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Abstract

In many applications, data come with a natural ordering. This ordering can often induce
local dependence among nearby variables. However, in complex data, the width of this
dependence may vary, making simple assumptions such as a constant neighborhood size
unrealistic. We propose a framework for learning this local dependence based on estimating
the inverse of the Cholesky factor of the covariance matrix. Penalized maximum likelihood
estimation of this matrix yields a simple regression interpretation for local dependence in
which variables are predicted by their neighbors. Our proposed method involves solving
a convex, penalized Gaussian likelihood problem with a hierarchical group lasso penalty.
The problem decomposes into independent subproblems which can be solved efficiently
in parallel using first-order methods. Our method yields a sparse, symmetric, positive
definite estimator of the precision matrix, encoding a Gaussian graphical model. We derive
theoretical results not found in existing methods attaining this structure. In particular, our
conditions for signed support recovery and estimation consistency rates in multiple norms
are as mild as those in a regression problem. Empirical results show our method performing
favorably compared to existing methods. We apply our method to genomic data to flexibly
model linkage disequilibrium. Our method is also applied to improve the performance of
discriminant analysis in sound recording classification.

Keywords: Local dependence, Gaussian graphical models, precision matrices, Cholesky
factor, hierarchical group lasso

1. Introduction

Estimating large inverse covariance matrices is a fundamental problem in modern multi-
variate statistics. Consider a random vector X = (X1, . . . , Xp)

T ∈ Rp with mean zero and
covariance matrix E(XXT ) = Σ. Unlike the covariance matrix, which captures marginal
correlations among variables in X, the inverse covariance matrix Ω = Σ−1 (also known as
the precision matrix) characterizes conditional correlations and, under a Gaussian model,
Ωjk = 0 implies that Xj and Xk are conditionally independent given all other variables.
When p is large, it is common to regularize the precision matrix estimator by making it
sparse (see, e.g., Pourahmadi, 2013). This paper focuses on the special context in which
variables have a natural ordering, such as when data are collected over time or along a
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genome. In such a context, it is often reasonable to assume that random variables that
are far away in the ordering are less dependent than those that are close together. For
example, it is known that genetic mutations that occur close together on a chromosome
are more likely to be coinherited than mutations that are located far apart. We propose
a method for estimating the precision matrix based on this assumption while also allowing
each random variable to have its own notion of closeness.

In general settings where variables do not necessarily have a known ordering, two main
types of convex methods with strong theoretical results have been developed for introducing
sparsity in Ω. The first approach, known as the graphical lasso (Yuan and Lin, 2007;
Banerjee et al., 2008; Friedman et al., 2008; Rothman et al., 2008), performs penalized
maximum likelihood, solving minΩ�0,Ω=ΩT L (Ω) + λP (Ω), where L(Ω) = − log det Ω +

n−1
∑n

i=1 x
T
i Ωxi is, up to constants, the negative log-likelihood of a sample of n independent

Gaussian random vectors and P (Ω) is the (vector) `1-norm of Ω. Zhang and Zou (2014)
introduce a new convex loss function called the D-trace loss and propose a positive definite
precision matrix estimator by minimizing an `1-penalized version of this loss. The second
approach is through penalized pseudo-likelihood, the most well-known of which is called
neighborhood selection (Meinshausen and Bühlmann, 2006). Estimators in this category are
usually solved by a column-by-column approach and thus are more amenable to theoretical
analysis (Yuan, 2010; Cai et al., 2011; Liu and Luo, 2012; Liu and Wang, 2012; Sun and
Zhang, 2013; Khare et al., 2014). However they are not guaranteed to be positive definite
and do not exploit the symmetry of Ω. Peng et al. (2009) propose a partial correlation
matrix estimator that develops a symmetric version of neighborhood selection; however,
positive definiteness is still not guaranteed.

In the context of variables with a natural ordering, by contrast, almost no work uses
convex optimization to flexibly estimate Ω while exploiting the ordering structure. Sparsity
is usually induced via the Cholesky decomposition of Σ, which leads to a natural interpre-
tation of sparsity. Consider the Cholesky decomposition Σ = QQT , which implies Ω = LTL
for L = Q−1 for lower triangular matrices Q and L with positive diagonals. The assumption
that X ∼ N (0,Σ) is then equivalent to a set of linear models in terms of rows of L, i.e.,
L11X1 = ε1 and

LrrXr = −
r−1∑
k=1

LrkXk + εr r = 2, . . . , p, (1)

where ε ∼ N (0, Ip). Thus, Lrk = 0 (for k < r) can be interpreted as meaning that in
predicting Xr from the previous random variables, one does not need to know Xk. This ob-
servation has motivated previous work, including Pourahmadi (1999); Wu and Pourahmadi
(2003); Huang et al. (2006); Shojaie and Michailidis (2010); Khare et al. (2016). While
these methods assume sparsity in L, they do not require local dependence because each
variable is allowed to be dependent on predecessors that are distant from it (compare the
upper left to the upper right panel of Figure 10).
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The assumption of “local dependence” can be expressed as saying that each variable Xr

can be best explained by exactly its Kr closest predecessors:

LrrXr = −
r−1∑

k=r−Kr

LrkXk + εr, for Lrk 6= 0, r −Kr ≤ k ≤ r − 1, r = 2, . . . , p. (2)

Note that this does not describe all patterns of a variable depending on its nearby variables.
For example, Xr can be dependent on Xr−2 but not on Xr−1. In this case, the dependence
is still local, but would not be captured by (2). We focus on the restricted class (2) since it
greatly simplifies the interpretation of the learned dependence structure by capturing the
extent of this dependence in a single number Kr, the neighborhood size.

Another desirable property of model (2) is that it admits a simple connection between
the sparsity pattern of L and the sparsity pattern of the precision matrix Ω in the Gaussian
graphical model. In particular, straightforward algebra shows that for j < k,

Lkj = · · · = Lpj = 0 =⇒ Ωjk = 0. (3)

Statistically, this says that if none of the variables Xk, . . . , Xp depends on Xj in the sense
of (1), then Xj and Xk are conditionally independent given all other variables.

Bickel and Levina (2008) study theoretical properties in the case that all bandwidths,
Kr, are equal, in which case model (2) is a Kr-ordered antedependence model (Zimmerman
and Nunez-Anton, 2009). A banded estimate of L then induces a banded estimate of Ω. The
nested lasso approach of Levina et al. (2008) provides for “adaptive banding”, allowing Kr to
vary with r (which corresponds to variable-order antedependence models in Zimmerman and
Nunez-Anton, 2009); however, the nested lasso is non-convex, meaning that the proposed
algorithm does not necessarily minimize the stated objective and theoretical properties of
this estimator have not been established.

In this paper, we propose a penalized likelihood approach that provides the flexibility
of the nested lasso but is formulated as a convex optimization problem, which allows us to
prove strong theoretical properties and to provide an efficient, scalable algorithm for com-
puting the estimator. The theoretical development of our method allows us to make clear
comparisons with known results for the graphical lasso (Rothman et al., 2008; Ravikumar
et al., 2011) in the non-ordered case. Both methods are convex penalized likelihood ap-
proaches, so this comparison highlights the similarities and differences in the ordered and
non-ordered problems.

There are two key choices we make that lead to a convex formulation. First, we ex-
press the optimization problem in terms of the Cholesky factor L. The nested lasso and
other methods (starting with Pourahmadi 1999) use the modified Cholesky decomposition,
Ω = T TD−1T , where T is a lower-triangular matrix with ones on its diagonal and D is a
diagonal matrix with positive entries. While L(Ω) is convex in Ω, the negative log-likelihood
L(T TD−1T ) is not jointly convex in T and D. By contrast,

L
(
LTL

)
= − log det

(
LTL

)
+

1

n

n∑
i=1

xTi L
TLxi = −2

p∑
r=1

logLrr +
1

n

n∑
i=1

‖Lxi‖22 (4)
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is convex in L. This parametrization is considered in Aragam and Zhou (2015), Khare
et al. (2014), and Khare et al. (2016). Maximum likelihood estimation of L preserves the
regression interpretation by noting that

L
(
LTL

)
= −2

p∑
r=1

logLrr +
1

n

p∑
r=1

n∑
i=1

L2
rr

(
xir +

r−1∑
k=1

Lrkxik/Lrr

)2

.

This connection has motivated previous work with the modified Cholesky decomposition,
in which Trk = −Lrk/Lrr are the coefficients of a linear model in which Xr is regressed on
its predecessors, and Drr = L−2

rr corresponds to the error variance. The second key choice
is our use of a hierarchical group lasso in place of the nested lasso’s nonconvex penalty.

We introduce here some notation used throughout the paper. For two sequences of
constants a(n) and b(n), the notation a(n) = o (b(n)) means that for every ε > 0, there
exists a constant N > 0 such that |a(n)/b(n)| ≤ ε for all n ≥ N . And the notation
a(n) = O (b(n)) means that there exists a constant N > 0 and a constant M > 0 such that
|a(n)/b(n)| ≤ M for all n ≥ N . For a sequence of random variables A(n), the notation
A(n) = OP (b(n)) means that for every ε > 0, there exists a constant M > 0 such that
P (|A(n)/b(n)| > M) ≤ ε for all n.

For a vector v = (v1, . . . , vp) ∈ Rp, we define ‖v‖1 =
∑p

j=1 |vj |, ‖v‖2 = (
∑p

j=1 v
2
j )

1/2 and

‖v‖∞ = maxj |vj |. For a matrix M ∈ Rn×p, we define the element-wise norms by two vertical
bars. Specifically, ‖M‖∞ = maxjk |Mjk| and Frobenius norm ‖M‖F = (

∑
j,kM

2
jk)

1/2. For
q ≥ 1, we define the matrix-induced (operator) q-norm by three vertical bars: |||M |||q =
max‖v‖q=1 ‖Mv‖q. Important special cases include |||M |||2, also known as the spectral norm,

which is the largest singular value of M , as well as |||M |||1 = maxk
∑p

j=1 |Mjk| and |||M |||∞ =
maxj

∑p
k=1 |Mjk|. Note that |||M |||1 = |||M |||∞ when M is symmetric.

Given a p-vector v, a p × p matrix M , and an index set T , let vT = (vi)i∈T be the
|T |-subvector and MT the p× |T | submatrix with columns selected from T . Given a second
index set T ′, let MTT ′ be the |T | × |T ′| submatrix with rows and columns of M indexed by
T and T ′, respectively. Specifically, we use Lr· to denote the r-th row of L.

2. Estimator

For a given tuning parameter λ ≥ 0, we define our estimator L̂ to be a minimizer of the
following penalized negative Gaussian log-likelihood

L̂ ∈ arg min
L:Lrr>0

Lrk=0 for r<k

{
−2

p∑
r=1

logLrr +
1

n

n∑
i=1

‖Lxi‖22 + λ

p∑
r=2

Pr (Lr·)

}
. (5)

The penalty Pr, which is applied to the r-th row, is defined by

Pr (Lr·) =
r−1∑
`=1

∥∥∥W (`) ∗ Lgr,`
∥∥∥

2
=

r−1∑
`=1

(∑̀
m=1

w2
`mL

2
rm

)1/2

, (6)

where W (`) = (w`1, . . . , w``) ∈ R` is a vector of weights, ∗ denotes element-wise multiplica-
tion, and Lgr,` denotes the vector of elements of L from the group gr,`, which corresponds
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to the first ` elements in the r-th row (for 1 ≤ ` ≤ r − 1):

gr,` =
{

(r, `′) : `′ ≤ `
}
.

Since gr,1 ⊂ gr,2 ⊂ · · · ⊂ gr,r−1, each row r of L is penalized with a sum of r − 1 nested,
weighted `2-norm penalties. This is a hierarchical group lasso penalty (Yuan and Lin, 2007;
Zhao et al., 2009; Jenatton et al., 2011; Yan and Bien, 2015) with group structure conveyed
in Figure 1.

With w`m > 0, this nested structure always puts more penalty on those elements that
are further away from the diagonal. Since the group lasso has the effect of setting to zero a
subset of groups, it is apparent that this choice of groups ensures that whenever the elements
in gr,` are set to zero, elements in gr,`′ are also set to zero for all `′ ≤ `. In other words,

for each row of L̂, the non-zeros are those elements within some (row-specific) distance of
the diagonal. This is in contrast to the `1-penalty as used in Khare et al. (2016), which
produces sparsity patterns with no particular structure (compare the top-left and top-right
panels of Figure 10).

The choice of weights, w`m, affects both the empirical and theoretical performance of
the estimator. We focus primarily on a quadratically decaying set of weights,

w`m =
1

(`−m+ 1)2 , (7)

but also consider the unweighted case (in which w`m = 1). The decay counteracts the fact
that the elements of L appear in differing numbers of groups (for example Lr1 appears
in r − 1 groups whereas Lr,r−1 appears in just one group). In a related problem, Bien
et al. (2016) choose weights that decay more slowly with ` − m than (7). Our choice
makes the enforcement of hierarchy weaker so that our penalty behaves more closely to the
lasso penalty (Tibshirani, 1996). The choice of weight sequence in (7) is more amenable to
theoretical analysis; however, in practice the unweighted case is more efficiently implemented
and works well empirically.

Problem (5) is convex in L. While − log det(·) is strictly convex, −∑r log(Lrr) is not
strictly convex in L. Thus, the arg min in (5) may not be unique. In Section 4, we provide
sufficient conditions to ensure uniqueness with high probability.

In Appendix A, we show that (5) decouples into p independent subproblems, each of
which estimates one row of L. More specifically, let X ∈ Rn×p be a sample matrix with
independent rows xi ∼ N(0,Σ), L̂11 = n1/2(XT

1 X1)−1/2 and for r = 2, . . . , p,

L̂r,1:r = arg min
β∈Rr:βr>0

−2 log βr +
1

n
‖X1:rβ‖22 + λ

r−1∑
`=1

(∑̀
m=1

w2
`mβ

2
m

)1/2
 . (8)

This observation means that the computation can be easily parallelized, which potentially
can achieve a linear speed up with the number of CPU cores. Theoretically, to analyze the
properties of L̂ it is easier to start by studying an estimator of each row, i.e., a solution
to (8). We will see in Section 4 that problem (8) has connections to a penalized regression
problem, meaning that both the assumptions and results we can derive are better than if
we were working with a penalty based on Ω.
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L11 0 0 0 0 L11 0 0 0 0 L̂11 0 0 0 0

L21 L22 0 0 0 L21 L22 0 0 0 0 L̂22 0 0 0

L31 L32 L33 0 0 L31 L32 L33 0 0 L̂31 L̂32 L̂33 0 0

L41 L42 L43 L44 0 L41 L42 L43 L44 0 0 0 L̂43 L̂44 0

L51 L52 L53 L54 L55 L51 L52 L53 L54 L55 0 L̂52 L̂53 L̂54 L̂55

Figure 1: There are
(
p
2

)
groups used in the penalty, with each row r having r − 1 nested

groups gr,1 ⊂ gr,2 ⊂ · · · ⊂ gr,r−1. Left: the group g4,3. Middle: the nested
group structure g4,1 ⊂ g4,2 ⊂ g4,3. Right: A possible sparsity pattern in L̂, where
elements in g2,1, g4,2 (and thus g4,1) and g5,1 are set to zero.

In light of the regression interpretation of (1), L̂ provides an interpretable notion of local
dependence; however, we can of course also use our estimate of L to estimate Ω: Ω̂ = L̂T L̂.
By construction, this estimator is both symmetric and positive definite. Unlike a lasso
penalty, which would induce unstructured sparsity in the estimate of L and thus would not
be guaranteed to produce a sparse estimate of Ω, the adaptively banded structure in our
estimator of L can yield a generally banded Ω̂ with sparsity pattern determined by (3) (See
the top-left and bottom-left panels in Figure 10 for an example).

3. Computation

As observed above, we can compute L̂ by solving (in parallel across r) problem (8). Consider
an alternating direction method of multipliers (ADMM) approach that solves the equivalent
problem

min
β,γ∈Rr:βr>0

−2 log βr +
1

n
‖X1:rβ‖22 + λ

r−1∑
`=1

(∑̀
m=1

w2
`mγ

2
m

)1/2

s.t. β = γ

 .

