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Abstract

We propose a Bayesian approach to regression with a scalar response on vector and ten-
sor covariates. Vectorization of the tensor prior to analysis fails to exploit the structure,
often leading to poor estimation and predictive performance. We introduce a novel class
of multiway shrinkage priors for tensor coefficients in the regression setting and present
posterior consistency results under mild conditions. A computationally efficient Markov
chain Monte Carlo algorithm is developed for posterior computation. Simulation studies
illustrate substantial gains over existing tensor regression methods in terms of estimation
and parameter inference. Our approach is further illustrated in a neuroimaging application.

Keywords: Multiway Shrinkage Prior, Magnetic Resonance Imaging (MRI), Parafac
Decomposition, Posterior Consistency, Tensor Regression

1. Introduction

In many application areas, it is common to collect predictors that are structured as a
multiway array or tensor. For example, the elements of this tensor may correspond to
voxels in a brain image (Lindquist, 2008; Lazar, 2008; Hinrichs et al., 2009; Ryali et al.,
2010). Existing approaches for quantifying associations between an outcome and such tensor
predictors mostly fall within two groups. The first approach assesses the association between
each cell (for brain images referred to as voxel) and the response independently, providing
a p-value ‘map’ (Lazar, 2008). The p-values can be adjusted for multiple comparisons
to identify ‘significant’ sub-regions of the tensor. Although this approach is widely used
and appealing in its simplicity, clearly such independent screening approaches have key
disadvantages relative to methods that take into account the joint impact of the overall
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tensor simultaneously. Unfortunately, the literature on simultaneous analysis approaches is
sparse.

One naive approach is to simply vectorize the tensor and then use existing methods for
high-dimensional regression. Such vectorization fails to preserve spatial structure, making
it more difficult to learn low-dimensional relationships with the response. Efficient learning
is of critical importance, as the sample size is typically massively smaller than the total
number of cells. Alternative approaches within the regression framework include functional
regression and two stage approaches. The former views the tensor as a discretization of
a continuous functional predictor. Most of the literature on functional predictors focuses
on 1D functions; Reiss and Ogden (2010) consider the 2D case, but substantial challenges
arise in extensions to 3D due to dimensionality and collinearity among cells. Recently
Wang et al. (2014) considered 3D regularized functional regression with Haar wavelet basis.
The article is essentially frequentist in nature with simulation studies showing only the
mean squared error and the percentage of correctly identified zero and nonzero elements.
Additionally, the article reveals that functional regression is largely affected by the choice
of proper basis functions. The second set of approaches, i.e. Two stage approaches first
conduct a dimension reduction step, commonly using PCA, and then fit a model using lower
dimensional predictors (Caffo et al., 2010). A clear disadvantage of such approaches is that
the main principal components driving variability in the random tensor may have relatively
limited impact on the response variable. Potentially, supervised PCA could be used, but it
is not clear how to implement such an approach in 3D or higher dimensions.

Zhou et al. (2013) propose extending generalized linear regression to include a tensor
structured parameter corresponding to the measured tensor predictor. To circumvent diffi-
culties with extensions to higher order tensor predictors, they impose additional structure
on the tensor parameter, supposing it decomposes as a rank-R parafac sum (see Section
2.1). This massively reduces the effective number of parameters to be estimated. They
develop a penalized likelihood approach where adaptive lasso penalties are be imposed on
individual margins of the parafac decomposition, focusing on good point estimation for the
tensor parameter. However, their method relies heavily on cross-validation for selecting
tuning parameters which are sensitive to the tensor dimension, the signal-to-noise ratio (de-
gree of sparsity) and the parafac rank. Given that there is no automatic selection procedure
for the tuning parameters provided in Zhou et al. (2013), they have to be fed manually by
the end user which is problematic for an unknown tensor regression problem.

Of practical interest is a “self calibrating” procedure which adapts the complexity of
the model to the data. We propose a principled method to effectively shrink unimportant
cell coefficients to zero while maintaining accuracy in estimating important cell coefficients.
Our framework gives rise to the automatic selection of tuning parameters, with carefully
constructed shrinkage priors that naturally induce sparsity within and across components
in the tensor factorization of the tensor coefficient for optimal region selection. In addition,
the need for valid measures of uncertainty on parameter (predictive) estimates is crucial,
especially in settings with low or moderate sample sizes, which naturally motivates our
Bayesian approach. Recently Suzuki (2015) proposed a Bayesian tensor regression approach
with naive Gaussian prior on the components of the tensor factorization of the tensor
coefficients. In contrast, our proposed prior on the tensor coefficient is more sophisticated
in the sense that it imparts shrinkage in three ways: at a global level, at a local level of

2



Bayesian Tensor Regression

individual parameters, and also provides shrinkage towards low rank decomposition of the
tensor coefficient. Similarly, Bayesian tensor regression framework proposed in Goldsmith
et al. (2014) uses binary indicators to determine whether a cell in the tensor predictor
is predictive of the response. For a tensor predictor with 30 × 30 × 30 cells, such an
approach requires to update 27000 binary indicators in each MCMC iteration and is deemed
unsatisfactory due to mixing issues and poor inference.

Our approach differs from image reconstruction literature as we do not model the distri-
bution of the tensor X (Qiu, 2007). There is a considerable recent literature on frequentist
tensor modeling in which one typically encounters time series (generally to study social
networks or images evolving over time) with response at every time point is an array/tensor
(Gerard and Hoff, 2015; Hoff et al., 2015). There is also a Bayesian literature that facilitates
joint modeling of a large number of unordered categorical variables (Zhou et al., 2015). Our
framework is fundamentally different from these approaches in the sense that these are all
unsupervised tensor modeling approach while we propose a framework for supervised tensor
regression. To the best of our knowledge, we are the first to propose a novel multiway
shrinkage prior in Bayesian tensor regression framework (with scalar response on a ten-
sor predictor) that accommodates shrinkage of the tensor coefficient for the appropriate
identification of important cells in the tensor predictor. Besides, we offer strong posterior
consistency results on Bayesian tensor regression framework with multiway shrinkage prior.

Remainder of the manuscript evolves as follows. In Section 2, we propose the basic
framework of the tensor regression model with a scalar response, vector predictors and a
tensor predictor. Section 3 characterizes desirable criteria for a multiway shrinkage prior and
proposes a novel multiway shrinkage prior on the tensor coefficient. Sections 4 and 5 provide
theoretical results on the convergence of posterior distribution under the mutiway shrinkage
prior and details on posterior computation respectively. Various simulation studies with 2D
and 3D tensor predictors are presented in Sections 6 and 7 respectively to study effectiveness
of the Bayesian tensor regression under various degrees of sparsity and signal strength.
Section 8 is devoted to a real brain connectome data analysis using the proposed Bayesian
tensor regression model along with its competitors. The manuscripts ends with a discussion.

2. Tensor Regression

This section provides details on the tensor regression model.

2.1 Basic Notation

Let β1 = (β11, . . . , β1p1)′ and β2 = (β21, . . . , β2p2)′ be vectors of length p1 and p2, re-
spectively. The vector outer product β1 ◦ β2 is a p1 × p2 matrix with (i, j)-th entry
β1i β2j . A D-way outer product between vectors βj = (βj1, . . . , βjpj ), 1 ≤ j ≤ D, is
a p1 × · · · × pD multi-dimensional array denoted B = β1 ◦ β2 ◦ · · · ◦ βD with entries
(B)i1,...,iD =

∏D
j=1 βjij . Define a vec(B) operator as stacking elements of this D-way tensor

into a column vector of length
∏D
j=1 pj . From the definition of outer products, it is easy to

see that vec(β1 ◦β2 ◦ · · · ◦βD) = βD ⊗ · · · ⊗β1. As a higher order generalization of matrix
singular value decomposition, Tucker decomposition of a D-way tensor B ∈ ⊗Dj=1<pj is
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often considered. The Tucker decomposition (Kolda and Bader, 2009) can be expressed as

B =

R1∑
r1=1

R2∑
r2=1

· · ·
RD∑
rD=1

λr1,...,rDβ
(r1)
1 ◦ β(r2)

2 ◦ · · · ◦ β(rD)
D (1)

where β
(rj)
j is a pj dimensional vector, 1 ≤ j ≤ D, and Λ = (λr1,...,rD)R1,...,RD

r1,...,rD=1 is referred

to as the core tensor. If one considers {β(rj)
j ; 1 ≤ rj ≤ Rj , 1 ≤ j ≤ D} as “factor loadings”

and λr1,...,rD to be the corresponding coefficients, then the Tucker decomposition may be
thought of as a multiway analogue to factor modeling.

