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Abstract

We study the stochastic multi-armed bandit (MAB) problem in the presence of side-
observations across actions that occur as a result of an underlying network structure. In
our model, a bipartite graph captures the relationship between actions and a common set
of unknowns such that choosing an action reveals observations for the unknowns that it is
connected to. This models a common scenario in online social networks where users respond
to their friends’ activity, thus providing side information about each other’s preferences.
Our contributions are as follows: 1) We derive an asymptotic lower bound (with respect to
time) as a function of the bi-partite network structure on the regret of any uniformly good
policy that achieves the maximum long-term average reward. 2) We propose two policies -
a randomized policy; and a policy based on the well-known upper confidence bound (UCB)
policies - both of which explore each action at a rate that is a function of its network po-
sition. We show, under mild assumptions, that these policies achieve the asymptotic lower
bound on the regret up to a multiplicative factor, independent of the network structure.
Finally, we use numerical examples on a real-world social network and a routing example
network to demonstrate the benefits obtained by our policies over other existing policies.

Keywords: Multi-armed Bandits, Side Observations, Bipartite Graph, Regret Bounds

1. Introduction

Multi-armed bandit (MAB) problems are well-known models of sequential decision-making
under uncertainty (Lai and Robbins, 1985) and have lately been used to model new and ex-
citing decision problems in content recommendation systems, online advertising platforms,
and social networks, among others. In the classical MAB setting, at each time, a bandit
policy must choose an action from a set of actions with unknown probability distributions.
Choosing an action gives a random reward drawn from the distribution of the action. The
regret of any policy is defined as the difference between the total reward obtained from the
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action with the highest average reward and the given policy’s total reward. The goal is to
find policies that minimize the expected regret over time.

In this work, we consider an important extension to the classical MAB problem, where
choosing an action not only generates a reward from that action, but also reveals important
information for a subset of the remaining actions. We model this relationship between
different actions using a bipartite graph between the set of actions and a common set of
unknowns (see Figure 2). The reward from each action is a known function of a subset of
the unknowns (called its parents) and choosing an action reveals observations from each
of its parents. Our main objective in this work is to leverage such a structure to improve
scalability of bandit policies in terms of the action/decision space.

Such an information structure between actions becomes available in a variety of appli-
cations. For example, consider the problem of routing in communication networks, where
packets are to be sent over a set of links from source to destination (called a path or a route)
in order to minimize the delay. Here, the total delay on each path is the sum of individual
link delays, which are unknown. In addition, traveling along a path reveals observations for
delays on each of constituent links. Hence, each path provides additional information for
all other paths that share some of their links with it. In this example, actions correspond
to a set of feasible paths and the set of unknowns corresponds to random delays on all the
links in the network.

Another example occurs in advertising in online social networks through promotional
offers. Suppose a user is offered a promotion/discounted price for a product in return for
advertising it to his friends/neighbors in an online social network. The influence of the user
is then measured by the friends that respond to his message through comments/likes, etc.
Each user has an intrinsic unknown probability of responding to such messages on social
media. Here, the set of actions correspond to the set of users (to whom promotions are
given) and the set of unknowns are the users’ intrinsic responsiveness to such promotions.

In this work, we aim to characterize the asymptotic lower bound on the regret for
a general stochastic multi-armed bandit problem in the presence of such an information
structure and investigate policies that achieve this lower bound by taking the network
structure into account. Our main contributions are as follows:

• We model the MAB problem in the presence of additional structure and derive an
asymptotic (with respect to time) lower bound (as a function of the network structure)
on the regret of any uniformly good policy which achieves the maximum long term
average reward. This lower bound is presented in terms of the optimal value of a
linear program (LP).

• Motivated by the LP lower bound, we propose and investigate the performance of a
randomized policy, we call εt-greedy-LP policy, as well as an upper confidence bound
based policy, we call UCB-LP policy. Both of these policies explore each action at
a rate that is a function of its location in the network. We show under some mild
assumptions that these policies are optimal in the sense that they achieve the asymp-
totic lower bound on the regret up to a multiplicative constant that is independent of
the network structure.

The model considered in this work is an important first step in the direction of more
general models of interdependence across actions. For this model, we show that as the
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number of actions becomes large, significant benefits can be obtained from policies that
explicitly take network structure into account. While εt-greedy-LP policy explores actions
at a rate proportional to their network position, its exploration is oblivious to the average
rewards of the sub-optimal actions. On the other hand, UCB-LP policy takes into account
both the upper confidence bounds on the mean rewards as well as network position of
different actions at each time.

2. Related Work

The seminal work of Lai and Robbins (1985) showed that the asymptotic lower bound on the
regret of any uniformly good policy scales logarithmically with time with a multiplicative
constant that is a function of the distributions of actions. Further, Lai and Robbins (1985)
provide constructive policies called Upper Confidence Bound (UCB) policies based on the
concept of optimism in the face of uncertainty that asymptotically achieve the lower bound.
More recently, Auer et al. (2002) considered the case of bounded rewards and propose
simpler sample-mean-based UCB policies and a decreasing-εt-greedy policy that achieve
logarithmic regret uniformly over time, rather than only asymptotically as in the previous
works.

The traditional multi-armed bandit policies incur a regret that is linear in the number of
suboptimal arms. This makes them unsuitable in settings such as content recommendation,
advertising, etc, where the action space is typically very large. To overcome this difficulty,
richer models specifying additional information across reward distributions of different ac-
tions have been studied, such as dependent bandits by Pandey et al. (2007), X -armed
bandits by Bubeck et al. (2011), linear bandits by Rusmevichientong and Tsitsiklis (2010),
contextual side information in bandit problems by Li et al. (2010), combinatorial bandits
by Chen et al. (2013) etc..

The works of Mannor and Shamir (2011), Caron et al. (2012), and Buccapatnam et al.
(2014) proposed to handle the large number of actions by assuming that choosing an action
reveals observations from a larger set of actions. In this setting, actions are embeded in
a network and choosing an action provides observations for all the immediate neighbors
in the network. The policies proposed in Mannor and Shamir (2011) achieve the best
possible regret in the adversarial setting (see Bubeck and Cesa-Bianchi (2012) for a survey
of adversarial MABs) with side-observations, and the regret bounds of these policies are in
terms of the independence number of the network. The stochastic version of this problem
is introduced in Caron et al. (2012) and Buccapatnam et al. (2014), which improves upon
the results in Caron et al. (2012). In Buccapatnam et al. (2014), the authors derive a lower
bound on regret in stochastic network setting for any uniformly good policy and propose
two policies that achieve this lower bound in these settings up to a multiplicative constant.
Our current work extends the setting in Caron et al. (2012); Buccapatnam et al. (2014) to
a more general and important graph feedback structure between the set of actions and a
set of common unknowns, which may or may not coincide with the set of actions available
to the decision maker. The setting of Mannor and Shamir (2011), Caron et al. (2012),
and Buccapatnam et al. (2014) is a special case of this general feedback structure, where
the set of unknowns and the set of actions coincide.
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More recently, Cohen et al. (2016), have studied the multi-armed bandit problem with
a graph based feedback structure similar to Mannor and Shamir (2011), and Buccapatnam
et al. (2014). However, they assume that the graph structure is never fully revealed. In
contrast, in many cases such as the problem of routing in communication networks and the
problem of influence maximization in social networks, the graph structure is revealed or
learnt apriori and is known. When the graph structure is known, the authors in Buccap-
atnam et al. (2014) propose algorithms for the stochastic setting whose regret performance
is bounded by the domination number of the graph. In contrast, the algorithms proposed
in Cohen et al. (2016) assume that the graph is unknown and achieve a regret that is upper
bounded by the independence number of the graph. (Note that the independence number
of a graph is larger than or equal to the domination number). Our current work proposes
a general feedback structure of which Buccapatnam et al. (2014) and Cohen et al. (2016)
can be viewed as a special case. Moreover, we present algorithms that benefit significantly
from the knowledge of the graph feedback structure.

The setting of combinatorial bandits (CMAB) by Chen et al. (2013) is also closely
related to our work. In CMAB, a subset of base actions with unknown distributions form
super actions and in each round, choosing a super action reveals outcomes of its constituent
actions. The reward obtained is a function of these outcomes. The number of super actions
and their composition in terms of base actions is assumed to be arbitrary and the policies
do not utilize the underlying network structure between base actions and super actions. In
contrast, in our work, we derive a regret lower bound in terms of the underlying network
structure and propose policies that achieve this bound. This results in markedly improved
performance when the number of super actions is not substantially larger than the number
of base actions.

