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Abstract

The Hidden Markov Model (HMM) is one of the mainstays of statistical modeling of discrete
time series, with applications including speech recognition, computational biology, computer
vision and econometrics. Estimating an HMM from its observation process is often addressed
via the Baum-Welch algorithm, which is known to be susceptible to local optima. In this
paper, we first give a general characterization of the basin of attraction associated with any
global optimum of the population likelihood. By exploiting this characterization, we provide
non-asymptotic finite sample guarantees on the Baum-Welch updates and show geometric
convergence to a small ball of radius on the order of the minimax rate around a global
optimum. As a concrete example, we prove a linear rate of convergence for a hidden Markov
mixture of two isotropic Gaussians given a suitable mean separation and an initialization
within a ball of large radius around (one of) the true parameters. To our knowledge, these
are the first rigorous local convergence guarantees to global optima for the Baum-Welch
algorithm in a setting where the likelihood function is nonconvex. We complement our
theoretical results with thorough numerical simulations studying the convergence of the
Baum-Welch algorithm and illustrating the accuracy of our predictions.

Keywords: Hidden Markov Models, Baum-Welch algorithm, EM algorithm, non-convex
optimization, graphical models

1. Introduction

Hidden Markov models (HMMs) are one of the most widely applied statistical models of the
last 50 years, with major success stories in computational biology (Durbin, 1998), signal
processing and speech recognition (Rabiner and Juang, 1993), control theory (Elliott et al.,
1995), and econometrics (Kim and Nelson, 1999) among other disciplines. At a high level,
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a hidden Markov model is a Markov process split into an observable component and an
unobserved or latent component. From a statistical standpoint, the use of latent states
makes the HMM generic enough to model a variety of complex real-world time series, while
the Markovian structure enables relatively simple computational procedures.

In applications of HMMs, an important problem is to estimate the state transition
probabilities and the parameterized output densities based on samples of the observable
component. From classical theory, it is known that under suitable regularity conditions, the
maximum likelihood estimate (MLE) in an HMM has good statistical properties (Bickel
et al., 1998). However, given the potentially nonconvex nature of the likelihood surface,
computing the global maximum that defines the MLE is not a straightforward task. In fact,
the HMM estimation problem in full generality is known to be computationally intractable
under cryptographic assumptions (Terwijn, 2002). In practice, however, the Baum-Welch
algorithm (Baum et al., 1970) is frequently applied and leads to good results. It can
be understood as the specialization of the EM algorithm (Dempster et al., 1977) to the
maximum likelihood estimation problem associated with the HMM. Despite its wide use
in many applications, the Baum-Welch algorithm can get trapped in local optima of the
likelihood function. Understanding when this undesirable behavior occurs—or does not
occur—has remained an open question for several decades.

A more recent line of work (Mossel and Roch, 2006; Siddiqi et al., 2010; Hsu et al., 2012)
has focused on developing tractable estimators for HMMs, via approaches that are distinct
from the Baum-Welch algorithm. Nonetheless, it has been observed that the practical
performance of such methods can be significantly improved by running the Baum-Welch
algorithm using their estimators as the initial point; see, for instance, the detailed empirical
study in Kontorovich et al. (2013). This curious phenomenon has been observed in other
contexts (Chaganty and Liang, 2013), but has not been explained to date. Obtaining a
theoretical characterization of when and why the Baum-Welch algorithm behaves well is the
main objective of this paper.

1.1 Related work and our contributions

Our work builds upon a framework for analysis of EM, as previously introduced by a subset
of the current authors (Balakrishnan et al., 2014); see also the follow-up work to regularized
EM algorithms (Yi and Caramanis, 2015; Wang et al., 2014). All of this past work applies
to models based on i.i.d. samples, and as we show in this paper, there are a number of
non-trivial steps required to derive analogous theory for the dependent variables that arise
for HMMs. Before doing so, let us put the results of this paper in context relative to older
and more classical work on Baum-Welch and related algorithms.

Under mild regularity conditions, it is well-known that the maximum likelihood estimate
(MLE) for an HMM is a consistent and asymptotically normal estimator; for instance, see
Bickel et al. (1998), as well as the expository works (Cappé et al., 2004; van Handel, 2008).
On the algorithmic level, the original papers of Baum and co-authors (Baum et al., 1970;
Baum and Petrie, 1966) showed that the Baum-Welch algorithm converges to a stationary
point of the sample likelihood; these results are in the spirit of the classical convergence
analysis of the EM algorithm (Wu, 1983; Dempster et al., 1977). These classical convergence
results only provide a relatively weak guarantee—namely, that if the algorithm is initialized
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Figure 1: (a) A poorly behaved sample likelihood, for which there are many local optima
at varying distances from the MLE. It would require an initialization extremely close to
the MLE in order to ensure that the Baum-Welch algorithm would not be trapped at a
sub-optimal fixed point. (b) A well-behaved sample likelihood, for which all local optima lie
within an en-ball of the MLE, as well as the true parameter θ∗. In this case, the Baum-Welch
algorithm, when initialized within a ball of large radius r, will converge to the ball of much
smaller radius en. The goal of this paper is to give sufficient conditions for when the sample
likelihood exhibits this favorable structure.

sufficiently close to the MLE, then it will converge to it. However, the classical analysis does
not quantify the size of this neighborhood, and as a critical consequence, it does not rule
out the pathological type of behavior illustrated in panel (a) of Figure 1. Here the sample
likelihood has multiple optima, both a global optimum corresponding to the MLE as well as
many local optima far away from the MLE that are also fixed points of the Baum-Welch
algorithm. In such a setting, the Baum-Welch algorithm will only converge to the MLE if it
is initialized in an extremely small neighborhood.

In contrast, the goal of this paper is to give sufficient conditions under which the sample
likelihood has the more favorable structure shown in panel (b) of Figure 1. Here, even
though the MLE does not have a large basin of attraction, the sample likelihood has all
of its optima (including the MLE) localized to a small region around the true parameter
θ∗. Our strategy to reveal this structure, as in our past work (Balakrishnan et al., 2014),
is to shift perspective: instead of studying convergence of Baum-Welch updates to the
MLE, we study their convergence to an εn-ball of the true parameter θ∗, and moreover,
instead of focusing exclusively on the sample likelihood, we first study the structure of
the population likelihood, corresponding to the idealized limit of infinite data. Our first
main result (Theorem 1) provides sufficient conditions under which there is a large ball
of radius r, over which the population version of the Baum-Welch updates converge at a
geometric rate to θ∗. Our second main result (Theorem 2) uses empirical process theory to
analyze the finite-sample version of the Baum-Welch algorithm, corresponding to what is
actually implemented in practice. In this finite sample setting, we guarantee that over the
ball of radius r, the Baum-Welch updates will converge to an εn-ball with εn � r, and most
importantly, this εn-ball contains the true parameter θ∗. Typically this ball also contains
the MLE with high-probability, but our theory does not guarantee convergence to the MLE,
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but rather to a point that is close to both the MLE and the true parameter θ∗ and whose
statistical risk is equivalent to that of the MLE upto logarithmic factors.

These latter two results are abstract, applicable to a broad class of HMMs. We then
specialize them to the case of a hidden Markov mixture consisting of two isotropic components,
with means separated by a constant distance, and obtain concrete guarantees for this model.
It is worth comparing these results to past work in the i.i.d. setting, for which the problem
of Gaussian mixture estimation under various separation assumptions has been extensively
studied (e.g. (Dasgupta, 1999; Vempala and Wang, 2004; Belkin and Sinha, 2010; Moitra and
Valiant, 2010)). The constant distance separation required in our work is much weaker than
the separation assumptions imposed in most papers that focus on correctly labeling samples
in a mixture model. Our separation condition is related to, but in general incomparable
with the non-degeneracy requirements in other work (Hsu et al., 2012; Hsu and Kakade,
2013; Moitra and Valiant, 2010).

Finally, let us discuss the various challenges that arise in studying the dependent data
setting of hidden Markov models, and highlight some important differences with the i.i.d.
setting (Balakrishnan et al., 2014). In the non-i.i.d. setting, arguments passing from the
population-based to sample-based updates are significantly more delicate. First of all, it
is not even obvious that the population version of the Q-function—a central object in the
Baum-Welch updates— exists. From a technical standpoint, various gradient smoothness
conditions are much more difficult to establish, since the gradient of the likelihood no
longer decomposes over the samples as in the i.i.d. setting. In particular, each term in the
gradient of the likelihood is a function of all observations. Finally, in order to establish the
finite-sample behavior of the Baum-Welch algorithm, we can no longer appeal to standard
i.i.d. concentration and empirical process techniques. Nor do we pursue the approach of
some past work on HMM estimation (e.g. (Hsu et al., 2012)), in which it is assumed that
there are multiple independent samples of the HMM.1 Instead, we directly analyze the
Baum-Welch algorithm that practioners actually use—namely, one that applies to a single
sample of an n-length HMM. In order to make the argument rigorous, we need to make use
of more sophisticated techniques for proving concentration for dependent data (Yu, 1994;
Nobel and Dembo, 1993).

The remainder of this paper is organized as follows. In Section 2, we introduce basic
background on hidden Markov models and the Baum-Welch algorithm. Section 3 is devoted
to the statement of our main results in the general setting, whereas Section 4 contains the
more concrete consequences for the Gaussian output HMM. The main parts of our proofs
are given in Section 5, with the more technical details deferred to the appendices.

2. Background and problem set-up

In this section, we introduce some standard background on hidden Markov models and the
Baum-Welch algorithm.

1. The rough argument here is that it is possible to reduce an i.i.d. sampling model by cutting the original
sample into many pieces, but this is not an algorithm that one would implement in practice.
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2.1 Standard HMM notation and assumptions

We begin by defining a discrete-time hidden Markov model with hidden states taking values
in a discrete space. Letting Z denote the integers, suppose that the observed random
variables {Xi}i∈Z take values in Rd, and the latent random variables {Zi}i∈Z take values in
the discrete space [s] : = {1, . . . , s}. The Markov structure is imposed on the sequence of
latent variables. In particular, if the variable Z1 has some initial distribution π1, then the
joint probability of a particular sequence (z1, . . . , zn) is given by

p(z1, . . . , zn;β) = π1(z1;β)
n∏
i=1

p(zi | zi−1;β), (1)

where the vector β is a particular parameterization of the initial distribution and Markov chain
transition probabilities. We restrict our attention to the homogeneous case, meaning that
the transition probabilities for step (t− 1)→ t are independent of the index t. Consequently,
if we define the transition matrix A ∈ Rs×s with entries

A(j, k;β) : = p(z2 = k | z1 = j;β),

then the marginal distribution πi of Zi can be described by the matrix vector equation

πTi = πT1 A
i−1,

where πi and π1 denote vectors belonging to the s-dimensional probability simplex.

We assume throughout that the Markov chain is aperiodic and recurrent, whence it has
a unique stationary distribution π, defined by the eigenvector equation πT = πTA. To be
clear, both π and the matrix A depend on β, but we omit this dependence so as to simplify
notation. We assume throughout that the Markov chain begins in its stationary state, so
that π1 = π, and moreover, that it is reversible, meaning that

π(j)A(j, k) = π(k)A(k, j) (2)

for all pairs j, k ∈ [s].

A key quantity in our analysis is the mixing rate of the Markov chain. In particular, we
assume the existence of mixing constant εmix ∈ (0, 1] such that

εmix ≤
p(zi|zi−1;β)

π(zi)
≤ ε−1

mix (3)

for all (zi, zi−1) ∈ [s] × [s]. This condition implies that the dependence on the initial
distribution decays geometrically. More precisely, some simple algebra shows that

sup
π1

∥∥πT1 At − πT1 ∥∥TV
≤ c0ρ

t
mix for all t = 1, 2, . . ., (4)

where ρmix = 1− εmix denotes the mixing rate of the process, and c0 is a universal constant.
Note that as εmix → 1−, the Markov chain has behavior approaching that of an i.i.d. sequence,
whereas as εmix → 0+, its behavior becomes increasingly “sticky”.
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Figure 2: The hidden Markov model as a graphical model. The blue circles indicate observed
variables Zi, whereas the orange circles indicate latent variables Xi.

Associated with each latent variable Zi is an observation Xi ∈ Rd. We use p(xi|zi;µ) to
denote the density of Xi given that Zi = zi, an object that we assume to be parameterized
by a vector µ. Introducing the shorthand xn1 = (x1, . . . , xn) and zn1 = (z1, . . . , zn), the joint
probability of the sequence (xn1 , z

n
1 ) (also known as the complete likelihood) can be written

in the form

p(zn1 , x
n
1 ; θ) = π1(z1)

n∏
i=2

p(zi | zi−1;β)
n∏
i=1

p(xi|zi;µ), (5)

where the pair θ : = (β, µ) parameterizes the transition and observation functions. The
likelihood then reads

p(xn1 ; θ) =
∑
zn1

p(zn1 , x
n
1 ; θ).

For our convenience in subsequent analysis, we also define a form of complete likelihood
including an additional hidden variable z0 which is not associated to any observation x0

p(zn0 , x
n
1 ; θ) = π0(z0)

n∏
i=1

p(zi | zi−1;β)
n∏
i=1

p(xi|zi;µ), (6)

where π0 = π. Note that it preserves the usual relationship
∑

zn0
p(zn0 , x

n
1 ; θ) = p(xn1 ; θ)

between the ordinary and complete likelihoods in EM problems.

A simple example: A special case helps to illustrate these definitions. In particular,
suppose that we have a Markov chain with s = 2 states. Consider a matrix of transition
probabilities A ∈ R2×2 of the form

A =
1

eβ + e−β

[
eβ e−β

e−β eβ

]
=

[
ζ 1− ζ

1− ζ ζ

]
, (7)

where ζ : = eβ

eβ+e−β
. By construction, this Markov chain is recurrent and aperiodic

with the unique stationary distribution π =
[

1
2

1
2

]T
. Moreover, by calculating the
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eigenvalues of the transition matrix, we find that the mixing condition (4) holds with
ρmix : = |2ζ − 1| = | tanh(β)|.

Suppose moreover that the observed variables in Rd are conditionally Gaussian, say with

p(xt|zt;µ) =

{
1

(2πσ2)d/2
exp

{
− 1

2σ2 ‖x− µ‖22
}

if zt = 1

1
(2πσ2)d/2

exp
{
− 1

2σ2 ‖x+ µ‖22
}

if zt = 2.
(8)

With this choice, the marginal distribution of each Xt is a two-state Gaussian mixture with
mean vectors µ and −µ, and covariance matrices σ2Id. We provide specific consequences of
our general theory for this special case in the sequel.

2.2 Baum-Welch updates for HMMs

We now describe the Baum-Welch updates for a general discrete-state hidden Markov model.
As a special case of the EM algorithm, the Baum-Welch algorithm is guaranteed to ascend on
the likelihood function of the hidden Markov model. It does so indirectly, by first computing
a lower bound on the likelihood (E-step) and then maximizing this lower bound (M-step).

For a given integer n ≥ 1, suppose that we observe a sequence xn1 = (x1, . . . , xn) drawn
from the marginal distribution over Xn

1 defined by the model (5). The rescaled log likelihood
of the sample path xn1 is given by

`n(θ) =
1

n
log
(∑

zn0

p(zn0 , x
n
1 ; θ)

)

The EM likelihood is based on lower bounding the likelihood via Jensen’s inequality. For
any choice of parameter θ′ and positive integers i ≤ j and a < b, let E

Zji |xba,θ′
denote

the expectation under the conditional distribution p(Zji | xba; θ′). With this notation, the
concavity of the logarithm and Jensen’s inequality imply that for any choice of θ′, we have
the lower bound

`n(θ) =
1

n
log
[
EZn0 |xn1 ,θ′

p(Zn0 , x
n
1 ; θ)

p(Zn0 | xn1 ; θ′)

]
≥ 1

n
EZn0 |xn1 ,θ′

[
log p(Zn0 , x

n
1 ; θ)

]
︸ ︷︷ ︸

Qn(θ |θ′)

+
1

n
EZn0 |xn1 ,θ′

[
− log p(Zn0 | xn1 ; θ′)]︸ ︷︷ ︸
Hn(θ′)

.