Algorithm 1 presents the ADMM algorithm, which repeatedly minimizes this problem’s
augmented Lagrangian over β, then over γ, and then updates the dual variable u ∈ Rr. The
main computational effort in the algorithm is in solving (9) and (10). Note that (9) has
a smooth objective function. Straightforward calculus gives the closed-form solution (see
Appendix B for detailed derivation),

β(t+1)
r =

−B −
√
B2 − 8A

2A
> 0

β
(t+1)
−r = −

(
2S

(r)
−r,−r + ρI

)−1 (
2S

(r)
−r,rβ

(t+1)
r + u

(t)
−r − ργ

(t)
−r

)
,
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Algorithm 1 ADMM algorithm to solve (8)

Require: β(0), γ(0), u(0), ρ > 0, t = 1.
1: repeat
2:

β(t) ← arg min
β∈Rr:βr>0

{
−2 log βr +

1

n
‖X1:rβ‖22 +

(
β − γ(t−1)

)T
u(t−1) +

ρ

2

∥∥∥β − γ(t−1)
∥∥∥2

2

}
(9)

3:

γ(t) ← arg min
γ∈Rr

ρ2 ∥∥∥γ − β(t) − ρ−1u(t−1)
∥∥∥2

2
+ λ

r−1∑
`=1

(∑̀
m=1

w2
`mγ

2
m

)1/2
 (10)

4: u(t) ← u(t−1) + ρ
(
β(t) − γ(t)

)
5: t← t+ 1
6: until convergence
7: return γ(t)

where

S(r) =
1

n
XT

1:rX1:r

A = 4S
(r)
r,−r

(
2S

(r)
−r,−r + ρI

)−1
S

(r)
−r,r − 2S(r)

r,r − ρ < 0

B = 2S
(r)
r,−r

(
2S

(r)
−r,−r + ρI

)−1 (
u

(t)
−r − ργ

(t)
−r

)
− u(t)

r + ργ(t)
r .

The closed-form update above involves matrix inversion. With ρ > 0, the matrix

2S
(r)
−r,−r +ρI is invertible even when r > n. Since determining a good choice for the ADMM

parameter ρ is in general difficult, we adapt the dynamic ρ updating scheme described in
Section 3.4.1 of Boyd et al. (2011).

Solving (10) requires evaluating the proximal operator of the hierarchical group lasso
with general weights. We adopt the strategy developed in Bien et al. (2016) (based on
a result of Jenatton et al. 2011), which solves the dual problem of (10) by performing
Newton’s method on at most r − 1 univariate functions. The detailed implementation is
given in Algorithm 3 in Appendix C. Each application of Newton’s method corresponds to
performing an elliptical projection, which is a step of blockwise coordinate ascent on the
dual of (10) (see Appendix D for details). Finally we observe in Algorithm 2 that for the
unweighted case (w`m = 1), solving (10) is remarkably efficient.

The R package varband provides C++ implementations of Algorithms 1 and 2.

4. Statistical Properties

In this section we study the statistical properties of our estimator. In what follows, we
consider a lower triangular matrix L having row-specific bandwidths, Kr. The first Jr =
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Algorithm 2 Algorithm for solving (10) for unweighted estimator

Require: β(t), u(t−1) ∈ Rr, λ, ρ > 0.
1: Initialize γ(t) = β(t) + u(t−1)/ρ and τ = λ/ρ
2: for ` = 1, . . . , r − 1 do

(
γ(t)
)

1:`
←
(

1− τ∥∥(γ(t)
)

1:`

∥∥
2

)
+

(
γ(t)
)

1:`

3: return γ(t).

r − 1 −Kr elements of row r are zero, and the band of non-zero off-diagonals (of size Kr)
is denoted Ir = {Jr + 1, . . . , r − 1}. We also denote Icr = {1, 2, . . . , r} \ Ir. See Figure 2 for
a graphical example of K5, J5, I4, and Ic4.

L11 0 0 0 0

0 L22 0 0 0

L31 L32 L33 0 0

0 L42 L43 L44 0

0 0 L53 L54 L55

I4 = {2, 3}, Ic4 = {1, 4}

J5 = 2 K5 = 2

Figure 2: Schematic showing Jr,Kr, Ir, and Icr .

Our theoretical analysis is built on the following assumptions:

A1 Gaussian assumption: The sample matrix X ∈ Rn×p has n independent rows with
each row xi drawn from N(0,Σ).

A2 Sparsity assumption: The true Cholesky factor L ∈ Rp×p is the lower triangular matrix
with positive diagonal elements such that the precision matrix Ω = Σ−1 = LTL. The
matrix L has row-specific bandwidths Kr such that Lrj = 0 for 0 < j < r −Kr.

A3 Irrepresentable condition: There exists some α ∈ (0, 1] such that

max
2≤r≤p

max
`∈Icr

∥∥∥Σ`Ir (ΣIrIr)
−1
∥∥∥

1
≤ 6

π2
(1− α)

A4 Bounded singular values: There exists a constant κ such that

0 < κ−1 ≤ σmin (L) ≤ σmax (L) ≤ κ

8
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When maxrKr < n, the Gaussianity assumption A1 implies that XIr has full column
rank for all r with probability one. Our analysis applies to the general high-dimensional
scaling scheme where Kr = Kr(n) and p = p(n) can grow with n.

For r = 2, . . . , p and ` ∈ Icr = {1, . . . , Jr, r}, let

θ(`)
r := Var (X`|XIr) and θr := max

`∈Icr
θ(`)
r .

By Assumption A1, θ
(`)
r = Σ`` − Σ`Ir (ΣIrIr)

−1 ΣIr` represents the noise variance when
regressing X` on XIr , i.e., for ` = 1, . . . , Jr, r,

X` = Σ`Ir(ΣIrIr)
−1XT

Ir + E` with E` ∼ N
(

0, θ(`)
r

)
. (11)

In words, θ
(`)
r measures the degree to which X` cannot be explained by the variables in the

support and θr is the maximum such value over all ` outside of the support Ir in the r-th
row. Intuitively, the difficulty of the estimation problem increases with θr. Note that for

r = 1, . . . , p, (1) implies θ
(r)
r = 1/L2

rr.
Assumption A3 (along with the βmin condition) is essentially a necessary and suffi-

cient condition for support recovery of lasso-type methods (see, e.g., Zhao and Yu, 2006;
Meinshausen and Bühlmann, 2006; Wainwright, 2009; Van de Geer and Bühlmann, 2009;
Ravikumar et al., 2011). The constant α ∈ (0, 1] is usually referred to as the irrepresentable
(incoherence) constant (Wainwright, 2009). Intuitively, the irrepresentable condition re-
quires low correlations between signal and noise predictors, and thus a value of α that is
close to 1 implies that recovering the support is easier to achieve. The constant 6π−2 is
determined by the choice of weight (7) and can be eliminated by absorbing its reciprocal
into the definition of the weights w`m. Doing so, one finds that our irrepresentable condition
is essentially the same as the one found in the regression setting (Wainwright, 2009) despite
the fact that our goal is estimating a precision matrix.

Assumption A4 is a bounded singular value condition. Recalling that Ω = LTL,

0 < κ−2 ≤ σmin (Σ) ≤ σmax (Σ) ≤ κ2, (12)

which is equivalent to the commonly used bounded eigenvalue condition in other literatures.

4.1 Row-Specific Results

We start by analyzing support recovery properties of our estimator for each row, i.e., the
solution to the subproblem (8). For r > n, the Hessian of the negative log-likelihood is
not positive definite, meaning that the objective function may not be strictly convex in β
and the solution not necessarily unique. Intuitively, if the tuning parameter λ is large, the
resulting row estimate L̂r· is sparse and thus includes most variation in a small subset of
the r variables. More specifically, for large λ, Îr ⊆ Ir and thus by Assumption A1, XÎr
has full rank, which implies that L̂r· is unique. The series of technical lemmas in Appendix
E precisely characterizes the solution.

The first part of the theorem below shows that with an appropriately chosen tuning
parameter λ the solution to (8) is sparse enough to be unique and that we will not over-
estimate the true bandwidth. Knowing that the support of the unique row estimator L̂r· is

9
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contained in the true support reduces the dimension of the parameter space, and thus leads
to a reasonable error bound. Of course, if our goal were simply to establish the uniqueness of
L̂r· and that K̂r ≤ Kr, we could trivially take λ =∞ (resulting in K̂r = 0). The latter part
of the theorem thus goes on to provide a choice of λ that is sufficiently small to guarantee
that K̂r = Kr (and, furthermore, that the signs of all non-zeros are correctly recovered).

Theorem 1 Consider the family of tuning parameters

λ =
8

α

√
θr log r

n
(13)

and weights given by (7). Under Assumptions A1–A4, if the tuple (n, Jr,Kr) satisfies

n > α−2
(
3π2Kr + 8

)
θrκ

2 log Jr, (14)

then with probability greater than 1 − c1 exp {−c2 min(Kr, log Jr)} − 7 exp (−c3n) for some
constants c1, c2, c3 independent of n and Jr, the following properties hold:

1. The row problem (8) has a unique solution L̂r· and K̂r ≤ Kr.

2. The estimate L̂r· satisfies the element-wise `∞ bound,∥∥∥L̂r· − Lr·∥∥∥
∞
≤ λ

(
4
∣∣∣∣∣∣∣∣∣(ΣIrIr)−1

∣∣∣∣∣∣∣∣∣
∞

+ 5κ2
)
. (15)

3. If in addition,

min
j≥Jr+1

|Lrj | > λ
(

4
∣∣∣∣∣∣∣∣∣(ΣIrIr)−1

∣∣∣∣∣∣∣∣∣
∞

+ 5κ2
)
, (16)

then exact signed support recovery holds: For all j ≤ r, sign(L̂rj) = sign(Lrj).

Proof See Appendix F.

In the classical setting where the ambient dimension r is fixed and the sample size n is
allowed to go to infinity, λ→ 0 and the above scaling requirement is satisfied. By (15) the
row estimator L̂r· is consistent as is the classical maximum likelihood estimator. Moreover,
it recovers the true support since (16) holds automatically. In high-dimensional scaling,
however, both n and r are allowed to change, and we are interested in the case where r

can grow much faster than n. Theorem 1 shows that, if
∣∣∣∣∣∣∣∣∣(ΣIrIr)−1

∣∣∣∣∣∣∣∣∣
∞

= O(1) and if n

can grow as fast as Kr log Jr, then the row estimator L̂r· still recovers the exact support of

Lr· when the signal is at least O(
√

log r
n ) in size, and the estimation error maxj |L̂rj − Lrj |

is O(
√

log r
n ). Intuitively, for the row estimator to detect the true support, we require that

the true signal be sufficiently large. The condition (16) imposes limitations on how fast the
signal is allowed to decay, which is the analogue to the commonly known “βmin condition”
that is assumed for establishing support recovery of the lasso.

10
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Remark 2 Both the choice of tuning parameter (13) and the error bound (15) depend on
the true covariance matrix via θr. This quantity can be bounded by κ2 as in (12) using the
fact that (ΣIrIr)

−1 is positive definite:

θr = max
`∈Icr

θ(`)
r = max

`∈Icr

{
Σ`` − Σ`Ir (ΣIrIr)

−1 ΣIr`

}
≤ max

`∈Icr
Σ`` ≤ κ2.

The proof of Theorem 1 shows that the results in this theorem still hold true if we replace θr
by κ2. This observation leads to the fact that we can select a tuning parameter having the
properties of the theorem that does not depend on the unknown sparsity level Kr. Therefore,
our estimator is adaptive to the underlying unknown bandwidths.

4.1.1 Connections to the regression setting

In (1) we showed that estimation of the r-th row of L can be interpreted as a regression of
Xr on its predecessors. It is thus very interesting to compare Theorem 1 to the standard
high-dimensional regression results. Consider the following linear model of a vector y ∈ Rn

of the form

y = Zη + ω ω ∼ N(0, σ2In) (17)

where η ∈ Rp is the unknown but fixed parameter to estimate, Z ∈ Rn×p is the design
matrix with each row an observation of p predictors, σ2 is the variance of the zero-mean
additive noise ω. A standard approach in the high-dimensional setting where p� n is the
lasso (Tibshirani, 1996), which solves the convex optimization problem,

min
η∈Rp

1

2n
‖y − Zη‖22 + λ ‖η‖1 , (18)

where λ > 0 is a regularization parameter. In the setting where η is assumed to be sparse,
the lasso solution is known to be able to successfully recover the signed support of the true

η with high probability when λ is of the scale σ
√

log p
n and certain technical conditions are

satisfied (Wainwright, 2009).
Despite the added complications of working with the log term in the objective of (8),

Theorem 1 gives a clear indication that, in terms of difficulty of support recovery, the row
estimate problem (8) is essentially the same as a lasso problem with random design, i.e.,
with each row zi ∼ N(0,Σ) (Theorem 3, Wainwright, 2009). Indeed, a comparison shows
that the two irrepresentable conditions are equivalent. Moreover, θr plays the same role

as Wainwright (2009)’s maxi

(
ΣScSc − ΣScS (ΣSS)−1 ΣSSc

)
ii

, a threshold constant of the

conditional covariance, where S is the support of the true η.
Städler et al. (2010) introduce an alternative approach to the lasso, in the context of

penalized mixture regression models, that solves the optimization problem,

(φ̂, ρ̂) = arg min
φ,ρ

{
−2 log ρ+

1

n
‖ρy + Zφ‖22 + λ ‖φ‖1

}
, (19)

where σ̂ = ρ̂−1 and η̂ = −φ̂/ρ̂. Note that (19) basically coincides with (8) except for the
penalty.

11
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In Städler et al. (2010), the authors study the asymptotic and non-asymptotic proper-
ties of the `1-penalized estimator for the general mixture regression models where the loss
functions are non-convex. The theoretical properties of (19) are studied in Sun and Zhang
(2010), which partly motivates the scaled lasso (Sun and Zhang, 2012).

The theoretical work of Sun and Zhang (2010) differs from ours both in that they study
the `1 penalty (instead of the hierarchical group lasso) and in their assumptions. The nature
of our problem requires the sample matrix to be random (as in A1), while Sun and Zhang
(2010) considers the fixed design setting, which does not apply in our context. Moreover,
they provide prediction consistency and a deviation bound of the regression parameters
estimation in `1 norm. We give exact signed support recovery results for the regression
parameters as well as estimation deviation bounds in various norm criteria. Also, they take
an asymptotic point of view while we give finite sample results.

4.2 Matrix Bandwidth Recovery Result

With the properties of the row estimators in place, we are ready to state results about
estimation of the matrix L. The following theorem gives an analogue to Theorem 1 in the
matrix setting. Under similar conditions, with one particular choice of tuning parameter,
the estimator recovers the true bandwidth for all rows adaptively with high probability.

Theorem 3 Let θ = maxr θr and K = maxrKr, and take

λ =
8

α

√
2θ log p

n
(20)

and weights given by (7). Under Assumptions A1–A4, if (n, p,K) satisfies

n > α−2θκ2
(
12π2K + 32

)
log p, (21)

then with probability greater than 1− cp−1 for some constant c independent of n and p, the
following properties hold:

1. The estimator L̂ is unique, and it is at least as sparse as L, i.e., K̂r ≤ Kr for all r.

2. The estimator L̂ satisfies the element-wise `∞ bound,∥∥∥L̂− L∥∥∥
∞
≤ λ

(
4 max

r

∣∣∣∣∣∣∣∣∣(ΣIrIr)−1
∣∣∣∣∣∣∣∣∣
∞

+ 5κ2
)
. (22)

3. If in addition,

min
r

min
j≥Jr+1

|Lrj | > λ
(

4 max
r

∣∣∣∣∣∣∣∣∣(ΣIrIr)−1
∣∣∣∣∣∣∣∣∣
∞

+ 5κ2
)
, (23)

then exact signed support recovery holds: sign(L̂rj) = sign(Lrj) for all r and j.

Proof See Appendix G.

As discussed in Remark 2, we can replace θ with its upper bound κ2, and the results remain
true. This theorem shows that one can properly estimate the sparsity pattern across all rows

12
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exactly using only one tuning parameter chosen without any prior knowledge of the true
bandwidths. In Section 4.1.1, we noted that the conditions required for support recovery
and the element-wise `∞ error bound for estimating a row of L is similar to those of the
lasso in the regression setting. A union bound argument allows us to translate this into
exact bandwidth recovery in the matrix setting and to derive a reasonable convergence rate
under conditions as mild as that of a lasso problem with random design. This technique is
similar in spirit to neighborhood selection (Meinshausen and Bühlmann, 2006), though our
approach is likelihood-based.

