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Abstract

Recurrent neural networks (RNNs) have drawn interest from machine learning researchers be-
cause of their effectiveness at preserving past inputs for time-varying data processing tasks. To
understand the success and limitations of RNNs, it is critical that we advance our analysis of their
fundamental memory properties. We focus on echo state networks (ESNs), which are RNNs with
simple memoryless nodes and random connectivity. In most existing analyses, the short-term mem-
ory (STM) capacity results conclude that the ESN network size must scale linearly with the input
size for unstructured inputs. The main contribution of this paper is to provide general results char-
acterizing the STM capacity for linear ESNs with multidimensional input streams when the inputs
have common low-dimensional structure: sparsity in a basis or significant statistical dependence
between inputs. In both cases, we show that the number of nodes in the network must scale linearly
with the information rate and poly-logarithmically with the input dimension. The analysis relies on
advanced applications of random matrix theory and results in explicit non-asymptotic bounds on
the recovery error. Taken together, this analysis provides a significant step forward in our under-
standing of the STM properties in RNNs.
Keywords: short-term memory, recurrent neural networks, sparse signal recovery, low-rank re-
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1. Introduction

Recurrent neural networks (RNNs) have drawn interest from researchers because of their effective-
ness at processing sequences of data (Jaeger, 2001; Lukoševičius, 2012; Hinaut et al., 2014). While
deep networks have shown remarkable performance improvements at task such as image classi-
fication, RNNs have recently been successfully employed as layers in conventional deep neural
networks to expand these tools into tasks with time-varying data (Sukhbaatar et al.; Gregor et al.,
2015; Graves et al., 2013; Bashivan et al., 2016). This inclusion is becoming increasingly important
as neural networks are being applied to a growing variety of inherently temporal high-dimensional
data, such as video (Donahue et al., 2015), audio (Graves et al., 2013), EEG data (Bashivan et al.,
2016), two-photon calcium imaging (Apthorpe et al., 2016). Despite the growing use of both deep
and recurrent networks, theory characterizing the properties of such networks remain relatively
unexplored. For deep neural networks, much of the computational power is often attributed to flex-
ibility in learned representations (Mallat, 2016; Vardan et al., 2016; Patel et al., 2015). The power
of RNNs, however, is tied to the ability of the recurrent network dynamics to act as a distributed
memory substrate, preserving information about past inputs to leverage temporal dependencies for
data processing tasks such as classification and prediction. To understand the success and limita-
tions of RNNs, it is critical that we advance our analysis of the fundamental memory properties of
these network structures.

There are many types of recurrent network structures that have been employed in machine learn-
ing applications, each with varying complexity in the network elements and the training procedures.
In this paper we will focus on RNN structures known as echo state networks (ESNs). These net-
works have discrete time continuous-valued nodes x[n] ∈ RM that evolve at time n in response to
the inputs s[n] ∈ RL according to the dynamics:

x[n+ 1] = f(Wx[n] +Zs[n] + ε[n]), (1)

where W ∈ RM×M is the connectivity matrix defining the recurrent dynamics, Z ∈ RM×L is the
weight vector describing how the input drives the network, f(·) : RM → RM is an element-wise
nonlinearity evaluated at each node and ε[n] ∈ RM represents the error due to potential system im-
perfections (Jaeger, 2001; Wilson and Cowan, 1972; Amari, 1972; Sompolinsky et al., 1988; Maass
et al., 2002). In an ESN, the connectivity matrix W is random and untrained, while the simple
individual nodes have a single state variable with no memory. This is in contrast to approaches such
as long short-term memory units (Sak et al., 2014; Lipton et al., 2016; Kalchbrenner et al., 2016)
which have individual nodes with complex memory properties. As with many other recent papers,
we will also focus on linear networks where f(·) is the identity function (Jaeger, 2001; Jaeger and
Haas, 2004; White et al., 2004; Ganguli et al., 2008; Ganguli and Sompolinsky, 2010; Charles et al.,
2014; Wallace et al., 2013).

The memory capacity of these networks has been studied in both the machine learning and
computational neuroscience literature. In the approach of interest, the short-term memory (STM) of
a network is characterized by quantifying the relationship between the transient network activity and
the recent history of the exogenous input stream driving the network (Jaeger and Haas, 2004; Maass
et al., 2002; Ganguli and Sompolinsky, 2010; Wallace et al., 2013; Verstraeten et al., 2007; White
et al., 2004; Lukoševičius and Jaeger, 2009; Buonomano and Maass, 2009; Charles et al., 2014).
Note that this is in contrast to alternative approaches that characterize long-term memory in RNNs
through quantifying the number of distinct network attractors that can be used to stably remember
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input patterns with the asymptotic network state. In the vast majority of the existing theoretical
analysis of STM, the results conclude that networks withM nodes can only recover inputs of length
N ≤M (White et al., 2004; Wallace et al., 2013) when the inputs are unstructured.

However, in any machine-learning problem of interest, the input statistical structure is precisely
what we intend to exploit to accomplish meaningful tasks. For one example, many signals are
well-known to admit a sparse representation in a transform dictionary (Elad et al., 2010; Davies and
Daudet, 2006). In fact, some classes of deep neural networks have been designed to induce sparsity
at higher layers that may serve as inputs into the recurrent layers (LeCun et al., 2010; Kavukcuoglu
et al., 2010). For another example, a collection of time-varying input streams (e.g., pixels or image
features in a video stream) are often heavily correlated. In the specific case of single input streams
(L = 1) with inputs that are K-sparse in a basis, recent work (Charles et al., 2014) has shown
that the STM capacity can scale as favorably as M = O (K logγ(N)) ≤ N , where γ ≥ 1 is a
constant. In other words, the memory capacity can scale linearly with the information rate in the
signal and only logarithmically with the signal dimension, resulting in the potential for recovery
of inputs of length N � M . Unfortunately, existing analyses (Jaeger, 2001; White et al., 2004;
Ganguli and Sompolinsky, 2010; Charles et al., 2014) are generally specific to the restricted case of
single time-series inputs (L = 1) or unstructured inputs (Verstraeten et al., 2010).

Conventional wisdom is that structured inputs should lead to much higher STM capacity, though
this has never been addressed with strong analysis in the general case of ESNs with multidimen-
sional input streams. The main contribution of this paper is to provide general results characterizing
the STM capacity for linear randomly connected ESNs with multidimensional input streams when
the inputs are either sparse in a basis or have significant statistical dependence (with no sparsity as-
sumption). In both cases, we show that the number of nodes in the network must scale linearly with
the information rate and poly-logarithmically with the total input dimension. The analysis relies on
advanced applications of random matrix theory, and results in non-asymptotic analysis of explicit
bounds on the recovery error. Taken together, this analysis provides a significant step forward in our
understanding of the STM properties in RNNs. While this paper is primarily focused on network
structures in the context of RNNs in machine learning, these results also provide foundation for the
theoretical understanding of recurrent network structures in biological neural networks, as well as
the memory properties in other network structures with similar dynamics (e.g., opinion dynamics in
social networks).

2. Background and Related Work

2.1 Short Term Memory in Recurrent Networks

Many approaches have been used to analyze the STM of randomly connected networks, including
nonlinear networks (Sompolinsky et al., 1988; Massar and Massar, 2013; Faugeras et al., 2009;
Rajan et al., 2010; Galtier and Wainrib, 2016; Wainrib, 2015) and linear networks (Jaeger, 2001;
Jaeger and Haas, 2004; White et al., 2004; Ganguli et al., 2008; Ganguli and Sompolinsky, 2010;
Charles et al., 2014; Wallace et al., 2013) with both discrete-time and continuous-time dynamics.
These methods can be broadly be classified as either correlation-based methods (White et al., 2004;
Ganguli et al., 2008) or uniqueness methods (Jaeger, 2001; Maass et al., 2002; Jaeger and Haas,
2004; Charles et al., 2014; Legenstein and Maass, 2007; Büsing et al., 2010). Correlation methods
focus on quantifying the correlation between the network state and recent network inputs. In these
studies, the STM is defined as the time of the oldest input where the correlation between the network
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state and that input remains above a given threshold (White et al., 2004; Ganguli et al., 2008). These
methods have mostly been applied to discrete-time systems, and have resulted in bounds on the STM
that scale linearly with the number of nodes (i.e. M > N ).

In contrast, uniqueness methods instead aim to show that different network states correspond
to unique input sequences (i.e. the network dynamics are bijective).1 For uniqueness methods,
the STM is defined as the longest input length where this input-network state bijection still holds.
These methods have been used under the term separability property for continuous-time liquid
state machines (Maass et al., 2002; Vapnik and Chervonenkis, 1971; Legenstein and Maass, 2007;
Wallace et al., 2013; Büsing et al., 2010) and under the term echo-state property for discrete-time
ESNs (Jaeger, 2001; Yildiz et al., 2012; Buehner and Young, 2006; Manjunath and Jaeger, 2013).
The echo-state property is the method most related to the approach we take here, and essentially
derives the maximum length of the input signal such that the resulting network states remain unique.
While this property guarantees a bijection between inputs and network states, it does not take into
account input signal structure, does not capture the robustness of the mapping, and does not provide
guarantees for stably recovering the input from the network activity.