3. Problem Formulation

In this section, we formally define the general bandit problem in the presence of side observa-
tions across actions. Let N = {1, . . . , N} denote the collection of base-arms with unknown
distributions. Subsets of base-arms form actions, and are indexed by K = {1, . . . ,K}. A
decision maker must choose an action j ∈ K at each time t and observes the rewards of
related base-arms. Let Xi(t) be the reward of base-arm i observed by the decision maker
(on choosing some action) at time t. We assume that {Xi(t), t ≥ 0} are independent and
identically distributed (i.i.d.) for each i and {Xi(t), ∀i ∈ N} are independent for each time
t. Let Vj ⊆ N be the subset of base-arms that are observed when playing action j. Then,
we define Si = {j : i ∈ Vj} as the support of base-arm i, i.e., the decision maker gets
observations for base-arm i on playing action j ∈ Si. When the decision maker chooses
action j at time t, he or she observes one realization for each of the random variables Xi(t),
i ∈ Vj . The reward of the played action j depends on the outcomes of its related base-arms
subset, denoted by Kj ⊆ N , and some known function fj(·). Note that Kj ⊆ Vj because
there may be some base-arms that can be observed by action j but not counted as reward in
general (see Figure 2 for a concrete example). Let the vector ~Xj(t) = [Xi(t)]i∈Kj denote the
collection of random variables associated with the reward of action j. Then the reward from
playing action j at time t is given by fj( ~Xj(t)). We assume that the reward is bounded in
[0, 1] for each action. Note that we only assume that the reward function fj(·) is bounded
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and the specific form of fj(·) and Kj are determined by the decision maker or the specific
problem. Let µj be the mean of reward on playing action j.

Side-observation model : The actions K and base-arms N form nodes in a network
G, represented by a bipartite graph (K,N , E) and the collection {Kj}j∈K. The N × K
adjacency matrix E = [eij ] is defined by eij = 1 if i ∈ Vj and eij = 0 otherwise. If there is
an edge between action j and base-arm i, i.e., eij = 1, then we can observe a realization of
base-arm i when choosing action j. Intuitively, the bipartite graph determined by {Vj}j∈K
describes the side-observation relationships while the collection {Kj}j∈K captures the reward
structure. Without loss of generality, we assume that ∪i∈KKi = N , which means that there
are no useless (dummy) unknown base-arms in the network.

User	
i	

User	
j	

User	
k	

User	
m	

Xi(t)	

Xj(t)	

Xk(t)	

Figure 1: At time t, suppose that the decision maker chooses user i to offer a promotion.
He then receives a response Xi(t) from user i. Using the social interconnections,
he also observes responses Xj(t) and Xk(t) of i’s neighbors j and k.

Figure 1 illustrates the side-observation model for the example of targeting users in an
online social network. Such side observations are made possible in settings of online social
networks like Facebook by surveying or tracking a user’s neighbors’ reactions (likes, dislikes,
no opinion, etc.) to the user’s activity. This is possible when the online social network has
a survey or a like/dislike indicator that generates side observations. For example, when
user i is offered a promotion, her neighbors may be queried as follows: “User i was recently
offered a promotion. Would you also be interested in the offer?1”

Figure 2 shows the bipartite graph generated from the example shown in Figure 1.
The set of base-arms is the set of users since they act independently according to their
own preferences in the promotion, which are unknown to the decision maker. The set of
actions is also the set of users because the decision maker wants to target the users with the
maximum expected reward. When action j (user j) is chosen, the decision maker observes
Xi(t), Xj(t), Xk(t) and Xm(t) from user i, j, k and m since Vj = {i, j, k,m}. The reward

of playing action j depends on Kj and fj(·). Suppose fj( ~Xj(t)) =
∑

i∈Kj Xi(t). Then

Kj = {i, j, k,m} means that the reward is the sum of all positive feedbacks. It is also

1. Since, the neighbors do not have any information on whether the user i accepted the promotion, they act
independently according to their own preferences in answering this survey. The network itself provides
a better way for surveying and obtaining side observations.
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Figure 2: Bipartite graph for the example of targeting users in online social network.

possible that the decision maker set Kj = {j}, which means that the reward of playing
action j is only the observation from the user j.

The reward function can be quite general (but bounded) to accommodate different
settings. Also, the bipartite graph can be more general than social networks in two key
ways: 1) Connecting two users in two-hop neighborhood means that the reaction of the
friend of my friend is also observable, which is true in Facebook. 2) Connecting two users,
say i and j, with similar preference profiles means that the network actively recommends
the promotion received by user i to user j even though they are not friends. This has been
widely applied in recommender systems such as Yelp.

Objective: An allocation strategy or policy φ chooses the action to be played at each time.
Formally, φ is a sequence of random variables {φ(t), t ≥ 0}, where φ(t) ∈ K is the action

chosen by policy φ at time t. Let T φj (t) be the total number of times action j is chosen up
to time t by policy φ. For each action, rewards are only obtained when the action is chosen
by the policy (side-observations do not contribute to the total reward). Then, the regret of
policy φ at time t for a fixed µ = (µ1, . . . , µK) is defined by

Rφµ(t) = µ∗t−
K∑
j=1

µjE[T φj (t)] =
K∑
j=1

∆jE[T φj (t)],

where ∆j , µ∗ − µj and µ∗ , max
j∈K

µj . Henceforth, we drop the superscript φ unless it is

required. The objective is to find policies that minimize the rate at which the regret grows
as a function of time for every fixed network G. We focus our investigation on the class of
uniformly good policies (Lai and Robbins, 1985) defined below:

Uniformly good policies: An allocation rule φ is said to be uniformly good if for every
fixed µ, the following condition is satisfied as t→∞ :

Rµ(t) = o(tb), for every b > 0.

The above condition implies that uniformly good policies achieve the optimal long term
average reward of µ∗. Next, we define two structures that will be useful later to bound the
performance of allocation strategies in terms of the network structure G.
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Definition 1 A hitting set D is a subset of K such that Si ∩ D 6= ∅, ∀i ∈ N . Then the
hitting set number is γ(G) = infD⊆K{|D| : Si ∩ D 6= ∅, ∀i ∈ N}. For example, the set
{i,m} is a hitting set in Figure 2.

Definition 2 A clique C is a subset of K such that Kj ⊆ Vi, ∀i, j ∈ C. This means that for
every action i in C, we can observe the reward of playing any action j in C. A clique cover
C of a network G is a partition of all its nodes into sets C ∈ C such that the sub-network
formed by each C is a clique. Let χ̄(G) be the smallest number of cliques into which the
nodes of the network G can be partitioned, also called the clique partition number.

Proposition 3 For any network G with bipartite graph (K,N , E) and {Kj}j∈K, if ∪j∈KKj =
N , then γ(G) ≤ χ̄(G).

Proof Let C = {C1, C2, ..., Cm} be a clique cover with cardinality m, i.e., |C| = m and each
Ck is a clique for k = 1, ...,m. Pick arbitrarily an element ak from Ck for each k. Define
H = {ak : k = 1, ...,m}. Now it remains to show that H is a hitting set, which implies
γ(G) ≤ χ̄(G). We prove this by contradiction.

Suppose H is not a hitting set, then ∃i ∈ N s.t. Si ∩ H = ∅. Since ∪j∈KKj = N ,
∃j ∈ K s.t. i ∈ Kj . C is a clique cover, then ∃k(j) ∈ {1, 2, ...,m} such that j ∈ Ck(j). By
the construction of H, there exists ak(j) ∈ H ∩ Ck(j). By the definition of clique, we have
Kj ⊆ Vak(j)

. Thus, we have ak(j) ∈ Si since i ∈ Kj . It follows that Si ∩ H 6= ∅, which
contradicts to Si ∩H = ∅. Hence, H is a hitting set.

In the next section, we obtain an asymptotic lower bound on the regret of uniformly
good policies for the setting of MABs with side-observations. This lower bound is expressed
as the optimal value of a linear program (LP), where the constraints of the LP capture the
connectivity of each action in the network.

4. Regret Lower Bound in the Presence of Side Observations

In order to derive a lower bound on the regret, we need some mild regularity assump-
tions (Assumptions 1, 2, and 3) on the distributions Fi (associated with base-arm i) that
are similar to the ones in Lai and Robbins (1985). Let the probability distribution Fi
have a univariate density function g(x; θi) with unknown parameters θi, for each i ∈ N .
Let D(θ||σ) denote the Kullback Leibler (KL) distance between distributions with density
functions g(x; θ) and g(x;σ) and with means u(θ) and u(σ) respectively.

Assumption 1 (Finiteness) We assume that g(·; ·) is such that 0 < D(θ||σ) <∞ whenever
u(σ) > u(θ).

Assumption 2 (Continuity) For any ε > 0 and θ, σ such that u(σ) > u(θ), there exists
η > 0 for which |D(θ||σ)−D(θ||ρ)| < ε whenever u(σ) < u(ρ) < u(σ) + η.

Assumption 3 (Denseness) For each i ∈ N , θi ∈ Θ where the set Θ satisfies: for all θ ∈ Θ
and for all η > 0, there exists θ′ ∈ Θ such that u(θ) < u(θ′) < u(θ) + η.
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Let ~θ be the vector [θ1, . . . , θN ]. Define Θi = {~θ : ∃k ∈ Si such that µk(~θ) < µ∗(~θ)}. So,
not all actions that support base-arm i are optimal. Suppose ~θ ∈ Θi. For base arm i, define
the set

Bi(θi) = {θ′i : ∃k ∈ Si such that µk(~θ
′
i) > µ∗(~θ)},

where ~θ′i = [θ1, . . . , θ
′
i, . . . θN ]. ~θ′i differs from ~θ only in the ith parameter. In this set

Bi(θi), base-arm i contributes towards a unique optimal action. Define constant Ji(θi) =
inf{D(θi||θ′i) : θ′i ∈ Bi(θi)}. This is well-defined when Bi(θi) 6= ∅.