A rank-R parafac decomposition emerges as a special case of Tucker decomposition 1
when R1 = R2 = · · · = RD = R and λr1,...,rD = I(r1 = r2 = · · · = rD). In particular,
B ∈ ⊗Dj=1<pj assumes a rank-R parafac decomposition if

B =

R∑
r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D (2)

where β
(r)
j , 1 ≤ j ≤ D and 1 ≤ r ≤ R are the pj dimensional ‘margins’. The parafac

decomposition is more widely used due to its relative simplicity.

2.2 Model Framework

Let y ∈ Y denotes a response variable, with z ∈ X ⊂ <p and X ∈ ⊗Dj=1<pj scalar and
tensor predictors, respectively. We consider a tensor regression model having a general form

y ∼ f
(
α+ z′γ + 〈X,B〉, σ

)
, 〈X,B〉 = vec(X)′vec(B), (3)

where f(µ, σ) is a family of distributions having location µ and scale σ, γ is a p×1 coefficient
for scalar preditors and B ∈ ⊗Dj=1<pj is the tensor parameter corresponding to measured
tensor predictor X. We focus more specifically on the Gaussian linear model case with

y = α+ z′γ + 〈X,B〉+ ε, ε ∼ N(0, σ2). (4)

The coefficient tensor B has
∏D
j=1 pj elements, necessitating substantial dimensionality

reduction. A rank-1 parafac decomposition assumes B = β1 ◦ · · · ◦ βD and vec(B) =
βD⊗ · · ·⊗β1. This reduces to modeling y = α+z′γ+β′1Xβ2 when D = 2, corresponding
to the bilinear model considered in Hung and Wang (2013). Since only the single parameter
vector βj captures signal along the jth dimension, a rank-1 assumption severely limits
flexibility, ruling out interactions among dimensions. Following Zhou et al. (2013), we use

a more flexible rank-R parafac decomposition for B =
∑R

r=1 β
(r)
1 ◦ · · · ◦ β

(r)
D introduced in

(2) with β
(r)
j ∈ <pj , 1 ≤ j ≤ D, and 1 ≤ r ≤ R. Expression (4) then becomes

y = α+ z′γ +
〈
X,

R∑
r=1

β
(r)
1 ◦ · · · ◦ β

(r)
D

〉
+ ε

= α+ z′γ +
∑

(i1,...,iD)

(X)i1,...,iD(B)i1,...,iD + ε

(5)
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where voxel (X)i1,...,iD of the tensor predictor has corresponding parameter

(B)i1,...,iD =

R∑
r=1

D∏
j=1

β
(r)
j,ij
, (i1, . . . , iD) ∈ VB = ⊗Dj=1{1, . . . , pj}. (6)

The model is therefore nonlinear in the parameters defining B. A hierarchical specification
is completed by placing priors over unknown model parameters. While placing priors over
α and γ is straightforward, Section 3.2 focuses on specification of the prior over tensor
parameters which is nontrivial and one of the main contributions of this work.

Under the assumed rank-R parafac decomposition for B, model (5) requires estimating
p+ 2 +R

∑D
j=1 pj as opposed to p+ 2 +

∏D
j=1 pj parameters for the unstructured vectorized

(saturated) model. As we are interested in identifying geometric sub-regions of the tensor
across which coefficients are not close to zero, with the remaining elements being very
close to zero, one wonders whether such dramatic dimension reduction retains sufficient
flexibility. Finally, we would like to accurately estimate coefficient values in these sub-
regions. Consistent with our theoretical analysis in Section 4, extensive simulation studies
in Section 6 confirm our ability to accomplish these goals.

2.3 Model Identifiability

From model (5) it is clear that only voxel-level coefficients are identified and not the in-
dividual tensor margins defining their product-sum given in (6). In the tensor setting,
identifiability restrictions are understood in light of the following indeterminacies:

1. Scale indeterminacy : for each r = 1, . . . , R, define λr = (λ1r, . . . , λDr) such that∏D
j=1 λjr = 1. Then replacing β

(r)
j by λjrβ

(r)
j leaves the tensor parameterB unaltered.

2. Permutation indeterminacy :
∑R

r=1 ◦Dj=1β
(r)
j =

∑R
r=1 ◦Dj=1β

(P (r))
j for any permutation

P (·) of {1, 2, . . . , R}. In particular, this implies that ◦Dj=1β
(r)
j are not identifiable for

r = 1, . . . , R.

3. Orthogonal transformation indeterminacy (D = 2 only): for any orthonormal matrix

O, one has (β
(r)
1 O) ◦ (β

(r)
2 O) = β

(r)
1 ⊗ β

(r)
2 .

For D > 2, imposing the following (D−1)R constraints ensures identifiability of the margin
parameters comprising the rank-R parafac decomposition:

β
(r)
j,1 = 1, 1 ≤ j < D, 1 ≤ r ≤ R, and β

(1)
D,1 > · · · > β

(R)
D,1. (7)

In the context of Bayesian tensor regression, our emphasis is on accurate estimation and
inference on tensor parameter B, and on state-of-the-art predictive performance. Impor-

tantly, B is always identifiable even if the tensor margins β
(r)
j ’s are not, hence we avoid

imposing identifiability restrictions on the latter. As is evident from our simulation studies,

non-identifiability of β
(r)
j does not appear to cause convergence issues and in-fact, simplifies

the design of efficient computational algorithms.
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3. Multiway Shrinkage Priors

This Section outlines the novel multiway shrinkage prior on the tensor coefficient.

3.1 Vector Shrinkage Priors

There has been recent interest in high-dimensional regression with vector predictors, choos-
ing priors which shrink small coefficients towards zero while minimizing shrinkage of large
coefficients. Many of these priors can be expressed as a global-local (GL) scale mixtures
(Polson and Scott, 2012) with

θj ∼ N(0, ψjτ), ψj ∼ g, τ ∼ h, (8)

where (θ1, . . . , θp) is a coefficient vector, τ is a global scale and ψj is a local-scale. When
g is a mixture of two components, with one concentrated near zero and the other away
from zero, a spike and slab prior is obtained. Many other choices of g and h have been
considered. Although the GL family is widely used and versatile, Bhattacharya et al. (2015)
note advantages in drawing the local scales jointly. In particular, they propose to let

θj ∼ DE(·|φjτ), (φ1, ..., φp) ∼ Dirichlet(a, . . . , a), τ ∼ h.

where DE(·) denote the double-exponential distribution. For small a and large p, the
Dirichlet(a, . . . , a) prior has the property of favoring many values close to zero with a few
much larger values, but with

∑
j φj = 1. Though we draw motivation from literature on

vector shrinkage priors, our goal of proposing a shrinkage prior on tensor parameter B is
fundamentally more challenging as discussed in forthcoming sections.

3.2 Multiway Priors

We propose a new class of multiway shrinkage priors in the generalized linear model setting
with tensor valued predictors. Assuming tensor parameter B admits a rank-R parafac
decomposition, model (5) results in cell-level coefficients that are a nonlinear function of
the corresponding tensor margin parameters (see (6)). Moreover, this implies simultaneous
shrinkage on each of the

∏D
j=1 pj cell coefficients as imposed by the prior over R

∑D
j=1 pj

parameters. This necessitates careful prior specification on the tensor margins {β(r)
j ; 1 ≤

j ≤ D, 1 ≤ r ≤ R} such that the induced cell-level prior has adequate tails so as to prevent
over shrinkage.

There are a number of desirable characteristics for a multiway prior on the tensor mar-
gins. The proposed multiway shrinkage prior must have a structure that facilitates efficient
and reliable model fitting. In addition, it is important to ensure that

1. For each r = 1, . . . , R,
(
β

(r)
1,i1
, . . . , β

(r)
D,iD

)
and

(
β

(r)
1,k1

, . . . , β
(r)
D,kD

)
are equal in distribu-

tion, for any (i1, . . . , iD), (k1, . . . , kD) ∈ VB×VB and (i1, . . . , iD) 6= (k1, . . . , kD). This
is to ensure that (B)i1,...,iD and (B)k1,...,kD have the same distribution apriori.

