the deviation from independence from u = 0 to u = 1, and do not remain invariant for all
nonlinear transformations f in model (1).

2.2 Robust Equitability

To select among the many self-equitable dependence measures, we want to consider additional eq-
uitability conditions. Some self-equitable dependence measures may not perform well in practice.
For example, Rényi’s maximum correlation coefficient (Rcor) satisfies the stronger Rényi’s Axiom
A6, thus it is also self-equitable. Rcor(X;Y ) = supf,g ρ[f(X); g(Y )], where ρ is the linear cor-
relation coefficient and the supremum is taken over all Borel-measurable functions f and g. Rcor
has a number of major drawbacks, e.g., it equals 1 too often and is generally not effectively es-
timable (Schweizer and Wolff, 1981; Székely and Rizzo, 2009).

We observe the deficiencies more clearly in another self-equitable measure, the ideal depen-
dence coefficient (IDC): IDC(X;Y ) = 0 if X and Y are independent and IDC(X;Y ) = 1
otherwise. IDC satisfies the first six Rényi’s Axioms, and is self-equitable. It equals one for all
dependent X and Y , providing no distinction of the dependence strength. IDC is only an abstract
measure, the estimation of IDC is equivalent to testing independence between X and Y . However,
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Figure 2: Left: Additive noise for self-equitability. Right: Mixture noise for robust-equitability.

for feature selection, IDC is not helpful at all because it provides no distinction of the dependence
strength for different features. It is also hard to estimate. We wish for a new equitability criterion to
exclude trivial dependence measures like IDC.

The self-equitability definition focuses on the regression Y = f(X) + ε. However, in practice,
this additive noise model does not capture all data types. In some cases, for example in sensor mea-
surements, the deterministic signal is hidden in continuous background noise. Figure 2 illustrates
these two types of noise. The Left subfigure shows additive noise on a deterministic sinusoidal func-
tion. The Right subfigure is the same deterministic signal on a uniform background noise. Mathe-
matically, after the copula transformation, the second mixture noise model is described by a mixture
copula: a continuous copula on the unit square I2 is added to a deterministic signal Cs, which is
a singular copula. Any copula can always be separated into a singular component and an abso-
lutely continuous component (Nelsen, 2006, page 27). Independent background noise is represented
by taking the absolutely continuous component as the independence copula Π(u, v) = uv on I2.
Therefore, with p proportion of hidden deterministic relationship, the copula C = pCs + (1− p)Π.
Here Cs is a singular copula representing the deterministic relationship, so that its support S has
Lebesgue measure zero. The equitability in this mixture noise model means that the dependence
measure should give the same value for all types of deterministic signal Cs.

Definition 3 A dependence measure D[X;Y ] is robust-equitable if and only if D[X;Y ] = p when-
ever (X,Y ) follows a distribution whose copula is C = pCs + (1 − p)Π, for a singular copula
Cs.

Among the self-equitable Copula-Distances (α ≥ 1), L1 distance is the special case that does
reflect the proportion of deterministic relationship in the mixture copula.

CD1 = p

∫
S
C(du, dv) +

∫
I2\S
|(1− p)− 1|dudv = p(1) + p = 2p.

Therefore we define the scaled version of CD1 as robust copula dependence (RCD)

RCD =
1

2
CD1 =

1

2

∫
I2
|c(u, v)− 1|dudv. (5)

Lemma 2 The robust copula dependence RCD is robust-equitable.
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Mathematically, RCD is the same as Silvey’s Delta (Silvey, 1964):

∆ =

∫
φ>1

[p(x, y)− pX(x)pY (y)]dxdy,

where pX and pY are the marginal probability densities for X and Y , p is the joint probability
density for X and Y , and φ(x, y) = p(x, y)/[pX(x)pY (y)]. We write equation (5) in terms of the
absolutely continuous copula density for ease of understanding. When part of the copula is singular,
the RCD in (5) can be defined as in Silvey (1964), interpreting φ as the Radon-Nikodym derivative
of the joint distribution with respect to a dominating probability measure which does cover the
possibility of singularity. Alternatively, for a mixture copula C, the RCD can be defined as the
limit of lim

m→∞
RCD(Cm) for equation (5) on any sequence of continuous copulas {C1, C2, ...} that

converges to C. The convergence means that lim
m→∞

‖Cm−C‖1 := 2 lim
m→∞

sup
A
|Cm(A)−C(A)| =

0, where the supremum is taken over all Borel sets A. A second way of interpretation is helpful
in thinking about why CDα, when α > 1, can not be made robust-equitable and why this leads to
statistical difficulties in estimation which we will discuss in detail in the next section.

Roughly speaking, for the mixture copula C = pCs + (1 − p)Π, the copula density for the
absolutely continuous component is cc(u, v) = 1− p, while we can imagine cs(u, v) as an abstract
copula density for the singular component such that

∫
B cs(u, v)dudv :=

∫
B C(du, dv) = Cs(B)

for any subset B ⊂ S. Since S has Lebesgue measure zero, cs(u, v) = ∞ for (u, v) ∈ S so that
cs is not a proper density, but rather an abstract limit of the sequence lim

m→∞
cm,s. Here for any

convergent sequence of continuous copulas {C1, C2, ...} above, cm,s(u, v) = cm(u, v) − cc(u, v)
is the continuous copula density that approaches the abstract cs(u, v). For any open set BO ⊃ B,
Cs(BO) =

∫
BO cs(u, v)dudv := lim

m→∞

∫
BO cm,s(u, v)dudv, and Cs(B) = lim

BO→B
Cs(BO). Hence

for any α > 1,
∫
B[cs(u, v)]αdudv =

∫
S [cs(u, v)]α−1cs(u, v)dudv =

∫
S∞cs(u, v)dudv = ∞. So

that CDα = ∞ whenever α > 1 and p > 0. Similarly, MI = ∞ for all p > 0. They do not
distinguish the dependence strength in the mixture distribution according to the signal proportion p,
and can not be transformed to be robust-equitable as they over-emphasize the singular component
(high copula density region).

If the dependence measure does not equal p exactly but is a monotone function of p, then we
can scale it to get a robust-equitable version, and call it weakly-robust-equitable.

Definition 4 A dependence measure D[X;Y ] is weakly-robust-equitable if and only if D[X;Y ] is
a strictly monotone function of p whenever (X,Y ) follows a distribution whose copula is C =
pCs + (1− p)Π, for a singular copula Cs.

Lemma 3 The Copula-Distance CDα is weakly-robust-equitable if and only if α ≤ 1.

When α > 1, since CDα = ∞ whenever p > 0, those are not weakly-robust-equitable. When
α < 1,

∫
S [cs(u, v)]αdudv =

∫
B[cs(u, v)]α−1cs(u, v)dudv = 0 so that the contribution from the

singular region S is zero. In these cases,

CDα = 0 +

∫
I2\S
|(1− p)− 1|αdudv = pα

is weakly-robust-equitable. And CD1 is weakly-robust-equitable from Lemma 2.
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The self-equitability for additive noise model requires that α ≥ 1, while the weakly-robust-
equitablity in the mixture noise model requires that α ≤ 1. Hence only α = 1 satisfies the equi-
tability condition in both noise models, and resulting in the robust-equitable RCD.

2.2.1 RCD, OTHER EQUITABILITY DEFINITIONS AND RÉNYI’S AXIOM

Having introduced our measure, RCD, and the robust-equitability definition, we can further com-
pare them to the other equitability definitions in the literature. Reshef et al. (2011) considers eq-
uitability as the ability of a statistic D̂ to approximately reflect the nonlinear R2 over different
relationships. They proposed a statistic MIC and demonstrate numerically such equitability through
simulated examples. Kinney and Atwal (2014) propose to formalize such concept for the popula-
tion parameter D[X;Y ] such that an R2-equitable measure equals g(R2[f(X), Y ]) in the additive
noise model (1) Y = f(X) + ε, and showed that no nontrivial dependence measure can satisfy this
R2-equitability. The self-equitability definition is proposed as an alternative. Murrell et al. (2014)
pointed out that such impossibility results are due to the non-identifiability due to the specification
of ε term, allowing ε to possibly depend on f(X). Under such specification, for example, a noiseless
parabola can be realized as a noisy version of a noiseless linear relationship (Murrell et al., 2014).
Reshef et al. (2015b) propose another formal equitability framework through interpretable intervals
of a statistic under additive homoscedastic noises for both X and Y .

Our robust-equitability definition shares some common characteristics with both Kinney and At-
wal (2014)’s and Reshef et al. (2015b)’s approach respectively. Similar to Kinney and Atwal (2014),
our robust-equitability focuses on the population quantity D[X;Y ] instead of a statistic D̂[X;Y ].
This allows proof of theoretical equitability properties for specific dependence measures, as the
statistical estimation error D̂ − D can be kept as a separate issue. Robust-equitability does have
implications on the statistical estimation error bounds which will be discussed in the next section.
Self-equitability and robust-equitability focus on the invariance of D[X;Y ] as in Rényi’s Axiom
A6, but for different noise models. Reshef et al. (2015b) and our robust-equitability definition each
focuses on a noise model to avoid the non-identifiability issue in Kinney and Atwal (2014)’s model:
additive homoscedastic noise and mixture uniform noise respectively. Under each model, there is a
clearly identifiable quantity of interest: the nonlinear R2 and the mixture proportion p respectively.