The following proposition is obtained using Theorem 2 in Lai and Robbins (1985). It
provides an asymptotic lower bound on the regret of any uniformly good policy under the
model described in Section 3:

Proposition 4 Suppose Assumptions 1, 2, and 3 hold. Let U = {j : µj < µ∗} be the set of
suboptimal actions. Also, let ∆j = µ∗ − µj . Then, under any uniformly good policy φ, the
expected regret is asymptotically bounded below as follows:

lim inf
t→∞

Rµ(t)

log(t)
≥ cµ, (1)

where cµ is the optimal value of the following linear program (LP) P1:

P1 : min
∑
j∈U

∆jwj ,

subject to:
∑
j∈Si

wj ≥
1

Ji(θi)
, ∀i ∈ N ,

wj ≥ 0, ∀j ∈ K.

Proof (Sketch) Let Mi(t) be the total number of observations corresponding to base-arm i
available at time t. Then, by modifying the proof of Theorem 2 of Lai and Robbins (1985),
we have that, for i ∈ N ,

lim inf
t→∞

E[Mi(t)]

log(t)
≥ 1

Ji(θi)
.

An observation is received for base-arm i whenever any action in Si is chosen. Hence,

Mi(t) =
∑
j∈Si

Tj(t). These two facts give us the constraints in LP P1. See Appendix A for

the full proof.

The linear program given in P1 contains the graphical information that governs the lower
bound. However, it requires the knowledge of ~θ, which is unknown. This motivates the
construction of the following linear program, LP P2, which preserves the graphical structure
while eliminating the distributional dependence on ~θ.

P2 : min
∑
j∈K

zj

subject to:
∑
j∈Si

zj ≥ 1, ∀i ∈ N ,

and zj ≥ 0, ∀j ∈ K.
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Let z∗ = (z∗j )j∈K be the optimal solution of LP P2. In Sections 5 and 6, we use the above
LP P2 to modify the ε-greedy policy in Auer et al. (2002) and UCB policy in Auer and
Ortner (2010) for the setting of side-observations. We provide regret guarantees of these
modified policies in terms of the optimal value

∑
j∈K z

∗
j of LP P2. We note that the linear

program P2 is, in fact, the LP relaxation of the minimum hitting set problem on network
G. Since, any hitting set of network G is a feasible solution to the LP P2, we have that the
optimal value of the LP

∑
j∈K z

∗
j ≤ γ(G) ≤ χ̄(G).

Proposition 5 Consider an Erdos-Renyi random bipartite graph (K,N , E) such that each
entry of the matrix E equals 1 with probability p, where 0 < p < 1. Suppose ∪j∈KKj =
N , i.e., there are no useless base-arms in the network, then

∑
j∈K z

∗
j is upper-bounded by

log 1
1−p

N as N →∞ in probability.

Proof (sketch) Since
∑

j∈K z
∗
j ≤ γ(G), it remains to be shown that γ(G) is upper bounded

by the above result. Suppose there are no useless base-arms in the network. Then the set of
all actions is a hitting set. Based on this observation, we construct a repeated experiment
to generate actions sequentially. Then we define a stopping time τ as the first time that all
the generated actions form a hitting set. Hence, we show the asymptotic result of τ as the
upper bound of γ(G). See full proof in Appendix B.

In the next proposition, we provide a lower bound on cµ in Equation (1) using the
optimal solution z∗ = (z∗j )j∈K of LP P2.

Proposition 6 Let U = {j : µj < µ∗} be the set of suboptimal actions. Let O = {j : µj =
µ∗} be the set of optimal actions. Then,

maxi∈N Ji(θi)

minj∈U ∆j
cµ + |O| ≥

∑
j∈K

z∗j ≥
mini∈N Ji(θi)

maxj∈U ∆j
cµ. (2)

Proof (Sketch) Using the optimal solution of LP P1, we construct a feasible solution sat-
isfying constraints in LP P2 for base-arms in N . The feasible solution constructed in this
way gives an upper bound on the optimal value of LP P2 in terms of the optimal value of
LP P1. For the lower bound, we use the fact that any feasible solution of P2, in particular
z∗, can be used to construct a feasible solution of P1. See Appendix C for the full proof.

We note that
∑

j∈K z
∗
j = Θ(cµ) completely captures the time dependence of the regret on

network structure under the following assumption:

Assumption 4 The quantities |O|, min
j∈U

∆j , and min
i∈N

Ji(θi) are constants that are indepen-

dent of network size K and N .

Note that the constants in the above assumption are unknown to the decision maker. In the
next section, we propose the εt-greedy-LP policy which achieves the regret lower bound of
cµ log(t) up to a multiplicative constant factor that is independent of the network structure
and time.
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5. Epsilon-greedy-LP policy

Motivated by the LPs P1 and P2, we propose a network-aware randomized policy called
the εt-greedy-LP policy. We provide an upper bound on the regret of this policy and show
that it achieves the asymptotic lower bound, up to a constant multiplier, independent of
the network structure. Let f̄j(t) be the empirical average of observations (rewards and
side-observations combined) available for action j up to time t. The εt-greedy-LP policy is
described in Algorithm 1. The policy consists of two iterations - exploitation and explo-
ration, where the exploration probability decreases as 1/t, similarly to that of the εt-greedy
policy proposed by Auer et al. (2002). However, in our policy, we choose the exploration
probability for action j to be proportional to z∗j /t, where z∗ is the optimal solution of LP
P2, while in the original policy in Auer et al. (2002), the exploration probability is uniform
over all actions.

Algorithm 1 : εt-greedy-LP

Input: c > 0, 0 < d < 1, optimal solution z∗ of LP P2.
for each time t do

Update f̄j(t) for each j ∈ K, where f̄j(t) is the empirically average over all the obser-
vations of action j.

Let ε(t) = min

(
1,
c
∑

j∈K z
∗
j

d2t

)
and a∗ = arg max

j∈K
f̄j(t).

Sample a from the distribution such that P{a = j} =
z∗j∑
i∈K z

∗
i

for all j ∈ K.

Play action φ(t) such that

φ(t) =

{
a, with probability ε(t)

a∗, with probability 1− ε(t)
(3)

end for

The following proposition provides performance guarantees on the εt-greedy-LP policy:

Proposition 7 For 0 < d < min
j∈U

∆j , any c > 0, and α > 1, the probability with which a

suboptimal action j is selected by the εt-greedy-LP policy, described in Algorithm 1, for all

t > t′ =
c
∑

i∈K z
∗
i

d2
is at most

( c

d2t
z∗j

)
+

2λcδ

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
+

4

∆2
j

(
et′

t

) c∆2
j

2αd2

, (4)

where r = 3(α−1)2

8α−2 , λ = maxj∈K |Kj |, and δ = maxi∈N |Si| is the maximum degree of the
supports in the network. Note that α is a parameter we introduce in the proof, which is used
to determine a range for the choice of parameter c as shown in Corollary 8.

Proof (Sketch) Since z∗ satisfies the constraints in LP P2, there is sufficient exploration
within each suboptimal action’s neighborhood. The proof is then a combination of this fact

10
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and the proof of Theorem 3 in Auer et al. (2002). In particular, we derive an upper bound
for the probability that suboptimal action j is played at each time and then sum over the
time. See Appendix D for the full proof.

In the above proposition, for large enough c, we see that the second and third terms are
O(1/t1+ε) for some ε > 0 (Auer et al., 2002). Using this fact, the following corollary bounds
the expected regret of the εt-greedy-LP policy:

Corollary 8 Choose parameters c and d such that,

0 < d < min
j∈U

∆j , and c > max(2αd2/r, 4α),

for any α > 1. Then, the expected regret at time T of the εt-greedy-LP policy described in
Algorithm 1 is at most  c

d2

∑
j∈U

∆jz
∗
j

 log(T ) +O(K), (5)

where the O(K) term captures constants independent of time but dependent on the network
structure. In particular, the O(K) term is at most

∑
j∈U

[
π2λcδ∆j

3αd2

(
et′
)cr/αd2

+
2π2

3∆j

(
et′
) c∆2

j

2αd2

]
,

where t′, r, λ and δ are defined in Proposition 7.

Remark 9 Under Assumption 4, we can see from Proposition 6 and Corollary 8 that,

εt-greedy-LP algorithm is order optimal achieving the lower bound Ω

∑
j∈K

z∗j log(T )

 =

Ω (cµ log(T )) as the network and time scale.

While the εt-greedy-LP policy is network aware, its exploration is oblivious to the observed
average rewards of the sub-optimal actions. Further, its performance guarantees depend
on the knowledge of minj∈U ∆j , which is the difference between the best and the second
best optimal actions. On the other hand, the UCB-LP policy proposed in the next section
is network-aware taking into account the average rewards of suboptimal actions. This
could lead to better performance compared to εt-greedy-LP policy in certain situations, for
example, when the action with greater z∗j is also highly suboptimal.

