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Aurélien Guetsop Nangue guetsopn@dms.umontreal.ca
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Abstract

The problem of testing mutual independence between many random vectors is addressed.
The closely related problem of testing serial independence of a multivariate stationary se-
quence is also considered. The Möbius transformation of characteristic functions is used
to characterize independence. A generalization to p vectors of distance covariance and
Hilbert-Schmidt independence criterion (HSIC) tests with the translation invariant kernel
of a stable probability distribution is proposed. Both test statistics can be expressed in a
simple form as a sum over all elements of a componentwise product of p doubly-centered
matrices. It is shown that an HSIC statistic with sufficiently small scale parameters is
equivalent to a distance covariance statistic. Consistency and weak convergence of both
types of statistics are established. Approximation of p-values is made by randomization
tests without recomputing interpoint distances for each randomized sample. The depen-
dogram is adapted to the proposed tests for the graphical identification of sources of de-
pendencies. Empirical rejection rates obtained through extensive simulations confirm both
the applicability of the testing procedures in small samples and the high level of competi-
tiveness in terms of power. Applications to meteorological and financial data provide some
interesting interpretations of dependencies revealed by dependograms.

Keywords: Distance covariance, Hilbert-Schmidt independence criterion, Möbius trans-
formation, mutual independence, serial independence

1. Introduction

The problem of testing for independence between p components of a random vector has
attracted considerable attention in statistics. Many nonparametric procedures exist in
the literature. A natural approach is to consider a functional of the difference between
the empirical joint distribution and the product of the empirical marginal distributions.
This same approach can also use empirical characteristic functions. When the functional
of the difference is above a certain threshold, the components are declared dependent.
Csörgő (1985), Kankainen (1995), Sejdinovic et al. (2013b) and Fan et al. (2017) considered
mutual tests of independence based on empirical characteristic functions. However, when
dependence is declared, it is not possible to identify, with their proposed tests, subsets of
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variables responsible for the dependence. This limitation is similar to that of a global F -test
in an analysis of variance model with one fixed factor, as opposed to multiple comparisons
procedures, or that of a global chi-square test of independence in a multi-way contingency
table, as opposed to log-linear models with interaction terms. For tests of independence, a
useful method is the Möbius transformation.

The Möbius transformation defined in (1) of Section 2 has a long history in statistics.
The Möbius transformation of distribution functions was first proposed in Blum et al. (1961)
for p = 3. The general case was treated in Deheuvels (1981), Ghoudi et al. (2001), Genest
and Rémillard (2004), Kojadinovic and Holmes (2009), Kojadinovic and Yan (2011), and
Duchesne et al. (2012). It can also be defined with characteristic functions as in Bilodeau
and Lafaye de Micheaux (2005), with half-space probabilities as in Beran et al. (2007),
or with cell probabilities in a contingency table as in Bilodeau and Lafaye de Micheaux
(2009). The first appearance of a Möbius transformation, although not stated explicitly,
goes back to the work of Lancaster (1951) on contingency tables as explained in Bilodeau
and Lafaye de Micheaux (2009). The machine learning community (Sejdinovic et al., 2013a)
proposed kernel nonparametric tests for Lancaster three-variable interaction. This test is in
fact a test based on the empirical version of the Möbius transformation of the characteristic
function when p = 3. The general Möbius transformation considered in this paper can be
used to build tests for general interactions of any order, as well as tests of mutual and serial
independence.

The paper is organized as follows. Section 2 introduces the Möbius transformation of
characteristic functions. It presents a characterization of the mutual independence between
p random vectors by the Möbius transformation. In Section 3, new tests based on the
Möbius transformation of empirical characteristic functions are introduced. They general-
ize the Hilbert-Schmidt independence criterion (HSIC) test (Gretton et al., 2005, 2008)
and the distance covariance test (Székely et al., 2007) to the case p > 2. This work ad-
dresses the case of finite-dimensional Euclidean spaces. HSIC was originally defined more
generally using any semimetric space of negative type (as in the distance covariance), or
any Borel measurable space on which a kernel is defined (Sejdinovic et al., 2013b). For
example, in Gretton et al. (2008), dependence was detected between text in different lan-
guages using kernels on strings. On the other hand, this manuscript proposes a criterion
that is more general than HSIC in a different respect, via subsets of components in the
Möbius transformation, where the criterion coincides with HSIC when the latter is spe-
cialized to Euclidean spaces and p = 2. The new test statistics have a common form as
a sum of elements of a componentwise product of p doubly-centered matrices. An equiv-
alence is established between an HSIC statistic with infinitesimal scale parameters and a
distance covariance statistic. The weak convergence of the empirical processes based on the
Möbius transformation is proved. The consistency and weak convergence of the HSIC and
distance covariance functionals are also established. A difficulty encountered in establishing
the asymptotic independence of the collection of distance covariance functionals, over all
subsets of components, is described. Other competing nonparametric tests of independence
are reviewed in Section 4.

Rather than relying on the limiting distribution to conduct tests, Section 5 describes
randomization tests as an approximation to permutation tests. In Section 6, p-values ob-
tained by randomization tests for all possible subsets of components are combined using
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the methods of Fisher (1950, pp. 99-101) or Tippett (1952) to obtain a global test of mu-
tual independence. Section 7 describes the dependogram, a graphical device of Genest and
Rémillard (2004), in the context of HSIC and distance covariance tests. Section 8 adapts
all the results described for the mutual independence situation to the problem of testing
for the serial independence of a multivariate stationary sequence. Computational costs are
given in Section 9 together with a short description of R (R Core Team, 2015) packages for
nonparametric independence tests. Simulated models are considered in Section 10 to verify
that the proposed tests have empirical significance levels close to the nominal level in small
samples and comparable or higher powers in many situations when compared to existing
tests such as those of Csörgő (1985), Kojadinovic and Holmes (2009) or Kojadinovic and
Yan (2011).

Finally, Section 11 contains an application to real data on variables related to air tem-
perature, soil temperature, humidity, wind, and evaporation. HSIC or distance covariance
tests should be preferred to the Gaussian likelihood ratio test since a multivariate Gaus-
sian model is rejected by the test of Henze and Zirkler (1990). According to these tests,
wind does not exhibit any dependence with all other variables considered. Another appli-
cation finds significant serial dependencies in the S&P/TSX composite, DOW JONES, and
S&P500 daily percent increasing rates ranging from January 2, 2014 to March 2, 2016. The
strongest dependency observed at a lag of 4 days by a distance covariance test is interpreted
using a broken line regression model as the tendency of stock markets to recover in the days
following a sharp decline.

2. Möbius Transformation

The Möbius transformation of characteristic functions is a powerful tool for the characteri-
zation of mutual independence between p random vectors Z(1), . . . , Z(p). The dimension of
the vector Z(j) is dj , for j = 1, . . . , p. Let f be the joint characteristic function of these p
vectors, and let f (j) be the marginal characteristic function of Z(j). Mutual independence
is characterized by the factorization

f(t(1), . . . , t(p)) =

p∏
j=1

f (j)(t(j)),

for all t(1), . . . , t(p). It may also be characterized by the Möbius transformation which is
defined as follows. Let Ip be the family of subsets B of {1, . . . , p} of cardinality |B| > 1.
The set Ip has 2p−p−1 elements since the empty set is excluded, as well as all p singletons.
For any B ∈ Ip and any t(1), . . . , t(p), define t(B) = (t(j) : j ∈ B). Similarly, Z(B) = (Z(j) :
j ∈ B), and f (B) is the joint characteristic function of Z(B). The Möbius transformation of
the characteristic function f for the set B ∈ Ip is given by

µB(t(B)) =
∑
C⊆B

(−1)|B\C|f (C)(t(C))
∏

j∈B\C

f (j)(t(j)). (1)

By convention, for C = ∅, both f (C)(t(C)) and
∏
j∈C f

(j)(t(j)) are equal to one. The following

characterization holds: Z(1), . . . , Z(p) are mutually independent if and only if, µB(t(B)) = 0,
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for all B ∈ Ip, and all vectors t(B). A proof by induction of this characterization using
distribution functions is given in Ghoudi et al. (2001) and is immediately applicable to
characteristic functions.

3. Dependence Statistics

Consider Zk = (Z
(1)
k , . . . , Z

(p)
k ), k = 1, . . . , n, an independent and identically distributed

sample of size n. The Möbius processes corresponding to µB, B ∈ Ip, are defined as

RnB(t(B)) =
√
n
∑
C⊆B

(−1)|B\C|f (C)
n (t(C))

∏
j∈B\C

f (j)
n (t(j)), (2)

where

f (C)
n (t(C)) =

1

n

n∑
k=1

ei〈t
(C),Z

(C)
k 〉 (3)

is the empirical characteristic function. When C = {j} is a singleton, the notation used for

f
(C)
n is simply f

(j)
n . The empirical processes RnB, for all B ∈ Ip, are illustrated when p = 3

in Table 1. The processes RnB are identical to the empirical characteristic independence
processes

SnB(t(B)) =
√
n

f (B)
n (t(B))−

∏
j∈B

f (j)
n (t(j))


in Csörgő (1985) only for subsets B of cardinality 2. The process SnB appears later in
the test statistic J 2

n in (17) used for testing the hypothesis of mutual independence. For
B = {1, 2, 3}, the process

SnB(t(B)) =
√
n
[
f (1,2,3)
n (t(1), t(2), t(3))− f (1)

n (t(1))f (2)
n (t(2))f (3)

n (t(3))
]

can be contrasted with the process RnB in Table 1. Although, at first sight, RnB may look
more complicated than SnB and both processes converge weakly to Gaussian processes, the
processes RnB have major advantages which are enunciated in Section 4.

B RnB(t(B))/
√
n

{1, 2} f
(1,2)
n (t(1), t(2))− f (1)n (t(1))f

(2)
n (t(2))

{1, 3} f
(1,3)
n (t(1), t(3))− f (1)n (t(1))f

(3)
n (t(3))

{2, 3} f
(2,3)
n (t(2), t(3))− f (2)n (t(2))f

(3)
n (t(3))

{1, 2, 3} −f (1,2,3)n (t(1), t(2), t(3)) + f
(1,2)
n (t(1), t(2))f

(3)
n (t(3)) + f

(1,3)
n (t(1), t(3))f

(2)
n (t(2))

+f
(2,3)
n (t(2), t(3))f

(1)
n (t(1))− 2f

(1)
n (t(1))f

(2)
n (t(2))f

(3)
n (t(3))

Table 1: Empirical processes RnB, B ∈ I3.

