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Abstract

One of the most challenging problems in kernel online learning is to bound the model size
and to promote model sparsity. Sparse models not only improve computation and memory
usage, but also enhance the generalization capacity – a principle that concurs with the law
of parsimony. However, inappropriate sparsity modeling may also significantly degrade the
performance. In this paper, we propose Approximation Vector Machine (AVM), a model
that can simultaneously encourage sparsity and safeguard its risk in compromising the per-
formance. In an online setting context, when an incoming instance arrives, we approximate
this instance by one of its neighbors whose distance to it is less than a predefined threshold.
Our key intuition is that since the newly seen instance is expressed by its nearby neigh-
bor the optimal performance can be analytically formulated and maintained. We develop
theoretical foundations to support this intuition and further establish an analysis for the
common loss functions including Hinge, smooth Hinge, and Logistic (i.e., for the classifi-
cation task) and `1, `2, and ε-insensitive (i.e., for the regression task) to characterize the
gap between the approximation and optimal solutions. This gap crucially depends on two
key factors including the frequency of approximation (i.e., how frequent the approximation
operation takes place) and the predefined threshold. We conducted extensive experiments
for classification and regression tasks in batch and online modes using several benchmark
datasets. The quantitative results show that our proposed AVM obtained comparable pre-
dictive performances with current state-of-the-art methods while simultaneously achieving
significant computational speed-up due to the ability of the proposed AVM in maintaining
the model size.

Keywords: kernel, online learning, large-scale machine learning, sparsity, big data, core
set, stochastic gradient descent, convergence analysis

1. Introduction

In modern machine learning systems, data usually arrive continuously in stream. To enable
efficient computation and to effectively handle memory resource, the system should be able
to adapt according to incoming data. Online learning represents a family of efficient and
scalable learning algorithms for building a predictive model incrementally from a sequence
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of data examples (Rosenblatt, 1958; Zinkevich, 2003). In contrast to the conventional
learning algorithms (Joachims, 1999; Chang and Lin, 2011), which usually require a costly
procedure to retrain the entire dataset when a new instance arrives, online learning aims to
utilize the new incoming instances to improve the model given the knowledge of the correct
answers to previous processed data (and possibly additional available information), making
them suitable for large-scale online applications wherein data usually arrive sequentially
and evolve rapidly.

The seminal line of work in online learning, referred to as linear online learning (Rosen-
blatt, 1958; Crammer et al., 2006; Dredze et al., 2008), aims at learning a linear predictor
in the input space. The crucial limitation of this approach lies in its over-simplified linear
modeling choice and consequently may fail to capture non-linearity commonly seen in many
real-world applications. This motivated the works in kernel-based online learning (Freund
and Schapire, 1999; Kivinen et al., 2004) in which a linear model in the feature space corre-
sponding with a nonlinear model in the input space, hence allows one to cope with a variety
of data distributions.

One common issue with kernel-based online learning approach, also known as the curse
of kernelization, is that the model size (i.e., the number of vectors with non-zero coefficients)
may grow linearly with the data size accumulated over time, hence causing computational
problem and potential memory overflow (Steinwart, 2003; Wang et al., 2012). Therefore
in practice, one might prefer kernel-based online learning methods with guaranty on a
limited and bounded model size. In addition, enhancing model sparsity is also of great
interest to practitioners since this allows the generalization capacity to be improved; and
in many cases leading to a faster computation. However, encouraging sparsity needs to
be done with care since an inappropriate sparsity-encouraging mechanism may compromise
the performance. To address the curse of kernelization, budgeted approaches (Crammer
et al., 2004; Dekel et al., 2005; Cavallanti et al., 2007; Wang and Vucetic, 2010; Wang et al.,
2012; Le et al., 2016a,c) limits the model size to a predefined budget B. Specifically, when
the current model size exceeds this budget, a budget maintenance strategy (e.g., removal,
projection, or merging) is triggered to recover the model size back to the budget B. In these
approaches, determining a suitable value for the predefined budget in a principled way is
important, but challenging, since setting a small budget makes the learning faster but may
suffer from underfitting, whereas a large budget makes the model fit better to data but may
dramatically slow down the training process. An alternative way to address the curse of
kernelization is to use random features (Rahimi and Recht, 2007) to approximate a kernel
function (Ming et al., 2014; Lu et al., 2015; Le et al., 2016b). For example, Lu et al. (2015)
proposed to transform data from the input space to the random-feature space, and then
performed SGD in the feature space. However, in order for this approach to achieve good
kernel approximation, excessive number of random features is required which could lead to
a serious computational issue. To reduce the impact number of random features, Le et al.
(2016b) proposed to distribute the model in dual space including the original feature space
and the random feature space that approximates the first space.

1. In fact, we used a subset of the dataset a9a which has 123 features. We then project all data points onto
3D using t-SNE. We note that the t-SNE does not do clustering, it only reduces the dimensionality into
3D for visualization while trying to preserve the local properties of the data.
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Figure 1: An illustration of the hypersphere coverage for 1, 000 data samples which locate in
3D space. We cover this dataset using hyperspheres with the diameter δ = 7.0, resulting in
20 hypersphere cells as shown in the figure (cf. Sections (6.3,9)). All data samples in a same
cell are approximated by a core point in this cell. The model size is therefore significantly
reduced from 1,000 to 20.1

In this paper, we propose Approximation Vector Machine (AVM) to simultaneously
encourage model sparsity2 while preserving the model performance. Our model size is
theoretically proven to be bounded regardless of the data distribution and data arrival
order. To promote sparsity, we introduce the notion of δ-coverage which partitions the data
space into overlapped cells whose diameters are defined by δ (cf. Figure 1). This coverage
can be constructed in advance or on the fly. Our experiment on the real datasets shows
that the coverage can impressively boost sparsity; for example with dataset KDDCup99 of
4, 408, 589 instances, our model size is 115 with δ = 3 (i.e., only 115 cells are required); with
dataset airlines of 5, 336, 471 instances, our model size is 388 with δ = 1.

In an online setting context, when an incoming instance arrives, it can be approximated
with the corresponding core point in the cell that contains it. Our intuitive reason is that
when an instance is approximated by an its nearby core point, the performance would be
largely preserved. We further developed rigorous theory to support this intuitive reason.
In particular, our convergence analysis (covers six popular loss functions, namely Hinge,
smooth Hinge, and Logistic for classification task and `2, `1, and ε-insensitive for regression
task) explicitly characterizes the gap between the approximate and optimal solutions. The
analysis shows that this gap crucially depends on two key factors including the cell diameter

2. Model sparsity can be computed as the ratio of the model size and the number of vectors received so far.
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δ and the approximation process. In addition, the cell parameter δ can be used to efficiently
control the trade-off between sparsity level and the model performance. We conducted ex-
tensive experiments to validate the proposed method on a variety of learning tasks, including
classification in batch mode, classification and regression in online mode on several bench-
mark large-scale datasets. The experimental results demonstrate that our proposed method
maintains a comparable predictive performance while simultaneously achieving an order of
magnitude speed-up in computation comparing with the baselines due to its capacity in
maintaining model size. We would like to emphasize at the outset that unlike budgeted
algorithms (e.g., (Crammer et al., 2004; Dekel et al., 2005; Cavallanti et al., 2007; Wang
and Vucetic, 2010; Wang et al., 2012; Le et al., 2016a,c, 2017)), our proposed method is
nonparametric in the sense that the number of core sets grow with data on demand, hence
care should be exercised in practical implementation.

The rest of this paper is organized as follows. In Section 2, we review works mostly
related to ours. In Section 3, we present the primal and dual forms of Support Vector
Machine (SVM) as they are important background for our work. Section 4 formulates the
proposed problem. In Section 5, we discuss the standard SGD for kernel online learning
with an emphasis on the curse of kernelization. Section 6 presents our proposed AVM with
full technical details. Section 7 devotes to study the suitability of loss functions followed by
Section 8 where we extend the framework to multi-class setting. Finally, in Section 9, we
conduct extensive experiments on several benchmark datasets and then discuss experimental
results as well as their implications. In addition, all supporting proof is provided in the
appendix sections.

2. Related Work

One common goal of online kernel learning is to bound the model size and to encourage
sparsity. Generally, research in this direction can be broadly reviewed into the following
themes.

Budgeted Online Learning. This approach limits the model size to a predefined budget
B. When the model size exceeds the budget, a budget maintenance strategy is triggered
to decrement the model size by one. Three popular budget maintenance strategies are
removal, projection, and merging. In the removal strategy, the most redundant support vec-
tor is simply eliminated. In the projection strategy, the information of the most redundant
support vector is conserved through its projection onto the linear span of the remaining
support vectors. The merging strategy first selects two vectors, and then merges them
into one before discarding them. Forgetron (Dekel et al., 2005) is the first budgeted online
learning method that employs the removal strategy for the budget maintenance. At each
iteration, if the classifier makes a mistake, it conducts a three-step update: (i) running the
standard Perceptron (Rosenblatt, 1958) update; (ii) shrinking the coefficients of support
vectors with a scaling factor; and (iii) removing the support vector with the smallest coef-
ficient. Randomized Budget Perceptron (RBP) (Cavallanti et al., 2007) randomly removes
a support vector when the model size overflows the budget. Budget Perceptron (Crammer
et al., 2004) and Budgeted Passive Aggressive (BPA-S)(Wang and Vucetic, 2010) attempt to
discard the most redundant support vector (SV). Orabona et al. (2009) used the projection
to automatically discover the model size. The new vector is added to the support set if its
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projection onto the linear span of others in the feature space exceeds a predefined threshold,
or otherwise its information is kept through the projection. Other works involving the pro-
jection strategy include Budgeted Passive Aggressive Nearest Neighbor (BPA-NN) (Wang
and Vucetic, 2010; Wang et al., 2012). The merging strategy was used in some works (Wang
and Vucetic, 2009; Wang et al., 2012).

Random Features. The idea of random features was proposed in (Rahimi and Recht,
2007). Its aim is to approximate a shift-invariant kernel using the harmonic functions. In
the context of online kernel learning, the problem of model size vanishes since we can store
the model directly in the random features. However, the arising question is to determine the
appropriate number of random features D to sufficiently approximate the real kernel while
keeping this dimension as small as possible for an efficient computation. Ming et al. (2014)
investigated the number of random features in the online kernel learning context. Recently,
Lu et al. (2015) proposed to run stochastic gradient descent (SGD) in the random feature
space rather than that in the real feature space. The theory accompanied with this work
shows that with a high confidence level, SGD in the random feature space can sufficiently
approximate that in the real kernel space. Nonetheless, in order to achieve good kernel
approximation in this approach, excessive number of random features is required, possibly
leading to a serious computational issue. To reduce the impact of the number of random
features to learning performance, Le et al. (2016b) proposed to store core vectors in the
original feature space, whilst storing remaining vectors in the random feature space that
sufficiently approximates the first space.

Core Set. This approach utilizes a core set to represent the model. This core set can
be constructed on the fly or in advance. Notable works consist of the Core Vector Machine
(CVM) (Tsang et al., 2005) and its simplified version, the Ball Vector Machine (BVM)
(Tsang et al., 2007). The CVM was based on the achievement in computational geometry
(Badoiu and Clarkson, 2002) to reformulate a variation of `2-SVM as a problem of finding
minimal enclosing ball (MEB) and the core set includes the points lying furthest away the
current centre of the current MEB. Our work can be categorized into this line of thinking.
However, our work is completely different to (Tsang et al., 2005, 2007) in the mechanism
to determine the core set and update the model. In addition, the works of (Tsang et al.,
2005, 2007) are not applicable for the online learning.

3. Primal and Dual Forms of Support Vector Machine

Support Vector Machine (SVM) Cortes and Vapnik (1995) represents one of the state-of-
the-art methods for classification. Given a training set D = {(x1, y1) , . . . , (xN , yN )}, the
data instances are mapped to a feature space using the transformation Φ (.), and then SVM
aims to learn an optimal hyperplane in the feature space such that the margin, the distance
from the closest data instance to the hyperplane, is maximized. The optimization problem
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of SVM can be formulated as follows

min
w,b

(
λ

2
‖w‖2 +

1

N

N∑
i=1

ξi

)
(1)

s.t. : yi

(
wTΦ (xi) + b

)
≥ 1− ξi, i = 1, ..., N

ξi ≥ 0, i = 1, ..., N

where λ > 0 is the regularization parameter, Φ (.) is the transformation from the input
space to the feature space, and ξ = [ξi]

N
i=1 is the vector of slack variables.

Using Karush-Kuhn-Tucker theorem, the above optimization problem is transformed to
the dual form as follows

min
α

(
1

2
αTQα− eTα

)
s.t. :yTα = 0

0 ≤ αi ≤
1

λN
, i = 1, ..., N

where Q = [yiyjK (xi, xj)]
N
i,j=1 is the Gram matrix, K (x, x′) = Φ (x)T Φ (x′) is a kernel

function, e = [1]N×1 is the vector of all 1, and y = [yi]
T
i=1,...,N .

The dual optimization problem can be solved using the solvers (Joachims, 1999; Chang
and Lin, 2011). However, the computational complexity of the solvers is over-quadratic
(Shalev-Shwartz and Srebro, 2008) and the dual form does not appeal to the online learning
setting. To scale up SVM and make it appealing to the online learning, we rewrite the
constrained optimization problem in Eq. (1) in the primal form as follows

min
w

(
λ

2
‖w‖2 +

1

N

N∑
i=1

l (w;xi, yi)

)
(2)

where l (w;x, y) = max
(
0, 1− ywTΦ (x)

)
3 is Hinge loss.