Furthermore, our RCD satisfies the first five Rényi’s Axioms. Particularly, RCD = 0 if and
only if X and Y are statistically independent, RCD = 1 if X and Y are related through a deter-
ministic relationship. And RCD is symmetric in that RCD[X;Y ] = RCD[Y ;X]. Notice that
this symmetric property is an appropriate requirement for feature selection with the filtering method
mRMR (Peng et al., 2005). Given a data set X ∈ Rn×d, where n is the number of samples, d is
the number of features, and target variable Y ∈ Rn×1, let Xi denote the i-th feature, mRMR finds
from the d-dimensional feature space, Rd, a subspace of m features that optimally characterize Y ,
by solving the following optimization problem:

max
S

1

|S|
∑
Xi∈S

D[Xi;Y ]− 1

|S|2
∑

Xi,Xj∈S
D[Xi;Xj ], (6)

where S is the optimal feature set, the first term maximizes relevance and the second term mini-
mizes redundancy. Notice that this method only requires bivariate dependence between different
features D[Xi;Xj ] in addition to the bivariate dependence between each feature and response vari-
able D[Xi;Y ]. The feature selection results of mRMR with an asymmetric dependence measure
would depend on how the features are ordered, which is an undesirable characteristic.
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RCD satisfies self-equitability, which is a weakened version of the sixth Rényi’s Axiom. The
Rényi’s Axiom A7 requires the dependence measure to agree with the natural quantity of |ρ| for
bivariate Gaussian distributions (which corresponds to a linear regression model). Our RCD does
not satisfy that, but instead agree with |ρ| for the mixture noise setting with a linear determinis-
tic relationship, since in that case p = |ρ|. Our robust-equitability definition requires the measure
equals p exactly, which provides an easy interpretation in that it is an equitable extension of Pear-
son’s correlation |ρ| to all forms of hidden nonlinear deterministic relationships. It is not essential to
require the exact equality to p, as equaling to a monotone function of p (weakly-robust-equitability)
would enable a robust-equitable version of the measure through a transformation. However, pre-
cisely equaling to p is nice due to the above easier interpretation. Notice that R2 = ρ2 for the
additive noise regression model with a linear relationship (bivariate Gaussian distribution). Hence
the nonlinear R2 can be similarly considered as an equitable extension of Pearson’s correlation in
the additive noise model to all forms of nonlinear regression relationships. However, unlike p, R2

does not satisfy the symmetric property since regressing Y onX and regressingX on Y do not give
the same value.

For discrete random variables, Equation (5) corresponds to the Kolmogorov dependence mea-
sure in the pattern recognition literature (Vilmansen, 1972, 1973; Ekdahl and Koski, 2006) and also
known as the Mortara dependence index (Bagnato et al., 2013). In the discrete case, the measure has
a maximum value less than 1. In contrast, RCD = 1 when X and Y are deterministically related.
For continuous random variablesX and Y , Silvey’s Delta has been cited only as an abstract concept
and no practical estimator was used in the literature for data analysis. The new name, Robust Cop-
ula Dependence (RCD), emphasizes the fact that it is a robust-equitable copula-based dependence
measure.

2.3 Testing Independence Versus Estimation Errors of Dependence Measures

In practice, feature selection is based on an estimator D̂(X;Y ) on the data set, since the exact value
of the dependence measure D(X;Y ) is unknown to the user. Hence the feature selection results are
affected by the estimation error D̂ −D. The estimation error also needs to be studied.

An estimator D̂[X;Y ] is often used to test the independence between X and Y . Some studies
compare different dependence measuresD[X;Y ]s by the power of independence testing using their
corresponding estimators D̂[X;Y ]s (Reshef et al., 2011; Simon and Tibshirani, 2011; Reshef et al.,
2015a). However, while independence testing is related to the estimation of dependence measures
D[X;Y ], the power of the independence test is not a proper way of comparing dependence measures
D[X;Y ]. In fact, as mentioned in Section 2.2, the independence test corresponds to an estimation
of the trivial measure IDC: IDC(X;Y ) = 0 if X and Y are independent and IDC(X;Y ) = 1
otherwise. Thus the power comparison is comparing the performance of D̂[X;Y ] in estimating
IDC(X;Y ) rather than estimating its corresponding parameterD[X;Y ]. Also, good independence
test statistics may not have corresponding interpretable dependence measures (Sun and Zhao, 2014).

As Reshef et al. (2015b) pointed out, the estimator D̂[X;Y ] for equitable D[X;Y ] is most
powerful at testing the hypothesis if the signal strength exceeding a threshold D[X;Y ] ≥ D0,
rather than being most powerful at testing independence D[X;Y ] = 0. Besides simply testing for
independence, dependence measures serve another important purpose: ranking the strength of the
dependence relationships. For example, in the World Health Organization (WHO) data set in Reshef
et al. (2011) the vast majority of the hundreds of the variables show dependence with other variables.
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ρ = 0.1,RCD = 0.1,MI =∞

(a)

ρ = 0,RCD = 0.1,MI =∞
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(b)

ρ = 0.1,RCD = 0.1,MI = 1

(c)

Figure 3: Hidden in background noise are 10% (red colored) data on a deterministic curve in (a)
and (b), on a narrow strip around the line in (c).

So the independence tests do not provide much information there. To achieve sparse representation
(feature selection), it is important to pick out the strongest dependence relationships. Equitable
dependence measure ensures that the signal strength is reflected, rather than the functional form.

The robust-equitability definitions also have implications on the estimation errors. Some self-
equitable measures can equal one too often, the extreme case being the IDC. When the dependence
measure D[X;Y ] equals one for too many type of distributions, it does not distinguish dependence
strength among them, and also makes its estimation difficult. Robust-equitability excludes such
measures. In the next section, we theoretically show that robust-equitable RCD is intrinsically
much easier to estimate than non-robust-equitable (but only self-equitable) MI and CD2. This is
due to the instability in the theoretical values of MI and CD2. The following examples illustrate
the difference between self-equitability (Figure 3: a versus b) and robust-equitability (Figure 3: a
versus c). The self-equitable measures (RCD, MI), unlike ρ, have the same value in Figures 3(a) and
3(b) where each has 10% deterministic data on two different curves. In Figure 3(c), 10% of the data
fall around (rather than exactly on) the line in a very small strip of area 0.1/exp(10) = 4.5× 10−6,
which is very close to the distribution in Figure 3(a). The robust-equitable RCD values are very
similar (differ only in 10−6 order) in Figures 3(a) and 3(c), but theMI values changes from∞ to 1.
Since these two almost indistinguishable distributions result in very different theoretical MI values
(∞ and 1), no estimator can do well.

3. Statistical Estimation Errors

In this section, we study the estimation errors theoretically, and provide a practical estimator for
RCD. In particular, we analyze the statistical estimation error D̂ −D.

3.1 The Inconsistency Results on Estimation of Mutual Information and CD2

We theoretically show that MI and CD2 are much harder to estimate compared to the robust-
equitable RCD. We formally quantify the estimation difficulty through the minimax convergence
rate over a family C.
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ROBUST COPULA DEPENDENCE MEASURE

Denote z = (u, v). Let C be the family of continuous copulas with the density satisfying the
following Hölder condition on the region where c(z) is bounded above by some constant M > 1,
denoted as AM :

|c(z1)− c(z2)| ≤M1‖z1 − z2‖l1 , (7)

for a constant M1 and for all z1 ∈ AM , z2 ∈ AM , and ‖ · ‖l1 denotes the l1 norm.
The estimation of MI has been studied extensively in the literature. Over all distributions, even

discrete ones, no uniform rate of convergence is possible for MI (Antos and Kontoyiannis, 2001;
Paninski, 2003). On the other hand, many estimators were shown to converge to MI for every dis-
tribution. These results are not contradictory, but rather common phenomena for many parameters.
The first result is about the uniform convergence over all distributions, while the second result is
about the pointwise convergence for each distribution. The first restriction is too strong, while the
second restriction is too weak. The difficulty of estimating a parameter needs to be studied for
uniform convergence over a properly chosen family.

As MI is defined through the copula density, it is natural to consider the families generally used
in density estimation literature. Starting from Farrell (1972), it is standard to study the minimax
rate of convergence for density estimation over the class of functions whose m-th derivatives sat-
isfy the Hölder condition. Since the minimax convergence rate usually is achieved by the kernel
density estimator, it is also the optimal convergence rate of density estimation under those Hölder
classes. Generally, with the Hölder condition imposed on the m-th derivatives, the optimal rate
of convergence for two-dimensional kernel density estimator is n−(m+1)/(2m+4) (Silverman, 1986;
Scott, 1992).

Therefore, when studying the convergence of MI estimators, it is very tempting to impose the
Hölder condition on the copula density. In fact, imposing the Hölder condition (7) on the whole I2,
Liu et al. (2012) showed that the kernel density estimation (KDE) based MI estimator converges
at the parametric rate of n−1/2. Pál et al. (2010) also considered similar Hölder condition when
they studied the convergence of k-nearest-neighbor (KNN) based MI estimator. However, such a
condition is usually too strong for copula density, thus these results cannot fully reflect the true
difficulty of MI estimation. When c(u, v) is unbounded, the Hölder condition (7) cannot hold for
the region where c(u, v) is big. Hence imposing this Hölder condition (7) on the whole I2 would
exclude many commonly used continuous copula densities (e.g., Gaussian, student-T, etc.) since
their densities are unbounded (Omelka et al., 2009; Segers, 2012). Therefore, we impose it only
on the region where the copula density is small. Specifically, we assume that the Hölder condition
holds only on the region AM = {(u, v) : c(u, v) < M} for a constant M > 1. Then this condition
is satisfied by all common continuous copulas in the book by Nelsen (2006). For example, all
Gaussian copulas satisfy the Hölder condition (7) on AM for some constants M > 1 and M1 > 0.
But no Gaussian copulas, except the independence copula Π, satisfy the Hölder condition (7) over
the whole I2.

Theorem 4 Let M̂I be any estimator of the mutual information MI based on the observations
Z1 = (U1, V1), ..., Zn = (Un, Vn) from a copula distribution C ∈ C. And let ĈDα be any
estimator of the CDα in equation (4). Then

sup
C∈C

E[|M̂I(C)−MI(C)|] = ∞, and

sup
C∈C

E[|ĈDα(C)− CDα(C)|] = ∞, for any α > 1.
(8)
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The detailed proof is provided in AppendixA. This theorem states that MI and CD2 cannot be
consistently estimated over the family C. This result does not depend on the estimation method
used, as it reflects the theoretical instability of these quantities. There are many estimators for MI:
kernel density estimation (KDE) (Moon et al., 1995), the k-nearest-neighbor (KNN) (Kraskov et al.,
2004), maximum likelihood estimation of density ratio (Suzuki et al., 2009). However, practitioners
are often frustrated by the unreliability of these estimation (Fernandes and Gloor, 2010; Reshef
et al., 2011). This theorem provides a theoretical explanation.