2. Shrinkage towards a low rank decomposition, with the model adapting to the com-
plexity and signal in the data, effectively deleting unnecessary dimensions.

3. The prior should favor recovery of contiguous geometric subregions of the tensor across
which the cell observations are predictive of the response.
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3.3 The Multiway Dirichlet GDP Prior

There are many ways of specifying priors over tensor margins β
(r)
j to satisfy the crite-

ria listed. We propose a particular choice called the multiway Dirichlet generalized dou-
ble Pareto (M-DGDP) prior. This prior induces shrinkage across components in an ex-
changeable way, with global scale τ ∼ Ga(aτ , bτ ) adjusted in each component as τr = φrτ
for r = 1, . . . , R, where Φ = (φ1, . . . , φR) ∼ Dirichlet(α1, . . . , αR) encourages shrink-
age towards lower ranks in the assumed parafac decomposition. In addition, W jr =
diag(wjr,1, . . . , wjr,pj ), j = 1, . . . , D and r = 1, . . . , R are margin-specific scale parameters
for each component. The hierarchical margin-level prior is given by

β
(r)
j ∼ N

(
0, (φrτ)W jr

)
, wjr,k ∼ Exp(λ2

jr/2), λjr ∼ Ga(aλ, bλ). (9)

Collapsing over element-specific scales, notice that β
(r)
j,k |λjr, φr, τ

iid∼ DE(λjr/
√
φrτ), 1 ≤ k ≤

pj . Prior (9) induces a GDP prior on the individual margin coefficients which in turn has
the form of an adaptive Lasso penalty (Armagan et al., 2013a). Flexibility in estimating

Br = {β(r)
j ; 1 ≤ j ≤ D} is accommodated by modeling within-margin heterogeneity via

element-specific scaling wjr,k. Common rate parameter λjr shares information between
margin elements, encouraging shrinkage at the local scale.

The framework adpoted by Zhou et al. (2013) for Frequentist tensor regression starts
by assuming the true parafac rank and relying on shrinkage through a global parameter for
estimating the tensor coefficient. In contrast, M-DGDP prior proposes joint shrinkage on
the global and local component parameters to achieve improved inference and estimation.
Though rank-selection is not our purview, our prior also accomodates dimension reduction
by favoring low-rank factorizations as discussed below.

4. Posterior Consistency for Tensor Regression

This Section details out theoretical properties of the tensor regression framework.

4.1 Notation and Framework

We establish convergence results for tensor regression model (5) under the simplifying as-
sumptions that the intercept is omitted by centering the response and the error variance is
σ2 = 1. Since our main focus is on the tensor coefficient, we assume coefficients for ordinary
scalar covariates to be known. Without loss of generality, we assume γ = (0, . . . , 0). We
consider an asymptotic setting in which the dimensions of the tensor grow with n. This
paradigm attempts to capture the fact that tensor dimension

∏
j pj,n is typically substan-

tially larger than sample size. This creates theoretical challenges, related to (but distinct
from) those faced in showing posterior consistency for high dimensional regression (Armagan
et al., 2013b) and multiway contingency tables (Zhou et al., 2015).

Suppose the data generating model comes from the same class of models where the
fitted model belongs to, i.e., having true tensor parameter B0

n ∈ ⊗Dj=1<pj ,n, error variance

σ2
0 = 1. We also assume that the true tensor coefficient B0

n generating the data admits a
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rank-R PARAFAC decomposition as below

B0
n =

R∑
r=1

β
0(r)
1,n ◦ · · · ◦ β

0(r)
D,n, β

0(r)
j,n = (β

0(r)
j,n,1, . . . , β

0(r)
j,n,pj,n

)′ ∈ <pj,n .

In addition, define F n,F
0
n ∈ <

R
∑D
j=1 pj,n as the vectorized parameters:

F n = vec
(
β

(1)
1,n, · · · ,β

(R)
1,n , · · · ,β

(1)
D,n, · · · ,β

(R)
D,n

)
F 0
n = vec

(
β

0(1)
1,n , · · · ,β

0(R)
1,n , · · · ,β0(1)

D,n, · · · ,β
0(R)
D,n

)
.

Define a Kulback-Leibler (KL) neighborhood around the true tensor B0
n as

Bn =

{
Bn :

1

n

n∑
i=1

KL(f(yi|B0
n), f(yi|Bn)) < ε

}
.

Denote KL(f(yi|B0
n), f(yi|Bn)) as KLi. The KL-distance between N(µ1, σ

2
1) and N(µ2, σ

2
2)

is log(σ2/σ1)+
(
σ2

1+(µ1−µ2)2
)
/2σ2

2−1
2 , so it follows KLi = KL

(
N
(
〈Xi,Bn〉, 1

)
,N
(
〈Xi,B

0
n〉, 1

))
= 1

2

(
〈Xi,B

0
n〉 − 〈Xi,Bn〉

)2
. Hence, a KL neighborhood of radius ε around B0

n can be re-

expressed as Bn =
{
Bn : 1

2n

∑n
i=1

(
〈Xi,B

0
n〉 − 〈Xi,Bn〉

)2
< ε
}

. Further, let πn and Πn

denote prior and posterior densities with n observations, respectively, and

Πn(Bcn) =

∫
Bcn
f(yn|Bn)πn(F n)∫
f(yn|Bn)πn(F n)

,

with yn = (y1, . . . , yn)′ and f(yn|Bn) is the density of yn under model (5). Posterior
consistency is established by showing that

Πn (Bcn)→ 0 under B0
n a.s. as n→∞. (10)

4.2 Main Result

Our main theorem is that (10) holds under a simple sufficient condition on the prior and
the tensor predictors.

Theorem 1 Let ζn = n
1+ρ3

2 (ρ3 > 0), Mn = 1
n

√
n∑
i=1
||Xi||22. Given Lemma 6 in Appendix

A, for any ε > 0, Πn(Bn : 1
n

∑n
i=1 KLi > ε)→ 0 a.s. under B0

n, for the prior πn(Bn) that
satisfies

πn

(
Bn : ||Bn −B0

n||2 <
2η

3Mnζn

)
> exp(−dn), for all large n (11)

for any d > 0 and η < ε
32 − d. That is, the model is posterior consistent when (11) holds.

Lemma 6 in Appendix A verifies the existence of exponentially-consistent tests. The proof of
the Lemma and Theorem are provided in the Appendix A. The proposed multiway shrinkage
prior satisfies (11) and hence leads to posterior consistency under the following Theorem.

8



Bayesian Tensor Regression

Theorem 2 For fixed constants H1, H2,M1, ρ1 and ρ2 > 0, the M-DGDP prior (9) on Bn

satisfies (11), i.e. yields posterior consistency under conditions:

(a) H1n
ρ1 < Mn < H2n

ρ2

(b) supl=1,...,pj,n |β
0(r)
j,n,l| < M1 <∞, for all j = 1, . . . , D, r = 1, . . . , R

(c)
∑D

j=1 pj,n log(pj,n) = o(n).

Remark 3 Condition (a) in Theorem 2 gives an upper and lower bound on the sum of
the Frobenius norms of tensor predictors. In tensor predictors with {0, 1} entries (often
observed for white/grey matter fMRI data), this condition simply imposes a restriction on
the minimum and maximum number of 1s in a tensor predictor as a function of the sample
size n. Condition (b) is mild, assuming the supremum of all entries in the tensor margins
are bounded. Finally, condition (c) in Theorem 2 requires that

∑
j=D pj,n grows sub-linearly

with sample size n. However, note that the number of cells
∏D
j=1 pj,n in the tensor can grow

at a rate much faster than the sample size n; hence, the modeling framework allows large
tensor covariates even for moderate sample sizes. Of course, condition (c) trivially holds
when the dimension of the tensor is kept fixed as n grows.

Remark 4 Our Section on posterior consistency is based on the assumption that γ =
(0, . . . , 0)′ and error variance 1, however the results are trivially extendable to cases with
unknown γ and σ2. In such a generalization, it is important to note that one would need to
assume the dim(γ) is fixed and not growing with n.

4.3 Prior Hyper-parameter Elicitation

The marginal distribution of cell coefficients (6) under the proposed M-DGDP prior (9) is
not available in closed-form. To assess how a shrinkage prior on the margins induces prior
on cell coefficients of the tensor, we turn to an expression for the cell-level variance:

var(Bi1,...,iD) = E
(

var

{ R∑
r=1

D∏
j=1

β
(r)
j,id
|W ,Λ,Φ, τ

})

= EΦ

( R∑
r=1

φDr Eτ{τD}EΛ·,r

{
EW r|Λr

( D∏
j=1

wjr,ij

)})

=
Γ(α0 +D)

Γ(α0) bDτ
(2Cλ)D EΦ

( R∑
r=1

φDr

)
.