6. UCB-LP policy

In this section we develop the UCB-LP policy defined in Algorithm 2 and obtain upper
bounds on its regret. The UCB-LP policy is based on the improved UCB policy proposed
in Auer and Ortner (2010), which can be summarized as follows: the policy estimates the
values of ∆i in each round by a value ∆̃m which is initialized to 1 and halved in each round
m. By each round m, the policy draws n(m) observations for each action in the set of

11
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actions not eliminated by round m, where n(m) is determined by ∆̃m. Then, it eliminates
those actions whose UCB indices perform poorly. Our policy differs from the one in Auer
and Ortner (2010) by accounting for the presence of side-observations - this is achieved by
choosing each action according to the optimal solution of LP P2, while ensuring that n(m)
observations are available for each action not eliminated by round m.

Algorithm 2 : UCB-LP policy

Input: Set of actions K, time horizon T, and optimal solution z∗ of LP P2.

Initialization: Let ∆̃0 := 1, A0 := K, and B0 := K
for round m = 0, 1, 2, . . . , b1

2 log2
T
e c do

Action Selection: Let n(m) :=

⌈
2 log(T ∆̃2

m)

∆̃2
m

⌉
If |Bm| = 1: choose the single action in Bm until time T.

Else If
∑
i∈K

z∗i ≤ 2|Bm|∆̃m : ∀j ∈ Am, choose action j
[
z∗j (n(m)− n(m− 1))

]
times.

Else For each action j in Bm, choose j for [n(m)− n(m− 1)] times.

Update f̄j(m) and Tj(m) for each j ∈ K, where f̄j(m) is the empirical average reward
of action j, and Tj(m) is the total number of observations for action j up to round m.

Action Elimination:
To get Bm+1, delete all actions j in Bm for which

f̄j(m) +

√
log(T ∆̃2

m)

2Tj(m)
< max

a∈Bm

f̄a(m)−

√
log(T ∆̃2

m)

2Ta(m)

 ,

Reset:
The set Am+1 is given as Am+1 =

⋃
i∈Dm+1

Si, where Dm+1 =
⋃
j∈Bm+1

Kj .
Let ∆̃m+1 = ∆̃m

2 .

end for

The following proposition provides performance guarantees on the expected regret due
to UCB-LP policy:

Proposition 10 For action j, define round mj as follows:

mj := min

{
m : ∆̃m <

∆j

2

}
.

12
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Define m̄ = min

m :
∑
j∈K

z∗j >
∑

j:mj>m

2−m+1

 and the set B = {j ∈ U : mj > m̄}. Then,

the expected regret due to the UCB-LP policy described in Algorithm 2 is at most

∑
j∈U\B

∆jz
∗
j

32 log(T ∆̂2
j )

∆̂2
j

+
∑
j∈B

32 log(T∆2
j )

∆j
+O(K2), (6)

where ∆̂j = max{2−m̄+2,mina:j∈Ga{∆a}}, Ga = ∪i∈KaSi, and (z∗j ) is the solution of LP

P2. The O(K2) term captures constants independent of time. Further, under Assumption 4,
the regret is also at most

O

∑
j∈K

z∗j log(T )

+O(K2), (7)

where (z∗j ) entirely captures the time dependence on network structure.

Proof (Sketch) The log(T ) term in the regret follows from the fact that, with high proba-
bility, each suboptimal action j is eliminated (from the set Bm) on or before the first round
m such that ∆̃m < ∆j/2. See Appendix E for the full proof.

Remark 11 While εt-greedy-LP does not require knowledge of the time horizon T, UCB-
LP policy requires the knowledge of T. UCB-LP policy can be extended to the case of an
unknown time horizon similar to the suggestion in Auer and Ortner (2010). Start with
T0 = 2 and at end of each Tl, set Tl+1 = T 2

l . The regret bound for this case is shown in
Proposition 19 in Appendix F.

Next, we briefly describe the policies UCB-N and UCB-MaxN proposed in Caron et al.
(2012). In the UCB-N policy, at each time, the action with the highest UCB index is chosen
similar to UCB1 policy in Auer et al. (2002). In UCB-MaxN policy, at each time t, the
action i with the highest UCB index is identified and its neighboring action j with the
highest empirical average reward at time t is chosen.

Remark 12 The regret upper bound of UCB-N policy is

inf
C

∑
C∈C

8 maxj∈C ∆j

minj∈C ∆2
j

log(T ) +O(K),

where C is a clique covering of the sub-network of suboptimal actions. The regret upper
bound for UCB-MaxN is the same as that for UCB-N with an O(|C|) term instead of the
time-invariant O(K) term. We show a better regret performance for UCB-LP policy and
εt-greedy-LP policies with respect to the log(T ) term because

∑
i∈K z

∗
i ≤ γ(G) ≤ χ̄(G).

However, the time-invariant term in our policies is O(K) and O(K2), can be worse than
the time-invariant term O(|C|) in UCB-MaxN.

13
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Remark 13 All uniformly good policies that ignore side-observations incur a regret that is
at least Ω(|U| log(t)) Lai and Robbins (1985), where |U| is the number of suboptimal actions.
This could be significantly higher than the guarantees on the regret of both εt-greedy-LP policy
and UCB-LP policy for a rich network structure as discussed in Remark 12.

Remark 14 In our model, we assumed that the side observations are always available.
However, in reality, side observations may only be obtained sporadically. Suppose that when
action j is chosen, side-observations of base-arms i ∈ Kj are obtained almost surely and that
of base-arms i ∈ Vj \Kj are obtained with a known probability pj . In this case, Proposition 4
holds with the replacement of LP P1 with LP P ′1 as follows:

P ′1 : min
∑
j∈U

∆jwj ,

subject to:
∑
j∈Si

(wj1{i∈Kj} + pjwj1{i 6∈Kj}) ≥
1

Ji(θi)
, ∀i ∈ N ,

wj ≥ 0, ∀j ∈ K.

Both of our policies work for this setting by changing the LP P2 to P ′2 as follows:

P ′2 : min
∑
j∈K

zj

subject to:
∑
j∈Si

(zj1{i∈Kj} + pjzj1{i 6∈Kj}) ≥ 1, ∀i ∈ N ,

and zj ≥ 0, ∀j ∈ K.

The regret bounds of our policies will now depend on the optimal solution of LP P ′2.

7. Numerical Results

7.1 Algorithm Performance on Data Trace

We consider the Flixster network dataset for the numerical evaluation of our algorithms.
The authors in Jamali and Ester (2010) collected this social network data, which contains
about 1 million users and 14 million links. We use graph clustering by Dhillon et al. (2007)
to identify two strongly clustered sub-networks of sizes 1000 and 2000 nodes. Both these
sub-networks have a degree distribution that is a straight line on a log-log plot indicating a
power law distribution commonly observed in social networks. 2

Our empirical setup is as follows. Let N be the set of users and K = N . To be
specific, each user in the network is offered a promotion at each time, and accepts the
promotion with probability µi ∈ [0.3, 0.9]. Let Si be the set of one-hop neighbors in the
social network of user i (including user i). This is the setting when the Flixster has a

2. We note that the social network of interest may or may not display a power law behavior. We find that
the subgraphs of the Flixster network have a degree distribution that is a straight line on a log-log plot
indicating a power law distribution display while the authors in Ugander et al. (2011) show that the
degree distribution of the global Facebook network is not a straight line on log-log plot.

14
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survey or a like/dislike indicator that generates side observations of user’s neighborhood.
Let Kj = {j} and fj(Xj) = Xj , which means that the decision maker receives a random
reward of 1 if the chosen user j accepts the promotion or 0 reward otherwise. µj is chosen
uniformly at random from [0.3, 0.8] and there are 50 randomly chosen users with optimal
µj = 0.9.
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Figure 3: Regret comparison of all the policies for a network of size 1000.
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Figure 4: Regret comparison of all the policies for a network of size 2000.

Figures 3 and 4 show the regret performance as a function of time for the two sub-
networks of sizes 1000 and 2000 respectively. Note that the average regret is taken over
1000 experiments. For the εt-greedy-LP policy, we let c = 5 and d = 0.2 (we choose d = 0.2
to show that our algorithm seems to have good performance in more general settings, even
when the bounds in the Proposition 7 are not known or used). For both networks, we
see that our policies outperform the UCB-N and UCB-MaxN policies Caron et al. (2012)
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(UCB-N and UCB-MaxN policies can also be viewed as special cases of those proposed
in Chen et al. (2013) for this specific combinatorial structure). We also observe that the
improvement obtained by UCB-N policy over the baseline UCB1 policy is marginal. It has
been shown (Cooper et al., 2005) that for power law graphs, both γ(G) and χ̄(G) scale
linearly with N, although γ(G) has a lower slope. Our numerical results show that our
policies outperform existing policies even for the Flixster network.

As we show in Corollary 8 and Proposition 10, εt-greedy-LP and UCB-LP have the same
upper bound O(

∑
j∈U z

∗
j log T ). It is hard to say which algorithm outperforms the other

one. In the Flixster network, we see that the εt-greedy-LP policy performs better than the
UCB-LP policy. As we show in Section 7.2, UCB-LP performs better than εt-greedy-LP. In
addition, the regret gap between the εt-greedy-LP and UCB-LP is not large compared to
their gain to UCB-N and UCB-maxN.

7.2 Algorithm Performance on Synthetic Data

We consider a routing problem defined on a communication network, which is demonstrated
as an undirected graph consisting of 6 nodes in Figure 5. We assume that node 1 is the
source node and node 6 is the destination node. The decision maker repeatedly sends
packets from the source node to the destination node. There exist 13 simple paths from
the source node to the destination node. The delay of each path is the sum of delays over
all the constituent links. The goal of the decision maker is to identify the path with the
smallest expected delay and minimize the regret as much as possible.