Notice that the inconsistency results over this family C is not due to the unboundedness of MI
and CD2. They can be transformed into correlation measures with values between 0 and 1 (Joe,
1989): MIcor =

√
1− e−2MI and φcor =

√
CD2/(1 + CD2). The MIcor is known as the

Linfoot correlation in the literature (Speed, 2011). We use the name MIcor to indicate it as the
scaled version of MI. The next theorem showed that MIcor cannot be consistently estimated over
the family C also.

Theorem 5 Let M̂Icor be any estimator of MIcor based on the observations Z1 = (U1, V1), ...,
Zn = (Un, Vn) from a copula distribution C ∈ C. Then

sup
C∈C

E[|M̂Icor(C)−MIcor(C)|] ≥ a2 > 0, (9)

for a positive constant a2.

The detailed proof is provided in Appendix B.
The estimation difficulty of these dependence measures is due to their lack of smoothness related

to being not weakly-robust-equitable. Reshef et al. (2015a, Section 4) proved a similar lack of
smoothness of MI and MIcor, while their proposed statistic MIC may be considered a smoothed
version which shows equitable behavior under their framework. Our results are stronger in that: (a)
our results establish the statistical difficulty of estimation via minimax rate, and (b) our results apply
to a broader class of dependence measures.

3.2 The Consistent Estimation of RCD

The equitability definitions and error analysis above assume a bivariate dependence measure. In
this section, we will state the estimation results for a general d-dimensional RCD in equation (5):
RCD = 1

2

∫
Id |c(z)−1|dz for d-dimensional z. That is, for z = (z1, ..., zd), the copula transforma-

tion changes each dimension to uniformly distributed variables uj = F−1
u (zj), j = 1, ..., d. Then∫

|c(z)− 1|dz :=
∫
...
∫
|c(u1, ..., ud)− 1|du1...dud. The robust-equitability definition can be eas-

ily changed to the d-dimensional mixture copula with a singular component and the d-dimensional
uniform distribution. And, in the d-dimensional case, the calculation above equation (5) still holds
so that RCD is robust-equitable. Notice that other equitability definitions such as self-equitability is
only defined for the bivariate case, and the filtering feature selection method mRMR also uses only
the bivariate dependence.

Mathematically, MI (andMIcor) is unstable because it overweighs the region with large density
c(z) values. From equation (3), MI is the expectation of log[c(z)] under the true copula distribution
c(z). In contrast, RCD in (5) takes the expectation at the independence case Π instead. Even if c(z)
cannot be consistently estimated in the region AcM (the complement of AM ), its error contribution
to R̂CD can be bounded. The following theorem, which is proved in Appendix C, shows the result
for the KDE estimator for RCD.
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Theorem 6 Let the KDE estimator of the d-dimensional copula density based on observations
Z1, · · · ,Zn be

ĉkde(Z) =
1

nhd

n∑
i=1

K(
Zi − Z

h
). (10)

We assume the following conditions:

• The bandwidth h→ 0 and nhd →∞.

• The kernel K is non-negative and has a compact support in, B0 = {Z : ‖Z‖l2 ≤ 1}, the
d-dimensional unit ball centered at 0.

• The kernel K is bounded. MK = maxs∈B0 K(s),
∫
B0
K(s)ds = 1, µ2

2 =
∫
B0
K2(s)ds <∞

Then the plugged-in estimator R̂CD = RCD(ĉkde) has a risk bound

sup
C∈C

E[|R̂CD −RCD|] ≤M1h+

√
2µ2
√
nh

d
2

+O(
1

nhd
). (11)

In addition to the KDE based RCD estimator, we can estimate RCD consistently by plug-
ging in the KNN estimator (Loftsgaarden and Quesenberry, 1965) of the copula density: ĉ(z) =
k/n/Ar(k,n) using copula based observations Z1,Z2, · · · ,Zn. Here r(k, n) is the distance from
(d-dimensional) z to the k-th closest of Z1,Z2, · · · ,Zn, and Ar is the volume of the d-dimensional
hyper-ball with radius r. Then R̂CD = RCD(ĉ) =

∑
ĉ(Zi)>1[1− 1/ĉ(Zi)]/n.

Theorem 7 Assuming c in C has bounded continuous second order derivative in AM , k →∞ and
(k/n)→ 0 when n→∞. Then the plugged-in KNN estimator R̂CD = RCD(ĉ) has a risk bound

sup
C∈C

E[|R̂CD −RCD|] ≤ c̃1(
k

nε
)
2
d +

c̃2√
k

+ 2ε, (12)

for some finite constants c̃1 and c̃2, and ε = ε(n) is any sequence converging to 0 slower than k/n.

Here, the extra technical assumption on the second order derivative allows a simpler proof (provided
in Appendix D) by citing formulas in Mack and Rosenblatt (1979). Without it, RCD can still be
estimated consistently as in Theorem 6. The error bound (12) is minimized by ε = (k/n)2/(d+2)

and k = n4/(d+6). Hence, in the bivariate (d = 2) case, we have k = O(
√
n). Simulations in

Appendix E suggests a practical estimator with k = 0.25
√
n.

When RCD is estimated well under a sample size, further increasing the sample size does not
change its estimation value much. In contrast, the estimated MI and CD2 values can continuously
change by a large margin as sample size increases, altering the ranking of features, sometimes to
the wrong order.

Computational Complexity of KNN-based RCD Estimator The computation of KNN-based RCD
is dominated by empirical ranking for each dimension and k-nearest neigbhor search for each sam-
ple. The ranking can be solved by mergesort, which costs O(dn log n) for d dimensions (Cor-
men, 2009). The k-nearest neighbor search can be solved using k-d tree construction, which
has O(kdn log n) complexity when d is small (no larger than 20) (Bentley, 1975). However,
the complexity can increase to O(kdn2) if d becomes large. Therefore, the overall complexity
is O(kdn log n) for low dimension data and O(kdn2) for high dimension data.
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4. Experimental Results

In this section, we empirically verify the properties of RCD in our theoretical analysis.
We first check the estimation errors for RCD in synthetic experiments with additive noise and

mixture noise respectively. For each type of noise, we simulate data with several different relation-
ships so as to show the effect of self-equitability and robust-equitability respectively. In particular,
we compare the RCD estimator with an MI estimator based on the same density estimation. Due to
the non-robust-equitability of MI, in the mixture noise cases, the MI estimator varies widely with
the sample sizes. In contrast, RCD converges as sample sizes increases. Therefore, MI may provide
misleading ranking of features with unequal sample sizes. Also, the ranking between relationships
with the two different noise types are greatly affected by the sample sizes under MI, while ranking
under RCD remains relatively stable.

We then conduct several synthetic experiments to illustrate the properties in feature selection,
and then show that similar patterns exist on real-world data sets. In Section 4.3, we show that: (1)
Non-self-equitable dependence measures may provide misleading ranking under additive noise; (2)
Non-robust-equitable dependence measures may provide misleading ranking under mixture noise
when features have unequal sample sizes; (3) The ranking by non-robust-equitable dependence
measures between the two types of noises are sensitive to sample size. Section 4.4 shows that
similar behavior occurs in three real data examples. This confirms that the advantages of self-
equitable and robust-equitable dependence measures are not just theoretical, but are real in some
practical situations.

Furthermore, we compare the performance of feature selection by the filter method mRMR (Peng
et al., 2005) as a feature search strategy and using various dependence measures as measures of rel-
evance and redundancy (refer to Equation (6)). We conducted the mRMR method first on synthetic
examples in Section 4.5, to illustrate why non-self-equitability or non-robust-equitability could lead
to misleading results. We then perform mRMR on nine benchmark data sets from the UCI Data
Repository (Lichman, 2013) in Section 4.6. Notice that the feature selection performance on a
particular data set is affected by the type of existing relationships and the type of predictors used.
For example, Pearson’s correlation with a linear regression predictor should perform best if linear
relationship is dominant in a data set. For a fair comparison, we measure performance by 10-fold
cross-validated MSE of spline regression, a general nonlinear predictor (Friedman, 1991), using the
selected features. Self-equitability and robust-equitability lead to equitable and robust feature selec-
tion. Hence RCD should provide stable performance across different types of data, not necessarily
best in each situation. However, over many data sets with different types of nonlinear relation-
ships, robust-equitable RCD would provide best average performance as confirmed on these nine
benchmark data sets.

There are some parameters to be set for computing various dependence measures. For kernel
based measures, we follow the settings used by Fukumizu et al. (2007). For HSNIC, we set the
regularization parameter εn = 10−5n−3.1 to satisfy the convergence guarantee given by Theorem
5 from Fukumizu et al. (2007). As discussed in the previous section, we set k = 0.25

√
n for the

k-NN estimator of MI, RCD and CD2.