The dependence statistic for the subset B is now defined as the Cramér-von Mises
functional

WnB =
1

n

∫
|RnB(t(B))|2dwB(t(B)), (4)
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where dwB(t(B)) =
∏
j∈B dw

(j)(t(j)) is a product measure. The evaluation of this integral is
facilitated using another representation of the process. First, recall the multinomial formula
(Ghoudi et al., 2001)

∑
C⊆B

(∏
i∈C

u(i)

) ∏
j∈B\C

v(j)

 =
∏
i∈B

(
u(i) + v(i)

)
. (5)

Then, the empirical process (2) can be written as

RnB(t(B)) =
1√
n

n∑
k=1

∏
j∈B

[
ei〈t

(j),Z
(j)
k 〉 − f (j)

n (t(j))
]
. (6)

The representation (6) is obtained after replacing the expression (3) for the empirical char-
acteristic function in (2) and by applying the multinomial formula (5). The representation
given by (6) allows the integral (4) to be evaluated explicitly in some cases and simplifies
the proof of theorems to come. Two important cases are now presented.

3.1 Hilbert-Schmidt Independence Criterion

Assume that the measure dwB(t(B)) =
∏
j∈B dG

(j)(t(j)) is a product of symmetric (around
the origin) probability measures. The population Hilbert-Schmidt independence criterion
is

H2
B =

∫
|µB(t(B))|2

∏
j∈B

dG(j)(t(j)) (7)

which is well defined since the function µB is bounded. For the sample version, let ϕ(j)

be the (real) characteristic function of G(j). The sample version of the Hilbert-Schmidt
independence criterion (7) is denoted H2

nB and has the following explicit expression.

Theorem 1 For any B ∈ Ip, the dependence statistic H2
nB is given by

H2
nB =

1

n2

n∑
k=1

n∑
l=1

∏
j∈B

A
(j)
kl , (8)

where

a
(j)
kl = ϕ(j)(Z

(j)
k − Z

(j)
l ), (9)

A
(j)
kl = a

(j)
kl − ā

(j)
k. − ā

(j)
.l + ā(j)

.. ,

ā
(j)
k. =

1

n

n∑
l=1

a
(j)
kl , ā

(j)
.l =

1

n

n∑
k=1

a
(j)
kl , ā

(j)
.. =

1

n2

n∑
k,l=1

a
(j)
kl .

By definition, matrices A(j) = (A
(j)
kl ), j = 1, . . . , p, are doubly-centered, i.e. rows and

columns of these matrices sum up to zero. In the special case p = 2 of testing the indepen-
dence between two vectors, the statistic H2

nB, for B = {1, 2}, is the Hilbert-Schmidt inde-

pendence criterion, or HSIC, with translation invariant kernels ϕ(j)(Z
(j)
k − Z

(j)
l ), j = 1, 2.

A proof of Theorem 1 for p = 3 was provided by Sejdinovic et al. (2013a).
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An important special case is when G(j) is the stable distribution of index α ∈ (0, 2] with
scale parameter βj > 0 first studied by Lévy (1925). Then, the translation invariant kernel
is

a
(j)
kl = e

−βαj |Z
(j)
k −Z

(j)
l |

α
dj , (10)

where | · |dj is the Euclidean norm in dimension dj . The corresponding dependence statistic

is then denoted H2(α)
nB . The case α = 2 is the Gaussian kernel, and α = 1 is the Cauchy

kernel, often referred to as the Laplace kernel in machine learning (Gretton et al., 2005,
2009) because of its similarity to a Laplace density in dimension one.

The following result establishes the consistency of the Hilbert-Schmidt independence
criterion H2

nB.

Theorem 2

(i) H2
nB

a.s.→ H2
B, as n→∞.

(ii) If µB(t(B)) 6= 0 for some vector t(B), then nH2
nB

a.s.→ ∞, as n→∞.

3.2 Distance Covariance

Assume that the measure dwB(t(B)) =
∏
j∈B dw

(j)(t(j)) is a product of non integrable

measures. The measure dw(j) of index 0 < α < 2 is defined as

dw(j)(t(j)) =
[
C(dj , α)|t(j)|dj+αdj

]−1
dt(j),

with the normalizing constant

C(d, α) = 2πd/2Γ(1− α/2)/ [α2αΓ((d+ α)/2)] .

A similar representation as in (8) also holds. The corresponding dependence statistic is

denoted V2(α)
nB , which is the usual notation for distance covariance of index α.

Theorem 3 Let 0 < α < 2. Then, for any B ∈ Ip, the dependence statistic V2(α)
nB has the

same form as in (8) of Theorem 1 with

a
(j)
kl = −|Z(j)

k − Z
(j)
l |αdj . (11)

In the special case |B| = 2, the statistic V2(α)
nB reduces to the distance covariance of index α

in Feuerverger (1993) for the case d1 = d2 = 1, and later generalized by Székely et al. (2007)
to the case d1 ≥ 1, d2 ≥ 1. A very special case requiring a separate analysis is when |B| = 2

and α = 2. In this case, V2(2)
nB is the numerator of the RV coefficient of Escoufier (1973) as

noticed by Josse and Holmes (2016) when d1 ≥ 1 and d2 ≥ 1, and earlier by Székely et al.
(2007) only when d1 = d2 = 1. It should be noted that the case α = 2 leads only to a test
of non correlation but not of independence, unless the joint distribution is Gaussian. For
this reason, the value α = 2 will not be considered for distance covariance in the sequel.

Székely et al. (2007) showed the consistency of distance covariance for 0 < α < 2 and
|B| = 2. Consistency of distance covariance for |B| > 2 is now established. Only when
necessary, the notation E3 is for the expectation with respect to Z3, treating the other
variable as a constant to avoid using conditional expectations.
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Theorem 4 Let 0 < α < 2. Assume

E
∏
j∈B
|Z(j)

1 − Z
(j)
2 |αdj <∞. (12)

Define

V2(α)
B = E

∏
j∈B

[
−|Z(j)

1 − Z
(j)
2 |αdj + E3|Z(j)

1 − Z
(j)
3 |αdj + E3|Z(j)

2 − Z
(j)
3 |αdj − E|Z(j)

3 − Z
(j)
4 |αdj

]
.

Then,

(i) V2(α)
B =

∫
|µB(t(B))|2dwB(t(B)) <∞.

(ii) If µB(t(B)) 6= 0 for some vector t(B), then nV2(α)
nB

a.s.→ ∞, as n→∞.

For 0 < α < 2, the following limit establishes that V2(α)
nB is, for all practical purpose,

equivalent to H2(α)
nB when scale parameters βj , j ∈ B, are sufficiently small:

lim
βj→0,∀j∈B

H2(α)
nB /

∏
j∈B

βαj = V2(α)
nB . (13)

This result, proved in the appendix, implies that H2(α)
nB , properly normalized with suffi-

ciently small scale parameters, can be as close as desired to V2(α)
nB and thus, H2(α)

nB will have

a power function indistinguishable from that of V2(α)
nB . For semimetrics generated by kernels,

Sejdinovic et al. (2013b, Theorem 24) established an equivalence between distance covari-
ance and HSIC. However, for distance covariance defined in terms of a weighted distance
between characteristic functions, one can not find a continuous translation invariant kernel
for which HSIC coincide with distance covariance (Sejdinovic et al., 2013b, Section 5.3).
Nevertheless, (13) provides an equivalence of a different nature: for α-stable distributions,
appropriately normalized HSIC and distance covariance are equivalent in the limit, as the
scale parameters converge to zero.

As simple as it may seem, this equivalence, for the simplest case |B| = 2, has gone
unnoticed in the discussions of distance covariance (Székely and Rizzo, 2009; Gretton et al.,
2009). In Section 8.2 of Sejdinovic et al. (2013b), for |B| = 2, the HSIC test based on

H2(2)
nB with Gaussian kernels with scale parameters set at the inverse of median of interpoint

distances is compared to distance covariance tests of varying index α. It was found in the

independent component analysis benchmark example that V2(1/3)
nB is more powerful than

H2(2)
nB . From (13), the HSIC test based on H2(1/3)

nB , with translation invariant kernels of
the stable distribution of index α = 1/3 and very small scale parameters, would have a

power function indistinguishable from that of V2(1/3)
nB . In another example with sinusoidally

dependent data, the HSIC test based on H2(2)
nB has a very poor power function compared to

V2(1/6)
nB . Sejdinovic et al. (2013b) explained: “the exponent in the distance-induced kernel

plays a similar role as the bandwidth of the Gaussian kernel, and smaller exponents are able
to detect dependencies at smaller lengthscales. Poor performance of the Gaussian kernel
with median bandwidth in this example is a consequence of the mismatch between the overall
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lengthscale of the marginal distributions (captured by the median interpoint distances) and
the lengthscales at which dependencies are present”. In fact, the exponent in the distance-
induced kernel of a distance covariance test plays the same role as the index of the translation
invariant kernel of a stable distribution in an HSIC test. Indistinguishable power functions
can be obtained by choosing sufficiently small scale parameters in the translation invariant
kernel. This all means that HSIC with sufficiently small scale parameters always match
distance covariance in terms of power. But HSIC with scale parameters appropriately
selected may, in some cases, improve on distance covariance.

3.3 Asymptotic Distribution

Empirical processes as in (2) have been recently very useful at tackling problems related to
mutual independence because of the simplicity of the asymptotic distribution. Let dB =∑

j∈B dj . Each process RnB is defined on the space C(RdB ,C) of complex-valued continuous

functions defined on RdB . Let d =
∑p

j=1 dj and t = (t1, . . . , td) ∈ Rd. The following mild
tail condition (Csörgő, 1981, 1985) is assumed∫ 1

0

ψ̄(h)

h
(
log 1

h

)1/2dh <∞, (14)

where

ψ̄(h) = sup

{
y : 0 ≤ y ≤ 1, λd

{
t : |t|∞ <

1

2
, ψ(t) < y

}
< h

}
,

with λd standing for the Lebesgue measure in Rd and |t|∞ = max(|t1|, . . . , |td|), is the

nondecreasing rearrangement of the function ψ(t) = [1−Ref(t)]1/2. Weak convergence of
the collection of processes RnB is now established. For details concerning the metrics on
the spaces in Theorem 5, the reader is referred to the appendix. The symbol ⇒ stands for
weak convergence.

Theorem 5 If Z(1), . . . , Z(p) are mutually independent, then the process RnB ⇒ RB in
C(RdB ,C), where RB is a zero mean complex Gaussian process with R̄B(t(B)) = RB(−t(B))
and complex covariance function

E
[
RB(t(B))R̄B(s(B))

]
=
∏
j∈B

[f (j)(t(j) − s(j))− f (j)(t(j))f (j)(−s(j))].