The following Lemma provides lower and upper bounds on the variance that can be useful
for elicitation of default hyperparameter values.

Lemma 5 Under M-DGDP shrinkage prior (9) and for D > 1, if α1 = · · · = αR =
c/R, c ∈ N+, with constants Cλ = b2λ/

(
(aλ − 1)(aλ − 2)

)
, aλ > 2, Aτ = exp((D2 −

3D)/2), then the cell-level variance is bounded below by RαD1 (2Cλ/bτ )D and above by
Aτ (2Cλ/bτ )D exp(α1RD).
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(a) α = (0.2, 0.2, 0.2)
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(b) α = (0.3, 0.3, 0.3)
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(c) α = (0.5, 0.5, 0.5)

Figure 1: Visualization of points in the S2 probability simplex for 500 independent realiza-
tions of Dirichlet(α). As α ↓ 0, points increasingly tend to concentrate around
vertices of the SR−1 simplex. This notion of sparsity is made precise in Yang and
Dunson (2014).

Hyperparameters of the Dirichlet component in multiway prior (9) play a key role in
controlling dimensionality of the model, with smaller values favoring more component-
specific scales τr ≈ 0, thus effectively collapsing on a low-rank tensor factorization. Figure
1 plots realizations from the Dirichlet distribution when R = 3 for different concentration
parameters2 α.

A discrete uniform prior is placed on α over a grid, A. By default, grid values are
chosen to be 10 equally spaced values in [R−D, R−0.10], letting the data tune this parameter
according to the degree of sparisty present. Armagan et al. (2013a) study various choices
of (aλ, ζ = bλ/aλ) that lead to desirable shrinkage properties, such as Cauchy-like tails

for β
(r)
j,k while retaining Laplace-like shrinkage near zero. Empirical results from simulation

studies across a variety of settings in Section 6 reveal no strong sensitivity to choices for
hyper-parameters aλ, bλ. From Lemma 5, setting aλ = 3 and bλ = 2D

√
aλ avoids overly

narrow variance of the induced prior on tensor elements, Bi1,...,iD . Table 1 provides various
quantiles of the induced prior on these elements under these default hyperparameter settings
as a function of the parafac rank-R and tensor dimension D.

5. Posterior Computation and Model Fitting

Letting y ∈ < denote a response, and z ∈ <p,X ∈ ⊗Dj=1<pj predictors, we let

y|γ,B, σ ∼ N
(
z′γ + 〈X,B〉, σ2

)
B =

R∑
r=1

Br, Br = β
(r)
1 ◦ · · · ◦ β

(r)
D

σ2 ∼ πσ, γ ∼ πγ , β(r)
j ∼ πβ.

(12)

2. For simplicity we assume α1 = · · · = αR = α.
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R 5% 25% 50% 75% 95%

D = 2
1 0.001 0.011 0.057 0.254 1.729
5 0.004 0.040 0.164 0.595 3.332
10 0.005 0.058 0.237 0.852 4.635

D = 3
1 0.000 0.001 0.010 0.072 0.917
5 0.000 0.009 0.061 0.341 3.382
10 0.001 0.017 0.111 0.608 5.996

Table 1: Percentiles for |Bi1,...,iD | under the M-DGDP prior with default aλ = 3, bλ =
2D
√
aλ, bτ = αR1/D (v = 1) and α = 1/R. Statistics are displayed as the parafac

rank-R vary and dimension D of the tensor vary.

The noise variance is modeled using a conjugate inverse-gamma prior, σ2 ∼ IG(v/2, vs2
0/2),

with v = 2 and s2
0 chosen by default so Pr(σ2 ≤ 1) = 0.95 assuming a centered and scaled

response. Regression coefficients are given a conjugate normal prior γ ∼ N(0, σ2Σ0γ) and
the tensor predictor is normalized over all cells to have mean zero and variance 1, allowing
one to assume default values for hyper-parameters in the proposed multiway prior.

5.1 Posterior Computation

The proposed multiway prior (9) leads to Gibbs sampling scheme for most parameters of
the tensor regression model (12). We rely on marginalization and blocking to reduce auto-

correlation for
{(
β

(r)
j , wjr; 1 ≤ j ≤ D, 1 ≤ r ≤ R

)
, (Φ, τ), (γ, σ)

}
, drawing in sequence from

[α,Φ, τ |B,W ], [B,W |Φ, τ,γ, σ,y] and [γ, σ|B,y] as follows:

(1) Sample [α,Φ, τ |B,W ] compositionally as [α|B,W ][Φ, τ |α,B,W ]:

(a) Sample from the conditional distribution of Dirichlet concentration parameter [α|B,W ]
via griddy-Gibbs: form a reference set by drawing M samples from [Φ, τ |α,B,W ]
for each α ∈ A. Set wj,l = π(B|α,Φl, τl,W )π(Φl, τl|α), 1 ≤ l ≤ M , p(α|B,W ) =

π(α)
∑M

l=1wj,l/M , and Pr(α = αj |−) = p(αj |B,W )/
∑

α∈A p(α|B,W ).

(b) Sample component-specific scales as [Φ, τ |α∗,B,W ] = [Φ|B,W ][τ |Φ,B,W ]; de-
fine p0 =

∑D
j=1 pj , and recall aτ =

∑R
r=1 αr = Rα and bτ = α(R/v)1/D (see Section

3.3), then

• draw ψr ∼ giG(α − p0/2, 2bτ , 2Cr), Cr =
∑D

j=1 β
(r)T
j W−1

jr β
(r)
j , and set φr =

ψr/
∑R

l=1 ψl in parallel for 1 ≤ r ≤ R (see Appendix A for definition of ‘giG’)

• draw τ ∼ giG(aτ −Rp0/2, 2bτ , 2
∑R

r=1Dr), Dr = Cr/φr.

(2) Sample from
{

(β
(r)
j , wjr, λjr); 1 ≤ j ≤ D, 1 ≤ r ≤ R

}
|Φ, τ,γ, σ,y using a back-fitting

procedure to produce a sequence of draws from the margin-level conditional distri-
butions across components. For r = 1, . . . , R and j = 1, . . . , D, sample from condi-

tional distribution [(β
(r)
j , wjr, λjr)|β(r)

−j ,B−r,Φ, τ,γ, σ,y], where β
(r)
−j = {β(r)

l , l 6= j}
and B−r = B \Br;

(a) draw [wjr, λjr|β(r)
j , φr, τ ] = [wjr|λjr,β(r)

j , φr, τ ][λjr|β(r)
j , φr, τ ]:

11
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• draw λjr ∼ Ga
(
aλ + pj , bλ + ||β(r)

j ||1/
√
φrτ
)
; and

• draw wjr,k ∼ giG
(

1
2 , λ

2
jr, β

2 (r)
j,k /(φrτ)

)
independently for 1 ≤ k ≤ pj

(b) draw β
(r)
j ∼ N(µjr,Σjr): define h

(r)
i,j,k =

∑p1,...,pD
d1=1,...,dD=1 I(dj = k)xd1,...,dD

(∏
l 6=j β

(r)
l,il

)
,

H
(r)
i,j = (h

(r)
i,j,1, . . . , h

(r)
i,j,pj

)′, ỹi = yi − z′iγ −
∑

l 6=r〈Xi,Bl〉 for 1 ≤ i ≤ n; then

Σjr =
(
H

(r)T
j H

(r)
j /σ2 +W−1

jr /(φrτ)
)−1

, µjr = ΣjrH
(r)
j ỹ/σ

2

(3) Sample [γ, σ|B,y] = [γ|σ, ỹ][σ2|ỹ]; define ỹi = yi − 〈Xi,B〉 for 1 ≤ i ≤ n, then

(a) draw σ2 ∼ IG(aσ, bσ), aσ = (n+ v)/2, bσ =
(
vs2

0 + ||ỹ||22 − ỹTZµγ
)
/2

(b) draw γ ∼ N
(
µγ , σ

2Σγ

)
, Σγ =

(
ZTZ + Σ−1

0γ

)−1
, µγ = ΣγZ

T ỹ.