4.1 Estimation Errors and Equitability

In this section, we study the estimation errors of our RCD estimates through synthetic experiments,
and examine the equitability effect in ranking features. We first generate data from four different
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type level Linear Square Root Cubic Quadratic
1k 10k 1k 10k 1k 10k 1k 10k

add
0.4 0.35(0.01) 0.38(0.00) 0.36(0.01) 0.38(0.00) 0.36(0.01) 0.38(0.00) 0.35(0.01) 0.37(0.00)
0.6 0.54(0.01) 0.58(0.00) 0.54(0.01) 0.58(0.00) 0.55(0.01) 0.58(0.00) 0.53(0.01) 0.57(0.00)
0.8 0.76(0.00) 0.79(0.00) 0.76(0.01) 0.79(0.00) 0.76(0.01) 0.79(0.00) 0.75(0.01) 0.78(0.00)

mix
0.4 0.43(0.02) 0.43(0.01) 0.42(0.02) 0.42(0.01) 0.42(0.02) 0.42(0.01) 0.39(0.02) 0.42(0.01)
0.6 0.62(0.02) 0.62(0.00) 0.61(0.02) 0.62(0.00) 0.61(0.02) 0.62(0.00) 0.59(0.01) 0.61(0.01)
0.8 0.81(0.01) 0.81(0.00) 0.80(0.01) 0.81(0.00) 0.80(0.01) 0.81(0.00) 0.78(0.01) 0.80(0.00)

Table 2: The expected values of RCD estimates (with standard deviation in parenthesis) based on
100 simulations, under various functional types, sample sizes, noise types and noise levels.

type level Linear Square Root Cubic Quadratic
1k 10k 1k 10k 1k 10k 1k 10k

add
0.4 0.77(0.01) 0.77(0.00) 0.77(0.01) 0.77(0.00) 0.75(0.01) 0.75(0.00) 0.00(0.04) 0.00(0.01)
0.6 0.90(0.00) 0.90(0.00) 0.90(0.01) 0.90(0.00) 0.87(0.01) 0.87(0.00) 0.00(0.04) 0.00(0.01)
0.8 0.98(0.00) 0.98(0.00) 0.96(0.00) 0.96(0.00) 0.91(0.00) 0.91(0.00) 0.00(0.04) 0.00(0.01)

mix
0.4 0.40(0.03) 0.40(0.01) 0.33(0.03) 0.33(0.01) 0.34(0.03) 0.33(0.01) -0.01(0.03) 0.00(0.01)
0.6 0.60(0.03) 0.60(0.01) 0.52(0.03) 0.51(0.01) 0.51(0.03) 0.5(0.01) 0.00(0.03) 0.00(0.01)
0.8 0.80(0.02) 0.80(0.01) 0.73(0.02) 0.72(0.01) 0.69(0.03) 0.69(0.01) 0.00(0.04) 0.00(0.01)

Table 3: The expected values of ρ estimates (with standard deviation in parenthesis) based on 100
simulations.

functional types: linear, square root, cubic, and quadratic (cases A, C, D, F in Table 11 of Ap-
pendix E) with two sample sizes of n = 1000 and n = 10000 respectively. Also, data with two
different noise paradigms and three noise levels are tested with three measures, RCD, (non-self-
equitable) ρ and (non-robust-equitable) CD2.

As we can see from Table 2, the standard deviation of the RCD estimates are small, and the
expected value of RCD converges to the true values as sample size increases. The expected values
of RCD was similar for the different functional relationships. They are closer to the true values
under the mixture noise than under the additive noise. For either noise type, the estimates are very
accurate for sample size n = 10, 000. Although there are some random estimation errors, the
RCD estimates would not miss-rank features with moderate difference in true RCD values. That
is, it never ranks features with real RCD = 0.2 as more dependent than features with real RCD
= 0.4, under samples n = 1000 or n = 10, 000. So the RCD estimates can be used to provide
reliable dependence ranking that do not change dramatically under sample sizes n = 1000 versus
n = 10, 000.

In contrast, the non-self-equitable Pearson’s ρ values depend on the functional relationship.
Under the mixture noise, the estimated ρ values are close to the mixture proportion only for the linear
relationship. Hence its ranking of features is heavily influenced by the functional relationships.
Particularly, it fails to detect the quadratic relationship in the last column of Table-3. Even when
80% of data follows the deterministic quadratic relationship, it is still ranked as less dependent than
the features with other functional relationships (even if the other features has only 40% deterministic
mixture proportion).

For the non-robust-equitable CD2 in Table 4, its value changes dramatically under sample sizes
n = 1000 versus n = 10, 000, especially under mixture noise. This demonstrates that sample
size affects the ranking by CD2 in contrast to the ranking by the robust-equitable RCD. If the
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type level Linear Square Root Cubic Quadratic
1k 10k 1k 10k 1k 10k 1k 10k

add
0.4 0.94(0.04) 1.23(0.02) 0.96(0.04) 1.28(0.02) 1.08(0.04) 1.45(0.02) 0.88(0.03) 1.19(0.01)
0.6 1.7(0.04) 2.25(0.02) 1.81(0.05) 2.46(0.02) 2.19(0.06) 3.11(0.03) 1.6(0.04) 2.27(0.02)
0.8 3.62(0.06) 5.06(0.03) 3.72(0.07) 5.47(0.03) 4.35(0.10) 7.52(0.05) 2.93(0.06) 4.96(0.03)

mix
0.4 1.29(0.09) 2.62(0.07) 1.30(0.09) 2.69(0.072) 1.24(0.10) 2.59(0.06) 0.83(0.06) 1.71(0.04)
0.6 2.70(0.15) 5.78(0.10) 2.73(0.15) 5.89(0.09) 2.66(0.17) 5.76(0.10) 1.69(0.08) 3.63(0.06)
0.8 4.75(0.15) 10.24(0.11) 4.79(0.17) 10.34(0.11) 4.75(0.16) 10.24(0.11) 2.87(0.08) 6.27(0.07)

Table 4: The expected values of CD2 estimates (with standard deviation in parenthesis) based on
100 simulations.

two features have unequal sample sizes, then the feature with larger sample size has a built-in
preference by CD2. For each of the functional types, CD2 ranks a feature with mixture proportion
(of deterministic data) 0.6 but large sample size n = 10000 as more dependent than a strongly
dependent feature with mixture proportion 0.8 but smaller sample size n = 1000. Also, for features
with different noise types, their ranking are inconsistent when sample size changes. For example,
for the linear relationship under sample size n = 1000, CD2 ranks the feature with RCD = 0.6
mixture noise as less dependent than the feature with RCD = 0.8 additive noise. But when sample
size is increased to n = 10000, the ranking between these two features reverses. While it is not
necessary for other dependence measures to rank features across different noise types in the same
order as RCD, the stability of the ranking under different sample sizes is desirable. The non-robust-
equitable dependence measures may not provide consistent ranking.

In summary, we observe three advantages of RCD for feature selection, in comparison to other
dependence measures. (1) Non-equitable measures such as ρ may prefer certain functional rela-
tionships (say, linear), while RCD treat them equitably. (2) Self-equitable but non-robust-equitable
measure such as CD2 prefer features with larger sample size. (3) Self-equitable but non-robust-
equitable measure such as CD2 does not provide stable ranking among features when sample size
changes.

4.2 Multivariate Equitability Analysis

We now perform equitability analysis on simulated multivariate data. Following the framework of
Reshef et al. (2014); Murrell et al. (2016), we generate noisy data from various functional forms,
and plot the estimated dependence measure values against the signal level in Figure 4. Our robust-
equitability definition extends the natural signal level to higher dimensional case in the mixture
noise model. Here we study three dimensional (d = 3) cases of six different nonlinear function
relationships, generated with different portion of uniform noise from 0 to 0.9 (with signal portion
from 0.1 to 1). The sample size n = 1000 is used in this experiment. Figure 5 plots the six three
dimensional different nonlinear function relationships at signal level 0.8 (0.2 proportion of uniform
noise).

According to Reshef et al. (2014), a measure is more equitable if the length of a band, when
cutting each plot in Figure 4 with a horizontal line, is smaller. That is, the measure with smaller
bandwidth could capture the dependence purely based on the noise level, and is robust to different
(linear and nonlinear) relationships. On the other hand, if the band is very wide, it will give the same
score for data with a wide range of noise levels, and hence could not identify strong relationships
correctly. Figure 4 shows that RCD is the most equitable, since it has the narrowest bandwidth and
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Figure 4: Seven dependence measure values versus signal levels.
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Figure 5: Six function types, circle, parabola, sine/cosine, twisted curve, two cross lines, and a
spiral curve, with 20% uniform noise from 0 to 0.9 (with signal portion from 0.1 to 1).
The examples in this figure is of signal level 0.8.

lies on the signal level line. The self-equitable mutual information is second best, has relatively
narrower bandwidth compared to other measures except RCD.
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Figure 6: (X1, Y ) has a nonmonotonic relationship with deterministic signal. (X2, Y ) has linear
relationship with uniform additive noise with width d = 0.2. (X3, Y ) has background
noise with a 0.75 linear signal portion. (X4, Y ) is similar to (X3, Y ) but with a 0.5 signal
portion.

X1 X2 X3 X4

n 300 10k 300 10k 300 10k 300 10k
ρlin 0.021 0.00043 0.98 0.98 0.75 0.75 0.51 0.51
HSIC 0.036 0.033 0.095 0.093 0.061 0.057 0.025 0.025
CMMD 0.034 0.034 0.095 0.095 0.060 0.056 0.026 0.025
HSNIC 3.40 3.57 3.63 3.98 3.55 4.08 1.84 1.81
CHSNIC 3.30 3.60 3.59 3.95 3.53 4.07 1.84 1.81

MI 5.06 7.62 2.28 2.37 3.65 5.46 1.82 2.97
CD2 21.37 102.09 3.75 3.74 24.10 146.73 7.86 44.15
RCD 0.93 0.99 0.77 0.80 0.75 0.76 0.52 0.52
MSE 0.00098 0.0023 0.0033 0.0031 0.037 0.037 0.064 0.063

Table 5: Dependence measure values for synthetic data. Sample sizes n = 300 and n = 10, 000
are considered. Each row corresponds to one type of measure. The MSE is presented in
the last row.

4.3 Synthetic Data Sets I: Ranking Features

To compare the performance of each dependence measure in feature selection, we consider four
features X1, X2, X3, X4 and target variable Y as shown in Figure 6. Y has a nonmonotonic but
deterministic relationship with X1 and a linear relationship with X2 plus some additive noise. In
addition, Y has linear relationships with bothX3 andX4 corrupted by increasing level of continuous
background noise. For each feature Xi, we calculate its dependence measure with Y for different
sample sizes n = 300 and 10, 000. Results are presented in Table 5.