Comparing (21) to (14), we see that the sample size requirement for recovering L is
determined by the least sparse row. While intuitively one would expect the matrix problem
to be harder than any single row problem, we see that in fact the two problems are basically
of the same difficulty (up to a multiplicative constant).

In the setting where variables exhibit a natural ordering, Shojaie and Michailidis (2010)
proposed a penalized likelihood framework like ours to estimate the structure of directed
acyclic graphs (DAGs). Their method focuses on variables which are standardized to have
unit variance. In this special case, penalized likelihood does not involve the log-determinant
term and under similar assumptions to ours, they proved support recovery consistency.
However, they use lasso and adaptive lasso (Zou, 2006) penalties, which do not have the
built-in notion of local dependence. Since these `1-type penalties do not induce structured
sparsity in the Cholesky factor, the resulting precision matrix estimate is not necessarily
sparse. By contrast, our method does not assume unit variances and learns an adaptively
banded structure for L̂ that leads to a sparse Ω̂ (thereby encoding conditional dependencies).

To study the difference between the ordered and non-ordered problems, we compare our
method with Ravikumar et al. (2011), who studied the graphical lasso estimator in a general
setting where variables are not necessarily ordered. Let S index the edges of the graph
specified by the sparsity pattern of Ω = Σ−1. The sparsity recovery result and convergence
rate are established under an irrepresentable condition imposed on Γ = Σ⊗ Σ ∈ Rp

2×p2 :

max
e∈Sc

∥∥∥ΓeS (ΓSS)−1
∥∥∥

1
≤ (1− α) (24)

for some α ∈ (0, 1]. Our Assumption A3 is on each variable through the entries of the true
covariance Σ while (24) imposes such a condition on the edge variables Y(j,k) = XjXk −
E (XjXk), resulting in a vector `1-norm restriction on a much larger matrix Γ, which can
be more restrictive for large p. More specifically, condition (24) arises in Ravikumar et al.
(2011) to tackle the analysis of the log det Ω term in the graphical lasso problem. By
contrast, in our setting the parameterization in terms of L means that the log det term is
simply a sum of log terms on diagonal elements and is thus easier to deal with, leading to the
milder irrepresentable assumption. Another difference is that they require the sample size
n > cκ2

Γd
2 log p for some constant c. The quantity d measures the maximum number of non-

zero elements in each row of the true Σ, which in our case is 2K+1, and κΓ =
∣∣∣∣∣∣∣∣∣(ΓSS)−1

∣∣∣∣∣∣∣∣∣
∞

can be much larger than κ2. Thus, comparing to (21), one finds that their sample size
requirement is much more restrictive. A similar comparison could also be made with the
lasso penalized D-trace estimator (Zhang and Zou, 2014), whose irrepresentable condition
involves Γ = (Σ ⊗ I + I ⊗ Σ)/2 ∈ Rp

2×p2 . Of course, the results in both Ravikumar et al.
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(2011) and Zhang and Zou (2014) apply to estimators invariant to permutation of variables;
additionally, the random vector only needs to satisfy an exponential-type tail condition.

4.3 Precision Matrix Estimation Consistency

Although our primary target of interest is L, the parameterization Ω = LTL makes it
natural for us to try to connect our results of estimating L with the vast literature in
directly estimating Ω, which is the standard estimation target when the known ordering is
not available. In this section, we consider the estimation consistency of Ω using the results
we obtained for L. The following theorem gives results of how well Ω̂ = L̂T L̂ performs in
estimating the true precision matrix Ω = LTL in terms of various matrix norm criteria.

Theorem 4 Let θ = maxr θr, K = maxrKr and s =
∑

rKr denote the total number

of non-zero off-diagonal elements in L. Define ζΣ = 8
√

2θ
α

(
4 maxr

∣∣∣∣∣∣∣∣∣(ΣIrIr)−1
∣∣∣∣∣∣∣∣∣
∞

+ 5κ2
)

.

Under the assumptions in Theorem 3, the following deviation bounds hold with probability
greater than 1− cp−1 for some constant c independent of n and p:∥∥∥Ω̂− Ω

∥∥∥
∞
≤ 2ζΣ|||L|||∞

√
log p

n
+ ζ2

Σ (K + 1)
log p

n
,∣∣∣∣∣∣∣∣∣Ω̂− Ω

∣∣∣∣∣∣∣∣∣
∞
≤ 2ζΣ|||L|||∞ (K + 1)

√
log p

n
+ ζ2

Σ (K + 1)2 log p

n
,∣∣∣∣∣∣∣∣∣Ω̂− Ω

∣∣∣∣∣∣∣∣∣
2
≤ 2ζΣ|||L|||∞ (K + 1)

√
log p

n
+ ζ2

Σ (K + 1)2 log p

n
,∥∥∥Ω̂− Ω

∥∥∥
F
≤ 2κζΣ

√
(s+ p) log p

n
+ ζ2

Σ (K + 1)
√
s+ p

log p

n
.

When the quantities ζΓ, |||L|||∞, and κ are treated as constants, these bounds can be sum-
marized more succinctly as follows:

Proof See Appendix H.

Corollary 5 Using the notation and conditions in Theorem 4, if ζΓ, |||L|||∞, and κ remain
constant, then the scaling (K + 1)2 log p = o(n) is sufficient to guarantee the following
estimation error bounds: ∥∥∥Ω̂− Ω

∥∥∥
∞

= OP
(√

log p

n

)
,

∣∣∣∣∣∣∣∣∣Ω̂− Ω
∣∣∣∣∣∣∣∣∣
∞

= OP
(

(K + 1)

√
log p

n

)
,

∣∣∣∣∣∣∣∣∣Ω̂− Ω
∣∣∣∣∣∣∣∣∣

2
= OP

(
(K + 1)

√
log p

n

)
,

∥∥∥Ω̂− Ω
∥∥∥
F

= OP
(√

(s+ p) log p

n

)
.
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The conditions for these deviation bounds to hold are those required for support recovery as
in Theorem 3. In many cases where estimation consistency is more of interest than support
recovery, we can still deliver the desired error rate in Frobenius norm, matching the rate
derived in Rothman et al. (2008). In particular, we can drop the strong irrepresentable
assumption (A3) and weaken the Gaussian assumption (A1) to the following marginal
sub-Gaussian assumption:

A5 Marginal sub-Gaussian assumption: The sample matrix X ∈ Rn×p has n independent
rows with each row drawn from the distribution of a zero-mean random vector X =
(X1, · · · , Xp)

T with covariance Σ and sub-Gaussian marginals, i.e.,

E exp
(
tXj/

√
Σjj

)
≤ exp

(
Ct2
)

for all j = 1, . . . , p, t ≥ 0 and for some constant C > 0 that does not depend on j.

Theorem 6 Under Assumption A2, A4 and A5, with tuning parameter λ of scale
√

log p
n

and weights as in (7), the scaling (s+ p) log p = o(n) is sufficient for the following estima-
tion error bounds in Frobenius norm to hold:∥∥∥L̂− L∥∥∥

F
= OP

(√
(s+ p) log p

n

)
,

∥∥∥Ω̂− Ω
∥∥∥
F

= OP
(√

(s+ p) log p

n

)
.

Proof See Appendix I.

The rates in Corollary 5 (and Theorem 6) essentially match the rates obtained in meth-
ods that directly estimate Ω (e.g., the graphical lasso estimator, studied in Rothman et al.
2008, Ravikumar et al. 2011, and the column-by-column methods as in Cai et al. 2011,
Liu and Wang 2012, and Sun and Zhang 2013). However, the exact comparison in rates
with these methods is not straightforward. First, the targets of interest are different. In
the setting where the variables have a known ordering, we are more interested in the struc-
tural information among variables that is expressed in L, and thus accurate estimation of
L is more important. When such ordering is not available as considered in Rothman et al.
(2008); Cai et al. (2011); Liu and Wang (2012) and so on, however, the conditional depen-
dence structure encoded by the sparsity pattern in Ω is more of interest, and the accuracy
of directly estimating Ω is the focus. Moreover, deviation bounds of different methods are
built upon assumptions that treat different quantities as constants. Quantities that are as-
sumed to remain constant in the analysis of one method might actually be allowed to scale
with ambient dimension in a nontrivial manner in another method, which makes direct rate
comparison among different methods complicated and less illuminating.

Our analysis can be extended to the unweighted version of our estimator, i.e., with
weight w`m = 1, but under more restrictive conditions and with slower rates of convergence.

Specifically, Assumption A3 becomes max`∈Icr

∥∥∥Σ`Ir (ΣIrIr)
−1
∥∥∥

1
≤ (1− α) /Kr for each
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r = 2, . . . , p. With the same tuning parameter choice (13) and (20), the terms of Kr and
K in sample size requirements (14) and (21) are replaced with K2

r and K2, respectively.
The estimation error bounds in all norms are multiplied by an extra factor of K. All of the
above indicates that in highly sparse situations (in which K is very small), the unweighted
estimator has very similar theoretical performance to the weighted estimator.

5. Simulation Study

In this section we study the empirical performance of our estimators (both with weights as
in (7) and with no weights, i.e., w`m = 1) on simulated data. For comparison, we include
two other sparse precision matrix estimators designed for the ordered-variable case:

• Non-Adaptive Banding (Bickel and Levina, 2008): This method estimates L as
a lower-triangular matrix with a fixed bandwidth K applying across all rows. The
regularization parameter used in this method is the fixed bandwidth K.

• Nested Lasso (Levina et al., 2008): This method yields an adaptive banded struc-
ture by solving a set of penalized least-squares problems (both the loss function and
the nested-lasso penalty are non-convex). The regularization parameter controls the
amount of penalty and thus the sparsity level of the resulting estimate.

All simulations are run at a sample size of n = 100, where each sample is drawn in-
dependently from the p-dimensional normal distribution N(0, (LTL)−1). We compare the
performance of our estimators with the methods above both in terms of support recovery
(in Section 5.1) and in terms of how well L̂ estimates L (in Section 5.2). For support recov-
ery, we consider p = 200 and for estimation accuracy, we consider p = 50, 100, 200, which
corresponds to settings where p < n, p = n, and p > n, respectively.

We simulate under the following models for L. We adapt the parameterization L =
D−1T as in Khare et al. (2016), where D is a diagonal matrix with diagonal elements drawn
randomly from a uniform distribution on the interval [2, 5], and T is a lower-triangular
matrix with ones on its diagonal and off-diagonal elements defined as follows:

• Model 1: Model 1 is at one extreme of bandedness of the Cholesky factor L, in which
we take the lower triangular matrix L ∈ Rp×p to have a strictly banded structure,
with each row having the same bandwidth Kr = K = 1 for all r. Specifically, we take
Tr,r = 1, Tr,r−1 = 0.8 and Tr,j = 0 for j < r − 1.

• Model 2: Model 2 is at the other extreme, in which we allow Kr to vary with r. We
take T to be a block diagonal matrix with 5 blocks, each of size p/5. Within each
block, with probability 0.5 each row r is assigned with a non-zero bandwidth that
is randomly drawn from a uniform distribution on {1, . . . , r − 1} (for r > 1). Each
non-zero element in T is then drawn independently from a uniform distribution on
the interval [0.1, 0.4], and is assigned with a positive/negative sign with probability
0.5.

• Model 3: Model 3 is a denser and thus more challenging version of Model 2, with T
a block diagonal matrix with only 2 blocks. Each of the blocks is of size p/2 but is
otherwise generated as in Model 2.
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Model 1 Model 2 Model 3 Model 4

Figure 3: Schematic of four simulation scenarios with p = 100: (from left to right) Model
1 is strictly banded, Model 2 has small variable bandwidth, Model 3 has large
variable bandwidth, and Model 4 is block-diagonal. Black, gray, and white stand
for positive, negative, and zero entries, respectively. The proportion of elements
that are non-zero is 4%, 6%, 15%, and 26%, respectively.

• Model 4: Model 4 is a dense block diagonal model. The matrix T has a completely
dense lower-triangular block from the p/4-th row to the 3p/4-th row and is zero
everywhere else. Within this block, all off-diagonal elements are drawn uniformly
from [0.1, 0.2], and positive/negative signs are then assigned with probability 0.5.

Model 1 is a stationary autoregressive model of order 1. By the regression interpretation
(1), for each r, it can be verified that the autoregressive polynomial of the r-th row of Models
2, 3, and 4 has all roots outside the unit circle, which characterizes stationary autoregressive
models of orders equal to the corresponding row-wise bandwidths. See Figure 3 for examples
of the four sparsity patterns for p = 100. The non-adaptive banding method should benefit
from Model 1 while the nested lasso and our estimators are expected to perform better in
the other three models where each row has its own bandwidth.

For all four models and every value of p considered, we verified that Assumptions A3
and A4 hold and then simulated n = 100 observations according to each of the four models
based on Assumption A1.

5.1 Support Recovery

We first study how well the different estimators identify zeros in the four models above. We
generate n = 100 random samples from each model with p = 200. The tuning parameter
λ ≥ 0 in (5) measures the amount of regularization and determines the sparsity level of the
estimator. We use 100 tuning parameter values for each estimator and repeat the simulation
10 times.

Figure 4 shows the sensitivity (fraction of true non-zeros that are correctly recovered)
and specificity (fraction of true zeros that are correctly set to zero) of each method pa-
rameterized by its tuning parameter (in the case of non-adaptive banding, the parameter
is the bandwidth itself, ranging from 0 to p − 1). Each set of 10 curves of the same color
corresponds to the results of one estimator, and each curve within the set corresponds to
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the result of one draw from 10 simulations. Curves closer to the upper-right corner indicate
better classification performance (the x+ y = 1 line corresponds to random guessing).

The sparsity level of the non-adaptive banding estimator depends only on the pre-
specified bandwidth (which is the method’s tuning parameter) and not on the data itself.
Consequently, the sensitivity-specificity curves for the non-adaptive banding do not vary
across replications when simulating from a particular underlying model. The sparsity levels
of the nested lasso and our methods, by contrast, hinge on the data, thus giving a different
curve for each replication.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1 (n = 100, p = 200)

specificity

se
ns

iti
vi

ty

weighted
unweighted
nonadaptive
nested

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2 (n = 100, p = 200)

specificity

se
ns

iti
vi

ty

weighted
unweighted
nonadaptive
nested

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3 (n = 100, p = 200)

specificity

se
ns

iti
vi

ty

weighted
unweighted
nonadaptive
nested

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 4 (n = 100, p = 200)

specificity

se
ns

iti
vi

ty

weighted
unweighted
nonadaptive
nested

Figure 4: ROC curves showing support recovery when the true L (top-left) is strictly
banded, (top-right) has small variable bandwidth, (bottom-left) has large variable
bandwidth, and (bottom-right) is block-diagonal, over 10 replications.

In practice, we find that our methods and the nested lasso sometimes produce entries
with very small, but non-zero, absolute values. To study support recovery, we set all
estimates whose absolute values are below 10−10 to zero, both in our estimators and the
nested lasso.

18



Learning Local Dependence In Ordered Data

In Model 1, we observe that all methods considered attain perfect classification accuracy
for some value of their tuning parameter. While the non-adaptive approach is guaranteed
to do so in this scenario, it is reassuring to see that the more flexible methods can still
perfectly recover this sparsity pattern.

In Model 2, we observe that our two methods outperform the nested lasso, which itself,
as expected, outperforms the non-adaptive banding method. As the model becomes more
challenging (from Model 2 to Model 4), the performances of all four methods start dete-
riorating. Interestingly, the nested lasso no longer retains its advantage over non-adaptive
banding in Models 3 and 4, while the performance advantage of our methods become even
more substantial.

The fact that the unweighted version of our method outperforms the weighted version
stems from the fact that all models are comparatively sparse for p = 200, and so the heavier
penalty on each row delivered by the unweighted approach recovers the support more easily
than the weighted version.