2.2 Compressed Sensing

The compressed sensing literature and its recent extensions include many tools for studying the
effects of random matrices applied to low-dimensional signals. Specifically, in the basic compressed
sensing problem we desire to recover the signal s ∈ RN from M measurements2 generated from a
random linear measurement operator,

x = A (s) + ε, (2)

where ε ∈ RM represents the potential measurement errors. Typically, s is assumed to have low-
dimensional structure and recovery is performed via a convex optimization program. The most
common example is a sparsity model where s can be represented as

s = Ψa,

where Ψ ∈ RN×N is a transform matrix and a ∈ RN is the sparse coefficient representation of s
with K � N of its entries non-zero. Under this sparsity assumption, the coefficient representation
is recoverable if the linear operatorA satisfies the restricted isometry property (RIP) that guarantees
uniqueness of the compressed measurements. Specifically, we say that A satisfies the RIP(2K,δ) if
for every 2K-sparse signal s, the following condition is satisfied:

C (1− δ) ≤ ||As||22 / ||s||
2
2 ≤ C (1 + δ) ,

where 0 < δ < 1 and C > 0 is a positive constant. When A satisfies the RIP(2K,δ) the sparse
coefficients a can be recovered by solving an `1-norm based optimization function

a = arg min
a
||a||1 such that ||x−A (Ψa)||2 ≤ ||ε||2 , (3)

1. We note that uniqueness-based methods imply recovery-based methods, modulo a recovery algorithm, as often re-
covery guarantees are based on some semblance of a bijection.

2. In the case of RNNs, the network node values act as the measurements of our system, prompting the use of M as the
number of measurements in this section

4



SEQUENCE MEMORY IN RECURRENT NETWORKS

up to a reconstruction error given by

||s− ŝ||2 ≤ α ||ε||2 + β

∣∣∣∣ΨT (s− sK)
∣∣∣∣

1√
K

, (4)

where α and β are constants (Candès et al., 2006). The first term of this recovery error bound de-
pends on the norm of the measurement error ε, while the second term depends on the `1 difference
between the true signal and the best K-sparse approximation of the true vector (sK). This term es-
sentially measures how closely the signal matches the sparsity model. The `1 optimization program
in (3) required for recovery can be solved by many efficient algorithms, including neurally plausible
architectures (Rozell et al., 2010; Balavoine et al., 2012; Shapero et al., 2014; Charles et al., 2012).

When the data of interest is a matrix S ∈ RL×N , other low-dimensional models have also
been explored. For example, as an alternative to a sparsity assumption, the successful low-rank
model assumes that there are correlations between rows and columns such that S has rank R <
min{L,N}. We can then write the decomposition of the matrix as

S = QV ∗,

whereQ ∈ RL×R and V ∗ ∈ RR×N . There is a rich and growing literature dedicated to establishing
guarantees for recovering low-rank matrices from incomplete measurements. Due to the difficulty
of establishing a general matrix-RIP property for observations of a matrix (Recht et al., 2010), the
guarantees in this literature more commonly use the optimality conditions for specific optimization
procedures to show that the resulting solution has bounded error with high probability. The most
common optimization program used for low-rank matrix recovery is the nuclear norm minimization,

S = arg min
S
||S||∗ such that ||x−A (S)||2 ≤ ||ε||2 , (5)

where the nuclear norm ||S||∗ is defined as the sum of the singular values of S (Candès and Tao,
2010; Candès and Plan, 2010; Recht et al., 2010; Chen and Suter, 2004; Fazel, 2002; Singer and Cu-
curingu, 2010; Toh and Yun, 2010; Liu and Vandenberghe, 2009; Jaggi et al., 2010). This optimiza-
tion procedure is similar to the `1-regularized optimization of Equation (3), however the nuclear-
norm induces sparsity in the singular values rather than the matrix entries directly.

The solution to Equation (5) can be shown to satisfy performance guarantees via the dual-
certificate approach (Candès and Plan, 2010; Ahmed and Romberg, 2015). This technique is a
proof by construction and shows that a dual certificate (i.e., a vector whose projections into and
out of the space spanned by the singular vectors of S are bounded) exists. Showing that such a
certificate exists demonstrates that Equation (5) converges to a valid solution and is key to deriving
accuracy bounds (Candès and Plan, 2010; Ahmed and Romberg, 2015). Specifically, if the dual
certificate exists, then the solution to Equation (5) satisfies the recovery bound∣∣∣∣∣∣Ŝ − S∣∣∣∣∣∣

F
≤

(
4

√
min(N,L)

2NL+M

M
+ 2

)
ε, (6)

where the Forbenius norm ‖ · ‖2F is defined as the sum of the squares of all the matrix entries. This
bound demonstrates that perfect recovery is achievable in the case where there is no error (ε = 0).
We note that alternate optimization programs with similar guarantees have been proposed in the
literature for inferring low-rank matrices (i.e. Ahmed and Romberg, 2015), but we will focus on
nuclear norm optimization approaches due to the extensive literature on nuclear-norm solvers and
the connections to sparse vector inference.
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2.3 STM Capacity via the RIP

The ideas and tools from the compressed sensing literature have recently been used to show that
a-priori knowledge of the input sparsity can lead to improvements recovery-based STM capacity
results for ESNs. For a single input stream under a sparsity assumption, Ganguli and Sompolinsky
(2010) analyzed an annealed version of the network dynamics to show that the network memory
capacity can be larger than the network size. Building on this observation, Charles et al. (2014)
provided an analysis of the exact network dynamics in an ESN (for the single input case of L = 1),
yielding precise bounds on a network’s STM capacity captured in the following theorem:

Theorem 1 (Theorem 4.1.1, Charles et al., 2014) Suppose N ≥ M , N ≥ K, N ≥ O(1),3 and
L = 1. Let U be any unitary matrix of eigenvectors (containing complex conjugate pairs) of the
connectivity matrixW and forM an even integer, denote the eigenvalues ofW by {ejwm}Mm=1. Let
the first M/2 eigenvalues ({ejwm}M/2

m=1) be chosen uniformly at random on the complex unit circle
(i.e., {wm}M/2

m=1 is uniformly distributed over [0, 2π)) and the otherM/2 eigenvalues as the complex
conjugates of these values. Furthermore, let the entries of the input weights z be i.i.d. zero-mean
Gaussian random variables with variance 1

M . Given RIP conditioning δ and failure probability
N− log4N ≤ η ≤ 1

e , if

M ≥ CK
δ2
µ2 (Ψ) log5 (N) log(η−1),

then for a universal constant C, with probability 1 − η the mapping of length-N input sequences
into M network state variables satisfies the RIP(2K, δ).

This theorem proves a rigorous and non-asymptotic bound on the length of the input that can
be robustly extracted from the network nodes. By showing the RIP property on the network dy-
namics, the recovery bound given in Equation (4) establishes the recovery performance for any
N -length, K-sparse signal from the resulting network state at time N . In short, the number of
required nodes scales linearly with the information rate of the signal (i.e., the sparsity level) and
poly-logarithmically with the length of the input. The coherence factor µ2(Ψ), defined as

µ (Ψ) = max
n=1,...,N

sup
t∈[0,2π]

∣∣∣∣∣
N−1∑
m=0

Ψm,ne
−jtm

∣∣∣∣∣ ,
expresses the types of sparsity that are efficiently stored in the network. Essentially this coherence
factor is large (on the order of

√
N ) for inputs sparse in the Fourier basis, and is very low (essentially

a small constant) for inputs that are sparse in bases different from the Fourier bases (e.g. wavelet
transforms). For the extreme case of Fourier-sparse inputs, the number of nodes must again exceed
the number of inputs. When this coherence is low and K �M , this bound is a clear improvement
over existing results as it allows for N > M . However, this result is restricted to single input
streams with one type of low-dimensional structure. The current paper addresses the much more
general problem of multidimensional inputs and other types of low-dimensional structure.

3. We use O(1) notation to indicate that a variable is a finite constant.
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Multiple Joint-Sparse Inputs:Single Sparse Input:

Multiple Low-Rank Inputs:

Figure 1: Echo-state networks can efficiently store inputs with a variety of low-dimensional struc-
tures. Top-Left: With a single input stream, the coefficients a represent chunks of activity
in the input stream s[n] (shown in red boxes). The raw input stream values then drive the
network via Equation (1), resulting in a transient network state x[N ] that encodes the
input stream. Top-Right: In the case of multiple inputs that are jointly sparse, each co-
efficient can now represent a chunk of activity both across time and across input streams
(as depicted by the red boxes). Bottom: When the multiple input streams are instead
low-rank, each input stream is instead described by a linear combination of prototypical
vectors vk. The matrix Q represents how the prototypical vectors are combined in order
to obtain the input sequences fed into the network.

3. STM for Multi-Input Networks

In this work we will use the tools of random matrix theory to establish STM capacity results for
recurrent networks under the general conditions of multiple simultaneous input streams and a variety
of low-dimensional models. The temporal evolution of the linear network with multiple inputs is
similar to the previous ESN definition, with the main difference being that the input at each time-step
s[n] ∈ RL is a length L vector that drives the network through a feed-forward matrix Z ∈ RM×L
rather than a feed-forward vector,

x[n] = Wx[n− 1] +
L∑
l=1

zlsl[n] + ε̃[n]

= Wx[n− 1] +Zs[n] + ε̃[n]. (7)

We denote the columns of Z as zl to separately notate the vectors mapping each input stream.
We can write the current network state as a linear function of the inputs by iterating Equation (7),

x[N ] =

N∑
k=1

WN−kZs[k] + ε,
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where the error term ε =
∑N

k=1W
N−kε̃[k] is the accumulated error, and then rewriting sum as a

matrix-vector multiply,

x[N ] =
[
Z,WZ, · · · ,WN−1Z

] [
sT [N ], sT [N − 1], · · · , sT [1]

]T
+ ε.

Depending on the signal statistics in question, we will find it convenient in some cases to express
the network dynamics in terms of a linear operator applied to an input matrix, i.e.

x[N ] = A (S) + ε,

where S =
[
sT [N ], sT [N − 1], · · · , sT [1]

]T . In other cases, we find it more convenient to reorga-
nize the columns into an effective measurement matrix applied to a vector of inputs. By defining
the eigen-decomposition ofW = UDU−1, we can re-write the dynamics process as

x[N ] = U
[
D0U−1Z,DU−1Z, · · · ,DN−1U−1Z

] [
sT [N ], sT [N − 1], · · · , sT [1]

]T
+ ε.