In our current interest, the advantages of formulating the optimization problem of SVM
in the primal form as in Eq. (2) are at least two-fold. First, it encourages the application of
SGD-based method to propose a solution for the online learning context. Second, it allows
us to extend Hinge loss to any appropriate loss functions (cf. Section 7) to enrich a wider
class of problems that can be addressed.

3. We can eliminate the bias b by simply adjusting the kernel.
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4. Problem Setting

We consider two following optimization problems for batch and online settings respectively
in Eqs. (3) and (4)

min
w

f (w) ,
λ

2
‖w‖2 + E(x,y)∼PN [l (w;x, y)]

,
λ

2
‖w‖2 +

1

N

N∑
i=1

l (w;xi, yi) (3)

min
w

f (w) ,
λ

2
‖w‖2 + E(x,y)∼PX ,Y [l (w;x, y)] (4)

where l (w;x, y) is a convex loss function, PX ,Y is the joint distribution of (x, y) over X ×Y
with the data domain X and the label domain Y, and PN specifies the empirical distribution
over the training set D = {(x1, y1) , . . . , (xN , yN )}. Furthermore, we assume that the convex
loss function l (w;x, y) satisfies the following property: there exists two positive numbers

A and B such that
∥∥∥l′ (w;x, y)

∥∥∥ ≤ A ‖w‖1/2 + B, ∀w, x, y. As demonstrated in Section

7, this condition is valid for all common loss functions. Hereafter, for given any function
g(w), we use the notation g

′
(w0) to denote the gradient (or any sub-gradient) of g (.) w.r.t

w evaluated at w0.
It is clear that given a fixed w, there exists a random variable g such that E [g | w] =

f
′
(w). In fact, we can specify g = λw + l

′
(w;xt, yt) where (xt, yt) ∼ PX ,Y or PN .

We assume that a positive semi-definite (p.s.d.) and isotropic (iso.) kernel Rasmussen

and Williams (2005) is used, i.e., K
(
x, x

′
)

= k

(∥∥∥x− x′∥∥∥2
)

, where k : X → R is

an appropriate function. Let Φ (.) be the feature map corresponding the kernel (i.e.,

K
(
x, x

′
)

= Φ (x)T Φ
(
x
′
)

). To simplify the convergence analysis, without loss of generality

we further assume that ‖Φ (x)‖2 = K (x, x) = 1, ∀x ∈ X . Finally, we denote the optimal
solution of optimization problem in Eq. (3) or (4) by w∗, that is, w∗ = argminw f (w).

5. Stochastic Gradient Descent Method

We introduce the standard kernel stochastic gradient descent (SGD) in Algorithm 1 wherein
the standard learning rate ηt = 1

λt is used (Shalev-Shwartz et al., 2007, 2011). Let αt be a

scalar such that l
′
(wt;xt, yt) = αtΦ (xt) (we note that this scalar exists for all common loss

functions as presented in Section 7). It is apparent that at the iteration t the model wt has

the form of wt =
∑t

i=1 α
(t)
i Φ (xi). The vector xi (1 ≤ i ≤ t) is said to be a support vector

if its coefficient α
(t)
i is nonzero. The model is represented through the support vectors,

and hence we can define the model size to be
∥∥α(t)

∥∥
0

and model sparsity as the ratio

between the current model size and t (i.e.,
∥∥α(t)

∥∥
0
/t). Since it is likely that αt is nonzero

(e.g., with Hinge loss, it happens if xt lies in the margins of the current hyperplane), the
standard kernel SGD algorithm is vulnerable to the curse of kernelization, that is, the model
size, is almost linearly grown with the data size accumulated over time Steinwart (2003).
Consequently, the computation gradually becomes slower or even infeasible when the data
size grows rapidly.
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Algorithm 1 Stochastic Gradient Descent algorithm.

Input: λ, p.s.d. kernel K (., .) = Φ (·)T Φ (·)
1: w1 = 0
2: for t = 1, 2, . . . T do
3: Receive (xt, yt) //(xt, yt) ∼ PX ,Y or PN
4: ηt = 1

λt

5: gt = λwt + l
′
(wt;xt, yt) = λwt + αtΦ (xt)

6: wt+1 = wt − ηtgt = t−1
t wt − ηtαtΦ (xt)

7: end for

Output: wT = 1
T

∑T
t=1 wt or wT+1

6. Approximation Vector Machines for Large-scale Online Learning

In this section, we introduce our proposed Approximation Vector Machine (AVM) for online
learning. The main idea is that we employ an overlapping partition of sufficiently small
cells to cover the data domain, i.e., X or Φ (X ); when an instance arrives, we approximate
this instance by a corresponding core point in the cell that contains this instance. Our
intuition behind this approximation procedure is that since the instance is approximated
by its neighbor, the performance would not be significantly compromised while gaining
significant speedup. We start this section with the definition of δ-coverage, its properties
and connection with the feature space. We then present AVM and the convergence analysis.

6.1 δ-coverage over a domain

To facilitate our technical development in sequel, we introduce the notion of δ-coverage in
this subsection. We first start with the usual definition of a diameter for a set.

Definition 1. (diameter) Given a set A, the diameter of this set is defined as D (A) =
sup
x,x′∈A

||x− x′ ||. This is the maximal pairwise distance between any two points in A.

Next, given a domain X (e.g., the data domain, input space) we introduce the concept
of δ-coverage for X using a collection of sets.

Definition 2. (δ-coverage) The collection of sets P = (Pi)i∈I is said to be an δ-coverage of
the domain X iff X ⊂ ∪i∈IPi and D (Pi) ≤ δ, ∀i ∈ I where I is the index set (not necessarily
discrete) and each element Pi ∈ P is further referred to as a cell. Furthermore if the index
set I is finite, the collection P is called a finite δ-coverage.

Definition 3. (core set, core point) Given an δ-coverage P = (Pi)i∈I over a given domain
X , for each i ∈ I, we select an arbitrary point ci from the cell Pi, then the collection of all
ci (s) is called the core set C of the δ-coverage P. Each point ci ∈ C is further referred to
as a core point.

We show that these definitions can be also extended to the feature space with the
mapping Φ and kernel K via the following theorem.
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Theorem 4. Assume that the p.s.d. and isotropic kernel K(x, x
′
) = k

(
||x− x′ ||2

)
, where

k (.) is a monotonically continuous decreasing function with k (0) = 1, is examined and
Φ (.) is its induced feature map. If P = (Pi)i∈I is an δ-coverage of the domain X then

Φ (P) = (Φ (Pi))i∈I is also an δΦ-coverage of the domain Φ (X ), where δΦ =
√

2 (1− k (δ2))
is a monotonically increasing function and lim

δ→0
δΦ = 0.

In particular, the Gaussian kernel given by K(x, x
′
) = exp(−γ

∥∥∥x− x′∥∥∥2
) is a p.s.d. and

iso. kernel and δΦ =
√

2 (1− exp (−γδ2)). Theorem 4 further reveals that the image of an
δ-coverage in the input space is an δΦ-coverage in the feature space and when the diameter
δ approaches 0, so does the induced diameter δΦ. For readability, the proof of this theorem
is provided in Appendix 11.

We have further developed methods and algorithms to efficiently construct δ-coverage,
however to maintain the readability, we defer this construction to Section 6.3.

6.2 Approximation Vector Machines

We now present our proposed Approximation Vector Machine (AVM) for online learning. In
an online setting, instances arise on the fly and we need an efficient approach to incorporate
incoming instances into the learner. Different from the existing works (cf. Section 2), our
approach is to construct an δ-coverage P = (Pi)i∈I over the input domain X , and for each
incoming instance x we find the cell Pi that contains this instance and approximate this
instance by a core point ci ∈ Pi. The coverage P and core set C can either be constructed
in advance or on the fly as presented in Section 6.3.

In Algorithm 2, when receiving an incoming instance (xt, yt), we compute the scalar
αt such that αtΦ (xt) = l

′
(wt;xt, yt) (cf. Section 7) in Step 5. Furthermore at Step 7 we

introduce a Bernoulli random variable Zt to govern the approximation procedure. This
random variable could be either statistically independent or dependent with the incoming
instances and the current model. In Section 9.2, we report on different settings for Zt and
how they influence the model size and learning performance. Our findings at the outset
is that, the naive setting with P (Zt = 1) = 1, ∀t (i.e., always performing approximation)
returns the sparsest model while obtaining comparable learning performance comparing
with the other settings. Moreover, as shown in Steps 9 and 11, we only approximate the
incoming data instance by the corresponding core point (i.e., cit) if Zt = 1. In addition, if
Zt = 1, we find a cell that contains this instance in Step 8. It is worth noting that the δ-
coverage and the cells are constructed on the fly along with the data arrival (cf. Algorithms
3 and 4). In other words, the incoming data instance might belong to an existing cell or a
new cell that has the incoming instance as its core point is created.

Furthermore to ensure that ‖wt‖ is bounded for all t ≥ 1 in the case of `2 loss, if λ ≤ 1
then we project wt − ηtht onto the hypersphere with centre origin and radius ymaxλ

−1/2,
i.e., B

(
0, ymaxλ

−1/2
)
. Since it can be shown that with `2 loss the optimal solution w∗ lies in

B
(
0, ymaxλ

−1/2
)

(cf. Theorem 23 in Appendix 12), this operation could possibly result in
a faster convergence. In addition, by reusing the previous information, this operation can
be efficiently implemented. Finally, we note that with `2 loss and λ > 1, we do not need to
perform a projection to bound ‖wt‖ since according to Theorem 25 in Appendix 12, ‖wt‖
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is bounded by ymax

λ−1 . Here it is worth noting that we have defined ymax = maxy∈Y |y| and
this notation is only used in the analysis for the regression task with the `2 loss.

Algorithm 2 Approximation Vector Machine.

Input: λ, p.s.d. & iso. K (., .) = Φ (·)T Φ (·), δ-coverage P = (Pi)i∈I

1: w1 = 0
2: for t = 1, . . . , T do
3: Receive (xt, yt) //(xt, yt) ∼ PX ,Y or PN
4: ηt = 1

λt

5: l
′
(wt;xt, yt) = αtΦ (xt) //cf. Section 7

6: Sample a Bernoulli random variable Zt
7: if Zt = 1 then
8: Find it ∈ I such that xt ∈ Pit
9: ht = λwt + αtΦ (cit) //do approximation

10: else
11: ht = λwt + αtΦ (xt)
12: end if
13: if `2 loss is used andλ ≤ 1 then
14: wt+1 =

∏
B(0,ymaxλ−1/2) (wt − ηtht)

15: else
16: wt+1 = wt − ηtht
17: end if
18: end for

Output: wT =
∑T
t=1 wt
T or wT+1

In what follows, we present the theoretical results for our proposed AVM including the
convergence analysis for a general convex or smooth loss function and the upper bound
of the model size under the assumption that the incoming instances are drawn from an
arbitrary distribution and arrive in a random order.

6.2.1 Analysis for Generic Convex Loss Function

We start with the theoretical analysis for Algorithm 2. The decision of approximation (i.e.,
the random variable Zt) could be statistically independent or dependent with the current
model parameter wt and the incoming instance (xt, yt). For example, one can propose an
algorithm in which the decision of approximation is performed iff the confidence level of the
incoming instance w.r.t the current model is greater than 1, i.e., ytw

T
t Φ (xt) ≥ 1. We shall

develop our theory to take into account all possible cases.

Theorem 5 below establishes an upper bound on the regret under the possible assump-
tions of the statistical relationship among the decision of approximation, the data distribu-
tion, and the current model. Based on Theorem 5, in Theorem 8 we further establish an
inequality for the error incurred by a single-point output with a high confidence level.

Theorem 5. Consider the running of Algorithm 2 where (xt, yt) is uniformly sampled from
the training set D or the joint distribution PX ,Y , the following statements hold

10



Approximation Vector Machines

i) If Zt and wt are independent for all t (i.e., the decision of approximation only depends
on the data distribution) then

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+
δΦM

1/2W 1/2

T

T∑
t=1

P (Zt = 1)1/2

where H, M, W are positive constants.
ii) If Zt is independent with both (xt, yt) and wt for all t (i.e., the decision of approxi-

mation is independent with the current hyperplane and the data distribution) then

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+
δΦM

1/2W 1/2

T

T∑
t=1

P (Zt = 1)

iii) In general, we always have

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+ δΦM

1/2W 1/2

Remark 6. Theorem 5 consists of the standard convergence analysis. In particular, if the
approximation procedure is never performed, i.e., P (Zt = 1) = 0, ∀t, we have the regret

bound E [f (wT )− f (w∗)] ≤ H(log(T )+1)
2λT .

Remark 7. Theorem 5 further indicates that there exists an error gap between the opti-
mal and the approximate solutions. When δ decreases to 0, this gap also decreases to 0.
Specifically, when δ = 0 (so does δΦ), any incoming instance is approximated by itself and
consequently, the gap is exactly 0.

Theorem 8. Let us define the gap by dT , which is δΦM
1/2W 1/2

T

∑T
t=1 P (Zt = 1)1/2(if Zt is

independent with wt), δΦM
1/2W 1/2

T

∑T
t=1 P (Zt = 1) (if Zt is independent with (xt, yt) and

wt), or δΦM
1/2W 1/2. Let r be any number randomly picked from {1, 2, . . . , T}. With the

probability at least 1− δ, the following statement holds

f (wr)− f (w∗) ≤ H (log (T ) + 1)

2λT
+ dT + ∆T

√
1

2
log

1

δ

where ∆T = max
1≤t≤T

(f (wt)− f (w∗)).

