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Abstract

We consider the optimization of a quadratic objective function whose gradients are only
accessible through a stochastic oracle that returns the gradient at any given point plus a
zero-mean finite variance random error. We present the first algorithm that achieves jointly
the optimal prediction error rates for least-squares regression, both in terms of forgetting
the initial conditions in O(1/n2), and in terms of dependence on the noise and dimension d
of the problem, as O(d/n). Our new algorithm is based on averaged accelerated regularized
gradient descent, and may also be analyzed through finer assumptions on initial conditions
and the Hessian matrix, leading to dimension-free quantities that may still be small in
some distances while the “optimal” terms above are large. In order to characterize the
tightness of these new bounds, we consider an application to non-parametric regression
and use the known lower bounds on the statistical performance (without computational
limits), which happen to match our bounds obtained from a single pass on the data and
thus show optimality of our algorithm in a wide variety of particular trade-offs between
bias and variance.

Keywords: convex optimization, least-squares regression, stochastic gradient, accelerated
gradient, non-parametric estimation

1. Introduction

Many supervised machine learning problems are naturally cast as the minimization of a
smooth function defined on a Euclidean space. This includes least-squares regression, lo-
gistic regression (see, e.g., Hastie et al., 2009) or generalized linear models (McCullagh
and Nelder, 1989). While small problems with few or low-dimensional input features may
be solved precisely by many potential optimization algorithms (e.g., Newton method),
large-scale problems with many high-dimensional features are typically solved with sim-
ple gradient-based iterative techniques whose per-iteration cost is small.
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In this paper, we consider a quadratic objective function f whose gradients are only
accessible through a stochastic oracle that returns the gradient at any given point plus a
zero-mean finite variance random error. In this stochastic approximation framework (Rob-
bins and Monro, 1951), it is known that two quantities dictate the behavior of various
algorithms, namely the covariance matrix V of the noise in the gradients, and the deviation
θ0 − θ∗ between the initial point of the algorithm θ0 and any of the global minimizer θ∗
of f . This leads to a “bias/variance” decomposition (Bach and Moulines, 2013; Hsu et al.,
2014) of the performance of most algorithms as the sum of two terms: (a) the bias term
characterizes how fast initial conditions are forgotten and thus is increasing in a well-chosen
norm of θ0 − θ∗; while (b) the variance term characterizes the effect of the noise in the
gradients, independently of the starting point, and with a term that is increasing in the
covariance of the noise.

For quadratic functions with (a) a noise covariance matrix V which is proportional (with
constant σ2) to the Hessian of f (a situation which corresponds to least-squares regression)
and (b) an initial point characterized by the norm ‖θ0−θ∗‖2, the optimal bias and variance
terms are known separately from the optimization and statistical theories. On the one

hand, the optimal bias dependency after n iterations is proportional to L‖θ0−θ∗‖2
n2 , where L

is the largest eigenvalue of the Hessian of f . This rate is achieved by accelerated gradient
descent (Nesterov, 1983, 2004), and is known to be optimal if the number of iterations n is
less than the dimension d of the underlying predictors, but the algorithm is not robust to
random or deterministic noise in the gradients (d’Aspremont, 2008; Schmidt et al., 2011;
Devolder et al., 2014). On the other hand, the optimal variance term is proportional to
σ2d
n (Tsybakov, 2008); it is known to be achieved by averaged gradient descent (Bach and

Moulines, 2013), for which the bias term only achieves L‖θ0−θ∗‖2
n instead of L‖θ0−θ∗‖2

n2 .

Our first contribution in this paper is to present a novel algorithm which attains optimal
rates for both the variance and the bias terms. This algorithm analyzed in Section 4 is aver-
aged accelerated gradient descent; beyond obtaining jointly optimal rates, our result shows
that averaging is beneficial for accelerated techniques and provides a provable robustness
to noise.

While optimal when measuring performance in terms of the dimension d and the initial
distance to optimum ‖θ0 − θ∗‖2, these rates are not adapted in many situations where
either d is larger than the number of iterations n (i.e., the number of observations for
regular stochastic gradient descent) or L‖θ0 − θ∗‖2 is much larger than n2. Our second
contribution is to provide in Section 5 an analysis of a new algorithm (based on some
additional regularization) that can adapt our bounds to finer assumptions on θ0 − θ∗ and
the Hessian of the problem, leading in particular to dimension-free quantities that can thus
be extended to the Hilbert space setting (in particular for non-parametric estimation).

In order to characterize the optimality of these new bounds, our third contribution is
to consider an application to non-parametric regression in Section 6 and use the known
lower bounds on the statistical performance (without computational limits), which happen
to match our bounds obtained from a single pass on the data and thus show optimality of
our algorithm in a wide variety of particular trade-offs between bias and variance.

Our paper is organized as follows: in Section 2, we present the main problem we tackle,
namely least-squares regression, then introduce the two algorithms that we consider in
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Section 2.2, as well as the two types of oracles on the gradient in Section 2.3. In Section 3, we
present new results for averaged stochastic gradient descent that set the stage for Section 4,
where we present our main novel result leading to an accelerated algorithm which is robust
to noise. Our tighter analysis of convergence rates based on finer dimension-free quantities
is presented in Section 5, and their optimality for kernel-based non-parametric regression is
studied in Section 6. Organization of the main results is summarized in the Table 1 bellow.

Averaged Algo.
Averaged

Accelerated Algo.
Dimension dependent rates Section 3 Section 4

Additive Noise Lemma 1♦ Theorem 3
Multiplicative Noise Theorem 2♦ \

Dimension independent rates Section 5 Section 5

Additive Noise ] Theorem 5

Multiplicative Noise 4th remark after Cor. 6[ \

Kernel regression setting Section 6 Section 6

Additive Noise ] Theorem 8

Multiplicative Noise Theorem 7[ \

Table 1: Organization of the paper. ♦: We extend results from (Bach and Moulines, 2013)
to the setting in which extra regularization is added; ]: apart from Lemma 1
which is useful to develop intuition of the different terms in the upper bound, we
do not state result for the averaged algorithm with additive noise, as the most
powerful result is for the multiplicative noise; [: these results recover results from
Dieuleveut and Bach (2015) (with the use of an extra regularization); \: it is still
an open problem to get results in the accelerated setting for a multiplicative noise
oracle.

2. Least-Squares Regression

In this section, we present our least-squares regression framework, which is risk minimization
with the square loss, together with the main assumptions regarding our model and our
algorithms. These algorithms will rely on stochastic gradient oracles, which will come in two
kinds, an additive noise which does not depend on the current iterate, which will correspond
in practice to the full knowledge of the covariance matrix, and a “multiplicative/additive”
noise, which corresponds to the regular stochastic gradient obtained from a single pair of
observations. This second oracle is much harder to analyze.

2.1 Statistical Assumptions

We consider the following general setting:

• H is a d-dimensional Euclidean space with d ≥ 1. The (temporary) restriction to
finite dimension will be relaxed in Section 6.
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• The observations (xn, yn) ∈ H×R, n ≥ 1, are independent and identically distributed
(i.i.d.), and such that E‖xn‖2 and Ey2

n are finite.

• We consider the least-squares regression problem, namely the minimization of the
expected loss f(θ) = 1

2E(〈xn, θ〉 − yn)2 which is a quadratic function.

We first introduce an assumption on the distribution of xn.

Covariance matrix. We denote by Σ = E(xn ⊗ xn) ∈ Rd×d the population covariance
matrix, which is the Hessian of f at all points. Without loss of generality, we can assume Σ
is invertible by reducing H to the minimal subspace where all xn, n ≥ 1, lie almost surely.
This implies that all eigenvalues of Σ are strictly positive (but they may be arbitrarily
small). Following Bach and Moulines (2013), we assume there exists R > 0 such that

E‖xn‖2xn ⊗ xn 4 R2Σ, (A1)

where A 4 B means that B − A is positive semi-definite. This assumption implies in
particular that (a) E‖xn‖4 is finite and (b) tr Σ = E‖xn‖2 ≤ R2 since taking the trace of
the previous inequality we get E‖xn‖4 ≤ R2E‖xn‖2 and using Cauchy-Schwarz inequality
we get E‖xn‖2 ≤

√
E‖xn‖4 ≤ R

√
E‖xn‖2.

Assumption (A1) is satisfied, for example, for least-square regression with almost surely
bounded data, since ‖xn‖2 ≤ R2 almost surely implies E‖xn‖2xn ⊗ xn 4 E

[
R2xn ⊗ xn

]
=

R2Σ. This assumption is also true for data with infinite support and a bounded kurtosis
for the projection of the covariates xn on any direction z ∈ H, e.g, for which there exists
κ > 0, such that:

∀z ∈ H, E〈z, xn〉4 ≤ κ〈z,Σz〉2. (1)

Indeed, by Cauchy-Schwarz inequality, Equation (1) implies for all (z, t) ∈ H2, the fol-
lowing bound E〈z, xn〉2〈t, xn〉2 ≤ κ〈z,Σz〉〈t,Σt〉, which in turn implies that for all positive
semi-definite symmetric matrices M,N , we have E〈xn,Mxn〉〈xn, Nxn〉 ≤ κ tr(MΣ) tr(NΣ).
Equation (1), which is true for Gaussian vectors with κ = 3, thus implies (A1) for R2 =
κ tr Σ = κE‖xn‖2.

In the next two paragraphs, we introduce some quantities that will be important in the
analysis, in order to get tighter bounds.

Eigenvalue decay. Most convergence bounds depend on the dimension d of H. However
it is possible to derive dimension-free and often tighter convergence rates by considering
bounds depending on the value tr Σb for b ∈ [0, 1]. Given b, if we consider the eigenvalues
of Σ ordered in decreasing order, which we denote by si, then tr Σb =

∑
i s
b
i , and the

eigenvalues decay1 at least as (tr Σb)1/b

i1/b
. Moreover, it is known that (tr Σb)1/b is decreasing

in b and thus, the smaller the b, the stronger the assumption. For b going to 0 then tr Σb

tends to d and we are back in the classical low-dimensional case. When b = 1, we simply
get tr Σ = E‖xn‖2, which will correspond to the weakest assumption in our context.

1. Indeed for any i ≥ 1, we have isbi ≤
∑i
t=1 s

b
t ≤ tr(Σb).
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Optimal predictor. In finite dimension the regression function f(θ) = 1
2E(〈xn, θ〉− yn)2

always admits a global minimum θ∗ = Σ†E(ynxn). When initializing algorithms at θ0 = 0 or
regularizing by the squared norm, rates of convergence generally depend on ‖θ∗‖, a quantity
which could be arbitrarily large.

However there exists a systematic upper-bound2 ‖Σ
1
2 θ∗‖ ≤ 2

√
Ey2

n. This leads naturally
to the consideration of convergence bounds depending on ‖Σr/2θ∗‖ for r ≤ 1. In infinite
dimension this will correspond to assuming ‖Σr/2θ∗‖ < ∞. This new assumption relates
the optimal predictor with sources of ill-conditioning (since Σ is the Hessian of the objective
function f), the smaller r, the stronger our assumption, with r = 1 corresponding to no
assumption at all, r = 0 to θ∗ in H and r = −1 to a convergence of the bias of least-squares

regression with averaged stochastic gradient descent in O
(‖Σ−1/2θ∗‖2

n2

)
(Dieuleveut and Bach,

2015; Défossez and Bach, 2015). In this paper, we will use arbitrary initial points θ0 and
thus our bounds will depend on ‖Σr/2(θ0 − θ∗)‖.

Finally , we make an assumption on the joint distribution of (xn, yn).

Noise. We denote by εn = yn − 〈θ∗, xn〉 the residual for which we have E[εnxn] = 0.
Although we do not have E[εn|xn] = 0 in general unless the model is well-specified, we
assume the noise to be a structured process such that there exists σ > 0 with

E[ε2
nxn ⊗ xn] 4 σ2Σ. (A2)

Assumption (A2) is satisfied for example for data almost surely bounded or when the model
is well-specified, (e.g., yn = 〈θ∗, xn〉+εn, with (εn)n∈N i.i.d. of variance σ2 and independent
of xn).

2.2 Averaged Gradient Methods and Acceleration

We focus in this paper on stochastic gradient methods with and without acceleration for
the least-squares function regularized by λ

2‖θ − θ0‖2 for λ ∈ R+. The regularization will
be useful when deriving tighter convergence rates in Section 5, and it has the additional
benefit of making the problem λ-strongly-convex. Stochastic gradient descent (referred to
from now on as “SGD”), applied to the regularized problem, can be described for n ≥ 1 as

θn = θn−1 − γf ′n(θn−1)− γλ(θn−1 − θ0), (2)

starting from θ0 ∈ H, where γ > 0 is either called the step-size in optimization or the
learning rate in machine learning, and f ′n(θn−1) is an unbiased estimate of the gradient of
f at θn−1, that is, its conditional expectation given all other sources of randomness is equal
to f ′(θn−1).

Accelerated stochastic gradient descent is defined, for the regularized problem, by an
iterative system with two parameters (θn, νn) satisfying for n ≥ 1

θn = νn−1 − γf ′n(νn−1)− γλ(νn−1 − θ0)

νn = θn + δ
(
θn − θn−1

)
, (3)

2. Indeed for all θ ∈ Rd and in particular θ = 0, by Minkowski’s inequality, ‖Σ
1
2 θ∗‖−

√
Ey2n =

√
E〈θ∗, xn〉2−√

Ey2n ≤
√

E(〈θ∗, xn〉 − yn)2 ≤
√

E(〈θ, xn〉 − yn)2 ≤
√

E(yn)2.
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starting from θ0 = ν0 ∈ H, with γ, δ ∈ R2 and f ′n(θn−1) described as before. It may be
reformulated as the following second-order recursion

θn = (1− γλ)
(
θn−1 + δ(θn−1 − θn−2)

)
− γf ′n

(
θn−1 + δ(θn−1 − θn−2)

)
+ γλθ0.

The momentum coefficient δ ∈ R is chosen to accelerate the convergence rate (Nes-
terov, 1983; Beck and Teboulle, 2009) and has its roots in the heavy-ball algorithm from
Polyak (1964). We especially concentrate here, following Polyak and Juditsky (1992), on
the average of the sequence

θ̄n =
1

n+ 1

n∑
i=0

θn, (4)

and we note that it can be computed online as θ̄n = n
n+1 θ̄n−1 + 1

n+1θn.

The key ingredient in the algorithms presented above is the unbiased estimate on the
gradient f ′n(θ), which can take two forms that we now describe in our setting.

2.3 Additive versus Multiplicative Stochastic Oracles on the Gradient

We consider the standard stochastic approximation framework (Kushner and Yin, 2003).
That is, we let (Fn)n≥0 be the increasing family of σ-fields that are generated by all variables
(xi, yi) for i ≤ n, and such that for each θ ∈ H the random variable f ′n(θ) is square-integrable
and Fn-measurable with E[f ′n(θ)|Fn−1] = f ′(θ), for all n ≥ 0. Consequently it is of the form

f ′n(θ) = f ′(θ)− ξn, (A3)

where the noise process ξn is Fn-measurable with E[ξn|Fn−1] = 0 and E[‖ξn‖2] is finite. We
will consider two different gradient oracles.