To simplify this expression, we can reorganize the columns of the linear operator (and the rows of
the vector of inputs) such that all the inputs corresponding to the lth input vector zl create a single
block. The kth row of the lth block of out matrix is now represented byDk−1U−1zl, which can be
written as Z̃ldk−1, where Z̃l = U−1zl and dk−1 is the vector of the diagonal elements ofD raised
to the (k− 1) power. We can more concisely by defining the matrix F consisting of the eigenvalues
ofW raised to different powers (i.e. Fi,j = dj−1

i ), resulting in the expression

x[N ] = U
[
Z̃1F , Z̃2F , · · · , Z̃LF

] [
sT1 , s

T
2 , · · · , sTL

]T
+ ε = As̃+ ε. (8)

Since the eigenvalues of W here are restricted to reside on the unit circle, we note that F is a
Vandermonde matrix whose rows are Fourier basis vectors. From Equation (8) we see that the
current state is simply the sum ofL compressed input streams, where the compression for each block
essentially performs the same compression as for a single stream, but modulated by the different
feed-forward vectors zl.

3.1 Sparse Multiple Inputs

To begin, we consider the direct extension of previous results based on sparsity models to the multi-
input setting. In this setting we consider the model where the composite of all input signals is sparse
in a basis Ψ ∈ RNL×NL so that s̃ = Ψã. This means that each signal stream can be written as
sl =

∑L
k=1 Ψl,kak where Ψl,k is the {l, k}th N×N block of Ψ̃. This signal model captures depen-

dencies between input streams because a given coefficient can influence multiple channels. While
in many application the basis Ψ is pre-specified (i.e. wavelet decomposition in image process-
ing; Christopoulos et al., 2000), these bases can also be learned from exemplar data via dictionary
learning algorithms (Olshausen and Field, 1996; Aharon et al.). This sparsity model can be a useful
model for signals of interest, such as video signals, where similar sparse decompositions have been
used for action recognition (Guha and Ward, 2012) and video categorization (Chiang et al., 2013).
With this model, we will use a generalized notion of the coherence parameter used in (Charles et al.,
2014):

µS (Ψ) = max
l,k=1,...,L

max
n=1,...,N

sup
t∈[0,2π]

∣∣∣∑N−1
m=0 Ψl,k

m,ne−jtm
∣∣∣

‖Ψl,k
m ‖2

. (9)
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In this case, each N × N block must be different from the Fourier basis to achieve high STM
capacity. This restriction is reasonable, since if a single sub-block of Ψ was coherent with the
Fourier basis, then at least one input stream could be sparse in a Fourier-like basis and hence would
be unrecoverable. Using this network and signal model, we obtain the following theorem on the
stability of the network representation:

Theorem 2 Suppose NL ≥M , N ≥ K and N ≥ O(1). Let U be any unitary matrix of eigenvec-
tors (containing complex conjugate pairs) and the entries ofZ be i.i.d. zero-mean Gaussian random
variables with variance 1

M . For M an even integer, denote the eigenvalues of W by {ejwm}Mm=1.

Let the first M/2 eigenvalues ({ejwm}M/2
m=1) be chosen uniformly at random on the complex unit

circle (i.e., we chose {wm}M/2
m=1 uniformly at random from [0, 2π)) and the other M/2 eigenval-

ues as the complex conjugates of these values. For a given RIP conditioning δ, failure probability
N− log4N ≤ η ≤ 1

e , and coherence µS (Ψ) as defined as in Equation (9), if

M ≥ CK
δ2
µ2
S (Ψ) log5 (NL) log(η−1),

thenA satisfies RIP-(2K, δ) with probability exceeding 1− η for a universal constant C.

The proof of Theorem 2 is provided in Appendix A.1. Note that when L = 1, Theorem 2 reduces
to Theorem 1. In this result we see that that the number of nodes relies only linearly on the un-
derlying dimensionality (K) and poly-logarithmically on the total size of the input (NL). This
means that under favorable coherence and sparsity conditions on the input, the network can again
have STM capacities that are higher than the number of nodes in the network. Specifically, showing
that A satisfies the RIP property, Theorem 2 ensures that standard recovery guarantees from the
sparse inference literature hold. In particular, any K-sparse input is recoverable from the network
state at time N up to the error bound of Equation (4) by solving the `1-regularized least-squares
optimization of Equation (3).

3.2 Low Rank Multiple Inputs

Next we consider the case of a very different type of low-dimensional structure where the input
signals are correlated but not necessarily sparse. Specifically, in this setting we assume that the
inputs arise from a process where R prototypical signals combine linearly to form the various
input streams. Such a signal structure could arise, for instance, due to correlations between in-
put streams at spatially neighboring locations. A number of interesting applications display such
correlations, including important measurement modalities in neuroscience (e.g. two-photon cal-
cium imaging; Denk et al., 1990; Maruyama et al., 2014 and neural electrophysiological record-
ings; Berényi et al., 2014; Ahmed and Romberg, 2015), and remote sensing applications (e.g. hy-
perspectral imagery; Zhang et al., 2014; Veganzones et al., 2016). The applicability of RNNs and
machine learning methods to data well described by this low-rank model is also increasingly rel-
evant as there is increasing interest in applying neural network techniques to such data, either for
detection (Apthorpe et al., 2016), classification (Chen et al., 2016, 2014), or as samplers via varia-
tional auto-encoders (Gao et al., 2016). In this case, we can write out the input matrix in the reduced
form S = QV ∗, where V ∗ ∈ RR×N is the matrix whose rows may represent environmental causes
generating the data and Q ∈ RL×R represents the mixing matrix that defines the input stream. We
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will assume both L ≥ R and N ≥ R, meaning that S is low-rank. With this model we use a
definition of coherence given by:

µ2
L = R−1 sup

ω∈[0,2π]
||V ∗fω||

2
2 . (10)

where fω = [1, e−jω, · · · e−j(N−1)ω]T is the Fourier vector with frequency ω. This coherence
parameter mirrors the coherence used for the sparse-input case. As µS measured the similarity be-
tween the measurement vectors and the sparsity basis Ψ, µL measures the similarity between the
measurements and the left singular vectors of the measured matrix. The intuition here is that mea-
surements that align with the left singular vectors are unlikely to measure significant information
about the S.

To analyze the STM of the network dynamics with respect to low-rank signal statistics, we
leverage the dual certificate approach (Candès and Plan, 2010, 2011a; Ahmed and Romberg, 2015)
to derive the following theorem,

Theorem 3 Suppose NL ≥ M , N ≥ R, N ≥ O(1) and L ≥ O(1). Let z be i.i.d. zero-mean
Gaussian random variables with variance 1

M . For M an even integer, denote the eigenvalues ofW

by {ejwm}Mm=1. Let the first M/2 eigenvalues ({ejwm}M/2
m=1) be chosen uniformly at random on the

complex unit circle (i.e., we chose {wm}M/2
m=1 uniformly at random from [0, 2π)) and the other M/2

eigenvalues as the complex conjugates of these values. For a given coherence µL as defined as in
Equation (10), if

M ≥ cR
(
N + µ2

LL
)

log3(LN),

then, with probability at least 1−O((LN)1−β , the minimization in Equation (5) recovers the rank-R
input matrix S up to the error bound in Equation (6).

The proof of Theorem 3 is in Appendix A.2 and follows a golfing scheme to find an inexact dual
certificate. In fact, we note that since our architecture is extremely similar mathematically to the
architecture in (Ahmed and Romberg, 2015), our proof is also very similar. The main difference is
that due to the unbounded nature of our distributions (i.e. the feed-forward vectors Z are Gaussian
random variables) and the fact that our Fourier vectors are on the unit circle (rather than gridded),
we can consider our proof as a generalization of the proof in (Ahmed and Romberg, 2015).

Theorem 3 is qualitatively similar to Theorem 2 in the way the STM capacity scales. In this
case, the bound still scales linearly with the information rate as captured by the number of elements
in the left and right matrices that compose S: RN + RL. Interestingly, due to the left singular
vectors interacting with the measurement operator first, the coherence term only affects the portion
of the bound related to the number of elements in Q. Additionally, as before, the number of total
inputs LN only impacts the bound poly-logarithmically.

4. Simulation

To empirically verify that these theoretical STM scaling laws are representative of the empirical
behavior, we generated a number of random networks and evaluated the recovery of (sparse or low-
rank) input sequences in the presence of noise. For each simulation we generate a M ×M random

10
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(a) RMSE: No basis (b) RMSE: Haar wavelet basis (c) RMSE: DCT basis

Figure 2: ESNs can have high STM capacity for multidimensional sparse inputs. Relative mean-
squared error (rMSE) of the recovery for canonical sparse inputs (a) and Haar wavelet-
sparse inputs (b) is very low for a range of sparsity and network sizes satisfyingM < LN .
The rMSE for DCT-sparse inputs (c), as predicted by our theoretical results, remains high
(approximately 100% error).

orthogonal connectivity matrix W 4 and a M × L random Gaussian feed-forward matrix Z. In
both cases we fixed the number of inputs to L = 40 and the number of time-steps to N = 100
while varying the network sizeM and underlying dimensionality of the input (i.e., the sparsity level
or the input matrix rank). For the sparse input simulations, inputs were chosen with a uniformly
random support pattern with random Gaussian values on the support. For low-rank simulations, the
right singular vectors were chosen to be Gaussian random vectors, and the left singular values were
chosen at random from a number of different basis sets.

In Figure 2 we show the relative mean-squared error of the input recovery as a function of the
sparsity-to-network size ratio ρ = K/M and the network size-to-input ratio γ = M/NL. Each
pixel value represents the average recovery relative mean-squared error (rMSE), as calculated by

RMSE =
‖ŝ− s‖22
‖s‖22

,

over 20 randomly generated trials with a noise level of ‖ε‖2 ≈ 0.01. We show results for recovery of
three different types of sparse signals: signals sparse in the canonical basis, signals sparse in a Haar
wavelet basis, and signals sparse in a discrete cosine transform (DCT) basis. As our theory predicts,
for canonical- and Haar wavelet-sparse signals the network has very favorable STM capacity results.
The fact that the capacity achieves M < NL is demonstrated by the area left of the M = NL point
(γ = 1) where the signal is recovered with high accuracy. Likewise, for the DCT-sparse signals we
find that the inputs are never recovered well for any M < NL. This behavior is also predicted by
our theory because of the unfavorable coherence properties of the DCT basis.