For a given choice of θ′, the E-step corresponds to the computation of the function
θ 7→ Qn(θ | θ′). The M -step is defined by the EM operator Mn : Ω̃ 7→ Ω̃

Mn(θ′) = arg max
θ∈Ω̃

Qn(θ | θ′), (9)

where Ω̃ is the set of feasible parameter vectors. Overall, given an initial vector θ0 = (β0, µ0),
the EM algorithm generates a sequence {θt}∞t=0 according to the recursion θt+1 = Mn(θt).
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This description can be made more concrete for an HMM, in which case the Q-function
takes the form

Qn(θ | θ′) =
1

n
EZ0|xn1 ,θ′

[
log π0(Z0;β)

]
+

1

n

n∑
i=1

EZi−1,Zi|xn1 ,θ′
[

log p(Zi | Zi−1;β)
]

+
1

n

n∑
i=1

EZi|xn1 ,θ′
[

log p(xi | Zi;µ)
]
, (10)

where the dependence of π0 on β comes from the assumption that π0 = π. Note that the
Q-function can be decomposed as the sum of a term which is solely dependent on µ, and
another one which only depends on β—that is

Qn(θ | θ′) = Q1,n(µ | θ′) +Q2,n(β | θ′) (11)

where Q1,n(µ | θ′) = 1
n

∑n
i=1 EZi|xn1 ,θ′

[
log p(xi | Zi, µ)

]
, and Q2,n(β | θ′) collects the remain-

ing terms. In order to compute the expectations defining this function (E-step), we need
to determine the marginal distributions over the singletons Zi and pairs (Zi, Zi+1) under
the joint distribution p(Zn0 | xn1 ; θ′). These marginals can be obtained efficiently using a
recursive message-passing algorithm, known either as the forward-backward or sum-product
algorithm (Kschischang et al., 2001; Wainwright and Jordan, 2008).

In the M -step, the decomposition (11) suggests that the maximization over the two
components (β, µ) can also be decoupled. Accordingly, with a slight abuse of notation, we
often write

Mµ
n (θ′) = arg max

µ∈Ωµ
Q1,n(µ | θ′), and Mβ

n (θ′) = arg max
β∈Ωβ

Q2,n(β | θ′)

for these two decoupled maximization steps, where Ωβ and Ωµ denote the feasible set of

transition and observation parameters respectively and Ω̃ : = Ωβ × Ωµ. In the following,
unless otherwise stated, Ωµ = Rd, so that the maximization over the observation parameters
is unconstrained.

3. Main results

We now turn to the statement of our main results, along with a discussion of some of their
consequences. The first step is to establish the existence of an appropriate population
analog of the Q-function. Although the existence of such an object is a straightforward
consequence of the law of large numbers in the case of i.i.d. data, it requires some technical
effort to establish existence for the case of dependent data; in particular, we do so using a
k-truncated version of the full Q-function (see Proposition 1). This truncated object plays a
central role in the remainder of our analysis. In particular, we first analyze a version of the
Baum-Welch updates on the expected k-truncated Q-function for an extended sequence of
observations xn+k

1−k , and provide sufficient conditions for these population-level updates to
be contractive (see Theorem 1). We then use non-asymptotic forms of empirical process
theory to show that under suitable conditions, the actual sample-based EM updates—i.e.,
the updates that are actually implemented in practice—are also well-behaved in this region
with high probability (see Theorem 2). In subsequent analysis to follow in Section 4, we
show that this initialization radius is suitably large for an HMM with Gaussian outputs.
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3.1 Existence of population Q-function

In the analysis of Balakrishnan et al. (2014), the central object is the notion of a population
Q-function—namely, the function that underlies the EM algorithm in the idealized limit
of infinite data. In their setting of i.i.d. data, the standard law of large numbers ensures
that as the sample size n increases, the sample-based Q-function approaches its expectation,
namely the function

Q(θ | θ′) = E
[
Qn(θ | θ′)

]
= E

[
EZ1|X1,θ′

[
log p(X1, Z1; θ)

]]
.

Here we use the shorthand E for the expectation over all samples X that are drawn from
the joint distribution (in this case E := EXn

1 |θ∗).

When the samples are dependent, the quantity E
[
Qn(θ | θ′)

]
is no longer independent of

n, and so an additional step is required. A reasonable candidate for a general definition of
the population Q-function is given by

Q(θ | θ′) : = lim
n→+∞

[EQn(θ | θ′)]. (12)

Although it is clear that this definition is sensible in the i.i.d. case, it is necessary for
dependent sampling schemes to prove that the limit given in definition (12) actually exists.

In this paper, we do so by considering a suitably truncated version of the sample-based
Q-function. Similar arguments have been used in past work (e.g., (Cappé et al., 2004; van
Handel, 2008)) to establish consistency of the MLE; here our focus is instead on the behavior
of the Baum-Welch algorithm. Let us consider a sequence {(Xi, Zi)}n+k

i=1−k, assumed to be
drawn from the stationary distribution of the overall chain. Recall that E

Zji |xba,θ
denotes

expectations taken over the distribution p(Zji | xba, θ). Then, for a positive integer k to be
chosen, we define

Qkn(θ | θ′) =
1

n

[
EZ0|xk−k,θ′

log p(Z1;β) +
n∑
i=1

EZii−1|x
i+k
i−k,θ

′ log p(Zi | Zi−1;β)

+
n∑
i=1

EZi|xi+ki−k,θ
′ log p(xi | Zi;µ)

]
. (13)

In an analogous fashion to the decomposition in equation (10), we can decompose Qkn in the
form

Qkn(θ | θ′) = Qk1,n(µ | θ′) +Qk2,n(β | θ′).

We associate with this triplet of Q-functions the corresponding EM operators Mk
n(θ′),

Mµ,k
n (θ′) and Mβ,k

n (θ′) as in Equation (9). Note that as opposed to the function Qn from
equation (10), the definition of Qkn involves variables Zi, Zi−1 that are not conditioned on
the full observation sequence xn1 , but instead only on a 2k window centered around the
index i. By construction, we are guaranteed that the k-truncated population function and
its decomposed analogs given by

Qk(θ | θ′) := lim
n→∞

EQkn(θ | θ′) = EQk1,n(µ | θ′) + lim
n→∞

EQk2,n(β | θ′)

:= Qk1(µ | θ′) +Qk2(β | θ′) (14)

9
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are well-defined. In particular, due to stationarity of the random sequences {p(zi | Xi+k
i−k )}ni=1

and {p(zii−1 | X
i+k
i−k )}ni=1, the expectation over {(Xi, Zi)}n+k

i=1−k is independent of the sample
size n. Notice that the Baum-Welch algorithm in practice essentially corresponds to using
k = n.

Our first result uses the existence of this truncated population object in order to show
that the standard population Q-function from equation (12) is indeed well-defined. In doing
so, we make use of the sup-norm

‖Q1 −Q2‖∞ : = sup
θ,θ′∈Ω̃

∣∣∣Q1(θ | θ′)−Q2(θ | θ′)
∣∣∣. (15)

We require in the following that the observation densities satisfy the following boundedness
condition

sup
θ∈Ω̃

E
[

max
zi∈[s]

∣∣ log p(Xi | zi, θ)
∣∣] <∞. (16)

Proposition 1 Under the previously stated assumptions, the population function Q defined
in equation (12) exists.

The proof of this claim is given in Appendix A. It hinges on the following auxiliary claim,
which bounds the difference between EQn and the k-truncated Q-function as

‖EQn −Qk‖∞ ≤
c s4

ε9mixπ
2
min

(
1− εmixπmin

)k
+
c(πmin, s, εmix)

n
, (17)

where πmin := minβ∈Ωβ ,j∈[s] π(j | β) is the minimum probability in the stationary distribution,
εmix is the mixing constant from equation (3), and c(·) is a constant dependent only on
the inherent model parameters. The dependencies on εmix and πmin are not optimized
here. Since this bound holds for all n, it shows that the population function Q can be
uniformly approximated by Qk, with the approximation error decreasing geometrically as
the truncation level k grows. This fact plays an important role in the analysis to follow.

3.2 Analysis of updates based on Qk

Our ultimate goal is to establish a bound on the difference between the sample-based Baum-
Welch estimate and θ∗, in particular showing contraction of the Baum-Welch update towards
the true parameter. Our strategy for doing so involves first analyzing the Baum-Welch
iterates at the population level, which is the focus of this section.

The quantity Q is significant for the EM updates because the parameter θ∗ satisfies
the self-consistency property θ∗ = arg maxθQ(θ | θ∗). In the i.i.d. setting, the function Q
can often be computed in closed form, and hence directly analyzed, as was done in past
work Balakrishnan et al. (2014). In the HMM case, this function Q no longer has a closed
form, so an alternative route is needed. Here we analyze the population version via the
truncated function Qk (14) instead, where k is a given truncation level (to be chosen in
the sequel). Although θ∗ is no longer a fixed point of Qk, the bound (17) combined with
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the assumption of strong concavity of Qk imply an upper bound on the distance of the
maximizers of Qk and Q.

With this setup, we consider an idealized population-level algorithm that, based on some
initialization θ̃0 ∈ Ω = B2

(
r;µ∗

)
× Ωβ, generates the sequence of iterates

θ̃t+1 = Mk(θ̃t) := arg max
θ∈Ω̃

Qk(θ | θ̃t). (18)

where Ω̃ = Ωβ × Ωµ is a larger set than Ω, especially Ωµ = Rd. Since Qk is an approximate
version of Q, the update operator Mk should be understood as an approximation to the
idealized population EM operator M where the maximum is taken with respect to Q. As
part (a) of the following theorem shows, the approximation error is well-controlled under
suitable conditions. We analyze the convergence of the sequence {θ̃t}∞t=0 in terms of the
norm ‖ · ‖? : Ωµ × Ωβ → R+ given by

‖θ − θ∗‖? = ‖(µ, β)− (µ∗, β∗)‖? : = ‖µ− µ∗‖2 + ‖β − β∗‖2. (19)

Contraction in this norm implies that both parameters µ, β converge linearly to the true
parameter.

Conditions on Qk: Let us now introduce the conditions on the truncated function Qk

that underlie our analysis. For this purpose, we concentrate on a potentially smaller set

Ω : = B2(r;µ∗)× Ωβ

with radius r > 0, where Ωβ is the set of allowable HMM transition parameters. The goal is

to find the largest Ω ⊂ Ω̃, in which said conditions are fulfilled. This set Ω is then equivalent
to the basin of attraction, i.e. the set in which we can initialize the algorithm and obtain
linear convergence to a good optimum.

First, let us say that the function Qk(· | θ′) is (λµ, λβ)-strongly concave in Ω if for all
θ′ ∈ Ω we have

Qk1(µ1 | θ′)−Qk1(µ2 | θ′)− 〈∇µQk1(µ2 | θ′), µ1 − µ2〉 ≤ −
λµ
2
‖µ1 − µ2‖22 (20a)

and Qk2(β1 | θ′)−Qk2(β2 | θ′)− 〈∇βQk2(β2 | θ′), β1 − β2〉 ≤ −
λβ
2
‖β1 − β2‖22 (20b)

for all (µ1, β1), (µ2, β2) ∈ Ω.
Second, we impose first-order stability conditions on the gradients of each component of

Qk:
• For each µ ∈ Ωµ, θ

′ ∈ Ω, we have

‖∇µQk1(µ | µ′, β′)−∇µQk1(µ | µ∗, β′)‖2 ≤ Lµ,1‖µ′ − µ∗‖2 (21a)

‖∇µQk1(µ | µ′, β′)−∇µQk1(µ | µ′, β∗)‖2 ≤ Lµ,2‖β′ − β∗‖2, (21b)

We refer to this condition as Lµ-FOS for short.
• Secondly, for all β ∈ Ωβ, θ

′ ∈ Ω, we require that

‖∇βQk2(β | µ′, β′)−∇βQk2(β | µ∗, β′)‖2 ≤ Lβ,1‖µ′ − µ∗‖2 (22a)

‖∇βQk2(β | µ′, β′)−∇βQk2(β | µ′, β∗)‖2 ≤ Lβ,2‖β′ − β∗‖2. (22b)

11
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We refer to this condition as Lβ-FOS for short. The experienced reader may find that
the (Lµ, Lβ)-FOS conditions look intriguingly similar to the Lipschitz gradient conditions
often encountered when proving geometric convergence for gradient descent methods. On a
high level, smoothness requires function values of one function to be close for any pair of
arguments that are close. Although our conditions seem to invoke Lipschitz gradients as
well, it is actually of a completely different nature. The important difference arises from the
existence of two parameters, as we now clarify.

As opposed to gradient descent, the EM updates optimize over the first parameter θ
of a function Qk(· | θ′) defined by the second parameter θ′ at every time step. If we could
access Qk(· | θ∗), EM would converge in one step to the true optimum. Therefore, if we
can guarantee that Qk(· | θ′) and Qk(· | θ∗) are close in some sense, there should be good
reasons to hope that under some more regularity assumptions the maximizers are close as
well, i.e. that Mk(θ′) is close to θ∗.

The (Lµ, Lβ)-FOS conditions are precisely encouraging closeness of these two functions in
a first-order sense. In particular, we require the gradients (with respect to the first argument
θ) to be Lipschitz in the second argument θ′. Typical smoothness however is a property
with respect to a fixed function (i.e. a fixed θ′ in our case) and thus requires gradients to
be Lipschitz in the first argument. Loosely speaking it upper bounds the curvature of said
function, and thus is more like a second-order condition by nature. This distinction also
explains why (Lµ, Lβ)-FOS conditions require to be uniformly satisfied only over the first
argument, while one of the second arguments can be fixed at µ∗ or β∗ respectively. Finally,
as we show in Section 4, these conditions hold for concrete models.

Convergence guarantee for Qk-updates: We are now equipped to state our main
convergence guarantee for the updates. It involves the quantities

L : = max{Lµ1 , Lµ2}+ max{Lβ1 , Lβ2}, λ : = min{λµ, λβ} and κ : =
L

λ
, (23)

with κ generally required to be smaller than one, as well as the additive norm ‖ · ‖? from
equation (19).

Part (a) of the theorem controls the approximation error induced by using the k-truncated
function Qk as opposed to the exact population function Q, whereas part (b) guarantees a
geometric rate of convergence in terms of κ defined above in equation (23).

Theorem 1 (a) Approximation guarantee: Under the mixing condition (4), density bound-
edness condition (16), and (λµ, λβ)-strong concavity condition (20), there is a universal
constant c0 such that

‖Mk(θ)−M(θ)‖2? ≤
Cs4

λ ε9mixπ
2
min

(
1− εmixπmin

)k
︸ ︷︷ ︸

=:ϕ2(k)

for all θ ∈ Ω, (24)

where s is the number of states, and πmin : = min
β∈Ωβ

min
j∈[s]

π(j;β).

(b) Convergence guarantee: Suppose in addition that the (Lµ, Lβ)-FOS conditions (21),(22)
holds with parameter κ ∈ (0, 1) as defined in (23) for θ, θ′ ∈ Ω = B2

(
r;µ∗

)
× Ωβ, and

12
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that the truncation parameter k is sufficiently large to ensure that

ϕ(k) ≤
(
1− κ

)
r − κ max

β∈Ωβ
‖β − β∗‖2.

Then, given an initialization θ̃0 ∈ Ω, the iterates {θ̃t}∞t=0 generated by the Mk operator
satisfy the bound

‖θ̃t − θ∗‖? ≤ κt‖θ̃0 − θ∗‖? +
1

1− κ
ϕ(k). (25)

Note that the subtlety here is that θ∗ is no longer a fixed point of the operator Mk, due
to the error induced by the kth-order truncation. Nonetheless, under the mixing condition,
as the bounds (24) and (25) show, this approximation error is controlled, and decays
exponentially in k. The proof of the recursive bound (25) is based on showing that

‖Mk(θ)−Mk(θ∗)‖? ≤ κ‖θ − θ∗‖? (26)

for any θ ∈ Ω. Inequality (26) is equivalent to stating that the operator Mk is contractive,
i.e. that applying Mk to the pair θ and θ∗ always decreases the distance.

Finally, when Theorem 1 is applied to a concrete model, the task is to find a big r and
Ωβ such that the conditions in the theorem are satisfied, and we do so for the Gaussian
output HMM in Section 4.

3.3 Sample-based results

We now turn to a result that applies to the sample-based form of the Baum-Welch algorithm—
that is, corresponding to the updates that are actually applied in practice. For a tolerance
parameter δ ∈ (0, 1), we let ϕn(δ, k) be the smallest positive scalar such that

P
[

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖? ≥ ϕn(δ, k)
]
≤ δ. (27a)

This quantity bounds the approximation error induced by the k-truncation, and is the
sample-based analogue of the quantity ϕ(k) appearing in Theorem 1(a). For each δ ∈ (0, 1),

we let εµn(δ, k) and εβn(δ, k) denote the smallest positive scalars such that

P
[

sup
θ∈Ω
‖Mµ,k

n (θ)−Mµ,k(θ)‖2 ≥ εµn(δ, k)
]
≤ δ, and (27b)

P
[

sup
θ∈Ω
‖Mβ,k

n (θ)−Mβ,k(θ)‖2 ≥ εβn(δ, k)
]
≤ δ,

where Mµ,k
n (·) and Mβ,k

n (·) correspond to the truncated versions of Mµ
n (·) and Mβ

n (·).
Furthermore we define εn(δ, k) : = εµn(δ, k) + εβn(δ, k). For a given truncation level k, these
values give an upper bound on the difference between the population and sample-based
M -operators, as induced by having only a finite number n of samples.
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Theorem 2 (Sample Baum-Welch) Suppose that the truncated population EM operator
Mk satisfies the local contraction bound (26) with parameter κ ∈ (0, 1) in Ω. For a given
sample size n, suppose that (k, n) are sufficiently large to ensure that

ϕn(δ, k) + ϕ(k) + εµn
(
δ, k
)
≤ (1− κ) r − κ max

β∈Ωβ
‖β − β∗‖2. (28a)

Then given any initialization θ̂0 ∈ Ω, with probability at least 1 − 2δ, the Baum-Welch
sequence {θ̂t}∞t=0 satisfies the bound

‖θ̂t − θ∗‖? ≤ κt‖θ̂0 − θ∗‖?︸ ︷︷ ︸
Geometric decay

+
1

1− κ

{
ϕn
(
δ, k
)

+ ϕ(k) + εn
(
δ, k
)}

︸ ︷︷ ︸
Residual error en

. (28b)

The bound (28b) shows that the distance between θ̂t and θ∗ is bounded by two terms:
the first decays geometrically as t increases, and the second term corresponds to a residual
error term that remains independent of t. Thus, by choosing the iteration number T larger
than log(2r/ε)

log κ , we can ensure that the first term is at most ε. The residual error term can be
controlled by requiring that the sample size n is sufficiently large, and then choosing the
truncation level k appropriately. We provide a concrete illustration of this procedure in the
following section, where we analyze the case of Gaussian output HMMs. In particular, we
can see that the residual error is of the same order as for the MLE and that the required
initialization radius is optimal up to constants. Let us emphasize here that k as well as the
truncated operators are purely theoretical objects which were introduced for the analysis.