Since X1 has a deterministic relationship with Y , it should be ranked as more dependent than
the other features. X3 and X4 has mixture noise with the mixture proportions of 0.75 and 0.5
respectively. We can see that the values learned by RCD are close to those values and correctly ranks
X3 as more dependent than X4. The last row of Table 5 reports the 10-fold cross-validated mean-
squared-error (MSE) of a nonlinear predictor using each feature. Here RCD results are consistent
with the MSE results, providing higher scores for those with lower MSE values (more predictive
of Y ). Now, we inspect the other dependence measures and observe the three issues mentioned in
Section 4.1.
Self-equitability. We expect the self-equitable measures to treat linear and nonlinear models equally
(i.e., they should prefer X1 over X2 because X1 is purely deterministic while X2 has some noise).
As we can see from Table 5, Pearson correlation coefficient ρlin, and kernel-based measures prefer
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X2 more than X1. On the other hand, self-equitable measures MI, CD2 and RCD were able to rank
the features correctly. Although HSNIC and CHSNIC have the same value as CD2 in the large data
limit, empirically they behave similarly to other non-self-equitable kernel-based measures due to
slow convergence of their estimators (Reddi and Póczos, 2013).
Selection Correctness in Unequal Sample Sizes. In real applications, some features may have some
missing measurements, resulting in unequal number of samples among the various features. In this
setting, we still want to compare feature relevance. An ideal dependence measure should not be
influenced greatly by unequal sample sizes. Let us take a closer look at MI and CD2 and on how
they rank features X3 and X4. Note that X3 has a stronger signal-to-noise proportion than X4

(p = 0.5 versus p = 0.75); thus, ideally, one would like the measure to rank X3 higher than X4 as
empirically confirmed by the MSE results. The ranking provided by MI and CD2 is correct when
both features have the same sample size, n = 10, 000. However, if the stronger feature X3 has
missing measurements so that n = 300 for X3, then X3 is ranked lower than X4 by CD2, which
would mislead feature selection algorithms. MI will make the same mistake if the sample size for
X4 further increases.
Selection Stability in Different Sample Sizes. Ideally, a measure should not vary too much as the
sample size changes. However, we observe that MI, CD2, and HSNIC’s ranking of featuresX2, X3

and X4 is affected when the sample size is increased. With fixed sample size n = 300, MI ranks
X2 as having higher deterministic relationship with Y compared to X4. However, when the sample
size is increased to n = 10, 000, it reverses the ranking of these features. This is due to its non-
robust-equitability and resulting estimation difficulty, as proved in Theorems 4 and 5. Additionally,
similar phenomenon appears for CHSNIC and HSNIC on features X2 and X3. We observe that
when n = 300, they rankX2 as having higher dependence with Y compared toX3. However, when
n = 10, 000, these rankings are reversed. These inconsistencies may mislead feature selection
algorithms.

4.4 Real Data Sets I: Ranking Features

In this subsection, we verify that the equitability properties in Subsection 4.3 are also observed on
real data.
Self-equitability. Consider the stock data set from StatLib1. This data set provides daily stock prices
for ten aerospace companies. Our task is to determine the relative relevance of the stock price of
the first two companies (X1, X2) in predicting that of the fifth company (Y ). The scatter plots of
Y against X1, X2 are presented in Figure 7. Ideally, self-equitable measures should prefer X1 over
X2 because the MSE associated with X1 is lower even though it has a more complex function form.
As we can see from Table 8, self-equitable measures MI, CD2, and RCD all correctly select X1.
While measures that are not self-equitable fail to select the right feature.
Selection Correctness in Unequal Sample Sizes. Consider the KEGG metabolic reaction network
data set (Lichman, 2013). Our task is to select the most relevant features in predicting target vari-
able ‘Characteristic path length’ (Y ). The ‘Average shortest path’ (X1), ‘Eccentricity’ (X2) and
‘Closeness centrality’ (X3) are used as candidate features. Observe the ranking of X1 and X3 from
Table 6, when they have equal sample sizes (either 1000 or 20,000), MI, CD2 and RCD all rank
X1 as being more relevant than X3. The MSE values also confirmed that X1 is more predictive of
Y than X3. However, if there are missing measurements of X1, then we may need to compare X1

1. http://lib.stat.cmu.edu/
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Figure 7: (Xi, Y ), i = 1, 2 in stock data set
Measures X1 X2
ρlin -0.68 0.83

HSIC 0.053 0.068
CMMD 0.062 0.073
HSNIC 1.95 2.16

CHSNIC 1.90 1.99
MI 2.06 1.92

CD2 3.88 3.13
RCD 0.68 0.67
MSE 0.18 0.23

Figure 8: Measures for X1, X2 in stock data set
X1 X2 X3

n 1k 20k 1k 20k 1k 20k
MI 3.39 3.95 3.23 3.66 2.94 3.54
CD2 12.05 31.65 10.67 22.44 9.77 28.30
RCD 0.85 0.86 0.82 0.84 0.77 0.80
MSE 0.030 0.028 0.032 0.032 0.14 0.14

Table 6: Dependence measure for three features in metabolic reaction network data set

with 1000 samples and X3 with 20,000 samples. The feature X3 with less signal strength but larger
sample size is given higher ranking by MI and CD2, degrading the performance of feature selection
algorithms. In contrast, RCD correctly identifies X1 as being more relevant than X3 even with the
unequal sample size.
Selection Stability in Different Sample Sizes. Ideally, a measure should not vary too much as the
sample size changes. However, in Table 6, CD2’s ranking of features X2 and X3 is affected by
the increase in sample size. If we fix sample size n = 1000, CD2 ranks X2 as more relevant than
X3 in predicting Y , agreeing with the MSE ranking. However, when the sample size increases to
n = 20, 000, CD2 will prefer X3. CD2 will select the feature X3 when the sample size is large
even though it is less relevant to Y. RCD has the same ranking under both sample sizes.

4.5 Synthetic Data Sets II: mRMR Feature Selection

In this part, we investigate the performance of feature selection for each dependence measure with
mRMR (Peng et al., 2005). We generate data from the following additive regression model Y =
1.5 cos(3πX1) + (1− 2|2X2 − 1|)2 + ε, where X1 and X2 are uniformly distributed on [0, 1], and
ε ∼ N(0, 0.05). We consider feature selection from twenty features. The first two features are X1

and X2. The next six features are noisy versions of X1 and X2, with some as mixtures. They are
also related to Y . A good feature selection method should select X1 and X2 before these more
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Figure 9: Scatter plots of the features X1, · · · , X8 versus Y .

Feature X1 X1

Feature X2 X2

Feature X3 25% X2 and 75% Y with additive noise U(−0.75, 0.75)
Feature X4 20% X2, 20% Y and 60% background noise
Feature X5 X2 with additive noise U(−0.05, 0.05)
Feature X6 50% X2 and 50% background noise
Feature X7 X1 with additive noise U(−0.2, 0.2)
Feature X8 50% X1 and 50% background noise
Feature X9,...,X20 pure random noise

Table 7: Features that are used in the additive regression model.

noisy features X3 to X8. The rest 12 features X9 to X20 are simply random noise not related to X1,
X2 or Y . The features are listed in Table 7. And we plot the first eight features versus Y in one
simulation run in Figure 9.

We generate data sets with size n = 1000, and select the features with mRMR based on the
eight dependence measures. We repeat this experiment fifty times and record the order of each
feature being selected in each data sets. We then apply spline regression model using the top one
to ten selected features and report their respective cross-validated mean square error (MSE). The
cross-validated MSE averaged over 50 runs are plotted in Figure 10.

In this synthetic example, RCD yields the lowest MSE. We can see why by looking at the feature
selection result in more details. Table 8 reports the features that are most frequently selected as the
top one to five features using mRMR. Inversely, Table 9 shows the median order of being selected
for each relevant feature X1, ..., X8.

From the tables, RCD correctly selects the two true features X1 and X2 as the top two features,
thus resulting in the lowest MSE curve in Figure 10. The non-self-equitable measures, for this data
distribution, incorrectly ranks first the feature X3 which has linear relationship with Y in parts of
the data (75% mixture). Then Pearson’s correlation ρ does not rank X1 and X2 high because the re-
lationships are nonlinear. Some nonlinear non-self-equitable measures (HSNIC, CMMD, CHSNIC)
are able to rank the feature X1 second, but cannot select feature X2 which has a nonlinear relation-
ship with Y . That is due to X2, which also has some dependence with X3, was penalized when X3

was selected first. The self-equitable measures MI, CD2 and RCD, in contrast, correctly rank X1

first. However, only the robust-equitable RCD ranks X2 second. The non-robust-equitable MI and
CD2 incorrectly ranks the noisy X4 second, instead of X2, due to mishandling of the mixture noise.
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Figure 10: Cross-validated MSE plot with error bar based on 50 repeated runs.

Order of selection 1 2 3 4 5
ρ X3(100%) * X4(50%) * *
HSIC X3(100%) X7(96%) * * *
HSNIC X3(100%) X1(100%) X4(78%) * *
CMMD X3(100%) X1(100%) * X4(52%) *
CHSNIC X3(100%) X1(100%) X4(98%) * *
MI X1(100%) X4(78%) X3(90%) * *
CD2 X1(100%) X4(80%) X3(80%) * *
RCD X1(100%) X2(82%) X3(90%) * *

Table 8: The most frequently selected top five features, with the relative frequency in parenthesis.
Asterisk indicates one of the random noise features (X9, ..., X20).

Feature X1 X2 X3 X4 X5 X6 X7 X8

ρ 20 19 1 3.5 18 15 18 16
HSIC 18 20 1 4 19 16 2 17
HSNIC 2 17.5 1 3 20 19 18 10
CMMD 2 20 1 4 18 16 19 17
CHSNIC 2 15.5 1 3 20 19 17 10
MI 1 20 3 2 9 19 13 12
CD2 1 20 3 2 17 18 16 19
RCD 1 2 3 7 20 19 13 6

Table 9: Median of the order of selection for the first eight features in each dependence measure
experiment among fifty repeated runs.
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Figure 11: MSE of mRMR-based Feature Selection on nine real-world data sets

4.6 Real Data Sets II: mRMR Feature Selection

Here we used the various dependence measures as measures of relevance and redundancy in the
mRMR-based search strategy, and compare the feature selection results on nine real-world data
sets. Due to the cubic computational cost of kernel-based measures (HSNIC, CHSNIC), up to
1000 samples are used for each data set. We compare the results of RCD versus other dependence
measures by showing plots of 10-fold cross-validated MSE using spline regressor with the features
selected by these measures versus the number of selected features in Figure 11.