5.2 Estimation Accuracy

We proceed by comparing the estimators in terms of how far L̂ is from L. To this end,
we generate n = 100 random samples from the four models with p = 50, p = 100, and
p = 200. Each method is computed with its tuning parameter selected to maximize the
Gaussian likelihood on the validation data in a 5-fold cross-validation. For comparison,
we report the estimation accuracy of each estimate in terms of the scaled Frobenius norm
1
p

∥∥∥L̂− L∥∥∥2

F
, the matrix infinity norm

∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣
∞

, the spectral norm
∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

2
, and the

(scaled) Kullback-Leibler loss 1
p

[
tr(Ω−1Ω̂)− log det(Ω−1Ω̂)− p

]
(Levina et al., 2008).

The simulation is repeated 50 times, and the results are summarized in Figure 5 through
Figure 8. Each figure corresponds to a model, and consists of a 4-by-3 panel layout. Each
row corresponds to an error measure, and each column corresponds to a value of p.

As expected, the non-adaptive banding estimator does better than the other estimators
in Model 1. In Models 2, 3, and 4, where bandwidths vary with row, our estimators and
the nested lasso outperform non-adaptive banding.

A similar pattern is observed as in support recovery. As the model becomes more
complex and p gets larger, the performance of the nested lasso degrades and gradually
becomes worse than non-adaptive banding. By contrast, as the estimation problem becomes
more difficult, the advantage in performance of our methods becomes more obvious.

We again observe that the unweighted estimator performs better than the weighted one.
As shown in Section 4, the overall performance of our method hinges on the underlying
model complexity (measured in terms of maxrKr) as well as the relative size of n and
p. When n is relatively small, usually a more constrained method (like the unweighted
estimator) is preferred over a more flexible method (like the weighted estimator). So in our
simulation setting, it is reasonable to observe that the unweighted method works better.
Note that as the underlying L becomes denser (from Model 1 to Model 4), the performance
difference between the weighted and the unweighted estimator diminishes. This corroborates
our discussion in the end of Section 4 that the performance of the unweighted estimator
becomes worse when the underlying model is dense.
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Figure 5: Estimation accuracy when data are generated from Model 1, which is strictly
banded.
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Figure 6: Estimation accuracy when data are generated from Model 2, which has small
variable bandwidth.
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Figure 7: Estimation accuracy when data are generated from Model 3, which has large
variable bandwidth.
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Figure 8: Estimation accuracy when data are generated from Model 4, which is block-
diagonal.
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6. Applications to Data Examples

In this section, we illustrate the practical merits of our proposed method by applying it to
two data examples. We start with an application to genomic data where our method can
help model the local correlations along the genome. In Section 6.2 we compare our method
with other estimators within the context of a sound recording classification problem.

6.1 An Application to Genomic Data

We consider an application of our estimator to modeling correlation along the genome.
Genetic mutations that occur close together on a chromosome are more likely to be co-
inherited than mutations that are located far apart (or on separate chromosomes). This
leads to local correlations between genetic variants in a population. Biologists refer to this
local dependence as linkage disequilibrium (LD). The width of this dependence is known
to vary along the genome due to the variable locations of recombination hotspots, which
suggests that adaptively banded estimators may be quite suitable in these contexts.

We study HapMap phase 3 data from the International HapMap project (Consortium
et al., 2010). The data consist of n = 167 humans from the YRI (Yoruba in Ibadan, Nigeria)
population, and we focus on p = 201 consecutive tag SNPs on chromosome 22 (after filtering
out infrequent sites with minor allele frequency ≤ 10%).

While tag SNP data, which take discrete values {0, 1, 2}, are non-Gaussian, we argue
that our estimator is still sensible to use in this case. First, the parameterization Ω = LTL
does not depend on the Gaussian assumption. Moreover the estimator corresponds to
minimizing a penalized Bregman divergence of the log-determinant function (Ravikumar
et al., 2011). Furthermore, the least-squares term in (5) can be interpreted as minimizing
the prediction error in the linear models (1) while the log terms act as log-barrier functions
to impose positive diagonal entries (which ensures that the resulting L̂ is a valid Cholesky
factor).

To gauge the performance of our estimator on modeling LD, we randomly split the 167
samples into training and testing sets of sizes 84 and 83, respectively. Along a path of
tuning parameters with decreasing values, estimators L̂ are computed on the training data.
To evaluate L̂ on a vector x̃ from the test data set, we can compute the error in predicting
L̂rrx̃r using −∑r−1

k=1 L̂r,kx̃k via (1) for each r, giving the error

err(x̃) =
1

p− 1

p∑
r=2

(
L̂rrx̃r +

r−1∑
k=1

L̂rj x̃k

)2

. (25)

This quantity (with mean and the standard deviation over test samples) is reported in
Figure 9 for our estimator under the two weighting schemes. Recall that the quadratically
decaying weights (7) act essentially like the `1 penalty. For numerical comparison, we also
include the result of the estimator with `1 penalty, which is the CSCS (Convex Sparse
Cholesky Selection) method proposed in Khare et al. (2016). For both the non-adaptive
banding and the nested lasso methods, we found that their implementations fail to work
due to the collinearity of the columns of X.

Figure 9 shows that our estimators are effective in improving modeling performance
over a diagonal estimator (attained when λ is sufficiently large) and strongly outperform
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Figure 9: Prediction error (computed on an independent test set) of the weighted (left),
unweighted (middle), and CSCS (right) estimators.

the plain MLE (as evidenced by the sharp increase in prediction error as λ → 0). As
expected, the weighted estimator performs very similarly to the CSCS estimator, which
uses the `1 penalty. Both of these perform better than the unweighted one. However, the
sparsity pattern obtained by the two penalties are different (as shown in Figure 10).

In Figure 10 we show the recovered signed support of the weighted, unweighted, and
CSCS estimators and their corresponding precision matrices. Black, gray, and white stand
for positive, negative, and zero entries, respectively. Tuning parameters are chosen using the
one-standard-error rule (see, e.g., Hastie et al., 2009). The r-th row of the estimated matrix
L̂ reveals the number of neighboring SNPs necessary for reliably predicting the state of the
r-th SNP. Interestingly, we see some evidence of small block-like structures in L̂, consistent
with the hotspot model of recombination as previously described. This regression-based
perspective to modeling LD may be a useful complement to the more standard approach,
which focuses on raw marginal correlations. Finally, the sparsity recovered by the CSCS
estimator, which uses the `1 penalty, is less easily interpretable, since some entries far from
the diagonal are non-zero, losing the notion of ‘local’.

6.2 An Application to Phoneme Classification

In this section, we develop an application of our method to a classification problem described
in Hastie et al. (2009). The data contain n = 1717 continuous speech recordings, which are
categorized into two vowel sounds: ‘aa’ (n1 = 695) and ‘ao’ (n2 = 1022). Each observation
(xi, yi) has a predictor xi ∈ Rp representing the (log) intensity of the sound across p = 256
frequencies and a class label yi ∈ {1,−1}. It may be reasonable to apply our method in
this problem since the features are frequencies, which come with a natural ordering

In linear discriminant analysis (LDA), one models the features as multivariate Gaussian
conditional on the class: xi|yi = k ∼ Np(µ

(k),Σ) for k ∈ {1,−1}; in quadratic discriminant
analysis (QDA), one allows each class to have its own covariance matrix: xi|yi = k ∼
Np(µ

(k),Σ(k)). The LDA/QDA classification rules assign an observation x ∈ Rp to class
k that maximizes P̂ (y = k|x) ∝ P̂ (x|y = k)P̂ (y = k), where the estimated probability
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Figure 10: Estimates of linkage disequilibrium with tuning parameters selected by the one-
standard-error rule and their corresponding precision matrix estimates.
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Unweighted Weighted Nested Lasso Non-adaptive CSCS

LDA 0.271 0.246 0.250 0.268 0.245
QDA 0.232 0.256 0.221 0.246 0.267

Table 1: Average test data classification error rate of discriminant analysis of phoneme data

P̂ (x|y = k) is calculated using maximum likelihood estimates µ̂(k), Σ̂, and Σ̂(k). More
precisely, in the ordered case, the resulting class k maximizes the LDA/QDA scores:

δ
(k)
LDA(x) = xT Ω̂µ̂(k) − 1

2
(µ̂(k))T Ω̂µ̂(k) + log π̂(k)

= (L̂x)T L̂µ̂(k) − 1

2

∥∥∥L̂µ̂(k)
∥∥∥2

2
+ log π̂(k) (26)

δ
(k)
QDA(x) = xT Ω̂(k)µ̂(k) − 1

2
(µ̂(k))T Ω̂(k)µ̂(k) + log π̂(k)

= (L̂(k)x)T L̂(k)µ̂(k) − 1

2

∥∥∥L̂(k)µ̂(k)
∥∥∥2

2
+ log π̂(k). (27)

Note that it is the precision matrix, not the covariance matrix, that is used in the above
scores. In the setting where p > n, the MLE of Ω or Ω(k) does not exist. A regularized
estimate of precision matrix that exploits the natural ordering information can be helpful
in this setting.

To demonstrate the use of our estimator in the high-dimensional setting, we randomly
split the data into two parts, with 10% of the data assigned to the training set and the
remaining 90% of the data assigned to the test set. On the training set, we use 5-fold
cross-validation to select the tuning parameter minimizing misclassification error on the
validation data. The estimates L̂ and L̂(k) are then plugged into (26) and (27) along
with µ̂(k) =

∑
i∈class k xi/n

(k) and π̂(k) = n(k)/ntrain to calculate the misclassification error
in the test set. For comparison, we also include non-adaptive banding, the nested lasso,
and CSCS. We compute the classification error (summarized in Table 1), averaged over 10
random train-test splits.

We first observe that, in general, the adaptive methods perform better than the non-
adaptive one (which assumes a fixed bandwidth). It is again found that the performance of
the weighted estimator is very similar to the one using `1 penalty (i.e., the CSCS method).
And our results are comparable to the nested lasso both in LDA and QDA. Interestingly,
we find that the weighted estimator does better in LDA while the unweighted estimator
performs better in QDA. The reason, we suspect, is that QDA requires the estimation
of more parameters than LDA and therefore favors more constrained methods like the
unweighted estimator, which more strongly discourages non-zeros from being far from the
diagonal than the weighted one.

An R (R Core Team, 2016) package, named varband, is available on CRAN, implementing
our estimator. The estimation is very fast with core functions coded in C++, allowing us
to solve large-scale problems in substantially less time than is possible with the R-based
implementation of the nested lasso.
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7. Conclusion

We have presented a new flexible method for learning local dependence in the setting where
the elements of a random vector have a known ordering. The model amounts to sparse
estimation of the inverse of the Cholesky factor of the covariance matrix with variable
bandwidth. Our method is based on a convex formulation that allows it to simultaneously
yield a flexible adaptively-banded sparsity pattern, enjoy efficient computational algorithms,
and be studied theoretically. To our knowledge, no previous method has all these properties.
We show how the matrix estimation problem can be decomposed into independent row
estimation problems, each of which can be solved via an ADMM algorithm having efficient
updates. We prove that our method recovers the signed support of the true Cholesky factor
and attains estimation consistency rates in several matrix norms under assumptions as mild
as those in linear regression problems. Simulation studies show that our method compares
favorably to two pre-existing estimators in the ordered setting, both in terms of support
recovery and in terms of estimation accuracy. Through a genetic data example, we illustrate
how our method may be applied to model the local dependence of genetic variations in genes
along a chromosome. Finally, we illustrate that our method has favorable performance in
a sound recording classification problem.
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Appendix A. Decoupling Property

Let S = 1
nXTX ∈ Rp×p be the sample covariance matrix. Then the estimator (5) is the

solution to the following minimization problem:

min
L:Lrr>0

Lrk=0 for r<k

−2

p∑
r=1

logLrr + tr(SLTL) + λ

p∑
r=2

r−1∑
`=1

√√√√∑̀
m=1

w2
`mL

2
rm

 .

First note that under the lower-triangular constraint

tr
(
SLTL

)
=

1

n

p∑
r=1

tr
(
XLT·rLr·X

T
)

=
1

n

p∑
r=1

∥∥XLT·r∥∥2

2
=

1

n

p∑
r=1

∥∥X1:rL
T
1:r,r

∥∥2

2
,

where X1:r is a matrix of the first r columns of X. Thus

− 2

p∑
r=1

logLrr + tr(SLTL) + λ

p∑
r=2

r−1∑
`=1

√√√√∑̀
m=1

w2
`mL

2
rm

=− 2 logL11 +
1

n
‖X1L11‖22 +

p∑
r=2

−2 logLrr +
1

n

∥∥X1:rL
T
1:r,r

∥∥2

2
+ λ

r−1∑
`=1

√√√√∑̀
m=1

w2
`mL

2
rm

 .

Therefore the original problem can be decoupled into p separate problems. In particular,
a solution L̂ can be written in a row-wise form with

L̂11 = arg min
L11>0

{
−2 logL11 +

1

n
‖X1L11‖22

}
=

1√
S11

,

and for r = 2, . . . , p,

L̂T1:r,r = arg min
β∈Rr:βr>0

−2 log βr +
1

n
‖X1:rβ‖22 + λ

r−1∑
`=1

√√√√∑̀
m=1

w2
`mβ

2
m

 .

Appendix B. A Closed-Form Solution to (9)

The objective function in (9) is a smooth function. Taking the derivative with respect to β
and setting to zero gives the following system of equations:

−2
1

βr
er +

2

n
XT

1:rX1:rβ + u(t−1) + ρ
(
β − γ(t−1)

)
= 0.

Letting S(r) = 1
nXT

1:rX1:r, then the equations above can be further decomposed into

− 2

βr
+
(

2S(r)
rr + ρ

)
βr + 2S

(r)
r,−rβ−r + u(t−1)

r − ργ(t−1)
r = 0,(

2S
(r)
−r,−r + ρI

)
β−r + 2S

(r)
−r,rβr + u

(t−1)
−r − ργ(t−1)

−r = 0.
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Solving for β−r in the second system of equations gives

β−r = −
(

2S
(r)
−r,−r + ρI

)−1 (
2S

(r)
−r,rβr + u

(t−1)
−r − ργ(t−1)

−r

)
,

which is then plugged back in the first equation to give

2
1

βr
+Aβr +B = 0,

where

A = 4S
(r)
r,−r

(
2S

(r)
−r,−r + ρI

)−1
S

(r)
−r,r − 2S(r)

r,r − ρ,

B = 2S
(r)
r,−r

(
2S

(r)
−r,−r + ρI

)−1 (
u

(t−1)
−r − ργ(t−1)

−r

)
− u(t−1)

r + ργ(t−1)
r .

Solving for βr gives the closed-form update.

Appendix C. Dual Problem of (10)

Lemma 7 A dual problem of (10) is

min
a(`)∈Rr


∥∥∥∥∥y(t) − λ

ρ

r−1∑
`=1

W (`) ∗ a(`)

∥∥∥∥∥
2

2

s.t.

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

 , (28)

where y(t) = β(t) + 1
ρu

(t−1). Also, given a solution â(1), . . . , â(r−1), the solution to (10) can
be written as

γ(t) = y(t) − λ

ρ

r−1∑
`=1

W (`) ∗ â(`). (29)

Proof Note that√√√√∑̀
m=1

w2
`mγ

2
m =

∥∥∥∥(W (`) ∗ γ
)
gr,`

∥∥∥∥
2

= max

{〈
W (`) ∗ a(`), γ

〉
, s.t.

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

}
.

Thus, the minimization problem in (10) becomes

min
γ

{
1

2

∥∥∥γ − y(t)
∥∥∥2

2
+
λ

ρ

r−1∑
`=1

∥∥∥∥(W (`) ∗ γ
)
gr,`

∥∥∥∥
2

}

= min
γ

{
max
a(`)

{
1

2

∥∥∥γ − y(t)
∥∥∥2

2
+
λ

ρ

r−1∑
`=1

〈
W (`) ∗ a(`), γ

〉
,

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

}}

= max
a(`)

{
min
γ

{
1

2

∥∥∥γ − y(t)
∥∥∥2

2
+
λ

ρ

r−1∑
`=1

〈
W (`) ∗ a(`), γ

〉
,

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

}}
,
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where y(t) = β(t) + 1
ρu

(t−1). We solve the inner minimization problem by setting the deriva-
tive to zero,

γ − y(t) +
λ

ρ

r−1∑
`=1

W (`) ∗ a(`) = 0,

which gives the primal-dual relation,

γ = −λ
ρ

r−1∑
`=1

W (`) ∗ a(`) + y(t).