Solving the routing problem is a direct application of this work once we let the set of
paths be the set of actions and the set of links be the set of base-arms. We assume that
the delay of each link i, denoted by Xi(t), is an independent and identically distributed
sequence of random variables (drawn from the steady-state distribution) over discrete time
t. Then, this is a stochastic bandit problem with side-observations since playing one action
(path) reveals some observations of some base-arms (links) that contribute to other actions
(paths). For example, choosing path (1, 2, 4, 6) reveals the delay performance of link (1, 2)
and (2, 4), which are included in the path (1, 2, 4, 5, 6).

In the routing problem, there are 13 paths and 12 directed links (note that some links
are never used in all the paths). Thus, we set K = 13 and N = 12 in the simulation. Then,
we construct the set Vj for each action j such that i ∈ Vj if path j traverses the link i.
And, we set Kj = Vj for each j ∈ K since the delay of a path is the total delay of the
traversed links. Let B be the upper bound of all the action delays. Then, we choose the
function fj( ~Xj(t)) = 1 −

∑
i∈Kj Xi(t)/B as the reward of playing action j at time t. In

the simulation, we assume that the delay of link i is sampled from a Bernoulli distribution
with mean ui. Each ui is independently sampled from a uniform distribution from 0 to 1,
which realizes the problem instance in Figure 53. One can check that the optimal action
(shortest path) is the path (1, 3, 5, 6) given the ground truth {ui}i∈N . We let B = 5 in the
simulation.

We apply the UCB1, UCB-N, Cohen (Cohen et al., 2016) and our policies to the problem
instance in Figure 5 and the regret performance, averaged over 1000 experiments, is shown
in Figure 6. We do not represent the result of the UCB-MaxN because it degenerates to

3. The number indicates the mean delay and the arrow indicates the direction of the link
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Figure 5: Routing problem on a communication network
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Figure 6: Regret comparison of all the policies for the routing problem

the UCB-N policy. The reason is that there is no non-trivial clique (clique with more than
one element) in this problem due to the setting Kj = Vj and Kj 6= Ka for any j, a ∈ K.
Intuitively, there does not exist two paths that can observe the outcome of each other.
For the εt-greedy-LP policy, we let c = 4 and d = 0.05. From the regret performance, we
observe that the improvement obtained by the UCB-N policy against the UCB1 policy is
considerably greater than the results in Figure 3 and Figure 4. The reason behind this is
that the bipartite graph in the routing problem is more dense and network size is small
in the routing problem, which enables the UCB-N policy to take the advantage of side-
observations. Overall, we see that our policies outperform the UCB-N policy and Cohen
policy because our policies take the network structure into consideration, which enables us
to trade off the exploration with exploitation more efficiently.

17



Buccapatnam, Liu, Eryilmaz and Shroff

7.3 Asymptotic Behavior

We run a simulation to verify the result provided in Proposition 5. For each base-arm size
N , we sequentially generate action j such that eij = 1 with probability p for any i ∈ N
independently. Stopping time τ is the number of actions we have generated so that there are
no useless base-arms in the network. Note that τ is an upper bound of γ(G) and

∑
j∈K z

∗
j

as shown in Appendix B. Then, we solve the linear program P2 to obtain
∑

j∈K z
∗
j and find

a hitting set by a greedy algorithm.4
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Figure 7: Erdos-Renyi random graph with p=0.5

Figure 7 shows the average result over 1000 samples for each N when p = 0.5. The
numerical result verifies our theoretical result that

∑
j∈K z

∗
j is upper-bounded by a loga-

rithmic function of N asymptotically in Erdos-Renyi random graph. The reason why we
are interested in the scaling order of

∑
j∈K z

∗
j is that the traditional UCB1 policy suffers

from the curse of dimensionality when applied in the real world, such as recommendation
systems with thousands of items. However, our policies show a regret of O(

∑
j∈K z

∗
j log T ),

and
∑

j∈K z
∗
j is upper-bounded by a logarithmic function of the number of unknowns, which

makes our policies scalable in some large networks.

8. Summary

In this work, we introduce an important structural form of feedback available in many
multiarmed bandits using the bipartite network structure. We obtained an asymptotic
(with respect to time) lower bound as a function of the network structure on the regret of

4. It is well known that hitting set problem is NP-complete. So we employ the greedy algorithm which
brings in the node with the largest degree in the network during each iteration.

18



Reward Maximization Under Uncertainty: Leveraging Side-Observations

any uniformly good policy. Further, we proposed two policies: 1) the εt-greedy-LP policy,
and 2) the UCB-LP policy, both of which are optimal in the sense that they achieve the
asymptotic lower bound on the regret, up to a multiplicative constant that is independent
of the network structure. These policies can have a better regret performance than existing
policies for some important network structures. The εt-greedy-LP policy is a network-aware
any-time policy, but its exploration is oblivious to the average rewards of the suboptimal
actions. On the other hand, UCB-LP considers both the network structure and the average
rewards of actions.

Important avenues of future work include the case of dynamic graphs – what would be
the lower bound and corresponding algorithms if the graph structure remains known but
changes with time? Recently Tossou et al. (2017) presented a novel extension of Thompson
sampling algorithm for the setting of immediate neighbor feedback studied in Mannor and
Shamir (2011); Caron et al. (2012); Buccapatnam et al. (2014). It would be interesting to
see how to adapt Thompson sampling algorithm for the bipartite graph feedback structure
introduced in our current work.
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In what follows, we give the proofs of all propositions stated in the earlier sections.
These proofs make use of Lemmas 15, 16, and 17, and Proposition 18 given in Section F.

Appendix A. Proof of Proposition 4

Let U = {j : µj < µ∗} be the set of suboptimal actions. Also, let ∆j = µ∗ − µj . Also,
Tj(t) is the total number of times action j is chosen up to time t by policy φ. Let Mi(t)
be the total number of observations corresponding to base-arm i available at time t. From
Proposition 18 given in the Appendix, we have,

lim inf
t→∞

E[Mi(t)]

log(t)
≥ 1

Ji(θi)
, ∀i ∈ N . (8)

An observation is received for base-arm i whenever any action in Si is chosen. Hence,

Mi(t) =
∑
j∈Si

Tj(t). (9)

Now, from Equations (8) and (9), for each i ∈ N ,

lim inf
t→∞

∑
j∈Si E[Tj(t)]

log(t)
≥ 1

Ji(θi)
. (10)

Using (10), we get the constraints of LP P1. Further, we have from definition of regret that,

lim inf
t→∞

Rµ(t)

log(t)
= lim inf

t→∞

∑
j∈U

∆j
E[Tj(t)]

log(t)
.

The above equation along with the constraints of the LP P1 obtained from (10) gives us
the required lower bound on regret.

Appendix B. Proof of Proposition 5

Here we consider a E-R random graph with each entry of the matrix E equals 1 with
probability p, where 0 < p < 1. Consider the following discrete stochastic process. χn are
i.i.d., such that χn ⊆ [N ] is sampled by the following steps: for each i = 1, 2, .., N , i ∈ χn
with probability p. Let q = 1− p. Then let τ be a stopping time defined as

τ = min{n ≥ 1,∪nj=1χj = [N ]} (11)

The complement cdf of τ is the following.

P (τ > n) = 1− (1− qn)N (12)

1. Fix N. Given 0 < p < 1, then 0 < q < 1. Thus, P (τ =∞) = 0

2. What is the upper bound of E(τ)?

(1− qn)N > exp(− qnN

1− qn
) (since ln(1− x) > − x

1− x
for 0 < x < 1) (13)
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Thus, we have

P (τ > n) < 1− exp(− qnN

1− qn
) ≤ qnN

1− qn
(since 1− ex ≤ −x) (14)

Then we can bound the expectation of τ .

E(τ) =
∞∑
n=1

P (τ > n) <
∞∑
n=1

qn
N

1− q
=

qN

(1− q)2
(15)

3. What is the upper bound of P (τ ≤ n)?

P (τ ≤ n) = (1− qn)N ≤ exp(−qnN) (16)

4. Does τ converge as N goes to infinity?
Given ε > 0, as N goes to ∞,

P (τ ≤ (1− ε) log1/qN) ≤ exp(−q(1−ε) log1/q NN) = exp(−N ε)→ 0 (17)

P (τ > (1 + ε) log1/qN) ≤ q(1+ε) log1/q NN

1− q
=

1

(1− q)N ε
→ 0 (18)

Since ε is arbitrary, we can have

P (τ = log1/qN)→ 1 as N →∞. (19)

That is to say τ converges to log1/qN in probability.

Suppose there are no useless base-arms in the network, i.e. [K] is a hitting set. Then τ
is less than K with probability 1. Given this information, γ(G) should be upper bounded
by log1/qN as N goes to infinity.

Appendix C. Proof of Proposition 6

Let (z∗j )j∈K be the optimal solution of LP P2. We will first prove the upper bound in Equa-
tion 2. Using the optimal solution (w∗j )j∈K of LP P1, we construct a feasible solution satisfy-

ing constraints in LP P2 in the following way: For actions j ∈ K, let zj =

(
max
i∈N

Ji(θi)

)
w∗j .