4. Concrete results for the Gaussian output HMM

We now return to the concrete example of a Gaussian output HMM, as first introduced
in Section 2.1, and specialize our general theory to it. Before doing so, let us make some
preliminary comments about our notation and assumptions. Recall that our Gaussian output
HMM is based on s = 2 hidden states, using the transition matrix from equation (7), and
the Gaussian output densities from equation (8). For convenience of analysis, we let the
hidden variables Zi take values in {−1, 1}. In addition, we require that the mixing coefficient
ρmix = 1− εmix is bounded away from 1 in order to ensure that the mixing condition (3) is
fulfilled. We denote the upper bound for ρmix as b < 1 so that ρmix ≤ b and εmix ≥ 1 − b.
The feasible set of the probability parameter ζ and its log odds analog β = 1

2 log
( ζ

1−ζ
)

are
then given by

Ωζ =

{
ζ ∈ R | 1− b

2
≤ ζ ≤ 1 + b

2

}
, and Ωβ =

{
β ∈ R | |β| < 1

2
log
(1 + b

1− b
)

︸ ︷︷ ︸
βB

}
. (29)
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4.1 Explicit form of Baum-Welch updates

We begin by deriving an explicit form of the Baum-Welch updates for this model. Using
this notation, the Baum-Welch updates take the form

µ̂t+1 =
1

n

n∑
i=1

(2p(Zi = 1 | xn1 ; θ̂t)− 1)xi, (30a)

ζ̂t+1 = ΠΩζ

 1

n

n∑
i=1

∑
Zi

p(Zi = Zi+1 | xn1 ; θ̂t)

 , and (30b)

β̂t+1 =
1

2
log
( ζ̂t+1

1− ζ̂t+1

)
, (30c)

where ΠΩζ denotes the Euclidean projection onto the set Ωζ . Note that the maximization
steps are carried out on the decomposed Q-functions Q1,n(· | θt), Q2,n(· | θt). In addition,
since we are dealing with a one-dimensional quantity β, the projection of the unconstrained
maximizer onto the interval Ωζ is equivalent to the constrained maximizer over the feasible
set Ωζ . This step is in general not valid for higher dimensional transition parameters.

4.2 Population and sample guarantees

We now use the results from Section 3 to show that the population and sample-based
version of the Baum-Welch updates are linearly convergent in a ball around θ∗ of fixed
radius. In establishing the population-level guarantee, the key conditions which need to
be fulfilled—and the one that are the most technically challenging to establish— are the
(Lµ, Lβ)-FOS conditions (21), (22). In particular, we want to show that these conditions
hold with Lipschitz constants Lµ, Lβ that decrease exponentially with the separation of the
mixtures. As a consequence, we obtain that for large enough separation L

λ < 1, i.e. the EM
operator is contractive towards the true parameter.

In order to ease notation, our explicit tracking of parameter dependence is limited to the
standard deviation σ and Euclidean norm ‖µ∗‖2, which together determine the signal-to-noise

ratio η2 : =
‖µ∗‖22
σ2 of the mixture model. Throughout this section, we therefore use c0, c1 to

denote universal constants and C0, C1 for quantities that do not depend on (‖µ∗‖2, σ), but
may depend on other parameters such as πmin, ρmix, b, and so on.

We begin by stating a result for the sequence {θ̃t}∞t=0 obtained by repeatedly applying
the k-truncated population-level Baum-Welch update operator Mk. Our first corollary
establishes that this sequence is linearly convergent, with a convergence rate κ = κ(η) that
is given by

κ(η) : =
C1η

2(η2 + 1) e−c2η
2

1− b2
. (31)

Corollary 1 (Population Baum-Welch) Consider a two-state Gaussian output HMM
that is mixing (i.e. satisfies equation (3)), and with its SNR lower bounded as η2 ≥ C for

a sufficiently large constant C. Given the radius r = ‖µ∗‖2
4 , suppose that the truncation
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parameter k is sufficiently large to ensure that ϕ(k) ≤ (1−κ)r−κmaxβ∈Ωβ ‖β−β∗‖2. Then

for any initialization θ̃0 = (µ̃0, β̃0) ∈ B2

(
r;µ∗

)
× Ωβ, the sequence {θ̃t}∞t=0 generated by Mk

satisfies the bound

‖θ̃t − θ∗‖? ≤ κt‖θ̃0 − θ∗‖? +
1

1− κ
ϕ(k) (32)

for all iterations t = 1, 2, . . ..

From definition (31) it follows that as long as the signal-to-noise ratio η is larger than a
universal constant, the convergence rate κ(η) < 1. The bound (32) then ensures a type of
contraction and the pre-condition ϕ(k) ≤ (1−κ)r−κmaxβ∈Ωβ ‖β−β∗‖2 can be satisfied by
choosing the truncation parameter k large enough. If we use a finite truncation parameter
k, then the contraction occurs up to the error floor given by ϕ(k), which reflects the bias
introduced by truncating the likelihood to a window of size k. At the population level (in
which the effective sample size is infinite), we could take the limit k →∞ so as to eliminate
this bias. However, this is no longer possible in the finite sample setting, in which we must
necessarily have k � n. While large k give a better truncation approximation, it allows for
fewer samples which are “sufficiently independent” from each other within the sequence. We
can see in the proof of Corollary 2 that k % log n is a good choice to obtain an adequate
trade-off.

Corollary 2 (Sample Baum-Welch iterates) For a given tolerance δ ∈ (0, 1), suppose
that the sample size is lower bounded as n ≥ C1

‖µ∗‖22σ2 (η2 + 1)3d log8(dδ ). Then under the

conditions of Corollary 1 and η2 ≥ C log 1
1−b2 , with probability at least 1− δ, we have

‖θ̃t − θ∗‖? ≤ κt‖θ̂0 − θ∗‖? +
C

σ

(
‖µ∗‖22
σ2 + 1

)3/2
√

d log8(n/δ)
n

1− κ
. (33)

Remarks: As a consequence of the bound (33), if we are given a sample size n % d log8 d,
then taking T ≈ log n iterations is guaranteed to return an estimate (µ̂T , β̂T ) with error of

the order

√
d log8(n)

n .

In order to interpret this guarantee, note that in the case of symmetric Gaussian output
HMMs as in Section 4, standard techniques can be used to show that the minimax rate of

estimating µ∗ in Euclidean norm scales as
√

d
n . If we could compute the MLE in polynomial

time, then its error would also exhibit this scaling. The significance of Corollary 2 is
that it shows that the Baum-Welch update achieves this minimax risk of estimation up to
logarithmic factors.

Moreover, it should be noted that the initialization radius given here is essentially optimal
up to constants. Because of the symmetric nature of the population log-likelihood, the all
zeroes vector is a stationary point. Consequently, the maximum Euclidean radius of any
basin of attraction for one of the observation parameters—that is, either µ∗ or −µ∗—can at
most be r = ‖µ∗‖2. Note that our initialization radius only differs from this maximal radius
by a small constant factor.
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4.3 Simulations

In this section, we provide the results of simulations that confirm the accuracy of our
theoretical predictions for two-state Gaussian output HMMs. In all cases, we update the
estimates for the mean vector µ̂t+1 and transition probability ζ̂t+1 according to equation (30);
for convenience, we update ζ as opposed to β. The true parameters are denoted by µ∗ and
ζ∗.
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Figure 3: Plot of the convergence of the optimization error log ‖µ̂ti − µ̂1‖2, plotted in blue,
and the statistical error log ‖µ̂ti − µ∗‖2, plotted in red, for 5 different initializations. The

parameter settings were d = 10, n = 1000, ρmix = 0.6 and SNR ‖µ∗‖2
σ = 1.5. See the main

text for further details.

In all simulations, we fix the mixing parameter to ρmix = 0.6, generate initial vectors
µ̂0 randomly in a ball of radius r : = ‖µ∗‖2

4 around the true parameter µ∗, and set ζ̂0 = 1
2 .

Finally, the estimation error of the mean vector µ is computed as log10 ‖µ̂ − µ∗‖2. Since
the transition parameter estimation errors behave similarly to the observation parameter in
simulations, we omit the corresponding figures here.

Figure 3 depicts the convergence behavior of the Baum-Welch updates, as assessed in
terms of both the optimization and the statistical error. Here we run the Baum-Welch
algorithm for a fixed sample sequence Xn

1 drawn from a model with SNR η2 = 1.5 and ζ = 0.2,

using different random initializations in the ball around µ∗ with radius ‖µ
∗‖2
4 . We denote the

final estimate of the i−th trial by µ̂i. The curves in blue depict the optimization error—that
is, the differences between the Baum-Welch iterates µ̂ti using the i-th initialization, and µ̂1.
On the other hand, the red lines represent the statistical error—that is, the distance of the
iterates from the true parameter µ∗.

For both family of curves, we observe linear convergence in the first few iterations until
an error floor is reached. The convergence of the statistical error aligns with the theoretical
prediction in upper bound (33) of Corollary 2. The (minimax-optimal) error floor in the
curve corresponds to the residual error and the en–region in Figure 1. In addition, the blue
optimization error curves show that for different initializations, the Baum-Welch algorithm
converges to different stationary points µ̂i; however, all of these points have roughly the same
distance from µ∗. This phenomenon highlights the importance of the change of perspective
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in our analysis—that is, focusing on the true parameter as opposed to the MLE. Given the
presence of all these local optima in a small neighborhood of µ∗, the basin of attraction of
the MLE must necessarily be much smaller than the initialization radius guaranteed by our
theory.

Figure 4 shows how the convergence rate of the Baum-Welch algorithm depends on the
underlying SNR parameter η2; this behavior confirms the predictions given in Corollary 2.
Lines of the same color represent different random draws of parameters given a fix SNR.
Clearly, the convergence is linear for high SNR, and the rate decreases with decreasing SNR.

0 10 20 30 40 50

−12

−10

−8

−6

−4

−2

0

Iteration number

O
p
ti
m
iz
a
ti
o
n
er
ro
r
lo
g
‖µ̂

t i
−
µ̂
i
‖ 2

 

 

SNR= 0.50

SNR= 1.00

SNR= 1.50

SNR= 2.00

Figure 4: Plot of convergence behavior for different SNR, where for each curve, different
parameters were chosen. The parameter settings are d = 10, n = 1000 and ρmix = 0.6.

5. Proofs

In this section, we collect the proofs of our main results. In all cases, we provide the main
bodies of the proofs here, deferring the more technical details to the appendices.

5.1 Proof of Theorem 1

Throughout this proof, we make use of the shorthand ρ̃mix = 1− εmixπmin. Also we denote
the separate components of the population EM operators by M(θ) =: (Mµ(θ),Mβ(θ))T and
their truncated equivalents by Mk(θ) =: (Mµ,k(θ),Mβ,k(θ))T . We begin by proving the
bound given in part (a). Since Q = limn→∞ E[Qn], we have

‖Q−Qk‖∞ = ‖ lim
n→∞

E[Qn]−Qk‖∞ ≤
Cs4

ε9mixπ
2
min

ρ̃kmix,

where we have exchanged the supremum and the limit before applying the bound (17). The
same holds for the separate functions Q1, Q2.

Using this bound and the fact that for Q1 we have Q1(Mµ(θ) | θ) ≥ Q1(Mµ,k(θ) | θ), we
find that

Q1(Mµ(θ) | θ) ≥ Qk1(Mµ,k(θ) | θ)− Cs4

ε9mixπ
2
min

ρ̃kmix.

18



Theoretical guarantees for the Baum-Welch algorithm

Since Mµ,k(θ) is optimal, the first-order conditions for optimality imply that

〈Qk1(Mµ,k(θ) | θ), θ −Mµ,k(θ)〉 ≤ 0 for all θ ∈ Ω.

Combining this fact with strong concavity of Qk(·|θ) for all θ, we obtain

Cs4

ε9mixπ
2
min

ρ̃kmix ≥ Qk1(Mµ,k(θ) | θ)−Q1(Mµ(θ) | θ)

≥ Qk1(Mµ,k(θ) | θ)−Qk1(Mµ(θ) | θ)− Cs4

ε9mixπ
2
min

ρ̃kmix

≥ λµ
2
‖Mµ(θ)−Mµ,k(θ)‖22 −

Cs4

ε9mixπ
2
min

ρ̃kmix

and therefore ‖Mµ(θ) − Mµ,k(θ)‖22 ≤ 4 Cs4

λε9mixπ
2
min
ρ̃kmix. In particular, setting θ = θ∗ and

identifiability, i.e. Mµ(θ∗) = θ∗, yields

‖Mµ,k(θ∗)− θ∗‖22 ≤ 4
Cs4

λµε9mixπ
2
min

ρ̃kmix,

and the equivalent bound can be obtained for Mβ,k(·) which yields the claim.

We now turn to the proof of part (b). Let us suppose that the recursive bound (26) holds,
and use it to complete the proof of this claim. We first show that if µ̃t ∈ B2(r;µ∗), then
we must have µ̃t+1 ∈ B2(r;µ∗) as well. Indeed, if µ̃t ∈ B2(r;µ∗), then we have by triangle
inequality and contraction in (26)

‖Mµ,k(θ̃t)− µ∗‖2 ≤ ‖Mµ,k(θ̃t)−Mµ,k(θ∗)‖2 + ‖Mµ,k(θ∗)− µ∗‖2
≤ κ[‖µ̃t − µ∗‖2 + ‖β̃t − β∗‖2] + ϕ(k)

≤ κ(r + max
β∈Ωβ

‖β − β∗‖2) + ϕ(k) ≤ r,

where the final step uses the assumed bound on ϕ. For the joint parameter update we in
turn have

‖Mk(θ̃t)− θ∗‖? ≤ ‖Mk(θ̃t)−Mk(θ∗)‖? + ‖Mk(θ∗)− θ∗‖?
≤ κ‖θ̃t − θ∗‖? + ϕ(k). (34)

By repeatedly applying inequality (34) and summing the geometric series, the claimed
bound (25) follows.

It remains to prove the bound (26). Since the vector Mk(θ∗) maximizes the function
θ 7→ Qk1(θ | θ∗), we have the first-order optimality condition

〈∇Qk1(Mµ,k(θ∗) | θ∗), Mµ,k(θ)−Mµ,k(θ∗)〉 ≤ 0, valid for any θ.

Similarly, we have 〈∇Qk1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉 ≤ 0, and adding together these
two inequalities yields

0 ≤ 〈∇Qk1(Mµ,k(θ∗) | θ∗)−∇Qk1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉
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On the other hand, by the λ-strong concavity condition, we have

λµ‖Mµ,k(θ)−Mµ,k(θ∗)‖22 ≤ 〈∇Qk1(Mµ,k(θ) | θ∗)−∇Qk1(Mµ,k(θ∗) | θ∗), Mµ,k(θ∗)−Mµ,k(θ)〉

Combining these two inequalities with the (Lµ, Lβ)-FOS condition yields

λµ‖Mµ,k(θ)−Mµ,k(θ∗)‖22 ≤ 〈∇Qk1(Mµ,k(θ) | θ∗)−∇Qk1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉
≤
[
Lµ1‖µ− µ∗‖2 + Lµ2‖β − β∗‖2

]
‖Mµ,k(θ)−Mµ,k(θ∗)‖2,

and similarly we obtain λβ‖Mβ,k(θ)−Mβ,k(θ∗)‖2 ≤
[
Lβ1‖µ−µ∗‖2 +Lβ2‖β−β∗‖2

]
. Adding

both inequalities yields the claim (26).