We used the Kruskal-Wallis test to compare the MSE between different measures. Table 10
lists the top dependence measures in order of their MSE. For each data set, we only include the
dependence measures resulting in MSE equivalent to the best MSE (p-value > 0.05 for Kruskal-
Wallis test) in the table. We can see that RCD performs as one of the best in 8 out of 9 data sets.
Most other measures are worse off in more than half of the data sets. Only CHSNIC and CMMD
are close in performance. In particular, CMMD is among the best measures in 5 data sets. CHSNIC
performs as one of the best in 6 data sets and actually beats RCD in one data set, whitewine. RCD in
fact find the best top feature in every data set including whitewine. However, the best second feature
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Data set Top Dependence Measures
abalone RCD CHSNIC HSIC
bodyfat RCD CMMD CHSNIC
building RCD CHSNIC Pearson CMMD CD2

chemical RCD CHSNIC
housing RCD CMMD
metabolic RCD CHSNIC CD2 CMMD HSNIC Pearson
protein RCD CMMD
stock RCD CD2

whitewine CHSNIC

Table 10: Measures ranked by predictive MSE

in whitewine was not selected by RCD. Overall, RCD has the best performance in mRMR-based
feature selection compared to competing dependence measures.

5. Conclusions and Discussions

As the data size explodes, researchers are studying increasingly complex relationships among fea-
tures. Restricting the focus on simple linear relationship can miss very informative features. There-
fore, how to measure the dependence strength equitably for various functional relationships has
attracted recent interest from researchers (Reshef et al., 2011; Kinney and Atwal, 2014; Murrell
et al., 2014; Reshef et al., 2015b). This paper provides a theoretical treatment of various equitability
definitions, including our proposal of the robust-equitability concept. The robust copula dependence
(RCD) is proven to be both self-equitable and robust-equitable. Theoretically we show that RCD
is intrinsically easier to estimate than some other self-equitable dependence measures (such as MI
and CD2). Particularly, through minimax rate of convergence, we provide a theoretical explanation
for the difficulty of accurately estimating MI which is noted by practitioners. A practical estimator
is provided for RCD, which enables its usage in feature selection.

Through theoretical and empirical studies, we have shown that RCD does better in ranking
the features according to deterministic signal strengths compared to other dependence measures.
The non-self-equitable measures may prefer noisy features with certain types of relationships (e.g.,
monotonic) over less noisy features with more complex relationships. Self-equitable but non-robust-
equitable measures (such as MI and CD2) overcome this deficiency but have estimation problems,
leading to non-robust feature selection particularly when comparing features with unequal sample
sizes. RCD can be used in feature selection to overcome these limitations.

Using nonlinear dependence measures, rather than the Pearson’s correlation, in high-dimensional
data analysis (e.g. independent component analysis) is becoming more popular to deal with possi-
bly non-Gaussian noises. The equitability properties of RCD make it an ideal choice of dependence
measure in such applications. Replacing measures such as MI by RCD may lead to more robust
results as shown in the examples of Section 4. RCD estimation in high-dimensional case however,
similar to MI, may be inaccurate as it involves high-dimensional density estimation. The improve-
ment on nonparametric RCD estimation remains an ongoing research effort, and can lead to wider
applications.
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Appendix A. Proof of Theorem 4

For simplicity, we focus on the bivariate case (X and Y are each one-dimensional variables). The
extension of the proof to the multivariate case is straight forward. We first work on mutual infor-
mation, then show the similar arguments on the copula distances. To prove the theorem, we use
Le Cam (1973)’s method to find the lower bound on the minimax risk of the estimating mutual
information MI . To do this, we will use a more convenient form of Le Cam’s method developed
by Donoho and Liu (1991). Define the module of continuity of a functional T over the class F with
respect to Hellinger distance as in equation (1.1) of Donoho and Liu (1991):

w(ε) = sup{|T (F1)− T (F2)| : H(F1, F2) ≤ ε, Fi ∈ F}. (13)

Here H(F1, F2) denotes the Hellinger distance between F1 and F2. Then the minimax rate of
convergence for estimating T (F ) over the class F is bounded below by w(n−1/2).

We now look for a pair of density functions c1(u, v) and c2(u, v) on the unit square for distri-
butions that are close in Hellinger distance but far away in their mutual information. This provides
a lower bound on the module of continuity for mutual information MI over the class C, and hence
leads to a lower bound on the minimax risk. We outline the proof next.

We first divide the unit square into three disjoint regions R1, R2 and R3 with R1 ∪ R2 ∪ R3 =
[0, 1]×[0, 1]. The first density function c1(u, v) puts probability masses δ, a and 1−a−δ respectively
on the regions R1, R2 and R3 each uniformly. The a is an arbitrary small fixed value, for example,
a = 0.01. For now, we take δ to be another small fixed value. The area of the region is chosen
so that c1(u, v) = M on region R2 and c1(u, v) = M∗ on region R1 for a very big M∗. The
second density function c2(u, v), compared to c1(u, v), moves a small probability mass ε from R1

to R2. We will see that the Hellinger distance between c1 and c2 is of the same order as ε, but the
change in MI is unbounded for big M∗. Hence module of continuity w(ε) is unbounded for mutual
information MI. Therefore the MI can not be consistently estimated over the class C.

Specifically, the region R1 is chosen to be a narrow strip immediately above the diagonal, R1 =
{(u, v) : −δ1 < u− v < 0}; and R2 is chosen to be a narrow strip immediately below the diagonal,
R2 = {(u, v) : 0 ≤ u−v < δ2}. The remaining region isR3 = [0, 1]×[0, 1]\(R1∪R2). The values
of δ1 and δ2 are chosen so that the areas of regions R1 and R2 are δ/M∗ and a/M respectively.
Then clearly c1(u, v) = M∗ onR1; c1(u, v) = M onR2; c1(u, v) = (1−a−δ)/(1−a/M−δ/M∗)
onR3. And c2(u, v) = M∗−ε(M∗/δ) onR1; c2(u, v) = M+ε(M/a) onR2; c2(u, v) = c1(u, v)
on R3. See the Figure 12.

Then we have

2H2(c1, c2) =
∫

(
√
c2(u, v)−

√
c1(u, v))2dudv

= (
√
M∗ − ε(M∗/δ)−

√
M∗)2δ/M∗ + (

√
M + ε(M/a)−

√
M)2a/M

= δ(
√

1− ε/δ − 1)2 + a(
√

1 + ε/a− 1)2

= δ(ε/2δ)2 + a(ε/2a)2 + o(ε2)
= ε2( 1

4δ + 1
4a) + o(ε2).
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Figure 12: The plot shows the regions R1, R2 and R3. The other two narrow strips neighboring R1

and R2 are for the continuity correction mentioned at the end of the proof.

Hence the Hellinger distance is of the same order as ε:

H(c1, c2) = ε

√
1

8δ
+

1

8a
+ o(ε).

On the other hand, the difference in the mutual information is

MI(c1)−MI(c2)
= δ log(M∗) + a log(M)− (δ − ε) log[M∗ − ε(M∗/δ)]− (a+ ε) log[M + ε(M/a)]
= ε log(M∗)− ε log(M)− (δ − ε) log(1− ε/δ)− (a+ ε) log(1 + ε/a).

(14)

Here M , δ and a are fixed constants. Hence when M∗ →∞, this difference in MI also goes to∞.
For example, if we let M∗ = e1/(ε)2 , then the module of continuity w(ε) ≥ O(1/ε). That means,
the rate of convergence is at least O(w(n−1/2)) = O(n1/2) → ∞. In other words, MI can not be
consistently estimated.

Now, let us consider the CDα =
∫
I2 |c(u, v)− 1|αdudv, for α > 1, where I2 is the unit square.

CDα(c1)− CDα(c2)
= |M∗ − 1|αδ/M∗ + |M−1|αa/M − |M∗ − 1− ε(M∗/δ)|αδ/M∗ + |M − 1 + ε(M/a)|αa/M
= [|M∗ − 1|α − |M∗ − 1− ε(M∗/δ)|α]δ/M∗ + [|M−1|α − |M − 1 + ε(M/a)|α]a/M
= α[(M∗ − 1)α−1M∗/δ − (M − 1)α−1M/α]ε+ o(ε2).

(15)
Again, M , δ and a are fixed constants. Hence when M∗ → ∞, this difference in CDα, α > 1

also goes to∞. For example, if we let M∗ = (ε−2 + Mα)
1

α−1 + 1, then the module of continuity
w(ε) ≥ O(1/ε). Note that α > 1 is essential here. That means, the rate of convergence is at least
O(w(n−1/2)) = O(n1/2)→∞. In other words, CDα, α > 1 can not be consistently estimated.
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The above outlines the main idea of the proof, ignoring some mathematical subtleties. One is
that the example densities c1 and c2 are only piecewise continuous on the three regions, but not truly
continuous as required for the class C. This can be easily remedied by connecting the three pieces
linearly. Specifically we set the densities ci(u, v) = M , i = 1, 2, on the boundary between R1 and
R3, {(u, v) : u− v = −δ1}, and on the boundary between R2 and R3, {(u, v) : u− v = δ2}. Then
we use two narrow strips withinR3, {(u, v) : −δ3 ≤ u−v ≤ −δ1} and {(u, v) : δ2 ≤ u−v ≤ δ4} to
connect the constant ci(u, v) values on the rest of region R3 with the boundary value ci(u, v) = M
continuously through linear (in u− v) ci(u, v)’s on the two strips that satisfies the Hölder condition
(7) of the main text. By the Hölder condition, the connection can be made with strips of width
at most (M − 1 + a + δ)/M1. This continuity modification does not affect the calculation of the
difference MI(c1) −MI(c2) or CDα(c1) − CDα(c2) above as c1 and c2 only differ on regions R1

and R2. Within regions R1 and R2, the densities c1 and c2 can be further similarly connected
continuously linearly in u − v. As there is no Hölder condition on AcM , the connection within R1

and R2 can be as steep as we want. Clearly the order obtained through above calculations will not
change if we make these connections very steep so that their effect is negligible.