Then (zj)j∈K satisfy constraints for all base-arms i ∈ N because w∗j satisfy constraints of
LP P1.
The feasible solution constructed in this way gives an upper bound on the optimal value of
LP P2. Hence, ∑

j∈K
z∗j ≤

∑
j∈U

zj + |O|

≤
∑
j∈U

(
max
i∈N

Ji(θi)

)
w∗j + |O|

≤ maxi∈N Ji(θi)

minj∈U ∆j

∑
j∈U

∆jw
∗
j + |O|

≤ maxi∈N Ji(θi)

minj∈U ∆j
cµ + |O|
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For the lower bound, any feasible solution of P2, in particular z∗, can be used to construct

a feasible solution of P1. For actions j ∈ K, let wj =
z∗j

mini∈N Ji(θi)
. Then (wj)j∈K satisfies

the constraints of LP P1 and hence gives an upper bound on its optimal value. Therefore,
we have

cµ =
∑
j∈U

∆jw
∗
j ,

≤
∑
j∈K

∆jz
∗
j

mini∈N Ji(θi)

≤
∑
j∈K

maxa∈U ∆az
∗
j

mini∈N Ji(θi)

which gives us the required lower bound.

Appendix D. Proof of Proposition 7

Since z∗ satisfies the constraints in LP P2, there is sufficient exploration within each sub-
optimal action’s neighborhood. The proof is then a combination of this fact and the proof
of Theorem 3 in Auer et al. (2002). Let f̄j(t) be the random variable denoting the sample
mean of all observations available for action j at time t. Let f̄∗(t) be the random variable
denoting the sample mean of all observations available for an optimal action at time t. Fix
a suboptimal action j. For some α > 1, define mi for each base-arm i as follows,

mi =
1

α

∑
j∈Si z

∗
j∑

j∈K z
∗
j

t∑
m=1

ε(m)

Let φ(t) be the action chosen by εt-greedy-LP policy at time t. The event {φ(t) = j} implies
that either sampling a random action j for exploration or playing the best observed action
j for exploitation. Then,

P[φ(t) = j] ≤
ε(t)z∗j∑
a∈K z

∗
a

+ (1− ε(t))P[f̄j(t) ≥ f̄∗(t)]

The event {f̄j(t) ≥ f̄∗(t)} implies that either {f̄j(t) ≥ µj +
∆j

2 } or {f̄∗(t) ≤ µ∗ − ∆j

2 } since

µj +
∆j

2 = µ∗ − ∆j

2 . We also have that,

P[f̄j(t) ≥ f̄∗(t)] ≤ P
[
f̄j(t) ≥ µj +

∆j

2

]
+ P

[
f̄∗(t) ≤ µ∗ − ∆j

2

]
.

The analysis of both the terms in the right hand side of the above expression is similar.
Let ORi (t) be the total number of observations available for base-arm i from the exploration
iterations of the policy up to time t. Let Oi(t) be the total number of observations available
for base-arm i up to time t. By concentration inequalities, the probability that the empirical
mean deviate from the expectation can be bounded given the number of observations. The
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number of observations for action j is lower-bounded by the number of observations from
the exploration iterations. Hence, we have,

P
[
f̄j(t) ≥ µj +

∆j

2

]
=

t∑
m=1

P
[

min
i∈Kj

Oi(t) = m; f̄j(t) ≥ µj +
∆j

2

]

=
t∑

m=1

P
[
f̄j(t) ≥ µj +

∆j

2
|min
i∈Kj

Oi(t) = m

]
P
[

min
i∈Kj

Oi(t) = m

]

≤
t∑

m=1

P
[

min
i∈Kj

Oi(t) = m

]
e
−∆2

jm

2

(follows from Chernoff-Hoeffding bound in Lemma 15)

≤
t∑

m=1

P
[

min
i∈Kj

ORi (t) ≤ m
]
e
−∆2

jm

2

≤
bm0c∑
m=1

P
[

min
i∈Kj

ORi (t) ≤ m
]

+

t∑
m=bm0c+1

e
−∆2

jm

2

≤ m0P
[

min
i∈Kj

ORi (t) ≤ m0

]
+

2

∆2
j

e
−∆2

jm0

2(
since

∞∑
m+1

e−ku ≤ 1

k
e−km

)

≤
∑
i∈Kj

m0P
[
ORi (t) ≤ m0

]
+

2

∆2
j

e
−∆2

jm0

2 ,

where m0 = mini∈N mi.
Recall that ORi (t) is the total number of observations for base-arm i from exploration.

Now, we derive the bounds for the expectation and variance of ORi (t) in order to use
Bernstein’s inequality.

E
[
ORi (t)

]
=

t∑
m=1

ε(m)
∑
j∈Si

z∗j∑
j∈K z

∗
j

=

∑
j∈Si z

∗
j∑

j∈K z
∗
j

t∑
m=1

ε(m) = αmi

≥ αm0

var
[
ORi (t)

]
=

t∑
m=1

ε(m)
∑
j∈Si

z∗j∑
j∈K z

∗
j

1− ε(m)
∑
j∈Si

z∗j∑
j∈K z

∗
j


≤

t∑
m=1

ε(m)
∑
j∈Si

z∗j∑
j∈K z

∗
j

= E[ORi (t)] = αmi
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Now, using Bernstein’s inequality given in Lemma 16, we have

P
[
ORi (t) ≤ m0

]
= P

[
ORi (t) ≤ E[ORi (t)] +m0 − αmi

]
≤ P

[
ORi (t) ≤ E[ORi (t)] +mi − αmi

]
≤ exp

(
− (α− 1)2m2

i

2αmi + 2
3(α− 1)mi

)

= exp

(
−3(α− 1)2

8α− 2
mi

)
= exp(−rmi)

where r = 3(α−1)2

8α−2 . Now, we will obtain upper and lower bounds on mi by plugging in the

definition of ε(m). For the upper bound, for any t > t′ =
c
∑
i∈K z

∗
i

d2 ,

mi =

∑
j∈Si z

∗
j

α
∑

j∈K z
∗
j

t∑
m=1

ε(m)

=

∑
j∈Si z

∗
j

α
∑

j∈K z
∗
j

t′ +

∑
j∈Si z

∗
j

α
∑

j∈K z
∗
j

t∑
m=t′+1

c
∑

i∈K z
∗
i

d2m

≤ cδ

αd2

(
1 +

t∑
m=t′+1

1

m

)

≤ cδ

αd2
log

(
e2t

t′

)
.

where δ = maxi∈N |Si|, denoting the maximum degree of the supports in the network. In

the above,
∑

j∈Si z
∗
j ≤ δ because z∗j ≤ 1, which is due to the fact that

(
z∗j

)
j∈K

is the

optimal solution of LP P2. Next, for the lower bound, we use the fact that
∑

j∈Si z
∗
j ≥ 1 for

all i because
(
z∗j

)
j∈K

satisfies the constraints of LP P2. Thus

mi ≥
∑

j∈Si z
∗
j

α
∑

j∈K z
∗
j

t∑
m=t′+1

c
∑

i∈K z
∗
i

d2m

≥ c

αd2

t∑
m=t′+1

1

m

≥ c

αd2
log

(
t

et′

)
.
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Let λ = maxj∈K |Kj |. Hence, combining the inequalities above,

P
[
f̄j(t) ≥ µj +

∆j

2

]
≤
∑
i∈Kj

m0P
[
ORi (t) ≤ m0

]
+

2

∆2
j

e−
∆2
jm0

2

≤
∑
i∈Kj

m0

(
et′

t

)cr/αd2

+
2

∆2
j

e−
∆2
jm0

2

≤ λ cδ

αd2

(
log

(
e2t

t′

))(
et′

t

)cr/αd2

+
2

∆2
j

(
et′

t

) c∆2
j

2αd2

Now, similarly for the optimal action, we have, for all t > t′

P
[
f̄∗(t) ≤ µ∗ − ∆j

2

]
≤ λcδ

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
+

2

∆2
j

(
et′

t

) c∆2
j

2αd2

.

Combining everything, we have for any suboptimal action j, for all t > t′

P[φ(t) = j] ≤
ε(t)z∗j∑
a∈K z

∗
a

+ (1− ε(t))P [f̄j(t) ≥ f̄∗(t)]

≤
cz∗j
d2t

+ P [f̄j(t) ≥ f̄∗(t)]

≤
cz∗j
d2t

+
2λcδ

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
+

4

∆2
j

(
et′

t

) c∆2
j

2αd2

Appendix E. Proof of Proposition 10

The proof technique is similar to that in Auer and Ortner (2010). We will analyze the regret
by conditioning on two disjoint events. The first event is that each suboptimal action a is
eliminated by an optimal action on or before the first round m such that ∆̃m < ∆a/2. This
happens with high probability and leads to logarithmic regret. The compliment of the first
event yields linear regret in time but occurs with probability proportional to 1/T. The main
difference from the proof in Auer and Ortner (2010) is that on the first event, the number
of times we choose each action j is proportional to z∗j log(T ) in the exploration iterations
(i.e., when |Bm| > 1) of the policy. This gives us the required upper bound in terms of
optimal solution z∗ of LP P2.