Moreover, the collection of processes (RnB : B ∈ Ip) ⇒ (RB : B ∈ Ip) on the product
of spaces ×

B∈Ip
C(RdB ,C) to a zero mean Gaussian process such that the marginal processes

RB, B ∈ Ip, are mutually independent.

The convergence of functionals (4) also holds even though they are not defined on the
whole space C(RdB ,C), but only on the space of squared integrable functions. In the next
theorem, the asymptotic distribution of nH2

nB is described. In particular, it provides the

asymptotic distribution of nH2(α)
nB , for any α ∈ (0, 2].

Theorem 6 Let WnB = H2
nB. If Z(1), . . . , Z(p) are mutually independent, then nWnB ⇒

WB for each B ∈ Ip, where WB =
∫
|RB(t(B))|2∏j∈B dG

(j)(t(j)). Moreover, the collection
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of variables (nWnB : B ∈ Ip) ⇒ (WB : B ∈ Ip), where the variables WB, B ∈ Ip, are
mutually independent.

Theorem 6 holds without moment conditions for H2
nB since in this case dwB is a probability

measure. Theorems 5 and 6 were proved when p = 2 by Zhang et al. (2011). The case
for p = 3 was covered in Appendix E of Sejdinovic et al. (2013a). The distribution of WB

can be represented using the Karhunen-Loève expansion. Without loss of generality, let
B = {1, . . . , k}. Then, WB is distributed as

∞∑
i1=1

· · ·
∞∑
ik=1

λ
(1)
i1
. . . λ

(k)
ik
Z2
i1...ik

, (15)

where Zi1...ik are independent standard normal variables, and for j = 1, . . . , k, λ
(j)
1 , λ

(j)
2 , . . .

are eigenvalues depending only on the probability measure P (j) of Z(j) and the weighting
probability measure dG(j). From arguments as in Sejdinovic et al. (2013a) and Sejdinovic

et al. (2013b), the eigenvalues λ
(j)
1 , λ

(j)
2 , . . . are those of the integral operator

Sk̃(j)g(s(j)) =

∫
Rdj

k̃(j)(s(j), t(j))g(t(j))dP (j)(t(j)),

where k(j)(s(j), t(j)) = ϕ(j)(t(j) − s(j)) is the translation invariant kernel (9) and

k̃(j)(s(j), t(j)) = k(j)(s(j), t(j))− Ek(j)(Z
(j)
1 , t(j))− Ek(j)(s(j), Z

(j)
2 ) + Ek(j)(Z

(j)
1 , Z

(j)
2 ), (16)

for Z
(j)
1 , Z

(j)
2 independent and distributed according to P (j), is the corresponding doubly-

centered kernel.

The same type of results for |B| = 2 have been obtained by Székely et al. (2007) for
distance covariance, see also Lyons (2013, Corollary 2.8 and Remark 2.9) for the product

structure of eigenvalues. For |B| > 2, provided that E
∏
j∈B |Z

(j)
1 − Z(j)

2 |2αdj is finite, the

V -statistic structure of WnB = V2(α)
nB can be used as in Lyons (2013, Theorem 2.7) or

Sejdinovic et al. (2013a) to show that nWnB ⇒ WB, where WB is of the same form as in
(15). However, this V -statistic argument does not establish the asymptotic independence
of the collection of variables (WB : B ∈ Ip). It can not be proven either as in Theorem 6
since the generalization of a result of Kellermeier (1980) used in the proof no longer holds
since it is based on Jensen’s inequality which is valid only for probability measures. The
asymptotic independence of the collection could be concluded if the collection of processes
(RnB : B ∈ Ip) were independent for each n, unfortunately this is not the case. For
distance covariance, the asymptotic independence of the collection remains unanswered.

In Section 6, p-values of global tests, such as tests of Fisher in (18) or Tippett in (19),
computed by combining individual p-values for each B ∈ Ip must be approximated. Simple
approximations assume that individual p-values are mutually independent. However, in
finite samples with sample size as small as 100, an approximation relying on randomization
tests which does not rely on the independence of individual p-values was found to yield
better conformity of global p-values to the nominal significance level of 0.05.

9
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4. Other Functionals

The test of Kojadinovic and Holmes (2009, Proposition 13) is based on the Möbius decom-
position of the independence empirical copula process and is defined as the Cramér-von
Mises functional (4) in which the process RnB in (2) defined with empirical characteristic
functions is replaced by an analogous process defined with empirical copulas. Also, the
integrating measure dwB is replaced by the uniform distribution over the hypercube. The
dependence statistics WnB thus obtained will be denoted KH2

nB. The statistics KH2
nB can

also be represented in the form (8) with appropriately defined terms a
(j)
kl .

The test of Beran et al. (2007) uses the Möbius decomposition of the independence
empirical half-space process and is defined as the Kolmogorov statistic obtained by taking
the supnorm of the processes. The Kolmogorov statistics do not have an explicit form as
in (8). They must be computed by solving a costly optimization problem over discretized
unit spheres of dimensions dj and p-values are approximated by the bootstrap. Distance
covariance and HSIC tests are only orthogonally invariant, whereas the test of Beran et al.
(2007) is invariant to the general linear group. The heavy computational cost of this test
makes it unsuitable for large scale simulations of power functions. For this reason, it will
not be considered in the simulations of Section 10.

A global test of mutual independence can also be constructed directly from the empirical
characteristic independence process (Csörgő, 1985; Kankainen, 1995; Sejdinovic et al., 2013a;
Fan et al., 2017),

J 2
n =

∫ ∣∣∣∣∣∣fn(t(1), . . . , t(p))−
p∏
j=1

f (j)
n (t(j))

∣∣∣∣∣∣
2

p∏
j=1

dG(j)(t(j))

=
1

n2

n∑
k=1

n∑
l=1

p∏
j=1

a
(j)
kl −

2

np+1

n∑
k=1

p∏
j=1

n∑
l=1

a
(j)
kl +

1

n2p

p∏
j=1

n∑
k=1

n∑
l=1

a
(j)
kl , (17)

where dG(j), j = 1, . . . , p, are probability measures and a
(j)
kl is defined in (9). The special

case of the stable distribution of index α with a
(j)
kl defined in (10) yields a statistic denoted as

J 2(α)
n . This choice of weight function, except for α = 2, seems to have been overlooked in the

literature and no reference to this choice appears in the recent paper by (Fan et al., 2017).
In the more general context of random variables taking values in separable metric spaces,
Pfister et al. (2017) embedded the joint distribution and the product of the marginals in
a reproducing kernel Hilbert space and defined the p-component Hilbert-Schmidt indepen-
dence criterion as the squared distance between the embeddings. This framework provides
a global test of mutual independence which contains (17) as a special case. Also, similar
tests to (17) based on empirical distribution functions have been proposed by Blum et al.
(1961), Cotterill and Csörgő (1982), and Cotterill and Csörgő (1985) in the univariate case,
i.e. dj = 1 for j = 1, . . . , p. Kojadinovic and Holmes (2009, Proposition 10) also considered
in the multivariate case a test similar to (17) based on empirical copulas.

Simulations in Section 10 will compare HSIC tests H2(α)
nB and distance covariance tests

V2(α)
nB to the tests KH2

nB and J 2(2)
n . Dependence statistics resulting from the Möbius de-

composition have the following advantages over statistics of the type J 2
n in (17).

10
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1. The statistic WnB in (8) has a simpler structure than that of J 2
n in (17). The integral

operator defining the eigenvalues associated with J 2
n is an integral of dimension d =∑p

j=1 dj which can not be written as a product of integral operators as soon as p > 2.
The integral operator for WnB is always a product of |B| integral operators in smaller
dimensions dj , j ∈ B.

2. The p-values of WnB, B ∈ Ip, can be combined (see Section 6) to get a global test of
mutual independence with a predetermined global significance level.

3. When a global test in item 2 rejects the mutual independence hypothesis, subsets
B ∈ Ip yielding small p-values can be identified as the possible source of dependence
using a dependogram described in Section 7.

5. Approximate p-values

Ways to approximate the null distribution of test statistics are now discussed.

5.1 Spectral Approach

The asymptotic distribution of nJ 2
n in (17) is also an infinite linear combination of chi-

squared variables with one degree of freedom with coefficients which are eigenvalues of
an integral operator (Fan et al., 2017). Using estimated eigenvalues, they resorted to the
algorithm of Imhof (1961), see Duchesne and Lafaye De Micheaux (2010), to compute the
cumulative distribution function by a numerical inversion of the characteristic function. For
p = 2, the spectral approach is also proposed by Zhang et al. (2017). After estimation of
eigenvalues, rather than using the algorithm of Imhof (1961), they simulated a large number
of values of (15) by generating independent randomN(0, 1) variables. The spectral approach
to approximate (15) is appropriate for large sample sizes and kernels with an eigenspectrum
which decays very rapidly such as the Gaussian kernel. For slowly decaying kernels, the
number (Nλ)k of terms in (15), where Nλ is the number of eigenvalues considered, may be
too large to apply such methods. The spectral approach for the very simple RV coefficient
of Escoufier (1973) is appropriate only in large samples (Josse and Holmes, 2016).

5.2 Resampling Techniques

Another approximation is the permutation test which recomputes the statistics for all
(n!)p−1 permutations. From a theoretical point of view (Hoeffding, 1952), permutation
tests are well known to guarantee a non asymptotic control of the significance level (by
permutation invariance of the test statistic under the null hypothesis, that is mutual inde-
pendence here). Since this is not feasible, even for moderate sample sizes, the strategy is to
rely on resampling techniques. As an approximation to the permutation test, the random-
ization test simulates the null distribution by permuting (resample without replacement)

the observations Z
(j)
1 , . . . , Z

(j)
n , independently for each component, a large number of, say,

1000 permutations. Sejdinovic et al. (2013a) proposed to approximate the null distribution
of nJ 2

n in (17) by a randomization test. Another technique is to resample with replace-
ment, independently for each component, a large number of times which is a bootstrap test.
Bootstrap tests and randomization tests are asymptotically equivalent in the sense that

11
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the resulting critical values and power functions are appropriately close (Romano, 1989;
van der Vaart and Wellner, 1996). General references for permutation tests are Efron and
Tibshirani (1993), Good (2000), and Pesarin and Salmaso (2010).