5.2 Proof of Theorem 2

By the triangle inequality and inequality (34), we have with probability at least 1− 2δ that
for any iteration

‖θ̂t+1 − θ∗‖? ≤ ‖Mn(θ̂t)−Mk
n(θ̂t)‖? + ‖Mk

n(θ̂t)−Mk(θ̂t)‖? + ‖Mk(θ̂t)− θ∗‖?
≤ ϕn(δ, k) + εn(δ, k) + κ‖θ̂t − θ∗‖? + ϕ(k).

In order to see that the iterates do not leave B2

(
r;µ∗

)
, observe that

‖µ̂t+1 − µ∗‖2 ≤ ‖Mµ
n (θ̂t)−Mµ,k

n (θ̂t)‖2 + ‖Mµ,k
n (θ̂t)−Mµ,k(θ̂t)‖2 + ‖Mµ,k(θ̂t)− µ∗‖2

≤ ϕn(δ, k) + εµn(δ, k) + κ(‖µ̂t − µ∗‖2 + max
β∈Ωβ

‖β − β∗‖2) + ϕ(k). (35)

Consequently, as long as ‖µ̂t − µ∗‖2 ≤ r, we also have ‖µ̂t+1 − µ∗‖2 ≤ r whenever

ϕn(δ, k) + ϕ(k) + εµn(δ, k) ≤ (1− κ) r − κ max
β∈Ωβ

‖β − β∗‖2.

Combining inequality (35) with the equivalent bound for β, we obtain

‖θ̂t − θ∗‖? ≤ κ‖θ̂t−1 − θ∗‖? + ϕn(δ, k) + εn(δ, k) + ϕ(k)

Summing the geometric series yields the bound (28b).

5.3 Proof of Corollary 1

The boundedness condition (Assumption (16)) is easy to check since for X ∼ N(µ∗, σ2), the
quantity sup

µ∈B2(r;µ∗)
E
[

max{‖X − µ‖2, ‖X + µ‖2}
]

is finite for any choice of radius r <∞.

By Theorem 1, the k-truncated population EM iterates satisfy the bound

‖θ̃t − θ∗‖? ≤ κt‖θ̃0 − θ∗‖? +
1

1− κ
ϕ(k), (36)

if the strong concavity (20) and FOS conditions (21), (22) hold with suitable parameters.
In the remainder of proof—and the bulk of the technical work— we show that:

• strong concavity holds with λµ = 1 and λβ ≥ 2
3(1− b2);
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• the FOS conditions hold with

Lµ,1 = c (η2 + 1)ϕ2(εmix)η2e−cη
2
, and Lµ,2 = c

√
‖µ∗‖22 + σ2ϕ2(εmix)η2e−cη

2

Lβ,1 = c
1− b
1 + b

ϕ2(εmix)η2e−cη
2

and Lβ,2 = c
√
‖µ∗‖22 + σ2ϕ2(εmix)η2e−cη

2
,

where ϕ2(εmix) : =
(

1
log(1/(1−εmix)) + 1

εmix

)
. Substuting these choices into the bound (36) and

performing some algebra yields the claim.

5.3.1 Establishing strong concavity

We first show concavity of Qk1(· | θ′) and Qk2(· | θ′) separately. For strong concavity of
Qk1(· | θ′), observe that

Qk1(µ | θ′) = −1

2
E
[
p(z0 = 1 | Xk

−k; θ
′)‖X0 − µ‖22 + (1− p(z0 = 1|Xk

−k; θ
′))‖X0 + µ‖22 + c]

]
,

where c is a quantity independent of µ. By inspection, this function is strongly concave in µ
with parameter λµ = 1.

On the other hand, we have

Qk2(β | θ′) = EXk
−k|θ∗

∑
z0,z1

p(z0, z1 | Xk
−k; θ

′) log

(
eβz0z1

eβ + e−β

)
.

This function has second derivative ∂2

∂β2Q
k
2(β | θ′) = −4 e−2β

(e−2β+1)2
. As a function of β ∈ Ωβ,

this second derivative is maximized at β = 1
2 log

(
1+b
1−b
)
. Consequently, the function Qk2(· | θ′)

is strongly concave with parameter λβ ≥ 2
3(1− b2).

5.3.2 Separate FOS conditions

We now turn to proving that the FOS conditions in equations (21) and (22) hold. A key
ingredient in our proof is the fact that the conditional density p(zk−k | xk−k;µ, β) belongs to

the exponential family with parameters β ∈ R, and γi : = 〈µ, xi〉
σ2 ∈ R for i = −k, . . . , k which

define the vector γ = (γ−k, . . . , γk) (see Wainwright and Jordan (2008) for more details on
exponential families.) In particular, we have

p(zk−k | xk−k, µ, β)︸ ︷︷ ︸
: =p(zk−k;γ,β)

= exp

{
k∑

`=−k
γ`z` + β

k−1∑
`=−k

z`z`+1 − Φ(γ, β)

}
, (37)

where the function h absorbs various coupling terms. Note that this exponential family is a
specific case of the following exponential family distribution

p̃(zk−k | xk−k, µ, β)︸ ︷︷ ︸
: =p̃(zk−k;γ,β)

= exp

{
k∑

`=−k
γ`z` +

k−1∑
`=−k

β`z`z`+1 − Φ(γ, β)

}
. (38)
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The distribution in (37) corresponds to (38) with β` = β for all ` and the so-called partition
function Φ is given by

Φ(γ, β) = log
∑
z

exp

{
k∑

`=−k
γ`z` +

k−1∑
`=−k

β`z`z`+1

}
.

The reason to view our distribution as a special case of the more general one in (38) becomes
clear when we consider the equivalence of expectations and the derivatives of the cumulant
function

∂Φ

∂γ`

∣∣∣∣
θ′

= EZk−k|xk−k,θ′Z` and
∂Φ

∂β0

∣∣∣∣
θ′

= EZk−k|xk−k,θ′Z0Z1, (39)

where we recall that EZk−k|xk−k,θ′ is the expectation with respect to the distribution p̃(Zk−k |
xk−k;µ

′, β′) with β` = β′. Note that in the following any value θ′ for p̃ is taken to be on
the manifold on which β` = β′ for some β′ since this is the manifold the algorithm works
on. Also, as before, E denotes the expectation over the joint distribution of all samples X`

drawn according to p(·; θ∗), in this case Xk
−k.

Similarly to equations (39), the covariances of the sufficient statistics correspond to the
second derivatives of the cumulant function

∂2Φ

∂β`∂β0

∣∣∣∣
θ

= cov(Z0Z1, Z`Z`+1 | Xk
−k, θ) (40a)

∂2Φ

∂γ`∂γ0

∣∣∣∣
θ

= cov(Z0, Z` | Xk
−k, θ) (40b)

∂2Φ

∂β`∂γ0

∣∣∣∣
θ

= cov(Z0, Z`Z`+1 | Xk
−k, θ). (40c)

In the following, we adopt the shorthand

cov(Z`, Z`+1 | γ′, β′) = cov(Z`, Z`+1 | Xk
−k, θ

′)

= EZ`+1
` |Xk

−k,θ
′(Z` − EZ`+1

` |Xk
−k,θ

′Z`)(Z`+1 − EZ`+1
` |Xk

−k,θ
′Z`+1)

where the dependence on β is occasionally omitted so as to simplify notation.

5.3.3 Proof of inequality (21a)

By an application of the mean value theorem, we have

‖∇µQk1(µ | µ′, β′)−∇µQk1(µ | µ∗, β′)‖ ≤

∥∥∥∥∥E
k∑

`=−k

∂2Φ

∂γ`∂γ0

∣∣∣∣
θ=θ̃

(γ′` − γ∗` )X0

∥∥∥∥∥︸ ︷︷ ︸
T1

where θ̃ = θ′ + t(θ∗ − θ′) for some t ∈ (0, 1). Since second derivatives yield covariances (see
equation (40)), we can write

T1 =

∥∥∥∥∥
k∑

`=−k
EX0E

[
cov(Z0, Z` | γ̃)

〈µ′ − µ∗, X`〉
σ2

∣∣∣∣X0

]∥∥∥∥∥
2

,

22



Theoretical guarantees for the Baum-Welch algorithm

so that it suffices to control the expected conditional covariance. By the Cauchy-Schwarz
inequality and the fact that cov(X,Y ) ≤

√
varX

√
varY and var(Z0 | X) ≤ 1, we obtain the

following bound on the expected conditional covariance by using Lemma 4 (see Appendix B)

E
[∣∣ cov(Z0, Z` | γ̃) | X0

∣∣] ≤√E [var(Z0 | γ̃) | X0]
√

E [var(Z` | γ̃) | X0]

≤
√

var(Z0 | γ̃0). (41a)

Furthermore, by Lemma 5 and 6 (see Appendix B), we have

| cov(Z0, Z` | γ̃)| ≤ 2ρ`mix, and
∥∥∥E(var(Z0|γ̃0))1/2X0X

T
0

∥∥∥
op
≤ Ce−cη

2
. (41b)

From the definition of the operator norm, we have

‖E cov(Z0, Z` | γ̃)X0X
T
`

∥∥
op

= sup
‖u‖2=1
‖v‖2=1

E cov(Z0, Z` | γ̃)〈X0, v〉 〈X`, u〉

≤ sup
‖v‖2=1

E| cov(Z0, Z` | γ̃)|〈X0, v〉2

+ sup
‖u‖2=1

E| cov(Z0, Z` | γ̃)|〈X`, u〉2

= ‖EX0X
T
0 E
[
| cov(Z0, Z` | γ̃) | X0

]
‖op

+ ‖EX`X
T
` E
[

cov(Z0, Z` | γ̃) | X`

]
‖op

(i)

≤ 2 min{ρ|`|mix‖EX0X
T
0 ‖op, ‖E var(Z0 | γ̃0)1/2X0X

T
0 ‖op}

(ii)

≤ 2 min{(‖µ∗‖22 + σ2)ρ
|`|
mix, C

′e−cη
2}, (42)

where inequality (i) makes use of inequalities (41a) and (41b), and step (ii) makes use of the
second inequality in line (41b).

By inequality (42), we find that

T1 ≤
‖µ′ − µ∗‖2

σ2

k∑
`=−k

‖E cov(Z0, Z` | γ̃)X0X
T
`

∥∥
op

≤ 2
‖µ′ − µ∗‖2

σ2

k∑
`=−k

min{(‖µ∗‖22 + σ2)ρ
|`|
mix, Ce−cη

2}

≤ 4(η2 + 1)
(
mCe−cη

2
+

ρmmix

1− ρmix

)
‖µ′ − µ∗‖2.

where m = cη2

log(1/ρmix) is the smallest integer such that ρmmix ≤ Ce−cη
2

The last inequality

follows from the proof of Corollary 1 in the paper Balakrishnan et al. (2014) if η2 > C for
some universal constant C. We have thus shown that

‖∇µQk1(µ | µ′, β′)−∇µQk1(µ | µ∗, β′)‖ ≤ Lµ,1‖µ′ − µ∗‖2,

where Lµ,1 = c ϕ1(η)ϕ2(εmix)η2(η2 + 1)e−cη
2

as claimed.
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5.3.4 Proof of inequality (21b)

The same argument via the mean value theorem guarantees that

‖ ∂
∂β

Qk2(β | µ′, β′)− ∂

∂β
Qk2(β | µ′, β∗)‖ ≤

∥∥∥∥∥E
k∑

`=−k

∂2Φ

∂β`∂γ0

∣∣∣∣
θ=θ̃

(β′ − β∗)X0

∥∥∥∥∥
2

.

In order to bound this quantity, we again use the equivalence (40) and bound the expected
conditional covariance. Furthermore, Lemma 5 and 6 yield

cov(Z0, Z`Z`+1 | γ̃)
(i)

≤ 2ρ`mix and
∥∥E var(Z0 | γ̃0)X0X

T
0

∥∥
op

(ii)

≤ ce−cη
2
. (43)

Here inequality (ii) follows by combining inequality (54c) from Lemma 5 with the fact that
var(Z0 | γ̃0) ≤ 1.

‖EX0 cov(Z0, Z`Z`+1 | γ̃)‖2 = sup
‖u‖2=1

E〈X0, u〉 cov(Z0, Z`Z`+1 | γ̃)

≤ sup
‖u‖2=1

E|〈X0, u〉|E
[
| cov(Z0, Z`Z`+1 | γ̃)| | X0

]
(iii)

≤ sup
‖u‖2=1

E|〈X0, u〉|min{ρ|`|mix, (var(Z0 | γ̃0))1/2}

(iv)

≤ min{ sup
‖u‖2=1

√
E〈X0, u〉2ρ|`|mix, sup

‖u‖2=1

√
E〈X0, u〉2 var(Z0 | γ̃0))}

(v)

≤ min{ρ|`|mix

√
‖EX0XT

0 ‖op,
√
‖E var(Z0 | γ̃0)X0XT

0 ‖op}
(vi)

≤ min{ρ|`|mix

√
‖µ∗‖22 + σ2, Ce−cη

2}

where step (iii) uses inequality (43); step (iv) follows from the Cauchy-Schwarz inequality;
step (v) follows from the definition of the operator norm; and step (vi) uses inequality (43)
again.

Putting together the pieces, we find that∥∥∥∥∥E
k∑

`=−k

∂2Φ

∂β`∂γ0
X0

∥∥∥∥∥
2

|β′ − β∗| ≤
k∑

`=−k
‖EX0E[cov(Z0, Z`Z`+1 | γ̃) | X0]‖2 |β

′ − β∗|

≤ 4
√
‖µ∗‖22 + σ2

(
cm e−cη

2
+

ρmmix

1− ρmix

)
|β′ − β∗|.

again with m = cη2

log(1/ρmix) , we find that inequality (21b) holds with

Lµ,2 = cϕ2(εmix)
√
‖µ∗‖2 + σ2η2e−cη

2
, as claimed.

5.3.5 Proof of inequality (22a)

By the same argument via the mean value theorem, we find that∥∥ ∂
∂β

Qk2(β | β′, µ′)− ∂

∂β
Qk2(β | β′, µ∗)

∥∥ ≤ ∣∣∣E k∑
`=−k

∂2Φ

∂γ`∂β0

∣∣∣∣
θ=θ̃

〈µ′ − µ∗, X`〉
σ2

∣∣∣.
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Equation (40) guarantees that ∂2Φ
∂γ`∂β0

= cov(Z0Z1, Z` | γ). Therefore, by similar arguments
as in the proof of inequalities (21), we have

T : =
∣∣∣ k∑
`=−k

E〈µ′ − µ∗, X`〉E[cov(Z0Z1, Z` | γ̃`, β′)|X`]
∣∣∣

≤
∣∣∣ k∑
`=−k

E|〈µ′ − µ∗, X`〉|min{ρ|`|mix, (var(Z` | γ̃`, β′))1/2}
∣∣∣

≤
∣∣∣ k∑
`=−k

min
{
ρ
|`|
mix,

√
E var(Z` | γ̃`, β′)

}√
E〈µ′ − µ∗, X`〉2

∣∣∣
≤
√
‖µ∗‖22 + σ2

(
mc e−cη

2
+ 2

k∑
`=m+1

ρ`mix

)
.

where we have used inequality (54b) from Lemma 6. Finally, again noting that m = cη2

log(1/ρmix)

yields that the FOS condition holds with Lβ,2 = c
√
‖µ∗‖2 + σ2ϕ2(εmix)η2e−cη

2
, as claimed.

5.3.6 Proof of inequality (22b)

By the same mean value argument, we find that

‖ ∂
∂β

Qk2(β | β′, µ′)− ∂

∂β
Qk2(β | β∗, µ′)

∥∥ ≤ ∣∣∣E k∑
`=−k

∂2Φ

∂β`∂β0

∣∣∣∣
θ=θ̃

(β′ − β∗)
∣∣∣.

By the exponential family view in equality (40) it suffices to control the expected conditional
covariance. Lemma 5 and 6 guarantee that

| cov(Z0Z1, Z`Z`+1 | Xk
−k, γ̃)| ≤ ρ|`|mix, and E var(Z0Z1 | γ̃1

0 , β̃) ≤ c 1 + b

1− b
e−cη

2
. (44)

Furthermore, the Cauchy-Schwarz inequality combined with the bound (53a) from Lemma 4
yields

E
∣∣ cov(Z0Z1, Z`Z`+1 | γ̃)

∣∣ ≤√E var(Z0Z1 | γ̃, β̃)

√
E var(Z`Z`+1 | γ̃, β̃)

≤
√
E var(Z0Z1 | γ̃1

0 , β̃)

√
E var(Z`Z`+1 | γ̃`+1

` , β̃)

≤ E var(Z0Z1 | γ̃1
0 , β̃). (45)
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Combining the bounds (44) and (45) yields∣∣∣∣∣
k∑

`=−k
E

∂2Φ

∂β`∂β0
(β′ − β∗)

∣∣∣∣∣ ≤
k∑

`=−k

∣∣E cov(Z0Z1, Z`Z`+1 | γ̃k−k, β̃)
∣∣ |β′ − β∗|

≤
k∑

`=−k
min

{
ρ
|`|
mix,E var(Z0Z1 | γ̃1

0 , β̃)
}
|β′ − β∗|

≤ 2

(
c
1 + b

1− b
me−cη

2
+

k∑
l=m+1

ρ`mix

)
|β′ − β∗|

≤ 2c
1 + b

1− b
ϕ2(εmix)η2e−cη

2 |β′ − β∗|

where the final inequality follows by setting m = cη2

log(1/ρmix) . Therefore, the FOS condition

holds with Lβ,1 = c1−b
1+bϕ2(εmix)η2e−cη

2
, as claimed.