Using this gives

min
γ

{
1

2

∥∥∥γ − y(t)
∥∥∥2

2
+
λ

ρ

r−1∑
`=1

∥∥∥∥(W (`) ∗ γ
)
gr,`

∥∥∥∥
2

}

= max
a(`)

1

2

∥∥∥∥∥−λρ
r−1∑
`=1

W (`) ∗ a(`)

∥∥∥∥∥
2

2

+
λ

ρ

r−1∑
`=1

〈
W (`) ∗ a(`),−λ

ρ

r−1∑
`=1

W (`) ∗ a(`) + y(t)

〉

s.t.

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

}

= min
a(`)


∥∥∥∥∥y(t) − λ

ρ

r−1∑
`=1

W (`) ∗ a(`)

∥∥∥∥∥
2

2

s.t.

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

 .

Algorithm 3 BCD on the dual problem (28)

1: Let y(t) = β(t) + 1
ρu

(t−1)

2: Initialize â(`) ← 0 for all ` = 1, · · · , r − 1
3: for ` = 1, · · · , r − 1 do
4: ẑ(`) ← y(t) − λ

ρ

∑r−1
k=1W

(k) ∗ â(k) Find a root ν̂` that satisfies

h`(ν) :=
∑̀
m=1

w2
`m(

w2
`m + ν

)2 (ẑ(`)
m

)2
=
λ2

ρ2
(30)

5: for m = 1, · · · , ` do

6: â
(`)
m ← w`m

λ
ρ (w2

`m+[ν̂`]+)
ẑ

(`)
m

7: return
{
â(`)
}

as a solution to (28)

8: return γ(t) = y(t) − λ
ρ

∑r−1
`=1 W

(`) ∗ â(`) as a solution to (10)
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Appendix D. Elliptical Projection

We adapt the same procedure as in Appendix B of Bien et al. (2016) to update one a(`) in
Algorithm (3). By (10) we need to solve a problem of the form

min
a∈R`

∥∥∥ẑ(`) − τDa
∥∥∥2

2
s.t. ‖a‖2 ≤ 1,

where τ = λ
ρ and D = diag(w`m)m≤` ∈ R`×`. If

∥∥D−1ẑ(`)
∥∥

2
≤ τ , then clearly â = 1

τD
−1ẑ(`).

Otherwise, we use the Lagrangian multiplier method to solve the constrained minimization
problem above. Specifically, we find a stationary point of

L (a, ν) =
∥∥∥ẑ(`) − τDa

∥∥∥2

2
+ ντ2

(
‖a‖22 − 1

)
.

Taking the derivative with respect to a and set it equal to zero, we have

âm =
w`m

τ(w2
`m + ν̂)

ẑ(`)
m ,

for each m ≤ `, and ν̂ is such that ‖â‖2 = 1, which means it satisfies (30). By observing
that h`(ν) is a decreasing function of ν and w`` = maxm≤`w`m, following Appendix B of
Bien et al. (2016), we obtain lower and upper bounds for ν̂:[

1

τ

∥∥∥Dẑ(`)
∥∥∥

2
− w2

``

]
+

≤ ν̂ ≤ 1

τ

∥∥∥Dẑ(`)
∥∥∥

2
,

which can be used as an initial interval for finding ν̂ using Newton’s method. In practice,
we usually find ν̂ from the equation 1

h(ν) = τ−2 for better numerical stability.

We end this section with a characterization of the solution to (10), which says that the
solution can be written as γ(t) = y(t) ∗ t̂, where t̂ is some data-dependent vector in Rr.

Theorem 8 A solution to (10) can be written as γ(t) = y(t) ∗ ĝ, where the data-dependent
vector ĝ ∈ Rr is given by

ĝm =
r−1∏
`=m

[ν̂`]+
w2
`m + [ν̂`]+

and ĝr = 1, where ν̂` satisfies τ2 =
∑`

m=1
w2
`m

(w2
`m+ν)

2

(
ẑ

(`)
m

)2
.

Proof By Jenatton et al. (2011), we can get a solution to (10) in a single pass as described
in Algorithm 3. If we start from ẑ(1) = y(t), then for ` = 1, · · · , r − 1 and each m ≤ `,

ẑ(`+1)
m = ẑ(`)

m − τw`mâ(`)
m =

[ν̂`]+
w2
`m + [ν̂`]+

ẑ(`)
m .

By (29), γ(t) = ẑ(r−1), and the result follows.

A key observation from this characterization is that a banded sparsity pattern is induced
in solving (10), which in turn implies the same property of the output of Algorithm 1.

Corollary 9 A solution γ(t) to (10) has banded sparsity, i.e.,
(
γ(t)
)

1:Ĵ
= 0 for Ĵ =

max {` : ν̂` ≤ 0}.
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Appendix E. Uniqueness of the Sparse Row Estimator

Lemma 10 (Optimality condition) For any λ > 0 and a n-by-p sample matrix X, β̂ is a
solution to the problem

min
β∈Rr

−2 log βr +
1

n
‖X1:rβ‖22 + λ

r−1∑
`=1

√√√√∑̀
m=1

w2
`mβ

2
m


if and only if there exist â(`) ∈ Rr for ` = 1, . . . , r − 1 such that

− 2

β̂r
er +

2

n
XT

1:rX1:rβ̂ + λ

r−1∑
`=1

W (`) ∗ â(`) = 0 (31)

with
(
â(`)
)
gcr,`

= 0,
(
â(`)
)
gr,`

=
(W (`)∗β̂)

gr,`∥∥∥∥(W (`)∗β̂)
gr,`

∥∥∥∥
2

for β̂gr,` 6= 0 and
∥∥∥(â(`)

)
gr,`

∥∥∥
2
≤ 1 for β̂gr,` = 0.

Lemma 11 Take β̂ and â(`) as in the previous lemma. Suppose that∥∥∥∥(â(`)
)
gr,`

∥∥∥∥
2

< 1 for ` = 1, . . . , J(β̂)

then for any other solution β̃ to (8), it is as sparse as β̂ if not more. In other words,

K(β̃) ≤ K̂r.

Lemma 12 (Uniqueness) Under the conditions of the previous lemma, let Ŝ =
{
i : β̂i 6= 0

}
.

If XŜ has full column rank (i.e., rank
(
XŜ
)

= |Ŝ|) then β̂ is unique.

Proof See Appendices J, K, and L.

Appendix F. Proof of Theorem 1

We start with introducing notation. From now on we suppress the dependence on
r in notation for simplicity. We denote the group structure g` = {1, · · · , `} for ` ≤ r
for each r = 1, . . . , p. For any vector β ∈ Rr, we let βg` ∈ R` be the vector with elements
{βm : m ≤ `}. We also introduce the weight vector W (`) ∈ Rp with

(
W (`)

)
m

= w`m where
w`m can be defined as in (7) or w`m = 1. Finally recalling from Section 4 the definition of
I, we denote S = I ∪ {r} = {J + 1, . . . , r} and Sc = {1, 2, . . . , J}.

The general idea of the proof depends on the primal-dual witness procedure in Wain-
wright (2009) and Ravikumar et al. (2011). Considering the original problem (8) for any

r = 2, . . . , p, we construct the primal-dual witness solution pairs
(
β̃,
∑r−1

`=1 W
(`) ∗ ã(`)

)
as

follows:
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(a) Solve the restricted subproblem with the true bandwidth K = r − 1− J :

β̃ = arg min
βr>0
βSc=0

{
−2 log βr +

1

n
‖X1:rβ‖22 + λ

r−1∑
`=1

∥∥∥∥(W (`) ∗ β
)
g`

∥∥∥∥
2

}
.

The solution above can be written as

β̃ =

(
0J
γ̃

)
,

where

γ̃ = arg min
γ∈RK+1

{
−2 log γK+1 +

1

n
‖XSγ‖22 + λ

K∑
`=1

∥∥∥∥(W̃ (`) ∗ γ
)
g`

∥∥∥∥
2

}
,

with

W̃ (`) =
(
W (`+J)

)
S

⇐⇒
K∑
`=1

∥∥∥∥(W̃ (`) ∗ γ
)
g`

∥∥∥∥
2

=
r−1∑

`=J+1

√√√√ r−1∑
m=J+1

w2
`mγ

2
m−J .

(b) By Lemma 10, there exist b̃(`) ∈ RK+1 for ` = 1, . . . ,K, such that
(
b̃(`)
)
gc`

= 0 and

(
b̃(`)
)
gr`

=

(
W̃ (`) ∗ γ̃

)
g`∥∥∥∥(W̃ (`) ∗ γ̃

)
g`

∥∥∥∥
2

,

satisfying

− 2

γ̃K+1
eK+1 +

2

n
XT
SXS γ̃ + λ

K∑
`=1

W̃ (`) ∗ b̃(`) = 0.

(c) For ` = J + 1, . . . , r − 1, we let

ã(`) =

(
0J

b̃(`−J)

)
.

Then we have
(
ã(`)
)
gc`

= 0,
∥∥∥(ã(`)

)
g`

∥∥∥
2
≤ 1,

(
ã(`)
)
g`

=
(W (`)∗β̃)

g`∥∥∥∥(W (`)∗β̃)
g`

∥∥∥∥
2

for β̃g` 6= 0.

(d) For each ` = 1, ..., J , we choose ã(`) ∈ Rr satisfying(
ã(`)
)
`′

= 0 for any `′ 6= ` and
(
ã(`)
)
`

= − 2

λw``

(
Sβ̃
)
`

= − 2

nλ
XT
` XS β̃S .

By construction and the fact that w`` = 1,

λ
(
W (`) ∗ ã(`)

)
`

= λw``

(
ã(`)
)
`

= −2
(
Sβ̃
)
`
.
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By Lemma 10,
{
ã(`)
}

satisfies the optimality condition (31):

− 2

β̃r
er +

2

n
XT

1:rX1:rβ̃ + λ
r−1∑
`=1

W (`) ∗ ã(`) = 0 (32)

(e) Verify the strict dual feasibility condition for ` = 1, ..., J∣∣∣∣ 2

nλ
XT
` XS β̃S

∣∣∣∣ =
∣∣∣(ã(`)

)
`

∣∣∣ =

∥∥∥∥(ã(`)
)
g`

∥∥∥∥
2

< 1. (33)

At a high level, steps (a) through (d) construct a pair
(
β̃,
{
ã(`)
})

that satisfies the

optimality condition (31), but the
{
ã(`)
}

is not necessarily guaranteed to be a member of

∂
(
P (β̃)

)
. Step (e) does more than verifying the necessary conditions for it to belong to

∂
(
P (β̃)

)
. The strict dual feasibility condition, once verified, ensures the uniqueness of the

solution. Note that by construction in Step (b),
{
ã(`)
}

satisfies dual feasibility conditions

for ` = J+1, ..., r−1 since
{
b̃(`)
}

does, so it remains to verify for ` = 1, ..., J (see Step (c)).

For each ` = 1, ..., J , by the construction in Step (d),
(
ã(`)
)
gc`

= 0. Note that β̃gJ = 0

implies β̃g` = 0. Thus, for ã(`) to satisfy conditions in Lemma 10, it suffices to show (33).
If the primal-dual witness procedure succeeds, then by construction, the solution β̃,

whose support is contained in the support of the true Lr·, is a solution to (8). Moreover,
by strict dual feasibility and Lemma 12, we know that β̃ is the unique solution β̂ to the
unconstrained problem (8). Therefore, the support of β̂ is contained in the support of Lr·.

In the following we adapt the same proof technique as Wainwright (2009) to show that
the primal-dual witness succeeds with high probability, from which we first conclude that
K(β̂) ≤ K.

F.1 Proof of Property 1 in Theorem 1

Proof We need to verify the strict dual feasibility (33). By (32),

− 2

β̃r
+

2

n
XT
r Xrβ̃r +

2

n
XT
r XI β̃I = 0, (34)

2

n
XT
IXrβ̃r +

2

n
XT
IXI β̃I + λ

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

= 0. (35)

From (35),

β̃I = −
(
XT
IXI

)−1

[
XT
IXrβ̃r +

λn

2

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

]
. (36)

Plugging (36) back into (34) and denoting CI = XI
(
XT
IXI

)−1
(∑r−1

`=1 W
(`) ∗ ã(`)

)
I

and OI = I −XI
(
XT
IXI

)−1
XT
I as the orthogonal projection matrix onto the orthogonal
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complement of the column space of XI , we have

− 2

β̃r
+

2

n
XT
r OIXrβ̃r − λXT

r CI = 0,

which implies that

β̃r =

λ
2 XT

r CI +
√

λ2

4 (XT
r CI)

2 + 4
nXT

r OIXr

2
nXT

r OIXr
(37)

and that(
ã(`)
)
`

= − 2

nλ
XT
` XS β̃S = − 2

nλ
XT
` Xrβ̃r −

2

nλ
XT
` XI β̃I

= − 2

nλ
XT
` Xrβ̃r +

2

nλ
XT
` XI

(
XT
IXI

)−1

[
XT
IXrβ̃r +

λn

2

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

]

= − 2

nλ
XT
`

[
I−XI

(
XT
IXI

)−1
XT
I

]
Xrβ̃r + XT

` XI
(
XT
IXI

)−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

= XT
`

[
CI −OI

(
2

nλ
Xrβ̃r

)]
. (38)

Conditioning on XI , we can decompose Xr and X` as

XT
r = ΣrI (ΣII)

−1 XT
I + ETr , (39)

XT
` = Σ`I (ΣII)

−1 XT
I + ET` ,

where Er ∼ N
(
0n, θ

(r)
r In×n

)
and E` ∼ N

(
0n, θ

(`)
r In×n

)
, and θ

(`)
r and θ

(r)
r are defined in

Section 4. Then

XT
` OI = ET` OI and OIXr = OIEr,

and from (38)

(
ã(`)
)
`

= ET`

[
CI −OI

(
2

nλ
Erβ̃r

)]
+ Σ`I (ΣII)

−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

:= R(`) + F (`). (40)

We first bound max`
∣∣F (`)

∣∣. Note that∥∥∥∥∥
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
(

r−1∑
`=J+1

W (`) ∗ ã(`)

)
I

∥∥∥∥∥∥
∞

= max
m∈I

∣∣∣∣∣
r−1∑
`=m

w`m

(
ã(`)
)
m

∣∣∣∣∣
≤max

m∈I

r−1∑
`=m

w`m

∣∣∣(ã(`)
)
m

∣∣∣ ≤ max
m∈I

r−1∑
`=m

1

(`−m+ 1)2 ≤
∞∑
k=1

1

k2
=
π2

6
, (41)
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where we used
∥∥ã(`)

∥∥
∞ ≤

∥∥ã(`)
∥∥

2
≤ 1. Therefore, by Assumption A3,

max
1≤`≤J

∣∣∣∣∣Σ`I (ΣII)
−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

∣∣∣∣∣ ≤ 1− α.

To give a bound on the random quantity
∣∣R(`)

∣∣, we first state a general result that will
be used multiple times later in the proof.

Lemma 13 Consider the term ETj η where η ∈ Rn is a random vector depending on XI

and Xr and Ej ∼ N
(
0n, θ

(j)
r In×n

)
for j = 1, . . . , J, r. If for some Q̄ ≥ 0

P
[
Var

(
ETj η

∣∣∣XI ,Xr

)
≥ Q̄

]
≤ p̄

then for any a > 0,

P
[∣∣ETj η∣∣ ≥ a] ≤ 2 exp

(
− a

2

2Q̄

)
+ p̄

Proof Define the event
B̄ =

{
Var

(
ETj η

∣∣∣XI) ≥ Q̄} .
Now for any a and conditioned on XI and Xr,

P
[
ETj η ≥ a

]
≤ P

[
ETj η ≥ a

∣∣∣B̄c]+ P
[
B̄
]
≤ P

[
ETj η ≥ a

∣∣∣B̄c]+ p̄.

Conditioned on B̄c, the variance of ETj η is at most Q̄. So by standard Gaussian tail bounds,
we have

P
[
ETj η ≥ a

∣∣∣B̄c] = E
[
P
(
ETj η ≥ a

∣∣∣XI ,Xr

) ∣∣∣B̄c] ≤ E

[
2 exp

(
− a

2

2Q̄

) ∣∣∣B̄c] ≤ 2 exp

(
− a

2

2Q̄

)
.