We now present the convergence analysis for the case when we output the α-suffix
average result as proposed in Rakhlin et al. (2012). With 0 < α < 1, let us denote

wα
T =

1

αT

T∑
t=(1−α)T+1

wt

where we assume that the fractional indices are rounded to their ceiling values.
Theorem 9 establishes an upper bound on the regret for the α-suffix average case,

followed by Theorem 10 which establishes an inequality for the error incurred by a α-suffix
average output with a high confidence level.

11
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Theorem 9. Consider the running of Algorithm 2 where (xt, yt) is uniformly sampled from
the training set D or the joint distribution PX ,Y , the following statements hold

i) If Zt and wt are independent for all t (i.e., the decision of approximation only depends
on the data distribution) then

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1)1/2+
H log (1/ (1− α))

2λαT

where H,M,W are positive constants and Wα
T = E

[∥∥w(1−α)T+1 −w∗
∥∥2
]
.

ii) If Zt is independent with both (xt, yt) and wt for all t (i.e., the decision of approxi-
mation is independent with the current hyperplane and the data distribution) then

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1)+
H log (1/ (1− α))

2λαT

iii) In general, we always have

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T + δΦM

1/2W 1/2 +
H log (1/ (1− α))

2λαT

Theorem 10. Let us once again define the induced gap by dT , which is respectively

λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1)1/2 (if Zt is independent with wt),

λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1) (if Zt is independent with (xt, yt) and wt),

or λ(1−α)
2α Wα

T +δΦM
1/2W 1/2. Let r be any number randomly picked from {(1− α)T + 1, 2, . . . , T}.

With the probability at least 1− δ, the following statement holds

f (wr)− f (w∗) ≤ H log (1/ (1− α))

2λαT
+ dT + ∆α

T

√
1

2
log

1

δ

where ∆α
T = max

(1−α)T+1≤t≤T
(f (wt)− f (w∗)).

Remark 11. Theorems 8 and 10 concern with the theoretical warranty if rendering any
single-point output wr rather than the average outputs. The upper bound gained in
Theorem 10 is tighter than that gained in Theorem 8 in the sense that the quantity
H log(1/(1−α))

2λαT + ∆α
T

√
1
2 log 1

δ decreases faster and may decrease to 0 when T → +∞ given a

confidence level 1− δ.

12
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6.2.2 Analysis for Smooth Loss Function

Definition 12. A loss function l (w;x, y) is said to be µ-strongly smooth w.r.t a norm ‖.‖
iff for all u,v and (x, y) the following condition satisfies

l (v;x, y) ≤ l (u;x, y) + l
′
(u;x, y)T (v − u) +

µ

2
‖v − u‖2

Another equivalent definition of µ-strongly smooth function is

∥∥∥l′ (u;x, y)− l′ (v;x, y)
∥∥∥
∗
≤ µ ‖v − u‖

where ‖.‖∗ is used to represent the dual norm of the norm ‖.‖.
It is well-known that

• `2 loss is 1-strongly smooth w.r.t ‖.‖2.

• Logistic loss is 1-strongly smooth w.r.t ‖.‖2.

• τ -smooth Hinge loss (Shalev-Shwartz and Zhang, 2013) is 1
τ -strongly smooth w.r.t

‖.‖2.

Theorem 13. Assume that `2, Logistic, or τ -smooth Hinge loss is used, let us denote
L = λ

2 + 1, λ
2 + 1, or λ

2 + τ−1 respectively. Let us define the gap by dT as in Theorem 10.
Let r be any number randomly picked from {(1− α)T + 1, 2, . . . , T}. With the probability
at least (1− δ), the following statement holds

f (wr)− f (w∗) ≤ H log (1/ (1− α))

2λαT
+ dT +

LMα
T

2

√
1

2
log

1

δ

where Mα
T = max

(1−α)T+1≤t≤T
‖wt −w∗‖.

Remark 14. Theorem 13 extends Theorem 10 for the case of smooth loss function. This

allows the gap H log(1/(1−α))
2λαT +

LMα
T

2

√
1
2 log 1

δ to be quantified more precisely regarding

the discrepancy in the model itself rather than that in the objective function. The gap
H log(1/(1−α))

2λαT +
LMα

T
2

√
1
2 log 1

δ could possibly decrease rapidly when T approaches +∞.

13
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Algorithms Regret Budget

Forgetron (Dekel et al., 2005) NA MB
PA-I, II (Crammer et al., 2006) NA NB

Randomized Budget Perceptron (Cavallanti et al., 2007) NA NB
Projection (Orabona et al., 2009) NA AB

Kernelized Pegasos (Shalev-Shwartz et al., 2011) O
(

log(T )
T

)
NB

Budgeted SGD (Wang et al., 2012) O
(

log(T )
T

)
MB

Fourier OGD (Lu et al., 2015) O
(

1√
T

)
MB

Nystrom OGD (Lu et al., 2015) O
(

1√
T

)
MB

AVM (average output) O
(

log(T )
T

)
AB

AVM (α-suffix average output) O
(

1
T

)
AB

Table 1: Comparison on the regret bounds and the budget sizes of the kernel online algo-
rithms. On the column of budget size, NB stands for Not Bound (i.e., the model size is not
bounded and learning method is vulnerable to the curse of kernelization), MB stands for
Manual Bound (i.e., the model size is manually bounded by a predefined budget), and AB
is an abbreviation of Automatic Bound (i.e., the model size is automatically bounded and
this model size is automatically inferred).

To end this section, we present the regret bound and the obtained budget size for our
AVM(s) together with those of algorithms listed in Table 1. We note that some early
works on online kernel learning mainly focused on the mistake rate and did not present any
theoretical results regarding the regret bounds.

6.2.3 Upper Bound of Model Size

In what follows, we present the theoretical results regarding the model size and sparsity
level of our proposed AVM. Theorem 15 shows that AVM offers a high level of freedom to
control the model size. Especially, if we use the always-on setting (i.e., P (Zt = 1) = 1, ∀t),
the model size is bounded regardless of the data distribution and data arrival order.

Theorem 15. Let us denote P (Zt = 1) = pt, P (Zt = 0) = qt, and the number of cells
generated after the iteration t by Mt. If we define the model size, i.e., the size of support
set, after the iteration t by St, the following statement holds

E [ST ] ≤
T∑
t=1

qt +

T∑
t=1

ptE [Mt −Mt−1] ≤
T∑
t=1

qt + E [MT ]

Specially, if we use some specific settings for pt, we can bound the model size E [St] accord-
ingly as follows
i) If pt = 1, ∀t then E [ST ] ≤ E [MT ] ≤ |P|, where |P| specifies the size of the partition P,
i.e., its number of cells.

ii) If pt = max
(

0, 1− β
t

)
, ∀t then E [ST ] ≤ β (log (T ) + 1) + E [MT ].

iii) If pt = max
(

0, 1− β
tρ

)
, ∀t, where 0 < ρ < 1, then E [ST ] ≤ βT 1−ρ

1−ρ + E [MT ].

14
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iv) If pt = max
(

0, 1− β
tρ

)
, ∀t, where ρ > 1, then E [ST ] ≤ βζ (ρ) + E [MT ] ≤ βζ (ρ) + |P|,

where ζ (.) is ζ- Riemann function defined by the integral ζ (s) = 1
Γ(s)

∫ +∞
0

ts−1

es−1dt.

Remark 16. We use two parameters β and ρ to flexibly control the rate of approximation pt.
It is evident that when β increases, the rate of approximation decreases and consequently
the model size and accuracy increase. On the other hand, when ρ increases, the rate of
approximation increases as well and it follows that the model size and accuracy decreases.
We conducted experiment to investigate how the variation of these two parameters influence
the model size and accuracy (cf. Section 9.2).

Remark 17. The items i) and iv) in Theorem 15 indicate that if P (Zt = 1) = pt =

max
(

0, 1− β
tρ

)
, where ρ > 1 or ρ = +∞, then the model size is bounded by βζ (ρ)+ |P| (by

convention we define ζ (+∞) = 0). In fact, the tight upper bound is βζ (ρ) +E [MT ], where
MT is the number of unique cells used so far. It is empirically proven that MT could be
very small comparing with T and |P|. In addition, since all support sets of wt (1 ≤ t ≤ T )

are all lain in the core set, if we output the average wT =
∑T
t=1 wt
T or α-suffix average

wα
T = 1

αT

∑T
t=(1−α)T+1 wT , the model size is still bounded.

Remark 18. The items ii) and iii) in Theorem 15 indicate that if P (Zt = 1) = pt =

max
(

0, 1− β
tρ

)
, where 0 < ρ ≤ 1 then although the model size is not bounded, it would

slowly increase comparing with T , i.e., log (T ) or T 1−ρ when ρ is around 1.

6.3 Construction of δ-Coverage

In this section, we return to the construction of δ-coverage defined in Section 6.1 and present
two methods to construct a finite δ-coverage. The first method employs hypersphere cells
(cf. Algorithm 3) whereas the second method utilizes the hyperrectangle cells (cf. Algorithm
4). In these two methods, the cells in coverage are constructed on the fly when the incoming
instances arrive. Both are theoretically proven to be a finite coverage.

Algorithm 3 Constructing hypersphere δ-coverage.

1: P = ∅
2: n = 0
3: for t = 1, 2, . . . do
4: Receive (xt, yt)
5: it = argmink≤n ‖xt − ck‖
6: if ‖xt − cit‖ ≥ δ/2 then
7: n = n+ 1
8: cn = xt
9: it = n

10: P = P ∪ [B (cn, δ/2)]
11: end if
12: end for
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Algorithm 4 Constructing hyperrectangle δ-coverage.

1: P = ∅
2: a = δ/

√
d

3: n = 0
4: for t = 1, 2, . . . do
5: Receive (xt, yt)
6: it = 0
7: for i = 1 to n do
8: if ‖xt − ci‖∞ < a then
9: it = i

10: break
11: end if
12: end for
13: if it = 0 then
14: n = n+ 1
15: cn = xt
16: it = n
17: P = P ∪ [R (cn, a)]
18: end if
19: end for

Algorithm 3 employs a collection of open hypersphere cell B (c,R), which is defined
as B (c,R) =

{
x ∈ Rd : ‖x− c‖ < R

}
, to cover the data domain. Similar to Algorithm 3,

Algorithm 4 uses a collection of open hyperrectangle R (c, a), which is given by R (c, a) ={
x ∈ Rd : ‖x− c‖∞ < a

}
, to cover the data domain.

Both Algorithms 3 and 4 are constructed in the common spirit: if the incoming instance
(xt, yt) is outside all current cells, a new cell whose centre or vertex is this instance is
generated. It is noteworthy that the variable it in these two algorithms specifies the cell
that contains the new incoming instance and is the same as itself in Algorithm 2.

Theorem 19 establishes that regardless of the data distribution and data arrival order,
Algorithms 3 and 4 always generate a finite δ-coverage which implies a bound on the model
size of AVM. It is noteworthy at this point that in some scenarios of data arrival, Algo-
rithms 3 and 4 might not generate a coverage for the entire space X . However, since the
generated sequence {xt}t cannot be outside the set ∪i B (ci, δ) and ∪iR (ci, δ), without loss
of generality we can restrict X to ∪i B (ci, δ) or ∪iR (ci, δ) by assuming that X =∪i B (ci, δ)
or X = ∪i R (ci, δ).

Theorem 19. Let us consider the coverages formed by the running of Algorithms 3 and 4.
If the data domain X is compact (i.e., close and bounded) then these coverages are all finite
δ-coverages whose sizes are all dependent on the data domain X and independent with the
sequence of incoming data instances (xt, yt) received.

Remark 20. Theorem 19 also reveals that regardless of the data arrival order, the model
size of AVM is always bounded (cf. Remark 17). Referring to the work of (Cucker and

Smale, 2002), it is known that this model size cannot exceed
(

4D(X )
δ

)d
. However with
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many possible data arrival orders, the number of active cells or the model size of AVM is
significantly smaller than the aforementioned theoretical bound.

6.4 Complexity Analysis

We now present the computational complexity of our AVM(s) with the hypersphere δ-
coverage at the iteration t. The cost to find the hypersphere cell in Step 5 of Algorithm 2
is O

(
d2Mt

)
. The cost to calculate αt in Step 6 of Algorithm 2 is O (St) if we consider the

kernel operation as a unit operation. If `2 loss is used and λ ≤ 1, we need to do a projection
onto the hypersphere B

(
0, ymaxλ

−1/2
)

which requires the evaluation of the length of the
vector wt− ηtht (i.e., ‖wt − ηtht‖) which costs St unit operations using incremental imple-
mentation. Therefore, the computational operation at the iteration t of AVM(s) is either
O
(
d2Mt + St

)
= O

((
d2 + 1

)
St
)

or O
(
d2Mt + St + St

)
= O

((
d2 + 2

)
St
)

(since Mt ≤ St).

7. Suitability of Loss Functions

We introduce six types of loss functions that can be used in our proposed algorithm, namely
Hinge, Logistic, `2, `1, ε−insensitive, and τ -smooth Hinge. We verify that these loss func-

tions satisfying the necessary condition, that is,
∥∥∥l′ (w;x, y)

∥∥∥ ≤ A ‖w‖1/2 + B for some

appropriate positive numbers A,B (this is required for our problem formulation presented
in Section 4).