For the low-rank trials we see that recovery of low-rank inputs for a range of M < LN is
possible as predicted by the theoretical results. As with the sparse input case we consider three
types of low-rank inputs. Instead of changing the sparsity basis, however, we change the right
singular vectors V of the low-rank input matrix S. We explore the cases where the elements of V

4. Orthogonal connectivity matrices were obtained by running an orthogonalization procedure on a random Gaussian
matrix.
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(a) RMSE: No basis (b) RMSE: Haar wavelet basis (c) RMSE: DCT basis

Figure 3: ESNs can have high STM capacity for multidimensional inputs with low-rank structure.
The rMSE of the input recovery for inputs with canonical right singular vectors (a) and
Haar wavelets for right singular vectors (b) is very low for a range of input rank and net-
work sizes satisfyingM < LN . The rMSE for inputs with DCT right singular vectors (c)
remains high, a behavior predicted by our theoretical results.

are chosen from the canonical basis, the haar basis and the DCT basis. These results are shown in
Figure 3 with plots similar to those in Figure 2, but with only showing the range γ < 0.5 to reduce
computational time. As our theory predicts, the recovery of inputs with canonical- and Haar right
singular vectors is more accurate for a larger range of ρ, γ pairs than the inputs with DCT right
singular vectors.

5. Conclusions

Determining the fundamental limits of memory in recurrent networks is critical to understanding
their behavior in machine learning tasks. In this work we show that randomly connected echo-state
networks can exploit the low-dimensional structure in multidimensional input streams to achieve
very high short-term memory capacity. Specifically, we show non-asymptotic bounds on recovery
error for input sequences that have underlying low-dimensional statistics described by either joint
sparsity or low-rank properties (with no sparsity). For multiple sparse inputs, we find that the
network size must be linearly proportional to the input sparsity and only logarithmically dependent
on the total input size (a combination of the input length and number of inputs). For inputs with
low-rank structure, we find a similar dependency where the network size depends linearly on the
underlying dimension of the inputs (the product of the input rank with the input length and the
number of inputs) and logarithmically on the total input size. Both results continue to demonstrate
that ESNs can have STM capacities much larger than the network size.

These results are a significant (conceptual and technical) generalization over previous work that
provided theoretical guarantees in the case of a single sparse input (Charles et al., 2014). While
the linear ESN structure is a simplified model, rigorous analysis of these networks has remained
elusive due to the recurrence itself. These results isolate the properties of the transient dynamics
due to the recurrent connections, and may provide one foundation for which to explore the analysis
of other complex network attributes such as nonlinearities and spiking properties. We also note that
knowledge of how well neural networks compresses structured signals could indicate methods to
pick the size of recurrent network layers. Specifically, if a task is thought to require a certain time-
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frame of an input signal, the overall sparsity (or rank) of the signal in that time-frame can be used
in conjunction with the length of that time-frame to give a lower bound for the required number of
nodes in the recurrent layer of the network.

While the current paper is restricted to orthogonal connectivity matrices, previous work (Charles
et al., 2014) has shown that a number of network structures can satisfy these criteria, including
some types of small-world network topologies. Additionally, we explored here low-rank and sparse
inputs separately. The methods we have used to prove Theorem 3, however, have also been used
to analyze recovery signals with other related structures (e.g. matrices that can be decomposed
into the sum of a sparse and low-rank matrix) from compressive measurements (Candès and Plan,
2011b). Our bounds presented here therefore could open up avenues for similar analysis of other
low-dimensional signal classes.

While the context of this paper is focused on the role of recurrent networks as a tool in ma-
chine learning tasks, these results may also lead to a better understanding of the STM properties in
other networked systems (e.g., social networks, biological networks, distributed computing, etc.).
With respect to the literature relating recurrent ESN and liquid-state machines to working memory
in biological systems, the notion of sparsity has much of the same flavor as the concept of chunk-
ing (Gobet et al., 2001). Chunking is the concept of humans learning to remember items in highly
correlated groups rather than remembering items individually as a way of artificially increasing their
working memory. Similarly, the use of sparsity bases allow RNNs to ‘chunk’ items according to
the basis elements. Thus, each basis counts only as one item (the true underlying sparsity) and the
network needs only store these elements rather than storing every input separately.
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A. Appendix

A.1 RIP for Multiple Gaussian Feed-forward Vectors

In this appendix we prove Theorem 2, showing that the matrix representing the network evolution
with L inputs and i.i.d. Gaussian feed-forward vectors satisfies the RIP. Recall that we have x[N ] =
As̃, where A ∈ RM×NL is derived in Section 3 and that s̃ (the vectorization of S) is sparse with
respect to the basis Ψ, meaning that there is a K-sparse signal a such that s̃ = Ψa. Similar
to (Charles et al., 2014), this proof is based on showing conditions on M such that A satisfies the
RIP with respect to Ψ, i.e.

(1− δ) ||a||22 ≤ ||AΨa||22 ≤ (1 + δ) ||a||22 ,

holds with high probability for all K-sparse a. This is equivalent to bounding the following proba-
bility of the event ∣∣∣∣(AΨ)HAΨ− I

∣∣∣∣
K
≤ δ. (11)
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where the norm ||A||K is defined as

||A||K := sup
y is K−sparse

yHAy

||y||22
.

First we bound the expectation of
∣∣∣∣(AΨ)HAΨ− I

∣∣∣∣
K

, and use the result to bound the tail
probability of the event (11).
Proof

A.1.1 EXPECTATION

First we let

Â =
[
Z̃1F Z̃2F · · · Z̃LF

]
Ψ,

Since (AΨ)HAΨ = Â
H
Â, then for any a ∈ RNL, ||AΨa||2 =

∣∣∣∣∣∣Âa∣∣∣∣∣∣
2
. Therefore we only need

to prove that ∣∣∣∣∣∣ÂH
Â− I

∣∣∣∣∣∣
K
≤ δ,

holds with high probability when M is large enough. Let V H
i denote the ith row of Â, i.e.,

V H
i =

L∑
l=1

z̃i,lF
H
i Ψi.

LetB1 =
∑M/2

i=1 ViV
H
i −I/2 andB2 =

∑M
i=M/2+1 ViV

H
i −I/2; it is easy to check thatB1 and

B2 are complex conjugates, and that Â
H
Â−I = B1+B2. Therefore

∣∣∣∣∣∣ÂH
Â− I

∣∣∣∣∣∣
K
≤ 2 ||B1||K ,

and we only need to show that ||B1||K ≤ δ with high probability when M is large enough. We can
easily see that when i 6= j, 1 ≤ i, j ≤M/2, V H

i and V H
j are independent.

First we show that E [||B1||K ] is small with high probability when M is large enough. We then
show that ||B1||K is concentrated around its mean with high probability when M is large enough.
By Lemma 6.7 in Rauhut (2010), for a Rademacher sequence εi, i = 1, ...,M/2, we have

E [||B1||K ] = E

∣∣∣∣∣∣
∣∣∣∣∣∣
M/2∑
i=1

(ViV
H
i −

1

M
I)

∣∣∣∣∣∣
∣∣∣∣∣∣
K

 ≤ 2E

∣∣∣∣∣∣
∣∣∣∣∣∣
M/2∑
i=1

εiViV
H
i

∣∣∣∣∣∣
∣∣∣∣∣∣
K

 .
We can now apply Lemma 8.2 from Rauhut (2010), giving us

E [||B1||K ] ≤ 2E

∣∣∣∣∣∣
∣∣∣∣∣∣
M/2∑
i=1

εiViV
H
i

∣∣∣∣∣∣
∣∣∣∣∣∣
K


≤ 2E

[
E
[
C0Vmax

√
K log (100K)

√
log (4NL) ln (5M)

·

√√√√√
∣∣∣∣∣∣
∣∣∣∣∣∣
M/2∑
i=1

ViV H
i

∣∣∣∣∣∣
∣∣∣∣∣∣
K

|Vi, i = 1, ...,M/2




≤
√
C1K log4(NL)

√
E [V 2

max]E
[
||B1||K +

1

2

]
, (12)
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where the last inequality results due to 25K ≤ NL, 5M ≤ 4NL, the Cauthy-Schwarz inequality
and the triangle inequality, and Vmax = max1≤l≤M/2 ||Vl||∞ . Note that the pth element of V H

l can
be written

V H
l (p) =

L∑
i=1

z̃l,iF
H
l Ψi(p).

and since we know that

L∑
i=1

|FH
l Ψi(p)|2 ≤

L∑
i=1

||Ψi(p)||22 µ
2(Ψ) = µ2(Ψ),

and
Vmax = max

1≤l≤M/2
1≤p≤NL

|Vl(p)|

we can now use Corollary 5. Setting Q = MNL/2, µ0 = µ(Ψ) in Corollary 5 yields

P
[
V 2

max >
µ2(Ψ)

M
log

MNL

2η

]
≤ η, (13)

and

E
[
V 2

max

]
≤ µ2(Ψ)

M
(log

MNL

2
+ 1) ≤ C2

µ2(Ψ)

M
log (NL). (14)

Returning to the inequality in Equation (12), considering (14), we have

E [||B1||K ] ≤ a
√
E [||B1||K ] + 1,

where a =
√
C1C2K log5 (NL)µ2(Ψ)/M . Then E [||B1||K ] ≤ a2

2 + a
√

1
2 + a2

4 . When a ≤ 1/2,
we get E [||B1||K ] ≤ a. Let 0 < A′ ≤ a ≤ 1/2, and we can conclude that when

M ≥ C3Kµ
2(Ψ) log5 (NL)

δ′
,

then
E [||B1||K ] ≤ δ′.