6. Simulation Studies

To illustrate finite-sample performance of the proposed multiway priors, we show results
from a simulation study with various dimensionality (p,R) and define b̄ = max |B0

i1,...,iD
|

as the maximum signal size. Throughout, set pj = p, true error variance σ2
0 = 1 and

b̄ = 1 for convenience. In addition, we set the true vector coefficient γ0 = (0, . . . , 0) and
focus exclusively on inference for tensor parameter B. The following simulated setups are
considered:

1. “Generated” tensor: We construct tensor parameters having rank R0 = {3, 5} with
p = {64, 100} and D = 2.

2. “Ready made” tensor: We use three tensor (2D) images without generating them from
a parafac decomposition with known rank.

Five replicated datasets with n = 1000 are generated according to (12) with xi1,...,iD ∼
N(0, 1). The tensor parameters considered are shown in Figure 2, where the magnitude
of the non-zero cells is b̄ = 1. Examples are chosen to demonstrate recovery of cell-level
coefficients across varying degrees of complexity (dimension, parafac rank) and sparsity (%
of non-zero cells; see Figure 2). The performance of our method with M-DGDP prior (9)
(BTR) is compared with (i) frequentist tensor regression with penalization (FTR)(Zhou
et al., 2013); and (ii) Lasso (on the vectorized tensor predictor). Comparisons are based
on (a) cell mean squared estimation error (true non-zero, true zero, and overall); and (b)
frequentist coverage (and length) of 95% credible intervals.

By default, BTR uses R = 10 as an upper bound on the tensor parafac rank, minimizing
effects of extra dimensions automatically and concentrating on a lower rank coefficient
tensor as MCMC proceeds. We ran FTR with various choices of R and found equivalent
performance for R between 3 to 15, thus the default value is set to R = 10 to ensure
comparability with the BTR fitting. MCMC for BTR was run for 1300 iterations, with a
300 iteration burn-in and remaining samples thinned by 5. The latter was chosen to keep
runtime between BTR and FTR similar for 3D simulation studies in Section 7. There,
the total runtime using non-optimized R code on an x86×64 Intel(R) Core(TM) i7-3770 is
between 6.2 - 7.5 hours. In simulation studies, the tuning parameter in FTR is selected

12
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R3-ex R5-ex Shapes Eagle Palmtree Horse

|cell0| > 0
BTR 0.0230.00 0.0210.00 0.2430.01 0.2260.02 0.3160.01 0.2780.01

FTR 0.0350.00 0.0300.00 0.4150.03 0.3540.03 0.4350.02 0.3910.03
Lasso 0.6280.02 0.8220.03 0.6190.07 0.6650.03 0.6980.03 0.8880.01

|cell0| = 0
BTR 0.0110.00 0.0140.00 0.0710.00 0.0850.00 0.1000.01 0.1370.00

FTR 0.0220.00 0.0200.00 0.1270.02 0.1630.03 0.1590.00 0.2150.02
Lasso 0.0900.00 0.0980.02 0.0810.01 0.0970.00 0.0940.01 0.1550.02

Overall
BTR 0.013 0.015 0.093 0.102 0.131 0.172
FTR 0.023 0.021 0.164 0.184 0.196 0.257
Lasso 0.187 0.288 0.179 0.204 0.217 0.407

Table 2: Comparison of cell estimation as measured by root mean squared error (RMSE)
for the six 2D tensor images portrayed in Figure 2. Results from FTR (Zhou et al.,
2013) use R = 10. For BTR, R = 10 is used as an upper bound to the tensor
parafac rank. Subscript shows the standard error over a few replicated simulations.

over a grid of values to minimize RMSE for the tensor predictor3. In real applications,
cross validation instead would be used to select the tuning parameter that results in lowest
hold-out predictive RMSE for FTR. Assuming 10-fold cross validation were used over a
vector of 20 tuning parameters, FTR would have a runtime of approximately 8 hours. It
also needs to be mentioned that the convergence of parameters in BTR is extremely rapid
with an average effective sample size (ESS) ≈ 600 over 1000 iterations.

Cell-level RMSE reported in Table 2 demonstrates that our method (BTR) consistently
out performs FTR. When the tensor parameter has a low-rank parafac decomposition (‘R3-
ex’ and ‘R5-ex’), BTR and FTR perform best, with BTR having lower RMSE on both
true zero and non-zero cells. This validates empirically prior (9) along with our suggested
default hyper-parameter choices in Section 3. In particular, the tensor coefficient in BTR
has three different types of shrinkage parameters: global, local and shrinkage across ranks.
Such a careful construction of shrinkage prior on B adapts to varying degrees of sparsity,
shrinking many tensor coefficients close to zero while accurately estimating nonzero cells.
FTR shrinkage being dependent on only local parameters suffers in terms of both inferential
and predictive performances.

Table 3 demonstrate that BTR yields 95% credible intervals with good frequentist cov-
erage across each of the simulated settings, both overall as well as on the true non-zero
coefficients. Our method is one of the first to offer uncertainty quantification for tensor
valued predictors.Finally, Table 4 provides evidence of the robustness of our method to in-
creasing predictor dimension using two of the simulated examples. In both cases, RMSE for
FTR worsens considerably on the true zero coefficients. For the true nonzero cells, RMSE
increases for both methods as the margin dimension increases; however on a relative basis,
FTR worsens considerably more, while on an absolute scale, BTR remains the clear winner.

3. To choose initial values, a preliminary analysis was run with a coarsened 16× 16 image.
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Figure 2: Simulated data with 64 × 64 2D tensor images (p = 64, D = 2). Row 1: The
first two images (from left) have a rank-3 and rank-5 parafac decomposition; the
third image is “regular”, although does not have a low-rank parafac decomposi-
tion. Row 2: All three images are irregular, and do not have a low-rank parafac
decomposition. Sparsity (% non-zero cells) are displayed in sub-captions.

R3-ex R5-ex Shapes Eagle Palmtree Horse
|cell0| > 0 coverage 0.9860.02 0.9460.02 0.7470.01 0.7310.04 0.6770.04 0.7950.02

Overall
coverage 0.9950.01 0.9700.01 0.9650.00 0.9400.02 0.9480.02 0.9270.01
length 0.0660.01 0.0610.01 0.2900.00 0.3010.03 0.4100.03 0.5660.02

Table 3: Row 1: Average coverage of 95% posterior credible intervals for all the cells of B
for which the true cell coefficient is nonzero. Row 2: Average coverage of 95%
posterior credible intervals for all the cells of B. Row 3: Average length of 95%
posterior credible intervals for all the cells of B. Subscripts show standard errors
over replicated simulations.
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Figure 3: Recovered images for the 64×64 2D tensor images in Figure 2 using our proposed
BTR method. Here, R = 10 is used as an upper bound to the tensor parafac rank.

|cell0|
R5-ex Shapes

64 100 64 100

BTR

coverage > 0 0.9460.02 0.9910.01 0.7470.01 0.5900.06

length > 0 0.0610.01 0.0690.01 0.2900.00 0.2470.01

rmse > 0 0.0210.00 0.0320.01 0.2430.01 0.3200.03

rmse = 0 0.0140.00 0.0140.00 0.0710.00 0.0630.00

FTR
rmse > 0 0.0300.00 0.3690.06 0.4150.03 0.5860.14

rmse = 0 0.0200.00 0.1110.02 0.1270.02 0.1350.02

Table 4: Sensitivity analysis of cell estimation error (RMSE) as the tensor dimension in-
creases; here pj = p ∈ {64, 100} for the 2D tensor images ‘R5-ex’ and ‘Shapes’.

15



Guhaniyogi et al.

7. Simulated response with a real 3D brain image

We analyze data containing 3D MRI images for 550 adolescents, with information such as
age and sex available. Age and sex are treated as ordinary scalar covariates while 3D MRI
images act as tensor covariates. LetX denote a 30×30×30 3D MRI image, Z1 be the age and
Z2 be the sex of an individual. The response is simulated using y ∼ N

(
Z ′γ + 〈X,B0〉, σ2

)
,

where Z denotes (Z1, Z2)′, γ ∈ R2 and B0 ∈ R30×30×30.