Additive noise. The first oracle is the sum of the true gradient f ′(θ) and an independent
zero-mean noise that does not depend on θ. This oracle is equal to

f ′n(θ) = Σθ − ynxn. (5)

Since f ′(θ) = Σθ−Eynxn, the oracle above has a noise vector ξn = ynxn−Eynxn independent
of θ and therefore satisfies Assumption (A3). Furthermore we also assume that there exists
τ ∈ R such that

E[ξn ⊗ ξn] 4 τ2Σ, (A4)

that is, the noise has a particular structure adapted to least-squares regression. For optimal
results for unstructured noise, with convergence rate for the noise part in O(1/

√
n), see Lan

(2012). Our oracle above with an additive noise which is independent of the current iterate
corresponds to the first setting studied in stochastic approximation (Robbins and Monro,
1951; Duflo, 1997; Polyak and Juditsky, 1992). While used by Bach and Moulines (2013) as
an artifact of proof, for least-squares regression, such an additive noise corresponds to the
situation where the distribution of x is known so that the population covariance matrix is
computable, but the distribution of the outputs (yn)n∈N remains unknown. Thus it may be
seen as an intermediate set-up between regression estimation with fixed and random design
(see, e.g., Györfi et al., 2006, Section 1.9).
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Assumption (A4) will be satisfied, for example if the outputs are almost surely bounded
because E[ξn ⊗ ξn] 4 E[y2

nxn ⊗ xn] 4 τ2Σ if y2
n ≤ τ2 almost surely. But it will also be for

data satisfying Equation (1) since we will have

E[ξn ⊗ ξn] 4 E[y2
nxn ⊗ xn] = E[(〈θ∗, xn〉+ εn)2xn ⊗ xn]

4 2E[〈θ∗, xn〉2xn ⊗ xn] + 2σ2Σ 4 2(κ‖Σ1/2θ∗‖2 + σ2)Σ 4 2(4κE[y2
n] + σ2)Σ,

and thus Assumption (A4) is satisfied with τ2 = 2(4κE[y2
n] + σ2).

Stochastic noise (“multiplicative/additive”). This corresponds to:

f ′n(θ) = (〈xn, θ〉 − yn)xn = (Σ + ζn)(θ − θ∗)− Ξn, (6)

with ζn = xn⊗xn−Σ and Ξn = (yn−〈xn, θ∗〉)xn = εnxn. This oracle corresponds to regular
SGD, which is often referred to as the least-mean-square (LMS) algorithm for least-squares
regression, where the noise comes from sampling a single pair of observations. While still
satisfying Assumption (A3), it combines an additive noise Ξn independent of θ as in Eq. (5)
and a multiplicative noise ζn. This multiplicative noise makes this stochastic oracle harder
to analyze which explains why it is often approximated by an additive noise oracle. However
it is the most widely used and most practical one. Note that for the oracle in Eq. (6), from
Equation (A2), we have E[Ξn⊗Ξn] 4 σ2Σ. It has a similar form to Assumption (A4) which
is valid for the additive noise oracle in Eq. (5): we use different constants σ2 and τ2 to
highlight the difference between these two oracles.

3. Averaged Stochastic Gradient Descent

In this section, we provide convergence bounds for regularized averaged stochastic gradient
descent. The main novelty compared to the work of Bach and Moulines (2013) is (a) the
presence of regularization, which will be useful when deriving tighter convergence rates in
Section 5 and (b) a much simpler proof. We first consider the additive noise in Section 3.1
before considering the multiplicative/additive noise in Section 3.2.

3.1 Additive Noise

We study here the convergence of the averaged SGD recursion defined by Eq. (2) under the
simple oracle defined in Eq. (5). For least-squares regression, it takes the form:

θn =
[
I − γΣ− γλI

]
θn−1 + γynxn + λγθ0. (7)

This is an easy adaptation of the work of Bach and Moulines (2013, Lemma 2) for the
regularized case.

Lemma 1 Assume (A4). Consider the recursion in Eq. (7) with any regularization param-
eter λ ∈ R+ and any constant step-size γ such that γ(Σ + λI) 4 I. Then

Ef(θ̄n)− f(θ∗) ≤
(
λ+

1

γn

)2
‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2 +

τ2 tr
[
Σ2(Σ + λI)−2

]
n

. (8)

We can make the following observations:
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• The proof (see Appendix A) relies on the fact that θn−θ∗ is obtainable in closed form
since the cost function is quadratic and thus the recursions are linear, and follows
from Polyak and Juditsky (1992).

• The constraint on the step-size γ is equivalent to γ(L+ λ) 6 1 where L is the largest
eigenvalue of Σ and we thus recover the usual step-size from deterministic gradient
descent (Nesterov, 2004).

• When n tends to infinity, the algorithm converges to the minimum of f(θ)+ λ
2‖θ−θ0‖2

and our performance guarantee becomes λ2‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2. This is the
standard “bias term” from regularized ridge regression (Hsu et al., 2014) which we nat-

urally recover here. The term τ2

n tr
[
Σ2(Σ + λI)−2

]
is usually referred to as the “vari-

ance term” (Hsu et al., 2014), and is equal to τ2

n times the quantity tr
[
Σ2(Σ+λI)−2

]
,

which is often called the degrees of freedom of the ridge regression problem (Gu, 2013).

• For finite n, the first term in Eq. (8) is the usual bias term which depends on the
distance from the initial point θ0 to the objective point θ∗ with an appropriate
norm. It includes a regularization-based component which is proportional to λ2 and
optimization-based component which depends on (γn)−2. The regularization-based
bias appears because the algorithm tends to minimize the regularized function instead
of the true function f .

• Given Eq. (8), it is natural to set λγ = 1
n , and the two components of the bias

term are exactly of the same order leading to 4
γ2n2 ‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2. It

corresponds up to a constant factor to the bias term of regularized least-squares (Hsu
et al., 2014), but it is achieved by an algorithm accessing only n stochastic gradients.
Note that when λ or γ depend on n, this term is not necessarily of order O(n−2), as
the numerator might be arbitrarily large. Note also that here as in the rest of the
paper, we only prove results in the finite horizon setting, meaning that the number
of samples is known in advance and the parameters γ, λ may be chosen as functions
of n, but remain constant along the iterations (when λ or γ depend on n, our bounds
only hold for the last iterate).

• Note that the bias term can also be bounded by 1
γn‖Σ

1/2(Σ +λI)−1/2(θ0− θ∗)‖2 only

when ‖θ0 − θ∗‖ is finite (note the difference in the powers of n and (Σ + λI)−1). See
the proof in Appendix A.2 for details.

• The second term in Eq. (8) is the variance term. It depends on the noise in the
gradient. When this one is not structured the variance turns to be also bounded by
γ tr

(
Σ(Σ + λI)−1E[ξn ⊗ ξn]

)
(see Appendix A.3) and we recover for γ = O(1/

√
n),

the usual rate of 1√
n

for SGD in the smooth case (Shalev-Shwartz et al., 2009).

• Overall we get the same performance as the empirical risk minimizer with fixed design,
but with an algorithm that performs a single pass over the data.

• When λ = 0 we recover Lemma 2 of Bach and Moulines (2013). In this case the

variance term τ2d
n is optimal over all estimators in H (Tsybakov, 2008) even without
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computational limits, in the sense that no estimator that uses the same information
can improve upon this rate.

3.2 Multiplicative/Additive Noise

When the general stochastic oracle in Eq. (6) is considered, the regularized LMS algorithm
defined by Eq. (2) takes the form:

θn =
[
I − γxn ⊗ xn − γλI

]
θn−1 + γynxn + λγθ0. (9)

We have a very similar result with an additional corrective term (second line below) com-
pared to Lemma 1.

Theorem 2 Assume (A1,2). Consider the recursion in Eq. (9). For any regularization
parameter λ ∈ R+ and for any constant step-size γ such that 2γ(R2 + 2λ) ≤ 1 we have:

Ef(θ̄n)− f(θ∗) 6 3
(

2λ+
1

γn

)2
‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2 +

6σ2

n+ 1
tr
[
Σ2(Σ + λI)−2

]
+3

∥∥(Σ + λI)−1/2(θ0 − θ∗)
∥∥2

tr(Σ(Σ + λI)−1)

γ2(n+ 1)2
.

We can make the following remarks:

• The proof (see Appendix B) relies on a bias-variance decomposition, each term being
treated separately. We adapt a proof technique from Bach and Moulines (2013) which
considers the difference between the recursions in Eq. (9) and in Eq. (7).

• As in Lemma 1, the bias term can also be bounded by 1
γn‖Σ

1/2(Σ+λI)−1/2(θ0−θ∗)‖2

and the variance term by γ tr[Σ(Σ + λI)−1ξn ⊗ ξn] (see proof in Appendices B.4
and B.5). This is useful in particular when considering unstructured noise.

• The variance term is the same as in the previous case. However there is a residual term
that now appears when we go to the fully stochastic oracle (second line). This term
will go to zero when γ tends to zero and can be compared to the corrective term which
also appears when Hsu et al. (2014) go from fixed to random design. Nevertheless
our bounds are more concise than theirs, making significantly fewer assumptions and
relying on an efficient single-pass algorithm.

• In this setting, the step-size may not exceed 1/(2(R2 +2λ)), whereas with an additive
noise in Lemma 1 the condition is γ ≤ 1/(L + λ), a quantity which can be much
bigger than 1/(2(R2 + 2λ)), as L is the spectral radius of Σ whereas R2 is of the order
of tr(Σ). Note that in practice, computing L is as hard as computing θ∗ so that the
step-size γ ∝ 1/R2 is a good practical choice. See Défossez and Bach (2015) for larger
allowed step-sizes that require more information.

• For λ = 0 the error is bounded by 3(1+d)

(γn)2
‖Σ−1/2(θ0 − θ∗)‖2 + 6σ2d

n+1 . We recover results

from Défossez and Bach (2015) with a non-asymptotic bound but we lose the advan-
tage of having an asymptotic equivalent (i.e., a limit rather than an upper-bound).
We note that the assumption (A1,2) are close to the minimal assumptions required to
obtain the optimal rate of convergence of σ2d/n (Lecué and Mendelson, 2016; Oliveira,
2016)
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4. Accelerated Stochastic Averaged Gradient Descent

We study the convergence under the stochastic oracle from Eq. (5) of averaged accelerated
stochastic gradient descent defined by Eq. (3) which can be rewritten for the least-squares
function f as a second-order iterative system with constant coefficients:

θn =
[
I − γΣ− γλI

][
θn−1 + δ(θn−1 − θn−2)

]
+ γynxn + γλθ0. (10)

When using averaging, we refer to this algorithm as “averaged-accelerated-SGD”.

Theorem 3 Assume (A4). For any regularization parameter λ ∈ R+ and for any constant

step-size γ(Σ + λI) 4 I, we have for any δ ∈
[1−
√
γλ

1+
√
γλ
, 1
]
, for the recursion in Eq. (10):

Ef(θ̄n)− f(θ∗) ≤ 2
(
λ+

36

γ(n+ 1)2

)
‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2 + 8τ2 tr

[
Σ2(Σ + λI)−2

]
n+ 1

.

The numerical constants are partially artifacts of the proof (see Appendices C and E).
Thanks to a wise use of tight inequalities, the bound is independent of δ and valid for all
λ ∈ R+. This results in the simple following corollary for λ = 0, which corresponds to the
particularly simple recursion (with averaging to obtain θ̄n):

θn =
[
I − γΣ

]
(2θn−1 − θn−2) + γynxn. (11)

Corollary 4 Assume (A4). For any constant step-size γΣ 4 I, we have for δ = 1,

Ef(θ̄n)− f(θ∗) ≤ 36
‖θ0 − θ∗‖2

γ(n+ 1)2
+ 8

τ2d

n+ 1
. (12)

We can make the following observations:

• The proof technique relies on direct moment computations in each eigensubspace
obtained by O’Donoghue and Candès (2013) in the deterministic case. Indeed as Σ is
a symmetric matrix, the space can be decomposed on an orthonormal eigenbasis of Σ,
and the iterations are decoupled in such an eigenbasis. Although we only provide an
upper-bound, this is in fact an equality plus other exponentially small terms as shown
in the proof which relies on linear algebra, with difficulties arising from the fact that
this second-order system can be expressed as a linear stochastic dynamical system
with non-symmetric matrices. We only provide a result for additive noise.

• The first bound 1
γn2 ‖θ0 − θ∗‖2 in Eq. (12) corresponds to the usual accelerated rate.

It has been shown by Nesterov (2004) to be the optimal rate of convergence for
optimizing a quadratic function with a first-order method that can access only to
sequences of gradients when n ≤ d. We recover by averaging an algorithm dedicated
to strongly-convex function the traditional convergence rate for non-strongly convex
functions. Even if it seems surprising, the algorithm works also for λ = 0 and δ = 1
(see also simulations in Section 7).

10
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• The second bound in Eq. (12) also matches the optimal statistical performance τ2d
n

described in the observations following Lemma 1. Accordingly this algorithm achieves
joint bias/variance optimality (when measured in terms of τ2 and ‖θ0 − θ∗‖2).

• We have the same rate of convergence for the bias when compared to the regular
Nesterov acceleration without averaging studied by Flammarion and Bach (2015),
which corresponds to choosing δn = 1 − 2/n for all n. However if the problem is µ-
strongly convex, this latter was shown to also converge at the linear rate O

(
(1−γµ)n

)
and thus is adaptive to hidden strong-convexity (since the algorithm does not need to
know µ to run). This explains that it ends up converging faster for quadratic function
since for large n the convergence at rate 1/n2 becomes slower than the one at rate
(1 − γµ)n even for very small µ. This is confirmed in our experiments in Section 7.
Thanks to this adaptivity, we can also show using the same tools and considering
its weighted average θ̃n = 2

n(n+1)

∑n
k=0 kθk that the bias term of Ef(θ̃n) − f(θ∗) has

a convergence rate of order
(
λ2 + 1

γ2(n+1)4

)
‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2 without any

change in the variance term. This has to be compared to the bias of averaged SGD(
λ+ 1

γ(n+1)2

)
‖Σ1/2(Σ+λI)−1(θ0−θ∗)‖2 in Section 3 and may lead to faster convergence

for the bias in presence of hidden strong-convexity.

• Overall, the bias term is improved whereas the variance term is not degraded and
acceleration is thus robust to noise in the gradients. Thereby, while second-order
finite difference methods for optimizing quadratic functions in the singular case, such
as conjugate gradient (Polyak, 1987, Section 6.1) are notoriously highly sensitive to
noise, we are able to propose a version which is robust to stochastic noise.

• Note that when there is no assumption on the covariance of the noise we still have the
variance bounded by γn

2 tr
[
Σ(Σ +λI)−1V

]
; setting γ = 1/n3/2 and λ = 0 leads to the

bound ‖θ0−θ∗‖2√
n

+ trV√
n

. We recover the usual rate for accelerated stochastic gradient

in the non-strongly-convex case (Xiao, 2010). When the values of the bias and the

variance are known, we can achieve the optimal trade-off of Lan (2012) R2‖θ0−θ∗‖2
n2 +

‖θ0−θ∗‖
√

trV√
n

for γ = min
{

1/R2, ‖θ0−θ∗‖√
trV n3/2

}
.

5. Tighter Dimension-Independent Convergence Rates

We have seen in Corollary 4 above that the averaged accelerated gradient algorithm matches
the lower bounds τ2d/n and L

n2 ‖θ0 − θ∗‖2 for the prediction error. However the algorithm
performs better in almost all cases except the worst-case scenarios corresponding to the
lower bounds. For example the algorithm may still predict well when the dimension d is
much bigger than n. Similarly the norm of the optimal predictor ‖θ∗‖2 may be huge and the
prediction still good, as gradients algorithms happen to be adaptive to the difficulty of the
problem: indeed, if the problem is simpler, the convergence rate of the gradient algorithm
will be improved. In this section, we provide such a theoretical guarantee.

The following bound stands for the averaged accelerated algorithm. It extends previously
known bounds in the kernel least-mean-squares setting (Dieuleveut and Bach, 2015).
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Theorem 5 Assume (A4); for any regularization parameter λ ∈ R+ and for any constant

step-size such that γ(Σ +λI) 4 I we have for δ ∈
[1−
√
γλ

1+
√
γλ
, 1
]
, for the recursion in Eq. (10):

Ef(θ̄n)− f(θ∗) ≤ min
r∈[0,1], b∈[0,1]

[
2‖Σr/2(θ0 − θ∗)‖2 λ−r

(
36

γ(n+ 1)2
+ λ

)
+ 8

τ2 tr(Σb)λ−b

n+ 1

]
.