5.3 Methods of Moments

Other approximations are based on the method of moments. The distribution obtained by
recomputing a statistic for all (n!)p−1 permutations is called the permutation distribution of
the statistic. The exact first three moments of the permutation distribution of statistics of
the general form (8) were obtained by Kazi-Aoual et al. (1995) when p = 2 and generalized
by Guetsop Nangue (2016) to the case p ≥ 2. The Pearson type III approximation is a
shifted gamma distribution with the same first three moments as the permutation distri-
bution. The Pearson type III distribution is part of the original system of distributions
devised by Pearson (1895) in an effort to model visibly skewed observations. The first
published paper in which a Pearson type III distribution is used as an approximation to a
permutation test is Mielke et al. (1981). For an historical account of the Pearson type III
distribution in the context of permutation tests, the reader is referred to Berry et al. (2016,
Section 1.2.2). For p = 2, Gretton et al. (2008) proposed the approximation by a gamma
distribution with the same first two moments as those of the asymptotic distribution, not
the permutation distribution, in (15). These first two moments depend on unknown eigen-
values but can be estimated using traces of matrices involving the doubly-centered matrices

A(j) = (A
(j)
kl ) without having to compute eigenvalues. An empirical failure mode of the

gamma approximation was demonstrated in Gretton and Györfi (2010, Figure 1). More
recently, Guetsop Nangue (2016, Table 2.9) simulated empirical significance levels of HSIC
for meta-Gaussian distributions in the case p = 2. The kernel was Gaussian with scaling
set at the median of distances. For sample sizes n = 15, 25, 50, and 100, the Pearson
type III approximation gave rates close to the nominal rate of 0.05 for dimensions up to
d1 = d2 = 50, whereas the gamma approximation gave rates close or equal to 0 as the di-
mensions were increased. Although the exact permutation test guarantees a non asymptotic
control of the significance level, it should be stressed that neither the Pearson type III nor
the gamma approximations guarantee an asymptotic control of the significance level. Al-
though p-values of individual statistics WnB can be accurately approximated by the Pearson
type III approximation for small samples, the independence of these p-values, guaranteed
by the asymptotic distribution, holds to a satisfying degree only in large samples. This
is particularly the case as soon as p > 4 and dj > 1. Solely for this reason, p-values of
global tests which combine individual p-values of tests for sub-hypotheses will be assessed
by randomization tests.

5.4 Randomization Tests

Randomization tests are now described to approximate p-values of individual test statis-
tics. Randomization tests for global tests which combine individual p-values are deferred to

Section 6. Let Qn be any test statistic such as J 2
n , V2(α)

nB or H2(α)
nB , B ∈ Ip. Denote a permu-

tation of {1, . . . , n} by σ = (σ(1), . . . , σ(n)). Consider independent random permutations
σ1, . . . , σp of {1, . . . , n}. For j = 1, . . . , p, the permutation σj permutes the observations

12
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(Z
(j)
1 , . . . , Z

(j)
n ) to yield the permuted data (Z

(j)
σj(1), . . . , Z

(j)
σj(n)) of the component j. The

statistic Qn is then recomputed on the permuted data. To this end, note that one need not

recompute the elements a
(j)
kl in (10) or (11). For J 2

n in (17), one simply permutes according

to σj the rows and corresponding columns of the n × n matrix a(j) = (a
(j)
kl ). For V2(α)

nB or

H2(α)
nB , this same argument applies to the matrix A(j) = (A

(j)
kl ) in (1).

Approximate p-values are now obtained by recomputing the test statistic N times. Gen-
erate Np independent random permutations σi,j , i = 1, . . . , N , j = 1, . . . , p.1 For i =

1, . . . , N , letQn,i be the test statistic computed from the permuted data (Z
(j)
σi,j(1), . . . , Z

(j)
σi,j(n)),

j = 1, . . . , p. An approximate p-value is then obtained as follows.

(1) Let Qn,0 be the test statistic computed from the original data.

(2) Generate N randomized samples from the original data and compute Qn,i for i =
1, . . . , N .

(3) An approximate p-value is then given by

1

N + 1

[
1 +

N∑
i=1

I {Qn,i ≥ Qn,0}
]
.

This approximate p-value of the randomization test guaranties (by virtue of exchangeability
of the variables Qn,i, i = 0, . . . , N) a non-asymptotic control of type I error rates for each
individual test (Romano and Wolf, 2005, Lemma 1). The N randomized samples can also be
used to compute an approximate quantile of the test statistic Qn. Let Qn,(1), . . . , Qn,(N) be
the order statistics of Qn,1, . . . , Qn,N , an approximate π-quantile of Qn is the order statistic
Qn,(bNπc). The finite sample control of the significance level of randomization tests will be
assessed by simulations in Section 10.

6. Combining p-values

If the exact distribution function FnB of WnB was known, then 1−FnB(WnB) would be the
exact p-value. Since FnB is continuous, this p-value would be exactly uniformly distributed
over the interval (0, 1). Moreover, exact p-values obtained by varying B would also be
approximately independent in large samples. This holds due to the asymptotic mutual
independence of statistics WnB in Theorem 6.

As an approximation, a p-value p̂nB is computed for every dependence statistic WnB,
B ∈ Ip, using randomization tests as in Section 5. Under the mutual independence hypoth-
esis, these 2p − p − 1 p-values are, for large samples, approximately independent and also
approximately uniformly distributed on (0, 1). The quantity −2 log p̂nB thus has approxi-
mately a χ2

2 null distribution. Fisher’s global test statistic rejects the mutual independence
when −2

∑
B∈Ip log p̂nB is large. It reports a global p-value of

p̂n = P

χ2
ν > −2

∑
B∈Ip

log p̂nB

 , where ν = 2(2p − p− 1). (18)

1. Since observations in one component can be held fixed, N(p− 1) permutations would suffice. However,
treating all components the same way is convenient for purposes of notation and software development.
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The number of subsets may be too large for some p or only low order interaction terms
may be of interest. In this case, p-values of a test of mutual independence of order q, where
2 ≤ q ≤ p, are computed as

p̂n = P

χ2
ν > −2

∑
B∈Ip,|B|≤q

log p̂nB

 , where ν = 2

q∑
i=2

(
p

i

)
.

Another way of combining independent p-values leads to Tippett’s global test with a rejec-
tion region consisting of small values of minB∈Ip p̂nB. Tippett’s test of mutual independence
of order q reports a combined p-value of

p̂n = 1−
(

1− min
B∈Ip,|B|≤q

p̂nB

)r
, where r =

q∑
i=2

(
p

i

)
. (19)

In the simulations of Section 10, although each individual p-value is well approximated by
a uniform variable on (0, 1), the global p-values obtained by Fisher’s (18) or Tippett’s (19)
method sometimes lead to a global test of significance level which exceeds the nominal level.
This was observed especially for p > 4 and some dj > 1 and can be attributed to the lack of
independence between statistics WnB in finite samples. For a test of mutual independence
of order q, 2 ≤ q ≤ p, it is preferable to obtain the global p-values using randomized samples
as follows (Kojadinovic and Holmes, 2009).

(1) Compute the statistics WnB,0, B ∈ Ip and |B| ≤ q, from the original data.

(2) Generate N randomized samples from the original data and let WnB,i be the statistics
from the ith randomized sample.

(3) An approximate p-value for the statistic WnB,j based on Romano and Wolf (2005) 2 is

ψ(WnB,j) =
1

N + 1

1 +
∑

i∈{0,...,N}\{j}

I {WnB,i ≥WnB,j}

 , j = 0, 1, . . . , N.

(4) For i = 0, 1, . . . , N , compute Fisher’s and Tippett’s statistics

Fn,i = −2
∑

B∈Ip,|B|≤q

log[ψ(WnB,i)] and Tn,i = min
B∈Ip,|B|≤q

ψ(WnB,i).

(5) Approximate p-values for the global tests of Fisher and Tippett are given respectively
by

1

N + 1

[
1 +

N∑
i=1

I {Fn,i ≥ Fn,0}
]

and
1

N + 1

[
1 +

N∑
i=1

I {Tn,i ≤ Tn,0}
]
.

2. The non-asymptotic control of type I error rates can not be concluded from the expression ψ(WnB,j) =
1

N+1

[
1
2

+
∑N
i=1 I {WnB,i ≥WnB,j}

]
in Kojadinovic and Holmes (2009, p. 1152).
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Note that variables Fn,i (and Tn,i), i = 0, . . . , N , are exchangeable since this is the case of
variables WnB,j , and thus also ψ(WnB,j), j = 0, . . . , N , for each fixed B. The p-values of
the global tests of Fisher and Tippett in item (5) thus lead to a non-asymptotic control of
type I global error rates (Romano and Wolf, 2005, Lemma 1).

Neither of the two methods is generally more powerful than the other. When only a few
of the individual hypotheses are strongly false, Tippett’s method is preferable. To detect
alternatives for which many of the individual hypotheses are equally false, Fisher’s method
is likely to be preferable (Westberg, 1985; Loughin, 2004).

7. Dependogram

The dependogram is described for test statistics WnB, B ∈ Ip, which can be either V2(α)
nB

or H2(α)
nB . Genest and Rémillard (2004) introduced the dependogram which is a graphical

tool, with subsets ordered by size on the horizontal axis, and corresponding values WnB

represented by vertical bars on the vertical axis. For each subset B ∈ Ip, statistics WnB

are computed together with corresponding critical values given by the π-quantile, cπB,
obtained from N randomized samples as in Section 5. Critical values are represented by
dashes. Dependence in a subset is declared when the vertical bar extends beyond the
dash. If the number of subsets is large, a dependogram of order q, 2 ≤ q ≤ p, can be
constructed by considering only subsets of maximum cardinality q. Assuming statistics
WnB are independent, the choice π = (1 − α′)1/r with r =

∑q
i=2

(
p
i

)
leads to a global

significance level α′. Indeed, under the mutual independence hypothesis

P (WnB ≤ cπB : |B| ≤ q) =
∏
|B|≤q

P (WnB ≤ cπB) = πr = 1− α′.

The dependogram should be seen as an exploratory tool that can be used when a global test
rejects the mutual independence hypothesis. It helps to identify the dependency structures
present in the data as in Figure 4. A dependogram built from HSIC statistics will be
normalized as in (13) so that, for small scale parameters, it has roughly the same order of
magnitude as the dependogram based on distance covariance statistics.