A.1.2 TAIL BOUND

Now we study the tail bound of ||B1||K . First we construct a second set of random variables V ′l ,
which are independent of Vl and are identically distributed as Vl. Additionally, we let

B̃1 =

M/2∑
i=1

(
ViV

H
i − V ′i V ′Hi

)
,

and then according to Charles et al. (2014), there is

E
[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K

]
≤ 2E [||B1||K ] , (15)
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P [||B1||K > 2E [||B1||K ] + u] ≤ 2P
[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K
> u

]
. (16)

Now since we have ∣∣∣∣ViV H
i − V ′i V ′Hi

∣∣∣∣
K
≤ 2 max{

∣∣∣∣ViV H
i

∣∣∣∣
K
,
∣∣∣∣V ′i V ′Hi ∣∣∣∣

K
},

and ∣∣∣∣ViV H
i

∣∣∣∣
K
≤ sup

y is K−sparse
||Vi||2∞

||y||21
||y||22

≤ KV 2
max,

then we know that max1≤i≤M/2

∣∣∣∣ViV H
i

∣∣∣∣
K
≤ KV 2

max and max1≤i≤M/2

∣∣∣∣V ′i V ′Hi ∣∣∣∣
K
≤ KV ′2max,

where V ′max = max1≤l≤M/2 ||V ′l ||∞ then by Equation (13), we obtain

P
[

max
1≤i≤M/2

∣∣∣∣ViV H
i

∣∣∣∣
K
>
Kµ2(Ψ)

M
log

MNL

2η

]
≤ P

[
V 2

max >
µ2(Ψ)

M
log

MNL

2η

]
≤ η.

Since the probability theorems depend on bounded random variables, we define F to denote the
following event

F =

{
max

{
max

1≤i≤M/2

∣∣∣∣ViV H
i

∣∣∣∣
K
, max

1≤i≤M/2

∣∣∣∣V ′i V ′Hi ∣∣∣∣
K

}
≤ Kµ2(Ψ)

M
log

MNL

2η

}
,

such that P
[
FC
]
≤ 2η. Furthermore, we define IF as the indicator function of F, and let

B̂1 =
∑M/2

i=1 ξi
(
ViV

H
i − V ′i V ′Hi

)
IF , where ξ = {ξi}, i = 1, 2, ...,M/2 is a Rademacher sequence

and independent of Vi. The truncated variable Yi = ξi
(
ViV

H
i − V ′i V ′Hi

)
IF has a symmetric dis-

tribution and ||Yi||K is bounded by Bmax := 2Kµ2(Ψ)
M ln MNL

2η . By Proposition 19 in Tropp et al.
(2009), we have

P
[∣∣∣∣∣∣B̂1

∣∣∣∣∣∣
K
> C4(uE

[∣∣∣∣∣∣B̂1

∣∣∣∣∣∣
K

]
+ tBmax)

]
≤ e−u2 + e−t, (17)

for all u, t ≥ 1. Following Tropp et al. (2009), we find that

P
[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K
> v
]
≤ P

[∣∣∣∣∣∣B̂1

∣∣∣∣∣∣
K
> v
]

+ P
[
FC
]
, (18)

and

E
[∣∣∣∣∣∣B̂1

∣∣∣∣∣∣
K

]
≤ E

[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K

]
. (19)

By combining Equations (17), (18), and (19), we get

P
[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K
> C4(uE

[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K

]
+ tBmax)

]
≤ e−u2 + e−t + 2η.

In Equation (20), let η < 1/e, u =
√

log η−1 and t = log η−1. These values yield

P
[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K
> C4(

√
log η−1E

[∣∣∣∣∣∣B̃1

∣∣∣∣∣∣
K

]
+ (log η−1)Bmax)

]
≤ 4η. (20)
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Now we can combine Equations (15), (16), and (20) to get

P
[
||B1||K > 2E [||B1||K ] + 2C4

√
log η−1E [||B1||K ] + C4(log η−1)Bmax

]
≤ 8η.

By choosing

M ≥ C3Kµ
2(Ψ) log5 (NL)

δ′2
, (21)

where δ′ < 1/2, we obtain

P

[
||B1||K > 2δ′ + 2C4δ

′
√

log η−1 + C5 log η−1 δ
′2 log (1

2MNLη−1)

log5 (NL)

]
≤ 8η.

We observe now that

log(1
2MNLη−1)

log5 (NL)
≤ 2 log (NL) + log η−1

log5 (NL)
,

indicating that when η ≥ (NL)− log4 (NL), i.e., log η−1 ≤ log5 (NL), then

log(1
2MNLη−1)

log5 (NL)
≤ C6,

, for a constant C6. This inequality reduces our probability statement to

P
[
||B1||K > 2δ′ + 2C4δ

′
√

log η−1 + C5C6 log η−1δ′2
]
≤ 8η.

For an arbitrary δ with 0 < δ < 1/2, we let

δ′ =
δ

2C4C7

√
log η−1

, (22)

resulting in

2C4δ
′
√

log η−1 =
δ

C7
,

2δ′ =
δ

C4C7

√
log η−1

≤ δ

C4C7
,

C5C6 log η−1δ′2 = C5C6
δ2

4C2
4C

2
7

≤ C5C6

8C2
4C

2
7

δ.

Then we can see that if

C7 ≥ max

{
3,

3

C4
,

√
3C5C6

8C2
4

}
,

then

P
[
||B1||K >

δ

3
+
δ

3
+
δ

3

]
< 8η.
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Now by plugging (22) into (21), we know that when (NL)− ln4 (NL) ≤ η < 1/e, there exists a
constant C such that when

M ≥ CKµ2(Ψ) log5 (NL) log (η−1)

δ2
,

there is

P(||B1||K > δ) ≤ 8η,

which completes the proof.

A.1.3 LEMMAS FOR THEOREM 2

Lemma 4 Suppose we have n complex Gaussian random variables, z1, z2, · · · zn, zi = xi + jyi,
where xi and yi denote the real and imaginary parts of zi. Let xi and yi i.i.d Gaussian r.v.’s with
mean 0 and variance 1/2M . φ1, φ2, · · · φn r.v.’s which are independent of zi for all i and satisfy

n∑
i=1

|φi|2 ≤ µ2
0,

then for w =
∑n

i=1 ziφi,

P
[
|w|2 > u

]
≤ e
−Mu

µ20 .

Proof We use x and y to denote the real and imaginary parts of w, and ai and bi to denote the real
and imaginary parts of φi. We have

w =
n∑
i=1

(aixi − biyi) + j
n∑
i=1

(aiyi + bixi)x+ jy.

Then conditioned on ai and bi, x and y have distribution N (0, 1
2M

∑n
i=1(a2

i + b2i )).
The next step is to prove the conditional independence of x and y. Since

Cov(aixi − biyi, aiyi + bixi|ai, bi) =
aibi
2M
− aibi

2M
= 0,

when i 6= j, xi, yi are independent of xj , yj , and x and y are conditionally independent. Thus,
conditioned on ai and bi,

2M∑n
i=1 (a2

i + b2i )
|w|2,

is χ2 distributed. We use χ2 to denote a two-degree χ2 distributed random variable. According to
the results on χ2 distributions, we have

P
[
|w|2 > u|ai, bi

]
= P

[
χ2 >

2Mu∑n
i=1 (a2

i + b2i )
|ai, bi

]
= e
− Mu∑n

i=1
(a2
i
+b2
i
) ≤ e

−Mu

µ20 . (23)

Noticing that Equation (23) holds for all possible values of ai and bi completes the proof.
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Corollary 5 For Q r.v.’s, w1, w2, · · · , wQ, let wi =
∑n

l=1 zilφil and zil = xil + jyil, where xil,
yil, 1 ≤ i ≤ Q, 1 ≤ l ≤ n are i.i.d. Gaussian distributed with mean 0 and variance 1/2M . Suppose
for any i, there is

n∑
l=1

|φil|2 ≤ µ2
0.

And let wmax = max1≤i≤Q |wi|, then for η > 0, we have

P
[
w2

max >
µ2

0

M
log

Q

η

]
≤ η,

and

E
[
w2

max

]
≤ µ2

0

M
(lnQ+ 1).

Proof According to Lemma 4 and by using union bound, we have

P
[
w2

max > u
]
≤ Qe

−Mu

µ20 .

Let η = Qe
−Mu

µ20 and there is

P
[
w2

max >
µ2

0

M
log

Q

η

]
≤ η.

Then we have

E
[
w2

max

]
=

∫ ∞
0
P
[
w2

max > u
]
du

≤
∫ µ20

M
lnQ

0
1du+

∫ ∞
µ20
M

logQ
Qe
−Mu

µ20 du

=
µ2

0

M
(logQ+ 1).

A.2 Proof of Low-rank Recovery

In this appendix we prove Theorem 3 where a low-rank input matrix S can be recovered from the
network state x[N ] via nuclear norm optimization (Candès and Tao, 2010; Candès and Plan, 2010;
Recht et al., 2010). To prove this theorem we use the dual certificate approach used to prove similar
results in (Ahmed and Romberg, 2015; Candès and Plan, 2011a). In this methodology we seek a
certificate Y whose projections into and out of the space spanned by the singular vectors of S are
bounded appropriately. Specifically if we consider the singular value decomposition of S as

S = QΣV ∗
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and we consider the projection PT which projects a matrix into the space T spanned by the left and
right singular vectors,

PT (W ) = QQ∗W +WV V ∗ −QQ∗WV V ∗ (24)

the conditions for the dual certificate are that A is injective on T and there exists a matrix Y which
satisfies ∣∣∣∣PT (Y )−QV H

∣∣∣∣
F
≤ 1

2
√

2γ
(25)

||PT⊥ (Y )|| ≤ 1

2
(26)

where the projection PT⊥ is the projection onto the perpendicular space to T ,

PT⊥ (W ) = (I −QQ∗)W (I − V V ∗)

The remainder of this proof will be devoted to demonstrating that there does exist a certificate
Y by iteratively devising Y via a golfing scheme (Gross, 2011; Candès and Plan, 2011a; Ahmed
et al., 2014). The golfing scheme essentially generates an iterative method which defined a series
of certificate vectors Yk for k ∈ [1, · · · , κ] which converge to a certificate Yκ which satisfies the
necessary conditions. As in (Ahmed and Romberg, 2015), we can initialize the 0th iterate to zero,
and define the kth iterate in terms of the Yk−1 as

Yk = Yk−1 + κA∗kAk(QV ∗ − PT (Yk−1)),

where

A (W ) = vec (〈An,W 〉) . (27)

We can see that since every iterate hasA∗k applied to it, every iteration is projected in to the range of
A∗, indicating that the final iteration Y will also be in the range of A∗. In (Ahmed and Romberg,
2015), Asif and Romberg define a simpler iteration

Ỹk = (PT − κPTA∗kAkPT )Ỹk−1,

which is expressed in terms of the modified certificate

Ỹk = PT (Yk)−QV ∗.