The proof is straightforward by upper bounding the terms coming from regularization,
depending on Σ(Σ+λI)−1, by a power of λ times the considered quantities. More precisely,
the quantity tr(Σ(Σ+λI)−1) can be seen as an effective dimension of the problem (Gu, 2013),
and is upper bounded by λ−b tr(Σb) for any b ∈ [0; 1]. Similarly, ‖Σ1/2(Σ +λI)−1/2θ∗‖2 can
be upper bounded by λ−r‖Σr/2(θ0 − θ∗)‖2. A detailed proof of these results is given in
Appendix D.

In order to benefit from the acceleration, we choose λ = (γn2)−1. With such a choice
we have the following corollary:

Corollary 6 Assume (A4), for any constant step-size γ(Σ + λI) 4 I, we have for λ =
1

γ(n+1)2
and δ ∈

[
1− 2

n+2 , 1
]
, for the recursion in Eq. (10):

Ef(θ̄n)− f(θ∗) ≤ min
r∈[0,1], b∈[0,1]

[
74
‖Σr/2(θ0 − θ∗)‖2

γ1−r(n+ 1)2(1−r) + 8
τ2γb tr(Σb)

(n+ 1)1−2b

]
.

We can make the following observations:

• The algorithm is independent of r and b, thus all the bounds for different values of
(r, b) are valid. This is a strong property of the algorithm, which is indeed adaptative
to the regularity and the effective dimension of the problem (once γ is chosen). In
situations in which either d is larger than n or L‖θ0 − θ∗‖2 is larger than n2, the
algorithm can still enjoy good convergence properties, by adapting to the best values
of b and r.

• For b = 0 we recover the variance term of Corollary 4, but for b > 0 and fast decays of
eigenvalues of Σ, the bound may be much smaller; note that we lose in the dependency
in n, but typically, for large d, this can be advantageous.

• For r = 0 we recover the bias term of Corollary 4 and for r = 1 (no assumption at all)
the bias is bounded by ‖Σ1/2θ∗‖2 ≤ 4R2, which is not going to zero. The smaller r is,
the stronger the decrease of the bias with respect to n is (which is coherent with the
fact that we have a stronger assumption). Moreover, r is only considered between 0
and 1: indeed, if r < 0, the constant‖(γΣ)r/2(θ0 − θ∗)‖ is bigger than ‖θ0 − θ∗‖, but
the dependence on n cannot improve beyond (γn2)−1. This is a classical phenomenon
called “saturation” (Engl et al., 1996). It is linked with the uniform averaging scheme:
here, the bias term cannot forget the initial condition faster than n−2.

• A similar result happens to hold, for averaged gradient descent, with λ = (γn)−1 :

Ef(θ̄n)− f(θ∗) ≤ min
r∈[−1,1]
b∈[0,1]

[
(18 + Res(b, r, n, γ))

‖Σr/2(θ0 − θ∗)‖2

γ1−r(n+ 1)(1−r) + 6
σ2γb tr(Σb)

(n+ 1)1−b

]
, (13)
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where Res(b, r, n, γ)) corresponds to a residual term, which is smaller than tr(Σb)nbγ1+b

if r ≥ 0 and does not exist otherwise. The bias term’s dependence on n is degraded,
thus the “saturation” limit is logically pushed down to r = −1, which explains the
[−1; 1] interval for r. The choice λ = (γn)−1 arises from Th. 2, in order to balance
both components of the bias term λ + (γn)−1. This result is proved in Appendix D.
This recovers the result of Dieuleveut and Bach (2015).

• Considering a non-uniform averaging, as proposed after Theorem 2 the min0≤r≤1 in
Th. 5 and Corollary 6 can be extended to min−1≤r≤1. Indeed, considering a non-
uniform averaging allows to have a faster decreasing bias, pushing the saturation
limit observed below.

In finite dimension these bounds for the bias and the variance cannot be said to be opti-
mal independently in any sense we are aware of. Indeed, in finite dimension, the asymptotic
rate of convergence for the bias (respectively the variance), when n goes to ∞ is governed
by L‖θ0 − θ∗‖2/n2 (resp. τ2d/n). However, we show in the next section that in the setting
of non parametric learning in kernel spaces, these bounds lead to the optimal statistical rate
of convergence among all estimators (independently of their computational cost). Moving
to the infinite-dimensional setting allows to characterize the optimality of the bounds by
showing that they achieve the statistical rate when optimizing the bias/variance tradeoff in
Corollary 6.

6. Rates of Convergence for Kernel Regression

Computational convergence rates give the speed at which an objective function can decrease
depending on the amount of computation which is allowed. Typically, they show how the
error decreases with respect to the number of iterations, as in Theorem 2. Statistical rates,
however, show how close one can get to some objective given some amount of information
which is provided. Statistical rates do not depend on some chosen algorithm: these bounds
do not involve computation, on the contrary, they state the best performance that no
algorithm can beat, given the information, and without computational limits. In particular,
any lower bound on the statistical rate implies a lower bound on the computational rates,
if each iteration corresponds to access to some new information, here pairs of observations.
Interestingly, many algorithms for the past few years have proved to match, with minimal
computations (in general one pass through the data), the statistical rate, emphasizing the
importance of carrying together optimization and approximation in large scale learning,
as described by Bottou and Bousquet (2008). In a similar flavor, it also appears that
regularization can be accomplished through early stopping (Yao et al., 2007; Rudi et al.,
2015), highlighting this interplay between computation and statistics.

To characterize the optimality of our bounds, we will show that averaged-accelerated-
SGD matches the statistical lower bound in the context of non-parametric estimation. Even
if it may be computationally hard or impossible to implement averaged-accelerated-SGD
with additive noise in the kernel-based framework below (see remarks following Theorem 8),
it leads to the optimal statistical rate for a broader class of problems than averaged-SGD,
showing that for a wider set of trade-offs, acceleration is optimal.
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A natural extension of the finite-dimensional analysis is the non-parametric setting, es-
pecially with reproducing kernel Hilbert spaces. In the setting of non-parametric regression,
we consider a probability space X×R with probability distribution ρ, and assume that we
are given an i.i.d. sample (xi, yi)i=1,...,n ∼ ρ⊗n, and denote by ρX the marginal distribu-
tion of xn in X; the aim of non-parametric least-squares regression is to find a function
g : X→ R, which minimizes the expected risk:

f(g) =
1

2
Eρ[(g(xn)− yn)2]. (14)

The optimal function g is the conditional expectation g(x) = Eρ(yn|x). In the kernel regres-
sion setting, we consider as hypothesis space a reproducing kernel Hilbert space (Aronszajn,
1950; Steinwart and Christmann, 2008; Schölkopf and Smola, 2002) associated with a ker-
nel function K. The space H is a subspace of the space of squared integrable functions
L2
ρX

. We look for a function gH which satisfies: f(gH) = infg∈H f(g), and gH belongs to
the closure H̄ of H (meaning that there exists a sequence of function gn ∈ H such that
‖gn− gH‖L2

ρX
→ 0). When H is dense, the minimum is attained for the regression function

defined above. This function however is not in H in general. Moreover there exists an
operator Σ : H → H, which extends the finite-dimensional population covariance matrix,
that will allow the characterization of the smoothness of gH. This operator is known to be
trace class when EρX [K(xn, xn)] <∞.

Data points xi are mapped into the RKHS, via the feature map: x 7→ Kx, where Kx :
H→ R is a function in the RKHS, such that Kx : y 7→ K(x, y). The reproducing property3

allows to express the minimization problem (14) as a least-squares linear regression problem:
for any g ∈ H, f(g) = 1

2Eρ[(〈g,Kxn〉H − yn)2], and can thus be seen as an extension to the
infinite-dimensional setting of linear least-squares regression.

However, in such a setting, both quantities ‖Σr/2θ∗‖H (where ‖ · ‖H stands for the norm
associated with the inner product in the Hilbert space H) and tr(Σb) may exist or not.
It thus arises as a natural assumption to consider the smaller r ∈ [−1; 1] and the smaller
b ∈ [0; 1] such that

• ‖Σr/2θ∗‖H <∞ (meaning that Σr/2θ∗ ∈ H), (A5)

• tr(Σb) <∞. (A6)

The quantities considered in Sections 2 and 5 are the natural finite-dimensional twins of
these assumptions. However in infinite dimension a quantity may exist or not and it is
thus an assumption to consider its existence, whereas it can only be characterized by its
value, big or small, in finite dimension. The first assumption is generally called the “source
condition”, the second one the “capacity condition”.

In the last decade, De Vito et al. (2005); Cucker and Smale (2002) studied non-parametric
least-squares regression in the RKHS framework. These works were extended to derive
rates of convergence depending on assumption (A5): Ying and Pontil (2008) studied un-

regularized stochastic gradient descent and derived asymptotic rate of convergenceO(n−
1−r
2−r ),

for r ≤ 1 and proved that one could derive similar rates of convergence for 0 ≤ r ≤ 1 from

3. It states that for any function g ∈ H, 〈g,Kx〉H = g(x), where 〈·, ·〉H denotes the scalar product in the
Hilbert space.
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Zhang (2004), who studies stochastic gradient descent with averaging; whereas Tarrès and
Yao (2011) give similar performance for −1 ≤ r ≤ 0. Interestingly, Ying and Pontil (2008)
do not have saturation, meaning that the rate still improves for r smaller than −1. As it
will appear, any algorithm based on a uniform averaging scheme faces a saturation issue :
one cannot forget initial conditions faster than n−2, which makes the algorithm sub-optimal
in situations in which the optimal predictor is very smooth (A5 holds with r ≤ −1). How-
ever, these papers only prove rates in the capacity-independent setting, meaning without

assumption on the spectrum of the covariance matrix. Although the rate O(n−
1−r
2−r ) is opti-

mal in this setting, it comes from a worst-case analysis. Considering the capacity-dependent
setting is more challenging, but allows to derive tighter and more realistic rates (a capacity
condition always stands under the trace class assumption that is made). Moreover, the
capacity-independent setting also does not allow to recover finite-dimensional rates. Up
to our knowledge, there is no one pass stochastic gradient algorithm which does not have
saturation while getting the minimax rate under both the capacity condition and source
condition. In a recent work, Lin and Rosasco (2016) achieves optimality without saturation
with multiple passes. We show in the next paragraphs that we can derive a tighter and
optimal rate for both averaged-SGD (recovering results from Dieuleveut and Bach (2015))
and averaged-accelerated-SGD, for a larger class of kernels for the latter. Note that the
averaging scheme for the RKHS setting was originally considered by Yao (2006).

We will first describe results for averaged-SGD, then increase the validity region of these
rates (which depends on r, b) using averaged accelerated SGD. We show that the derived
rates match statistical rates for our setting and thus our algorithms reach the optimal
prediction performance for certain b and r.

6.1 Averaged SGD

We have the following result, proved in Appendix D and following from Theorem 2: for
some fixed b, r, we choose the best step-size γ, that optimizes the bias-variance trade-off,
while still satisfying the constraint γ ≤ 1/(2R2). We get a result for the stochastic oracle
(multiplicative/additive noise).

Theorem 7 With λ = 1
γn , we have, if r ≤ b, under Assumptions (A1,2,5,6) and the stochas-

tic oracle Eq. (6), for any constant step-size γ such that 2γ(R2 + 2λ) ≤ 1, with γ ∝ n
−b+r
b+1−r ,

for the recursion in Eq. (9):

Ef(θ̄n)− f(θ∗) ≤
(

(27 + o(1))
∥∥Σr/2(θ0 − θ∗)

∥∥2
+ 6σ2 tr(Σb)

)
n−

1−r
b+1−r .

We can make the following remarks:

• The term o(1) stands for a quantity which is decreasing to 0 when n → ∞. More
specifically, this constant is smaller than 3 tr(Σb) divided by nχ, where χ is bigger than
0 (see Appendix D). The result comes from Eq. (13) (which follows from Theorem 5),
with the choice of the optimal step-size.

• We recover the same errors bounds as in Dieuleveut and Bach (2015), but with a
simpler analysis resulting from the consideration of the regularized version of the
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problem associated with a choice of λ. However, we only recover rates in the finite
horizon setting.

• This result shows that we get the optimal rate of convergence under Assumptions (A5,6),
for r ≤ b. This point will be discussed in more details after Theorem 8.

We now turn to the averaged accelerated SGD algorithm. We prove that it enjoys the
optimal rate of convergence for a larger class of problems, but only for the additive noise
which corresponds to knowing the distribution of xn.

6.2 Averaged-Accelerated SGD

Similarly, choosing the best step-size γ, it comes from Theorem 5, that in the RKHS setting,
under additional Assumptions (A5,6), we have for the the averaged accelerated algorithm
the following result:

Theorem 8 With λ = 1
γn2 , we have, if r ≤ b + 1/2, under Assumptions (A4,5,6), for any

constant step-size γ ≤ 1
L+λ , with γ ∝ n

−2b+2r−1
b+1−r , for the recursion in Eq. (10):

Ef(θ̄n)− f(θ∗) ≤
(

74
∥∥Σr/2(θ0 − θ∗)

∥∥2
+ 8τ2 tr(Σb)

)
n−

1−r
b+1−r .

We can make the following remarks:

• The rate 1−r
b+1−r is always between 0 and 1, and improves when our assumptions gets

stronger (r getting smaller, b getting smaller). Ultimately, with b → 0, and r → −1,
we recover the finite-dimensional n−1 rate.

• We can achieve this optimal rate when r ≤ b+ 1/2. Beyond, if r > b+ 1/2, the rate
is only n−2(1−r). Indeed, the bias term cannot decrease faster than n−2(1−r), as γ is
compelled to be upper bounded.

• The same phenomenon appears in the un-accelerated averaged situation, as shown by
Theorem 7, but the critical value was then r ≤ b. There is thus a region (precisely
b < r ≤ b + 1/2) in which only the accelerated algorithm gets the optimal rate
of convergence. Note that we increase the optimality region towards optimization
problems which are more ill-conditioned, naturally benefiting from acceleration.

• This algorithm cannot be computed in practice (at least with computational limits).
Indeed, without any further assumption on the kernel K, it is not possible to compute
images of vectors by the covariance operator Σ in the RKHS. However, as explained in
the following remark, this is enough to show some form of optimality of our algorithm.

Note that the easy computability is a great advantage of the multiplicative/additive
noise variant of the algorithms, for which the current point θn can always be expressed
as a finite sum of features θn =

∑n
i=1 αiKxi , with αi ∈ R, leading to a tractable

algorithm. An accelerated variant of SGD naturally arises from our algorithm, when
considering this stochastic oracle from Eq. (6). Such a variant can be implemented
but does not behave similarly for large step sizes, say, γ ' 1/(2R2). It is an open
problem to prove convergence results for averaged accelerated gradient under this
multiplicative/additive noise.
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• These rates happen to be optimal from a statistical perspective, meaning that no
algorithm which is given access to the sample points and the distribution of xn can
perform better for all functions that satisfy assumption (A6), for a kernel satisfy-
ing (A5). Indeed it is equivalent to assuming that the function lives in some ellipsoid
in the space of squared integrable functions. Note that the statistical minimization
problem (and thus the lower bound) does not depend on the kernel, and is valid with-
out computational limits. The case of learning with kernels is studied by Caponnetto
and De Vito (2007) which shows these minimax convergence rates under (A5,6), under
assumption that −1 ≤ r ≤ 0 (but state that it can be easily extended to 0 ≤ r ≤ 1).
They do not assume knowledge of the distribution of the inputs; however, Massart
(2007) and Tsybakov (2008) discuss optimal rates on ellipsoids, and Györfi et al.
(2006) proves similar results for certain class of functions under a known distribution
for the input data, showing that the knowledge of the distribution does not make any
difference. This minimax statistical rate stands without computational limits and is
thus valid for both algorithms (additive noise that corresponds to knowing Σ, and
multiplicative/additive noise). The optimal tradeoff is derived for an extended region
of b, r (namely r ≤ b+ 1/2 instead of r ≤ b) in the accelerated case which shows the
improvement upon non-accelerated averaged SGD.