5.4 Proof of Corollary 2

In order to prove this corollary, it is again convenient to separate the updates on the mean
vectors µ from those applied to the transition parameter β. Recall the definitions of ϕ, ϕn
and εn from equations (24) and (27a) respectively, as well as ρ̃mix = 1− εmixπmin.

Using Theorem 2 we readily have that given any initialization θ̂0 ∈ Ω, with probability
at least 1− 2δ, we are guaranteed that

‖θ̂T − θ∗‖? ≤ κT ‖θ̂0 − θ∗‖? +
ϕn(δ, k) + εn(δ, k) + ϕ(k)

1− κ
. (46)

In order to leverage the bound (46), we need to find appropriate upper bounds on the
quantities ϕn(δ, k), εn(δ, k).

Lemma 1 Suppose that the truncation level satisifes the lower bound

k ≥ log

(
Cεn

δ

) (
log

1

ρ̃mix

)−1
where Cε : = C

ε3mixπ
3
min

. (47a)

Then, when the number of observations n satifies the lower bound in the assumptions of the
corollary and the radius is chosen to be r = ‖µ∗‖2

4 , we have

εµn
(
δ, k
)
≤ C0

1

σ

(‖µ∗‖22
σ2

+ 1
)3/2

log(k2/δ)

√
k3d log n

n
, and (47b)

εβn
(
δ, k
)
≤ C0

1

σ

√
‖µ∗‖22
σ2

+ 1

√
k3 log(k2/δ)

n
. (47c)

Lemma 2 Suppose that 1
2

log
(
Cεn/δ)

log(1/ρ̃mix) ≤ k ≤ C
log
(
Cεn/δ)

log(1/ρ̃mix) with C > 1. Then by choosing

r = ‖µ∗‖2
4 and C1 large enough, we have

ϕn(δ, k) ≤ C1

{√d log2(Cεn/δ)

σn
+

√
‖µ∗‖2
σ

log2(Cεn/δ)

n
+
‖µ∗‖2
σ

√
δ

n

}
. (48)
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See Appendices C.1 and C.2, respectively, for the proofs of these two lemmas.

Note that the set for which k simultaneously satisfies the conditions in Lemma 1 and 2 is
nonempty. Furtheremore, the choice of k is made purely for analysis purposes – it does not
have any consequence on the Using these two lemmas, we can now complete the proof of the
corollary. From the definition (31) of κ, under the stated lower bound on η2, we can ensure
that κ ≤ 1

2 . Under this condition, inequality (28a) with r = ‖µ∗‖2/4 reduces to showing
that

ϕn(δ, k) + εµn(δ, k) + ϕ(k) ≤ ‖µ
∗‖2
8

. (49)

Now any choice of k satisfying both conditions in Lemmas 1 and 2 guarantees that

ϕn(δ, k) + εµn(δ, k) + εβn(δ, k) + ϕ(k) ≤ C

σ
(
‖µ∗‖22
σ2

+ 1)3/2

√
d log8(n/δ)

n
. (50)

Furthermore, as long as n ≥ C1

‖µ∗‖22σ2 (η2 + 1)3d log8(d/δ) for a sufficiently large C1, we are

guaranteed that the bound (49) holds. Substituting the bound (50) into inequality (46)
completes the proof of the corollary.

6. Discussion

In this paper, we provided general global convergence guarantees for the Baum-Welch
algorithm as well as specific results for a hidden Markov mixture of two isotropic Gaussians.
In contrast to the classical perspective of focusing on the MLE, we focused on bounding
the distance between the Baum-Welch iterates and the true parameter. Under suitable
regularity conditions, our theory guarantees that the iterates converge to an en-ball of the
true parameter, where en represents a form of statistical error. It is important to note that
our theory does not guarantee convergence to the MLE itself, but rather to a ball that
contains the true parameter, and asymptotically the MLE as well. When applied to the
Gaussian mixture HMM, we proved that the Baum-Welch algorithm achieves estimation
error that is minimax optimal up to logarithmic factors. To the best of our knowledge,
these are the first rigorous guarantees for the Baum-Welch algorithm that allow for a large
initialization radius.
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Appendix A. Proof of Proposition 1

In order to show that the limit limn→∞ EQn(θ | θ′) exists, it suffices to show that the
sequence of functions {EQ1,EQ2, . . . ,EQn} is Cauchy in the sup-norm (as defined previously
in equation (15)). In particular, it suffices to show that for every ε > 0 there is a positive
integer N(ε) such that for m,n ≥ N(ε),

‖EQm − EQn‖∞ ≤ ε.

In order to do so, we make use of the previously stated bound (17) relating EQn to Qk.
Taking this bound as given for the moment, an application of the triangle inequality yields

‖EQm − EQn‖∞ ≤ ‖EQm −Qk‖∞ + ‖EQn −Qk‖∞ ≤ ε,

the final inequality follows as long as we choose N(ε) and k large enough (roughly proportional
to log(1/ε)).

It remains to prove the claim (17). In order to do so, we require an auxiliary lemma:

Lemma 3 (Approximation by truncation) For a Markov chain satisfying the mixing
condition (3), we have

sup
θ′∈Ω

sup
x

∑
zi

|p(zi | xn1 ; θ′)− p(zi | xi+ki−k; θ
′)| ≤ Cs2

ε8mixπmin

(
1− εmixπmin

)min{i,n−i,k}
(51)

for all i ∈ [0, n], where πmin = minj∈[s],β∈Ωβ π(j;β).

See Appendix D.2 for the proof of this lemma.

Using Lemma 3, let us now prove the claim (17). Introducing the shorthand notation

h(Xi, zi, θ, θ
′) : = log p(Xi | zi; θ) +

∑
zi−1

p(zi | zi−1; θ′) log p(zi|zi−1, θ),

we can verify by applying Lemma 3 that

‖EQn −Qk‖∞ (52)

=
∣∣∣ sup
θ,θ′

1

n

n∑
i=1

∑
zi

E(p(zi | Xn
1 , θ
′)− p(zi | Xi+k

i−k , θ
′))h(Xi, zi, θ, θ

′)
∣∣∣

+
∣∣∣ 1
n

sup
θ,θ′

E
∑
z0

p(z0 | Xn
1 , θ
′) log p(z0; θ)

∣∣∣
≤ sup

θ,θ′

1

n

n∑
i=1

∑
zi

sup
x

∣∣p(zi | xn1 , θ′)− p(zi | xi+ki−k, θ
′)
∣∣ E |h(Xi, zi, θ, θ

′)|+ 1

n
log π−1

min

≤ Cs3

ε8mixπminn

(
2

k∑
i=1

(1− εmixπmin)i + (n− 2k)(1− εmixπmin)k
) [

max
zi∈[s]

E|h(Xi, zi, θ, θ
′)|
]

+
1

n
log π−1

min

≤ Cs3

ε8mixπmin

( 2

nεmixπmin
+
n− 2k

n
(1− εmixπmin)k

) [
max
zi∈[s]

E|h(Xi, zi, θ, θ
′)|
]

+
1

n
log π−1

min

≤ C s4

ε9mixπ
2
min

(
1− εmixπmin

)k
+

1

n

(
log π−1

min +
Cs4

ε10
mixπ

3
min

)
,
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using the crude bound

max
zi∈[s]

E|h(Xi, zi, θ, θ
′)| ≤ E max

zi∈[s]

∣∣ log p(Xi | zi, θ)
∣∣+ s log(πminεmix)−1 ≤ Cs

πminεmix
.

which uses condition (16) and where C denotes generic constants which are potentially
different each time they appear.

Appendix B. Technical details for Corollary 1

In this section, we collect some auxiliary bounds on conditional covariances in hidden Markov
models. These results are used in the proof of Corollary 1.

Lemma 4 For any HMM with observed-hidden states (Xi, Zi), we have

E
[
var(Z0Z1 | Xk

−k)
]
≤ E var(Z0Z1 | X1

0 ) (53a)

E
[
var(Z0 | Xk

−k) | X0

]
≤ var(Z0 | X0) (53b)

where we have omitted the dependence on the parameters.

Proof We use the law of total variance, which guarantees that varZ = E
[

var(Z | X)
]

+
varE[Z | X]. Using this decomposition, we have

E[var(Z0 | X1
0 ) | X0] ≤ var(Z0 | X0)

E[var(Z0Z1 | X2
0 ) | X1

0 ] ≤ var(Z0Z1 | X1
0 ).

The result then follows by induction.

We now show that the expected conditional variance of the hidden state (or pairs thereof)
conditioned on the corresponding observation (pairs of observations) decays exponentially
with the SNR.

Lemma 5 For a 2-state Markov chain with true parameter θ∗, we have for µ ∈ B2

(‖µ∗‖2
4 ;µ∗

)
and β ∈ Ωβ ∥∥∥EX0X

T
0 (var(Z0 | γ0, β))1/2

∥∥∥
op
≤ c0 e−cη

2
(54a)

E var(Z` | γ`, β) ≤ c0 e−cη
2

(54b)

E var(Z0Z1 | γ1
0 , β) ≤ c0

1 + b

1− b
e−cη

2
. (54c)

Proof By definition of the Gaussian HMM example, we have var(Zi | γi) = 4
(eγi+e−γi )2

.

Moreover, following the proof of Corollary 1 in the paper Balakrishnan et al. (2014), we

are guaranteed that E var(Zi | γi) ≤ 8e−
η2

32 and ‖EXiX
T
i (var(Zi|γi))1/2‖op ≤ c0e−

η2

32 , from
which inequalities (54a) and (54b) follow.
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We now prove inequality (54c) for β ∈ Ωβ and µ ∈ B2

(‖µ∗‖2
4 ;µ∗

)
. Note that

1

4
var(Z0Z1 | γ1

0 , β) =
e2γ1 + e−2γ1 + e2γ0 + e−2γ0[

eβ(eγ0+γ1 + e−(γ0+γ1)) + e−β(eγ0−γ1 + e−(γ0−γ1))
]2

≤ e2|β| e2γ1 + e−2γ1 + e2γ0 + e−2γ0

(eγ0+γ1 + e−(γ0+γ1) + eγ0−γ1 + e−(γ0−γ1))2

≤
(

1 + b

1− b

)[
e|γ0|

e2γ0 + e−2γ0
+

e|γ1|

e2γ1 + e−2γ1

]

where γ are now random variables and we used

(eγ0+γ1 + e−(γ0+γ1) + eγ0−γ1 + e−(γ0−γ1))2

≥ e−|γ0|(e−γ0 + eγ0)(e2γ1 + e−2γ1) + e−|γ1|(e−γ1 + eγ1)(e2γ0 + e−2γ0)

≥ (e−|γ0| + e−|γ1|)(e2γ0 + e−2γ0)(e2γ1 + e−2γ1).

It directly follows that

1

4
E var(Z0Z1 | γ1

0 , β) ≤ 2

(
1 + b

1− b

)
E
[

1

eγ0 + e−3γ0
1γ0≥0 +

1

e3γ0 + e−γ0
1γ0≤0

]
≤ 2

(
1 + b

1− b

)
(E[e−γ01γ0≥0] + E[eγ01γ0≤0])

≤ 4

(
1 + b

1− b

)
E[e−γ01γ0≥0]

where the last inequality follows from symmetry of the random variables Xi. One can then
bound

E[e−γ01γ0≥0] = E e−
‖µ‖2V1
σ2 1V1≥0 ≤ 2e−

η2

32

by employing a similar procedure as in the proof of Corollary 1 in Balakrishnan et al. (2014).
Inequality (54c) then follows.

The last lemma provides rigorous confirmation of the intuition that the covariance between
any pair of hidden states should decay exponentially in their separation `:

Lemma 6 For a 2-state Markov chain with mixing coefficient εmix and uniform stationary
distribution, we have

max
{

cov(Z0, Z` | γ), cov(Z0Z1, Z`Z`+1 | γ), cov(Z0, Z`Z`+1 | γ)
}
≤ 2ρ`mix (55)

with ρmix = 1− εmix for all θ ∈ Ω.

Lemma 6 is a mixing result and its proof is found in Section D.3.
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Appendix C. Technical details for Corollary 2

In this section we prove Lemmas 1 and 2. In order to do so, we leverage the independent
blocks approach used in the analysis of dependent data (see, for instance, the papers Yu
(1994); Nobel and Dembo (1993)). For future reference, we state here an auxiliary lemma
that plays an important role in both proofs.

Let {Xi}∞i=−∞ be a sequence sampled from a Markov chain with mixing rate ρmix =
1− εmix, πmin be the minimum entry of the stationary distribution and ρ̃mix = 1− εmixπmin.
Given some functions f1 : R2k → Rd and f2 : R → Rd in some function class F1,F2

respectively, our goal is to control the difference between the functions

g1(X) : =
1

n

n∑
i=1

f1(Xi+k
i−k ), g2(X) : =

1

n

n∑
i=1

f2(Xi) (56a)

and their expectation. Defining m1 : = bn/4kc and m2 : = bn/kc, we say that f1 respectively
f2 is (δ, k)-concentrated if

P
[

sup
f∈F1

‖ 1

m1

m1∑
i=1

f1(X̃i;2k)− Ef1(X̃1;2k)‖2 ≥ ε
]
≤ δ

8k
, (56b)

P
[

sup
f∈F2

‖ 1

m2

m2∑
i=1

f2(X̃i)− Ef2(X̃1)‖2 ≥ ε
]
≤ δ

2k

where {X̃i;2k}i∈N are a collection of i.i.d. sequences of length 2k drawn from the same

Markov chain and {X̃i}i∈N a collection of i.i.d. variables drawn from the same stationary
distribution. In our notation, {X̃i;2k}i∈N under P are identically distributed as {Xi;2k}i∈N
under P0.

Lemma 7 Consider functions f1, f2 that are (δ, k)-concentrated (56b) for a truncation

parameter k ≥ log
(

Cn
π3
minε

3
mixδ

)
(log 1

ρ̃mix
)−1. Then the averaged functions g1, g2 from equa-

tion (56a) satisfy the bounds

P
[

sup
g∈F1

‖g1(X)− Eg1(X)‖2 ≥ ε
]
≤ δ and P

[
sup
g∈F2

‖g2(X)− Eg2(X)‖2 ≥ ε
]
≤ δ. (57)

Proof We prove the lemma for functions of the type (f1, g1); the proof for the case (f2, g2)
is very similar. In order to simplify notation, we assume throughout the proof that the
effective sample size n is a multiple of 4k, so that the block size m = n

4k is integral. By

definition (56a), the function g is a function of the sequences {X1+k
1−k , X

2+k
2−k , . . . , X

n+k
n−k}. We

begin by dividing these sequences into blocks. Let us define the subsets of indices

Hj
i = {4k(i− 1) + k + j | 4k(i− 1) + 3k + j}, and

Rji = {4k(i− 1)− k + j | 4k(i− 1) + k − 1 + j}.
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With this notation, we have the decomposition

g(X) =
1

2


1

2k

2k∑
j=1

1

m

m∑
i=1

f(X
Hj
i
)︸ ︷︷ ︸

gH
j
(X)

+
1

2k

2k∑
j=1

1

m

m∑
i=1

f(X
Rji

)︸ ︷︷ ︸
gR

j
(X)

 ,

from which we find that

P
[

sup
g∈F
‖g(X)− Eg(X)‖2 ≤ ε

]
≥ P

( 2k⋂
j=1

{sup
g∈F
‖gHj

(X)− Eg(X)‖2 ≤ ε}

∩ {sup
g∈F
‖gRj (X)− Eg(X)‖2 ≤ ε}

)
(i)

≥ 1− 4k P(sup
g∈F
‖gH1

(X)− Eg(X)‖2 ≥ ε),

where (i) follows using stationarity of the underlying sequence combined with the union
bound.

In order to bound the probability P
[
‖gH1

(X) − Eg(X)‖2 ≥ ε
]
, it is convenient to

relate it to the probability of the same event under the product measure P0 on the blocks
{H1

1 , . . . ,H
1
m}. In particular, we have P(‖gH1

(X)− Eg(X)‖2 ≥ ε) ≤ T1 + T2, where

T1 : = P0(‖gH1
(X)− Eg(X)‖2 ≥ ε), and

T2 : = |P(‖gH1
(X)− Eg(X)‖2 ≥ ε)− P0(‖gH1

(X)− Eg(X)‖2 ≥ ε)|.