For comprehensibility, without loss of generality, we assume that ‖Φ (x)‖ = K (x, x)1/2 =
1, ∀x ∈ X . At the outset of this section, it is noteworthy that for classification task (i.e.,
Hinge, Logistic, and τ -smooth Hinge cases), the label y is either −1 or 1 which instantly
implies |y| = y2 = 1.

• Hinge loss

l (w;x, y) = max
{

0, 1− ywTΦ (x)
}

l
′
(w;x, y) = −I{ywTΦ(x)≤1}yΦ (x)

where IS is the indicator function which renders 1 if the logical statement S is true
and 0 otherwise.

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ ≤ ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

• `2 loss

In this case, at the outset we cannot verify that
∥∥∥l′ (w;x, y)

∥∥∥ ≤ A ‖w‖1/2 + B for

all w, x, y. However, to support the proposed theory, we only need to check that∥∥∥l′ (wt;x, y)
∥∥∥ ≤ A ‖wt‖1/2 +B for all t ≥ 1. We derive as follows

l (w;x, y) =
1

2

(
y −wTΦ (x)

)2

l
′
(w;x, y) =

(
wTΦ (x)− y

)
Φ (x)
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∥∥∥l′ (wt;x, y)
∥∥∥ = |wT

t Φ (x) + y| ‖Φ (x)‖ ≤ |wT
t Φ (x) |+ ymax

≤ ‖Φ (x)‖ ‖wt‖+ ymax ≤ A ‖wt‖1/2 +B

where B = ymax and A =

{
y

1/2
maxλ−1/4 if λ ≤ 1

y
1/2
max (λ− 1)−1/2 otherwise

.

Here we note that we make use of the fact that ‖wt‖ ≤ ymax (λ− 1)−1 if λ > 1
(cf. Theorem 25 in Appendix 12) and ‖wt‖ ≤ ymaxλ

−1/2 otherwise (cf. Line 12 in
Algorithm 2 ).

• `1 loss

l (w;x, y) = |y −wTΦ (x) |

l
′
(w;x, y) = sign

(
wTΦ (x)− y

)
Φ (x)

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ = ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

• Logistic loss

l (w;x, y) = log
(

1 + exp
(
−ywTΦ (x)

))
l
′
(w;x, y) =

−y exp
(
−ywTΦ (x)

)
Φ (x)

exp (−ywTΦ (x)) + 1

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ < ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

• ε-insensitive loss

l (w;x, y) = max
{

0, |y −wTΦ (x) | − ε
}

l
′
(w;x, y) = I{|y−wTΦ(x)|>ε}sign

(
wTΦ (x)− y

)
Φ (x)

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ ≤ ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

• τ-smooth Hinge loss Shalev-Shwartz and Zhang (2013)

l (w;x, y) =


0 if ywTΦ (x) > 1

1− ywTΦ (x)− τ
2 if ywTΦ (x) < 1− τ

1
2τ

(
1− ywTΦ (x)

)2
otherwise

l
′
(w;x, y) = −I{ywTΦ(x)<1−τ}yΦ (x)

+ τ−1I1−τ≤ywTΦ(x)≤1

(
ywTΦ (x)− 1

)
yΦ (x)
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Therefore, by choosing A = 0, B = 2, we have

∥∥∥l′ (w;x, y)
∥∥∥ ≤ |y| ‖Φ (x)‖+ τ−1 |y| ‖Φ (x)‖ τ ≤ 2

= A ‖w‖1/2 +B

8. Multiclass Setting

In this section, we show that our proposed framework could also easily extend to the multi-
class setting. We base on the work of Crammer and Singer (2002) for multiclass classification
to formulate the optimization problem in multi-class setting as

min
W

(
f (W ) ,

λ

2
‖W‖22,2 +

1

N

N∑
i=1

l
(
wT
yiΦ (xi)−wT

ziΦ (xi)
))

where we have defined

zi = argmax
j 6=yi

wT
j Φ (xi) ,

W = [w1,w2, . . . ,wm] , ‖W‖22,2 =

m∑
j=1

‖wj‖2 ,

l (a) =

{
max (0, 1− a) Hinge loss

log (1 + e−a) Logistic loss

For the exact update, at the t-th iteration, we receive the instance (xt, yt) and modify
W as follows

w
(t+1)
j =


t−1
t w

(t)
j − ηtl

′
(a) Φ (xt) if j = yt

t−1
t w

(t)
j + ηtl

′
(a) Φ (xt) if j = zt

t−1
t w

(t)
j otherwise

where a = wT
ytΦ (xt)−wT

ztΦ (xt) and l
′
(a) = −I{a<1} or −1/ (1 + ea).

The algorithm for Approximation Vector Machine with multiclass setting proceeds as
in Algorithm 5.
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Algorithm 5 Multiclass Approximation Vector Machine.

Input: λ, p.s.d. & iso. kernel K (., .), δ-coverage P = (Pi)i∈I

1: W1 = 0
2: for t = 1, . . . , T do
3: Receive (xt, yt) //(xt, yt) ∼ PX ,Y or PN
4: a = wT

ytΦ (xt)−max
j 6=yt

wT
j Φ (xt)

5: W (t+1) = t−1
t W

(t)

6: Sample a Bernoulli random variable Zt
7: if Zt = 1 then
8: Find it ∈ I such that xt ∈ Pit
9: w

(t+1)
yt = w

(t+1)
yt − ηtl

′
(a) Φ (cit) //do approximation

10: w
(t+1)
zt = w

(t+1)
zt + ηtl

′
(a) Φ (cit)

11: else
12: w

(t+1)
yt = w

(t+1)
yt − ηtl

′
(a) Φ (xt)

13: w
(t+1)
zt = w

(t+1)
zt + ηtl

′
(a) Φ (xt)

14: end if
15: end for

Output W
(T )

=
∑T
t=1 W

(t)

T or W (t+1)

9. Experiments

In this section, we conduct comprehensive experiments to quantitatively evaluate the capac-
ity and scalability of our proposed Approximation Vector Machine (AVM) on classification
and regression tasks under three different settings:

• Batch classification4: the regular binary and multiclass classification tasks that follow
a standard validation setup, wherein each dataset is partitioned into training set and
testing set. The models are trained on the training part, and then their discriminative
capabilities are verified on the testing part using classification accuracy measure. The
computational costs are commonly measured based on the training time.

• Online classification: the binary and multiclass classification tasks that follow a purely
online learning setup, wherein there is no division of training and testing sets as in
batch setting. The algorithms sequentially receive and process a single data sample
turn-by-turn. When an individual data point comes, the models perform prediction
to compute the mistake rate first, then use the feature and label information of such
data point to continue their learning procedures. Their predictive performances and
computational costs are measured basing on the average of mistake rate and execution
time, respectively, accumulated in the learning progress on the entire dataset.

• Online regression: the regression task that follows the same setting of online classifi-
cation, except the predictive performances are measured based on the regression error
rate accumulated in the learning progress on the entire dataset.

4. This setting is also known as offline classification.
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Our main goal is to examine the scalability, classification and regression capabilities of
AVMs by directly comparing with those of several recent state-of-the-art batch and online
learning approaches using a number of datasets with a wide range of sizes. Our models are
implemented in Python with Numpy package. The source code and experimental scripts are
published for reproducibility5. In what follows, we present the data statistics, experimental
setup, results and our observations.

9.1 Data Statistics and Experimental Setup

We use 11 datasets whose statistics are summarized in Table 2. The datasets are selected in
a diverse array of sizes in order to clearly expose the differences among scalable capabilities
of the models. Five of which (year, covtype, poker, KDDCup99, airlines) are large-scale
datasets with hundreds of thousands and millions of data points, whilst the rest are ordinal-
size databases. Except the airlines, all of the datasets can be downloaded from LIBSVM6

and UCI7 websites.

Dataset #training #testing #features #classes Source

a9a 32, 561 16, 281 123 2 UCI
w8a 49, 749 14, 951 300 2 LIBSVM

cod-rna 59, 535 271, 617 8 2 LIBSVM
ijcnn1 49, 990 91, 701 22 2 LIBSVM
covtype 522, 911 58, 101 54 7 LIBSVM
poker 25, 010 1, 000, 000 10 10 UCI

KDDCup99 4, 408, 589 489, 842 41 23 UCI
airlines 5, 336, 471 592, 942 8 2 ASA

Dataset #training #testing #features value Source

casp 45, 730 – 9 [0, 1] UCI
slice 53, 500 – 384 [0, 1] UCI
year 515, 345 – 90 [0, 1] UCI

airlines 5, 929, 413 – 8 R+ ASA

Table 2: Data statistics. #training: number of training samples; #testing: number of
testing samples.

The airlines dataset is provided by American Statistical Association (ASA8). The dataset
contains information of all commercial flights in the US from October 1987 to April 2008.
The aim is to predict whether a flight will be delayed or not and how long in minutes the
flight will be delayed in terms of departure time. The departure delay time is provided in
the flight database. A flight is considered delayed if its delay time is above 15 minutes, and
non-delayed otherwise. The average delay of a flight in 2008 was of 56.3 minutes. Following
the procedure of (Hensman et al., 2013), we further process the data in two steps. First, we
join the data with the information of individual planes basing on their tail numbers in order

5. https://github.com/tund/avm.
6. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
7. https://archive.ics.uci.edu/ml/datasets.html.
8. The data can be downloaded from http://stat-computing.org/dataexpo/2009/.
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to obtain the manufacture year. This additional information is provided as a supplemental
data source on ASA website. We then extract 8 features of many available fields: the age of
the aircraft (computed based on the manufacture year), journey distance, airtime, scheduled
departure time, scheduled arrival time, month, day of week and month. All features are
normalized into the range [0, 1].

In batch classification experiments, we follow the original divisions of training and testing
sets in LIBSVM and UCI sites wherever available. For KDDCup99, covtype and airlines
datasets, we split the data into 90% for training and 10% for testing. In online classification
and regression tasks, we either use the entire datasets or concatenate training and testing
parts into one. The online learning algorithms are then trained in a single pass through
the data. In both batch and online settings, for each dataset, the models perform 10 runs
on different random permutations of the training data samples. Their prediction results
and time costs are then reported by taking the average with the standard deviation of the
results over these runs.

For comparison, we employ some baseline methods that will be described in the fol-
lowing sections. Their C++ implementations with Matlab interfaces are published as a
part of LIBSVM, BudgetedSVM9 and LSOKL10 toolboxes. Throughout the experiments,

we utilize RBF kernel, i.e., K
(
x, x

′
)

= exp

(
−γ
∥∥∥x− x′∥∥∥2

)
for all algorithms including

ours. We use hypersphere strategy to construct the δ-coverage (cf. Section 6.3), due to
its better performance than that of hyperrectangle approach during model evaluation. All
experiments are conducted using a Windows machine with 3.46GHz Xeon processor and
96GB RAM.

9.2 Model Evaluation on The Effect of Hyperparameters

In the first experiment, we investigate the effect of hyperparameters, i.e., δ-coverage di-
ameter, sampling parameters β and ρ (cf. Section 6.2.3) on the performance of AVMs.
Particularly, we conduct an initial analysis to quantitatively evaluate the sensitivity of
these hyperparameters and their impact on the predictive accuracy and model size. This
analysis provides a heuristic approach to find the best setting of hyperparameters. Here the
AVM with Hinge loss is trained following the online classification scheme using two datasets
a9a and cod-rna.

To find the plausible range of coverage diameter, we use a heuristic approach as follows.
First we compute the mean and standard deviation of pairwise Euclidean distances between
any two data samples. Treating the mean as the radius, the coverage diameter is then varied
around twice of this mean bounded by twice of the standard deviation. Fig. 2a and Fig. 3a
report the average mistake rates and model sizes of AVMs with respect to (w.r.t) these
values for datasets a9a and cod-rna, respectively. Here we set β = 0 and ρ = 1.0. There is
a consistent pattern in both figures: the classification errors increase for larger δ whilst the
model sizes decrease. This represents the trade-off between model performance and model
size via the model coverage. To balance the performance and model size, in these cases, we
can choose δ = 7.0 for a9a data and δ = 1.0 for cod-rna data.

9. http://www.dabi.temple.edu/budgetedsvm/index.html.
10. http://lsokl.stevenhoi.com/.
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(a) The effect of δ-coverage diameter on the mis-
take rate and model size.

(b) The effect of β and ρ on the classification mistake
rate. β = 0 means always approximating.

Figure 2: Performance evaluation of AVM with Hinge loss trained using a9a dataset with
different values of hyperparameters.

(a) The effect of δ-coverage diameter on the mis-
take rate and model size.

(b) The effect of β and ρ on the classification mistake
rate. β = 0 means always approximating.

Figure 3: Performance evaluation of AVM with Hinge loss trained using cod-rna dataset
with different values of hyperparameters.

Fixing the coverage diameters, we vary β and ρ in 10 values monotonically increasing
from 0 to 10 and from 0.5 to 1.5, respectively, to evaluate the classification performance. The
smaller β and larger ρ indicate that the machine approximates the new incoming data more
frequently, resulting in less powerful prediction capability. This can be observed in Fig. 2b
and Fig. 3b, which depict the average mistake rates in 3D as a function of these values for
dataset a9a and cod-rna. Here β = 0 means that the model always performs approximation
without respect to the value of ρ. From these visualizations, we found that the AVM with
always-on approximation mode still can achieve fairly comparable classification results.
Thus we set β = 0 for all following experiments.