• The choice of the optimal γ is difficult in practice, as the parameters b, r are unknown,
and this remains an open problem in general (see, e.g., Birgé, 2001, for some methods
for non-parametric regression), even if in the capacity-independent setting, Orabona
(2014) has proposed an algorithm that adapts to the unknown parameter r.

• Note that we do not give rates in terms of norm in the RHKS (i.e., an upper bound
on ‖θ̄n − θ∗‖H), because we mainly aim at extending optimality of prediction error
rate to ill-conditioned cases (i.e. situations for which r ≥ b ≥ 0). In such a situation,
Hilbert spaces norm bounds would not be relevant as the optimal estimator does not
even live in the RKHS.

7. Experiments

We illustrate now our theoretical results on synthetic examples. For d = 25 we consider
normally distributed inputs xn with random covariance matrix Σ which has eigenvalues 1/i3,
for i = 1, . . . , d, and random optimum θ∗ and starting point θ0 such that ‖θ0−θ∗‖ = 1. The
outputs yn are generated from a linear function with homoscedastic noise with unit signal
to noise-ratio (σ2 = 1), we take R2 = tr Σ the average radius of the data and a step-size
γ = 1/R2 and λ = 0. The additive noise oracle is used. We show results averaged over 10
replications.

We compare the performance of averaged SGD (AvSGD), AccSGD (usual Nesterov ac-
celeration for convex functions) and our novel averaged accelerated SGD from Section 4
AvAccSGD (which is not the averaging of AccSGD because the momentum term is propor-
tional to 1− 3/n for AccSGD instead of being equal to 1 for AvAccSGD), on two different
problems: one deterministic (‖θ0 − θ∗‖ = 1, σ2 = 0) which will illustrate how the bias
term behaves, and one purely stochastic (‖θ0 − θ∗‖ = 0, σ2 = 1) which will illustrate
how the variance term behaves. For the bias (left plot of Figure 1), AvSGD converges at
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Figure 1: Synthetic problem (d = 25) and γ = 1/R2. Left: Bias. Right: Variance.

speed O(1/n), while AvAccSGD and AccSGD converge both at speed O(1/n2). However,
as mentioned in the observations following Corollary 4, AccSGD takes advantage of the
hidden strong convexity of the least-squares function and starts converging linearly at the
end. For the variance (right plot of Figure 1), AccSGD is not converging to the optimum
and keeps oscillating whereas AvSGD and AvAccSGD both converge to the optimum at a
speed O(1/n). However AvSGD remains slightly faster in the beginning.

Note that for small n, or when the bias L‖θ0−θ∗‖2/n2 is much bigger than the variance
σ2d/n, the bias may have a stronger effect, although asymptotically, the variance always
dominates. It is thus essential to have an algorithm which is optimal in both regimes; this
is achieved by AvAccSGD.

8. Conclusion

In this paper, we showed that stochastic averaged accelerated gradient descent was robust to
structured noise in the gradients present in least-squares regression. Beyond being the first
algorithm which is jointly optimal in terms of both bias and finite-dimensional variance,
it is also adapted to finer assumptions such as fast decays of the covariance matrices or
optimal predictors with large norms.

Our current analysis is performed for least-squares regression. While it could be directly
extended to smooth losses through efficient online Newton methods (Bach and Moulines,
2013), an extension to all smooth or self-concordant-like functions (Bach, 2014) would widen
its applicability. Moreover, our accelerated gradient analysis is performed for additive noise
(i.e., for least-squares regression, with knowledge of the population covariance matrix) and
it would be interesting to study the robustness of our results in the contexts of least-mean
squares and online learning. Finally, our analysis relies on single observations per iteration
and could be made finer by using mini-batches (Cotter et al., 2011; Dekel et al., 2012),
which should not change the variance term but could impact the bias term.
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Appendix A. Proofs of Section 3

We first prove the results of Section 3.

A.1 Proof of Lemma 1

We proof here Lemma 1 which is the extension of Lemma 2 of Bach and Moulines (2013)
for the regularized case. The proof technique relies on the fact that recursions in Eq. (7)
are linear since the cost function is quadratic which allows us to obtain θn − θ∗ in closed
form.

For any regularization parameter λ ∈ R+ and any constant step-size γ(Σ + λI) 4 I we
may rewrite the regularized stochastic gradient recursion in Eq. (7) as:

θn − θ∗ =
[
I − γΣ− γλI

]
(θn−1 − θ∗) + γξn + λγ(θ0 − θ∗).

We thus get for n ≥ 1 the expansion

θn − θ∗ = (I − γΣ− γλI)n(θ0 − θ∗) + γ
n∑
k=1

(I − γΣ− γλI)n−kξk

+γλ
n∑
k=1

(I − γΣ− γλI)n−k(θ0 − θ∗)

= (I − γΣ− γλI)n(θ0 − θ∗) + γ
n∑
k=1

(I − γΣ− γλI)n−kξk

+λ
[
I − (I − γΣ− γλI)n

]
(Σ + λI)−1(θ0 − θ∗)

= (I − γΣ− γλI)n[I − λ(Σ + λI)−1](θ0 − θ∗) + γ
n∑
k=1

(I − γΣ− γλI)n−kξk

+λ(Σ + λI)−1(θ0 − θ∗).

We then have using the definition of the average

n(θ̄n−1 − θ∗) =

n−1∑
j=0

(θj − θ∗)

=
n−1∑
j=0

(I − γΣ− γλI)j [I − λ(Σ + λI)−1](θ0 − θ∗) + γ
n−1∑
j=0

j∑
k=1

(I − γΣ− γλI)n−kξk

+ nλ(Σ + λI)−1(θ0 − θ∗).
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For which we will compute the two sums separately

n−1∑
j=0

(I − γΣ− γλI)j [I − λ(Σ + λI)−1](θ0 − θ∗)

=
1

γ

[
I − (I − γΣ− γλI)n

]
(Σ + λI)−1[I − λ(Σ + λI)−1](θ0 − θ∗),

and

γ
n−1∑
j=0

j∑
k=1

(I − γΣ− γλI)j−kξk = γ
n−1∑
k=1

( n−1∑
j=k

(I − γΣ− γλI)j−k
)
ξk

= γ
n−1∑
k=1

( n−1−k∑
j=0

(I − γΣ− γλI)j
)
ξk

=
n−1∑
k=1

[
I − (I − γΣ− γλI)n−k

]
(Σ + λI)−1ξk.

Gathering the three terms together, we thus have

n(θ̄n−1 − θ∗) =
1

γ

[
I − (I − γΣ− γλI)n

]
(Σ + λI)−1[I − λ(Σ + λI)−1](θ0 − θ∗)

+
n−1∑
k=1

[
I − (I − γΣ− γλI)n−k

]
(Σ + λI)−1ξk + nλ(Σ + λI)−1(θ0 − θ∗)

=
[1

γ

[
I − (I − γΣ− γλI)n

]
[I − λ(Σ + λI)−1] + nλI

]
(Σ + λI)−1(θ0 − θ∗)

+

n−1∑
k=1

[
I − (I − γΣ− γλI)n−k

]
(Σ + λI)−1ξk.

Using standard martingale square moment inequalities which amount to consider ξi, i =
1, . . . , n independent, the variance of the sum is the sum of variances and we have for
V = Eξn ⊗ ξn

n2E‖Σ1/2(θ̄n−1 − θ∗)‖2 =
∑n−1

k=1 tr
[
I − (I − γΣ− γλI)n−k

]2
Σ(Σ + λI)−2V

+
∥∥∥[1

γ

[
I − (I − γΣ− γλI)n

]
[I − λ(Σ + λI)−1] + nλI

]
Σ1/2(Σ + λI)−1(θ0 − θ∗)

∥∥∥2
. (15)

Since all the matrices in this equality are symmetric positive-definite we are allowed to
bound [1

γ

[
I − (I − γΣ− γλI)n

]
[I − λ(Σ + λI)−1] + nλI

]
4

(1

γ
+ nλ

)
I (16)[

I − (I − γΣ− γλI)n−k
]2
4 I.
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This concludes proof of the Lemma 1

E‖Σ1/2(θ̄n−1 − θ∗)‖2 ≤
( 1

nγ
+ λ
)2
‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2

+
1

n
tr Σ(Σ + λI)−2V. (17)

A.2 Proof When Only ‖θ0 − θ∗‖ Is Finite

Unfortunately ‖Σ−1(θ0 − θ∗)‖ may not be finite. However we can use that for all u ∈ [0, 1]

we have 1−(1−u)n

nu ≤ 14 and have therefore the bound[1

γ

[
I − (I − γΣ− γλI)n

]
[I − λ(Σ + λI)−1] + nλI

]
[Σ + λI]−1

4
[1

γ

[
I − (I − γΣ− γλI)n

]
+ nλI

]
[Σ + λI]−1

4
[1

γ

[
I − (I − γΣ− γλI)n

]
[Σ + λI]−1 + nλ[Σ + λI]−1

]
4 I + nI.

Combining with Eq. (16) we have∥∥∥[1

γ

[
I − (I − γΣ− γλI)n

]
[I − λ(Σ + λI)−1] + nλI

]
Σ1/2(Σ + λI)−1(θ0 − θ∗)

∥∥∥2

≤ (n+ 1)
(1

γ
+ nλ

)
‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2,

which implies that

E‖Σ1/2(θ̄n−1 − θ∗)‖2 ≤ 2
( 1

nγ
+ λ

)
‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2

+
1

n
tr Σ(Σ + λI)−2V, (18)

which is interesting when only ‖θ0 − θ∗‖ is finite.

A.3 Proof When the Noise Is Not Structured

The bound in Eq. (17) becomes less interesting when the noise is not structured. However

using the same technique we have that
[
I − (I − γΣ − γλI)n−k

]2
(Σ + λI)−1 4 (n − k)γI

and we get the following upper-bound on the variance

n∑
k=1

tr
[
I − (I − γΣ− γλI)n−k

]2
Σ(Σ + λI)−2V ≤ γ

n∑
k=1

(n− k) tr Σ(Σ + λI)−1V

≤ γ
n(n+ 1)

2
tr Σ(Σ + λI)−1V.

4. since 1−(1−u)n
u

=
∑n
k=0(1− u)k ≤ n
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Therefore we get

E‖Σ1/2(θ̄n−1 − θ∗)‖2 ≤
( 1

nγ
+ λ
)2
‖Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2

+ γ tr Σ(Σ + λI)−1V, (19)

which is meaningful when the noise is not structured.

Appendix B. Proof of Theorem 2

In this section, we will prove Theorem 2. The proof relies on a decomposition of the error
as the sum of three main terms which will be studied separately. We state decomposition
in Section B.1 then prove upper bounds for the different terms in Sections B.2 and B.3.

B.1 Expansion of the Recursion

We may rewrite the regularized stochastic gradient recursion as:

θn =
[
I − γxn ⊗ xn − γλI

]
θn−1 + γεnxn + γ〈xn, θ∗〉xn + λγθ0

θn − θ∗ =
[
I − γxn ⊗ xn − γλI

]
(θn−1 − θ∗) + γεnxn + λγ(θ0 − θ∗).

For i > k, let

M(i, k) =
[
I − γxi ⊗ xi − γλI

]
· · ·
[
I − γxk ⊗ xk − γλI

]
be an operator from H to H. We have the expansion

θn − θ∗ = M(n, 1)(θ0 − θ∗) + γ
n∑
k=1

M(n, k + 1)εkxk + γ
n∑
k=1

M(n, k + 1)λ(θ0 − θ∗).

Our goal is to study these three terms separately and bound ‖Σ1/2(θ̄n − θ∗)‖ for each of
them.

B.2 Regularization-Based Bias Term

This is the term: θn−θ∗ = γ
∑n

k=1M(n, k+1)λ(θ0−θ∗), which corresponds to the recursion

θn − θ∗ =
(
I − γxn ⊗ xn − γλI

)
(θn−1 − θ∗) + λγ(θ0 − θ∗), (20)

initialized with θ0 = θ∗, and no noise.
Following the proof technique of Bach and Moulines (2013), we are going to consider a

related recursion by replacing in Equation (20) the operator xn ⊗ xn by its expectation Σ.
Thus, we consider ηn defined as

ηn − θ∗ = γ

n∑
k=1

(I − γΣ− λγI)n−kλ(θ0 − θ∗),

which satisfies the recursion (with initialization η0 = θ∗) and

ηn − θ∗ =
[
I − γΣ− λγI

]
(ηn−1 − θ∗) + λγ(θ0 − θ∗).

In order to bound ‖Σ1/2(θn − θ∗)‖, we will independently bound ‖Σ1/2(ηn − θ∗)‖ and
‖Σ1/2(θn − ηn)‖ using Minkowski’s inequality.
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Bounding ‖Σ1/2(θn − ηn)‖. We have θ0 − η0 = 0, and

θn − ηn =
[
I − γxn ⊗ xn − λγI

]
(θn−1 − ηn−1) + γ

[
Σ− xn ⊗ xn

]
(ηn−1 − θ∗).

We can now bound the recursion for θn−ηn as follows, using standard online learning proofs
(Nemirovski et al., 2009):

‖θn − ηn‖2 6 ‖θn−1 − ηn−1‖2 − 2γ
〈
θn−1 − ηn−1, (xn ⊗ xn + λI)(θn−1 − ηn−1)

〉
+2γ

〈
θn−1 − ηn−1,

[
Σ− xn ⊗ xn

]
(ηn−1 − θ∗)

〉
+γ2

∥∥[xn ⊗ xn + λI
]
(θn−1 − ηn−1)−

[
Σ− xn ⊗ xn

]
(ηn−1 − θ∗)

∥∥2
.

By taking conditional expectations given Fn−1, we get, using first the fact that E(Σ −
xn ⊗ xn|Fn−1) = 0 and the inequality (a + b)2 ≤ 2(a2 + b2), then developing and using
E[(xn ⊗ xn)2] ≤ R2Σ, which is assumption A1.

E
(
‖θn − ηn‖2|Fn−1

)
6 ‖θn−1 − ηn−1‖2 − 2γ

〈
θn−1 − ηn−1, (Σ + λI)(θn−1 − ηn−1)

〉
+2γ2E

(∥∥[xn ⊗ xn + λI
]
(θn−1 − ηn−1)

∥∥2|Fn−1

)
+2γ2E

(∥∥[Σ− xn ⊗ xn](ηn−1 − θ∗)
∥∥2|Fn−1

)
6 ‖θn−1 − ηn−1‖2 − 2γ

〈
θn−1 − ηn−1, (Σ + λI)(θn−1 − ηn−1)

〉
+2γ2

〈
θn−1 − ηn−1, (R

2Σ + λ2I + 2λΣ)(θn−1 − ηn−1)
〉

+2γ2R2〈ηn−1 − θ∗,Σ〉
6 ‖θn−1 − ηn−1‖2 − 2γ

[
1− γ(R2 + 2λ)

]〈
θn−1 − ηn−1,Σ(θn−1 − ηn−1)

〉
+2γ2R2〈ηn−1 − θ∗,Σ(ηn−1 − θ∗)〉.