A difficulty in interpreting a dependogram is now illustrated with an example. Con-
sider a model with three dependent variables Z(1), Z(2) and Z(3), where Z(1) and Z(2) are
dependent, but the pair (Z(1), Z(2)) is independent of Z(3). Looking at Table 1 with the
true characteristic functions, one can verify that µ12 6≡ 0, µ13 ≡ 0, µ23 ≡ 0, and µ123 ≡ 0.
Therefore, only the test for the subset {1, 2} is expected to be significant. The test for
the subset {1, 2, 3} is not expected to be significant even though the three variables are
dependent. Of course, the global test is expected to be significant as it will combine tests
for all subsets.

8. Tests of Serial Independence

The problem of testing for serial independence of a multivariate stationary ergodic sequence
is now addressed. The test statistic in the serial context is very similar. Consider a station-
ary ergodic sequence Y1, Y2, . . . in Rd1 , where Y1 is distributed according to the characteristic
function f (1). Let p ≥ 2 be a fixed integer. For a sequence of length m, let n = m− p+ 1
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and

Zk = (Z
(1)
k , . . . , Z

(p)
k ) = (Yk, Yk+1, . . . , Yk+p−1), k = 1, . . . , n, (20)

where Z
(j)
k = Yk+j−1, j = 1, . . . , p. Let f(t(1), . . . , t(p)) be the joint characteristic function

of Z1 = (Y1, . . . , Yp) and f (B) be the joint characteristic function of Z
(B)
1 = (Yj : j ∈ B).

For example, if p = 4 and the indices in the subset B = {1, 2, 3} are translated by one to
yield C = B + 1 = {2, 3, 4} then, f (B) and f (C) are the same characteristic function since
the process is stationary. In the serial context, a subset B and its translate, say B + k,
can be treated as the same subset. The set Ip is thus reduced to Bp = {B ∈ Ip : 1 ∈ B}
and has now cardinality 2p−1 − 1. For a given B ∈ Bp, the Möbius transformation of the
characteristic function f for the set B is given by

µB,s(t
(B)) =

∑
C⊆B

(−1)|B\C|f (C)(t(C))
∏

j∈B\C

f (1)(t(j)).

The subscript s stands for serial. The Möbius transformation characterizes the serial inde-
pendence: Y1, . . . , Yp are mutually independent if and only if, µB,s(t

(B)) = 0, for all B ∈ Bp,
and all vectors t(B).

The corresponding process in the serial case is denoted RnB,s and is defined exactly as in
(2). Here, the index set of the process RnB,s is the Euclidean space RdB , where dB = d1|B|.
Note that all the empirical characteristic functions f

(j)
n , j = 1, . . . , p, are now essentially the

same estimate of the unknown characteristic function f (1). They are not replaced by a single
estimate based on all n observations to preserve the representation of the functional (8) in
terms of doubly-centered matrices. The dependence statistic for the subset B is now defined
as the functional

WnB,s =
1

n

∫
|RnB,s(t(B))|2

∏
j∈B

dw(t(j)).

It can be computed as before in (8). Due to the stationarity, it should be noted that the

same kernel is used to define the elements a
(j)
kl , for all j ∈ B. Two types of weighting

measures are considered.

1. For HSIC, dw(t(j)) = dG(t(j)) is a probability measure with characteristic function
ϕ in which case

a
(j)
kl = ϕ(Z

(j)
k − Z

(j)
l ). (21)

The dependence statistic is denoted WnB,s = H2
nB,s. As in Theorem 2, the population

Hilbert-Schmidt independence criterion

H2
B,s =

∫
|µB,s(t(B))|2

∏
j∈B

dG(t(j))

is consistently estimated by H2
nB,s. The proof is omitted since it can be proven

as Theorem 2 using the ergodic theorem. The special case when dG(t(j)) is the

probability measure of the stable distribution of index α is denoted H2(α)
nB,s, for α ∈

(0, 2].
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2. For distance covariance, dw(t(j)) =
[
C(d1, α)|t(j)|d1+α

d1

]−1
, in which case a

(j)
kl = −|Z(j)

k −
Z

(j)
l |αd1 . Under an appropriate moment condition as in Theorem 4, the consistency and

weak convergence of the functional, which is denoted WnB,s = V2(α)
nB,s for α ∈ (0, 2),

should hold.

Pinkse (1998) proposed a non parametric test based on characteristic functions of serial
independence against serial dependence of fixed lag k that is consistent against all such
alternatives. It is based on a consistent estimator for an upper bound of H2

B,s for the subset
B = {1, 1 + k}. The control of the global significance level when multiple tests are done for
several values of k is not addressed by this author. Diks and Panchenko (2007) constructed
a test based on divergence measures between distributions using kernel-based quadratic
forms to detect dependence at lag k using the subset B = {1, 1 + k, . . . , 1 + (c− 1)k} of
given cardinality c. Their criterion is written as Q = Q11 − 2Q12 + Q22. They used U-
statistics as estimates for each term. Unfortunately, an error in the estimates of the last
two terms on p. 85 leads to an erroneous statistic. If V-statistics are used instead, it is not
hard to verify that their test statistic is of the exact form (17).

Under the hypothesis of serial independence, the vectors Zk = (Yk, Yk+1, . . . , Yk+p−1),
k = 1, . . . , n, are dependent due to some overlapping Y ’s. The proof of Theorem 5 is not
directly applicable. Nevertheless, a very similar weak convergence theorem still holds.

Theorem 7 Let Y1, Y2, . . . be independent and identically distributed. Then, for any fixed
p, the process RnB,s ⇒ SB in C(RdB ,C) to a zero mean complex Gaussian processes SB
with complex covariance function

E
[
SB(t(B))S̄B(s(B))

]
=
∏
j∈B

[
f (1)(t(j) − s(j))− f (1)(t(j))f (1)(−s(j))

]
.

Moreover, the collection of processes (RnB,s : B ∈ Bp) ⇒ (SB : B ∈ Bp) on the product
of spaces ×

B∈Bp
C(RdB ,C) to a zero mean Gaussian process such that the marginal processes

SB, B ∈ Bp, are mutually independent.

In the next theorem, the asymptotic distribution of nH2
nB,s is described. The proof is

omitted since it is the same as for Theorem 6.

Theorem 8 Let WnB,s = H2
nB,s. If Y1, Y2, . . . are independent and identically distributed,

then nWnB,s ⇒ WB,s for each B ∈ Bp, where WB,s =
∫
|SB(t(B))|2∏j∈B dG(t(j)). More-

over, the collection of variables (nWnB,s : B ∈ Bp)⇒ (WB,s : B ∈ Bp), where the variables
WB,s, B ∈ Bp, are mutually independent.

The distribution of WB,s can be also represented using the Karhunen-Loève expansion.
Without loss of generality, let B = {1, . . . , k}. Then, WB,s is distributed as in (15), where

the eigenvalues λ
(j)
1 , λ

(j)
2 , . . . no longer depend on j, but only on the probability measure

P (1) of Y1 and the weighting probability measure dG(t(1)). The eigenvalues λ1, λ2, . . . are
those of the integral operator

Sk̃g(s(1)) =

∫
Rd1

k̃(s(1), t(1))g(t(1))dP (t(1)),
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where k(s(1), t(1)) = ϕ(t(1) − s(1)) is the translation invariant kernel (21) and

k̃(s(1), t(1)) = k(s(1), t(1))− Ek(Y1, t
(1))− Ek(s(1), Y2) + Ek(Y1, Y2),

for Y1, Y2 independent and distributed according to P (1), is the corresponding doubly-
centered kernel.

Computations of p-values of individual tests and global tests in Sections 5 and 6 can
also be used for testing for serial independence. Subsets B are now restricted to B ∈ Bp.
A modification to the dependogram is necessary since the null distributions of statistics of
the same cardinality are now identical. The critical values cπB of Section 7 for all B of
the same cardinality are replaced by a single critical value as in Figure 6. Since there are(
p−1
ω−1

)
subsets B containing 1 and of cardinality ω, the single critical value is taken as the

π-quantile of the amalgamated N
(
p−1
ω−1

)
statistics WnB,i, for i = 1, . . . , N and |B| = ω.

It has been shown how distance covariance and HSIC tests can be adapted for testing
for serial independence. The global test J 2

n in (17) can also be used for serial independence
by defining subsequences of length p as in (20).

9. Computational Aspects

The complexity cost of all randomization tests based on the Möbius decomposition in this
paper are of the order O(n2rN), where n is the sample size, r =

∑q
i=2

(
p
i

)
is the number of

subsets considered in a global test of order q, and N is the number of randomized samples.
Even for the smallest value q = 2, the number of subsets of the order r = O(p2) increases
quadratically with p. These tests thus become rapidly infeasible as n or p increases. The
serial statistics in Section 8 have a lower complexity cost since in this case r =

∑q
i=2

(
p−1
i−1

)
yields a number of subsets of the order r = O(p) increasing linearly with p when q = 2.

The statistics H2(α)
nB and V2(α)

nB are combined as in Section 6 to yield global statistics

H2(α)
n and V2(α)

n , respectively. Scale parameters βj in (10) must be selected for H2(α)
nB . They

are set to
βj = cj/medk<l|Z(j)

k − Z
(j)
l |dj , j = 1, . . . , p. (22)

The choice cj = 1 leads to the so-called heuristic method suggested by Gretton et al.
(2008). Selection of very small constants cj allows to check the equivalence between distance
covariance and HSIC tests as described in (13). Unless stated otherwise, the heuristic
method will be used for HSIC tests. Distance covariance and HSIC tests will be compared
to two other tests: the test of Kojadinovic and Holmes (2009) denoted KH2

n for the mutual
independence case, or Kojadinovic and Yan (2011) denoted KY 2

n for the serial case, and

the test J 2(2)
n in (17) with heuristic scale parameters (22) as in Sejdinovic et al. (2013a).

When dj = 1 for all j = 1, . . . , p, the statistics KH2
n (or KY 2

n ) are replaced by the
equivalent statistic of Genest and Rémillard (2004) denoted GR2

n. KH2
n differs from GR2

n

only in the approximation used for p-values. The former uses a randomization test, whereas
the latter takes advantage of the fact that for dj = 1, the test is distribution free implying
that critical values can be obtained by simulating the null distribution for given values of
n and p. Thus, a single set of critical values can be used for all replicates.

The copula R package (Kojadinovic and Yan, 2010) functions multIndepTest and
multSerialIndepTest were used for tests based on KH2

n and KY 2
n , respectively. Inci-
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dentally, the implementation of KH2
n unnecessarily recomputes the doubly-centered matri-

ces A(j) for every permutation in their C subroutine bootstrap MA I. The same package
also contains the functions indepTest and serialIndepTest for GR2

n. An R function
for distance covariance and HSIC tests proposed in this paper for p ≥ 2 is available at
dms.umontreal.ca/~bilodeau. For p = 2, it produces, up to a factor of 1/n depending
on the definitions of statistics, the same result as the function dcov.test of the energy

package (Rizzo and Szekely, 2016). Computations in Section 10 were done on an Intel(R)
Core(TM) i7 with a CPU of 3.20 GHz.