Another technical subtlety is that the c1 and c2 defined above are only densities on the unit
square but not copula densities which require uniform marginal distributions. However, it is clear
that the marginal densities for cis are uniform over the interval (δ3, 1 − δ4) and linear in the rest
of interval near the two end points 0 and 1. The copulas densities c∗i ’s corresponding to ci’s can be
calculated directly through Sklar’s decomposition (1) in the main text. It is easy to see that the order
for the module of continuity w(ε) remains the same for using the corresponding copula densities
c∗i ’s.

Appendix B. Proof of Theorem 5

The proof is almost the same as the proof for MI, but need some modification of the pair of least
favorable c1 and c2 above. The small difference in Hellinger distance of c1 and c2 can lead to
unbounded difference in MI(c1) and MI(c2) since MI is unbounded. After the transformation
MIcor =

√
1− e−2MI is bounded. The difference between MIcor(c1) and MIcor(c2) in the

above example is actually small since the MI are big for both c1 and c2 (leading to corresponding
MIcors close to zero). However, MIcor is also very hard to estimate over the class C. To see this,
we follow the same reasoning above but modify the example of c1 and c2. First, we notice that for
any pair of densities c1 and c2,

|MIcor(c1)−MIcor(c2)| = |
√

1− e−2MI(c1) −
√

1− e−2MI(c2)|
= | [1−e−2MI(c1)]−[1−e−2MI(c2)]√

1−e−2MI(c1)+
√

1−e−2MI(c2)
|

≥ 1
2 |e
−2MI(c1) − e−2MI(c2)|

= 1
2e
−2MI(c1)|1− e−2[MI(c1)−MI(c2)]|.

For the difference MIcor(c1) − MIcor(c2) to be the same order of the difference MI(c1) −
MI(c2), we need to set MI(c1) at constant order when ε→ 0.
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Therefore, we modify the above c1 to have probability mass δ = 2ε in region R1, varying with
the ε value instead of fixed as before. And we set M∗ = e1/ε, leading to

MI(c1)
= δ log(M∗) + a log(M) + (1− a− δ) log[(1− a− δ)/(1− a/M − δ/M∗)]
= 2 + a log(M) + (1− a− 2ε) log[(1− a− 2ε)/(1− a/M − 2εe−1/ε)],

which converges to a fixed constant a1 = 2+a log(M)+(1−a) log[(1−a)/(1−a/M)] as ε→ 0.
Using (14), recall that δ = 2ε and M∗ = e1/ε, we have

MI(c1)−MI(c2)
= ε log(M∗)− ε log(M)− (δ − ε) log(1− ε/δ)− (a+ ε) log(1 + ε/a)
= 1− ε log(M)− ε log(1/2)− (a+ ε) log(1 + ε/a),

which converges to 1 as ε→ 0. Hence we have

lim
ε→0

w(ε) ≥ lim
ε→0

1

2
e−2MI(c1)|1− e−2[MI(c1)−MI(c2)]| = 1

2
e−2a1(1− e−2(1)),

a positive constant a2 = e−2a1(1 − e−2)/2. Therefore, MIcor can not be estimated consistently
over the class C either.

Appendix C. Proof of Theorem 6

The first two terms in (11) corresponds to bias and standard deviation of kernel density estimation
when the copula density is bounded. When the copula density is unbounded, the kernel density
estimation ĉ(Z) is not consistent. However, a smaller order O( 1

nhd
) term bounds the overall error

contribution to R̂CD resulting from ĉ(Z) in the unbounded copula density region.
Let M2 = M+1

2 , AM2 = {Z|c(Z) ≤ M2} , T1(c) =
∫
AM2

(1 − c(Z))+dZ, T2(c) =
∫
AcM2

(1 −

c(Z))+dZ, RCD = T1(c) + T2(c), and R̂CD = T1(ĉ) + T2(ĉ)

Firstly, we consider the region AM2 with bounded copula density. Here we calculate the bias
and variance of the kernel density estimator using standard methods first.

c̄n(Z) = E[ĉkde(Z)] =
1

hd

∫
K(

z− Z

h
)c(z)dz =

∫
K(s)c(Z + sh)ds.

Hence

|Bias(Z)| = |
∫
K(s)c(Z + sh)ds− c(Z)| ≤

∫
B0
K(s)|c(Z + sh)− c(Z)|ds

≤
∫
B0
K(s)M1hds

= M1h.

(16)

|V ar(Z)| = 1
nV ar[

1
hd
K(Z1−Z

h )] ≤ 1
nE[ 1

h2d
K2(Z1−Z

h )]

= 1
nhd

∫
B0
K2(s)c(Z + sh)ds

≤ 1
nhd

∫
B0
K2(s)[c(Z) +M1h]ds

=
µ22
nhd

[c(Z) +M1h].

(17)
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Hence the integrated mean square error of the density estimator ĉn(Z) over regions AM2 is

IMSE(Z) =
∫
AM2

[Bias2(Z) + V ar(Z)]dZ

≤
∫
AM2

[M2
1h

2 +
µ22
nhd

[c(Z) +M1h]dZ ≤M2
1h

2 +
µ22
nhd

[1 +M1h]

≤M2
1h

2 +
2µ22
nhd

(18)

Hence the error of R̂CD on AM2 is bounded by

E|T1(ĉ)− T1(c)| ≤ E
∫
AM2
|(1− ĉn(Z))+ − (1− c(Z))+|dZ

≤ E
∫
AM2
|ĉn(Z)− c(Z)|dZ

≤
√
E
∫
AM2

(ĉn(Z)− c(Z))2dZ

≤
√
d2M2

1h
2 +

2µ22
nhd

≤ dM1h+
√

2µ2( 1
nhd

)1/2.

Now we consider the region AcM2
with unbounded copula density. For Z ∈ AcM2

, ĉ(Z) does not
have a finite variance bound in (17). But we can bound the variance by the expectation c̄n(Z) =
E[ĉn(Z)]. Let M3 = M2+1

2 , when h small, Z ∈ AcM2
implies Z + sh ∈ AcM3

. Hence

|V ar(Z)| ≤ 1

nhd

∫
B0

K2(s)c(Z + sh)ds ≤ MK

nhd

∫
B0

K(s)c(Z + sh)ds =
MK

nhd
c̄n(Z)

Using Chebyshev’s inequality,

E[1{ĉn(Z)<1}] = P (ĉn(Z) < 1) ≤ P (|c̄n(Z)− ĉn(Z)| > c̄n(Z)− 1)

≤ V ar[ĉn(Z)]

[c̄n(Z)− 1]2

≤ MK

nhd
c̄n(Z)

[c̄n(Z)− 1]2
≤ MKM4

nhd

where M4 = M3
(M3−1)2

.

Hence the error of R̂CD on AcM2
is bounded by

E|T2(ĉ)− T2(c)| = E[T2(ĉ)] ≤
∫
AcM2

E[1{ĉn(Z)<1}]dZ ≤
MKM4

nhd

Combining the above results:

E[|R̂CD −RCD|] ≤M1h+

√
2µ2√
nhd/2

+
MKM4

nhd
. (19)

This finishes the proof.
Note that we can use any Lp norm (1 ≤ p ≤ ∞) in the Hölder condition: equation (7). The

kernel K is then assumed to have support in the unit ball B0 corresponding to that Lp norm. The
proof remains exactly the same. We in fact will use L∞ norm in our estimator for computational
simplicity. In that case, the unit ball B0 = {Z : ‖Z‖l∞ ≤ 1} is in fact the d-dimensional cube.
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Appendix D. Proof of Theorem 7

Here for R̂CD = RCD(ĉ) we use the k-NN estimator (Loftsgaarden and Quesenberry, 1965) of
the copula density

ĉknn(Z) =
k(n)
n

Ar(k(n),n),Z
, (20)

where Z1,Z2, · · · ,Zn are the copula based observations, r(k(n), n) is the distance from Z to the
kth closest of Z1,Z2, · · · ,Zn and Ar(k(n),n),Z is the volume of the d-dimensional hyper-ball with
radius r(k(n), n).

In the following, without ambiguity, we denote r(k(n), n) by r, and k(n) by k. Hence the
volume Ar,Z is vd · rd, where vd is the volume of the d-dimensional unit ball B0. And ĉknn(Z) =
k/(vdnr

d). For l2 norm, vd = πd/2/Γ[(d+ 2)/2] where Γ(·) denotes the Gamma function.
Moore and Yackel (1977a) showed that, for bounded densities, there is equivalence between the

consistency of the KDE density estimator and the consistency of the k-NN estimator. To cite the
results of (Moore and Yackel, 1977a), we assume a slightly stronger version of the Hölder condition
than (7). That is, we assume that c also has bounded continuous second order derivative in AM .
Let Q(Z) = tr[∂

2c(Z)
∂Z2 ] denote the trace of the Hessian matrix of copula density c(Z). For the

d-dimensional vector Z = (z1, ..., zd), the Hessian matrix ∂2c(Z)/∂Z2 has entries

[
∂2c(Z)

∂Z2
]ij =

∂2c(Z)

∂zi∂zj
.

Then we rewrite the error bound in Theorem 7 explicitly as

sup
C∈C

E[|R̂CD −RCD|] ≤ 2Q̄(
k

nε
)
2
d +

2M√
k

+ 2ε,

where Q̄ = 1
2(d+2)πΓ2/d(d+2

2 ) supZ∈AM Q(Z), and ε = ε(n) is any sequence converging to 0

slower than k/n. We suppress the n from the notation in ε without ambiguity as in k and r above.
We shall use the following asymptotic results on k-NN density estimator in Mack and Rosenblatt

(1979). Denote Q̃(Z) = 1
2(d+2)πΓ2/d(d+2

2 )Q(Z). Then

Bias[ĉknn(Z)] = Q̃(Z)

c(Z)2/d
( kn)2/d +O( c(Z)

k ) + o(( kn)2/d),

V ar[ĉknn(Z)] = c2(Z)
k + o( 1

k ).
(21)

These expressions provide control on the error contribution of ĉ(Z) to R̂CD when c(Z) is
bounded both from above and from below. Similar to the proof of KDE-based R̂CD, we prove that
the error contribution to R̂CD from the big copula density region is of a smaller order O(1/k).
Different from the KDE, the k-NN density estimator also does not have finite bias bound in (21)
when the copula density c(Z) is not bounded below. Therefore, we also need to control the error
contribution to R̂CD from the small (< ε) copula density region separately.