9.3 Batch Classification

We now examine the performances of AVMs in classification task following batch mode.
We use eight datasets: a9a, w8a, cod-rna, KDDCup99, ijcnn1, covtype, poker and airlines
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(delayed and non-delayed labels). We create two versions of our approach: AVM with Hinge
loss (AVM-Hinge) and AVM with Logistic loss (AVM-Logit). It is noteworthy that the Hinge
loss is not a smooth function with undefined gradient at the point that the classification
confidence yf (x) = 1. Following the sub-gradient definition, in our experiment, we compute
the gradient given the condition that yf (x) < 1, and set it to 0 otherwise.

Baselines. For discriminative performance comparison, we recruit the following state-of-
the-art baselines to train kernel SVMs for classification in batch mode:

• LIBSVM: one of the most widely-used and state-of-the-art implementations for batch
kernel SVM solver (Chang and Lin, 2011). We use the one-vs-all approach as the
default setting for the multiclass tasks;

• LLSVM: low-rank linearization SVM algorithm that approximates kernel SVM opti-
mization by a linear SVM using low-rank decomposition of the kernel matrix (Zhang
et al., 2012);

• BSGD-M: budgeted stochastic gradient descent algorithm which extends the Pegasos
algorithm (Shalev-Shwartz et al., 2011) by introducing a merging strategy for support
vector budget maintenance (Wang et al., 2012);

• BSGD-R: budgeted stochastic gradient descent algorithm which extends the Pegasos
algorithm (Shalev-Shwartz et al., 2011) by introducing a removal strategy for support
vector budget maintenance (Wang et al., 2012);

• FOGD: Fourier online gradient descent algorithm that applies the random Fourier
features for approximating kernel functions (Lu et al., 2015);

• NOGD: Nystrom online gradient descent (NOGD) algorithm that applies the Nystrom
method to approximate large kernel matrices (Lu et al., 2015).

Hyperparameters setting. There are a number of different hyperparameters for all
methods. Each method requires a different set of hyperparameters, e.g., the regularization
parameters (C in LIBSVM, λ in Pegasos and AVM), the learning rates (η in FOGD and
NOGD), the coverage diameter (δ in AVM) and the RBF kernel width (γ in all methods).
Thus, for a fair comparison, these hyperparameters are specified using cross-validation on
training subset.

Particularly, we further partition the training set into 80% for learning and 20% for val-
idation. For large-scale databases, we use only 1% of training set, so that the searching can
finish within an acceptable time budget. The hyperparameters are varied in certain ranges
and selected for the best performance on the validation set. The ranges are given as fol-
lows: C ∈

{
2−5, 2−3, ..., 215

}
, λ ∈ {2−4/N, 2−2/N, ..., 216/N}, γ ∈

{
2−8, 2−4, 2−2, 20, 22, 24, 28

}
,

η ∈ {16.0, 8.0, 4.0, 2.0, 0.2, 0.02, 0.002, 0.0002} where N is the number of data points. The
coverage diameter δ of AVM is selected following the approach described in Section 9.2. For
the budget size B in NOGD and Pegasos algorithm, and the feature dimension D in FOGD
for each dataset, we use identical values to those used in Section 7.1.1 of Lu et al. (2015).
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Results. The classification results, training and testing time costs are reported in Table 3.
Overall, the batch algorithms achieve the highest classification accuracies whilst those of
online algorithms are lower but fairly competitive. The online learning models, however,
are much sparser, resulting in a substantial speed-up, in which the training time costs and
model sizes of AVMs are smallest with orders of magnitude lower than those of the standard
batch methods. More specifically, the LIBSVM outperforms the other approaches in most
of datasets, on which its training phase finishes within the time limit (i.e., two hours),
except for the ijcnn1 data wherein its testing score is less accurate but very close to that
of BSGD-M. The LLSVM achieves good results which are slightly lower than those of the
state-of-the-art batch kernel algorithm. The method, however, does not support multiclass
classification. These two batch algorithms – LIBSVM and LLSVM could not be trained
within the allowable amount of time on large-scale datasets (e.g., airlines), thus are not
scalable.

Furthermore, six online algorithms in general have significant advantages against the
batch methods in computational efficiency, especially when running on large-scale datasets.
Among these algorithms, the BSGD-M (Pegasos+merging) obtains the highest classification
scores, but suffers from a high computational cost. This can be seen in almost all datasets,
especially for the airlines dataset on which its learning exceeds the time limit. The slow
training of BSGD-M is caused by the merging step with computational complexity O

(
B2
)

(B is the budget size). By contrast, the BSGD-R (Pegasos+removal) runs faster than the
merging approach, but suffers from very high inaccurate results due to its naive budget
maintenance strategy, that simply discards the most redundant support vector which may
contain important information.

In terms of predictive performance, our proposed methods outperform the recent ad-
vanced online learning algorithms – FOGD and NOGD in most scenarios. The AVM-based
models are able to achieve slightly less accurate but fairly comparable results compared
with those of the state-of-the-art LIBSVM algorithm. In terms of sparsity and speed, the
AVMs are the fastest ones in the training and testing phases in all cases thanks to their
remarkable smaller model sizes. The difference between the training speed of our AVMs
and that of two approaches varies across datasets. The gap is more significant for datasets
with higher dimensional feature spaces. This is expected because the procedure to compute
random features for each data point of FOGD involves sin and cos operators which are
costly. These facts indicate that our proposed online kernel learning algorithms are both
efficient and effective in solving large-scale kernel classification problems. Thus we believe
that the AVM is the fast alternative to the existing SVM solvers for large-scale classification
tasks.

Finally, comparing two versions of AVMs, it can be seen that the discriminative perfor-
mances of AVM with Logistic loss are better than those of AVM with Hinge loss in most
of datasets. This is because the Logistic function is smoother than the Hinge function,
whilst the Hinge loss encourages sparsity of the model. The AVM-Logit, however, contains
additional exponential operators, resulting in worse training time.
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Table 3: Classification performance of our AVMs and the baselines in batch mode. The
notation [δ | S | B | D], next to the dataset name, denotes the diameter δ, the model size S
of AVM-based models, the budget size B of budgeted algorithms, and the number of random
features D of FOGD, respectively. The accuracy is reported in percent (%), the training
time and testing time are in second. The best performance is in bold. It is noteworthy that
the LLSVM does not support multiclass classification and we terminate all runs exceeding
the limit of two hours, therefore some results are unavailable.

Dataset [δ | S | B | D] a9a [7.0 | 135 | 1, 000 | 4, 000] w8a [13.0 | 131 | 1, 000 | 4, 000]

Algorithm Train Test Accuracy Train Test Accuracy

LIBSVM 84.57 22.23 84.92 50.96 2.95 99.06
LLSVM 50.73 8.73 83.00 92.19 10.41 98.64

BSGD-M 232.59 2.88 84.76±0.16 264.70 5.16 98.17±0.07
BSGD-R 90.48 2.72 80.26±3.38 253.30 4.98 97.10±0.04
FOGD 15.99 2.87 81.15±5.05 32.16 3.55 97.92±0.38
NOGD 82.40 0.60 82.33±2.18 374.87 0.65 98.06±0.18

AVM-Hinge 4.96 0.25 83.55±0.50 11.84 0.52 96.87±0.28
AVM-Logit 5.35 0.25 83.83±0.34 12.54 0.52 96.96±0.00

Dataset [δ | S | B | D] cod-rna [1.0 | 436 | 400 | 1, 600] ijcnn1 [1.0 | 500 | 1, 000 | 4, 000]

Algorithm Train Test Accuracy Train Test Accuracy

LIBSVM 114.90 85.34 96.39 38.63 11.17 97.35
LLSVM 20.17 19.38 94.16 40.62 54.22 96.99

BSGD-M 90.62 5.66 95.67±0.21 93.05 6.13 97.69±0.11
BSGD-R 19.31 5.48 66.83±0.11 41.70 7.07 90.90±0.18
FOGD 7.62 11.95 92.65±4.20 7.31 10.10 90.64±0.07
NOGD 9.81 3.24 91.83±3.35 21.58 3.68 90.43±1.22

AVM-Hinge 6.52 2.69 94.38±1.16 6.47 2.71 91.14±0.71
AVM-Logit 7.03 2.86 93.10±2.11 6.86 2.67 91.19±0.95

Dataset [δ | S | B | D] covtype [3.0 | 59 | 400 | 1, 600] poker [12.0 | 393 | 1, 000 | 4, 000]

Algorithm Train Test Accuracy Train Test Accuracy

LIBSVM – – – 40.03 932.58 57.91
LLSVM – – – – – –

BSGD-M 2,413.15 3.75 72.26±0.16 414.09 123.57 54.10±0.22
BSGD-R 418.68 3.02 61.09±1.69 35.76 102.84 52.14±1.05
FOGD 69.94 2.45 59.34±5.85 9.61 101.29 46.62±5.00
NOGD 679.50 0.76 68.20±2.96 118.54 36.84 54.65±0.27

AVM-Hinge 60.27 0.26 64.31±0.37 3.86 8.21 55.49±0.13
AVM-Logit 61.92 0.22 64.42±0.34 3.36 7.54 55.60±0.17

Dataset [δ | S | B | D] KDDCup99 [3.0 | 115 | 200 | 400] airlines [1.0 | 388 | 1, 000 | 4, 000]

Algorithm Train Test Accuracy Train Test Accuracy

LIBSVM 4,380.58 661.04 99.91 – – –
LLSVM – – – – – –

BSGD-M 2,680.58 21.25 99.73±0.00 – – –
BSGD-R 1,644.25 14.33 39.81±2.26 4,741.68 29.98 80.27±0.06
FOGD 706.20 22.73 99.75±0.11 1,085.73 861.52 80.37±0.21
NOGD 3,726.21 3.11 99.80±0.02 3,112.08 18.53 74.83±0.20

AVM-Hinge 554.42 2.75 99.82±0.05 586.90 6.55 80.72±0.00
AVM-Logit 576.76 2.80 99.72±0.06 642.23 6.10 80.72±0.00
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9.4 Online Classification

The next experiment investigates the performance of the AVMs in online classification task
where individual data point continuously come turn-by-turn in a stream. Here we also
use eight datasets and two versions of our approach: AVM with Hinge loss (AVM-Hinge)
and AVM with Logistic loss (AVM-Logit) which are used in batch classification setting (cf.
Section 9.3).

Baselines. We recruit the two widely-used algorithms – Perceptron and OGD for regular
online kernel classification without budget maintenance and 8 state-of-the-art budget online
kernel learning methods as follows:

• Perceptron: the kernelized variant without budget of Perceptron algorithm (Freund
and Schapire, 1999);

• OGD: the kernelized variant without budget of online gradient descent (Kivinen et al.,
2004);

• RBP: a budgeted Perceptron algorithm using random support vector removal strategy
(Cavallanti et al., 2007);

• Forgetron: a kernel-based Perceptron maintaining a fixed budget by discarding oldest
support vectors (Dekel et al., 2005);

• Projectron: a Projectron algorithm using the projection strategy (Orabona et al.,
2009);

• Projectron++: the aggressive version of Projectron algorithm (Orabona et al., 2009);

• BPAS: a budgeted variant of Passive-Aggressive algorithm with simple SV removal
strategy (Wang and Vucetic, 2010);

• BOGD: a budgeted variant of online gradient descent algorithm using simple SV
removal strategy (Zhao et al., 2012);

• FOGD and NOGD: described in Section 9.3.

Hyperparameters setting. For each method learning on each dataset, we follow the
same hyperparameter setting which is optimized in the batch classification task. For time
efficiency, we only include the fast algorithms FOGD, NOGD and AVMs for the experiments
on large-scale datasets. The other methods would exceed the time limit when running on
such data.

Results. Fig. 4 and Fig. 5 shows the relative performance convergence w.r.t classification
error and computation cost of the AVMs in comparison with those of the baselines. Com-
bining these two figures, we compare the average mistake rate and running time in Fig. 6.
Table 4 reports the final average results in detailed numbers after the methods see all data
samples. It is worthy to note that for the four biggest datasets (KDDCup99, covtype, poker,
airlines) that consist of millions data points, we exclude the non-budgeted online learning
algorithm because of their substantially expensive time costs. From these results, we can
draw some observations as follows.
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First of all, as can be seen from Fig. 4, there are three groups of algorithms that have
different learning progresses in terms of classification mistake rate. The first group includes
the BOGD, Projectron and Forgetron that have the error rates fluctuating at the beginning,
but then being stable till the end. In the meantime, the rates of the models in the second
group, including Perceptron, OGD, RBP, Projectron++ and BPAS, quickly saturate at a
plateau after these methods see a few portions, i.e., one-tenth to two-tenth, of the data. By
contrast, the last group includes the recent online learning approaches – FOGD, NOGD, and
our proposed ones – AVM-Hinge, AVM-Logit, that regularly perform better as more data
points come. Exceptionally, for the dataset w8a, the classification errors of the methods in
the first group keep increasing after seeing four-tenth of the data, whilst those of the last
group are unexpectedly worse.

Second, Fig. 6 plots average mistake rate against computational cost, which shows sim-
ilar patterns as in the our first observation. In addition, it can be seen from Fig. 5 that
all algorithms have normal learning pace in which the execution time is accumulated over
the learning procedure. Only the Projectron++ is slow at the beginning but then performs
faster after receiving more data.

According to final results summarized in Table 4, the budgeted online approaches show
efficacies with substantially faster computation than the ones without budgets. This is
more obvious for larger datasets wherein the execution time costs of our proposed models
are several orders of magnitude lower than those of regular online algorithms. This is
because the coverage scheme of AVMs impressively boost their model sparsities, e.g., using
δ = 3 resulting in 115 core points for dataset KDDCup99 consisting of 4, 408, 589 instances,
and using δ = 1 resulting in 388 core points for dataset airlines containing 5, 336, 471 data
samples.