This leads by taking full expectations and moving terms to

E
〈
θn−1 − ηn−1,Σ(θn−1 − ηn−1)

〉
6

1

2γ
[
1− γ(R2 + 2λ)

][E‖θn−1 − ηn−1‖2 − E‖θn − ηn‖2
]

+
γR2

1− γ(R2 + 2λ)
〈ηn−1 − θ∗,Σ(ηn−1 − θ∗)〉.

Thus, if γ(R2 + 2λ) 6 1
2

E
〈
θn−1 − ηn−1,Σ(θn−1 − ηn−1)

〉
6

1

γ

[
E‖θn−1 − ηn−1‖2 − E‖θn − ηn‖2

]
+2γR2E〈ηn−1 − θ∗,Σ(ηn−1 − θ∗)〉.

This leads to, summing and using initial conditions θ0 − η0 = 0, then using convexity to
upper bound

〈
θ̄n − η̄n,Σ(θ̄n − η̄n)

〉
≤ 1

n+1

∑n
k=0

〈
θk − ηk,Σ(θk − ηk)

〉
,

E
〈
θ̄n − η̄n,Σ(θ̄n − η̄n)

〉
6

2γR2

n+ 1

n∑
k=0

〈ηk − θ∗,Σ(ηk − θ∗)〉.
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Bounding ‖Σ1/2(ηn − θ∗)‖. Moreover we have:

ηn − θ∗ = λ(Σ + λI)−1(θ0 − θ∗)− (I − γΣ− λγI)n
[
λ(Σ + λI)−1(θ0 − θ∗)

]
η̄n − θ∗ = λ(Σ + λI)−1(θ0 − θ∗)−

1

n+ 1

n∑
k=0

(I − γΣ− λγI)k
[
λ(Σ + λI)−1(θ0 − θ∗)

]
= λ(Σ + λI)−1(θ0 − θ∗)

− 1

n+ 1
γ−1(Σ + λI)−1

[
I − (I − γΣ− λγI)n+1

][
λ(Σ + λI)−1(θ0 − θ∗)

]
.

This leads using Minkowski inequality to

(
E‖Σ1/2(ηn − θ∗)‖2

)1/2
6 ‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖(

E‖Σ1/2(η̄n − θ∗)‖2
)1/2

6 ‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖.

Thus this part is such that

(
E‖Σ1/2(θ̄n − θ∗)‖2

)1/2
6 ‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖

+

(
2γR2‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖2

)1/2

6 ‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖
(
1 +

√
2γR2

)
,

that gives the first bound on the regularization-based bias

E‖Σ1/2(θ̄n − θ∗)‖2 6 ‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖2
(
1 +

√
2γR2

)2
. (21)

B.3 Expansion without the Regularization Term

We will follow here the outline of the proof of Györfi and Walk (1996) which considers a
full expansion of the function value ‖Σ1/2(θ̄n − θ∗)‖2. This corresponds to

θn − θ∗ = M(n, 1)(θ0 − θ∗) + γ
n∑
k=1

M(n, k + 1)εkxk.

We have

E
n∑
i=0

n∑
j=0

〈θi − θ∗,Σ(θj − θ∗)〉 = E
n∑
i=0

〈θi − θ∗,Σ(θi − θ∗)〉+ 2E
n−1∑
i=0

n∑
j=i+1

〈θi − θ∗,Σ(θj − θ∗)〉.
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Moreover,

E
n−1∑
i=0

n∑
j=i+1

〈θi − θ∗,Σ(θj − θ∗)〉

= E
n−1∑
i=0

n∑
j=i+1

〈
θi − θ∗,Σ

[
M(j, i+ 1)(θi − θ∗) +

j∑
k=i+1

M(j, k + 1)γεkxk

]〉

= E
n−1∑
i=0

n∑
j=i+1

〈θi − θ∗,ΣM(j, i+ 1)(θi − θ∗)〉 because εkxk and θi are independent,

= E
n−1∑
i=0

n∑
j=i+1

〈θi − θ∗,Σ(I − γΣ− γλI)j−i(θi − θ∗)〉 as M(j, i+ 1) and θi are independent,

= E
n−1∑
i=0

〈
θi − θ∗, γ−1Σ(Σ + λI)−1

[
(I − γΣ− γλI)− (I − γΣ− γλI)n−i+1

]
(θi − θ∗)

〉
6 E

n∑
i=0

〈
θi − θ∗, γ−1Σ(Σ + λI)−1(I − γΣ− γλI)(θi − θ∗)

〉
using (Σ + λI) 4 I,

= γ−1E
n∑
i=0

〈θi − θ∗,Σ(Σ + λI)−1(θi − θ∗)〉 − E
n∑
i=0

〈θi − θ∗,Σ(θi − θ∗)〉.

We thus simply need to bound γ−1E
∑n

i=0〈θi−θ∗,Σ(Σ+λI)−1(θi−θ∗)〉, to get a bound
on n2E‖Σ1/2(θ̄n − θ∗)‖2.

Recursion on operators. We have:

E
[
M(i, k)Σ(Σ + λI)−1M(i, k)∗

]
= E

[
M(i, k + 1)

[
I − γxk ⊗ xk − γλI

]
Σ(Σ + λI)−1[

I − γxk ⊗ xk − γλI
]
M(i, k + 1)∗

]
= E

[
M(i, k + 1)

(
Σ(Σ + λI)−1 − 2γΣ + γ2

[
xk ⊗ xk

+λI
]
Σ(Σ + λI)−1

[
xk ⊗ xk + λI

])
M(i, k + 1)∗

]
4 E

[
M(i, k + 1)

[
Σ(Σ + λI)−1 − 2γΣ

+γ2(R2 + 2λ)Σ
]
M(i, k + 1)∗

]
= E

[
M(i, k + 1)Σ(Σ + λI)−1M(i, k + 1)∗

]
−γ(2− γ(R2 + 2λ))E

[
M(i, k + 1)ΣM(i, k + 1)∗

]
,

which leads to

E
[
M(i, k + 1)ΣM(i, k + 1)∗

]
4

1

γ(2− γ(R2 + 2λ))

(
E
[
M(i, k + 1)Σ(Σ + λI)−1M(i, k + 1)∗

]
−E
[
M(i, k)Σ(Σ + λI)−1M(i, k)∗

])
. (22)
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Using the operator T on matrices defined below, this corresponds to showing

(I − γT )
[
Σ(Σ + λI)

]
4 Σ(Σ + λI)− γΣ.

Noise term. For θ0 − θ∗ = 0, we have:

E〈θi − θ∗,Σ(Σ + λI)−1(θi − θ∗)〉

= γ2E
i∑

k=1

i∑
j=1

εjx
∗
jM(i, j + 1)∗Σ(Σ + λI)−1M(i, k + 1)εkxk by expanding all terms,

= γ2E
i∑

k=1

εkx
∗
kM(i, k + 1)∗Σ(Σ + λI)−1M(i, k + 1)εkxk using independence,

= γ2 tr

( i∑
k=1

Eε2
kxkx

∗
kEM(i, k + 1)∗Σ(Σ + λI)−1M(i, k + 1)

)

6 γ2σ2 tr

( i∑
k=1

EM(i, k + 1)ΣM(i, k + 1)∗Σ(Σ + λI)−1

)
using our assumption regarding the noise.

Using the recurrence between operators

E〈θi − θ∗,Σ(Σ + λI)−1(θi − θ∗)〉

6
γσ2

2− γ(R2 + 2λ)
tr

i∑
k=1

(
E
[
M(i, k + 1)Σ(Σ + λI)−1M(i, k + 1)∗Σ(Σ + λI)−1

]
−E
[
M(i, k)Σ(Σ + λI)−1M(i, k)∗Σ(Σ + λI)−1

])
6

γσ2

2− γ(R2 + 2λ)
tr

(
E
[
M(i, i+ 1)Σ(Σ + λI)−1M(i, i+ 1)∗Σ(Σ + λI)−1

]
−E
[
M(i, 1)Σ(Σ + λI)−1M(i, 1)∗Σ(Σ + λI)−1

])
by summing,

6
γσ2

2− γ(R2 + 2λ)
tr Σ2(Σ + λI)−2.

This implies that for the noise process

E‖Σ1/2(θ̄n − θ∗)‖2 6
(

σ2

n+ 1
tr
[
Σ2(Σ + λI)−2

]) 1

1− γ(R2/2 + λ)
.

Note that when γ tends to zero, we recover the optimal variance term.

Noiseless term. Without noise, we then need to bound:

γ−1E
n∑
i=0

〈θi − θ∗,Σ(Σ + λI)−1(θi − θ∗)〉,
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with θi − θ∗ = M(i, 1)(θ0 − θ∗), that is

γ−1E
n∑
i=0

tr
[
M(i, 1)∗Σ(Σ + λI)−1M(i, 1)(θ0 − θ∗)(θ0 − θ∗)∗

]
.

We follow here the proof of Défossez and Bach (2015) and consider the operator T from
symmetric matrices to symmetric matrices defined as

TA = (Σ + λI)A+A(Σ + λI)− γE
[
(xn ⊗ xn + λI)A(xn ⊗ xn + λI)

]
.

of the form TA = (Σ + λI)A+ (Σ + λI)A− γSA.
The operator S is self-adjoint and positive. Moreover:

〈A,SA〉 = E tr
[
A(xn ⊗ xn + λI)A(xn ⊗ xn + λI)

]
= tr

[
2A2λΣ + λ2A2

]
+ E tr

[
〈xn, Axn〉2

]
6 tr

[
2A2λΣ + λ2A2

]
+ E tr

[
‖xn‖2xn ⊗ xn, A2

]
using Cauchy-Schwarz inequality,

6 tr
[
2A2λΣ + λ2A2

]
+R2 tr ΣA2

6 (R2 + 2λ) tr
[
Σ + λI]A2.

We have for any symmetric matrix A:

EM(i, 1)∗AM(i, 1) = (I − γT )iA.

Thus,

γ−1E
n∑
i=0

tr
[
M(i, 1)∗Σ(Σ + λI)−1M(i, 1)(θ0 − θ∗)(θ0 − θ∗)∗

]
= γ−1E

n∑
i=0

〈〈(I − γT )iA,E0〉〉

with E0 = (θ0 − θ∗)(θ0 − θ∗)∗ and A = Σ(Σ + λI)−1. This leads to

γ−1E〈〈γ−1T−1(I − (I − γT )n+1)A,E0〉〉,

where 〈〈·, ·〉〉 denote the dot-product between self-adjoint operators.
The sum is less than its limit for n→∞, and thus, we can get rid of the term (I−γT )n+1,

and we need to bound

γ−2〈〈M,E0〉〉 = γ−2〈〈T−1(Σ(Σ + λI)−1), E0〉〉,

with M := T−1
[
Σ(Σ + λI)−1

]
, i.e., such that

Σ(Σ + λI)−1 = (Σ + λI)M +M(Σ + λI)− γE(xn ⊗ xn + λI)M(xn ⊗ xn + λI)

= (Σ + λI)M +M(Σ + λI)− γSM. (23)

So that :

M =
[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1[
Σ(Σ + λI)−1

]
+ γ
[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
SM

=
1

2
Σ(Σ + λI)−2 + γ

[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
SM.
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The operator (Σ + λI)⊗ I + I ⊗ (Σ + λI) is self adjoint, and so is its inverse, thus:

γ−2〈〈M,E0〉〉 = γ−2〈〈1
2

Σ(Σ + λI)−2 + γ
[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
SM,E0〉〉

=
1

2
γ−2〈〈Σ(Σ + λI)−2, E0〉〉+ γ−1〈〈SM,

[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
E0〉〉

=
1

2
γ−2 tr(Σ(Σ + λI)−2E0) + γ−1〈〈SM,

[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
E0〉〉.

Moreover,

E0 = (θ0 − θ∗)(θ0 − θ∗)∗

= (Σ + λI)1/2(Σ + λI)−1/2(θ0 − θ∗)(θ0 − θ∗)∗(Σ + λI)−1/2(Σ + λI)+1/2

4 [(θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)] (Σ + λI),

as (Σ + λI)−1/2(θ0 − θ∗)(θ0 − θ∗)∗(Σ + λI)−1/2 4 (θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)I.

Thus, as [(Σ + λI)⊗ I + I ⊗ (Σ + λI)]−1 is an non-decreasing operator on (Sn(R),4) (see
technical Lemma 15 in Appendix E):[

(Σ + λI)⊗ I + I ⊗ (Σ + λI)
]−1

E0

4
[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1 (
[(θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)](Σ + λI)

)
=

(θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)
2

I.

Thus as SM is positive :

γ−2〈〈M,E0〉〉 ≤
1

2γ2
tr(Σ(Σ + λI)−2E0) +

(θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)
2γ

tr(SM).

Moreover we can upper bound tr(SM) : using Equation (23) we have

tr(Σ(Σ + λI)−1) = 2 tr(Σ + λI)M − γ trE(xn ⊗ xn + λI)M(xn ⊗ xn + λI)

then, using Assumption (A1) :

trE(xn⊗xn+λI)M(xn⊗xn+λI) 6 R2 trMΣ+2 trMΣλ+λ2 trM 6 (R2+2λ) trM(Σ+λI).

This implies

tr
[
Σ(Σ + λI)−1

]
>

( 2

R2 + 2λ
− γ
)

trE(xn ⊗ xn + λI)M(xn ⊗ xn + λI),

>
1

R2 + 2λ
trE(xn ⊗ xn + λI)M(xn ⊗ xn + λI) since γ(R2 + 2λ) 6 1,

>
1

R2 + 2λ
trSM.

Thus finally:

γ−2〈〈M,E0〉〉 ≤
1

2γ2
trE0Σ(Σ + λI)−2

+
(θ0 − θ∗)∗(Σ + λI)−1(θ0 − θ∗)

2γ
(R2 + 2λ) tr(Σ(Σ + λI)−1),

which leads to the desired error term.
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B.4 Proof When Only ‖θ0 − θ∗‖ Is Finite

When λ = 0, without noise, we then need to bound:

γ−1E
n∑
i=0

〈θi − θ∗, θi − θ∗〉,

with θi − θ∗ = M(i, 1)(θ0 − θ∗), that is

γ−1E
n∑
i=0

tr
[
M(i, 1)∗M(i, 1)(θ0 − θ∗)(θ0 − θ∗)∗

]
.

By definition of M(i, 1) we have that EM(i, 1)∗M(i, 1) 4 I leading to

γ−1E
n∑
i=0

〈θi − θ∗, θi − θ∗〉 ≤
(n+ 1)‖θ0 − θ∗‖2

γ
.

For the regularization-based bias we also have

‖λΣ1/2(Σ + λI)−1(θ0 − θ∗)‖2 ≤ λ‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2.

B.5 Proof When the Noise Is Not Structured

For ‖θ0 − θ∗‖ = 0 we have θn − θ∗ = γ
∑n

k=1M(n, k + 1)εkxk which leads to

E‖Σ1/2(θn − θ∗)‖2 = γ2
n∑
k=1

trEM(n, k + 1)∗ΣM(n, k + 1)V,

where V = Eε2
kxkx

∗
k. And using the recursion on operators in Eq. (22) by changing order

of elements we have

E
[
M(n, k + 1)∗ΣM(n, k + 1)

]
4

1

γ(2− γ(R2 + 2λ))

(
E
[
M(n, k + 1)∗Σ(Σ + λI)−1M(n, k + 1)

]
− E

[
M(n, k)∗Σ(Σ + λI)−1M(n, k)

])
.