What remains now is to demonstrate that this iterative procedure converges, with high prob-
ability, to a certificate which satisfies the desired dual certificate conditions. We start by using
Lemma 9 and observing that the Forbenious norm of the kth iterate is well bounded with probabil-
ity 1−O((LN)−β) by∣∣∣∣∣∣Ỹk∣∣∣∣∣∣

F
≤ max

k
||PT − κPTA∗kAkPT ||

∣∣∣∣∣∣Ỹk−1

∣∣∣∣∣∣
F

≤ 2−k
∣∣∣∣∣∣Ỹ0

∣∣∣∣∣∣
F

≤ 2−k ||QV ∗||F
≤ 2−k

√
R,
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so long that M ≤ cβκR(N + µ2
0L) log2(LN). As in (Ahmed and Romberg, 2015) we observe

that when we choose κ ≥ 0.5 log2(8γ2R), the bound for the Frobenious norm of Ỹκ is bounded by∣∣∣∣∣∣Ỹκ∣∣∣∣∣∣
F
≤ (2
√

2γ)−1.
To show that the second condition on the certificate is also satisfies, we apply Lemma 10. We

begin with writing the quantity we wish to bound in terms of the past golfing scheme iterate

||PT⊥ (Yκ)|| ≤
κ∑
k=1

∣∣∣∣∣∣PT⊥

(
κA∗kAkỸk−1

)∣∣∣∣∣∣
=

κ∑
k=1

∣∣∣∣∣∣PT⊥

(
κA∗kAkỸk−1 − Ỹk−1

)∣∣∣∣∣∣
≤

κ∑
k=1

∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣
≤

κ∑
k=1

∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣
F

≤
κ∑
k=1

max
k∈[1,...κ]

∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣
F

≤
κ∑
k=1

1

2
2−k

≤ 1

2

We use Lemma 10 to bound the maximum spectral norm of κA∗kAkỸk−1 − Ỹk−1 with probability
1 − O((LN)1−β . Taking κ ≥ log(LN) shows that the final certificate Yκ satisfies all the desired
properties, completing the proof.

A.2.1 MATRIX BERNSTEIN INEQUALITY AND OLICZ NORM

The lemmas required in our main result depend heavily on the matrix Bernstein inequality (Tropp,
2012). This inequality uses the variance measure and Oricz norm of a matrix to bound the largest
singular value of the matrix. The matrix Bernstein inequality is summarized as

Theorem 6 (Matrix Bernstein’s Inequality) Let Xi ∈ RL,N , i ∈ [1, . . . ,M ] be M random ma-
trices such that E [Xi] = 0 and ||Xi||ψα < Uα < ∞ for some α ≥ 1. Then with probability
1− e−t, the spectral norm of the sum is bounded by∣∣∣∣∣

∣∣∣∣∣
M∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣ ≤ C max

{
σX
√
t+ log(L+N), Uα log1/α

(
MU2

α

σ2
X

)
(t+ log(L+N))

}
,

for some constant C and the variance parameter defined by

σX = max


∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

E [XiX
∗
i ]

∣∣∣∣∣
∣∣∣∣∣
1/2

,

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

E [X∗iXi]

∣∣∣∣∣
∣∣∣∣∣
1/2
 .
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where Orlicz-α norm ||X||ψα is defined as

||X||ψα = inf
{
y > 0|E

[
e||X||

α/yα
]
≤ 2
}
. (28)

In particular we will use the matrix Bernstein inequality with the Orlicz-1 and Orlicz-2 norms,
since subgaussian and subexponential random variables have bounded Orlicz-2 and -1 norms, re-
spectively. To calculate these norms, we find the following lemmas from (Tropp, 2012; Ahmed and
Romberg, 2015) useful:

Lemma 7 (Lemma 5.14, Tropp, 2012) A random variable X is subgaussian iff X2 is subexpo-
nential. Furthermore,

||X||2ψ2
≤
∣∣∣∣X2

∣∣∣∣
ψ1
≤ 2 ||X||2ψ2

.

Lemma 8 (Lemma 7, Ahmed and Romberg, 2015) Let X1 and X2 be two subgaussian ranfom
variables. Then the product X1X2 is a subexponential random variable with

||X1X2||ψ1
≤ c ||X1||ψ2

||X2||ψ2
.

Lemma 7 relates the Orlicz-1 and -2 norms for a random variable and it’s square. Lemma 8
allows us to factor an Orlicz-1 norm of a sub-exponential random variable as the product of two
subgaussian random variables. Finally we find useful the following calculation for the Orlicz-1
norm of the norm of a random Gaussian vector zn with i.i.d. zero-mean and variance σ2 entries:

∣∣∣∣∣∣||zn||22∣∣∣∣∣∣
ψ1

= inf
{
y : E

[
e||zn||

2
2/y
]
≤ 2
}

= inf

{
y :

1√
2πσ

∫
R
e−z

2
n(1/2σ2−1/y)dzn ≤ 2

1
M

}
=

2σ2

1− 4−
1
M

. (29)

A.2.2 BOUND ON ||κPTA∗kAkPT − PT ||

Lemma 9 Let PT be defined as in Equation (24) and Ak be the restricted measurement operator
as defined in Equation (27). Then if the number of nodes scale as

M ≥ cβκR
(
N + µ2

0L
)

log2(LN),

for a constant β > 1, then with probability greater then 1−O(κ(LN)−β , we have

max
k∈[1,...,κ]

||κPTA∗APT − PT || ≤
1

2
.

Proof
Lemma 9 bounds the operator norm

||κPTA∗kAkPT − PT || .
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Since E [A∗kAk] = 1
κI, this norm is equivalent to

κPTA∗kAkPT − PT = κPTA∗kAkPT − E [κPTA∗kAkPT ]

= κ
∑
n∈Γk

(PT (An)⊗ PT (An)− E [PT (An)⊗ PT (An)]) .

We can also define here Ln(C) = 〈PT (An),C〉PT (An) which has ||Ln|| = ||PT (An)||2F
which gives us

κPTA∗kAkPT − E [κPTA∗kAkPT ] = κ
∑
n∈Γk

(Ln − E [Ln]).

To calculate the variance, we can use the symmetry of Ln to only calculate

κ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
L2
n

]
− E [Ln]2

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
L2
n

]∣∣∣∣∣∣
∣∣∣∣∣∣ = κ2

∣∣∣∣∣∣
∣∣∣∣∣∣E
∑
n∈Γk

‖PT (An)‖2FLn

∣∣∣∣∣∣
∣∣∣∣∣∣ .

We now need to bound ‖PT (An)‖2F , which can be done by the following:

||PT (An)||2F = 〈PT (An),An〉
= 〈QQ∗znf∗n, znf∗n〉+ 〈znf∗nV V ∗, znf∗n〉 − 〈QQ∗znf∗nV V ∗, znf∗n〉
= ‖fn‖22‖Q∗zn‖22 + ‖zn‖22‖V ∗fn‖22 − ‖Q∗zn‖22‖V ∗fn‖22
≤ N‖Q∗zn‖22 + ‖zn‖22‖V ∗fn‖22.

Using this calculation we can write∣∣∣∣∣∣
∣∣∣∣∣∣E
∑
n∈Γk

||PT (An)||2F Ln

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[(
N‖Q∗zn‖22 + ‖zn‖22‖V ∗fn‖22

)
Ln
]∣∣∣∣∣∣
∣∣∣∣∣∣

≤ N

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖Q∗zn‖22Ln

]∣∣∣∣∣∣
∣∣∣∣∣∣

+ sup ‖V ∗fn‖∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖zn‖22Ln

]∣∣∣∣∣∣
∣∣∣∣∣∣

≤ N

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖Q∗zn‖22Ln

]∣∣∣∣∣∣
∣∣∣∣∣∣+Rµ2

0

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖zn‖22Ln

]∣∣∣∣∣∣
∣∣∣∣∣∣

We now need to bound these two quantities. First we look to bound the first quantity∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖Q∗zn‖22(PT (An)⊗ PT (An))

]∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ‖PT ‖

∣∣∣∣E [‖Q∗zn‖22(An ⊗An)
]∣∣∣∣ ‖PT ‖

≤
∣∣∣∣E [‖Q∗zn‖22{zn[α]z∗n[β]fnf

∗
n}α,β

]∣∣∣∣ .
23



CHARLES, YIN AND ROZELL

Expanding, we have:

∗ =

∣∣∣∣∣∣
∣∣∣∣∣∣E
 L∑

l=1

‖ql‖22|zn[l]|2 + 2
∑
l 6=m

Re(〈ql, qm〉zn[l]z∗n[m])

 zn[α]z∗n[β]IN


α,β

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣
{

1

M2

L∑
l=1

‖ql‖22INδα=β +
2

M2
〈qα, qβ〉INδα 6=β

}
α,β

∣∣∣∣∣∣
∣∣∣∣∣∣

=
1

M2

∥∥∥{‖Q‖2F INδα=β + 2〈qα, qβ〉INδα 6=β
}
α,β

∥∥∥ ,
giving us∣∣∣∣∣∣

∣∣∣∣∣∣
∑
n∈Γk

E
[
‖Q∗zn‖22(PT (An)⊗ PT (An))

]∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

Mκ
‖Q‖2F + ‖QQ∗‖ ≤ R+ 1

Mκ
.