For classification capability, the non-budgeted methods only surpass the budgeted ones
for the smallest dataset, that is, the OGD obtains the best performance for a9a data. This
again demonstrates the importance of exploring budget online kernel learning algorithms.
Between the two non-budgeted algorithms, the OGD achieves considerably better error
rates than the Perceptron. The method, however, must perform much more expensive
updates, resulting in a significantly larger number of support vectors and significantly higher
computational time costs. This represents the trade-off between classification accuracy and
computational complexity of the OGD.

Furthermore, comparing the performance of different existing budgeted online kernel
learning algorithms, the AVM-Hinge and AVM-Logit outperform others in both discrimi-
native performance and computation efficiency for almost all datasets. In particular, the
AVM-based methods achieve the best mistake rates – 5.61±0.17, 8.01±0.18, 43.85±0.09,
19.28±0.00 for the cod-rna, ijcnn1, poker and airlines data, that are, respectively, 27.5%,
17.5%, 2.4%, 8.8% lower than the error rates of the second best models – two recent ap-
proaches FOGD and NOGD. On the other hand, the computation costs of the AVMs are
significantly lower with large margins of hundreds of percents for large-scale databases cov-
type, poker, and airlines as shown in Table 4.
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Figure 4: Convergence evaluation of online classification tasks: the average rate of mistakes
as a function of the number of samples seen by the models. (Best viewed in colors).
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Figure 5: Convergence evaluation of online classification task: the average time costs (sec-
onds shown in the logarithm with base 10) as a function of the number of samples seen by
the models. (Best viewed in colors).
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Figure 6: Average mistake rate vs. time cost for online classification. The average time
(seconds) is shown in the logarithm with base 10. (Best viewed in colors).
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Table 4: Classification performance of our proposed methods and the baselines in online
mode. Note that δ, B and D are set to be the same as in batch classification tasks (cf.,
Section 9.3). The mistake rate is reported in percent (%) and the execution time is in
second. The best performance is in bold.

Dataset [S] a9a [142] w8a [131]

Algorithm Mistake Rate Time Mistake Rate Time

Perceptron 21.05±0.12 976.79 3.51±0.03 691.80
OGD 16.50±0.06 2,539.46 2.54±0.03 1,290.13

RBP 23.76±0.21 118.25 4.02±0.07 544.83
Forgetron 23.15±0.34 109.71 3.96±0.10 557.75
Projectron 21.86±1.73 122.08 4.76±1.13 572.20

Projectron++ 19.47±2.22 449.20 3.08±0.63 1321.93
BPAS 19.09±0.17 95.81 2.37±0.02 681.46
BOGD 22.14±0.25 96.11 3.16±0.08 589.47
FOGD 20.11±0.10 13.79 3.52±0.05 26.40
NOGD 16.55±0.07 99.54 2.55±0.05 585.23

AVM-Hinge 17.46±0.12 8.74 4.62±0.78 16.89
AVM-Logit 17.33±0.16 9.31 5.80±0.02 17.86

Dataset [S] cod-rna [436] ijcnn1 [500]

Algorithm Mistake Rate Time Mistake Rate Time

Perceptron 9.79±0.04 1,393.56 12.85±0.09 727.90
OGD 7.81±0.03 2,804.01 10.39±0.06 960.44

RBP 26.02±0.39 85.84 15.54±0.21 54.29
Forgetron 28.56±2.22 102.64 16.17±0.26 60.54
Projectron 11.16±3.61 97.38 12.98±0.23 59.37

Projectron++ 17.97±15.60 1,799.93 9.97±0.09 749.70
BPAS 11.97±0.09 92.08 10.68±0.05 55.44
BOGD 38.13±0.11 104.60 10.87±0.18 55.99
FOGD 7.15±0.03 53.45 9.41±0.03 25.93
NOGD 7.83±0.06 105.18 10.43±0.08 59.36

AVM-Hinge 5.61±0.17 40.89 8.01±0.18 23.26
AVM-Logit 6.01±0.20 45.67 8.07±0.20 23.36

Dataset [S] KDDCup99 [115] covtype [59]

Algorithm Mistake rate Time Mistake rate Time

FOGD 0.35±0.00 620.95 40.45±0.05 223.20
NOGD 0.23±0.00 4,009.03 34.72±0.07 838.47

AVM-Hinge 0.31±0.07 540.65 36.11±0.16 51.12
AVM-Logit 0.28±0.03 503.34 35.92±0.16 53.51

Dataset [S] poker [393] airlines [388]

Algorithm Mistake Rate Time Mistake Rate Time

FOGD 52.28±0.04 928.89 20.98±0.01 1,270.75
NOGD 44.90±0.16 4,920.33 25.56±0.01 3,553.50

AVM-Hinge 43.85±0.09 122.59 19.28±0.00 733.72
AVM-Logit 43.97±0.07 124.86 19.28±0.00 766.19
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Figure 7: Predictive and wall-clock performance on two datasets: a9a and cod-rna of
budgeted methods when the budget size B is varied. (Best viewed in colors).

Table 5: Online regression results of 6 baselines and 3 versions of our AVMs. The notation
[δ;S;B;D] denotes the same meanings as those in Table 3. The regression loss is measured
using root mean squared error (RMSE) and the execution time is reported in second. The
best performance is in bold.

Dataset casp slice
[δ | S | B | D] [4.0 | 166 | 400 | 2, 000] [16.0 | 27 | 1, 000 | 3, 000]

Algorithm RMSE Time RMSE Time

RBP 0.3195±0.0012 7.15 0.1154±0.0006 810.14
Forgetron 0.3174±0.0008 10.14 0.1131±0.0004 1,069.15
Projectron 0.2688±0.0002 8.48 0.0770±0.0002 814.37

BOGD 0.2858±0.0002 6.20 0.1723±0.0001 816.16
FOGD 0.3775±0.0014 5.83 0.1440±0.0009 20.65
NOGD 0.2512±0.0001 6.99 0.0873±0.0002 812.69

AVM-ε 0.3165±0.0329 3.53 0.2013±0.0137 7.07
AVM-`1 0.3166±0.0330 3.44 0.2013±0.0138 7.13
AVM-`2 0.3274±0.0280 3.31 0.2590±0.0002 6.88

Dataset year airlines
[δ | S | B | D] [60.0 | 67 | 400 | 1, 600] [1.0 | 388 | 1, 000 | 2, 000]

Algorithm RMSE Time RMSE Time

RBP 0.1881±0.0002 605.42 36.5068±0.0010 3,418.89
Forgetron 0.1877±0.0004 904.09 36.5065±0.0003 5,774.47
Projectron 0.1390±0.0003 605.19 36.1365±0.0009 3,834.19

BOGD 0.2009±0.0000 596.10 35.7346±0.0010 3,058.96
FOGD 0.1581±0.0002 76.70 53.1638±0.0120 646.15
NOGD 0.1375±0.0005 607.37 34.7421±0.0013 3,324.38

AVM-ε 0.1286±0.0002 48.01 36.0901±0.0914 638.60
AVM-`1 0.1232±0.0003 47.29 36.3632±0.0192 621.57
AVM-`2 0.2420±0.0001 46.63 35.1128±0.0192 633.27
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Figure 8: Average RMSE vs. time cost for online regression. The average time (seconds) is
shown in the logarithm with base 10. (Best viewed in colors).

In all experiments, our proposed method produces the model sizes that are much smaller
than the budget sizes of baseline methods. Thus we further investigate the performance
of the budgeted baselines by varying the budget size B, and compare with our AVM with
Hinge loss. Fig. 7 shows our analysis on two datasets a9a and cod-rna. It can be seen
that the larger B helps model obtain better classification results, but hurts their running
speed. For both datasets, the budgeted baselines with larger budget sizes still fail to beat
the predictive performance of AVM. On the other hand, the baselines with smaller budget
sizes run faster than the AVM on cod-rna dataset, but slower on a9a dataset.

Finally, two versions of AVMs demonstrate similar discriminative performances and
computational complexities wherein the AVM-Logit is slightly slower due to the additional
exponential operators as also seen in batch classification task. All aforementioned observa-
tions validate the effectiveness and efficiency of our proposed technique. Thus, we believe
that our approximation machine is a promising technique for building scalable online kernel
learning algorithms for large-scale classification tasks.

9.5 Online Regression

The last experiment addresses the online regression problem to evaluate the capabilities of
our approach with three proposed loss functions – `1,`2 and ε-insensitive losses as described
in Section 7. Incorporating these loss functions creates three versions: AVM-ε, AVM-`1 and
AVM-`2. We use four datasets: casp, slice, year and airlines (delay minutes) with a wide
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range of sizes for this task. We recruit six baselines: RBP, Forgetron, Projectron, BOGD,
FOGD and NOGD (cf. more detailed description in Section 9.4).

Hyperparameters setting. We adopt the same hyperparameter searching procedure
for batch classification task as in Section 9.3. Furthermore, for the budget size B and the
feature dimension D in FOGD, we follow the same strategy used in Section 7.1.1 of Lu et al.
(2015). More specifically, these hyperparameters are separately set for different datasets
as reported in Table 5. They are chosen such that they are roughly proportional to the
number of support vectors produced by the batch SVM algorithm in LIBSVM running on
a small subset. The aim is to achieve competitive accuracy using a relatively larger budget
size for tackling more challenging regression tasks.

Results. Fig. 9a and Fig. 9b shows the relative performance convergence w.r.t regression
error (root mean square root - RMSE) and computation cost (seconds) of the AVMs in
comparison with those of the baselines. Combining these two figures, we compare the
average error and running time in Fig. 8. Table 5 reports the final average results in
detailed numbers after the methods traverse all data samples. From these results, we can
draw some observations as follows.

First of all, as can be seen from Fig. 9a, there are several different learning behaviors
w.r.t regression loss, of the methods training on individual datasets. All algorithms, in
general, reach their regression error plateaus very quickly as observed in the datasets year
and airlines where they converge at certain points from the initiation of the learning. On
the other hand, for casp and slice databases, the AVM-based models regularly obtain better
performance, that is, their average RMSE scores keep reducing when receiving more data,
except in slice data, the regression performance of AVM-`2 are almost unchanged during
the learning. Note that, for these two datasets, the learning curve of AVM-ε coincides, thus
is overplotted by that of AVM-`1, resulting in its no-show in the figure. Interestingly, the
errors of RBP and Forgetron slightly increase throughout their online learning in these two
cases.

Second, Fig. 8 plots average error against computational cost, which shows similar learn-
ing behaviors as in the our first observation. The computational cost progresses are simple
and more obvious to comprehend than the regression progresses. As illustrated in Fig. 9b,
all algorithms have nicely plausible execution time curves in which the time is accumulated
over the learning procedure.

According to final results summarized in Table 5, our proposed models enjoy a significant
advantage in computational efficacy whilst achieve better (for year dataset) or competitive
regression results with other methods. The AVM, again, secures the best performance in
terms of model sparsity. Among the baselines, the FOGD is the fastest, that is, its time costs
can be considered to compare with those of our methods, but its regression performances
are worse. The remaining algorithms usually obtain better results, but is traded off by
the sacrifice of scalability. This, once again, verifies the effectiveness and efficiency of our
proposed techniques. We believe that the AVM is a promising machine to perform online
regression task for large-scale datasets.
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(a) The average RMSE as a function of the number of samples seen by the models.
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(b) The average time costs (seconds in logarithm of 10) as a function of the number of samples seen by
the models.

Figure 9: Convergence evaluation of online regresion. (Best viewed in colors).
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Finally, comparing the capability of three AVM’s variants, all models demonstrate sim-
ilar computational complexities wherein the AVM-`2 is slightly faster due to its simpler
operator in computing the gradient as derived in Section 7. However, its regression errors
are higher than two other methods – AVM-ε and AVM-`1.

10. Conclusion

In this paper, we have proposed Approximation Vector Machine (AVM) for large-scale
online learning. The AVM is theoretically proven to have bounded and sparse model size
while not hurting the predictive performance. We have validated our proposed method
on several benchmark datasets. The experimental results show that the proposed AVM
obtains a comparable predictive performance while simultaneously achieving an impressive
model size and a computational speed-up compared with those of the baselines. Our future
works are to apply AVM to the context of semi-supervised learning, anomaly detection, and
support vector clustering.
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11. Proofs Regarding δ-Coverage

Proof of Theorem 4
Assume that

∥∥∥x− x′∥∥∥ ≤ δ, then we have

∥∥∥Φ (x)− Φ
(
x
′
)∥∥∥2

= K (x, x) +K
(
x
′
, x
′
)
− 2K

(
x, x

′
)

= 2

(
1− k

(∥∥∥x− x′∥∥∥2
))

≤2
(
1− k

(
δ2
))

= δ2
Φ

Furthermore, we have

lim
δ→0

δΦ = 21/2 lim
δ→0

(
1− k

(
δ2
))1/2

= 21/2 (1− k (0))1/2 = 0

Finally, since Gaussian kernel is a special radial kernel with k (t) = exp (−γt), we obtain
the final conclusion.