We assume the true B0 is a rank 2 tensor, with B0 = a1 ◦ a2 ◦ a3 + b1 ◦ b2 ◦ b3.
Initialization and standardization of predictors follow exactly as prescribed in Section 5.
By varying ai’s and bi’s, the following cases with varying degrees of sparsity in the tensor
parameter B0 are considered:
Case 1 : b1 = b2 = (0, . . . , 0, sin((1 : 15) ∗ π/4)), b3 = (sin((1 : 10) ∗ π/4), 0, . . . , 0),
a1 = (0, . . . , 0, sin((1 : 10) ∗ π/4)), a2 = (0, . . . , 0, cos((1 : 15) ∗ π/4)),
a3 = (sin((1 : 15) ∗ π/4), 0, . . . , 0).
Case 2 : b1 = b2 = (0, . . . , 0, sin((1 : 15) ∗ π/6)), b3 = (sin((1 : 20) ∗ π/6), 0, . . . , 0),
a1 = (0, . . . , 0, sin((1 : 15) ∗ π/4)), a2 = (0, . . . , 0, cos((1 : 10) ∗ π/6)),
a3 = (sin((1 : 15) ∗ π/6), 0, . . . , 0).
Case 3 : b1 = b2 = (0, . . . , 0, sin((1 : 20) ∗ π/6)), b3 = (sin((1 : 20) ∗ π/6), 0, . . . , 0),
a1 = (0, . . . , 0, sin((1 : 10) ∗ π/4)), a2 = (0, . . . , 0, cos((1 : 20) ∗ π/4)),
a3 = (sin((1 : 20) ∗ π/6), 0, . . . , 0).

We implement BTR, FTR, and Lasso on the vectorized tensor. As before, we present
results for FTR with R = 10 (See additional discussion in Section 6 on FTR default setup).
Point estimates for coefficients corresponding to age and sex covariates are provided in Table
6. Table 5 summarizes RMSEs for the estimated tensor coefficients for each method. BTR
shows at least a 15% improvement over FTR on simulated cases considered. Evidently
BTR tends to outperform FTR and vectorized lasso by a greater margin in less sparse
settings as well. Importantly, every parameter in BTR is auto-tuned, while the TensorReg

toolbox used for FTR (Zhou et al., 2013) requires calibrating tuning parameter values
specific to each setting. Note that rather than using cross validation, tuning parameters
in these experiments were chosen to provide the lowest possible (most optimistic) RMSE
for the tensor coefficient. FTR fixes R = 10 based on findings discussed in Section 6
while BTR sets R = 10 as an upper bound, concentrating on a lower dimension parafac
rank via adaptive shrinkage. While vectorized lasso and FTR do not come equipped with
parameter uncertainty estimates, Table 7 demonstrates how BTR consistently provides over
95% coverage across examples with varying degrees of sparsity.

Finally, Table 8 provides a measure of mixing efficiency for a single MCMC run in each of
the simulated cases considered (post burn-in over the remaining 1000 MCMC samples). All
reported RMSE and coverage statistics were computed over these draws as well (thinning
by 5 as previously discussed in Section 6).

8. Brain Connectome Data Analysis

Brain connectome data are known by neuroscientists to have low signal-to-noise ratio, and
effective modeling is often hindered as the sample size is often very limited compared to the
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Case 1 Case 2 Case 3

|cell0| > 0
BTR 0.39 0.30 0.34
FTR 0.46 0.41 0.43
Lasso 0.46 0.42 0.44

|cell0| = 0
BTR 0.04 0.14 0.10
FTR 0.00 0.00 0.00
Lasso 0.01 0.03 0.02

Overall
BTR 0.13 0.20 0.17
FTR 0.15 0.22 0.18
Lasso 0.15 0.23 0.18

Table 5: Comparison of cell estimation as measured by root mean squared error (RMSE)
for the coefficients in case 1,2, 3 corresponding to 3D tensor images. Results from
both BTR and FTR (Zhou et al., 2013) use R = 10.

Case 1 Case 2 Case 3

γ1 (truth = 0.5)
BTR 0.57 0.54 0.33
FTR 0.46 0.85 0.95

γ2 (truth = 2.0)
BTR 2.00 2.04 1.86
FTR 1.87 0.22 3.30

Table 6: Point estimates for age and sex coefficients under BTR and FTR Zhou et al. (2013).
True parameter values are also provided.
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Case 1 Case 2 Case 3

Coverage 0.98 0.96 0.99

Length 0.54 0.87 2.16

Table 7: Length and coverage of 95% credible intervals for BTR. Values are reported as
averages over all voxels of the tensor coefficient.

τ2 Scalar predictor γi (Ave.) Tensor predictor βijk (Ave.)

Case 1 (88% sparsity)
lag-2 0.04 0.34 0.45
lag-4 0.01 0.11 0.22

Case 2 (82% sparsity)
lag-2 0.08 0.33 0.46
lag-4 0.03 0.12 0.23

Case 3 (70% sparsity)
lag-2 0.09 0.43 0.53
lag-4 0.02 0.30 0.40

Table 8: MCMC autocorrelation of the proposed BTR method on data studies of Section
7 generated using 3D brain MRI scans.

number of cells in the tensor predictor. In this setting, developing well calibrated predictive
models is thus of key importance.

To investigate the performance of competing methods outside the class of fMRI brain
image data, we present an analysis using a brain connectome dataset on structural con-
nectivity. Data are extracted from diffusion tensor imaging (DTI) and consist of estimates
of the number of “fibers” connecting pairs of brain regions for 109 individuals. For each
individual, brain connections among 70 brain regions (following desikan atlas) are encoded
by a 70 × 70 weighted adjacency matrix. The (i, j)-th off-diagonal entry in the adjacency
matrix is the estimated number of fiber tracts connecting the i-th and j-th brain region. The
data also provides 10 clinical covariates for every individual, including sex, age, openness,
agreeableness and conscientiousness.

The focus of this study is on developing a predictive model with Creativity Composite
Index (CCI) as a response fitted against clinical covariates and a tensor covariate (i.e., the
weighted adjacency matrix). Implementing FTR on this data using the TensorReg package
was attempted, however, functions in the toolbox require n > R × p. In this example,
because n = 109 and p = 70, it is only possible therefore to fit FTR with R = 1, which has
previously been found to perform poorly by Zhou et al. (2013). We therefore compare our
proposed method (BTR) to the vectorized Lasso on the basis of their predictive performance.
To assess the predictive performance, the sample of n = 109 individuals are divided into
10 folds. Both vectorized lasso and BTR are fitted on 9 folds as training data and the
remaining fold as the hold out sample. This is carried out for each of the 10 folds and
predictive inferences are obtained for both vectorized lasso and BTR.

Table 9 reports the root mean squared error (RMSE) and correlation between observed
and predicted responses, here average is over the 10 crossvalidated folds. For reference,
average RMSE of the null model is 10.03 with a standard deviation of 2.40 across the
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Method avg(RMSE) sd(RMSE) avg(cov.) sd(cov.) avg(cor.) sd(cor.)

Lasso 9.21 2.18 63% 20% 0.31 0.11

BTR 9.03 1.64 91% 10% 0.32 0.13

Table 9: mean and standard deviation of RMSEs and cor(yobs, ypred) of Lasso and BTR over
10 folds of the data. It also provides mean and standard deviation of coverages of
Lasso and BTR over 10 folds of the data

folds. Given the very high degree of sparsity in the connectome adjacency matrix, it is not
surprising that the Lasso is competitive to BTR. However, note that BTR detects this signal
with far fewer effective parameters as compared to vectorized lasso. Finally, we measure
coverage of 95% predictive intervals for all competitors. The latter is of course a byproduct
of our fully Bayesian approach (BTR), while for the Lasso we use a two-staged approach.
First we estimate the regression coefficients and subsequently construct approximate 95%
predictive intervals based on the normal response-model centered on the predictive mean
with variance equal to the estimated residual variance.

9. Discussion

This work develops a novel class of prior distributions on tensor valued predictors which
substantially reduces dimensionality relative to vectorizing, providing a multiway analogue
of vector shrinkage priors, and enabling high dimensional region selection. The prior on
tensor coefficient constructed here imparts shrinkage of the tensor components at global
and local levels, while also encouraging shrinkage towards low rank tensor decomposition.
In contrast, existing penalization framework on the tensor coefficient shrinks only at the
global level. Strong theoretical results are proved for the proposed class of multiway shrink-
age priors and a computationally efficient MCMC algorithm is developed in the regression
setting. We plan to extend methods developed here to settings where the measured re-
sponse for each subject is binary (e.g., indicator of a heath outcome) or multivariate, i.e.,
y = (y1, ..., yd). Also, the current framework of Bayesian tensor regression fixes rank R of
the PARAFAC decomposition at reasonably large value. It might be of interest to learn the
PARAFAC rank R by adding a discrete prior distribution on R.