Then note that Var (Ei`) = θ
(`)
r ≤ θr for i = 1, . . . , n. Now conditioned on both XI and

Xr, R
(`) is zero-mean with variance at most

Var
(
R(`)

∣∣∣XI)
≤θr

∥∥∥∥CI −OI

(
2

nλ
Erβ̃r

)∥∥∥∥2

2

= θr

{
CT
ICI +

∥∥∥∥OI ( 2

nλ
Erβ̃r

)∥∥∥∥2

2

}

=θr

 1

n

(
r−1∑
`=1

W (`) ∗ ã(`)

)T
I

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

+
4β̃2

r ‖OIEr‖22
n2λ2


:=θrMn,

where the first equality holds from Pythagorean identity. The next lemma bounds the
random scaling Mn.
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Lemma 14 For ε ∈
(
0, 1

2

)
, denote

M̄n (ε) :=
3κ2π2

2

K

n
+

1

θ
(r)
r (n−K) (1− ε)

+
16

nλ2
,

then

P
[
Mn ≥ M̄n (ε)

∣∣∣XI] ≤ 7 exp

(
−nmin

{
α2

3θ
(r)
r κ2π2K

,
ε2

4

(
1− K

n

)})
.

Proof See Appendix M.

Now by Lemma 13 and the union bound,

P

[
max

1≤`≤J

∣∣∣R(`)
∣∣∣ ≥ α] ≤ 2J exp

(
− α2

2θrM̄n (ε)

)
+ 7 exp (−c3n) , (42)

for some constant c3 independent of n and J . By the assumption that K
n = o(1), we have

that K
n ≤ 1− ε for n large enough, thus

M̄n (ε) ≤ K

n

(
3κ2π2

2
+

1

Kθ
(r)
r (1− ε)2

+
16

Kλ2

)
≤ K

n

(
3κ2π2

2
+

4

Kθ
(r)
r

+
16

Kλ2

)
.

For the exponential term in (42) to have faster decaying rate than the J term, we need

n

K log J
>
θr
α2

(
3κ2π2 +

8

Kθ
(r)
r

+
32

Kλ2

)
.

F.2 Proof of Property 2 in Theorem 1

Next we study the `∞ error bound. The following theorem gives an `∞ error bound of β̃.
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Proof Let δ = β̃ − β∗ = β̃ −
(
LT
)

1:r,r
and W = SLT − (L)−1, then from (35) and the fact

that L−1 is lower-triangular,

δI =−
(
XT
IXI

)−1
[
XT
IXrβ̃r +

(
XT
IXI

)
(L)TI,r

]
− nλ

2

(
XT
IXI

)−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

=−
(

1

n
XT
IXI

)−1 [ 1

n
XT
IXr (δr + β∗r ) +

(
1

n
XT
IXI

)
(L)TI,r

]
−λ

2

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

=−
(
XT
IXI

)−1
XT
IXrδr −

(
1

n
XT
IXI

)−1 (
SLT

)
I,r

−λ
2

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

=−
(
XT
IXI

)−1
XT
IXrδr −

(
1

n
XT
IXI

)−1

WI,r −
λ

2

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

.

(43)

From (34) and the fact that
(
L−1

)
rr

= 1
Lrr

,

− 1

β̃r
+

1

n
XT
r Xrδr +

1

n
XT
r XIδI +

1

n
XT
r Xrβ

∗
r +

1

n
XT
r XIβ

∗
I

= − 1

β̃r
+

1

n
XT
r Xrδr +

1

n
XT
r XIδI +

(
SLT

)
rr

=
(
L−1

)
rr
− 1

β̃r
+

1

n
XT
r Xrδr +

1

n
XT
r XIδI +Wrr

=
δr

Lrrβ̃r
+

1

n
XT
r Xrδr +

1

n
XT
r XIδI +Wrr = 0. (44)

Plugging (43) into (44), we have

δr

Lrrβ̃r
+

1

n
XT
r OIXrδr = XT

r XI
(
XT
IXI

)−1WI,r +
λ

2
XrCI −Wrr,

which implies

δr =

(
1

Lrrβ̃r
+

1

n
XT
r OIXr

)−1 [
XT
r XI

(
XT
IXI

)−1WI,r +
λ

2
XrCI −Wrr

]
.

Since Lrr > 0 and β̃r > 0,

|δr| ≤
∣∣∣∣∣
(

1

Lrrβ̃r
+

1

n
XT
r OIXr

)−1
∣∣∣∣∣
(∣∣∣XT

r XI
(
XT
IXI

)−1WI,r
∣∣∣+

∣∣∣∣λ2 XrCI

∣∣∣∣+ |Wrr|
)

≤
∣∣∣∣∣
(

1

n
XT
r OIXr

)−1
∣∣∣∣∣
(∣∣∣XT

r XI
(
XT
IXI

)−1WI,r
∣∣∣+

∣∣∣∣λ2 XrCI

∣∣∣∣+ |Wrr|
)
.
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Now conditioned on XI , by the decomposition (39),
(

1
nXT

r OIXr

)−1
=
(

1
nE

T
r OIEr

)−1
=

n
‖OIEr‖22

. From Lemma 20, it follows that

P

[(
1

n
XT
r OIXr

)−1

≥ 1

θ
(r)
r

n

n−K
1

1− ε

]
≤ exp

(
−1

4
(n−K) ε2

)
.

Also, by Lemma 19,

P
[∣∣XT

r CI
∣∣ ≥ 1

]
≤ 2 exp

(
− nα2

3θ
(r)
r κ2π2K

)
+ 2 exp

(
−n

2

)
.

To deal with the rest of terms in (44) that involve W, we introduce the following con-
centration inequality to control its element-wise infinity norm.

Lemma 15 Let W = SLT − L−1. Under Assumptions A4 and A5, there exist constants
C1, C2, C3 > 0 such that for any 0 < t ≤ 2κ,

P [‖W‖∞ > t] ≤ 2p2 exp

(
−C3nt

2

κ2

)
+ 4p exp

(
−C1nt

κ2

)
+ 4p exp (−C2nt) .

Proof See Appendix N.

In terms of the event
A = {‖W‖∞ ≤ λ} ,

Lemma 15 states that

P [Ac] ≤ 2p2 exp

(
−C3nλ

2

κ2

)
+ 4p exp

(
−C1nλ

κ2

)
+ 4p exp (−C2nλ) .

The next lemma shows that, on the event A and with the assumption that λ2

n = o(1),

the term
∣∣∣XT

r XI
(
XT
IXI

)−1WI,r
∣∣∣ can be bounded by λ with high probability.

Lemma 16 Using the general weigthing scheme (7), we have

P
[∣∣∣XT

r XI
(
XT
IXI

)−1WI,r
∣∣∣ ≥ λ∣∣∣A] ≤ 2 exp

(
− 2nα2

9θ
(r)
r κ2Kλ2

)
+ 2 exp

(
−n

2

)
.

Proof Recall that by conditioning on XI , the decomposition (39) gives

XT
r XI

(
XT
IXI

)−1WI,r = ΣrI (ΣII)
−1WI,r + ETr XI

(
XT
IXI

)−1WI,r.

On the event A, by A3 and (41),∣∣∣ΣrI (ΣII)
−1WI,r

∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ΣrI (ΣII)
−1
∣∣∣∣∣∣∣∣∣
∞
‖WI,r‖∞ ≤ λ.
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Note that Var (Eir) = θ
(r)
r for i = 1, . . . , n. Let B(r) := ETr XI

(
XT
IXI

)−1WI,r, then

B(r) has mean zero and variance at most

Var
(
B(r)

∣∣∣XI) =
θ

(r)
r

n
WT
I,r

(
1

n
XT
IXI

)−1

WI,r ≤
9θ

(r)
r κ2Kλ2

n
,

with probability greater than 1− 2 exp
(
n
2

)
. The result follows from Lemma 13.

Putting everything together and choosing the tuning parameter from (13), with a union
bound argument and some algebra, we have shown that conditioned on XI ,

P

[
|δr| ≥

1

θ
(r)
r

n

n−K
1

1− ε
5

2
λ

]
≤ P

[
|δr| ≥

5

2θ
(r)
r

λ

]
≤ P

[
|δr| ≥

5

2θ
(r)
r

λ
∣∣∣A]+ P [Ac]

≤ exp

(
− 1

4n

(
1− K

n

)
ε2

)
+ 2 exp

(
− nα2

3θrκ2π2K

)
+ 2 exp

(
− 2nα2

9θrκ2Kλ2

)
+ 4 exp

(
−n

2

)
+ 2p2 exp

(
−C3nλ

2

κ2

)
+ 4p exp

(
−C1nλ

κ2

)
+ 4p exp (−C2nλ)

≤ c4 exp (−c5n) +
c6

p
, (45)

for some constants c4, c5, c6, x > 0 that do not depend on n and p.

We now consider a bound for δI . Recall from (43) that

δI = F1 + F2

where

F1 =−
(
XT
IXI

)−1
XT
IXrδr,

F2 =−
(

1

n
XT
IXI

)−1(
WI,r +

λ

2
D

)
with D =

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

.

An `∞ bound of F2 is given by

‖F2‖∞ ≤
∥∥∥∥∥
((

1

n
XT
IXI

)−1

− (ΣII)
−1

)(
WI,r +

λ

2
D

)∥∥∥∥∥
∞

+

∥∥∥∥(ΣII)
−1

(
WI,r +

λ

2
D

)∥∥∥∥
∞
.

(46)

On the event A, by (41),∥∥∥∥(ΣII)
−1

(
WI,r +

λ

2
D

)∥∥∥∥
∞
≤
∣∣∣∣∣∣∣∣∣(ΣII)−1

∣∣∣∣∣∣∣∣∣
∞

(
‖WI,r‖∞ +

λ

2
‖D‖∞

)
≤
∣∣∣∣∣∣∣∣∣(ΣII)−1

∣∣∣∣∣∣∣∣∣
∞

(
1 +

π2

12

)
λ ≤ 2λ

∣∣∣∣∣∣∣∣∣(ΣII)−1/2
∣∣∣∣∣∣∣∣∣2
∞
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To deal with the first term in (46), note that XI = WI (ΣII)
1/2, where WI ∈ Rn×K is

a standard Gaussian random matrix, i.e., (WI)ij ∼ N(0, 1). Thus we can write it as∥∥∥∥∥(ΣII)
−1/2

[(
1

n
W T
I WI

)−1

− IK

]
(ΣII)

−1/2

(
WI,r +

λ

2
D

)∥∥∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣(ΣII)−1/2

∣∣∣∣∣∣∣∣∣
∞
G,

where

G =

∥∥∥∥∥
[(

1

n
W T
I WI

)−1

− IK

]
(ΣII)

−1/2

(
WI,r +

λ

2
D

)∥∥∥∥∥
∞

.

By Lemma 5 in Wainwright (2009), we have, for some constant c7 > 0.

P

[
G ≥

∥∥∥∥(ΣII)
−1/2

(
WI,r +

λ

2
D

)∥∥∥∥
∞

∣∣∣XI] ≤ 4 exp (−c7 min {K, log J})

Note that conditioning on A,
∥∥∥(ΣII)

−1/2 (WI,r + λ
2 D
)∥∥∥
∞

is upper bounded by

2λ
∣∣∣∣∣∣∣∣∣(ΣII)−1/2

∣∣∣∣∣∣∣∣∣
∞

. Thus,

P

[
G ≥ 2λ

∣∣∣∣∣∣∣∣∣(ΣII)−1/2
∣∣∣∣∣∣∣∣∣2
∞

∣∣∣A] ≤ 4 exp (−c7 min {K, log J}) ,

and

P

[
‖F2‖∞ ≥ 4λ

∣∣∣∣∣∣∣∣∣(ΣII)−1/2
∣∣∣∣∣∣∣∣∣2
∞

]
≤ P

[
‖F2‖∞ ≥ 4λ

∣∣∣∣∣∣∣∣∣(ΣII)−1/2
∣∣∣∣∣∣∣∣∣2
∞

∣∣∣A]+ P [Ac]

≤ 4 exp (−c7 min {K, log J}) +
c6

p
. (47)

Turning to F1, conditioned on XI , by decomposition (39), we have that

‖F1‖∞ ≤
∥∥∥(ΣII)

−1 ΣIr

∥∥∥
∞
|δr|+

∥∥∥(XT
IXI

)−1
XT
IErδr

∥∥∥
∞
.

By (45) and A3,

P

[∥∥∥(ΣII)
−1 ΣIr

∥∥∥
∞
|δr| ≥

5

2θ
(r)
r

λ

]
≤ c4 exp (−c5n) +

c6

p
.

Consider each coordinate j ∈ I of the random term whose variance is bounded by

Var
[
eTj
(
XT
IXI

)−1
XT
IErδr

∣∣∣XI] ≤ θr
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

1

n
XT
IXI

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ2
r

n
.

By Lemma 18 and (45),

P

[
Var

[
eTj
(
XT
IXI

)−1
XT
IErδr

∣∣∣XI] ≥ 235

4

κ2

θr

λ2

n

]
≤ 2 exp

(
−n

2

)
+ c4 exp (−c5n) +

c6

p
.
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Thus by Lemma 13,

P

[∥∥∥(XT
IXI

)−1
XT
IErδr

∥∥∥
∞
≥ 5

2θ
(r)
r

λ

]
≤2 exp

(
− n

18θrκ2

)
+ 2 exp

(
−n

2

)
+c4 exp (−c5n) +

c6

p
,

and

P

[
‖F1‖∞ ≥

5

θ
(r)
r

λ

]
≤ 2 exp

(
− n

18θrκ2

)
+ 2 exp

(
−n

2

)
+ c4 exp (−c5n) +

c6

p
.

Combining with (45) and (47), we have

P

[
‖δ‖∞ ≥ 4λ

∣∣∣∣∣∣∣∣∣(ΣII)−1/2
∣∣∣∣∣∣∣∣∣2
∞

+
5

θ
(r)
r

λ

]
≤ c8 exp (−c9n) + 2

c6

p
+ 4 exp (−c7 min {K, log J}) ,

for some constants c8, c9 > 0 that do not depend on n and J .

F.3 Proof of Property 3 in Theorem 1

Finally we establish a βmin condition, which, combined with the `∞ rate, gives the other
direction of the support recovery, i.e., K(β̂) ≥ K.

By the triangle inequality ∣∣∣β̃j∣∣∣ ≥ |βj | − ∣∣∣β̃j − βj∣∣∣ .
So if we have

max
j≥J+1

{
|βj | −

∣∣∣β̃j − βj∣∣∣} > 0,

then K(β̃) ≥ K.

Appendix G. Proof of Theorem 3

Proof The overall proof techniques are the same as the proof of Theorem 1. The first part of
the theorem holds if max2≤r≤p max1≤`≤Jr |ã(r`)| < 1. Now for each r = 2, . . . , p we proceed
with the same primal-dual witness procedure and end up with the same decomposition (40).

Assumption A3 ensures that max2≤r≤p max1≤`≤Jr |F (r`)| ≤ 1 − α. Following the same
line of proof to deal with random term R(r`), we have that R(r`) is zero-mean Gaussian with
conditional variance bounded above by the scaling

θrM̄
(r)
n (ε) =

3κ2π2θr
2

K∗r
n

+
θr

θ
(r)
r

1

(n−K∗r ) (1− ε) +
16θr
nλ2

≤3κ2π2θr
2

(
K

n
+

κ2

nθ
(r)
r (1− ε)2

+
16

nλ2

)
,
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for ε ∈
(
0, 1

2

)
with high probability, where we use the fact that K = o(n) implies that K

n ≤ ε
for n large. And

P
[∣∣∣R(r`)

∣∣∣ ≥ α] ≤ 2 exp

(
− α2

2θrM̄
(r)
n (ε)

)
+ 7 exp (−c3n) .

Thus,

P

[
max

2≤r≤p
max

1≤`≤Jr

∣∣∣R(r`)
∣∣∣ ≥ α] ≤ 2

p∑
r=2

Jr exp

(
− α2

2θrM̄
(r)
n (ε)

)
+ 7

p∑
r=2

Jr exp (−c3n)

≤ p2 exp

(
− α2

3κ2π2θKn + 8θκ2

n + 32θ
nλ2

)
+

7

2
p2 exp (−c3n) .