By our assumed concentration (56b), we have T1 ≤ δ
8k , and so it remains to show that

T2 ≤ δ
8k .

Now following standard arguments (e.g., see the papers Nobel and Dembo (1993); Yu
(1994)), we first define

β(k) = sup
A∈σ(S0−∞,S∞k )

|P(A)− P0
−∞ × P∞1 (A)|, (58)

where S0
−∞ and S∞k are the σ-algebras generated by the random vector X0

−∞ and X∞k
respectively, and P0

−∞ × P∞1 is the product measure under which the sequences X0
−∞ and

X∞1 are independent. Define Si to be the σ-algebra generated by X
Hj
i

for i = {1, . . . ,m};
it then follows by induction that supA∈σ(S1,...,Sm) |P(A) − P0(A)| ≤ mβ(k). An identical

relation holds over the blocks Rji .
For our two-state HMM, Lemma 12 implies that

β(k) = |p(x)− p(x∞k )p(x0
−∞)| ≤ |p(x0

−∞ | xnk)− p(x0
−∞)|

≤ |p(z0 | xnk)− p(z0)|
(i)

≤ 3

π3
minε

3
mix

ρkmix =
3

π3
minε

3
mix

e−k log(1/ρmix), (59)
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where step (i) follows from inequality (73). From our assumed lower bound on k, we conclude
that mβ(k) ≤ δ

8k , which completes the proof.

In the following sections we apply it in order to prove the bounds on the approximation and
sample error of the M -operators.

C.1 Proof of Lemma 1

We prove each of the two inequalities in equations (47b) and (47c) in turn by using suit-
able choices of the function f in Lemma 7. Throughout, note that our function class is
parameterized and f ∈ F is equivalent to θ ∈ Ω = B2(r;µ∗)× Ωβ.

Proof of inequality (47b): We use the notation from the proof of Lemma 7 and fur-
thermore define the weights wθ(X

i+k−1
i−k ) = p(Zi = 1 | Xi+k−1

i−k , θ), as well as the function

f0(Xi+k−1
i−k , θ′) = (2wθ′(X

i+k−1
i−k )− 1)Xi. It is then possible to write the EM operator explic-

itly as the average

Mµ,k
n (θ′) = arg max

µ∈Ω̃

1

n

[ n∑
i=1

EZi|Xi+k
i−k ,θ

′ log p(Xi | Zi, µ)
]

=
1

n

n∑
i=1

f0(Xi+k−1
i−k , θ′).

We are now ready to apply Lemma 7 with the choices f1 = f0, g1(X) = Mµ,k
n (θ). According

to Lemma 7, given that the lower bound on the truncation parameter k holds, we now need
to show that f0 is (δ, k)-concentrated, that means finding εµn such that

P0

[
sup
θ∈Ω

∥∥ 1

m

m∑
i=1

f0(X̃i;2k, θ
′)− Ef0(X̃i;2k, θ

′)
∥∥

2
≥ εµn

]
≤ δ

8k
,

where P0 denotes the product measure over the independent blocks and m : = m1 = bn/4kc.
Let Xi be the middle element of the (i.i.d. drawn) sequence X̃i;2k and Zi, Vi the

corresponding latent and noise variable. We can then write Xi = Zi + Vi where Vi are
zero-mean Gaussian random variables with covariance matrix σ2I.

With a minor abuse of notation, let us use Xi,` to denote `th element in the block

X̃i;2k = (Xi,1, . . . , Xi,2k)
T , and write X̃ = {X̃i;2k}ni=1. In view of Lemma 7, our objective is

to find the smallest scalar εµn such that

P
[

sup
θ∈Ω
‖ 1

m

m∑
i=1

(2wθ(X̃i;2k)− 1)Xi,k − E(2wθ(X̃i;2k)− 1)Xi,k︸ ︷︷ ︸
fθ(X̃i;2k)

‖2 ≥ εµn
]
≤ δ

8k
(60)

For each unit norm vector u ∈ Rd, define the random variable

Ṽm(X̃;u) = sup
θ∈Ω

1

m

m∑
i=1

(2wθ(X̃i;2k)− 1)〈Xi,k, u〉 − E(2wθ(X̃i;2k)− 1)〈Xi,k, u〉.

Let {u(1), . . . , u(T )} denote a 1/2-cover of the unit sphere in Rd; by standard arguments, we
can find such a set with cardinality log T ≤ d log 5. Using this covering, we have

sup
θ∈Ω
‖ 1

m

m∑
i=1

fθ(X̃i;2k)‖2 = sup
‖u‖2≤1

Ṽm(X̃;u) ≤ 2 max
j∈[T ]

Ṽm(X̃;u(j)),
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where the inequality follows by a discretization argument. Consequently, we have

P
[

sup
θ∈Ω
‖ 1

m

m∑
i=1

fθ(X̃i;2k)‖2 ≥ εµn
]
≤ P

[
max
j∈[T ]

Ṽm(X̃;u(j)) ≥ εµn
2

]
≤ T max

j∈[T ]
P
[
Ṽm(X̃;u(j)) ≥ εµn

2

]
.

The remainder of our analysis focuses on bounding the tail probability for a fixed unit
vector u, in particular ensuring an exponent small enough to cancel the T ≤ ed log 5 pre-factor.
By Lemma 2.3.7 of van der Vaart and Wellner (1996), for any t > 0, we have

PX
[
Ṽm(X̃;u) ≥ t

]
≤ cPX,ε

[
Vm(X̃;u) ≥ t

4

]
,

where Vm(X̃;u) = supθ∈Ω

∣∣ 1
m

∑m
i=1 εi(2wθ(X̃i;2k)− 1)〈Xi,k, u〉

∣∣, and {εi}mi=1 is a sequence of
i.i.d. Rademacher variables.

We now require a sequence of technical lemmas; see Section C.3 for their proofs. Our first
lemma shows that the variable Vm(X̃;u), viewed as a function of the Rademacher sequence,
is concentrated:

Lemma 8 For any fixed (X̃, u), we have

Pε
[
Vm(X̃;u) ≥ EεVm(X̃;u) + t

]
≤ 2e

− t2

16L2
m(X̃;u) , (61)

where Lm(X̃;u) = 1
m

√∑m
i=1〈Xi,k, u〉2.

Our next lemma bounds the expectation with respect to the Rademacher random vector:

Lemma 9 There exists a universal constant c such that for each fixed (X̃;u), we have

EεVm(X̃;u) ≤ c‖µ
∗‖2
σ2

√
logm

[ 2k∑
`=1

Eε̃‖
1

m

m∑
i=1

ε̃i,`Xi,`〈Xi,k, u〉‖2
]

︸ ︷︷ ︸
Mm(X̃;u)

+Eg
∣∣ 1

m

m∑
i=1

gi,2k+1〈Xi,k, u〉
∣∣

︸ ︷︷ ︸
Nm(X̃;u)

(62)

where ε, ε̃ ∈ Rm are random vectors with i.i.d. Rademacher components, and g is a random
vector with i.i.d. N (0, 1) components.

We now bound the three quantities Lm(X̃;u), Mm(X̃;u), and Nm(X̃;u) appearing in the

previous two lemmas. In particular, let us introduce the quantities L′ = cL‖µ∗‖2
(‖µ∗‖22

σ2 + 1
)
,

L′′ = L
√
‖µ∗‖22 + σ2 and L =

√
8

1−ρmix
.

Lemma 10 Define the event

E =

{
Lm(X̃;u) ≤ c̃

√
2(‖µ∗‖22 + σ2) log 1

δ

m
, Mm(X̃;u) ≤ L′k

√
d logm log k

δ

m

and Nm(X̃;u) ≤ cL′′
√
d log 1

δ

m

}
.
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Then we have P
[
E
]
≥ 1 − e−c

′ d log 1
δ for m > d and a universal constant c′ > 0 which

increases with the constants c in L′, Nm and c̃ in Lm.

In conjunction, Lemmas 8 and 9 imply that conditionally on the event E , we have

Eε
[
Vm(X̃;u)

]
≤ c
√
‖µ∗‖22 + σ2(

‖µ∗‖22
σ2

+ 1)k

√
d logm log k

δ

m
.

Note that by assumption on n we also have m ≥ d so that we can combine this bound with
Lemma 10 which yields

T PX
[
Ṽm(X̃;u) ≥ t

]
≤ T PX,ε

[
Vm(X̃;u) ≥ t

4
| E
]

+ T P
[
Ec
]

≤ 2e4d−
(
c
c̃

)2
k2d logm log k

δ + δe4d−c′d

≤ δ,

where the second inequality follows by setting t/4 = c‖µ∗‖2(
‖µ∗‖22
σ2 + 1)k log(kδ )

√
d logm
m and

the final inequality holds for c′, c and c̃ big enough. After rescaling δ by 8k and setting
m = n

4k , the result follows after an application of Lemma 7.

Proof of inequality (47c): In order to bound |Mβ,k
n (θ)−Mβ,k(θ)|, we need a few extra

steps. First, let us define new weights

vθ(X
i+k−1
i−k ) = p(Z0 = Z1 = 1 | Xi+k−1

i−k , θ) + p(Z0 = Z1 = −1 | Xi+k−1
i−k , θ),

and also write the update in the form

Mβ,k
n (θ) = arg max

ζ∈Ωζ

{
EZ1|Xi+k

i−k ,θ
log p(Z1 | ζ) +

n∑
i=2

EZii−1|X
i+k
i−k ,θ

log p(Zi | Zi−1, ζ)
}

= arg max
ζ∈Ωζ

{1

2
+

n∑
i=2

EZii−1|X
i+k
i−k ,θ

log p(Zi | Zi−1, ζ)
}

= ΠΩζ

( 1

n

n∑
i=2

vθ(X
i+k−1
i−k )

)
,

where we have reparameterized the transition probabilities with ζ via the equivalences

β = h(ζ) : = 1
2 log

(
ζ

1−ζ

)
. Note that the original EM operator is obtained via the transfor-

mation Mβ,k
n (θ′) = h(Mβ,k

n (θ′)) and we have Mβ,k(θ) = ΠΩζEvθ(X
i+k−1
i−k ) by definition.

Given this set-up, we can now pursue an argument similar to that of inequality (47b).
The new weights remain Lipschitz with the same constant—that is, we have the bound
|vθ(X̃i;2k)− vθ′(X̃i;2k)| ≤ L‖θ̃i − θ̃′i‖2. As a consequence, we can write

P
[

sup
θ∈Ω
| 1

m

m∑
i=1

vθ(X̃i;2k)− Evθ(X̃i;2k)| ≥ εβn
]
≤ δ

8k
,
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with εβn defined as in the lemma statement. In this case, it is not necessary to perform the
covering step, nor to introduce extra Rademacher variables after the Gaussian comparison
step; consequently, the two constants εβn and εµn differ by a factor of

√
d log n modulo

constants.

Applying Lemma 7 then yields a tail bound for the quantity
∣∣ 1
n

∑n
i=1 vθ(X̃i;2k) −

Evθ(X̃i;2k)
∣∣ with probability δ. Since projection onto a convex set only decreases the

distance, we find that

P

[
|Mβ,k

n (θ)−Mβ,k(θ)| ≥ C
√
‖µ∗‖22 + σ2

σ2

√
k3 log(k2/δ)

n

]
≤ δ.

In order to prove the result, the last step needed is the fact that

1

2

∣∣∣ log
x

1− x
− log

y

1− y

∣∣∣ ≤ 1

x̃(1− x̃)
|x− y| ≤ 2

1− b2
|x− y| =: L|x− y|

for x, y, x̃ ∈ Ωζ . Since Mβ,k
n (θ) ∈ Ωζ we finally arrive at

P
[
|Mβ,k

n (θ)−Mβ,k(θ)| ≥ C(1− b2)

√
‖µ∗‖22 + σ2

σ2

√√√√k3 log
(
k2

δ

)
n

]
≤ δ

and the proof is complete.

C.2 Proof of Lemma 2

We need to show that

P
[

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2? ≥ c1ϕ
2
n(δ, k)

]
≤ δ

with

ϕ2
n(δ, k) =

Cs4

(1− b2)ε10
mixπ

3
min

[ 1

σ

d log2(Cεn/δ)

n
+
‖µ∗‖2
σ

log2(Cεn/δ)

n
+
‖µ∗‖22
σ2

δ

n

]
.

We first claim that

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2? ≤
8‖Qn −Qkn‖∞

λ
, where λ ≥ 2

3
(1− b2). (63)

In Section 5.3.1. we showed that population operators are strongly concave with parameter
at least λ. We make the added observation that using our parameterization, the sample
Q functions Qkn(· | θ′), Qn(· | θ′) are also strongly concave. This is because the concavity
results for the population operators did not use any property of the covariates in the
HMM, in particular not the expectation operator, and the single term 1

nE
∑

z0
p(z0 |

Xn
1 , β

′) log p(z0;β) = 1
n log 1

2 is constant for all β ∈ Ωβ. From this λ-strong concavity, the
bound (63) follows immediately using the same argumentation as in the proof of Theorem 1.
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Given the bound (63), the remainder of the proof focuses on bounding the difference
‖Qn −Qkn‖∞. Recalling the shorthand notation

h(Xi, zi, θ, θ
′) = log p(Xi|zi, θ) +

∑
zi−1

p(zi|zi−1, θ
′) log p(zi|zi−1, θ),

we use a similar argumentation as in the Proof of Proposition 1 equation (52) to obtain

‖Qn −Qkn‖∞ =
∣∣∣ sup
θ,θ′∈Ω

1

n

n∑
i=1

∑
zi

(p(zi|Xn
1 , θ
′)− p(zi|Xi+k

i−k , θ
′))h(Xi, zi, θ, θ

′)
∣∣∣ (64)

+
∣∣∣ sup
θ,θ′∈Ω

1

n

∑
z0

p(z0 | xn1 , θ′) log p(z0 | θ)
∣∣∣

≤ 2Cs3

ε8mixπmin

1

n

[ k∑
i=1

ρ̃imix max
zi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣+ log π−1

min

]
+
Cs3ρ̃kmix

ε8mixπmin

1

n− 2k

n−k∑
i=k

max
zi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣

≤ 2Cs3

ε8mixπminn

[
max

zi∈[s],Xk
1

∣∣ log p(Xi | zi, θ)
∣∣ k∑
i=1

ρ̃imix +
s log(πminεmix)−1

πminεmix
+ log π−1

min

]
︸ ︷︷ ︸

S1

+
Cs3ρ̃kmix

ε8mixπmin

[
E max
zi∈[s]

∣∣ log p(Xi | zi, θ′)
∣∣+ en−2k(X) + s log(πminεmix)−1

]
where we use maxzi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣ ≤ maxzi∈[s]

∣∣ log p(Xi|zi, θ)
∣∣+ s log(πminεmix)−1, and

en(X) : =
∣∣∣ 1
n

n∑
i=1

max
zi∈[s]

∣∣∣ log p(Xi | zi, θ)
∣∣∣− E max

zi∈[s]

∣∣∣ log p(Xi | zi, θ)
∣∣∣∣∣∣.

By assumption, we have that Emaxzi∈[s] | log p(Xi | zi, θ)| is bounded by an appropriately
large universal constant. We therefore have with probability one that

S1 ≤
Cs4

ε9mixπ
2
min

k

n
log(εmixπmin)−1.

Putting these together, we find that

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2? ≤
Cs4

λε9mixπ
2
min

[k
n

log(εmixπmin)−1 + ρ̃kmixen−2k(X)
]
.

Suppose that we can show that

P
(
en(X) ≥ c0

( 1

σ

√
d log2(Cεn/δ)

n
+
‖µ∗‖2
σ

√
log2(Cεn/δ)

n
+
‖µ∗‖22
σ2

))
≤ δ, (65)
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where c0 is a universal constant and Cε = C
ε3mixπ

3
min

. By assumption we have 1
2

log
(
Cn/δ)

log(1/ρ̃mix) ≤

k ≤ C log
(
Cn/δ)

log(1/ρ̃mix) so that we obtain

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2? ≤ ϕ2
n(δ, k)

with probability at least 1− δ
3 for an appropriate choice of C.

We now move on to prove the bound (65). Observe that we have

en(X) =
1

2nσ2

n∑
i=1

[
max{‖Xi + µ‖22, ‖Xi − µ‖22} − Emax{‖Xi + µ‖22, ‖Xi − µ‖22}

]
=

1

2nσ2

n∑
i=1

(
‖Xi‖22 − E‖Xi‖22

)
+

1

nσ2

n∑
i=1

(
|XT

i µ| − E|XT
i µ|
)
.