Similarly, for the second term we can takeQ = IL to get∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖zn‖22(PT (An)⊗ PT (An))

]∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

Mκ
‖I‖2F =

L

Mκ
.

Putting the pieces together, we get

σ2
X = κR

N + µ2
0L

M
.

To use the matrix Bernstein inequality, it now remains to bound the following Orlicz-1 norm:
κ ||Ln − E [Ln]||ψ1

. By the PSD quality of Ln and its expectation,

||Ln − E [Ln]||ψ1
≤ max

{
||Ln||ψ1

− ||E [Ln]||ψ1

}
.

The norm of ||E [Ln]|| can be calculated via

||E [Ln]|| = ||E [PT (An)]||2F = E

[∑
m

|zn[m]|2|fn[m]|2
]

=
1

M
‖fn‖22 =

N

M
,

indicating that the second term is simply ||E [Ln]||ψ1
= N/(M log(2)). To calculate ||E [Ln]||ψ1

,
we use the definition of the Orlitcz-1 norm in Equation (28) to see that

||Ln||ψ1
=
∣∣∣∣∣∣||PT (An)||22

∣∣∣∣∣∣
ψ1

≤ N
∣∣∣∣‖Q∗zn‖22∣∣∣∣ψ1

+RNµ2
0

∣∣∣∣‖zn‖22∣∣∣∣ψ1
,

where the inequality stems form the fact that ‖V ∗fn‖22 ≤ RNµ2
0 and ‖fn‖22 ≤ N . Using the result

in Equation (29) with σ2 = 1/M in the first term and in σ2 = R/M in the second term yields

||E [Ln]||ψ1
≤ N

∣∣∣∣‖Q∗zn‖22∣∣∣∣ψ1
+RNµ2

0

∣∣∣∣‖zn‖22∣∣∣∣ψ1

≤ 1

M

(
N

M(1− 4−
1
R )

+
Rµ2

0

1− 4−
1
L

)

≤
2R
(
N + Lµ2

0

)
log(2)M

.
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We now have appropriate bounds on both the variance and Orliscz norm, permitting a bound on
the largest singular value via the Matrix Bernstein inequality. Specifically, we can see that the first
term in Theorem 6 with t = β log(LN) > log(N + L) is bounded as

σX
√
t+ log(L+N) ≤

√
2κRβ

N + µ2
0L

M
log(LN).

Likewise we can bound the second term:

U1 log

(
MU2

1

σ2
X

)
(t+ log(L+N)) ≤ 2βU1 log

(
4∆κR(N + µ2

0L)

log2(2)M

)
log(LN)

≤ c
βκR(N + µ2

0L)

M
log2(LN).

Thus to appropriately bound

||κPTA∗kAkPT − PT || ≤ cmax

{√
κRβ(N + µ2

0L)

M
log(LN),

βκR(N + µ2
0L)

M
log2(LN)

}
,

we can see that we would need

M ≥ CβκR(N + µ2
0L) log2(LN).

Taking the union bound over the κ partitions completes the proof of the lemma.

A.2.3 BOUND ON ‖(A∗A− I)(G)‖

Lemma 10 Let Ak be defined as in Equation (27), κ < M be the number of steps in the golfing
scheme and assume that M ≤ LN . Then as long as

M ≥ cβκmax
(
N + µ2

0L
)

log2(NL),

where µ2
k is the coherence term defined by

µ2
k = R−1 sup

ω∈[0,2π]

∣∣∣∣∣∣Ỹ ∗k fω∣∣∣∣∣∣2
2
, (30)

then with probability at least 1−O(M(LN)−β), we have

max
k

∣∣∣∣∣∣κA∗kAk(Ỹk−1)− Ỹk−1

∣∣∣∣∣∣ ≤ 2−(k+1).

Proof
Lemma 10 essentially bounds the operator norm of κA∗A−I. In particular, to prove Theorem 2,

the reduced version with κ = 1 is needed. Lemma 2 essentially uses the matrix Bernstein inequality
to accomplish this task, taking

Xn = κ(〈G,An〉An − E [〈G,An〉An]),
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and we just need to control ||
∑

E [XnX
∗
n]|| and ||

∑
E [X∗nXn]||. To bound the second of these, we

can calculate ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E [X∗nXn]

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
|〈G,An〉|2AnA

∗
n

]∣∣∣∣∣∣
∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
||fn||

2
2 |〈G,An〉|2znz∗n

]∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 3Nκ

M
||G||2F ,

where the second inequality is due to Lemma 11 and ||fn||
2
2 ≤ N . For the other expectation∣∣∣∣∣∣

∣∣∣∣∣∣
∑
n∈Γk

E [XnX
∗
n]

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
|〈G,An〉|2A∗nAn

]∣∣∣∣∣∣
∣∣∣∣∣∣

=
Lκ2

M2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

E
[
‖Gfn‖22fnf∗n

]∣∣∣∣∣∣
∣∣∣∣∣∣

≤ Lκ2

M2
sup
ω

(‖Gfω‖22)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n∈Γk

1N

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ Lκ

M
sup
ω

(‖Gfω‖22)

=
Lκ

M
µ2‖G‖2F .

Using these bounds, we can write

σ2
X ≤

κ

M
‖G‖2F max {µ0L, 3N} ,

and to use Proposition 1 we just need to bound ‖X‖ψ2 . To start, we can see that

U1 = ||X||ψ1
≤ 2κ ||〈G,An〉An||ψ1

≤ cκ ||〈G,An〉||ψ2
||||An||F ||ψ2

≤ cκ ||〈G,An〉||ψ2

√∣∣∣∣∣∣||fn||22 ||zn||22∣∣∣∣∣∣
ψ2

= cκ

√
N

M
(
1− 4−1/L

) |||trace(fnz
∗
nG)||ψ2

≤ cκ

√
N

M2
(
1− 4−1/L

) L∑
l=1

||〈gl,fn〉||ψ2

≤ cκ

√
N2Lµ2

0‖G‖2F
M2

.
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We can now apply the matrix Bernstein theorem with the calculated values of U1 and σX . Again
using t = β log(LN), the first portion of the bound is

σX
√
t+ log(L+N) ≤ c ||G||F

√
κβ

M
max{µ2

kL,N} log(LN),

and the second portion of the bound is

U1 log

(
∆U2

1

σX

)
(t+ log(L+N))

≤ c ||G||F κ

√
LNµ2

k

M
log

(
LNµ2

k

M2

Mc ||G||2F κ2

κ ||G||2F max{µ2
kL,N}

)
β log(LN)

≤ c ||G||F κ

√
LNµ2

k

M
log

(
c∆κLNµ2

k

M max{µ2
kL,N}

)
β log(LN)

≤ cβ ||G||F κ

√
LNµ2

k

M
log
(
min{µ2

kL,N}
)

log(LN).

We can now use Lemma 12 to bound µ2
k ≤ µ2

0 with probability 1−O(M(LN)−β) and Lemma 9
to bound ||Gk||F ≤ 2−k

√
R, which gives us a bound of

||(A∗A− I)G|| ≤ c2−k/2 max

{√
κβR log(LN)

M
log(max{µ2

0L,N}),√
µ2

0LN
βκ

M
log(LN) log(min{µ2

0L,N})
}
.

Simplifying the bound using R ≤ min{L,N},

||(A∗A− I)G|| ≤ c2−k/2 max

{√
κβR log(LN)

M
log(LN),

√
µ2

0LN
βκ

M
log2(LN))

}

Taking

M ≥ cβκRmax{N,Lµ2
0} log2(LN),

proves the lemma. To simplify the bound on the probability, we note that Lemma 12 holds with
probability 1−O(M(LN)−β) and this lemma holds with probability 1−O(κ(LN)−β). Since κ <
M and assuming thatM ≤ LN , we can write that the result holds with probability 1−O((LN)1−β).
Additionally, since Lemma 12 holds when

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN) ≥ cβκRmax{N,Lµ2

0} log2(LN),

Then both lemmas hold under the same condition.
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A.2.4 BOUND ON E
[
|〈C,An〉|2znz∗n

]
Lemma 11 bounds the spectrum of the expected matrix

E
[
|〈G,An〉|2znz∗n

]
:

Lemma 11 Suppose An = znf
∗
n be defined as the outer product of an i.i.d. random Gaussian

vector zn with zero mean and variance 1/M and a random Fourier vector fn. Then the operator
|〈C,An〉|2znz∗n satisfies

Ez
[
|〈C,An〉|2znz∗n

]
� 3

M2
‖C∗fn‖22IM ,

and

Ez,f
[
|〈C,An〉|2znz∗n

]
� 3

M2
‖C‖2F IM .

Proof
To begin the proof, we look at the expectation of each element of the matrix. We first calculate

the expectation with respect to zn,

∗ = Ez

∣∣∣∣∣
L∑
l=1

zn[l]c∗l fn

∣∣∣∣∣
2

zn[α]z∗n[β]


= Ez

[(
L∑
l=1

zn[l]c∗l fn

)∗( L∑
l=1

zn[l]c∗l fn

)
zn[α]z∗n[β]

]

= Ez

 L∑
l=1

|zn[l]|2|c∗l fn|2zn[α]z∗n[β] + 2
∑
k 6=l

Re (z∗n[l]zn[k]〈c∗l fn, c∗kfn〉) zn[α]z∗n[β]


=

(
3

2M2
|c∗αfn|2 +

1

M2
‖Cfn‖22

)
δα=β +

2

M2
〈c∗αfn, c∗βfn〉δα 6=β.