In various longitudinal studies, monitoring the evolution in the predictor response rela-
tionship (i.e., changes to the scalar and tensor parameters) is of fundamental interest. One
application involves subjects receiving various treatments (e.g., chemotherapy), with tensor
valued predictors corresponding to mRI (fMRI) scans obtained at regular intervals over a
period of time. In such settings it is of crucial importance to monitor the progression of the
disease in response to the treatment being administered. We plan to extend our method to
such settings.
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Appendix A

MCMC algorithm

The following derivations concern the M-DGDP prior (9) and the sampling algorithm out-
lined in Section 5.1.

For step (1b) Recall from Section 3.3 that τ ∼ Ga(aτ , bτ ) and Φ ∼ Dirichlet(α1, . . . , αR)
and denote p0 =

∑D
j=1 pj . Then,

π(Φ|B,ω) ∝ π(Φ)

∫ ∞
0

π(B|ω,Φ, τ)π(τ)dτ

∝
[ R∏
r=1

φαr−1
r

] ∫ ∞
0

R∏
r=1

[
(τφr)

−p0/2 exp
(
− 1

τφr

d∑
j=1

||βjr||2/(2ωjr)
)]
τaτ−1 exp(−bττ)dτ

∝
[ R∏
r=1

φαr−
p0
2 −1

] ∫ ∞
0

τaτ−R
p0
2 −1

R∏
r=1

exp
(
− Cr
τφr
− bτ (τφr)

)
dτ

with Cr =
∑d

j=1 ||βjr||2/(2ωjr). When aτ =
∑R

r=1 αr, this contains the kernel of a gener-
alized inverse Gaussian (gIG) distribution for (τφr). Recall: X ∼ fX(x) = giG(p, a, b) ∝
xp−1 exp(−(ax+ b/x)/2). Following Lemma 9 in the Appendix B, for independent random
variable Tr ∼ fr on (0,∞), the joint density of {φr = Tr/

∑
r̃ Tr̃ : r = 1, . . . , R} has support

on SR−1. In particular,

f(φ1, . . . , φR−1) =

∫ ∞
0

tR−1
R∏
r=1

fr(φrt) dt, φR = 1−
∑
r<R

φr.

Substituting fr(x) ∝ x−δr exp(−Cr/x) exp(−bτx) in the above expression yields

f(φ1, . . . , φR−1) ∝
∫ ∞

0
τR−1

R∏
r=1

(φrτ)−δr exp
(
− Cr

(φrτ)
− bτ (φrτ)

)
dτ

=
[ R∏
r=1

φ−δr
] ∫ ∞

0
τR−

∑
r δr−1

R∏
r=1

exp
(
− Cr

(φrτ)
− bτ (φrτ)

)
dτ.

Matching exponents between this expression and the preceding one implies (1) aτ−R(p0/2)−
1 = R−

∑
r δr − 1, and (2) δr = 1 + p0/2− αr. Then,

aτ = R(1 + p0/2)−
∑
r

δr = R(1 + p0/2)− (R+Rp0/2−
∑
r

αr) =
∑
r

αr

as previously noted. Hence, draws from [Φ|α,B,W ] are obtained by sampling Tr ∼ fr =
giG(αr − p0/2, 2bτ , 2Cr) independently for r = 1, . . . , R, and renormalizing.
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Proof of lemma 5

Proof Using priors defined in (9), one has Cλ = Eλ(1/λ2) =
b2λ

(aλ−1)(aλ−2) for any aλ > 2.
In addition, the following inequalities are useful to bound the latter quantity:

• If α1 = c/R, c ∈ N+, Γ(α0+D)/Γ(α0) = α0(α0+1) · · · (α0+D−1). Using the fact that
log(x+1) ≤ x, x ≥ 0, one has log(α0)+ · · ·+log(α0 +D−1) ≤ α0D−1+

∑D−2
k=1∨D−2 k.

Then αD0 ≤ Γ(α0 + D)/Γ(α0) ≤ Aτ exp(α0D) where Aτ = exp(−1 +
∑D−2

k=1∨D−2 k) =
exp

(
(D2 − 3D)/2

)
, D ≥ 2.

• Let ||x||r denote the Lrth norm. Trivially, ||Φ||DD ≤ 1; in addition, by Hölder’s in-

equality, for any x ∈ <k and 0 < r < p, one has ||x||p ≥ k
−
(

1
r
− 1
p

)
||x||r. In our setting,

D ≥ 2. Taking r = 1 in the latter yields ||Φ||DD ≥ R−(D−1).

Recall α0 =
∑R

r=1 αr = α1R. This leads to the lower and upper bounds for the prior
voxel-level variance:

var(Bi1,...,iD) ≥ (2Cλ)D (α1R)DR−(D−1)/bDτ = (2Cλ)D αD1 R/b
D
τ

var(Bi1,...,iD) ≤ Aτ (2Cλ)D exp(α1RD)/bDτ .

Consistency proofs

The proof of Theorem 1 relies in part on the existence of exponentially consistent tests.

Definition An exponentially consistent sequence of test functions Φn = I(yn ∈ Cn) for
testing H0 : Bn = B0

n vs. H1 : Bn 6= B0
n satisfies

EB0
n
(Φn) ≤ c1 exp(−b1n), sup

Bn∈Bcn
EBn(1− Φn) ≤ c2 exp(−b2n)

for some c1, c2, b1, b2 > 0.

Lemma 6 There exist an exponentially consistent sequence of tests Φn for testing H0 :
Bn = B0

n vs. H1 : Bn 6= B0
n.

Proof We begin by stating that
∑n

i=1

(
yi − 〈Xi,B

0
n〉
)2 ∼ χ2

n under B0
n. We choose the

critical region of the test Φn as Cn =
{
Bn : 1

n

∑n
i=1

(
yi − 〈Xi,B

0
n〉
)2
> ε/4

}
. Note that

EB0
n
(Φn) = PB0

n

( n∑
i=1

(
yi − 〈Xi,B

0
n〉
)2
> nε/4

)
≤ exp

(
− nε

16

)
, for large n,

where the last line follows by simplifying Lemma 1 in Laurent and Massart (2000).
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Now we will use the fact that

1

n

n∑
i=1

(yi − 〈Xi,B
0
n〉)2

=
1

n

n∑
i=1

(yi − 〈Xi,Bn〉)2 +
1

n

n∑
i=1

(
〈Xi,Bn −B0

n〉
)2

+
2

n

n∑
i=1

(yi − 〈Xi,Bn〉) (〈Xi,Bn −B0
n)

=
1

n

n∑
i=1

(
〈Xi,Bn −B0

n〉
)2

+
1

n

n∑
i=1

KLi +
2

n

n∑
i=1

(yi − 〈Xi,Bn〉)〈Xi,Bn −B0
n〉.

Note that, under Bn,

2

n

n∑
i=1

(yi − 〈Xi,Bn〉)〈Xi,Bn −B0
n〉 ∼ N(0,

4

n2

n∑
i=1

KLi),

so that, 2
n

∑n
i=1(yi − 〈Xi,Bn〉)〈Xi,Bn − B0

n〉 =
√

4
n

∑n
i=1KLi

Z√
n

, where Z ∼ N(0, 1).