10. Simulated Models

All empirical significance levels and empirical powers in this section are evaluated with
1000 tests (replicates) conducted at a global significance level α′ = 0.05. The p-values
of all randomization tests are based on 1000 permutations (the default). Power results
are summarized by graphics with a tick mark at 0.05 on the power axis to check for the
conformity of empirical significance levels to the nominal level. Six tests are compared:

distance covariance tests V2(1/2)
n and V2(1)

n , HSIC tests H2(1/2)
n and H2(1)

n , the test KH2
n of

Kojadinovic and Holmes (2009) and the test J 2(2)
n in (17). When all dj = 1, the test KH2

n

is replaced by GR2
n as explained in Section 9. Also, for the serial case, the test KH2

n is
replaced by the test KY 2

n of Kojadinovic and Yan (2011). Unless stated otherwise, p-values
of tests based on the Möbius decomposition are combined using the method of Fisher.

10.1 Copula Models

Power comparisons are made for the Gaussian, Student, Frank and Clayton copulas. A
general reference for copulas is the book by Nelsen (2006).

10.1.1 Gaussian and Student Copulas with Bivariate Marginals

As in Kojadinovic and Holmes (2009), a correlation matrix is constructed of the form

R =

(1− ρw)I2 + ρwJ2J
′
2 ρbJ2J

′
2 ρbJ2J

′
2

ρbJ2J
′
2 (1− ρw)I2 + ρwJ2J

′
2 ρbJ2J

′
2

ρbJ2J
′
2 ρbJ2J

′
2 (1− ρw)I2 + ρwJ2J

′
2

 , (23)

where I2 is the identity matrix of dimension 2 and J2 is the vector of ones of dimension
2. Notations w and b stand for within and between, respectively. Samples of size n = 100
are generated from a multivariate distribution of dimension 6 (Gaussian or Student with
2 degrees of freedom) with correlation matrix R in (23). Probability transforms are then
applied so that all 6 variables are uniformly distributed on the interval (0, 1). The resulting
vector is partitioned into three two-dimensional vectors. The value of ρw is set to 0.5.
For the Gaussian model, Figure 1 shows that the best test is KH2

n followed closely by

V2(1)
n . However, for the Student model, KH2

n performs poorly compared to all the other

tests, the most powerful test being H2(1/2)
n . For the Student model, the three components

are always dependent even when ρb = 0 which explains the power at ρb = 0 in the right
panel of Figure 1. In fact, the only elliptical distribution for which uncorrelatedness implies
independence is the Gaussian distribution (Bilodeau and Brenner, 1999, Proposition 4.11).
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Figure 1: Empirical powers for the Gaussian (left panel) and Student (right panel) copulas
with bivariate marginals of Section 10.1.1.

10.1.2 Frank and Clayton Copulas with Univariate Marginals

The Frank and Clayton copulas are now considered for n = 100, p = 3 and dj = 1 for
j = 1, 2, 3. These two copulas have a parameter θ with the value θ = 0 corresponding to the
independence copula. For the Frank copula, independence is obtained as the limiting case

θ → 0. Figure 2 shows that for both copulas, the tests GR2
n and V2(1)

n have very similar

powers and are the most powerful. The least powerful test is J 2(2)
n . The HSIC tests are less

powerful than their distance covariance counterparts, but their powers could be increased
to those of distance covariance by selecting smaller scale parameters as predicted by (13).

10.1.3 Frank Copula with Bivariate Marginals

The Frank copula model is now considered for p = 3 and dj = 2 for j = 1, 2, 3. The sample
size is still 100. A random vector is generated from the Frank copula of dimension six with
parameter θ and it is partitioned into three vectors of dimension two. The most powerful

test in Figure 3 is V2(1)
n and the least powerful is KH2

n.
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Figure 2: Empirical powers for the Frank (left panel) and Clayton (right panel) copulas
with univariate marginals of Section 10.1.2.

10.2 Model of Romano and Siegel

The original model is taken from Kojadinovic and Holmes (2009) which extends an example
in Genest and Rémillard (2004). Samples of size n = 100 are generated from the distribution
of a 12-dimensional random vector as follows.

1. Generate a two-dimensional Gaussian vector X(1) = (X
(1)
1 , X

(1)
2 ) with means 0, variances

1, and covariance 0.5.

2. Generate two independent copies Z(2) and Z(3) of X(1).

3. Define Z(1) = (Z
(1)
1 , Z

(1)
2 ) by Z

(1)
i = |X(1)

i |sign(Z
(2)
1 Z

(3)
1 ), i = 1, 2.

4. Generate a three-dimensional Gaussian vector Z(4) with means 0, variances 1, and co-
variances 0.3.

5. Generate an independent copy X(5) of Z(4).

6. Define Z(5) = Z(4) +X(5).

Following Romano and Siegel (1986), the three two-dimensional vectors (Z(1), Z(2), Z(3)) are
pairwise independent, but not jointly independent. This vector is independent of (Z(4), Z(5))
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Figure 3: Empirical powers for the Frank copula with bivariate marginals of Section 10.1.3.

in which the two three-dimensional vectors Z(4) and Z(5) are dependent. One can check
that the only non null terms µB are for the subsets {4, 5}, {1, 2, 3}, and {1, 2, 3, 4, 5}.

In order to compare the powers of various tests, a modified model with weaker depen-
dence is introduced. Items 3 and 6 are modified to

3’. Define Z(1) = (Z
(1)
1 , Z

(1)
2 ) by Z

(1)
i = (1− θ)|X(1)

i |+ θ|X(1)
i |sign(Z

(2)
1 Z

(3)
1 ), i = 1, 2,

6’. Define Z(5) = θZ(4) +X(5),

for some θ ∈ [0, 0.4]. Mutual independence now holds among the 5 components for θ = 0
and the dependence increases with θ. The value θ = 1 leading to the original model is not
considered since it yields a dependence too easily detected.

Figure 4 is the dependogram based on one simulated sample with θ = 0.4. The statistics

computed are V2(1)
nB and H2(1)

nB with very small constants cj = .0001 in (22). It illustrates the

equivalence for small scale parameters between V2(α)
nB and H2(α)

nB described precisely in (13).
Both dependograms are identical apart from small variations between critical values due to
the permutations generated by the randomization tests. The dependence among Z(4) and
Z(5), represented by the subset {4, 5}, is significant. Moreover, the third order dependence
between Z(1), Z(2) and Z(3), represented by the subset {1, 2, 3}, is also significant. The
dependence for the subset {1, 2, 3, 4, 5} is not significant. This can be explained by the
powers of tests for false sub-hypotheses corresponding to subsets of small cardinality which

22



Tests of Mutual or Serial Independence

are generally higher because the presence of noise is less important than in subsets of large
cardinality. Tests based on the Möbius decomposition combine p-values according to the
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Figure 4: Dependograms for one sample of size n = 100 from the modified model of Romano

and Siegel with θ = 0.4 in Section 10.2 based on V2(1)
nB (left panel) and H2(1)

nB (right
panel) with small constants cj = .0001 in (22).

methods of Tippett and Fisher. Figure 5 shows that KH2
n is more powerful than distance

covariance and HSIC tests when using the method of Fisher. However, the method of
Tippett is markedly more powerful than that of Fisher. This finding should not come as a
surprise since only 3 of the 26 sub-hypotheses are false. Using the method of Tippett the

most powerful test V2(1)
n is markedly better than J 2(2)

n and KH2
n. The popular belief that

the method of Fisher is more powerful than that of Tippett should not be given too much
consideration. The preferred test depends on the model under consideration.

10.3 Bivariate AR(1) Model

The model considered is the bivariate AR(1) model defined by Yk = AYk−1 + εk, where the
innovations εk are independently distributed as bivariate Gaussian with mean vector 0 and
covariance matrix C. The final specification is made by defining

A =

(
0 θ
θ 0

)
and C =

(
1 0.5

0.5 1

)
.
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Figure 5: Empirical powers for the modified model of Romano and Siegel in Section 10.2.
The methods of Fisher (left panel) and Tippett (right panel) are used to combine
p-values.

The serial dependence of the sequence increases with θ and serial independence holds for
θ = 0. Tests of Tippett and Fisher are compared. The value p = 3 chosen arbitrarily
can detect dependencies among three successive observations. In particular, it can detect
dependencies at lags one or two. Sequences of length m = 100 are generated using the
mAr.sim function of the R package mAr (Barbosa, 2012). The dependogram in Figure 6
shows a significant dependence at lag one. It shortly fails to detect the weaker dependence

at lag 2 with the short sequence length of 100. Power functions in Figure 7 reveal V2(1)
n as

the most powerful test. Comparisons between Fisher and Tippett tests show comparable

powers with a slight advantage for Tippett. Higher powers of J 2(2)
n locally around θ = 0

can be attributed to the higher empirical significance level of this test.

11. Applications

Applications to meteorological and financial data are now provided in the following two
sections.
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Figure 6: Dependograms for one sequence of length m = 100 for the AR(1) model with

θ = 0.4 of Section 10.3 based on V2(1)
nB (left panel) and H2(1)

nB (right panel).

11.1 Testing Mutual Independence Between Air Temperature, Soil
Temperature, Humidity, Wind and Evaporation

These meteorological data are from Rencher (1995, p. 294). Table 2 describes the data with
46 observations on 11 variables. When a data set consists of variables measured on different
scales, the scaling of variables often helps to enhance the appearance of the dependogram.
In this application, variables were scaled to zero mean and unit variance. The R package MVN
(Korkmaz et al., 2014) contains the function hzTest to perform the test for multivariate
normality of Henze and Zirkler (1990). This test applied to the joint distribution of all 11
variables rejected a multivariate Gaussian model with a p-value of 0. Now, five groups of
variables are considered as in Table 2. The Gaussian likelihood ratio test found a significant
mutual dependence between the five groups. However, this test should not be relied on
since it was found that data are not jointly Gaussian and it is well known that Gaussian
likelihood ratio tests are not robust (Tyler, 1983; Bilodeau and Brenner, 1999). Mutual
independence between these five groups is tested with distance covariance and HSIC tests,
both of index 1. Figure 8 contains dependograms only for subsets B of order up to 3.
Both dependograms are very similar and lead to the same conclusions. It reveals that air
temperature, soil temperature, relative humidity and evaporation are pairwise dependent.
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Figure 7: Empirical powers for the AR(1) model of Section 10.3. The methods of Fisher
(left panel) and Tippett (right panel) are used to combine p-values.