We can then use the matrix formulation

Ez
[
|〈C,An〉|2znz∗n

]
=

3

2M2
diag(Cfnf

∗
nC
∗) +

1

M2
‖Cfn‖22IM

+
2

M2
Cfnf

∗
nC
∗ +

2

M2
diag(Cfnf

∗
nC
∗)

=
1

M2
‖Cfn‖22IM + 2Cfnf

∗
nC
∗ − 1

2
diag(Cfnf

∗
nC
∗)

� 3

M2
‖Cfn‖22IM ,

where to obtain the result we first use the linearity of the expectation along with the with the positive-
semidefinite property of diag(Cfnf

∗
nC
∗), proving the fist portion of the Lemma. To prove the

second portion we simply take an expectation with respect to fn:

Ez,f
[
|〈C,An〉|2znz∗n

]
� Ef

[
3

M2
‖Cfn‖22IM

]
� 3

M2
‖C‖2F I,M ,

completing the proof.
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A.2.5 CONTRACTIVE PROPERTY OF µ2
k

Lemma 12 Let µ2
k be the coherence factor as defined in Equation (30), and additionally assume

that L > 1 and that LN > Rµ4
0. If

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN),

then with probability at least 1−O(κ(LN)−β),

µ2
k ≤ 2−1µ2

k−1,

for all k ∈ [1, · · · , κ].

Proof
In Lemma 12 we show that the coherence term reduces at each golfing iteration. Observe that

µ2
k =

1

R
sup
ω

L∑
l=1

〈Ỹk, elf∗〉2

=
1

R
sup
ω

L∑
l=1

∑
n∈Γk

κ〈PT (An), elf
∗〉〈Ỹk−1,An〉 − 〈Ỹk−1, elf

∗〉

2

=
1

R
sup
ω

L∑
l=1

∑
n∈Γk

κ〈PT (An), elf
∗〉〈Ỹk−1,An〉 − E

[
κ〈PT (An), elf

∗〉〈Ỹk−1,An〉
]2

.

To bound this quantity we use the scalar Bernstein inequality on each of the inner quantities∑
n∈Γk

Xn =
∑
n∈Γk

κ〈PT (An), elf
∗〉〈Ỹk−1,An〉 − E

[
κ〈PT (An), elf

∗〉〈Ỹk−1,An〉
]
.

As in the matrix Bernstein formulation, we require both the variance and Orlicz norm. First we find
the variance,∑

n∈Γk

E [XnX
∗
n] = κ2

∑
n∈Γk

E
[
|〈PT (An), elf

∗〉|2|〈Ỹk−1,An〉|2
]

−|E
[
〈PT (An), elf

∗〉〈Ỹk−1,An〉
]
|2

≤ κ2
∑
n∈Γk

E [|〈QQ∗znf∗n, elf∗〉+ 〈znf∗nV V , elf∗〉

+〈QQ∗znf∗nV V ∗, elf∗〉|2|〈Ỹk−1,An〉|2
]

≤ κ2
∑
n∈Γk

E
[(
|〈QQ∗znf∗n, elf∗〉|2 + |〈f∗nV V ∗,f∗〉zn[l]|2

+|〈QQ∗znf∗nV V ∗, elf∗〉|2
)
|〈Ỹk−1,An〉|2

]
.
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This sum consists of three terms. The first of which can be bounded using Lemma 11,

∑
n∈Γk

E
[
|〈QQ∗znf∗n, elf∗〉|2|〈Ỹk−1,An〉|2

]
=
∑
n∈Γk

E
[
|f∗nf〈ql,Q∗zn〉|2|〈Ỹk−1,An〉|2

]
≤ 3

∑
n∈Γk

E
[
f∗fnf

∗
nfq

∗
lQ
∗
∣∣∣∣∣∣Ỹk−1fn

∣∣∣∣∣∣2
2
ILQql

]

≤
3Rµ2

k−1

M3
||ql||22

∑
n∈Γk

f∗E [fnf
∗
n]f

=
3NRµ2

k−1

κM2
||ql||22 .

For the second term we have

∑
n∈Γk

E
[
|〈f∗nV V ∗,f∗〉|2|zn[l]|2|〈Ỹk−1,An〉|2

]
=
∑
n∈Γk

E
[
|〈V ∗fn,V ∗f〉|2|zn[l]|2|〈Ỹk−1,An〉|2

]
=
∑
n∈Γk

E
[
f∗V V ∗fnf

∗
nV V

∗f |〈Ỹk−1, zn[l]znf
∗
n〉|2

]
.

Using the fact that |zn[l]|2 = e∗l znz
∗
nel and Lemma 11, we obtain

∑
n∈Γk

E
[
|〈f∗nV V ∗,f∗〉|2|zn[l]|2|〈Ỹk−1,An〉|2

]
≤ 3

M2

∑
n∈Γk

E
[
f∗V V ∗fnf

∗
nV V

∗fe∗l

∣∣∣∣∣∣Ỹk−1fn

∣∣∣∣∣∣2
2
ILel

]

≤
3Rµ2

k−1

M2

∑
n∈Γk

E [f∗V V ∗fnf
∗
nV V

∗f ]

≤
3Rµ2

k−1

M2
|Γk| ||V ∗f ||22

≤
3R2µ2

k−1µ
2
0

κM1
.
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Finally, for the third term, we have∑
n∈Γk

E
[
|〈QQ∗znf∗nV V ∗, elf∗〉|2|〈Ỹk−1,An〉|2

]
=
∑
n∈Γk

E
[
|〈V ∗fn,V ∗f〉|2|〈ql,Q∗zn〉|2|〈Ỹk−1,An〉|2

]
=
∑
n∈Γk

E
[
f∗V V ∗fnf

∗
nV V

∗f |〈ql,Q∗zn〉|2|〈Ỹk−1,An〉|2
]

≤
∑
n∈Γk

E
[
||V ∗f ||22 q

∗
lQ
∗znz

∗
n|〈Ỹk−1,An〉|2Qql

]
≤ 3

M2
||ql||22 ||V

∗f ||22
∑
n∈Γk

E
[∣∣∣∣∣∣Ỹk−1fn

∣∣∣∣∣∣2
2

]

≤
3R2µ2

0µ
2
k−1

κM
||ql||22 .

Summing the three bounds and using ||ql|| ≤ 1 yields

σ2
X ≤ 9κ

(
NRµ2

k−1

M2
||ql||22 + 2

R2µ2
0µ

2
k−1

M

)
.

To use the Bernstein inequality it remains to find the Orlicz-1 norm of Xn. From Lemma 10 we
have ∣∣∣∣∣∣〈Ỹk−1,An〉

∣∣∣∣∣∣2
ψ2

=
∣∣∣∣∣∣z∗nỸk−1fn

∣∣∣∣∣∣2
ψ2

≤
∣∣∣∣||Q∗zn||2 ||Λk−1V

∗fn||2
∣∣∣∣2
ψ2
≤ c

Rµ2
k−1

M
.

For the first term we have

||f∗nf〈ql,Q∗zn〉||
2
ψ2
≤ ||||f∗n||2 ||f ||2 |〈ql,Q

∗zn〉||2ψ2

≤ N2 ||q∗lQ∗zn||
2
ψ2

≤ c
N2 ||ql||22
M2

.

For the second term we have

||〈V ∗fn,V ∗f〉zn[l]||2ψ2
≤ ||||V ∗fn||2 ||V

∗f ||2 zn[l]||2ψ2
≤ cR

2

M
µ4

0.

Similarly, for the final term we have

||〈V ∗fn,V ∗f〉〈ql,Q∗zn〉||
2
ψ2
≤ ||||V ∗fn||2 ||V

∗f ||2 q
∗
lQ
∗zn||2ψ2

≤ cR
2

M
µ4

0 ||ql||
2
2 .

Now we can calculate the total Orlicz norm as

||Xn||2ψ1
≤ cκ2Rµ

2
k−1

M

(
N2 ||ql||22
M2

+
R2

M
µ4

0 +
R2

M
µ4

0 ||ql||
2
2

)

≤ c
κ2RN2

M3
||ql||22 µ

2
k−1 + c

2κ2R3

M2
µ4

0µ
2
k−1.
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Since we wish to bound the square of the sum of terms, we calculate the square values of the
two terms in the Bernstein inequality. The first term is bounded by

tσ2
X ≤ cβκ

R

M
µ2
k−1

(
N

M
||ql||22 + 2Rµ2

0

)
log(LN),

and the second term is bounded by

t2U2
α log2

(
|Γk|U2

α

σ2
X

)
≤ t2U2

α log2

c |Γk|Mκ2Rµ2
k−1

(
N2

M ||ql||
2
2 + 2R2µ4

0

)
M2κRµ2

k−1

(
N
M ||ql||

2
2 + 2Rµ2

0

)


≤ t2cκ2 R

M2
µ2
k−1

(
N2

M
||ql||22 + 2R2µ4

0

)
log2

(
c
N2 ||ql||22 + 2MR2µ4

0

N ||ql||22 + 2RMµ2
0

)

≤ cβ2κ2 R

M2
µ2
k−1

(
N2

M
||ql||22 + 2R2µ4

0

)
log4 (LN) ,

where the last step assumes L > 1 and LN > Rµ4
0. Each summand is then bounded by the

maximum of these two quantities with probability 1−O(|Γk|(LN)−β), the |Γk| term coming from
the union bound over all terms in each inner sum.

Using this bound on each summand, we obtain the total bound by taking a union bound, sum-
ming over l ∈ [1, · · · , L], and dividing by R, yielding a bound of the maximum of

tσ2
X ≤ cβκ

R

M
µ2
k−1

(
N

M
+ 2Lµ4

0

)
log(LN),

and

t2U2
α log2

(
|Γk|U2

α

σ2
X

)
≤ β2cκ2 R

M2
µ2
k−1

(
N

M
+ 2RLµ2

0

)
log4 (LN) ,

with probability 1−O(M(NL)−β). To complete the proof, we note that if we have

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN),

then both terms in this bound are less than µ2
k−1.
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