As before, let M2 be a constant between 1 and M , say, M2 = M+1
2 . We now separate the three

regions by copula density: AcM2
= {Z : c(Z) > M2} (big), AM2,ε = {Z : ε ≤ c(Z) ≤ M2}

(middle) and Aε = {Z : c(Z) < ε} (small). Then we can separate RCD into three components
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RCD = T1(c) + T2(c) + T3(c): T1(c) =
∫
AMc

2

[1− c(Z)]+dZ, T2(c) =
∫
AM2,ε

[1− c(Z)]+dZ and

T3(c) =
∫
Aε

[1− c(Z)]+dZ.
Firstly, we look at the error bound on AcM2

, the region of big copula density. Similar to the
KDE, the error in ĉknn(Z) can be arbitrarily large for Z ∈ AcM2

. However, the error only leads to

the error in R̂CD if ĉknn(Z) < 1. From equation (20), ĉknn(Z) < 1 if and only if

r > (
k

nvd
)1/d def

= r̄.

This occurs when at most k − 1 of observations Z1,Z2, · · · ,Zn fall into the ball B(Z; r̄) which is
centered at Z with radius r̄.

Let N̄(Z) denotes the number of observations falling into B(Z; r̄). Then N̄(Z) follows a bi-
nomial distribution with mean np̄, where p̄ =

∫
B(Z;r̄) c(z)dz. Since k/n → 0, r̄ → 0. Hence

M1r̄ < (M2− 1)/2 when n is large enough. Then the whole ball B(Z; r̄) is contained in AcM3
with

M3 = (M2 + 1)/2 as before. Hence p̄ =
∫
B(Z;r̄) c(z)dz ≥M3vdr̄

d = M3k/n. Using Chebyshev’s
inequality,

Pr[ĉknn(Z) < 1] = E[1{N̄(Z) < k}] ≤ V ar[N̄(Z)]
{E[N̄(Z)]−k}2 = np̄(1−p̄)

(np̄−k)2

≤ 1
np̄[1−k/(np̄)]2 ≤

1
M3k[1−1/M3]2

= O( 1
k ).

Hence

E|T1(c)− T1(ĉknn)| =
∫
AcM2

E[1{ĉknn(Z)<1}]dZ ≤
1

M3k[1− 1/M3]2
= O(

1

k
).

Secondly, we look at the error bound on AM2,ε, the region of middle copula density. Using (21),
for Z ∈ AM2,ε, the mean squared error of ĉknn(Z) is

E[(ĉn(Z)− c(Z))2] = bias2(Z) + V ar(Z)

= [
Q̃(Z)

c(Z)2/d
(
k

n
)2/d]2 +

c2(Z)

k
+ o((

k

n
)4/d +

1

k
)

≤ (
Q̄2

ε4/d
)(
k

n
)4/d +

M2
2

k
+ o((

k

n
)4/d +

1

k
).

Hence

E|ĉknn(Z)− c(Z)| ≤
√
E[(ĉn(Z)− c(Z))2] ≤

√
2[Q̄(

k

nε
)2/d +

M2√
k

][1 + o(1)].

We get

E[T2(ĉknn)− T2(c)] ≤ E[

∫
AM2,ε

|ĉknn(Z)− c(Z)|dZ] ≤
√

2[Q̄(
k

nε
)2/d +

M2√
k

][1 + o(1)]. (22)

Thirdly, we look at the error bound on Aε, the region of small copula density. From equation
(20), ĉknn(Z) ≥ 2ε if and only if

r ≤ (
k

n2εvd
)1/d def

= r∗.
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This occurs when at least k of observations Z1,Z2, · · · ,Zn fall into the ball B(Z; r∗). Since
k/(nε)→ 0, r∗ → 0.

Let N∗(Z) denotes the number of observations falling into B(Z; r∗). Then N̄(Z) follows a
binomial distribution with mean np∗, where p∗ =

∫
B(Z;r∗) c(z)dz.

Using Taylor expansion, we have (from last line page 228 in Biau et al. (2011))∫
B(Z;r)

c(z)dz = c(Z)vdr
d + Q̃(Z)vdr

d+2 + o(rd+2).

Therefore, using r∗ → 0, we have p∗ = c(Z)vd(r
∗)d[1 + o(1)] ≤ εvd(r

∗)d[1 + o(1)] which
converges to k/(2n). Hence for n big, p∗ < 0.6k/n. Using Chebyshev’s inequality,

Pr[ĉknn(Z) > 2ε] = E[1{N∗(Z) < k}] ≤ V ar[N∗(Z)]
[k−E(N∗(Z))]2

= np∗(1−p∗)
(k−np∗)2

≤ 0.6k
(0.4k)2

< 3
k

= O( 1
k ).

Since c(Z) ≤ ε, if ĉknn(Z) ≤ 2ε, then |ĉknn(Z)− c(Z)| ≤ 2ε. Hence

E|T3(c)− T3(ĉknn)| ≤
∫
Aε
E|ĉknn(Z)− c(Z)|dZ ≤

∫
Aε
{2ε+ Pr[ĉknn(Z) > 2ε]}dZ

< 2ε+ 3
k = O(ε+ 1

k ).

Finally, when combining the three parts, the termsO(1/k) = o(1/
√
k) < (2−

√
2)/
√
k. Hence

we arrive at
sup
C∈C

E[|R̂CD −RCD|] ≤ 2[Q̄(
k

nε
)2/d +

M2√
k

+ ε], (23)

which finished the proof.
Note that we can use other lp norms, which changes the vd in the proof to the volume of the unit

ball under the corresponding norm. The rate does not change.
We can also prove the consistency under Hölder condition without assuming continuous second

derivatives. However, that involve tedious derivation of bias and variance bounds similar to (21) for
k-NN density estimators. We provide the simple proof here by citing (21) from Mack and Rosenblatt
(1979).

To minimize the error bound in (12), we get ε = (k/n)2/(d+2) and k = n4/(d+6). So in
bivariate (d = 2) case, we take k = O(n1/2). Taking k below the n4/(d+6) rate will make the
O(1/

√
k) term dominant in the error bound. In that case, the asymptotic results on the k-NN

density estimation states that
√
k[ĉ(Z) − c(Z)]/c(Z) converge to a standard Gaussian distribution.

Then
√
k[R̂CD −RCD] converges to an integral of a Gaussian process.

Appendix E. Selection of Tuning Parameter in the Practical Estimator

For a practical estimator for R̂CD, we need to decide the bandwidth in KDE-based estimator or
the number of neighbors k in KNN-based estimator. Theorem 4 and Theorem 5 provides the rates.
For bivariate case, h = O(n−1/4) and k = O(

√
n). To decide the constant coefficient, we used

empirical simulations.
First, for KDE estimators, we tested R̂CD on nine functions (listed in Table 11) with various

levels of additive noises. Four sample sizes of n = 102, 103, 104 and 105 are used.Figure 13 plots
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the simulation results using h = 0.25n−1/4. We can see that the performance of R̂CD improves
as sample size increases, and gives very accurate estimates for RCD under big sample sizes. For
illustration, we showed the plots with bandwidth h = 0.1n−1/4 and h = 0.5n−1/4 in Figure 14
and Figure 15 respectively. Those bandwidth choices are clearly either too small (h = 0.1n−1/4

estimator overshoot in several cases when RCD is small) or too big (h = 0.5n−1/4 estimator
converges slowly when RCD is large). Hence the bandwidth h = 0.25n−1/4 is a good choice.

A Linear y = x
B Quadratic y = x2

C Square Root y =
√
x

D Cubic y = x3

E Centered Cubic y = 4(x− 1/2)3

F Centered Quadratic y = 4x(1− x)
G Cosine (Period 1) y = [cos(2πx) + 1]/2
H Circle (x− 1/2)2 + y2 = 1/4
I Cross y = ±(x− 1/2)

Table 11: The function relationships used in Figures 13 - 18.

According to the equivalence results between the KDE and the KNN estimator by (Moore and
Yackel, 1977b), the k in the KNN density estimation corresponds to the bandwidth in KDE estimator
as c(z)(2h)2 = k/n. As the mean of copula density c(α) is one, h = 0.25n−1/4 corresponds
to k = n(2h)2 = 0.25

√
n. The simulation results for KNN-based R̂CD with k = 0.25

√
n,

k = 0.1
√
n and k = 0.5

√
n are plotted in Figures 16 - 18. Similar pattern as in KDE-based

estimator are observed. Hence we propose the practical KNN-based R̂CD to use k = 0.25
√
n.

Furthermore, we also checked the KNN-based R̂CD on the mixture noise setting used in defi-
nition 2: a proportion (p) of deterministic function is hidden in independent continuous noise. Six
types of deterministic function are used, as listed in Table 12. When n = 5000, the R̂CD is close to
the true value p in the simulations. And compared to the two choices of k = 0.1

√
n and k = 0.5

√
n,

k = 0.25
√
n provide a good balance of approximating the true values when RCD is small or large.

A Linear y = x
B Centered Quadratic y = 4(x− 1/2)2

C Cosine y = cos(4πx)
D Cross y = ±x1{0≤x≤1}
E Circle (2x− 1)2 + y2 = 1
F Cross 2 y = ±(x− 1/2)1{0≤x≤1}

Table 12: The function relationships used in Figures 19.
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Figure 13: The comparison of RCD with its estimated values under different sample sizes. This
estimator uses the square kernel density estimator with bandwidth h = 0.25n−1/4.
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Figure 14: The comparison of RCD with its estimated values under different sample sizes. This
estimator uses the square kernel density estimator with bandwidth h = 0.1n−1/4.
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Figure 15: The comparison of RCD with its estimated values under different sample sizes. This
estimator uses the square kernel density estimator with bandwidth h = 0.5n−1/4.
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Figure 16: Additive noise with k = 0.25
√
n.
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Figure 17: Additive noise with k = 0.1
√
n.
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n, where c = 0.1, 0.25, 0.5.
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