Let ∗ denote any optimal action. Let m∗ denote the round in which the last optimal
action ∗ is eliminated. For each suboptimal action j, define round mj := min{m : ∆̃m <
∆j

2 }. For an optimal action j, mj =∞ by convention. Then, by the definition of mj , for all

rounds m < mj , ∆j ≤ 2∆̃m, and

2

∆j
< 2mj =

1

∆̃mj

≤ 4

∆j
<

1

∆̃mj+1

= 2mj+1. (20)

From Lemma 17 in the Appendix, the probability that action j is not eliminated in round
mj by ∗ is at most 2

T ∆̃2
mj

.
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Let I(t) be the action chosen at time t by the UCB-LP policy.
Let Em∗ be the event that all suboptimal actions with mj ≤ m∗ are eliminated by ∗ on or
before their respective mj . Then, the complement of Em∗ , denoted as Ecm∗ , is the event that
there exists some suboptimal action j with mj ≤ m∗, which is not eliminated by round mj .
Let Ecj be the event that action j is not eliminated by round mj by ∗. Let mf = b1

2 log2
T
e c

and I(t) denote the action chosen at time t by the policy. Recall that regret is denoted by
Rµ(T ). Let P[m∗ = m] be denoted by pm. Hence,

∑mf
m=0 pm = 1.

E [Rµ(T )] =

mf∑
m=0

E [Rµ(T )|{m∗ = m}]P[m∗ = m]

=

mf∑
m=0

T∑
t=1

∑
j∈U

∆jP [I(t) = j|{m∗ = m}] pm

=

mf∑
m=0

T∑
t=1

∑
j∈U

∆jP [{I(t) = j} ∩ Em∗ |{m∗ = m}] pm

+

mf∑
m=0

T∑
t=1

∑
j∈U

∆jP [{I(t) = j} ∩ Ecm∗ |{m∗ = m}] pm

= (i) + (ii)

Next we will show that term (i) leads to logarithmic regret while term (ii) leads to a constant
regret with time.
First, consider the term (ii) of the regret expression. For each j ∈ U , we have,

mf∑
m=0

T∑
t=1

P [{I(t) = j} ∩ Ecm∗ |{m∗ = m}]P[m∗ = m]

≤
mf∑
m=0

T∑
t=1

P [{I(t) = j} ∩ (∪a∈U :ma≤m∗E
c
a) |{m∗ = m}] pm

≤
mf∑
m=0

T∑
t=1

(
P [{I(t) = j}| (∪a∈U :ma≤m∗E

c
a) , {m∗ = m}]

P [∪a∈U :ma≤m∗E
c
a|{m∗ = m}] pm

)
≤ TP [∪a∈UEca|{m∗ = mf}]

mf∑
m=0

pm

≤ T
∑
a∈U

2

T ∆̃2
ma

,(
using Lemma 17, P [Eca|{m∗ = mf}] ≤

2

T ∆̃2
ma

)
≤
∑
a∈U

32

∆2
a

,
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where the last inequality follows from Equation (20). Hence, the term (ii) of regret is

mf∑
m=0

T∑
t=1

∑
j∈U

∆jP [{I(t) = j} ∩ Ecm∗ |{m∗ = m}] pm

≤
∑
j∈U

∆j

∑
a∈U

32

∆2
a

= O(K2). (21)

Next, we consider the term (i). Recall that, in this term, we consider the case that all
suboptimal actions j with mj ≤ m∗ are eliminated by ∗ on or before mj .

(i) =

mf∑
m=0

T∑
t=1

∑
j∈U

∆jP [{I(t) = j} ∩ Em∗ |{m∗ = m}] pm

=

mf∑
m=0

E [Rµ(T )|{m∗ = m}, Em∗ ]P[Em∗ |{m∗ = m}]pm

≤
mf∑
m=0

(
E [Regret from {j : mj ≤ m∗}|{m∗ = m}, Em∗ ]

+ E [Regret from {j : mj > m∗}|{m∗ = m}, Em∗ ]
)
pm

≤
mf∑
m=0

(
E
[
Regret from {j : mj ≤ mf}|{m∗ = mf}, Emf

]
+ E [Regret from {j : mj > m∗}|{m∗ = m}, Em∗ ]

)
pm

≤ E
[
Rµ(T )|{m∗ = mf}, Emf

] mf∑
m=0

pm

+

mf∑
m=0

E [Regret from {j : mj > m∗}|{m∗ = m}, Em∗ ] pm

= (ia) + (ib)

Once again, we will consider the above two terms separately. For the term (ia), under the
event Emf , each suboptimal action j is eliminated by ∗ by round mj . Define round m̄ and
the set B as follows:

m̄ = min{m :
∑
j∈K

z∗j >
∑

a:ma>m

2−m+1},

B = {j ∈ U : mj > m̄}.

After round m̄, Algorithm 2 chooses only those actions with mj > m̄. Also, by the definition
of the Reset phase of Algorithm 2, we have that any suboptimal action j /∈ B is chosen (i.e.
appears in the set Am at round m) only until it is not in Am or until m̄, whichever happens
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first. Define nj = min{m̄, max
a:j∈Ga

{ma}} for each suboptimal action j, where Ga =
⋃
i∈Ka Si

for action a. Then any suboptimal action j /∈ B is chosen for at most nj rounds.

(ia) = E
[
Rµ(T )|{m∗ = mf}, Emf

]
≤
∑
j∈U\B

∆jz
∗
j

2 log(T ∆̃2
nj )

∆̃2
nj

+
∑
j∈B

∆j

2 log(T ∆̃2
mj )

∆̃2
mj

≤
∑
j∈U\B

∆jz
∗
j

32 log(T ∆̂2
j )

∆̂2
j

+
∑
j∈B

∆j

32 log(T∆2
j )

∆2
j

, (22)

where ∆̂j = max{2−m̄+2,mina:j∈Ga{∆a}} and (z∗j ) is the solution of LP P2.
Finally, we consider the term (ib). Note that Tj(m) ≥ n(m), ∀j ∈ Bm,∀m. An optimal action
∗ is not eliminated in round m∗ if (25) holds for m = m∗. Hence, using (26) and (27), the
probability pm that ∗ is eliminated by a suboptimal action in any round m∗ is at most

2
T ∆̃2

m∗
. Hence, term (ib) is given as:

mf∑
m=0

E [Regret from {j : mj > m∗}|{m∗ = m}, Em∗ ] pm

≤
mf∑
m=0

∑
j∈U :mj≥m

2

T ∆̃2
m

.T max
a∈U

∆a

≤ max
a∈U

∆a

mf∑
m=0

∑
j∈U :mj≥m

2

∆̃2
m

≤
∑
j∈U

mj∑
m=0

2

∆̃2
m

≤
∑
j∈U

22mj+2 ≤
∑
j∈U

64

∆2
j

= O(K). (23)

Now we get the result (6) by combining the bounds in (21), (22), and (23).
Further, the definition of set B ensures that we have

∑
j∈B

∆j ≤
∑
j∈K

z∗j .

Also, using the Assumption 4,
32∆j log(T ∆̂2

j )

∆̂2
j

,
32 log(T∆2

j )

∆2
j

are bounded by C log(T ), where

C = 32
minj∈U ∆2

j
, is a constant independent of network structure. When one checks the

feasibility of C, note that ∆̂j ≥ mina:j∈Ga ∆a by definition and ∆j ≤ 1 for any j since the
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rewards are bounded by 1. Hence, (22) can be bounded as:

∑
j∈U\B

∆jz
∗
j

32 log(T ∆̂2
j )

∆̂2
j

+
∑
j∈B

∆j

32 log(T∆2
j )

∆2
j

≤
∑
j∈U\B

z∗jC log(T ) +
∑
j∈B

∆jC log(T )

≤
∑
j∈U\B

z∗jC log(T ) +
∑
j∈B

2−m̄+1C log(T )

≤ 2
∑
j∈K

z∗jC log(T ). (24)

Hence, we get (7) from (24), (21), and (23).

Appendix F. Supplementary Material

Sn = 1
n

∑n
j=1Xj denotes the sample mean of the random variables X1, . . . , Xn. The first

two lemmas below state the Chernoff-Hoeffding inequality and Bernstein’s inequality.

Lemma 15 Let X1, . . . , Xn be a sequence of random variables with support [0, 1] and E[Xt] =
µ for all t ≤ n. Let Sn = 1

n

∑n
j=1Xj . Then, for all ε > 0, we have,

P[Sn ≥ µ+ ε] ≤ e−2nε2

P[Sn ≤ µ− ε] ≤ e−2nε2 .

Lemma 16 Let X1, . . . , Xn be a sequence of random variables with support [0, 1] and
∑t

k=1

var[Xk|X1, . . . , Xk−1] ≤ σ2 for all t ≤ n. Let Sn =
∑n

j=1Xj . Then, for all ε > 0, we have,

P[Sn ≥ E[Sn] + ε] ≤ exp

{
− ε2

2σ2 + 2
3ε

}

P[Sn ≤ E[Sn]− ε] ≤ exp

{
− ε2

2σ2 + 2
3ε

}
.

The next lemma is used in the proof of Proposition 10.

Lemma 17 The probability that action j is not eliminated in round mj by ∗ is at most
2

T ∆̃2
mj

.