And by adding the terms

E‖Σ1/2(θn − θ∗)‖2 4
γ2

γ(2− γ(R2 + 2λ))
tr Σ(Σ + λI)−1V,

We conclude by convexity

E‖Σ1/2(θ̄n − θ∗)‖2 4
γ2

γ(2− γ(R2 + 2λ))
tr Σ(Σ + λI)−1V.
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Appendix C. Convergence of Accelerated Averaged Stochastic Gradient
Descent

We now prove Theorem 3. We thus consider iterates satisfying Eq. (10), under Assump-
tions (A3), (A4). We consider a fixed step size γ such that γ(Σ + λI) 4 I. Seeing Eq. (10)
as a linear second order for θn, we will derive from exact calculations a decomposition of
the errors a sum of three terms that will be studied independently. The proof is organized
as follows: in Section C.1, we state the formulation as a second order linear system and
derive the three main terms that have to be studied (see Lemma 9). Section C.2 studies
asymptotic behaviors of the three terms, ignoring some exponentially decreasing terms, in
order to give insight of how they behave. This section is not necessary for the proof, indeed
a direct and exact calculation in the eigenbasis of Σ, following O’Donoghue and Candès
(2013), is provided in Section C.3. Results are summed up in Section C.4.

C.1 General Expansion

We study the regularized stochastic accelerated gradient descent recursion defined for n ≥ 1
by

θn = νn−1 − γf ′(νn−1)− γλ(νn − θ0) + γξn

νn = θn + δ(θn − θn−1),

starting from θ0 = ν0 ∈ H. We may rewrite it for a quadratic function f : θ 7→ 1
2〈θ −

θ∗,Σ(θ − θ∗)〉 for n ≥ 2 as

θn =
[
I − γΣ− γλI

][
θn−1 + δ(θn−1 − θn−2)

]
+ γξn + γλθ0 + γΣθ∗,

with θ0 ∈ H and θ1 =
[
I − γΣ− γλI

]
θ0 + γξ1 + γλθ0 + γΣθ∗.

And by centering around the optimum, we get:

θn − θ∗ =
[
I − γΣ− γλI

][
θn−1 − θ∗ + δ(θn−1 − θ∗ − θn−2 + θ∗)

]
+ γξn + λγ(θ0 − θ∗).

Thus this is a second order iterative system which is standard to cast in a linear form

Θn = FΘn−1 + γΞn + γλΘλ, (24)

with T = I − γΣ − γλI, F =

(
(1 + δ)T −δT

I 0

)
, Θn =

(
θn − θ∗
θn−1 − θ∗

)
, Θ0 =

(
θ0 − θ∗
θ0 − θ∗

)
,

Ξn =

(
ξn
0

)
and Θλ =

(
θ0 − θ∗

0

)
.

We are interested in the behavior of the average Θ̄n = 1
n+1

∑n
k=0 Θk for which we have

the following general convergence result:

Lemma 9 For all λ ∈ R+ and γ such that γ(Σ + λI) 4 I and any matrix C the average

of the iterates Θn defined by Eq. (24) satisfy for Pk
(def)
= C1/2(I − F k)(I − F )−1, with
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Θ̃0 = Θ0 − γλ(I − F )−1Θλ,

E〈Θ̄n, CΘ̄n〉 ≤ 2 (γλ)2 ‖C1/2(I − F )−1Θλ‖2 +
2

(n+ 1)2
‖Pn+1Θ̃0‖2

+
γ2

(n+ 1)2

n∑
j=1

trPjV P
>
j .

The error thus decomposes as the sum of three main terms:

• the two first ones are bias terms, one arising from the regularization (the first one),
and one arising computation (the second one),

• a variance term. which is the last one.

We remark that as we have assumed that Σ is invertible, the matrix I−F can be shown
to be invertible for all the considered δ.

The regularization-based term will be studied directly whereas the two others will be
studied in two stages. First a heuristic will lead to an asymptotic bound then an exact

computation will give a non-asymptotic bound. Then using C = H =

(
Σ 0
0 0

)
would give

a convergence result on the function value and C =

(
I 0
0 0

)
a result on the iterate. The

end of the section is devoted to the proof of this lemma.

Proof The sequence Θn satisfies a linear recursion, from which we get, for all n ≥ 1:

Θn = FnΘ0 + γ

n∑
k=1

Fn−kΞk + γλ

n∑
k=1

Fn−kΘλ

= FnΘ0 + γ

n∑
k=1

Fn−kΞk + γλ(I − Fn)(I − F )−1Θλ.

We study the averaged sequence: Θ̄n = 1
n+1

∑n
k=0 Θk . Using the identity

∑n−1
k=0 F

k =

(I − Fn)(I − F )−1, we get

Θ̄n =
1

n+ 1

n∑
k=0

F kΘ0 +
γ

n+ 1

n∑
k=1

k∑
j=1

F k−jΞj +
γλ

n+ 1

n∑
k=1

(I − F k)(I − F )−1Θλ.

With

Θ̃0 = Θ0 − γλ(I − F )−1Θλ,

and
∑n

k=1(I − F k) =
∑n

k=0(I − F k) = [n+ 1− (I − Fn+1)(I − F )−1].
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Using summation formulas for geometric series, we derive:

Θ̄n =
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 +

γ

n+ 1

n∑
k=1

k∑
j=1

F k−jΞj + γλ(I − F )−1Θλ

=
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 +

γ

n+ 1

n∑
j=1

( n∑
k=j

F k−j
)
Ξj + γλ(I − F )−1Θλ

=
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 +

γ

n+ 1

n∑
j=1

( n−j∑
k=0

F k
)
Ξj + γλ(I − F )−1Θλ

=
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 +

γ

n+ 1

n∑
j=1

(I − Fn+1−j)(I − F )−1Ξj + γλ(I − F )−1Θλ

=
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 +

γ

n+ 1

n∑
j=1

(I − F j)(I − F )−1Ξn+1−j + γλ(I − F )−1Θλ.

Using martingale square moment inequalities which amount to consider Ξi, i = 1, ..., n
independent, so that the variance of the sum is the sum of variances, and denoting by
V = E[Ξn ⊗ Ξn] we have for any positive semi-definite C,

E〈Θ̄n, CΘ̄n〉 =
∥∥∥C1/2

(
1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0 + γλ(I − F )−1Θλ

)∥∥∥2

+
γ2

(n+ 1)2

n∑
j=1

tr(I − F j)(I − F )−1V (I − F>)−1(I − F j)>C,

where C1/2 denotes a symmetric square root of C. Define Pk
(def)
= C1/2(I − F k)(I − F )−1,

we have, Using Minkowski’s inequality and inequality (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R,

E〈Θ̄n, CΘ̄n〉 =
∥∥∥ 1

n+ 1
Pn+1Θ̃0 + γλC1/2(I − F )−1Θλ

∥∥∥2
+

γ2

(n+ 1)2

n∑
j=1

trPjV P
>
j

≤ 2 (γλ)2 ‖C1/2(I − F )−1Θλ‖2 +
2‖Pn+1Θ̃0‖2

(n+ 1)2
+

γ2

(n+ 1)2

n∑
j=1

trPjV P
>
j .

This concludes proof of Lemma 9.

C.2 Asymptotic Expansion

To give the main terms that we expect, we first provide an asymptotic analysis, which shall
only be understood as an insight and is not necessary for the proof. Operator F will have
only eigenvalues smaller than 1, thus

∣∣∣∣∣∣F j∣∣∣∣∣∣ will decrease exponentially to 0 as j →∞ (even
if |||F |||5 might be bigger than 1). The asymptotic analysis relies on ignoring all terms in

5. |||F ||| denotes the operator norm of F , i.e., sup‖x‖≤1 ‖Fx‖.
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which F j appears. We thus approximately have:

E〈Θ̄n, CΘ̄n〉 ≤ 2 (γλ)2 ‖C1/2(I − F )−1Θλ‖2 + 2
∥∥∥C1/2 1

n+ 1
(I − Fn+1)(I − F )−1Θ̃0

∥∥∥2

+
γ2

(n+ 1)2

n∑
j=1

tr(I − F j)(I − F )−1V (I − F>)−1(I − F j)>C

≈ 2 (γλ)2 ‖C1/2(I − F )−1Θλ‖2 + 2
∥∥∥C1/2 1

n+ 1
(I − F )−1Θ̃0

∥∥∥2

+
γ2

(n+ 1)2

n∑
j=1

tr(I − F )−1V (I − F>)−1C,

where, as it has been explained ≈ stands for an equality up to terms that will decay
exponentially. However, these terms have to be studied very carefully, what will be done in
the Section C.3.

Using the matrix inversion lemma we have for C =

(
c 0
0 0

)
,

I − F =

(
(1 + δ)(γΣ + γλI)− δI δ(I − (γΣ + γλI))

−I I

)
(I − F )−1 =

(
(γΣ + γλI)−1 δ

(
I − (γΣ + γλI)−1

)
(γΣ + γλI)−1 (1 + δ)I − δ(γΣ + γλI)−1

)
(25)

C1/2(I − F )−1 =

(
c1/2(γΣ + γλI)−1 δc1/2

(
I − (γΣ + γλI)−1

)
0 0

)
.

Regularization based term. This gives for the regularization based term

∥∥∥C1/2(I − F )−1Θλ

∥∥∥2
=

∥∥∥∥∥
(
c1/2(γΣ + γλI)−1 δc1/2

(
I − (γΣ + γλI)−1

)
0 0

)(
θ0 − θ∗

0

)∥∥∥∥∥
2

=

(
1

γ

)2

‖(c1/2(Σ + λI)−1(θ0 − θ∗))‖2. (26)

The computation of this term is exact (not asymptotic).

Bias term. For the bias term we have

Θ̃0 = Θ0 − γλ(I − F )−1Θλ

=

(
θ0 − θ∗
θ0 − θ∗

)
− γλ

(
(γΣ + γλI)−1 δ

(
I − (γΣ + γλI)−1

)
(γΣ + γλI)−1 (1 + δ)I − δ(γΣ + γλI)−1

)(
θ0 − θ∗

0

)
=

(
θ0 − θ∗
θ0 − θ∗

)
− γλ

(
(γΣ + γλI)−1(θ0 − θ∗)
(γΣ + γλI)−1(θ0 − θ∗)

)
=

(
[I − λ(Σ + λI)−1](θ0 − θ∗)
[I − λ(Σ + λI)−1](θ0 − θ∗)

)
.
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Thus this gives for the dominant term

∥∥∥C1/2(I − F )−1Θ̃0

∥∥∥2
=

∥∥∥∥∥
(
c1/2(γΣ + γλI)−1 δc1/2

(
I − (γΣ + γλI)−1

)
0 0

)
Θ̃0

∥∥∥∥∥
2

= ‖(c1/2[(1− δ)(γΣ + γλI)−1 + δI][I − λ(Σ + λI)−1](θ0 − θ∗)‖2.

And if c commutes with Σ we have the bound for δ ∈ [1−
√
γλ

1+
√
γλ
, 1]

∥∥∥C1/2(I − F )−1Θ̃0

∥∥∥2
≤ (

(1− δ)
γλ

+ δ)‖(c1/2[I − λ(Σ + λI)−1](θ0 − θ∗)‖2

≤ (
2√
γλ

+ 1)‖(c1/2[I − λ(Σ + λI)−1](θ0 − θ∗)‖2.

Variance term. And for the variance term with V =

(
v 0
0 0

)
, we have C1/2(I−F )−1V 1/2 =(

c1/2(γΣ + γλI)−1v1/2 0
0 0

)
, and

trC1/2(I − F )−1V (I − F>)−1C1/2 = tr c(γΣ + γλI)−1v(γΣ + γλI)−1.

This gives the three dominant terms. However in order to control the remainders we
have to compute the eigenvalues more carefully, as done in the next section.

C.3 Direct Computation without the Regularization Based Term

We derive now direct computation both the bias and variance terms. This is not required
for the regularization based term whose previous expression in Eq. (26) is already non-
asymptotic. Following O’Donoghue and Candès (2013) we consider an eigen-decomposition
of the matrix F , in order to study independently the recursion on eigenspaces. We assume
Σ has eigenvalues (si) and we decompose vectors in an eigenvector basis of Σ we denote by
(pi), with θin = p>i θn and ξin = p>i ξn and we have the reduced equation:

Θi
n+1 = FiΘ

i
n + γΞin+1.

with Θi
0 = Θ̃i

0, Fi =

(
(1 + δ)Ti −δTi

1 0

)
, with Ti = 1− γsi − γλ.

Computing initial point Θ̃i
0. Θ̃i

0 = Θi
0 − γλ(I − Fi)

−1Θi
λ, with Θi

0 =

(
θi0 − θi∗
θi0 − θi∗

)
,

Θi
λ =

(
θi0 − θi∗

0

)
and (I − Fi)−1 given in Eq. (25). Thus

Θ̃i
0 =

(
θi0 − θi∗
θi0 − θi∗

)
− γλ

(γsi + γλ)

(
1 δ((γsi + γλ)− 1)
1 (1 + δ)(γsi + γλ)− δ

)(
θi0 − θi∗

0

)
=

(
(1− λ

λ+si
)(θi0 − θi∗)

(1− λ
λ+si

)(θi0 − θi∗)

)
. (27)
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Study of spectrum of Fi. Depending on δ, Fi may have two distinct complex eigenvalues
of same modulus, only one (double) eigenvalue, or two real eigenvalues. We only consider
the two former cases, which we detail below.

Indeed, the characteristic polynomial

χFi(X)
def
= det(XI − Fi) = X2 − (1 + δ)(1− γ(si + λ))X + δ(1− γ(si + λ))

has discriminant ∆i = (1− γ(si + λ))((1 + δ)2(1− γ(si + λ))− 4δ) which is non positive as

far as δ ∈ [δ−; δ+], with δ− =
1−
√
γ(si+λ)

1+
√
γ(si+λ)

, δ+ =
1+
√
γ(si+λ)

1−
√
γ(si+λ)

.

C.3.1 Two Distinct Eigenvalues

We first assume that Fi has two distinct complex eigenvalues r± = (1+δ)(1−γ(si+λ))±
√
−1
√
−∆i

2

which are conjugate. Thus the roots are of the form ρie
±iωi with ρi =

√
δ(1− γ(si + λ)),

cos(ωi) = (1+δ)(1−γ(si+λ))
2ρi

, ωi ∈ [−π/2;π/2] and sin(ωi) =
√
−∆i
2ρi

.

Let Qi =

(
r−i r+

i

1 1

)
be the transfer matrix into an eigenbasis of Fi, i.e., Fi = QiDiQ

−1
i

with Di =

(
r−i 0
0 r+

i

)
and Q−1

i = 1
r−i −r

+
i

(
1 −r+

i

−1 r−i

)
.

Computing Pi,k. We first compute the matrix Pi,k: With

C
1/2
i =

(√
ci 0

0 0

)
, C

1/2
i Qi =

(
r−i
√
ci r+

i

√
ci

0 0

)
we have

C
1/2
i Qi(I −Dk

i )(I −Di)
−1 =

√
ci

(
1−(r−i )k

1−r−i
r−i

1−(r+i )k

1−r+i
r+
i

0 0

)
,

and, when developing and regrouping terms which depend on k, we get :

Pi,k = C
1/2
i Qi(I −Dk

i )(I −Di)
−1Q−1

i

=

√
ci

r−i − r
+
i

(
1−(r−i )k

1−r−i
r−i −

1−(r+i )k

1−r+i
r+
i

1−(r+i )k

1−r+i
r−i r

+
i −

1−(r−i )k

1−r−i
r+
i r
−
i

0 0

)

=
√
ci

(
1

(1−r−i )(1−r+i )

−r+i r
−
i

(1−r−i )(1−r+i )

0 0

)

−
√
ci

r−i − r
+
i

(
(r−i )k+1

1−r−i
− (r+i )k+1

1−r+i

(r+i )k+1

1−r+i
r−i −

(r−i )k+1

1−r−i
r+
i

0 0

)
.