Proof of Theorem 19
Since the proof is similar for the hyperrectangle cell case, we present the proof for

the hypersphere case. Let us consider the open coverage U =
{
B
(
z, δ2
)}

z∈X . From the
compactness of the data domain X , it apparent that from U we must be able to extract a
finite subcoverage of size m, that is, Um =

{
B
(
zi,

δ
2

)}m
i=1
⊂ U . From the construction of

the coverage P in Algorithm 3, we know that

‖ci − cj‖ > δ/2 if i 6= j

Hence, each open sphere in the finite coverage Um is able to contain at most one core
point of P. It means that the cardinality of P must be less than or equal m, that is,
|P| ≤ m.
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Proofs Regarding Convergence Analysis

Given a finite δ-coverage P = (Pi)i∈I with the core set C = (ci)i∈I , when receiving
an incoming instance (xt, yt) we approximate (xt, yt) by (cit , yt) with cit is a core point
whose cell contains xt, that is, xt ∈ Pit . We use a Bernoulli random variable Zt to control
if the approximation is performed or not, that is, Zt = 1 indicates the approximation is
performed.

Let us define gt = λwt + l
′
(wt;xt, yt) = λwt + αtΦ (xt). We have the following

ht = gt + Zt∆t

where ∆t = αt (Φ (cit)− Φ (xt)).

The update rule becomes

wt+1 =
∏
S

(wt − ηtht)

where S = RD (i.e., the feature space) or B
(
0, ymaxλ

−1/2
)
.

Lemma 21. The following statements hold

i) There exist two positive constants P and M such that E
[
‖wt‖2

]
≤ P 2 and E

[
α2
t

]
≤M

for all t.

ii) E
[∥∥∥l′ (wt;xt, yt)

∥∥∥2
]
≤ L =

(
A
√
P +B

)2
for all t.

iii) E
[
‖gt‖2

]
≤ G =

(
λP +A

√
P +B

)2
for all t.

iv) E
[
‖ht‖2

]
≤ H =

(√
G+ δΦ

(
A
√
P +B

))2
for all t.

Proof i) We prove by induction that E
[
‖wt‖2

]
≤ P 2 where P =

(
(δΦ+1)A+

√
(δΦ+1)2A2+4Bλ(δΦ+1)

2λ

)2

for all t. Assume that the claim is holding for t, using Minkowski inequality, we have

√
E
[
‖wt+1‖2

]
≤

√√√√√E

∥∥∥∥∥∏
S

(wt − ηtht)

∥∥∥∥∥
2
 ≤√E

[
‖wt − ηtht‖2

]

≤ t− 1

t

√
E
[
‖wt‖2

]
+ ηt

√
E
[
‖l′ (wt;xt, yt)‖2

]
+ ηt

√
E
[
‖∆t‖2

]
≤ t− 1

t

√
E
[
‖wt‖2

]
+
A
√
E [‖wt‖] +B

λt
+
δΦ

√
E
[
α2
t

]
λt

≤ (t− 1)P

t
+
A
√
P +B

λt
+

δΦ

√
E
[
‖l′ (wt;xt, yt)‖2

]
λt

≤ (t− 1)P

t
+

(δΦ + 1)
(
A
√
P +B

)
λt

= P
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Note that we have used
∥∥∥l′ (wt;xt, yt)

∥∥∥2
= α2

tK (xt, xt) = α2
t , E [‖wt‖] ≤

√
E
[
‖wt‖2

]
≤

P , and u = P 1/2 =
(δΦ+1)A+

√
(δΦ+1)2A2+4Bλ(δΦ+1)

2λ is the solution of the quadratic equation

u2 − (δΦ + 1)Au

λ
− (δΦ + 1)B

λ
= 0

The proof of E
[
α2
t

]
≤ M is trivial for the case of Hinge, `1, Logistic, ε−insensitive

losses. In these cases, we simply choose M = max (ymax, 1)2. We only need to consider the
`2-loss case. In particular, we have

α2
t =

(
wT
t Φ (xt)− yt

)2
≤ 2

((
wT
t Φ (xt)

)2
+ y2

max

)
≤ 2

(
‖wt‖2 ‖Φ (xt)‖2 + y2

max

)
≤ 2

(
‖wt‖2 + y2

max

)

E
[
α2
t

]
≤ 2

(
P 2 + y2

max

)
= M

ii) We have the following√
E
[
‖l′ (wt;xt, yt)‖2

]
≤

√
E
[(
A ‖wt‖1/2 +B

)2
]
≤ A

√
E [‖wt‖] +B ≤ A

√
P +B

Note that we have used the inequality E [‖wt‖] ≤
√

E
[
‖wt‖2

]
≤ P .

iii) Using Minkowski inequality, we yield√
E
[
‖gt‖2

]
≤ λ

√
E
[
‖wt‖2

]
+

√
E
[
‖l′ (wt;xt, yt)‖2

]
≤ λP +A

√
P +B

iv) We have the following√
E
[
‖ht‖2

]
≤
√
E
[
‖gt‖2

]
+ δΦ

√
E
[
α2
t

]
≤
√
G+ δΦ

√
E
[
‖l′ (wt;xt, yt)‖2

]
=
√
G+ δΦ

(
A
√
P +B

)

Lemma 22. There exists a positive constant W such that E
[
‖wt −w∗‖2

]
≤W for all t.

Proof We first remind the definitions of the relevant quantities

gt = λwt + l
′
(wt;xt, yt) = λwt + αtΦ (xt)

ht = gt + Zt∆t where ∆t = αt (Φ (cit)− Φ (xt))
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We now prove by induction in t. We derive as follows

‖wt+1 −w∗‖2 =

∥∥∥∥∥∏
S

(wt − ηtht)−w∗

∥∥∥∥∥
2

≤ ‖wt − ηtht −w∗‖2

= ‖wt −w∗‖+ η2
t ‖ht‖

2 − 2ηt 〈wt −w∗, gt + Zt∆t〉

where S = RD or B
(
0, ymaxλ

−1/2
)
.

Taking conditional expectation w.r.t wt, we gain

E
[
‖wt+1 −w∗‖2

]
≤ E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖ht‖2

]
− 2ηt

〈
wt −w∗, f

′
(wt)

〉
− 2ηt 〈wt −w∗, Zt∆t〉

≤E
[
‖wt −w∗‖2

]
− 2ηtλ ‖wt −w∗‖2 + η2

tE
[
‖ht‖2

]
− 2ηt 〈wt −w∗, Zt∆t〉

Here we note that we have used
〈
wt −w∗, f

′
(wt)

〉
≥ λ ‖wt −w∗‖2. It comes from the

following derivation

f (w∗)− f (wt) ≥
〈
f
′
(wt) ,w

∗ −wt

〉
+
λ

2
‖wt −w∗‖2

〈
f
′
(wt) ,wt −w∗

〉
≥ f (wt)− f (w∗) +

λ

2
‖wt −w∗‖2 ≥

〈
f
′
(w∗) ,wt −w∗

〉
+ λ ‖wt −w∗‖2

≥ λ ‖wt −w∗‖2 thanks to
〈
f
′
(w∗) ,wt −w∗

〉
≥ 0

Taking expectation again, we gain

E
[
‖wt+1 −w∗‖2

]
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+

H

λ2t2
+

2W 1/2M1/2δΦ

λt

ChoosingW =

(
M1/2δφ+(Mδ2

φ+2H)
1/2

2λ

)2

, we gain if E
[
‖wt −w∗‖2

]
≤W then E

[
‖wt+1 −w∗‖2

]
≤

W . The reason is that W =

(
M1/2δφ+(Mδ2

φ+2H)
1/2

2λ

)2

is the solution of the equation

W =
t− 2

t
W +

H

λ2t
+

2W 1/2M1/2δΦ

λt
or 2W − 2W 1/2M1/2δΦ

λ
− H

λ2
= 0

. Hence, if E
[
‖wt −w∗‖2

]
≤W , we arrive at

E
[
‖wt+1 −w∗‖2

]
≤ t− 2

t
W +

H

λ2t
+

2W 1/2M1/2δΦ

λt
= W
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We now show the proof of Theorem 5.

Proof of Theorem 5

We first remind the definitions of the relevant quantities

gt = λwt + l
′
(wt;xt, yt) = λwt + αtΦ (xt)

ht = gt + Zt∆t where ∆t = αt (Φ (cit)− Φ (xt))

We then derive as follows

‖wt+1 −w∗‖2 =

∥∥∥∥∥∏
S

(wt − ηtht)−w∗

∥∥∥∥∥
2

≤ ‖wt − ηtht −w∗‖2

= ‖wt −w∗‖+ η2
t ‖ht‖

2 − 2ηt 〈wt −w∗, gt + Zt∆t〉

where S = RD or B
(
0, ymaxλ

−1/2
)
.

〈wt −w∗, gt〉 ≤
‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2ηt
+
ηt
2
‖ht‖2 − 〈wt −w∗, Zt∆t〉

Taking conditional expectation w.r.t wt, we obtain

〈
wt −w∗, f

′
(wt)

〉
≤

E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηt
2
E
[
‖ht‖2

]
− 〈wt −w∗,E [Zt∆t]〉

f (wt)− f (w∗) +
λ

2
‖wt −w∗‖2 ≤

E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηt
2
E
[
‖ht‖2

]
− 〈wt −w∗,E [Zt∆t]〉

Taking expectation again, we achieve

E [f (wt)− f (w∗)] ≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
E
[
‖ht‖2

]
− E [〈wt −w∗, Zt∆t〉]

i) If Zt is independent with wt, we derive as
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E [f (wt)− f (w∗)] ≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
E
[
‖ht‖2

]
− E [〈Zt (wt −w∗) ,∆t〉]

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
E
[
‖ht‖2

]
+ E

[
Z2
t ‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
E
[
‖ht‖2

]
+ E

[
Z2
t

]1/2 E [‖wt −w∗‖2
]1/2

E
[
‖∆t‖2

]1/2

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
H (5)

+ P (Zt = 1)1/2 E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

Taking sum over 1, 2, . . . , T and using the inequalities in Lemmas 21 and 22, we yield

T∑
t=1

E [f (wt)]−Tf (w∗) ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

P (Zt = 1)1/2 E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2
(6)

TE [f (wT )− f (w∗)] ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

P (Zt = 1)1/2 E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+
δΦM

1/2W 1/2

T

T∑
t=1

P (Zt = 1)1/2

ii) If Zt is independent with wt and (xt, yt), we derive as

E [f (wt)− f (w∗)] ≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
H − E [Zt 〈wt −w∗,∆t〉]

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
H − E [Zt]E [〈wt −w∗,∆t〉]

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
H (7)

+ P (Zt = 1)E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

Taking sum over 1, 2, . . . , T and using the inequalities in Lemmas 21 and 22, we yield
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T∑
t=1

E [f (wt)]− Tf (w∗) ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

P (Zt = 1)E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2
(8)

TE [f (wT )− f (w∗)] ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

P (Zt = 1)E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+
δΦM

1/2W 1/2

T

T∑
t=1

P (Zt = 1)

≤H (log (T ) + 1)

2λT
+ δΦM

1/2W 1/2

iii) In general, we derive as

E [f (wt)− f (w∗)] ≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+
ηt
2
H − E [Zt 〈wt −w∗,∆t〉]

≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
(9)

+
ηt
2
H + E

[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

Taking sum over 1, 2, . . . , T and using the inequalities in Lemmas 21 and 22, we yield

T∑
t=1

E [f (wt)]− Tf (w∗) ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2
(10)

TE [f (wT )− f (w∗)] ≤ H

2λ

T∑
t=1

1

t
+

T∑
t=1

E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

E [f (wT )− f (w∗)] ≤ H (log (T ) + 1)

2λT
+ δΦM

1/2W 1/2

Proof of Theorem 15
Let us denote the model size, i.e., the number of vectors in support set, after the iteration

t by St. We also define Nt by the binary random variable which specifies whether the
incoming instance (xt, yt) locates in a new cell of the coverage, that is, Nt = 1 indicating
the current cell Pit is a new cell. We assume that Zt is independent with (xt, yt) and so does
with Nt. Since a new instance is added to the support set if either a new cell is discovered
or the old cell is found but approximation is not performed, we reach the following

St ≤ St−1 +Nt + (1− Zt) (1−Nt)
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Taking expectation, we obtain

E [St] ≤ E [St−1] + E [Nt] + (1− E [Zt]) (1− E [Nt])

≤ E [St−1] + E [Nt] + (1− pt) (1− E [Nt])

≤ E [St−1] + E [Nt] + qt (1− E [Nt])

E [St]− E [St−1] ≤ E [Nt] + qt (1− E [Nt])

Summing over the above when t = 1, . . . , T , we have

E [ST ] ≤
T∑
t=1

E [Nt] +

T∑
t=1

qt (1− E [Nt]) =

T∑
t=1

qt +

T∑
t=1

ptE [Nt]

≤
T∑
t=1

qt +

T∑
t=1

E [Nt] ≤
T∑
t=1

qt + E [MT ] (11)

where we have denoted P (Zt = 1) = pt, P (Zt = 0) = qt, and MT =
∑T

t=1Nt indicates the
number of cells discovered so far.