Proof Let f̄j(m) be the sample mean of all observations for action j available in round m.
Let f̄∗(m) be the sample mean of the optimal action. The constraints of LP P2 ensure that

at the end of each round m, for all actions in Bm, we have at least n(m) :=
⌈

2 log(T ∆̃2
m)

∆̃2
m

⌉
observations. The reason is as follows. The set Am contains set Bm. In particular, Am =
∪i∈DmSi and Dm = ∪j∈BmKj . If each action j in Am is played z∗j times, then all the
base-arms in Dm have at least 1 observations according the constraints of LP P2. Thus,
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the actions in Bm have at least 1 observations. In sum, for all actions in Bm, we have at
least n(m)− n(m− 1) observations at round m. Thus, we have at least n(m) observations
for all actions in Bm.

Now, for m = mj , if we have,

f̄j(m) ≤ µj +

√
log(T ∆̃2

m)

2n(m)
and f̄∗(m) ≥ µ∗ −

√
log(T ∆̃2

m)

2n(m)
, (25)

then, action j is eliminated by ∗ in round mj . In fact, in round mj , we have√
log(T ∆̃2

mj )

2n(mj)
≤

∆̃mj

2
<

∆j

4
.

Hence, in the elimination phase of the UCB-LP policy, if (25) holds for action j in round
mj , we have,

f̄j(mj) +

√
log(T ∆̃2

mj )

2n(mj)
≤ µj + 2

√
log(T ∆̃2

mj )

2n(mj)

< µj + ∆j − 2

√
log(T ∆̃2

mj )

2n(mj)

= µ∗ − 2

√
log(T ∆̃2

mj )

2n(mj)

≤ f̄∗(mj)−

√
log(T ∆̃2

mj )

2n(mj)
,

and action j is eliminated. Hence, the probability that action j is not eliminated in round
mj is the probability that either one of the inequalities in (25) do not hold. Using Chernoff-
Hoeffding bound (Lemma 15), we can bound this as follows,

P

f̄j(m) > µj +

√
log(T ∆̃2

m)

2n(m)

 ≤ 1

T ∆̃2
m

(26)

P

f̄∗(m) < µ∗ −

√
log(T ∆̃2

m)

2n(m)

 ≤ 1

T ∆̃2
m

. (27)

Summing the above two inequalities for m = mj gives us that the probability that action j
is not eliminated in round mj by ∗ is at most 2

T ∆̃2
mj

.

The next proposition is a modified version of Theorem 2 in Lai and Robbins (1985). We
use it to obtain the regret lower bound in Proposition 4.

Proposition 18 Suppose Assumptions 1, 2, and 3 hold. Let Mi(t) be the total number of
observations for such a base-arm i, for which ~θ ∈ Θi. Then, under any uniformly good policy
φ, we have that

lim inf
t→∞

E[Mi(t)]

log(t)
≥ 1

Ji(θi)
.
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Proof By definition of Ji(θi), for every ε > 0, there exists a θ′i ∈ Bi(θi) such that Ji(θi) <
D(θi||θ′i) < (1 + ε)Ji(θi).

Now, under ~θ′i = [θ1, . . . , θ
′
i, . . . θN ], there exists an action k ∈ Si such that k is the

unique optimal action. Then, for any uniformly good policy, for 0 < b < δ,

E~θ′i [t− Tk(t)] = o(tb)

and therefore,
P~θ′i
[
Tk(t) < (1− δ) log(t)/D(θi||θ′i)

]
= o(tb−1),

similar to the asymptotic lower bound proof in Lai and Robbins (1985).
Let Mi(t) be the total number of observations for base-arm i. Then Mi(t) ≥ Tk(t), since

choosing any action in Si gives observations for i. Hence,

P~θ′i
[
Mi(t) < (1− δ) log(t)/D(θi||θ′i)

]
= o(tb−1),

Now the rest of the proof of Theorem 2 in Lai and Robbins (1985) applies directly to Mi(t).
We will repeat it below for completeness. Let (Yi(r))r≥1 be the observations drawn from
distribution Fi and define

Lm =

m∑
r=1

log

(
g(Yi(r); θi)

g(Yi(r); θ′i)

)
.

Now, we have that P~θ′i [Ct] = o(tb−1) where Ct = {Mi(t) < (1−δ) log(t)/D(θi||θ′i) and LMi(t) ≤
(1− b) log(t)}.

Now, we use the change of measure arguments.

P~θ′i [M1(t) = m1, . . . ,MN (t) = mN , Lmi ≤ (1− b) log(t)] (28)

=

∫
{M1(t)=m1,...,MN (t)=mN ,Lmi≤(1−b) log(t)}

Πmi
r=1

g(Yi(r); θ
′
i)

g(Yi(r); θi)
dP~θi (29)

≥ exp(−(1− b) log(t))P~θi [M1(t) = m1, . . . ,MN (t) = mN , Lmi ≤ (1− b) log(t)] (30)

Since Ct is a disjoint union of events of the form {M1(t) = m1, . . . ,MN (t) = mN , Lmi ≤
(1− b) log(t)} with mi < (1− δ) log(t)/D(θi||θ′i), it follows that

P~θ[Ct] ≤ t
1−bP~θ′i [Ct]→ 0.

So far, we show that the probability of the event Ct goes to 0 as t goes to infinity. If
we show the event {LMi(t) ≤ (1 − b) log(t)|Mi(t) < (1 − δ) log(t)/D(θi||θ′i)} occurs almost
surely, then we show the probability of {Mi(t) < (1− δ) log(t)/D(θi||θ′i)} goes to 0 as t goes
to infinity, which is the desired result. By strong law of large numbers Lm/m → D(θi||θ′i)
as m→∞ and maxr≤m Lr/m→ D(θi||θ′i) almost surely. Now, since 1−b > 1−δ, it follows
that as t→∞,

P~θ
[
Lr > (1− b) log(t) for some r < (1− δ) log(t)/D(θi||θ′i)

]
→ 0. (31)

Hence, we have that as t→∞,

P~θ
[
Mi(t) < (1− δ) log(t)/D(θi||θ′i)

]
→ 0.
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By choosing ε, δ appropriately, this translates to

lim inf
t→∞

E[Mi(t)]

log(t)
≥ 1

Ji(θi)
.

Proposition 19 When the horizon is unknown, start the UCB-LP algorithm with T̃0 = 2
and increase T̃ after reaching T̃ steps by setting T̃l+1 = T̃ 2

l . The regret of unknown horizon
UCB-LP is bounded by

∑
j∈U\B

64∆jz
∗
j

∆̂2
j

log(T ∆̂2
j ) +

∑
j∈B

64 log(T∆2
j )

∆j
+O(K2 log2 log2 T ). (32)

Proof When the horizon is unknown, start the UCB-LP algorithm with T̃0 = 2 and increase
T̃ after reaching T̃ steps by setting T̃l+1 = T̃ 2

l . Thus, T̃l = 22l until reaching horizon T.
Also, the period in which horizon is reached is denoted by L. Note that 2 ≤ L ≤ log2 log2 T .

In any period l, (0 ≤ l ≤ L), UCB-LP uses T̃l as input. Note that m̄,mj , B and ∆̂j are
independent of T̃l, thus l. Recall that regret of UCB-LP is bounded by (6). The regret of
UCB-LP with unknown horizon is upper bounded by the summation over all the periods.

L∑
l=0

 ∑
j∈U\B

∆jz
∗
j

32 log(T̃l∆̂
2
j )

∆̂2
j

+
∑
j∈B

32 log(T̃l∆
2
j )

∆j
+O(K2)

 = (i) + (ii) + (iii).

First, we consider the term (i). We can plug in the definition of T̃l into (i).

(i) =
L∑
l=0

∑
j∈U\B

∆jz
∗
j

32 log(T̃l∆̂
2
j )

∆̂2
j

=
∑
j∈U\B

32∆jz
∗
j

∆̂2
j

L∑
l=0

log(22l∆̂2
j )

=
∑
j∈U\B

32∆jz
∗
j

∆̂2
j

(
(log 2)

L∑
l=0

2l + (L+ 1) log ∆̂2
j

)

≤
∑
j∈U\B

32∆jz
∗
j

∆̂2
j

(
2L+1(log 2) + (L+ 1) log ∆̂2

j

)
≤
∑
j∈U\B

32∆jz
∗
j

∆̂2
j

(
2 log T + (L+ 1) log ∆̂2

j

)
(since L ≤ log2 log2 T )

≤
∑
j∈U\B

64∆jz
∗
j

∆̂2
j

log(T ∆̂2
j ) (since (L+ 1) log ∆̂2

j ≤ 2 log ∆̂2
j )
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Similarly, we have that (ii) ≤
∑

j∈B
64 log(T∆2

j )

∆j
. Now, we directly sum up the bound for

term (iii).

(iii) ≤
L∑
l=0

O(K2) ≤ (L+ 1)O(K2) = O(K2 log2 log2 T ).

Hence, by combining the results above, the regret of unknown horizon is bounded by∑
j∈U\B

64∆jz
∗
j

∆̂2
j

log(T ∆̂2
j ) +

∑
j∈B

64 log(T∆2
j )

∆j
+O(K2 log2 log2 T ).
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