We also have Pi,k = C
1/2
i Qi(I −Dk

i )(I −Di)
−1Q−1

i =
∑k−1

j=0 Ri,j with

Ri,j = C
1/2
i QiD

j
iQ
−1
i

=
√
ci

(
(r−i )j+1 (r+

i )j+1

0 0

)
Q−1
i

=

√
si

r−i − r
+
i

(
(r−i )j+1 − (r+

i )j+1 −r+
i (r−i )j+1 + r−i (r+

i )j+1

0 0

)
,
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but computing error terms based in Ri,j before summing these errors gives a looser error

bound than a tight calculation using Pi,k. More precisely, if we use Pi,kΘ
i
0 =

∑k−1
j=0 Ri,jΘ

i
0

to upper bound ‖Pi,kΘi
0‖ ≤

∑k−1
j=0 ‖Ri,jΘi

0‖, we end up with a worse bound.

Bias term. Thus, for the bias term:

Pi,kΘ
i
0 =

√
ciθ

i
0

1− r+
i r
−
i

(1− r−i )(1− r+
i )
−
√
ciθ

i
0

r−i − r
+
i

([
(r−i )k+1 1−r+i

1−r−i
− (r+

i )k+1 1−r−i
1−r+i

]
0

)

=

√
ciθ

i
0√

(1− r−i )(1− r+
i )

[(1−r+i r−i )−ρki A1

]
√

(1−r−i )(1−r+i )

0

 ,

where

ρkiA1 =
(r−i )k+1(1− r+

i )2 − (r+
i )k+1(1− r−i )2

r−i − r
+
i

.

This can be bound with the following lemma

Lemma 10 For all ρ ∈ (0, 1) and ω ∈ [−π/2;π/2] and r± = ρ(cos(ω) ±
√
−1 sin(ω)) we

have: ∣∣∣∣1− r+r− − ρk|A1|
|1− r+|

∣∣∣∣ ≤ 3 + 3ρk ≤ 6 (28)

We note that the exact constant seems empirically to be 2. This lemma is proved as
Lemma 16 in Appendix E. This gives for the bias term

‖Pi,kΘi
0‖ =

√
ci(θ

i
0)√

(1− r−i )(1− r+
i )

[ 1√
(1− r−i )(1− r+

i )

(
(1− r+

i r
−
i )− ρkiA1

) ]
≤ 6

√
ci(θ

i
0)√

γ(si + λ)
,

since:

(1− r−i )(1− r+
i ) = 1− 2Re (r+

i ) + |r+
i |

2

= 1− (1 + δ)(1− γ(si + λ)) + δ(1− γ(si + λ))

= γ(si + λ).
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We also have a looser bound using Pi,kΘ
i
0 =

∑k−1
j=0 Ri,jΘ

i
0.

Ri,jΘ
i
0 =

√
ciθ

i
0

r−i − r
+
i

(
(1− r+

i )(r−i )j+1 − (1− r−i )(r+
i )j+1

)
=
√
ciθ

i
0

(
(r−i )j+1 − (r+

i )j+1

r−i − r
+
i

−
r+
i (r−i )j+1 − r−i (r+

i )j+1

r−i − r
+
i

)
using De Moivre’s formula,

=
√
ciθ

i
0

(
ρj+1
i sin(ωi(j + 1))

ρi sin(ωi)
−
ρie

iωiρj+1
i e−iωi(j+1) − ρie−iωiρj+1

i e+iωi(j+1)

ρie−iωi − ρieiωi

)
=
√
ciθ

i
0

(
ρj+1
i sin(ωi(j + 1))

ρi sin(ωi)
− ρj+1

i

e−iωij − e+iωij

e−iωi − eiωi

)
=
√
ciθ

i
0

(
ρji sin(ωi(j + 1))

sin(ωi)
− ρj+1

i

sin(ωij)

sin(ωi)

)
≤ (1 + e−1)

√
ciθ

i
0 using Lemma 17 (see proof in Appendix E),

which also gives for the bias term

‖Pi,kΘi
0‖ ≤ (1 + e−1)

√
ciθ

i
0k.

Thus we have the final bound:

‖Pi,kΘi
0‖2 ≤ min

{
36

ci(θ
i
0)2

γ(si + λ)
, 6n(1 + e−1)

ci(θ
i
0)2√

γ(si + λ)
, n2(1 + e−1)2ci(θ

i
0)2

}
. (29)

Variance term. As for the variance term, with Vi =

(
vi 0
0 0

)
, we have trPi,kViPi,k =∥∥∥Pi,k (√vi0

)∥∥∥2
.

∥∥∥Pi,k (√vi0

)∥∥∥ =

√
vici

(1− r−i )(1− r+
i )

[
1 +

(r−i )k+1(1− r+
i )− (r+

i )k+1(1− r−i )

r+
i − r

−
i

]

=

√
vici

γ(si + λ)

[
1− ρkiBi,k

]
,

where

ρkiBi,k = −
(r−i )k+1(1− r+

i )− (r+
i )k+1(1− r−i )

r+
i − r

−
i

,

which we can bound using the following Lemma:

Lemma 11 For all ρ ∈ (0, 1) and ω ∈ [−π/2;π/2] and r± = ρ(cos(ω) ±
√
−1 sin(ω)) we

have: ∣∣∣∣ρkBk∣∣∣∣ ≤ 1.75.
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Where we note that the exact majoration seems to be 1.3. This Lemma is proved as
Lemma 18 in Appendix E.

We can also have a looser bound using Pi,k

(
v

1/2
i

0

)
=
∑k−1

j=0 Ri,j

(
v

1/2
i

0

)
and

Ri,j

(
v

1/2
i

0

)
=

√
civi

r−i − r
+
i

(
(r−i )j+1 − (r+

i )j+1
)

=
√
civi

ρj+1
i sin(ωi(j + 1))

ρi sin(ωi)

≤ (j + 1)
√
civi, using the inequality | sin(kωi)| ≤ k| sin(ωi)|

and
∥∥Pi,k

(
v

1/2
i

0

)∥∥ ≤ √civi(k+1)k
2 .

This gives for the Variance term

n∑
k=1

trPi,kViPi,k ≤ vici

n∑
k=1

min

{[
1− ρkiB1,k

]2
γ2(si + λ)2

,

[
1− ρkiB1,k

]
k(k + 1)

2γ(si + λ)
,
k2(k + 1)2

4

}

≤ vici min

{
8n

γ2(si + λ)2
,

(n+ 1)3

2γ(si + λ)
,
(n+ 1)5

20

}
. (30)

C.3.2 One Coalescent Eigenvalue

We now turn to the case where F has two coalescent eigenvalues, which happens when the
discriminant ∆ = 0. We assume that Fi has one coalescent eigenvalue ri = (1+δ)(1−γ(si+λ))

2 .

Then, with δ =
1−
√
γ(si+λ)

1+
√
γ(si+λ)

, ri = (1+δ)(1−γ(si+λ))
2 = 1 −

√
γ(si + λ). Then Fi can be

trigonalized as Fi = QiDiQ
−1
i with Qi =

(
ri 1
1 0

)
, Di =

(
ri 1
0 ri

)
and Q−1

i =

(
0 1
1 −ri

)
.

We note that for all k ≥ 0, then Dk
i = rk−1

i

(
ri k
0 ri

)
.

Computing Pi,k. We first compute Pi,k:

(I2 −Di)
−1 =

(
1

1−ri
1

(1−ri)2

0 1
1−ri

)
and

(I2 −Dk
i )(I2 −Di)

−1 =

1−rki
1−ri

1−rki
(1−ri)2 −

krk−1
i

1−ri

0
1−rki
1−ri

 .

Thus with C
1/2
i Qi =

(√
ciri

√
ci

0 0

)
we have

C
1/2
i Qi(I2 −Dk

i )(I2 −Di)
−1 =

√
ci

(
1−rki
1−ri ri

1−rki
(1−ri)2 −

krki
1−ri

0 0

)
.
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And, computing as previously the matrices products, we derive:

Pi,k = C
1/2
i Qi(I2 −Dk

i )(I2 −Di)
−1Q−1

i

=
√
ci

(
1−rki

(1−ri)2 −
krki
1−ri

1−rki
1−ri ri − (

1−rki
(1−ri)2 −

krki
1−ri )ri

0 0

)

=
√
ci

(
1−rki

(1−ri)2 −
krki
1−ri

1−rki
(1−ri)2 (ri)

2 +
krk+1
i

1−ri
0 0

)

=

√
ci

1− ri

(
1−rki
1−ri − kr

k
i −1−rki

1−ri (ri)
2 + krk+1

i

0 0

)
.

Bias term. We thus have:

Pi,kΘ
i
0 =

√
ci

1− ri

(
1−rki
1−ri − kr

k
i −1−rki

1−ri (ri)
2 + krk+1

i

0 0

)(
θi0
θi0

)
= θi0

√
ci

(
(1− rki )1+ri

1−ri − kr
k
i

0

)
,

and this gives for the bias term:

‖Pi,kΘi
0‖2

=(θi0)2ci

[
(1− rki )

1 + ri
1− ri

− krki
]2

=(θi0)2ci

[1 + ri
1− ri

−
(
k +

1 + ri
1− ri

)
rki

]2
developing the product, then using formulas for ri

=(θi0)2ci

[2−
√
γ(si + λ)√

γ(si + λ)
−
(
k +

2−
√
γ(si + λ)√

γ(ci + λ)

)
(1−

√
γ(si + λ))k

]2

=
(θi0)2ci
γ(si + λ)

[
2−

√
γ(si + λ)−

(
k
√
γ(si + λ) + 2−

√
γ(si + λ)

)
(1−

√
γ(si + λ))k

]2

=
(θi0)2ci
γ(si + λ)

[
2−

√
γ(si + λ)−

(
2 + (k − 1)

√
γ(si + λ)

)
(1−

√
γ(si + λ))k

]2

≤4
(θi0)2ci
γ(si + λ)

, using Lemma 19 in Appendix E.
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Variance term. With V =

(
vi 0
0 0

)
,

trPi,kV Pi,k

=
si

(1− ri)2

(
1−rki
1−ri − kr

k
i −1−rki

1−ri (ri)
2 + krk+1

i

0 0

)(
vi 0
0 0

)(1−rki
1−ri − kr

k
i −1−rki

1−ri (ri)
2 + krk+1

i

0 0

)>
=

sivi
(1− ri)2

[1− rki
1− ri

− krki
]2

=
vihi

γ(si + λ)

[1− rki
1− ri

− krki
]2

=
vihi

γ(si + λ)(1− ri)2

[
1− rki − (1− ri)krki

]2

=
vihi

γ2(si + λ)2

[
1− (1 + k

√
γ(si + λ))(1−

√
γ(si + λ))k

]2
,

and

n∑
k=1

trPi,kV Pi,k =
visi

γ2(si + λ)2

n∑
k=1

[
1− (1 + k

√
γ(si + λ))(1−

√
γ(si + λ))k

]2

≤ n
visi

γ2(si + λ)2
using Lemma 19 in Appendix E. (31)

Alternative bounds for the bias and the variance term, as in Equations(26), (29) may
be derived as well. Combining all these results, we are now able to state Theorem 3.

C.4 Conclusion

Combining results from Lemma 9, and Equations (26), (29), (30), with c = Σ, and using
the following simple facts:

• For the least squares regression function, with c = Σ, E〈Θ̄n, CΘ̄n〉 = Ef(θ̄n)− f(θ∗).

• Under assumption A3, A4, we have V 4 τ2Σ.

• The squared norm of a vector is the sum of its squared components on the orthonormal
eigenbasis. For example ‖Pn+1Θ0‖2 =

∑d
i=1 ‖Pi,n+1Θi

0‖2.

• For any regularization parameter λ ∈ R+ and for any constant step-size γ(Σ+λI) 4 I,

for any δ ∈
[1−
√
γλ

1+
√
γλ
, 1
]
, matrix F will have only two distinct complex eigenvalues or

two coalescent eigenvalues.
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Proposition 12 Under (A4,5), for any regularization parameter λ ∈ R+ and for any con-

stant step-size γ(Σ +λI) 4 I we have for any δ ∈
[1−
√
γλ

1+
√
γλ
, 1
]
, for the recursion in Eq. (10):

Ef(θ̄n)− f(θ∗) ≤ 2λ‖λ1/2Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2

+
d∑
i=1

2

(n+ 1)2
min

{
36

ci(θ̃
i
0)2

γ(si + λ)
, 6n(1 + e−1)

ci(θ̃
i
0)2√

γ(si + λ)
, n2(1 + e−1)2ci(θ̃

i
0)2

}

+
d∑
i=1

γ2

(n+ 1)2
vici min

{
8n

γ2(si + λ)2
,

(n+ 1)3

2γ(si + λ)
,
(n+ 1)5

20

}
.

This implies, using the Equation (27) for the initial point, using ci = σi and regrouping
sums as traces or norms:

Ef(θ̄n)− f(θ∗) ≤ 2λ‖λ1/2Σ1/2(Σ + λI)−1(θ0 − θ∗)‖2

+ 2 min

{
36‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2

γ(n+ 1)2
, (1 + e−1)2‖Σ1/2(θ0 − θ∗)‖2

}

+ min

{
8 tr(V Σ(Σ + λI)−2)

n+ 1
, nγ tr(V Σ(Σ + λI)−1)

}
,

which gives exactly Theorem 3 using V 4 τ2Σ in the Variance term, and λ1/2(Σ+λI)−1/2 4
I in the first term.

Appendix D. Tighter Bounds

D.1 Simple Upper-Bounds

In this section, we chow how tighter bounds naturally appear from the regularized quantities
appearing in Theorems. It only relies on simple algebraic majorations, even if one has to
be careful with the allowed intervals for r, b.

Lemma 13 For any λ ≥ 0, for any b ∈ [0; 1], if tr(Σb) exists, we have :

tr(Σ(Σ + λI)−1) ≤ tr(Σb)

λb

tr(Σ−2(Σ + λI)−2) ≤ tr(Σb)

λb
.

Proof As all operators can be diagonalized in a same eigenbasis with positive eigenvalues,
we have,

tr(Σ(Σ + λI)−1) ≤
∣∣∣∣∣∣∣∣∣Σ1−b(Σ + λI)−1

∣∣∣∣∣∣∣∣∣ tr(Σb)

|||Σ1−b(Σ + λI)−1||| ≤ sup
0≤x

x1−b

(x+ λ)

≤ sup
0≤x

x1−b
(

1

λ
∧ 1

x

)
≤ sup

0≤x
x1−b

(
1

λ

)b(1

x

)1−b
= λ−b.
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The calculations are exactly the same for tr(Σ−2(Σ + λI)−2) ≤ tr(Σb)
λb

.

As for the bias term, we need to bound the following quantities :

Lemma 14 For any λ ≥ 0, for any r ∈ [−1; 1], we have :∥∥Σ1/2(Σ + λI)−1(θ0 − θ∗)
∥∥2 ≤ λ−(1+r)

∥∥Σr/2(θ0 − θ∗)
∥∥2
.

For any λ ≥ 0, for any r ∈ [−1; 0], we have :∥∥(Σ + λI)−1/2(θ0 − θ∗)
∥∥2 ≤ λ−(1+r)

∥∥Σr/2(θ0 − θ∗)
∥∥2
.

For any λ ≥ 0, for any r ∈ [0; 1], we have :

‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖2 ≤ λ−r
∥∥Σr/2(θ0 − θ∗)

∥∥2

(No result when r ≤ 0 because of saturation effect).