However, wind does not exhibit any dependence of order 2 or 3 with any of the other 4
groups of variables.

11.2 Testing Serial Independence for Financial Data

Tests of serial independence of the three dimensional sequence formed by the daily percent
increasing rates (DPIR) of indices from three stock markets: S&P/TSX composite (TSX),
DOW JONES and S&P500. The values of indices are taken at closure. The series of length
534 range from January 2, 2014 to March 2, 2016. Note that five index values are observed
weekly since the stock exchanges are not opened on weekends. The top row of Figure 9 shows
that the financial series considered are not stationary. It is more appropriate to consider
DPIR values. In the bottom row, one may see that DPIR values are more stationary,
although still not perfectly stationary.

Tests of serial independence KY 2
nB, V2(1)

nB , and the test of non serial correlation V2(2)
nB

are conducted on the 3 joint series. The value of p = 10 allows a maximum lag of 9 days.

Figure 10 reveals dependencies at small lags of 1, 2, and 4 in the dependogram of V2(1)
nB .

The dependogram of KY 2
nB was produced with the copula package and does not include

critical values. Nevertheless, KY 2
nB and V2(1)

nB agree on the strongest dependency observed

26



Tests of Mutual or Serial Independence

Variables Labels

maximum daily air temperature

Z(1) minimum daily air temperature
integrated area under daily air temperature curve

maximum daily soil temperature

Z(2) minimum daily soil temperature
integrated area under soil temperature

maximum daily relative humidity

Z(3) minimum daily relative humidity
integrated area under daily humidity curve

Z(4) total wind, measured in miles per day

Z(5) evaporation

Table 2: Variables related to air temperature, soil temperature, humidity, wind and evap-
oration.

at lag 4. The distance covariance V2(2)
nB of index 2 was also performed on the sequence. One

should recall that V2(2)
nB is no longer a test of serial independence, but merely of non serial

correlation. Interestingly, this test did not reveal any significant serial correlation. In an

attempt to unravel the most significant dependency at lag 4 declared by V2(1)
nB , Figure 11

is a scatterplot of DPIR values observed on day k and k + 4 for the TSX market. The
Pearson (p-value of 0.11) and the Kendall (p-value of 0.14) correlation tests applied to this

scatterplot are not significant. The test V2(1)
nB for B = {1, 5} on the single TSX market is

very significant (p-value less than 0.001). A broken line regression with a change point at
the origin was fitted to this scatterplot to account for different regimes according to whether
DPIR is negative or positive. This regression model has three parameters for the intercept
and slopes at the left and right of the origin. The left slope is very significant (p-value
of 0.000015) contrary to the right slope (p-value of 0.021). The very significant left slope
could be interpreted by the tendency of the TSX market to recover in the days following
a decline. The sharper the market declines, the stronger it recovers. Among days such
that DPIRk < ξ, the percentage of days with DPIRk+4 > 0 is 60.7% for ξ = −0.5. This
percentage goes up to 63.4% for ξ = −1 and to 68.2% for ξ = −1.5. Similar conclusions
were found for the DOW JONES and S&P500 stock markets.

12. Conclusion

Generalizations of distance covariance and HSIC tests were done successfully. For both
mutual and serial independence hypotheses, the dependence statistics related to distance
covariance and HSIC were defined using the Möbius transformation. Simple and explicit
expressions for dependence statistics were derived in the explicit form (8) as a sum over all

elements of a componentwise product of doubly-centered matrices A(j) = (A
(j)
kl ). Computa-

tionally efficient approximation of p-values by randomization tests is made possible by this
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Figure 8: Dependograms of order q = 3 of air temperature, soil temperature, relative hu-
midity, wind and evaporation for the meteorological data in Section 11.1 based

on V2(1)
nB (left panel) and H2(1)

nB (right panel).

explicit form. Indeed, distances in A(j) do not have to be recomputed since it suffices to
permute rows and corresponding columns of A(j) for every randomized sample. The method
of combining individual p-values was put forward to construct global tests whose p-values
evaluated by randomization tests yielded global significance levels close to the nominal level
of 0.05 in all simulated models considered.

Distance covariance tests yielded powers generally very competitive with other tests
considered. This paper has presented some advances to the problem of testing indepen-
dence but some questions remain unanswered. The index α of distance covariance tests
has a major influence on power functions. The adaptive selection of this index is a major
difficulty which should be the object of future investigations. At the same time, it offers
more flexibility and possibilities than tests based on copulas for which the only integrating
measure is uniform. HSIC tests can always achieve the same power function as distance
covariance tests with the same index simply by selecting very small scale parameters. The
additional adaptive selection of scale parameters could possibly yield tests which in certain
cases would be more powerful than distance covariance tests. For p = 2, Guetsop Nangue
(2016) selected the scale parameters which maximize the variance of the permutation dis-
tribution. This yielded HSIC tests more powerful than distance covariance tests in two
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Figure 9: Daily evolution of the S&P/TSX composite (TSX), DOW JONES and S&P500

stock markets. The period of observation ranges from January 2, 2014 to March
2, 2016.

examples form the machine learning community considered in Sejdinovic et al. (2013b): the
Independent Component Analysis (ICA) benchmark densities of Bach and Jordan (2002)
and the sinusoidally dependent data. The adaptive selection of scale parameters for p > 2
is more challenging and is worthy of future research.
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Figure 10: Dependograms for joint DPIR of S&P/TSX composite, DOW JONES, and
S&P500. For p = 10, the maximum lag is 9. From top to bottom, three tests

are considered: KY 2
nB, V2(1)

nB , and V2(2)
nB .

Appendix A: Proofs

Proof [Theorem 1] Upon using the representation (6) of the process,∫
|RnB(t(B))|2

∏
j∈B

dG(j)(t(j)) =
1

n

n∑
k=1

n∑
l=1

∏
j∈B

∫ [
ei〈t

(j),Z
(j)
k −Z

(j)
l 〉 − 1

n

n∑
v=1

ei〈t
(j),Z

(j)
k −Z

(j)
v 〉 (24)

− 1

n

n∑
u=1

ei〈t
(j),Z

(j)
u −Z

(j)
l 〉 +

1

n2

n∑
u=1

n∑
v=1

ei〈t
(j),Z

(j)
u −Z

(j)
v 〉

]
dG(j)(t(j))

=
1

n

n∑
k=1

n∑
l=1

∏
j∈B

[a
(j)
kl − ā

(j)
k. − ā

(j)
.l + ā(j)

.. ],

where a
(j)
kl = ϕ(j)(Z

(j)
k − Z

(j)
l ) and ϕ(j) is the characteristic function of G(j).
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Figure 11: For the TSX market, broken line regression of DPIR on a given day on DPIR
four days earlier with a change point at the origin.

Proof [Theorem 2] From (2) and the strong law of large numbers, RnB(t(B))/
√
n

a.s.→
µB(t(B)). Since the number of subsets of B is 2|B|, it is also clear that |RnB(t(B))/

√
n| ≤ 2|B|.

Any constant being integrable with respect to the probability measure
∏
j∈B dG

(j)(t(j)), it
follows from the dominated convergence theorem that

1

n

∫
|RnB(t(B))|2

∏
j∈B

dG(j)(t(j))
a.s.→
∫
|µB(t(B))|2

∏
j∈B

dG(j)(t(j)),

i.e. H2
nB

a.s.→ H2
B. This proves (i). To prove (ii), since µB(t(B)) 6= 0 and the function µB is

continuous, it follows that H2
B > 0. Therefore, nH2

nB
a.s.→ ∞.

Proof [Theorem 3] Because of double-centering, the expression between brackets in (24) is
unchanged if one is subtracted from all four exponential functions. Then, it suffices in the

proof of Theorem 1, for the weight function defining V2(α)
nB , to evaluate∫

ei〈t
(j),Z(j)〉 − 1dw(j)(t(j)) = −|Z(j)|αdj (25)

using Lemma 1 of Székely et al. (2007, p. 2771).
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The representation (6) of the process was unexploited in Székely et al. (2007). It simplifies
greatly their derivations.
Proof [Theorem 4] The notation E3 is for the expectation with respect to Z3, treating the
other variable as a constant to avoid using for conditional expectations. The notation E12

and E34 are defined similarly. Condition (12) implies that

E12

∏
j∈B

∣∣∣|Z(j)
1 − Z

(j)
2 |αdj − E3|Z(j)

1 − Z
(j)
3 |αdj − E3|Z(j)

2 − Z
(j)
3 |αdj + E34|Z(j)

3 − Z
(j)
4 |αdj

∣∣∣ <∞.
and that V2(α)

B is well defined. The integral (25) yields

V2(α)
B = E12

∏
j∈B

[∫
ei〈t

(j),Z
(j)
1 −Z

(j)
2 〉 − 1dw(j)(t(j)) + E3

∫
1− ei〈t(j),Z

(j)
1 −Z

(j)
3 〉dw(j)(t(j))

+E3

∫
1− ei〈t(j),Z

(j)
3 −Z

(j)
2 〉dw(j)(t(j)) + E34

∫
ei〈t

(j),Z
(j)
3 −Z

(j)
4 〉 − 1dw(j)(t(j))

]
= E12

∏
j∈B

E34

∫ [
ei〈t

(j),Z
(j)
1 −Z

(j)
2 〉 − ei〈t(j),Z

(j)
1 −Z

(j)
3 〉

−ei〈t(j),Z
(j)
3 −Z

(j)
2 〉 + ei〈t

(j),Z
(j)
3 −Z

(j)
4 〉
]
dw(j)(t(j)).

The theorem of Fubini yields

V2(α)
B = E12

∏
j∈B

∫
E34

[
ei〈t

(j),Z
(j)
1 −Z

(j)
2 〉 − ei〈t(j),Z

(j)
1 −Z

(j)
3 〉

−ei〈t(j),Z
(j)
3 −Z

(j)
2 〉 + ei〈t

(j),Z
(j)
3 −Z

(j)
4 〉
]
dw(j)(t(j))

= E12

∏
j∈B

∫ [
ei〈t

(j),Z
(j)
1 −Z

(j)
2 〉 − ei〈t(j),Z

(j)
1 〉f (j)(−t(j))

−e−i〈t(j),Z
(j)
2 〉f (j)(t(j)) + f (j)(t(j))f (j)(−t(j))

]
dw(j)(t(j))

= E12

∫ ∏
j∈B

[
ei〈t

(j),Z
(j)
1 〉 − f (j)(t(j))

] [
e−i〈t

(j),Z
(j)
2 〉 − f (j)(−t(j))

]
dwB(t(B))

=

∫
E1

∏
j∈B

[
ei〈t

(j),Z
(j)
1 〉 − f (j)(t(j))

]
E2

∏
j∈B

[
e−i〈t

(j),Z
(j)
2 〉 − f (j)(−t(j))

]
dwB(t(B)).