For the exponential term to decay faster than p2, we need

n

log p
> max

{
2

α2

(
3κ2π2θK + 8κ2θ +

32θ

λ2

)
,

2

c3

}
.

Appendix H. Proof of Theorem 4

Lemma 17 Using the notation and conditions in Theorem 4, the following deviation bounds
hold with high probability: ∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

∞
≤ ζΓ (K + 1)

√
log p

n
,∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

1
≤ ζΓ (K + 1)

√
log p

n
,∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

2
≤ ζΓ (K + 1)

√
log p

n
,∥∥∥L̂− L∥∥∥

F
≤ ζΓ

√
(s+ p) log p

n
.

Proof By Theorem 3, with high probability, the support of L̂ is contained in the true
support and ∥∥∥L̂− L∥∥∥

∞
≤ ζΓ

√
log p

n
.

Note that∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣
∞

= max
2≤r≤p

r∑
c=1

∣∣∣L̂rc − Lrc∣∣∣ ≤ max
2≤r≤p

(Kr + 1)
∥∥∥L̂− L∥∥∥

∞
≤ (K + 1)

∥∥∥L̂− L∥∥∥
∞
.
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Denote D = max1≤c≤p−1Dc where Dc = |{r = c, . . . , p : Lrc 6= 0}|. Observing that D ≤ K,
we have ∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

1
= max

1≤c≤p−1

c∑
r=1

∣∣∣L̂rc − Lrc∣∣∣ ≤ max
1≤c≤p−1

(Dc + 1)
∥∥∥L̂− L∥∥∥

∞

≤ (D + 1)
∥∥∥L̂− L∥∥∥

∞
≤ (K + 1)

∥∥∥L̂− L∥∥∥
∞
.

By Hölder’s inequality∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣
2
≤
√∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

1

∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣
∞
.

Finally for Frobenius norm,∥∥∥L̂− L∥∥∥2

F
=

p∑
r=2

r∑
c=Jr+1

(
L̂rc − Lrc

)2
≤

p∑
r=2

r∑
c=Jr+1

∥∥∥L̂− L∥∥∥2

∞
≤ ζ2

Γ

(∑
r

Kr + p

)
log p

n
.

Proof [of Theorem 4] First note that

L̂T L̂− LTL =
(
L̂− L

)T (
L̂− L

)
+ L̂TL+ LT L̂− 2LTL

=
(
L̂− L

)T (
L̂− L

)
+
(
L̂− L

)T
L+ LT

(
L̂− L

)
.

Thus, ∥∥∥L̂T L̂− LTL∥∥∥
∞
≤
∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

∞

∥∥∥L̂− L∥∥∥
∞

+ 2|||L|||∞
∥∥∥L̂− L∥∥∥

∞
,∣∣∣∣∣∣∣∣∣L̂T L̂− LTL∣∣∣∣∣∣∣∣∣

1
=
∣∣∣∣∣∣∣∣∣L̂T L̂− LTL∣∣∣∣∣∣∣∣∣

∞
≤ 2|||L|||∞

∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣2

∞
.

By Hölder’s inequality∣∣∣∣∣∣∣∣∣L̂T L̂− LTL∣∣∣∣∣∣∣∣∣
2
≤
√∣∣∣∣∣∣∣∣∣L̂T L̂− LTL∣∣∣∣∣∣∣∣∣

1

∣∣∣∣∣∣∣∣∣L̂T L̂− LTL∣∣∣∣∣∣∣∣∣
∞
.

Finally, for Frobenius norm, observe that∥∥∥LT (L̂− L)∥∥∥
F

=
∥∥∥vec

(
LT
(
L̂− L

))∥∥∥
2

=
∥∥∥(Ip ⊗ LT ) vec

(
L̂− L

)∥∥∥
2

≤
∣∣∣∣∣∣Ip ⊗ LT ∣∣∣∣∣∣2 ∥∥∥L̂− L∥∥∥F = |||L|||2

∥∥∥L̂− L∥∥∥
F
.

Applying the same strategy to
∥∥∥(L̂− L)(L̂− L)∥∥∥

F
, we have∥∥∥L̂T L̂− LTL∥∥∥

F
≤
(∣∣∣∣∣∣∣∣∣L̂− L∣∣∣∣∣∣∣∣∣

2
+ 2|||L|||2

)∥∥∥L̂− L∥∥∥
F
,

then the results follow from Corollary 17.
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Appendix I. Proof of Theorem 6

Proof We adapt the proof technique of Rothman et al. (2008). Let

G(∆) =− 2 log det (L+ ∆) + tr
(
S (L+ ∆)T (L+ ∆)

)
+ λ ‖(∆ + L)‖∗2,1

+ 2 log detL− tr
(
SLTL

)
− λ ‖L‖∗2,1 , (48)

where L is the inverse of the Cholesky factor of the true covariance matrix, and the penalty
is defined above as

‖L‖∗2,1 =

p∑
r=2

r−1∑
`=1

√√√√∑̀
m=1

w2
`mL

2
rm.

Since the estimator L̂ is defined as

L̂ = arg min
Ljk=0:j<k

{
−2 log detL+ tr

(
SLTL

)
+ λ ‖L‖∗2,1

}
,

it follows that G(∆) is minimized at ∆̂ = L̂ − L. Consider the value of G(∆) on the set
defined as

Θn(M) =
{

∆ : ∆jk = 0 for all k > j, (∆ + L)jj > 0 for all j , ‖∆‖F = Mrn

}
,

where M > 0 and

rn =

√
(
∑p

r=2Kr + p) log p

n
.

The assumed scaling implies that rn → 0. We aim at showing that inf {G(∆) : ∆ ∈ Θn(M)} >
0. If it holds, then the convexity of G (∆) and the fact that G(∆̂) ≤ G(0) = 0 implies

‖∆̂‖F = ‖L̂− L‖F ≤Mrn.

We start with analyzing the logarithm terms in (48). First let f(t) = log det(L + t∆).
Using a Taylor expansion of f(t) at t = 0 with f ′(t) = tr[(L + t∆)−1∆] and f ′′(t) =
−vec ∆T (L+ t∆)−1 ⊗ (L+ t∆)−1 vec ∆, we have

log det(L+ ∆)− log det(L)

= tr(L−1∆)− (vec ∆)T
[∫ 1

0
(1− ν)(L+ ν∆)−1 ⊗ (L+ ν∆)−1dν

]
(vec ∆).

The trace term in (48) can be written as

tr
(
S (L+ ∆)T (L+ ∆)

)
− tr

(
SLTL

)
= tr

(
SLT∆ + S∆TL+ S∆T∆

)
= 2 tr

(
SLT∆

)
+ tr

(
S∆T∆

)
≥ 2 tr

(
SLT∆

)
,
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where the last inequality comes from the fact that the sample covariance matrix S is positive
semidefinite. Combining these with (48) gives

G(∆) ≥2(vec ∆)T
[∫ 1

0
(1− ν)(L+ ν∆)−1 ⊗ (L+ ν∆)−1dν

]
(vec ∆)

+ 2 tr[(SLT − L−1)∆] + λ
(
‖L+ ∆‖∗2,1 − ‖L‖∗2,1

)
≡(a) + (b) + (c). (49)

The integral term (a) above has a positive lower bound. Recalling that
σmin(M) = min‖x‖=1 x

TMx is a concave function of M (the minimum of linear functions of
M is concave), we have

(a) = 2‖ vec ∆‖2 vec ∆T

‖ vec ∆‖

[∫ 1

0
(1− ν)(L+ ν∆)−1 ⊗ (L+ ν∆)−1dν

]
vec ∆

‖ vec ∆‖

≥ 2‖∆‖2Fσmin

[∫ 1

0
(1− ν)(L+ ν∆)−1 ⊗ (L+ ν∆)−1dν

]
≥ 2‖∆‖2F

[∫ 1

0
(1− ν)σmin

(
(L+ ν∆)−1 ⊗ (L+ ν∆)−1

)
dν

]
≥ 2‖∆‖2F

∫ 1

0
(1− ν)σ2

min(L+ ν∆)−1dν

≥ ‖∆‖2F min
0≤ν≤1

σ2
min(L+ ν∆)−1

≥ ‖∆‖2F min
{
σ2

min(L+ ∆̃)−1 : ‖∆̃‖F ≤Mrn

}
. (50)

The second inequality uses Jenson’s inequality of the concave function σmin(·), and the third
inequality uses the fact that σmin (A⊗A) = σmin (A)2 for any positive (semi)definite matrix
A. Using triangle inequality on the matrix operator norm, we have

σ2
min(L+ ∆̃)−1 = σ−2

max(L+ ∆̃) ≥
(
|||L|||2 +

∣∣∣∣∣∣∣∣∣∆̃∣∣∣∣∣∣∣∣∣
2

)−2
≥ 1

2|||L|||22
≥ κ2

2
,

where the second inequality holds with high probability since
∣∣∣∣∣∣∣∣∣∆̃∣∣∣∣∣∣∣∣∣

2
≤ ‖∆̃‖F ≤ Mrn ≤

|||L|||2 as rn → 0 and the last inequality follows from Assumption A4. This gives the lower
bound for the first term in (49):

(a) ≥ 1

2
κ2‖∆‖2F =

1

2
κ2M2r2

n. (51)

To deal with (b), we start by recalling some notation. We let S = {(r, j) : Lrj 6= 0} denote
the support of L, and s =

∑p
r=2Kr be the number of non-zero off-diagonal elements. We

also define

‖L‖2,1 =

p∑
r=2

r−1∑
`=1

w``|Lr`| =
p∑
r=2

r−1∑
`=1

|Lr`|,
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where the last equality holds since w`` = 1 by (7). Then, by the Cauchy-Schwarz inequality,

∣∣tr[(SLT − L−1)∆]
∣∣ =

∣∣∣∣∣∣
p∑
r=1

r∑
j=1

(
SLT − L−1

)
rj

∆rj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
p∑
r=1

∑
j∈Ir

(SLT − L−1)rj∆rj

∣∣∣∣∣∣+

∣∣∣∣∣∣
p∑
r=1

∑
j /∈Ir

(SLT − L−1)rj∆rj

∣∣∣∣∣∣
≤ √s+ p

∥∥SLT − L−1
∥∥
∞ ‖∆S‖F +

∥∥SLT − L−1
∥∥
∞ ‖∆Sc‖2,1

≤ C1
√
s+ p

√
log p

n
‖∆S‖F + C1

√
log p

n
‖∆Sc‖2,1 , (52)

where the last inequality comes from Lemma 15 with probability tending to 1. To bound
the penalty terms, we note that

‖L+ ∆‖∗2,1 − ‖L‖∗2,1

=

p∑
r=2

r−1∑
`=1

√√√√∑̀
m=1

w2
`m(Lrm + ∆rm)2 − ‖LS‖∗2,1

=

p∑
r=2

r−1∑
`=1

√ ∑
m:(r,m)∈S

w2
`m(Lrm + ∆rm)2 +

∑
m:(r,m)/∈S

w2
`m(Lrm + ∆rm)2 − ‖LS‖∗2,1

≥
p∑
r=2

r−1∑
`=1

√ ∑
m:(r,m)∈S

w2
`m(Lrm + ∆rm)2 +

p∑
r=2

∑
`:(r,`)/∈S

|Lr` + ∆r`| − ‖LS‖∗2,1

= ‖LS + ∆S‖∗2,1 + ‖LSc + ∆Sc‖2,1 − ‖LS‖∗2,1
= ‖LS + ∆S‖∗2,1 + ‖∆Sc‖2,1 − ‖LS‖∗2,1
≥‖∆Sc‖2,1 − ‖∆S‖∗2,1 ,

where the last inequality comes from triangle inequality. To give an upper bound on ‖LS‖∗2,1,

we observe that 2λb ≤ aλ2 + b2/a holds for any a > 0, and obtain

2λ ‖∆S‖∗2,1 =

p∑
r=2

2λ
r−1∑

`=Jr+1

√√√√ ∑̀
m=Jr+1

w2
`m∆2

rm

≤
(

p∑
r=2

Kr

)
λ2a+

p∑
r=2

r−1∑
`=Jr+1

∑̀
m=Jr+1

w2
`m∆2

rm/a

=

(
p∑
r=2

Kr

)
λ2a+

p∑
r=2

r−1∑
m=Jr+1

(
r−1∑
`=m

w2
`m

)
∆2
rm/a.
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Now let

a =
4

κ2
max
r

max
Jr+1≤m≤r−1

r−1∑
`=m

w2
`m

=
4

κ2
max
r

max
Jr+1≤m≤r−1

r−1∑
`=m

1

(`−m+ 1)4 ≤
∞∑
k=1

4

k4κ2
≤ C2

κ2
,

for some constant C2 > 0, it follows that

λ ‖∆S‖∗2,1 ≤
C2

κ2
sλ2 + ‖∆S‖2F

κ2

4
≤ C2

κ2
sλ2 + ‖∆‖2F

κ2

4
.

Therefore,

λ
(
‖L+ ∆‖∗2,1 − ‖L‖∗2,1

)
≥ λ ‖∆Sc‖2,1 −

C2

κ2
sλ2 − κ2

4
‖∆‖2F . (53)

Finally, combining (51), (52), and (53), we have

G(∆) ≥ κ2

4
‖∆‖2F − C1

√
(s+ p) log p

n
‖∆‖F +

(
λ− C1

√
log p

n

)
‖∆Sc‖2,1 −

C2

κ2
sλ2.

For any ε < 1, choose

λ =
C1

ε

√
log p

n
.

Since ‖∆‖F = Mrn, we have

G(∆) ≥κ
2

4
M2r2

n − C1Mr2
n + C1

√
log p

n

(
1

ε
− 1

)
‖∆Sc‖2,1 −

C2C
2
1

κ2ε2

s log p

n

≥
(
κ2

4
M2 − C1M −

C2C
2
1

κ2ε2

)
r2
n > 0,

for M sufficiently large.

Appendix J. Proof of Lemma 10

Proof Denote

L
(
τ, z, β; ν, φ, a(`)

)
=− 2 log τ +

1

n
‖z‖22 + ν (τ − βr) +

1

n
〈φ, z −X1:rβ〉+ λ

r−1∑
`=1

〈
W (`) ∗ a(`), β

〉
.
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Then the primal (8) can be written equivalently as

min
τ,z,β

{
max
ν,φ,a(`)

{
L
(
τ, z, β; ν, φ, a(`)

)
:

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0

}}
.

The dual function can then be written as

g
(
ν, φ, a(`)

)
= inf
τ,z,β
L
(
τ, z, β; ν, φ, a(`)

)
= inf

τ
{−2 log τ + ντ}+ inf

z

{
1

n
‖z‖22 +

1

n
〈φ, z〉

}
+ inf

β

{
−νβr −

1

n

〈
XT

1:rφ, β
〉

+ λ

r−1∑
`=1

〈
W (`) ∗ a(`), β

〉}

=2 log ν − 2 log 2 + 2− 1∞ {ν > 0} − 1

4n
‖φ‖22

− 1∞

{
−νer −

1

n
XT

1:rφ+ λ

r−1∑
`=1

W (`) ∗ a(`) = 0

}
,

where er ∈ Rr is such that (er)r = 1 and (er)j = 0 for all j 6= r. Thus the dual problem
(up to a constant) is

max
ν,φ,a(`)

g
(
ν, φ, a(`)

)
= min

ν,φ,a(`)

{
−2 log ν +

1

4n
‖φ‖22 s.t. ν > 0,

∥∥∥∥(a(`)
)
gr,`

∥∥∥∥
2

≤ 1,
(
a(`)
)
gcr,`

= 0,

νer +
1

n
XT

1:rφ = λ
r−1∑
`=1

W (`) ∗ a(`)

}
.

The primal-dual relation is

β̂r = τ̂ =
2

ν̂
φ̂ = −2ẑ = −2X1:rβ̂.

This implies that at optimal points

− 2

β̂r
er + 2S1:r,1:rβ̂ + λ

r−1∑
`=1

W (`) ∗ â(`) = 0,

with
∥∥∥(â(`)

)
gr,`

∥∥∥
2
≤ 1,

(
â(`)
)
gcr,`

= 0.