Proof Proof relies of simple following calculations:∥∥Σ1/2(Σ + λI)−1(θ0 − θ∗)
∥∥ ≤

∣∣∣∣∣∣∣∣∣Σ1/2−r/2(Σ + λI)−1
∣∣∣∣∣∣∣∣∣ ∥∥Σr/2(θ0 − θ∗)

∥∥
≤

(
1

λ

)1−(1/2−r/2) ∥∥Σr/2(θ0 − θ∗)
∥∥

≤ λ−
1+r
2

∥∥Σr/2(θ0 − θ∗)
∥∥

∥∥(Σ + λI)−1/2(θ0 − θ∗)
∥∥ ≤

∣∣∣∣∣∣∣∣∣Σ−r/2(Σ + λI)−1/2
∣∣∣∣∣∣∣∣∣∥∥Σr/2(θ0 − θ∗)

∥∥
≤

(
1

λ

) 1+r
2 ∥∥Σr/2(θ0 − θ∗)

∥∥
≤ λ−

1+r
2

∥∥Σr/2(θ0 − θ∗)
∥∥

‖Σ1/2(Σ + λI)−1/2(θ0 − θ∗)‖ ≤
∣∣∣∣∣∣∣∣∣Σ1/2−r/2(Σ + λI)−1/2

∣∣∣∣∣∣∣∣∣∥∥Σr/2(θ0 − θ∗)
∥∥

≤
(

1

λ

) 1−(1−r)
2 ∥∥Σr/2(θ0 − θ∗)

∥∥
≤ λ−

r
2

∥∥Σr/2(θ0 − θ∗)
∥∥.
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D.2 Theorem 5 and Equation (13)

Theorem 5 and Equation (13) are directly derived from Theorem 2 and Theorem 3, using
Lemmas 13 and 14.

To derive corollaries for the optimal γ, one has to find the γ that balances the bias and
variance term and to compute the products for such a step size.

D.2.1 Equation (13)

We derive from Theorem 2, when choosing γ = (λn)−1, and using Lemmas 13 and 14, the
following bound, under assumptions of Theorem 2 :

Ef(θ̄n)− f(θ∗) ≤
(18 + Res(n, b, r, γ))‖Σr/2(θ0 − θ∗)‖2

(γn)
1−r
2

+
6σ2 tr(Σb)γb

n1−b .

Where Res(n, b, r, γ) := 3γ1+bnb tr(Σb) if −1 ≤ r ≤ 0 and Res(n, b, r, γ) := 0 if 0 ≤ r ≤ 1.

When choosing the optimal γ ∝ n
−b+r
b+1−r , we have that γ1+bnb = n−1+ 1+b

1+b−r = nχ, with
χ = −r

1+b−r ≥ 0 if r ≤ 0. Thus the residual term is always vanishing for r ≤ 0 and does not
exist for r ≥ 0.

D.2.2 Theorem 5

Theorem 5 directly follows from Lemmas 13 and 14 and the choice of γ ∝ n
−2b+2r−1
b+1−r .

Appendix E. Technical Lemmas

The following sequence of Lemmas appear in the proof. They are mostly independent and
rely on simple calculations.

Lemma 15 The operator
[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
is a non-decreasing operator on

(Sn,4).

Proof Lemma means that for two matrices M,N ∈ Sn(R) such that M 4 N , then[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
M 4

[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
N.

It is equivalent to show that for any symmetric positive matrix A ∈ S+
n ,[

(Σ + λI)⊗ I + I ⊗ (Σ + λI)
]−1

A ∈ S+
n (R).

We consider a matrix A ∈ S+
n (R). A can be decomposed as a sum of (at most) n rank one

matrices A =
∑n

i=1 ωiω
>
i , with ωi ∈ Rn. We thus just have to prove that for some ω ∈ Rn,[

(Σ + λI)⊗ I + I ⊗ (Σ + λI)
]−1

ωω> ∈ S+
n (R).

Let Σ =
∑

i>0 µiei ⊗ ei is the eigenvalue decomposition of Σ, then

[
(Σ + λI)⊗ I + I ⊗ (Σ + λI)

]−1
ωω> =

∑
i,j>0

〈ω, ei〉〈ω, ej〉
µi + µj + 2λ

ei ⊗ ej .
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Thus, in the orthonormal basis of eigenvectors, this is thus Hadamard product between∑
i,j>0

〈ω, ei〉〈ω, ej〉ei ⊗ ej = ωω>

and the matrix C =
((

1
µi+µj+2λ

)
i,j>0

)
. Matrix C is a Cauchy matrix and is thus positive.

Moreover the Hadamard product of two positive matrices is positive, which concludes the
proof.

Remark: surprisingly, the inverse operator (Σ + λI) ⊗ I + I ⊗ (Σ + λI) is not non-
decreasing. Indeed, 4 is not a total order on Sn so we may have that an operator is
non-decreasing and its inverse is not.

Lemma 16 For all ρ ∈ (0, 1) and ω ∈ [−π/2;π/2] and r± = ρ(cos(ω) ±
√
−1 sin(ω)) we

have: ∣∣∣∣1− r+r− − ρk|A1|
|1− r+|

∣∣∣∣ ≤ min{1 + ρ+ e−1 + 4ρk, 2 + ρ+
√

5ρk+1} ≤ 6. (32)

Proof We note that ρkiA1 is a real number as is is a quotient of pure complex numbers,
which come from the difference between a complex and its conjugate. We first write A1 as
a combination of sine and cosine functions:

ρkiA1 =
(r−i )k+1(1− r+

i )2 − (r+
i )k+1(1− r−i )2

r−i − r
+
i

= −
(r−i )k+1 − (r+

i )k+1 − 2r−i r
+
i ((r−i )k − (r+

i )k) + (r−i r
+
i )(r−i )k−1 − (r+

i )k−1)

ρi sinωi

= −
ρk+1
i sin((k + 1)ωi)− 2ρk+2

i sin(kωi) + ρk+3
i sin((k − 1)ωi)

ρi sinωi
.

This quantity can be simplified when ρ → 1 or ω → 0. We thus modify the expression
of A1 to make these dependencies clearer:

−A1 =
sin((k + 1)ωi)− 2ρi sin(kωi) + ρ2

i sin((k − 1)ωi)

sinωi

=
(cos(ω)− ρ)(sin(kω)− ρ sin((k − 1)ω)) + cos(kω) sin(ω)− ρ cos((k − 1)ω) sin(ω)

sinωi
developing sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) and regrouping terms,

=
(cos(ω)− ρ)2 sin((k − 1)ω) + (cos(ω)− ρ) sin(ω) cos((k − 1)ω) + cos(kω) sin(ω)

sinωi

+
−ρ cos((k − 1)ω) sin(ω)

sinωi

=
(cos(ω)− ρ)2 sin((k − 1)ω)

sinωi
+ (cos(ω)− ρ) cos((k − 1)ω) + cos(kω)− ρ cos((k − 1)ω)

simplifying expression, then developing the cosine,

=
(cos(ω)− ρ)2 sin((k − 1)ω)

sinωi
+ 2(cos(ω)− ρ) cos((k − 1)ω) + sin(ω) sin((k − 1)ω). (33)
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So that in that final expression all the terms behave relatively simply when ρ→ 1 or ω → 0.
We want to upper bound: ∣∣∣∣1− r+r− − ρk|A1|

|1− r+|

∣∣∣∣.
We thus consider separately the first and second term.

1− r+
i r
−
i

|1− r+
i |

=
1− ρ2

|1− r+
i |
≤ 1 + ρ (exact if ω = 0).

Then, using Equation (33):

−ρki |A1|
|1− r+

i |
= ρk

(cos(ω)−ρ)2 sin((k−1)ω)
sinωi

+ 2(cos(ω)− ρ) cos((k − 1)ω) + sin(ω) sin((k − 1)ω)√
(1− ρ cosω)2 + ρ2 sin2(ω)

.

Considering separately the three terms in the numerator, using numerous times that for
any a, b ∈ [0; 1], |a− b| ≤ 1− ab:

∣∣∣∣∣∣ ρk (cos(ω)−ρ)2 sin((k−1)ω)
sinωi√

(1− ρ cosω)2 + ρ2 sin2(ω)

∣∣∣∣∣∣ ≤ ρk (cos(ω)− ρ) sin((k − 1)ω)

sinωi

as |(cos(ω)− ρ)| ≤ 1− ρ cos(ω),

≤ ρk (cos(ω)− 1) sin((k − 1)ω)

sinωi
+ ρk

(1− ρ) sin((k − 1)ω)

sinωi
writing cos(ω)− ρ = cos(ω)− 1 + 1− ρ

≤ ρk(1− ρ)(k − 1) + ρk
(cos(ω)− 1) sin((k − 1)ω)

sinωi
as | sin((k − 1)ω)| ≤ |(k − 1) sin(ω)|,

≤ ρk(1− ρ)k − (1− ρ)ρk + ρk
(cos(ω)− 1) sin((k − 1)ω)

sinωi
writing cos(ω)− 1 = 2 sin2(ω/2),

≤ ρk(1 + (1− ρ))k − ρk − (1− ρ)ρk + ρk
2 sin2(ω/2)

sinωi

using 1 + (1− ρ)k ≤ (1 + (1− ρ))k,

≤ ρk(1 + (1− ρ))k − ρk − (1− ρ)ρk + ρk tan(ω/2)

and as tan(ω/2) ≤ 1 for |ω| ≤ π/2,
≤ 1− (1− ρ)ρk

using ρk(1 + (1− ρ))k = (1− (1− ρ)2)k ≤ 1,
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And for the second and third term:

2

∣∣∣∣∣ρk (cos(ω)− ρ) cos((k − 1)ω)√
(1− ρ cosω)2 + ρ2 sin2(ω)

∣∣∣∣∣ ≤ 2ρk,∣∣∣∣∣ρk + sin(ω) sin((k − 1)ω)√
(1− ρ cosω)2 + ρ2 sin2(ω)

∣∣∣∣∣ ≤ ρk.

Thus: ∣∣∣∣1− r+
i r
−
i − ρki |A1|

|1− r+
i |

∣∣∣∣ ≤ 1 + ρ+ 1 + 3ρk.

We also have

|ρk
(cos(ω)−ρ)2 sin((k−1)ω)

sinωi√
(1− ρ cosω)2 + ρ2 sin2(ω)

| ≤ ρk
(cos(ω)− ρ) sin((k − 1)ω)

sinωi

≤ ρk(1− ρ)(k − 1) + ρk
(cos(ω)− 1) sin((k − 1)ω)

sinωi

≤ (1− 1

k + 1
)k+1 − (1− ρ)ρk + ρk

(cos(ω)− 1) sin((k − 1)ω)

sinωi

≤ e−1 − (1− ρ)ρk + ρk
sin2(ω/2)

sinωi
.

Using that

k sup
x∈[0;1]

xk(1− x) = k
1

k + 1
(1− 1

k + 1
)k = (1− 1

k + 1
)k+1 = exp((k + 1) ln((1− 1

k + 1
)) ≤ e−1,(34)

we get ∣∣∣∣1− r+
i r
−
i − ρki |A1|

|1− r+
i |

∣∣∣∣ ≤ 1 + ρ+ e−1 + 4ρk

We can also change 3ρk into
√

5ρk We have used that |(ρ− cos(ω))| ≤ (1− ρ cos(ω)).

Lemma 17 For any ρi ∈ (0; 1), for any ωi ∈ [−π/2;π/2]

ρji sin(ωi(j + 1))

sin(ωi)
− ρj+1

i

sin(ωij)

sin(ωi)
≤ 1 + e−1.

Proof

ρji sin(ωi(j + 1))

sin(ωi)
− ρj+1

i

sin(ωij)

sin(ωi)
= ρji

(
sin(ωi(j + 1))− ρi sin(ωij)

sin(ωi)

)
= ρji

(
(cos(ωi)− ρi) sin(ωij)

sin(ωi)
+ cos(jωi)

)
≤ ρji ((1− ρi)j + 1)

≤ 1 + e−1 using (34).

46



Convergence Rates for Least-Squares Regression

Lemma 18 For all ρ ∈ (0, 1) and ω ∈ [−π/2;π/2] and r± = ρ(cos(ω) ±
√
−1 sin(ω)) we

have: ∣∣∣∣ρkiB1,k

∣∣∣∣ ≤ 1.75 (35)

Proof Once again, as the considered quantity is real, we first express it as a combination
of sine and cosine functions. We then use some simple trigonometric trics to upper bound
the quantity.

ρkiB1,k = −
(r−i )k+1(1− r+

i )− (r+
i )k+1(1− r−i )

r+
i − r

−
i

= −
2Im

[
(r−i )k+1(1− r+

i )
]

√
−∆i

as it is the difference between a complex and its conjugate,

= −
Im
[
ρki e
−(k+1)iωi(1− ρi cos(ωi)− iρi sin(ωi))

]
sinωiρi

developing the product,

= ρki
cos((k + 1)ωi) sin(ωi)ρi + sin((k + 1)ωi)(1− ρi cos(ωi))

sinωiρi

= ρki

[
ρi cos((k + 1)ωi) + (1− ρi cos(ωi))

sin((k + 1)ωi)

sinωi

]
and simplifying.

Let’s turn our interest to the second part of the quantity:∣∣∣∣ρki (1− ρi cos(ωi))
sin((k + 1)ωi)

sinωi

∣∣∣∣ =

∣∣∣∣ρki (1− ρi + ρi(1− cos(ωi)))
sin((k + 1)ωi)

sinωi

∣∣∣∣
introducing an artificial + ρi − ρi,

≤ ρki
∣∣∣∣(1− ρi)sin((k + 1)ωi)

sinωi

∣∣∣∣+ ρki

∣∣∣∣ρi(1− cos(ωi))
sin((k + 1)ωi)

sinωi

∣∣∣∣
by triangular inequality,

≤ ρki
∣∣∣∣(1− ρi)(k + 1)

∣∣∣∣+ ρki

∣∣∣∣ρi sin2(
ω

2
)

1

2 cos(ω2 ) sin(ω2 )

∣∣∣∣
using 1− cos(ωi) = 2 sin2(

ω

2
)

≤ ρki (1− ρi)k + ρki (1− ρ) + ρki

∣∣∣∣ρi sin2(
ω

2
)

1

2 cos(ω2 ) sin(ω2 )

∣∣∣∣
≤ (1− (1− ρi))k(1 + (1− ρi))k − ρki +

1

2(k + 1)
+ ρki

∣∣∣∣ρi2 tan(
ω

2
)

∣∣∣∣
≤ (1− (1− ρi)2)k +

1

4
+

1

2
≤ 1 +

1

4
+

1

2
− ρki .

Thus ∣∣∣∣ρkiB1,k

∣∣∣∣ = ρki + 1 +
1

4
+

1

2
− ρki ≤ 1 +

1

4
+

1

2
= 1.75.
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Lemma 19 For any si, γ, λ ∈ R3
+ such that γ(si + λ) ≤ 1, for any k ∈ N, we have the two

following highly related identities:

0 ≤ 2−
√
γ(si + λ)−

(
2 + (k − 1)

√
γ(si + λ)

)
(1−

√
γ(si + λ))k ≤ 2

0 ≤ 1− (1 + k
√
γ(si + λ))(1−

√
γ(si + λ))k ≤ 1.

Proof Proof relies on the trick, for any α ∈ R, n ∈ N: 1 +nα ≤ (1 +α)n. For the first one:√
γ(si + λ) +

(
2 + (k − 1)

√
γ(si + λ)

)
(1−

√
γ(si + λ))k =

=
√
γ(si + λ) + (1−

√
γ(si + λ))k +

(
1 + (k − 1)

√
γ(si + λ)

)
(1−

√
γ(si + λ))k

≤
√
γ(si + λ) + (1−

√
γ(si + λ)) +

(
1 + (k − 1)

√
γ(si + λ)

)
(1−

√
γ(si + λ))k−1

≤ 1 + (1− γ(si + λ))k−1 ≤ 2.

For the second one:

0 ≤ (1 + k
√
γ(si + λ))(1−

√
γ(si + λ))k ≤ (1− γ(si + λ))k ≤ 1.
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