By a similar development leading to (6),

µB(t(B)) = E1

∏
j∈B

[
ei〈t

(j),Z
(j)
1 〉 − f (j)(t(j))

]
.

Hence, V2(α)
B =

∫
|µB(t(B))|2dwB(t(B)). This proves (i). For (ii), if µB(t(B)) 6= 0, then

necessarily t(B) 6= 0. Consider a compact ball B not containing 0 and but containing the
point t(B). The measure dwB is integrable on B. Then, arguing as in the proof of Theorem 2

V2(α)
nB ≥ 1

n

∫
B
|Rn(t(B))|2dwB(t(B))

a.s.→
∫
B
|µB(t(B))|2dwB(t(B)) > 0
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and therefore, nV2(α)
nB

a.s.→ ∞.

Proof [Equation (13)] The result follows using the invariance by translation, a
(j)
kl 7→ a

(j)
kl −1,

and the following limit,

lim
βj→0

e
−βαj |Z

(j)
k −Z

(j)
l |

α
dj − 1

βαj
= −|Z(j)

k − Z
(j)
l |αdj .

Let dB =
∑

j∈B dj . Define the metric (Whitt, 1970)

ρB(x, y) =
∞∑
s=1

2−s
ρsB(x, y)

1 + ρsB(x, y)
,

where
ρsB(x, y) = sup

|t(B)|dB≤s
|x(t(B))− y(t(B))|,

on the linear complete metric space of continuous functions C(RdB ,C). The Borel σ-field
in C(RdB ,C) is generated by the coordinate projections, i.e. it is the smallest σ-field with
respect to which all coordinate projections are measurable. Weak convergence of random
variables in C(RdB ,C) is equivalent to weak convergence on any compact subset; see Whitt
(1970, Theorem 5) or Kallenberg (2002, Proposition 16.6). Moreover, weak converge of
a sequence on a compact subset is equivalent to finite dimensional weak convergence and
tightness of that sequence. The metric defined on the product of spaces ×

B∈Ip
C(RdB ,C)

(Whitt, 1970) is

ρ ((xB, B ∈ Ip), (yB, B ∈ Ip)) = max
B∈Ip

ρB(xB, yB).

From Whitt (1970, Corollary 7), weak convergence on this product of spaces is equivalent
to finite dimensional weak convergence of the joint process and tightness on compacta of
each individual process.
Proof [Theorem 5] The process RnB(t) in (6) is closely related to the process

R̆nB(t) =
1√
n

n∑
k=1

∏
j∈B

[
ei〈t

(j),Z
(j)
k 〉 − f (j)(t(j))

]
. (26)

in which marginal characteristic functions are not estimated. The process R̆nB in (26) is a
sum of independent and identically distributed random variables. Bilodeau and Lafaye de
Micheaux (2005, Theorem 2.1) proved that the collection of processes R̆nB converges as
stated in Theorem 5 under the weak condition (14). The independence of the asymptotic
processes for B 6= C is verified

E
[
RB(t(B))R̄C(s(C))

]
= E

∏
j∈B

[
ei〈t

(j),Z
(j)
k 〉 − f (j)(t(j))

] ∏
j∈C

[
ei〈s

(j),−Z(j)
k 〉 − f (j)(−s(j))

]
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= 0,

because there is an index j in B, but not in C, or the converse, for which the corresponding

term has expectation zero. Then, it suffices to show ρsB(RnB, R̆nB)
P→ 0, for all s ≥ 1 and

B ∈ Ip. The representation in Ghoudi et al. (2001, p. 212) holds for characteristic functions

RnB(t) =
∑
C⊆B

(−1)|C|
∏
j∈C

[f (j)
n (t(j))− f (j)(t(j))]R̆n,B\C(t(B\C)). (27)

From (27), it follows that

|RnB(t(B))− R̆nB(t(B))| ≤
∑

C⊆B,C 6=∅

∏
j∈C
|f (j)
n (t(j))− f (j)(t(j))||R̆n,B\C(t(B\C))|, (28)

where the sum has only a finite number of terms. Using the Glivenko-Cantelli convergence
in Csörgő (1981, Theorem 2.1) and the fact that the processes R̆n,B\C are tight, it follows

that, for any s ≥ 1, ρs(RnB, R̆nB)
P→ 0.

Proof [Theorem 6] Let

|[RnB(t(B))]|2 =

∫
|RnB(t(B))|2

∏
j∈B

dG(j)(t(j))

be the squared L2 norm, on the space of squared integrable functions, of the process RnB.
Then, nWnB = |[RnB]|2 and nT̆nB = |[R̆nB]|2. Use

∫
k̃(t(B), t(B))

∏
j∈B dG

(j)(t(j)) < ∞,

where k̃ is defined in (16), and Tonelli’s theorem to conclude that WB := |[RB]|2 is fi-
nite almost surely. The proof consists in showing the following two results (Henze and

Wagner, 1997): (i) |[R̆nB]|2 ⇒ |[RB]|2 and (ii) |[RnB − R̆nB]|2 P→ 0. Note that from
(i) and the continuous mapping theorem, |[R̆nB]| ⇒ |[RB]|, which, with the triangle in-

equality
∣∣∣ |[RnB]| − |[R̆nB]|

∣∣∣ ≤ |[RnB − R̆nB]| and (ii), implies |[RnB]| ⇒ |[RB]| and, thus

|[RnB]|2 ⇒ |[RB]|2. Using a slight generalization of Kellermeier (1980, Theorem 3.3), it
suffices for (i) to show the following uniform integrability condition:

lim
N→∞

lim sup
n→∞

∫
{|t(j)|dj>N,∀j∈B}

E|R̆nB(t(B))|2
∏
j∈B

dG(j)(t(j)) = 0. (29)

It can be verified that E|R̆nB(t(B))|2 =
∏
j∈B

[
1− |f (j)(t(j))|2

]
does not depend on n. Now,

for each j ∈ B, ∫
1− |f (j)(t(j))|2dG(j)(t(j)) <∞

since the integrand is bounded. This proves (29). For (ii), since all processes R̆n,B\C are
tight, it suffices from (28) to show that for all j ∈ B,∫

|f (j)
n (t(j))− f (j)(t(j))|2dG(j)(t(j))

P→ 0.
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This follows from the dominated convergence theorem, since f
(j)
n (t(j))

a.s.→ f (j)(t(j)) and the
integrand is bounded by 4. The weak convergence of the collection (|[RnB]|2, B ∈ Ip)
follows by the same argument above from (i’) (|[R̆nB]|2, B ∈ Ip) ⇒ (|[RB]|2, B ∈ Ip) and

(ii) |[RnB−R̆nB]|2 P→ 0, for each B ∈ Ip. Thus, it remains to establish (i’). From Theorem 5
and the continuous mapping theorem,

∑
B∈Ip cB|R̆nB(t(B))|2 ⇒ ∑

B∈Ip cB|RB(t(B))|2, for

all constants cB, B ∈ Ip. Also,
∑

B∈Ip cB|[R̆nB]|2 ⇒∑
B∈Ip cB|[RB]|2 because the following

uniform integrability condition

lim
N→∞

lim sup
n→∞

∫
{|t(j)|dj>N,j=1,...,p}

E

∣∣∣∣∣∣
∑
B∈Ip

cB|R̆nB(t(B))|2
∣∣∣∣∣∣
p∏
j=1

dG(j)(t(j))

≤
∑
B∈Ip

|cB| lim
N→∞

lim sup
n→∞

∫
{|t(j)|dj>N,∀j∈B}

E|R̆nB(t(B))|2
∏
j∈B

dG(j)(t(j)) = 0

is satisfied from (29). Finally, (i’) follows from the Cramér-Wold theorem. The mutual
independence of (|[RB]|2, B ∈ Ip) follows from that of (RB, B ∈ Ip) in Theorem 5.

Proof [Theorem 7] Consider the processes

R̆nB,s(t
(B)) =

1√
n

n∑
k=1

∏
j∈B

[
ei〈t

(j),Z
(j)
k 〉 − f (1)(t(j))

]
, B ∈ Bp.

Finite dimensional weak convergence of the processes is proved. Because of overlapping
of Y ’s in consecutive Zk’s, the Zk’s form an (p − 1)-dependent sequence, see Ferguson
(1996, p. 69). Thus, the central limit theorem for such dependent sequences establishes
that R̆nB,s(t

(B)) and R̆nC,s(s
(C)) are asymptotically and jointly normal with asymptotic

covariance σ0,0 + 2σ0,1 + · · ·+ 2σ0,p−1, where

σ0,u = E

∏
j∈B

[
ei〈t

(j),Z
(j)
k 〉 − f (1)(t(j))

] ∏
j∈C

[
ei〈s

(j),−Z(j)
k+u〉 − f (1)(−s(j))

] .

All of the above expectations are null unless B = C (both in Bp) and u = 0. Next, to
establish weak convergence of the process on any compact, assume without loss of generality
that n is a multiple of p, say n = rp. This amounts to neglecting at most p − 1 terms in
the sequence. Rewrite the sequence Z1, Z2, . . . as an array with p rows, each consisting of
r independent and identically distributed vectors,

Z1 Z1+p · · · Z1+(r−1)p

Z2 Z2+p · · · Z2+(r−1)p
...

...
. . .

...
Zp Zp+p · · · Zp+(r−1)p.

Then, the expression

R̆nB,s(t
(B)) =

1√
p

p∑
h=1

∑
C⊆B

(−1)|B\C|
∏

j∈B\C

f (1)(t(j)) · 1√
r

r−1∑
i=0

ei〈t(C),Z
(C)
pi+h〉 −

∏
j∈C

f (1)(t(j))
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establishes weak convergence since for each pair (h,C) in finite number, the last sum over
i is an empirical characteristic function process over a compact. Finally, RnB,s and R̆nB,s
are equivalent processes follows from the inequality

|RnB,s(t(B))− R̆nB,s(t(B))| ≤
∑

C⊆B,C 6=∅

∏
j∈C
|f (j)
n (t(j))− f (1)(t(j))||R̆nB\C,s(t(B\C))|,

and the same arguments following (28).
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