Note that we are again dealing with a dependent sequence so that we cannot use usual
Hoeffding type bounds. For some k̃ to be chosen later on, and m = n/k̃ using the proof idea
of Lemma 7 with f2(Xi) = |XT

i µ| and f2(Xi) = ‖Xi‖22, we can write

P(en(X) ≥ t

2σ2
) ≤ k̃

(
P0

(
| 1
m

m∑
i=1

‖Xi‖22 − E‖Xi‖22| ≥
t

2

)
︸ ︷︷ ︸

T1

+ P0

(
| 1
m

m∑
i=1

|XT
i µ| − E|XT

i µ|| ≥
t

4

)
︸ ︷︷ ︸

T2

+mβ(k̃)
)
,

where β(k̃) was previously defined in equation (58). We claim that the choices

t : = c1

(
σ

√
d log(k̃/δ)

m
+ σ‖µ∗‖2

√
log(k̃/δ)

m
+ ‖µ∗‖22

)
, and k̃ : =

C2 log( 3n
ε3mixπ

3
minδ

)

log 1/ρ̃mix
,

suffice to ensure that P(en(X) ≥ t/(2σ2)) ≤ δ. Notice that the bound (59) implies that

mβ(k̃) ≤ cmρk̃mix

ε3mixπ
3
min

≤ δ

3k̃
.

In the sequel we develop bounds on T1 and T2. For T1, observe that since Xi ∼ Ziµ
∗ + εi

where εi is a Gaussian vector with covariance σ2I and Zi independent under P0, standard
χ2 tail bounds imply that

P0

[
| 1
m

m∑
i=1

‖Xi‖22 − E‖Xi‖22| ≥
t

2

]
≤ δ

3k̃
.
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Finally, we turn our attention to the term T2. Observe that,

XT
i µ ∼

1

2
N (µTµ∗, σ2‖µ‖22) +

1

2
N (−µTµ∗, σ2‖µ‖22),

so that | XT
i µ ∼ |N (µTµ∗, σ2‖µ‖22)|. Denote Ui =| XT

i µ |. Letting ε denote a Rademacher
random variable, observe that

E exp(tUi)
(i)

≤ E exp(2tεUi)
(ii)

≤ exp
(
2t2σ2‖µ‖22 + 2tµTµ∗

)
,

where (i) follows using symmetrization, and (ii) follows since the random variable εUi is a
Gaussian mixture. Observe that

EUi
(iii)

≤ |µTµ∗|+ σ‖µ‖2
(iv)

≤ 2(σ + ‖µ∗‖2)‖µ∗‖2︸ ︷︷ ︸
M

,

where we have used for (iii) that Ui is a folded normal, and for (iv) that ‖µ− µ∗‖2 ≤ ‖µ
∗‖2
4 .

Setting D : = 4σ‖µ∗‖2
√

log(6k̃/δ)
m observe that t

4 ≥ 2M+D for big enough c1. Thus, applying
the Chernoff bound yields

T2 ≤ P0

[
| 1
m

m∑
i=1

Ui − EUi| ≥ 2M +D
]
≤ P0

(
| 1

m

m∑
i=1

Ui |≥M +D
)

≤ 2 inf
t≥0

{
E exp

( t
m

m∑
i=1

Ui −Mt−Dt
)}
,

≤ 2 exp
(
− mD2

8σ2‖µ‖22

)
≤ δ

3k̃
.

By combining the bounds on T1 and T2, some algebra shows that our choices of t, k̃ yield
the claimed bound—namely, that P

[
en(X) ≥ t/(2σ2)

]
≤ δ.

C.3 Proofs of technical lemmas

In this section, we collect the proofs of various technical lemmas cited in the previous
sections.

C.3.1 Proof of Lemma 8

We use the following concentration theorem (e.g., Ledoux (1997)): suppose that the function
f : Rn → R is coordinate-wise convex and L-Lipschitz with respect to the Euclidean norm.
Then for any i.i.d. sequence of variables {Xi}ni=1 taking values in the interval [a, b], we have

P
[
f(X) ≥ Ef(X) + δ

]
≤ e
− δ2

4L2(b−a)2 (66)

We consider the process without absolute values (which introduces the factor of two in
the lemma) and see that ε : = (ε1, . . . , εn) is a random vector with bounded entries and that
the supremum over affine functions is convex.
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It remains to show that the function ε 7→ Vm(X̃, u) is Lipschitz with Lm(X̃;u) as follows∣∣ sup
θ

1

m

m∑
i=1

εifθ(X̃i;2k)− sup
θ

1

m

m∑
i=1

ε′ifθ(X̃i;2k)
∣∣

≤ 1

m
|
m∑
i=1

(εi − ε′i)fθ(X̃i;2k)|

≤ 1

m

√√√√ m∑
i=1

(2wθ̃(X̃i;2k)− 1)2〈Xi,k, u〉2‖ε− ε′‖2

≤ Lm(X̃;u)‖ε− ε′‖2

where θ̃ = arg maxθ∈Ω

∑
i εifθ(X̃i;2k) in the last line and we use that |2wθ(X̃i;2k)− 1| ≤ 1.

C.3.2 Proof of Lemma 9

The proof consists of three steps. First, we observe that the Rademacher complexity is
upper bounded by the Gaussian complexity. Then we use Gaussian comparison inequalities
to reduce the process to a simpler one, followed by a final step to convert it back to a
Rademacher process.

Relating the Gaussian and Rademacher complexity: Let gi ∼ N (0, 1). It is easy

to see that using Jensen’s inequality and the fact that εi|gi|
d
= gi

Eε sup
θ

1

m

m∑
i=1

εifθ(X̃i;2k) =

√
2

π
Eε sup

θ

1

m

m∑
i=1

εiEg[|gi|]fθ(X̃i;2k)

≤
√

2

π
Eg sup

θ

1

m

m∑
i=1

gifθ(X̃i;2k).

Lipschitz continuity: For θ = (µ, β) define the corresponding effective parameter that is
obtained by treating the observed variables X as fixed

θ̃i : = (γi, β) = (
〈µ,Xi,1〉
σ2

, . . . ,
〈µ,Xi,2k〉

σ2
, β). (67)

Now we can use results in the proof of Corollary 1 to see that θ̃i 7→ F (θ̃i; X̃i;2k) : = fθ(X̃i;2k)
is Lipschitz in the Euclidean norm, i.e. there exists an L, only dependent on ρmix such that

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)| ≤ L‖θ̃i − θ̃′i‖2|〈Xi,k, u〉| (68)

For this we directly use results (exponential family representation) that were used to show
Corollary 1. We overload notation and write X` : = X1,` and analyze Lipschitz continuity for
the first block. First note that F (θ̃i, X1;2k) = (2EZk|X2k

1 ,θZk − 1)Xi,k. By Taylor’s theorem,
we then have

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)| = |〈Xi,k, u〉||EZk|X̃i;2k,θZk − E
Zk|X̃i;2k,θ′Zk|

≤ |〈Xi,k, u〉||EZk|X̃i;2k,(µ,β)
Zk − E

Zk|X̃i;2k,(µ′,β)
Zk|

+ |〈Xi,k, u〉||EZk|X̃i;2k,(µ′,β)
Zk − E

Zk|X̃i;2k,(µ′,β′)Zk|
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Let us examine each of the summands separately. By the Cauchy-Schwartz inequality and
Lemma 6, we have

|E
Zk|X̃i;2k,(µ,β)

Zk − E
Zk|X̃i;2k,(µ′,β)

Zk| =
1

σ
|

2k∑
`=1

∂2Φ

∂γ`∂γ0

∣∣∣
θ=θ̃

(γ` − γ′`)|

=
∣∣ 2k∑
`=1

cov(Z0, Z` | X̃i;2k, θ̃)(〈µ,X`〉 − 〈µ′, X`〉)
∣∣

≤

√√√√(
2k∑
`=1

4ρ2`
mix)

2k∑
`=1

(γ` − γ′`)2,

as well as

|E
Zk|X̃i;2k,(µ′,β)

Zk − E
Zk|X̃i;2k,(µ′,β′)Zk| = |

2k∑
`=1

∂2Φ

∂β`∂γ0

∣∣∣
θ=θ̃

(β − β′)|

=
∣∣ 2k∑
`=1

cov(Z0, Z`Z`+1 | X̃i;2k, θ̃)(β − β′)
∣∣

≤ 2

1− ρmix
|β − β′|.

Combining these two bounds yields

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)|2 ≤ 〈Xi,k, u〉2L
( 2k∑
`=1

(γ` − γ′`)2 + (β − β′)2
)

= 〈Xi,k, u〉2L2‖θ̃i − θ̃′i‖22

with L2 = 8
(1−ρmix)2

.

Applying the Sudakov-Fernique Gaussian comparison: Let us introduce the short-
hands Xθ = 1

m

∑
i gifθ(X̃i;2k), and

Yθ =
1

m
L
∑
i

( 2k∑
`=1

gi`
〈µ,Xi,`〉
σ2

+ gi,2k+1β
)
〈Xi,k, u〉.

By construction, the random variable Xθ−X ′θ is a zero-mean Gaussian variable with variance

Eg(Xθ −Xθ′)
2 =

∑
i

(F (θ̃; X̃i;2k)− F (θ̃′; X̃i;2k))
2

≤ L2
∑
i

〈Xi,k, u〉2
( 2k∑
`=1

(γi,` − γ′i,`)2 + (β − β′)2
)

= Eg(Yθ − Yθ′)2 (69)
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By the Sudakov-Fernique comparison Ledoux and Talagrand (2013),we are then guaranteed
that E supθXθ ≤ E supθ Yθ. Therefore, it is sufficient to bound

Eg sup
θ∈Ω

Yθ = Eg sup
θ

L

σ2n

m∑
i=1

2k∑
`=1

gi`〈µ,Xi,`〉〈Xi,k, u〉︸ ︷︷ ︸
T1

+Eg sup
θ

L

n

m∑
i=1

gi,2k+1β〈Xi,k, u〉︸ ︷︷ ︸
T2

.

Converting back to a Rademacher process: We now convert the term T1 back to
a Rademacher process, which allows us to use sub-exponential tail bounds. We do so by
re-introducing additional Rademacher variables, and then removing the term maxi |gi| via the
Ledoux-Talagrand contraction theorem (Ledoux and Talagrand, 2013). Given a Rademacher

variable εil independent of g, note the distributional equivalence εilgil
d
= gi`. Then consider

the function φi`(gi`) : = gi`hi` with hi` : = 〈µ,Xi,`〉〈Xi,k, u〉 for which it is easy to see that

|φi`(gi`, hi`)− φi`(gi`, h′i`)| ≤ |gi`||hi` − h′i`| (70)

Applying Theorem 4.12. in Ledoux and Talgrand Ledoux and Talagrand (2013) yields

E sup
θ

1

m

m∑
i=1

2k∑
`=1

εi`gi`〈µ,Xi`〉〈Xi,k, u〉 ≤ Eg‖g‖∞Eε sup
θ

1

m

m∑
i=1

2k∑
`=1

εi`〈µ,Xi,`〉〈Xi,k, u〉.

Putting together the pieces yields the claim (62).

C.3.3 Proof of Lemma 10

We prove that the probability of each of the events corresponding to the inequalities is

smaller than 1
3e−c̃d log( k

δ
).

Bounding Lm: We start by bounding Lm(X̃;u). Note that

1

m

m∑
i=1

〈Xi,k, u〉2 ≤ ‖µ∗‖22 +
1

m

m∑
i=1

〈ni,k, u〉2 +
1

m

m∑
i=1

〈µ∗, u〉〈ni,k, u〉

where the sum
∑m

i=1〈ni,k, u〉2 is sub-exponential random variable with parameters (2
√
mσ2, 4)

so that

P(
1

m

m∑
i=1

〈ni,k, u〉2 − σ2 ≥ c̃2σ2 log(1/δ)) ≤ e−c
′m log 1

δ ≤ e−c
′d log 1

δ

where the last inequality follows since m ≥ d by assumption. Since 〈ni,k, u〉 can be

readily bounded by a sub-Gaussian tailbound it then follows directly that L2
m(X̃;u) ≤

c̃2 2(‖µ∗‖22+σ2) log 1
δ

m with probability at least 1− 1
3e−c

′d log( k
δ

) for c′ large enough.

Bounding Nm: In order to bound Nm(X̃;u), we first introduce an extra Rademacher
random variable into its definition; doing so does not change its value (now defined by an
expectation over both g and the Rademacher variables). We now require a result for a
product of the form εgh where g, h are independent Gaussian random variables.
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Lemma 11 Let (ε, g, h) be independent random variables, with ε Rademacher, g ∼ N (0, σ2
g),

and h ∼ N (0, σ2
h). Then the random variable Z = εgh is a zero-mean sub-exponential random

variable with parameters (
σ2
gσ

2
h

2 , 1
4).

Proof Note that g′ = αh with α =
σg
σh

is identically distributed as g. Therefore, we have

gh =
1

α
gg′ =

1

4α
[(g − g′)2 + (g + g′)2]

The random variables g− g′ and g + g′ are independent and therefore (g− g′)2, (g + g′)2 are
sub-exponential with parameters ν2 = 4σ4

g , b = 1
4 . This directly yields

Eeλε[(g+g
′)2−(g−g′)2] ≤ e4λ2σ4

g

for |λ| ≤ 1
b . Therefore Eeλεgh ≤ e

λ2σ2gσ
2
h

4 , which shows that εgh is sub-exponential with

parameters (
σ2
gσ

2
h

2 , 1
4).

Returning to the random variable Nm(X̃;u), each term εigi,2k+1〈Xi,k, u〉 is a sub-

exponential random variable with mean zero and parameter ν2 = ‖µ∗‖22 + σ2

2 . Consequently,

there are universal constants such that Nm(X̃;u) ≤ cLν

√
d log k

δ
m with probability at least

1− 1
3e−c

′d log( k
δ

).

Bounding Mm: Our next claim is that with probability at least 1− 1
3e−c

′d log( k
δ

), we have

Eε‖
1

m

m∑
i=1

εi`Xi,`〈Xi,k, u〉‖2 ≤ (‖µ∗‖22 + σ2)

√
d log k

δ

m
, (71)

which then implies that Mm(X̃;u) ≤ c‖µ∗‖2
(‖µ∗‖2

σ2 + 1
)
k

√
d logm log k

δ
m . In order to establish

this claim, we first observe that by Lemma 11, the random variable εi,`〈Xi,`, u〉〈Xi,k, u〉 is
zero mean, sub-exponential with parameter at most ν2 = (‖µ∗‖22 + σ2)2. The bound then
follows by the same argument used to bound the quantity Nm.

Appendix D. Mixing related results

In the following we use the shorthand notation πθk : = p(zk | xk0, θ) which we refer to the
filtering distribution which is tied to some distribution µ on z0.

Introducing the shorthand notation pµ(xk) : =
∑

zk

∑
zk−1

p(xk | zk)p(zk | zk−1)µ(zk−1),
we define the filter operator

Fiν(zi) : =

∑
zi−1

p(xi | zi)p(zi | zi−1)ν(zi−1)∑
zi

∑
zi−1

p(xi | zi)p(zi | zi−1)ν(zi−1)
=
∑
zi−1

p(xi | zi)p(zi | zi−1)

pν(xi)
ν(zi−1).
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where the observations x are fix. Using this notation, the filtering distribution can then be
rewritten in the more compact form πθk = p(zk | xk0, θ) = Fk . . . F1µ. Similarly, we define

Kj|i(zj | zj−1) : =
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)∑
zj
p(zj | zj−1)p(xj | zj)p(xij+1|zj)

, and ν`|i : =
p(xi`+1 | z`)ν(z`)∑
z`
p(xi`+1 | z`)ν(z`)

Note that εmixC0 ≤ p(xi`+1 | z`) ≤ ε
−1
mixC0 where

C0 =
∑

zi...z`+1

p(xi | zi)p(zi | zi−1) . . . p(x`+1 | z`+1)π(z`+1)

and therefore by definition of εmix (3)

sup
x

supz p(x
i
`+1 | z`)

infz p(xi`+1 | z`)
≤ ε−2

mix. (72)

With these definitions, it can be verified (e.g., see Chapter 5 of van Handel (2008)) that
Fi . . . F`+1ν = νT`+1|iK`+1|i . . .Ki|i, where νTK : =

∫
ν(x′)K(x|x′)dx′. In the discrete setting,

this relation can be written as the row vector ν being right multiplied by the kernel matrix
K.

D.1 Consequences of mixing

In this technical appendix we derive several useful consequences of the geometric mixing
condition on the stochastic process Zi.