If we denote the objective function as

f (β) = −2 log βr +
〈
S1:r,1:r, ββ

T
〉

+ λP (β),

then from the equality f(β̂) = L
(
τ̂ , ẑ, β̂; ν̂, φ̂, â(`)

)
together with the primal-dual relation,

we have

P (β̂) =

r−1∑
`=1

〈
W (`) ∗ â(`), β̂

〉
=

r−1∑
`=1

〈
W (`) ∗ β̂, â(`)

〉
.
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Suppose there exists some ` with β̂gr,` 6= 0 but
(
â(`)
)
gr,`
6=

(W (`)∗β̂)
gr,`∥∥∥∥(W (`)∗β̂)
gr,`

∥∥∥∥
2

,

then
〈
W (`) ∗ β̂, â(`)

〉
<

∥∥∥∥(W (`) ∗ β̂
)
gr,`

∥∥∥∥
2

while for other `′ by Cauchy-Schwarz inequality

we have
〈
W (`′) ∗ β̂, â(`′)

〉
≤
∥∥∥∥(W (`′) ∗ β̂

)
gr,`′

∥∥∥∥
2

. Therefore, summing over all ` = 1, . . . , r−1

would give

P (β̂) =
r−1∑
`=1

∥∥∥∥(W (`) ∗ β̂
)
gr,`

∥∥∥∥
2

>

p∑
r=2

r−1∑
`=1

〈
W (`) ∗ β̂, â(`)

〉
,

which leads to a contradiction. Thus
(
â(`)
)
gr,`

=
(W (`)∗β̂)

gr,`∥∥∥∥(W (`)∗β̂)
gr,`

∥∥∥∥
2

for β̂gr,` 6= 0 and
∥∥∥â(`)

gr,`

∥∥∥
2
≤ 1

for β̂gr,` = 0.

Appendix K. Proof of Lemma 11

Proof In this proof, we continue to use the notation in Appendix J. Observe that L
(
τ, z, β; ν, φ, a(`)

)
is jointly convex in τ , z and β, and it is strictly convex in τ and z. Thus, the minimizers ẑ
and τ̂ are unique.

To see this in a more general setting, without loss of generality, suppose f(x, y) is convex
in y and is strictly convex in x. Then for x1 6= x2 and θ ∈ (0, 1) we have

f (θx1 + (1− θ)x2, y) < θf (x1, y) + (1− θ) f (x2, y)

Now suppose (x̂1, ŷ) and (x̂2, ŷ2) are both minima of f , then taking θ = 1/2 we have

f
(
x̂1+x̂2

2 , ŷ
)
< f (x̂1, ŷ) = f (x̂2, ŷ), which leads to a contradiction.

By the primal-dual relation, we know that if β̂ and β̃ are two solutions to (8), then
β̂r = β̃r and X1:rβ̂ = X1:rβ̃. So from the equality f(β̂) = f(β̃) we know that P (β̃) = P (β̂).
Also by

f
(
β̂
)

= L
(
τ̂ , ẑ, β̂; ν̂, φ̂, â(`)

)
≤ L

(
τ̂ , ẑ, β̃; ν̂, φ̂, â(`)

)
≤ L

(
τ̃ , z̃, β̃; ν̃, φ̃, ã(`)

)
= f

(
β̃
)
,

we have

L
(
τ̂ , ẑ, β̂; ν̂, φ̂, â(`)

)
= L

(
τ̂ , ẑ, β̃; ν̂, φ̂, â(`)

)
,

and thus

r−1∑
`=1

〈
W (`) ∗ â(`), β̃

〉
=

r−1∑
`=1

〈
W (`) ∗ â(`), β̂

〉
= P (β̂) = P (β̃) =

r−1∑
`=1

∥∥∥∥(W (`) ∗ β̃
)
gr,`

∥∥∥∥
2

.

Now for any ` ≤ r − 1 suppose
∥∥∥(â(`)

)
gr,`

∥∥∥
2
< 1, then for the equality above to hold,

we must have β̃gr,` = 0. Therefore, by Lemma 10, β̂gr,` = 0 =⇒ β̃gr,` = 0, so any other

51



Yu and Bien

solutions to (8) cannot be less sparse than β̂.

Appendix L. Proof of Lemma 12

Proof By Lemma 11, any other solution β to (8) must have βgJ(β̂) = 0. Recall that

J(β̂) = r − 1−K(β̂). The original problem (8) can thus be written equivalently as

min
γ∈RK(β̂)+1

−2 log γK(β̂)+1 +
1

n

∥∥XŜγ∥∥2

2
+ λ

K(β̂)∑
`=1

∥∥∥∥(Ŵ (`) ∗ γ
)
gr,`

∥∥∥∥
2

,

where Ŵ (`) =
(
W (`+Ĵ)

)
Ŝ

.

Note that the penalty term is a convex function of γ. The Hessian matrix of the first
term is a diagonal matrix of dimension |Ŝ| = K(β̂) + 1 with non-negative entries in the
diagonal. The Hessian matrix of the second term is 2SŜŜ . Then by Assumption A1, the
uniqueness follows from strict convexity.

Appendix M. Proof of Lemma 14

Proof Recall that

Mn =
1

n

(
r−1∑
`=1

W (`) ∗ ã(`)

)T
I

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

+
4

n2λ2
β̃2
r ‖OIEr‖22 .

We cite Lemma 9 (specifically in the form (60)) in Wainwright (2009) here for completeness.

Lemma 18 (Wainwright 2009) For k ≤ n, let XI ∈ Rn×k have i.i.d. rows from a
multivariate Gaussian distribution with mean 0 and covariance matrix Σ. If Σ has minimum
eigenvalue κ > 0, then

P

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

1

n
XT
I XI

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≥ 9

κ

]
≤ 2 exp

(
−n

2

)
.

By the lemma above, Assumption A4, and (41)

1

n

(
r−1∑
`=1

W (`) ∗ ã(`)

)T
I

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

≤ 9κ2

n

∥∥∥∥∥
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

∥∥∥∥∥
2

≤ 3π2κ2

2

K

n
,

with probability greater than 1− 2 exp
(
−n

2

)
.
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Next we deal with the second term in Mn. Recall from (37) that

4

n2λ2
β̃2
r ‖OIEr‖22 =

4

n2

 1
2XT

r CI +
√

1
4 (XT

r CI)
2 + 4

λ2n
‖OIEr‖22

2
n ‖OIEr‖

2
2

2

‖OIEr‖22

≤ 4

n2

1
4

(
XT
r CI

)2
+ 4

λ2n
‖OIEr‖22

1
n2 ‖OIEr‖42

‖OIEr‖22

=

(
XT
r CI

)2
‖OIEr‖22

+
16

λ2n
.

The next lemma gives us a handle on the numerator of the first term.

Lemma 19 Using the general weight (7), we have

P
[∣∣XT

r CI
∣∣ ≥ 1

]
≤ 2 exp

(
− nα2

3θκ2π2K

)
+ 2 exp

(
−n

2

)
.

Proof Conditioned on XI , from the decomposition (39) and the definition of CI

XT
r CI = ΣrI (ΣII)

−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

+ ETr XI
(
XT
IXI

)−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

.

By the irrepresentable assumption (A3) and (41),

ΣrI (ΣII)
−1

(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

≤ 1− α.

Note that Var (Eir) = θ
(r)
r for i = 1, . . . , n. LetB(r) = ETr XI

(
XT
IXI

)−1
(∑r−1

`=1 W
(`) ∗ ã(`)

)
I
.

By Lemma 18, B(r) has mean zero and variance at most

Var
(
B(r)

∣∣∣XI) =
θ

(r)
r

n

(
r−1∑
`=1

W (`) ∗ ã(`)

)T
I

(
1

n
XT
IXI

)−1
(
r−1∑
`=1

W (`) ∗ ã(`)

)
I

≤ 3θ
(r)
r κ2π2K

2n
,

with probability greater than 1− 2 exp
(
n
2

)
. By Lemma 13, we have that

P
[
B(r) ≥ α

]
≤ 2 exp

(
− nα2

3θ
(r)
r κ2π2K

)
+ 2 exp

(
−n

2

)
.

Since
‖OIEr‖22
θ
(r)
r

∼ χ2 (n−K). To bound it, we cite a concentration inequality from

Wainwright (2009) (specifically (54b)) as the following lemma:
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Lemma 20 (Tail Bounds for χ2-variates, Wainwright 2009) For a centralized χ2-variate
X with d degrees of freedom, for all ε ∈ (0, 1/2), we have

P [X ≤ d(1− ε)] ≤ exp

(
−1

4
dε2

)
.

From Lemma 20 it follows that

P
[
‖OIEr‖22 ≤ θ(r)

r (n−K) (1− ε)
]
≤ exp

(
−1

4
(n−K) ε2

)
,

which together with Lemma 19 implies that

P

[(
XT
r CI

)2
‖OIEr‖22

≥ 1

θ
(r)
r (n−K) (1− ε)

]

≤2 exp

(
− nα2

3θ
(r)
r κ2π2K

)
+ 2 exp

(
−n

2

)
+ exp

(
−1

4
(n−K) ε2

)
.

The result follows from a union bound.

Appendix N. Proof of Lemma 15

Proof The proof strategy is based on the proof of Lemma 2 in Bien et al. (2016).
For the design matrix Xn×p with independent rows, denote Xi = (Xi·)

T ∈ Rp. Then

Xi are i.i.d with mean 0 and true covariance matrix Σ =
(
LTL

)−1
for i = 1, ..., n. And

X̄ = 1
n

∑n
i=1Xi has mean 0 and true covariance matrix 1

nΣ.
Let Yi = LXi ∈ Rp. Then Yi are i.i.d with mean 0 and true covariance matrix

LΣLT = L
(
LTL

)−1
LT = Ip. And Ȳ = 1

n

∑n
i=1 Yi = 1

n

∑n
i=1 LXi = LX̄ has mean zero and

covariance matrix 1
nIp. Also the corresponding design matrix Y = XLT has independent

rows.

SLT =
1

n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
LT

=
1

n

n∑
i=1

(
Xi − X̄

) (
LXi − LX̄

)T
=

1

n

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)T
.

So we have (
SLT

)
ij

= n−1
p∑

k=1

XkiYkj − X̄iȲj .

Letting
W = SLT − L−1,

we have that

|Wij | ≤
∣∣∣∣∣n−1

p∑
k=1

XkiYkj −
(
L−1

)
ij

∣∣∣∣∣+
∣∣X̄iȲj

∣∣ .
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P

[
max
ij
|W|ij > t

]
≤P

[
max
ij

∣∣∣∣∣n−1
p∑

k=1

XkiYkj −
(
L−1

)
ij

∣∣∣∣∣ > t

2

]
+ P

[
max
ij

∣∣X̄iȲj
∣∣ > t

2

]

≤P

[∣∣∣∣∣n−1
p∑

k=1

XkiYkj −
(
L−1

)
ij

∣∣∣∣∣ > t

2
for some i, j

]

+ P

[
max
i

∣∣X̄i

∣∣ >√ t

2

]
+ P

[
max
j

∣∣Ȳj∣∣ >√ t

2

]

≤
∑
ij

P

[∣∣∣∣∣n−1
p∑

k=1

XkiYkj −
(
L−1

)
ij

∣∣∣∣∣ > t

2

]
+
∑
i

P

[∣∣X̄i

∣∣ >√ t

2

]
+
∑
j

P

[∣∣Ȳj∣∣ >√ t

2

]

≤p2 max
ij

P

[∣∣∣∣∣n−1
p∑

k=1

XkiYkj −
(
L−1

)
ij

∣∣∣∣∣ > t

2

]

+ pmax
i

P

[∣∣X̄i

∣∣ >√ t

2

]
+ pmax

j
P

[∣∣Ȳj∣∣ >√ t

2

]
:=p2 max

ij
Iij + pmax

i
IXi + pmax

j
IYj .

Consider IXi first. Since Xki are independent sub-Gaussian with variance Σii for k =
1, .., n, we have

E exp

(
t

X̄i√
Σii/n

)
=

n∏
k=1

E exp

(
t
Xki√
nΣii

)
by independence

≤
n∏
k=1

exp
(
C̃1t

2/n
)

= exp(C̃1t
2) by the definition of sub-Gaussian,

so X̄i is sub-Gaussian with variance Σii/n.

By Lemma 5.5 in Vershynin (2010), we have

P
[∣∣X̄i

∣∣ /√Σ∗ii > t
)
≤ exp

(
1− t2/K2

1

]
,

where K1 is a constant that does not depend on i.

Following the same argument we have

E exp
(
tȲi/

√
1/n

)
=

n∏
k=1

E exp
(
tYki/

√
n
)
≤ exp

(
C̃2t

2
)
,

thus

P
[∣∣Ȳi∣∣ /√1/n > t

)
≤ exp

(
1− t2/K2

2

]
,
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where K2 is a constant that does not depend on i. And we have

IXi + IYi = P
[∣∣X̄i

∣∣ >√t/2]+ P
[∣∣Ȳi∣∣ >√t/2]

= P

[ ∣∣X̄i

∣∣√
Σii/n

>

√
t/2√

Σii/n

]
+ P

[∣∣∣∣∣ Ȳi√
1/n

∣∣∣∣∣ >
√
t/2√
1/n

]

≤ exp

(
1− nt

2K2
1Σ∗ii

)
+ exp

(
1− nt

2K2
2

)
.

Thus

max
i

(
IXi + IYi

)
≤ 4 exp

(
− C1nt

maxi Σ∗ii

)
+ 4 exp (−C2nt)

for some constant C1.
Now consider the term Iij . We have shown that both X and Y have independent rows.

So for any i, j, Z
(ij)
k = XkiYkj are independent for k = 1, . . . , n. Let X ∼ N (0,Σ) and

Y ∼ N (0, Ip), then

E (XkiYkj) = Cov (X,LX)ij − 0 =
[
Cov (X,X)LT

]
ij

=
(
ΣLT

)
ij

=
(
L−1

)
ij
.

If there exist νij and cij such that

n∑
k=1

E
(
X2
kiY

2
kj

)
≤ νij

n∑
k=1

E
{

(XkiYkj)
q
+

}
≤ q!

2
νijc

q−2
ij for some q ≥ 3 ∈ N,

then by Theorem 2.10 (Corollary 2.11) in Boucheron et al. (2013), ∀t > 0, we have

P

[∣∣∣∣∣
n∑
k=1

(
XkiYkj − (L)−1

ij

)∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2

2 (νij + cijt)

)
.

The rest of the proof focuses on characterizing νij and cij . First, Lemma 5.5 in Vershynin
(2010) shows that, for some constant K3 that does not depend on j,(

E
∣∣∣Xij/

√
Σjj

∣∣∣q)1/q
≤ K3

√
q

holds for all q ≥ 1. Thus,

E |Xij |q ≤ Kq
3q
q/2 (Σjj)

q/2 .

Following the same argument, there exists some constant K4 that does not depend on j
such that

E |Yij |q ≤ Kq
4q
q/2

for all q ≥ 1.
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Therefore,

n∑
k=1

E
(
X2
kiY

2
kj

)
≤

n∑
k=1

√
EX4

kiEY
4
kj ≤ n

√
K4

324K4
424Σii

2 = 16nK2
3K

2
4Σii,

and

n∑
k=1

E
{

(XkiYkj)
q
+

}
≤

n∑
k=1

√
EX2q

ki EY
2q
kj ≤ n

√
K2q

3 (2q)2qK2q
4 (Σii)

2 = nKq
3K

q
4 (2q)q (Σii)

q/2 .

So taking

νij = K5nΣ∗ii,

cij = K5

√
Σ∗ii

for some K5 large enough and does not depend on i, j.
Now we have

Iij ≤ 2 exp

(
− n2t2

4 (2νij + cijtn)

)
= 2 exp

(
− nt2

4
(
2K5Σ∗ii +K5

√
Σiit

)) .
If t ≤ 2 maxi

√
Σ∗ii, then with C3 = (16K5)−1 we have

Iij ≤ 2 exp

(
− C2nt

2

maxi Σ∗ii

)
.

To sum up, for any 0 < t ≤ 2 maxi
√

Σ∗ii,

P

[
max
ij
|Wij | > t

]
≤ 2p2 exp

(
− C2nt

2

maxi Σ∗ii

)
+ 4p exp

(
− C1nt

maxi Σ∗ii

)
+ 4p exp (−C2nt) .
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