We consider some specific cases and investigate the model size E [ST ] in these cases.
i) pt = P (Zt = 1) = 1, ∀t, that is, we always do approximation. From Eq. (11), we

obtain
E [ST ] ≤ E [MT ] ≤ |P|

ii) pt = P (Zt = 1) = max
(

0, 1− β
t

)
, ∀t. It follows that

qt = 1− pt ≤ 1−
(

1− β

t

)
=
β

t

From Eq. (11), we gain

E [ST ] ≤ β
T∑
t=1

1

t
+ E [MT ] ≤ β

(
1 +

∫ T

1

1

t
dt

)
+ E [MT ]

≤ β (log T + 1) + E [MT ]

iii) pt = P (Zt = 1) = max
(

0, 1− β
tρ

)
, ∀t where 0 < ρ < 1. It follows that

qt = 1− pt ≤ 1−
(

1− β

tρ

)
=
β

tρ

From Eq. (11), we gain

E [ST ] ≤ β
T∑
t=1

1

tρ
+ E [MT ] ≤ β

(
1 +

∫ T

1
t−ρdt

)
+ E [MT ] ≤ βT 1−ρ

1− ρ
+ E [MT ]

iv) pt = P (Zt = 1) = max
(

0, 1− β
tρ

)
, ∀t where ρ > 1. It follows that

qt = 1− pt ≤ 1−
(

1− β

tρ

)
=
β

tρ
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From Eq. (11), we gain

E [ST ] ≤ β
T∑
t=1

1

tρ
+ E [MT ] ≤ βζ (ρ) + E [MT ] ≤ βζ (ρ) + |P|

where ζ (.) is ζ- Riemann function defined by the integral ζ (s) = 1
Γ(s)

∫ +∞
0

ts−1

es−1dt.

We now show the proof of Theorem 8. To realize this proof, we use the famous inequality,
namely Hoeffding which for completeness we state below.

Theorem. (Hoeffding inequality) Let the independent variables X1, . . . , Xn where ai ≤
Xi ≤ bi for each i ∈ [n]. Let S =

∑n
i=1Xi and ∆i = bi − ai. The following hold

i) P (S − E [S] > ε) ≤ exp
(
− 2ε2∑n

i=1 ∆2
i

)
.

ii) P (|S − E [S]| > ε) ≤ 2 exp
(
− 2ε2∑n

i=1 ∆2
i

)
Proof of Theorem 8

From Eqs. (6, 8, 10), we achieve

1

T

T∑
t=1

E [f (wt)]− f (w∗) ≤ H (log (T ) + 1)

2λT
+ dT

Let us denote X = f (wr) − f (w∗), where r is uniformly sampled from {1, 2, . . . , T}.
We have

Er [X] =
1

T

T∑
t=1

E [f (wt)]− f (w∗) ≤ H (log (T ) + 1)

2λT
+ dT

It follows that

E [X] = E(xt,yt)
T
t=1

[Er [X]] ≤ H (log (T ) + 1)

2λT
+ dT

Let us denote ∆T = max
1≤t≤T

(f (wt)− f (w∗)) which implies that 0 < f (wr) − f (w∗) <

∆T . Applying Hoeffding inequality for the random variable X, we gain

P (X − E [X] > ε) ≤ exp

(
−2ε2

∆2
T

)

P
(
X − H (log (T ) + 1)

2λT
− dT > ε

)
≤ exp

(
−2ε2

∆2
T

)

P
(
X ≤ H (log (T ) + 1)

2λT
+ dT + ε

)
> 1− exp

(
−2ε2

∆2
T

)
Choosing δ = exp

(
− 2ε2

∆2
T

)
or ε = ∆T

√
1
2 log 1

δ , then with the probability at least 1− δ,
we have

f (wr)− f (w∗) ≤ H (log (T ) + 1)

2λT
+ dT + ∆T

√
1

2
log

1

δ

46



Approximation Vector Machines

Proof of Theorem 9
We denote Wα

T = E
[∥∥w(1−α)T+1 −w∗

∥∥2
]
. Our proof proceeds as follows.

i) If Zt is independent with wt, taking sum in Eq. (5) when t = (1− α)T + 1, . . . , T ,
we gain

T∑
t=(1−α)T+1

E [f (wt)]− αTf (w∗) ≤ λ (1− α)T

2
Wα
T +

H

2λ

T∑
t=(1−α)T+1

1

t

+

T∑
t=1

P (Zt = 1)1/2 E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2
(12)

≤λ (1− α)T

2
Wα
T +

H log (1/ (1− α))

2λ

+ δΦM
1/2W 1/2

T∑
t=(1−α)T+1

P (Zt = 1)1/2

where we have used the inequality
∑T

t=(1−α)T+1
1
t ≤ log (1/ (1− α)).

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1)1/2

+
H log (1/ (1− α))

2λαT

ii) If Zt is independent with wt and (xt, yt), taking sum in Eq. (7) when t = (1− α)T +
1, . . . , T , we gain

T∑
t=(1−α)T+1

E [f (wt)]− αTf (w∗) ≤ λ (1− α)T

2
Wα
T +

H

2λ

T∑
t=(1−α)T+1

1

t

+

T∑
t=(1−α)T+1

P (Zt = 1)E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

(13)

≤λ (1− α)T

2
Wα
T +

H log (1/ (1− α))

2λ

+ δΦM
1/2W 1/2

T∑
t=(1−α)T+1

P (Zt = 1)

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T +

δΦM
1/2W 1/2

αT

T∑
t=(1−α)T+1

P (Zt = 1)

+
H log (1/ (1− α))

2λαT
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iii) In general, taking sum in Eq. (9) when t = (1− α)T + 1, . . . , T , we gain

T∑
t=(1−α)T+1

E [f (wt)]− αTf (w∗) ≤ λ (1− α)T

2
Wα
T +

H

2λ

T∑
t=(1−α)T+1

1

t

+
T∑

t=(1−α)T+1

E
[
‖wt −w∗‖2

]1/2
E
[
‖∆t‖2

]1/2

≤λ (1− α)T

2
Wα
T +

H log (1/ (1− α))

2λ
+ δΦM

1/2W 1/2αT

(14)

E [f (wα
T )− f (w∗)] ≤ λ (1− α)

2α
Wα
T + δΦM

1/2W 1/2 +
H log (1/ (1− α))

2λαT

Proof of Theorem 10
The proof of this theorem is similar to that of Theorem 8 which relies on Hoeffding

inequality.
From Eqs. (12, 13, 14), we achieve

1

αT

T∑
t=(1−α)T+1

E [f (wt)]− f (w∗) ≤ H log (1/ (1− α))

2λαT
+ dT

Let us denoteX = f (wr)−f (w∗), where r is uniformly sampled from {(1− α)T + 1, 2, . . . , T}.
We have

Er [X] =
1

αT

T∑
t=(1−α)T+1

E [f (wt)]− f (w∗) ≤ H log (1/ (1− α))

2λαT
+ dT

It follows that

E [X] = E(xt,yt)
T
t=1

[Er [X]] ≤ H log (1/ (1− α))

2λαT
+ dT

Let us denote ∆α
T = max

(1−α)T+1≤t≤T
(f (wt)− f (w∗)) which implies that 0 < f (wr) −

f (w∗) < ∆α
T . Applying Hoeffding inequality for the random variable X, we gain

P (X − E [X] > ε) ≤ exp

(
− 2ε2(

∆α
T

)2
)

P
(
X − H log (1/ (1− α))

2λαT
− dT > ε

)
≤ exp

(
− 2ε2(

∆α
T

)2
)

P
(
X ≤ H log (1/ (1− α))

2λαT
+ dT + ε

)
> 1− exp

(
− 2ε2(

∆α
T

)2
)
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Choosing δ = exp

(
− 2ε2

(∆α
T )

2

)
or ε = ∆α

T

√
1
2 log 1

δ , then with the probability at least

1− δ, we have

f (wr)− f (w∗) ≤ H log (1/ (1− α))

2λαT
+ dT + ∆α

T

√
1

2
log

1

δ

Proof of Theorem 13
It is apparent that f (w) is L-strongly smooth w.r.t ‖.‖2. Therefore, we have

f (wr)− f (w∗) ≤ f ′ (w∗)T (wr −w∗) +
L

2
‖wr −w∗‖2 ≤ L

2
‖wr −w∗‖2

It follows that ∆α
T ≤

1
2LM

α
T . Hence we gain the conclusion.
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12. Proofs of Bound for L2 Loss

We now consider the upper bound of ‖w∗‖ in the case that `2 loss is being used for regression
problem. Concretely, we have the following theorem whose proof is similar to that of
Theorem 1 in Shalev-Shwartz et al. (2007, 2011).

Theorem 23. If w∗ = argminw

(
λ
2 ‖w‖

2 + 1
N

∑N
i=1

(
yi −wTΦ (xi)

)2)
then ‖w∗‖ ≤ ymaxλ

−1/2.

Proof Let us consider the equivalent constrains optimization problem

min
w,ξ

(
λ

2
‖w‖2 +

1

N

N∑
i=1

ξ2
i

)
s.t.: ξi = yi −wTΦ (xi) , ∀i

The Lagrange function is of the following form

L (w, ξ, α) =
λ

2

∥∥w2
∥∥+

1

N

N∑
i=1

ξ2
i +

N∑
i=1

αi

(
yi −wTΦ (xi)− ξi

)
Setting the derivatives to 0, we gain

∇wL = λw −
N∑
i=1

αiΦ (xi) = 0→ w = λ−1
N∑
i=1

αiΦ (xi)

∇ξiL =
2

N
ξi − αi = 0→ ξi =

Nαi
2

Substituting the above to the Lagrange function, we gain the dual form

W (α) =− λ

2
‖w‖2 +

N∑
i=1

yiαi −
N

4

N∑
i=1

α2
i

= − 1

2λ

∥∥∥∥∥∑
i=1

αiΦ (xi)

∥∥∥∥∥
2

+

N∑
i=1

yiαi −
N

4

N∑
i=1

α2
i

Let us denote (w∗, ξ∗) and α∗ be the primal and dual solutions, respectively. Since the
strong duality holds, we have

λ

2
‖w∗‖2 +

1

N

N∑
i=1

ξ∗2i = −λ
2
‖w∗‖2 +

N∑
i=1

yiα
∗
i −

N

4

N∑
i=1

α∗2i

λ ‖w∗‖2 =

N∑
i=1

yiα
∗
i −

N

4

N∑
i=1

α∗2i −
1

N

N∑
i=1

ξ∗2i

≤
N∑
i=1

(
yiα
∗
i −

N

4
α∗2i

)
≤

N∑
i=1

y2
i

N
≤ y2

max
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We note that we have used g (α∗i ) = yiα
∗
i − N

4 α
∗2
i ≤ g

(
2yi
N

)
=

y2
i
N . Hence, we gain the

conclusion.

Lemma 24. Assume that `2 loss is using, the following statement holds

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)

where ymax = max
y∈Y
|y|.

Proof We have the following

wt+1 =

{∏
S

(
t−1
t wt − ηtαtΦ (xt)

)
if Zt = 0∏

S

(
t−1
t wt − ηtαtΦ (cit)

)
otherwise

It follows that

‖wt+1‖ ≤
t− 1

t
‖wt‖+

1

λt
|αt| since ‖Φ (xt)‖ = ‖Φ (cit)‖ = 1

It happens that l
′
(wt;xt, yt) = αtΦ (xt). Hence, we gain

|αt| =
∣∣∣yt −wT

t Φ (xt)
∣∣∣ ≤ ymax + ‖wt‖ ‖Φ (xt)‖ ≤ ymax + ‖wt‖

It implies that

t ‖wt+1‖ ≤ (t− 1) ‖wt‖+ λ−1 (ymax + ‖wt‖)

Taking sum when t = 1, 2, . . . , T , we achieve

T ‖wT+1‖ ≤ λ−1

(
Tymax +

T∑
t=1

‖wt‖

)

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)
(15)

Theorem 25. If λ > 1 then ‖wT+1‖ ≤ ymax

λ−1

(
1− 1

λT

)
< ymax

λ−1 for all T .

Proof First we consider the sequence {sT }T which is identified as sT+1 = λ−1 (ymax + sT )
and s1 = 0. It is easy to find the formula of this sequence as

sT+1 −
ymax

λ− 1
= λ−1

(
sT −

ymax

λ− 1

)
= . . . = λ−T

(
s1 −

ymax

λ− 1

)
=
−λ−T ymax

λ− 1
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sT+1 =
ymax

λ− 1

(
1− 1

λT

)
We prove by induction by T that ‖wT ‖ ≤ sT for all T . It is obvious that ‖w1‖ = s1 = 0.

Assume that ‖wt‖ ≤ st for t ≤ T , we verify it for T + 1. Indeed, we have

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)
≤ λ−1

(
ymax +

1

T

T∑
t=1

st

)
≤ λ−1 (ymax + sT ) = sT+1

In addition, from Eq. (15) in case that λ ≤ 1 we cannot bound ‖wT+1‖. Concretely, we
have the following theorem.

Theorem 26. If {zT }T is a sequence such that zT+1 = λ−1
(
ymax + 1

T

∑T
t=1 zt

)
with z1 = 0

then in case that λ ≤ 1 this sequence is not upper-bounded.

Proof Let us denote st = y−1
maxzt. It is obvious that s1 = 0 and sT+1 = λ−1

(
1 + 1

T

∑T
t=1 st

)
.

We now prove by induction by T that

sT ≥
T−1∑
t=1

1

t
for all T ≥ 2

With T = 2, we have s2 = λ−1 ≥ 1. Assume that this holds for all 2 ≤ t ≤ T , we verify
it for T + 1.

sT+1 = λ−1

(
1 +

1

T

T∑
t=1

st

)
≥ 1 +

1

T

T∑
t=1

st

≥ 1 +
1

T

T∑
t=1

t−1∑
n=1

1

n
≥ 1 +

T−1∑
t=1

T − t
T t

≥ 1 +

T∑
t=1

(
1

t
− 1

T

)
=

T∑
t=1

1

t

The final conclusion is obvious from the fact
∑T

t=1
1
t > log (T + 1) and hence can exceed

any positive number.
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