Lemma 12 For any geometrically ρmix-mixing and time reversible Markov chain {Zi} with
s states, there is a universal constant c such that

sup
z0

∣∣p(z0 | xnk)− p(z0)
∣∣ < c(s+ 1)

π3
minε

3
mix

ρkmix. (73)

Proof We first prove the following relation

sup
x
|p(zi | xi+k)− p(zi)| ≤ c0

ρkmix

πmin
. (74)

Using time reversibility and the definition of mixing (4) we obtain

max
x

(p(z0 | xk)− π(z0)) =
∑
zk

(p(z0 | zk)− π(z0))p(zk | xk)

≤ max
zk
|(p(z0 | zk)− π(z0))|

∑
zk

p(zk | xk)

≤ max
zk

∣∣∣p(zk | z0)π(z0)

π(zk)
− π(z0)π(zk)

π(zk)

∣∣∣
≤ π(z0)

π(zk)
max
zk
|p(zk | z0)− π(z0)| ≤ c0ρ

k
mix

πmin
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where p(zk | z0) = P (Zk = zk | Z0 = z0) and p(z0 | zk) = P (Z0 = z0 | Zk = zk).
Using this result we can now prove inequality (73). By definition, we have

p(z0) =
p(xnk+1 | xk)p(xk)p(z0)

p(xnk+1, xk)
, and p(z0 | xk, xnk+1) =

p(xnk+1 | xk, z0)p(xk | z0)p(z0)

p(xnk+1, xk)

and therefore

|p(z0)− p(z0 | xnk)| ≤ p(xk)p(z0)

p(xnk)
|p(xnk+1 | xk)− p(xnk+1 | xk, z0)|

+
p(xnk+1 | xk, z0)p(z0)

p(xnk+1 | xk)
|p(xk)− p(xk | z0)| (75)

In the following we bound each of the two differences. Note that

|p(xnk+1 | xk, z0)− p(xnk+1 | xk)| =
∑
zk

∑
zk+1

p(xnk+1 | zk+1)p(zk+1 | zk)|p(zk | xk, z0)− p(zk | xk)|

≤ sup
zk,xk

|p(zk | xk, z0)− p(zk | xk)|
∑
zk

p(xnk+1 | zk) (76)

The last term
∑

zk
p(xnk+1 | zk) is bounded by s for s-state models. Using the bound (74),

we obtain

|p(xk | z0)− p(xk)| =
|p(z0 | xk)− π(z0)|p(xk)

π(z0)
≤ p(xk)

π2
min

ρkmix (77)

which yields

|p(zk | xk, z0)− p(zk | xk)| = p(xk | zk)
∣∣∣∣ p(zk | z0)

p(xk | z0)
− π(zk)

p(xk)

∣∣∣∣
≤ p(xk | zk)
p(xk | z0)

(
|p(zk | z0)− π(zk)|+

π(zk)

p(xk)
|p(xk | z0)− p(xk)|

)
≤ p(xk | zk)
p(xk | z0)

(
ρkmix +

1

π2
min

ρkmix

)
≤ 2ρkmix

p(zk | z0)π2
min

≤ 2

π3
minεmix

ρkmix. (78)

The last statement is true because one can check that for all t ∈ N we have

min
zk,z0

p(zk | z0) = min
ij

(At)ij ≥ min
ij

(A)ij ≥ εmixπmin

for any stochastic matrix A which satisfies the mixing condition (3).
Substituting (76) with (78) and (77) into (75), we obtain

|p(z0)− p(z0 | xnk)| ≤
∑

zk
p(xnk+1 | zk)p(z0)∑

zk
p(xnk+1 | zk)p(zk | xk)

2ρkmix

π3
minεmix

+
p(xnk+1 | xk, z0)p(z0)

p(xnk+1 | xk)
ρkmix

πmin

≤
(

2s

π3
minε

3
mix

+
1

ε2mixπmin

)
ρkmix ≤

2s+ 1

π3
minε

3
mix

ρkmix
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where we use (72) to see that

∑
zk
p(xnk+1 | zk)p(zk | xk, z0)∑
zk
p(xnk+1 | zk)p(zk | xk)

≤
maxzk p(x

n
k+1 | zk)

minzk p(x
n
k+1 | zk)

≤ ε−2
mix

and similarly for the first term.

Lemma 13 (Filter stability) For any mixing Markov chain which fulfills condition (3),
the following holds

‖Fi . . . F1(ν − ν ′)‖∞ ≤ ε−2
mixρ̃

i
mix‖ν − ν ′‖1

where ρ̃mix = 1− εmixπmin. In particular we have

sup
zi
|p(zi | xi1)− p(zi | xi−n)| ≤ 2ε−2

mixρ̃
i
mix. (79)

Proof Given the mixing assumption (3) we can show that Kj|i(x|y) ≥ εpj|i(x) with
ε = εmixπmin for some probability distribution pj|i(·). This is because we can lower bound

Kj|i(zj | zj−1) =
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)∑
zj
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)

≥
εmixπ(zj)p(xj | zj)p(xij+1 | zj)∑

zj

π(zj)

πmin
p(xj | zj)p(xij+1 | zj)︸ ︷︷ ︸

=: εpj|i(zj)

with ε = εmixπmin. This allows us to define the stochastic matrix

Qj|i =
1

1− ε
(Kj|i − εPj|i) or Kj|i = εPj|i + (1− ε)Qj|i.

where (Pj|i)k` = pj|i(`) and for any two probability distributions ν1, ν2 we have (ν1 −
ν2)TPj|i = 0. Using ρ̃mix = 1 − ε we then obtain by induction, Hoelder’s inequality and
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inequality (72)

‖(ν1|i − ν ′1|i)
TK1|i . . .Ki|i‖∞

≤
i∏

j=1

(1− ε)‖(ν1|i − ν ′1|i)
T ⊗ij=1 Qj|i‖2

≤ ρ̃imix‖ν1|i − ν ′1|i‖2
i∏

j=1

‖QTj|i‖op ≤ ρ̃
i
mix‖ν1|i − ν ′1|i‖2

≤ ρ̃imix

∥∥∥∥∥ p(xi2 | ·)ν(·)∑
z1
p(xi2 | z1)ν(z1)

− p(xi2 | ·)ν ′(·)∑
z1
p(xi2 | z1)ν ′(z1)

∥∥∥∥∥
2

≤ ρ̃imix

[∥∥∥ p(xi2 | ·)∑
z1
p(xi2 | z1)ν(z1)

(ν(·)− ν ′(·))
∥∥∥

2

+
∣∣∣ sup
z1
p(xi2 | z1)

( 1∑
z1
p(xi2 | z1)ν(z1)

− 1∑
z1
p(xi2 | z1)ν ′(z1)

)∣∣∣‖ν ′(·)‖1]
≤ ρ̃imix

(supz1 p(x
i
2 | z1)

infz1 p(x
i
2 | z1)

)2
‖ν − ν ′‖1 ≤ ε−2

mixρ̃
i
mix‖ν − ν ′‖1,

since Qj|i are stochastic matrices and ‖ν‖2 ≤ ‖ν‖1 ≤ 1 for probability vectors. The second
statement is readily derived by substituting ν(z1) = p(z1) and ν ′(z1) = p(z1 | x1

−n).

D.2 Proof of Lemma 3

Recall the shorthand ρ̃mix = 1− εmixπmin. First observe that

sup
zi
|p(zi | xn1 )− p(zi | xi+ki−k)| ≤ |p(zi|x

n
i+1)p(zi|xi1)− p(zi|xi+ki+1)p(zi|xii−k+1)|

p(xni+1)

p(xni+1|xi1)p(zi)

+ |A− 1|
p(xi+ki+1)

p(xi+ki+1|xii−k+1)

1

p(zi)

where A =
p(xni+1)

p(xni+1|xi1)

(
p(xi+ki+1)

p(xi+ki+1 |xii−k+1)

)−1

. We bound the two terms in the sum separately.

From Lemma 13 we directly obtain the following upper bounds

sup
z,x
|p(zi | xi1)− p(zi | xii−k+1)| ≤ ε−2

mixρ̃
min{i,k}
mix

sup
z,x
|p(zi | xni+1)− p(zi | xi+ki+1)| ≤ ε−2

mixρ̃
max{n−i,k}
mix

where the latter follows because of reversibility assumption (2) of the Markov chain. Inequal-

ity (72) can also be used to show that
p(xni+1)

p(xni+1|xi1)
,

p(xi+ki+1)

p(xi+ki+1 |xii−k+1)
≤ ε−2

mix. A proof for a similar

statement is given after inequality (80). The first term of the sum is therefore bounded
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above by 2
ρ̃
min{i,n−i,k}
mix

πminε
4
mix

.

For the second term, we mainly need to bound |A − 1|. In order to simplify the
notation in the proof, we divide the sequence of values all observed variables in the window

i− k, i+ k around index i, i.e. x
max{i+k,n}
min{i−k,1} , into four disjoint chunks and call them a, b, c, d

in chronological order, explicitly defined as

a := x
max{i−k,1}
min{i−k,1} b := ximax{i−k,1}+1 c := x

min{i+k,n}
i+1 d := x

max{i+k,n}
min{i+k,n}+1.

Note that the definition depends on whether i − k > 1 or i + k < n. Depending on the
combination of i+ k < n and i− k > 1 being true or false,

A =

{
p(d|c)p(a|b)

p(d|a,b,c)p(a|b,c) if i− k > 1, i+ k < n
p(a|b)p(d|a,b,c)
p(a|b,c,d)p(d|c) if i− k > 1, i+ k > n

.

For the other two possible cases, A is an inverse of the above. We demonstrate the main
argument by looking into these two cases in more detail. Observe that the following inequality
holds for the first case

|A− 1| ≤ |p(d | c)− p(d | a, b, c)|
p(d | a, b, c)

p(a | b)
p(a | b, c)

+
|p(a | b)− p(a | b, c)|

p(a | b, c)

holds for all x. For the second case there is only an additional conditioning on d for the
second term on the right hand side. In the inverse case that i− k < 1, i+ k > n we have

|A− 1| ≤ |p(d | c)− p(d | a, b, c)|
p(d | c)

p(a | b, c)
p(a | b)

+
|p(a | b)− p(a | b, c)|

p(a | b)

and equivalently with an additional conditioning on d for i − k < 1, i + k < n. It is thus
sufficient to consider supx |p(d | c)− p(d | a, b, c)| and supx |p(a | b)− p(a | b, c, d)|. We see
later that this is also the critical quantity to bound for the inverses.

First note that

max
{ p(a | b)
p(a | b, c)

,
p(a | b, c)
p(a | b)

}
≤ ε−2

mix. (80)

For the first term we see that for all x we have

p(a | b)
p(a | b, c)

=
p(xβα | xiβ+1)

p(xβα | xiβ+1, x
γ
i+1)

=

∑
zβ+1

p(xβα | zβ+1)p(zβ+1 | xiβ+1)∑
zβ+1

p(xβα | zβ+1)p(zβ+1 | xγβ+1)

≤
supz p(x

β
α | zβ+1)

infz p(x
β
α | zβ+1)

≤ ε−2
mix

where the second inequality holds because of conditional independence of xiβ+1 and xβα given
zβ+1 in an HMM, and the last line holds because of inequality (72) and the fact that the
Markov chain is invertible. Observe that the same arguments goes through for the inverse
as well so that inequality (80) holds.
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Let us now look at the rest of the terms involving differences. For the sake of simplification,
let us introduce the shorthand notation

α : = min{i− k, 1}, β : = max{i− k, 1}, γ : = min{i+ k, n}, and δ : = max{i+ k, n}.

Then we can write xβα = a;xiβ+1 = b;xγi+1 = c;xδγ+1 = d and bound |p(d | c)− p(d | a, b, c)|.
Using Lemma 13 and inequality (72), we have the bound

p(d | c)− p(d | a, b, c)
p(d | a, b, c)

=
|p(xδγ+1|x

γ
i+1)− p(xδγ+1|xiα, x

γ
i+1)|

p(xδγ+1|xiα, x
γ
i+1)

≤
∑

zγ
p(xδγ+1 | zγ)|p(zγ |xγi+1)− p(zγ |xiα, x

γ
i+1)|∑

zγ
p(xδγ+1|zγ)p(zγ |xγα)

≤
supz p(x

δ
γ+1|zγ)

infz p(xδγ+1|zγ)

∑
zγ

|p(zγ |xγi+1)− p(zγ |xγα)|

≤ Csε−4
mixρ̃

γ−i
mix = Csε−4

mixρ̃
min{n−i,k}
mix .

The same argument applies if the denominator is p(d | c). Analogously, we have that

|p(a | b)− p(a | b, c)|
p(a | b, c)

≤ Csε−4
mixρ̃

i−β+1
mix = Csε−4

mixρ̃
min{k,i}
mix

and the same holds for the case when the denominator is p(a | b) by inequality (80).
Note that the additional conditioning on d, does not change the result. Also, considering

the inverses we see that the inequalities still hold.
Putting everything together now yields

|A− 1| ≤ C ′sε−6
mixρ̃

min{n−i,i,k}
mix ,

where C ′ is a generic constant and thus

sup
zi
|p(zi | xn1 )− p(zi | xi+ki−k)| ≤ C

sρ̃
min{i,n−i,k}
mix

πminε8mix

.

D.3 Proof of Lemma 6

The latter inequality is valid in our particular case because

| cov(z0, z` | x0, . . . , xk)| = |
∑
z0,z`

z0z`p(z` | z0, x)p(z0|x)−
∑
z0

z0p(z0|x)
∑
z`

z`p(z`|x)|

= |
∑
z0,z`

z0z`p(z0|x)(p(z`|z0, x)− p(z` | x))|

≤ sup
z`,z0
|p(z`|z0, x)− p(z` | x)|

∑
z0

∑
z`

|z0z`|p(z0 | x)

Let us now show that supz`,z0
∣∣p(z` | z0, x)− p(z` | x)

∣∣ ≤ ρ`mix. Introducing the shorthand
∆(`) = p(z` = 1 | z0 = 1, x)− p(z` = 1 | z0 = −1, x), we first claim that

|∆(1)| ≤ ρmix (81)
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To establish this fact, note that

∆(1) =

∣∣∣∣ p(x | z` = 1)

p(x | z`−1 = 1)
p(z` = 1 | z`−1 = 1)− p(x | z` = 1)

p(x | z`−1 = −1)
p(z` = 1 | z`−1 = −1)

∣∣∣∣
=

ap

ap+ b(1− p)
− a(1− p)
a(1− p) + bp

=
ab

(ap+ b(1− p))(a(1− p) + bp)
(2p− 1)

where we write a = p(x | z` = 1) and b = p(x | z` = −1). The denominator is minimized at
p = 1 so that inequality (81) is shown. The same argument shows that |∆(−1)| ≤ ρmix.

Induction step: Assume that ∆(`− 1) ≤ ρ`−1
mix. It then follows that

|p(z` = 1 | z0 = 1, x)− p(z` = 1 | z0 = −1, x)|

= |
∑
z`−1

p(z` = 1 | z`−1, x)p(z`−1 | z0 = 1, x)− p(z` = 1 | z`−1, x)p(z`−1|z0 = −1, x)|

= ∆(1)∆(`− 1) ≤ ρ`mix

Since

p(z` = 1 | z0 = −1, x)− p(z` = 1 | z0 = 1, x) = −p(z` = −1 | z0 = −1, x) + p(z` = −1 | z0 = 1, x)

we use the shorthand s = p(z0 = 1 | x) to obtain

sup
z`,z0
| p(z` | z0, x)− p(z` | x)|

= sup
b`,b0

p(z` = b` | z0 = b0, x)− [(p(z` = b` | z0 = 1, x)s+ p(z` = b` | z0 = −1, x)(1− s)]

≤ (1− s)|∆(`)| ≤ ρmix

which proves the bound for cov(Z0, Z1 | γ).
For the two state mixing we define ∆̃(`) = p(z` = 1 | z1z0 = 1, x)−p(z` = 1 | z1z0 = −1, x)

and can readily see that |∆̃(1)| ≤ ρmix and

|p(z`+1z`+2 = 1 | z`z`−1 = 1, x)− p(z`+1z`+2 = 1 | z`z`−1 = −1, x)|
= [p(z`+2 = 1 | z`+1 = 1, x)− p(z`+2 = −1 | z`+1 = −1, x)]∆̃(2)

Using equation (81), we obtain

|∆̃(2)| = |p(z1 = 1 | z0 = 1, x)− p(z1 = −1 | z0 = −1, x)|∆̃(1) ≤ ρmix (82)

from which it directly follows that

|p(z`+1z`+2 = 1 | z`z`−1 = 1, x)− p(z`+1z`+2 = 1 | z`z`−1 = −1, x)| ≤ ρmix

The rest follows the same arguments as above and the bound for cov(Z0Z1, Z`Z`+1 | γ) in
inequality (55) is shown.

Finally, the bound for cov(Z0, Z`Z`+1 | γ) in inequality (55) follows in a straightforward
way using the relation (82) and induction with equation (81), as above.

50



Theoretical guarantees for the Baum-Welch algorithm

References

S. Balakrishnan, M. J. Wainwright, and B. Yu. Statistical guarantees for the EM algorithm:
From population to sample-based analysis. arXiv preprint arXiv:1408.2156, 2014.

L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. The Annals of Mathematical Statistics, pages 1554–1563, 1966.

L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical
Statistics, pages 164–171, 1970.

M. Belkin and K. Sinha. Toward learning Gaussian mixtures with arbitrary separation. In
COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010,
pages 407–419, 2010.

P.J. Bickel, Y. Ritov, and T. Rydén. Asymptotic normality of the maximum-likelihood
estimator for general Hidden Markov Models. The Annals of Statistics, 26(4):1614–1635,
08 1998. doi: 10.1214/aos/1024691255.
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