Thus,

sup
Bn∈Bcn

EBn(1− Φn) = sup
Bn∈Bcn

PBn

(
1

n

n∑
i=1

(yi − 〈Xi,B
0
n〉)2 ≤ ε/4

)

≤ sup
Bn∈Bcn

PBn

∣∣∣∣∣∣
∣∣∣∣∣∣
√√√√ 4

n

n∑
i=1

KLi
Z√
n

+
1

n

n∑
i=1

KLi

∣∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

(yi − 〈Xi,Bn〉)2

∣∣∣∣∣
∣∣∣∣∣∣ ≤ ε/4


≤ sup
Bn∈Bcn

PBn

∣∣∣∣∣∣
√√√√ 4

n

n∑
i=1

KLi
Z√
n

+
1

n

n∑
i=1

KLi

∣∣∣∣∣∣− ε/4 ≤
∣∣∣∣∣ 1n

n∑
i=1

(yi − 〈Xi,Bn〉)2

∣∣∣∣∣


≤ sup
Bn∈Bcn

PBn

(∣∣∣∣∣ 1n
n∑
i=1

KLi +

√
4
∑n

i=1KLi
n

Z√
n

∣∣∣∣∣− ε/4 ≤
∣∣∣∣∣ 1n

n∑
i=1

(yi − 〈Xi,Bn〉)2

∣∣∣∣∣
)

Let Tn =

{∣∣∣∣√4
∑n
i=1KLi
n

Z√
n

∣∣∣∣ ≤ 1
2n

∑n
i=1KLi

}
. Using this fact we have

sup
Bn∈Bc

n

EBn
(1− Φn)

≤ sup
Bn∈Bc

n

PBn

({∣∣∣∣∣ 1n
n∑

i=1

KLi +

√
4
∑n

i=1KLi

n

Z√
n

∣∣∣∣∣− ε/4 ≤
∣∣∣∣∣ 1n

n∑
i=1

(yi − 〈Xi,Bn〉)2
∣∣∣∣∣
}
∩ Tn

)
+ sup

Bn∈Bc
n

PBn
(Tn)

≤ sup
Bn∈Bc

n

PBn

(
1

2n

n∑
i=1

KLi − ε/4 ≤

∣∣∣∣∣ 1n
n∑

i=1

(yi − 〈Xi,Bn〉)2
∣∣∣∣∣
)

+ sup
Bn∈Bc

n

PBn

∣∣∣∣ Z√n
∣∣∣∣ ≥ 1

4

√√√√ 1

n

n∑
i=1

KLi


≤ PBn

(
3ε

4
≤

∣∣∣∣∣ 1n
n∑

i=1

(yi − 〈Xi,Bn〉)2
∣∣∣∣∣
)

+ PBn

(
|Z| ≥ 1

4

√
nε

)
≤ PBn

(
3nε

4
≤ χ2

n

)
+ PBn

(
χ2
1 ≥

nε

4

)
≤ exp

(
−3nε

16

)
+ exp

(
−nε

64

)
≤ 2 exp

(
−nε

64

)
,
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where the last line requires an application of Lemma 1 in Laurent and Massart (2000).

Theorem 1

Proof Under Lemma 6 one has

Πn(Bcn) =

∫
Bcn
f(yn|Bn)πn(F n)∫
f(yn|Bn)πn(F n)

=

∫
Bcn

f(yn|Bn)

f(yn|B0
n)
πn(F n)∫ f(yn|Bn)

f(yn|B0
n)
πn(F n)

=
N

D
≤ Φn + (1− Φn)

N

D
.

Note that we have

PB0
n

(Φn > exp(−b1n/2)) ≤ EB0
n

(Φn) exp(b1n/2) ≤ c1 exp(−b1n/2).

Therefore
∑∞

n=1 PB0
n

(Φn > exp(−b1n/2)) <∞. Using Borel-Cantelli lemma
PB0

n
(Φn > exp(−b1n/2)i.o.) = 0. It follows that

Φn → 0 a.s. (13)

In addition, we have

EB0
n
((1− Φn)N) =

∫
(1− Φn)

∫
Bcn

f(yn|Bn)

f(yn|B0
n)
πn(F n)f(yn|B0

n)

=

∫
Bcn

∫
(1− Φn)f(yn|Bn)πn(F n)

≤ sup
Bn∈Bcn

EBn(1− Φn) ≤ c2 exp(−b2n).

Using a similar technique as above, PB0
n

((1− Φn)N exp(nb2/2) > exp(−nb2/4)i.o.) = 0 so

exp(bn)(1− Φn)N → 0 a.s.. (14)

By Lemma 6 and (13)-(14) it is enough to show that M = exp(b̃n)
∫ f(yn|Bn)

f(yn|B0
n)
πn(F n)→∞

for some b̃ ≤ b = ε
256 . We choose b̃ = b. Consider the setHn =

{
Bn : 1

n log
[
f(yn|B0

n)
f(yn|Bn)

]
< η

}
,

for some η which is chosen later.

M ≥ exp(b̃n)

∫
Hn

exp

(
−n 1

n
log

f(yn|B0
n)

f(yn|Bn)

)
πn(F n)

≥ exp((b̃− η)n)πn(Hn).

Note that

1

n
log

[
f(yn|Bn)

f(yn|B0
n)

]
=

1

n

[
−1

2

n∑
i=1

(yi − 〈Xi,Bn〉)2 +
1

2

n∑
i=1

(yi − 〈Xi,B
0
n〉)2

]
.
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Let yn = (y1, ..., yn)′,Hn = (〈X1,Bn〉, . . . , 〈Xn,Bn〉) andH0
n =

(
〈X1,B

0
n〉, . . . , 〈Xn,B

0
n〉
)
.

Then

πn

(
Bn :

1

n

[
−||yn −H

0
n||2 + ||yn −Hn||2

]
< 2η

)
≥ πn

(
Bn :

1

n

∣∣∣2||yn −H
0
n||
(
||yn −Hn|| − ||yn −H

0
n||
)

+
(
||yn −Hn|| − ||yn −H

0
n||
)2∣∣∣ < 2η

)
≥ πn

(
Bn :

1

n

∣∣2||yn −H
0
n||||H

0
n −Hn||+ ||Hn −H0

n||2
∣∣ < 2η

)
≥ πn

(
Bn :

1

n
||H0

n −Hn|| <
2η

3ζn
, ||yn −H

0
n||2 < ζ2n

)
≥ πn

(
A1n ∩ A2n

)
where A1n =

{
1
n ||Hn −H0

n|| <
2η
3ζn

}
, A2n =

{
||yn −H0

n||2 < ζ2
n

}
.

We will show that PB0
n
(A2n) = 1 for all large n. Assume ζn = n(1+ρ3)/2, ρ3 > 0 so that

ζ2
n > 8n for all large n. Then,

PB0
n
(A′2n) = PB0

n
(χ2
n > ζ2

n) ≤ exp(−ζ2
n/2).

Therefore, using Borel-Cantelli lemma PB0
n
(A′2n i.o.) = 0. Hence PB0

n
(A2n) = 1 for all

large n. It is enough to bound πn(A1n). Let Mn = 1
n

√∑n
i=1 ||Xi||22. Now use the fact that

1
n ||Hn−H0

n|| = 1
n

√∑n
i=1(〈Xi,Bn −B0

n〉)2 ≤
(

1
n

√∑n
i=1 ||Xi||22

)
||Bn−B0

n||2 to conclude{
||Bn −B0

n||2 <
2η

3Mnζn

}
⊆ A1n. (15)

By (11) one has πn(A1n) ≥ πn

(
||Bn − B0

n||2 < 2η
3Mnζn

)
≥ exp(−dn) and hence M ≥

exp
(
(b̃− η − d)n

)
→∞ as n→∞ proving the result.

Theorem 2
Proof Define g : R→ R s.t.

g(κ) = RκD + κD−1
D∑
j=1

R∑
r=1

||β0(r)
j,n ||2 + · · ·+ κ

D∑
j=1

R∑
r=1

∏
l 6=j
||β0(r)

l,n ||2.

Let κn > 0 be s.t. g(κn) = 2η
3Mnζn

. Note that by Decarte’s rule of sign, the equation

g(κ)− 2η
3Mnζn

= 0 has a unique positive root. Further

1

κn
< 1 + max

i=1,...,D

∣∣∣∣∣∣∣∣∣
3
∑

j1 6=···6=ji
∑R

r=1

i∏
l=1

||β0(r)
jl,n
||2

2η/Mnζn

∣∣∣∣∣∣∣∣∣ (16)

κn < 1 + max


2η

3MnζnR
, max
i=1,...,D

∣∣∣∣∣∣∣∣∣
∑

j1 6=···6=ji
∑R

r=1

i∏
l=1

||β0(r)
jl,n
||2

R

∣∣∣∣∣∣∣∣∣

 (17)
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by Lemma 8 in Appendix B.

Using Lemma 7 in Appendix B, it is easy to see that

{
||β(r)

j,n − β
0(r)
j,n ||2 ≤ κn, j = 1, ..., D; r = 1, ..., R

}
⊆
{
||Bn −B0

n||2 <
2η

3Mnζn

}
. (18)

Using (15), πn

(
||Bn −B0

n||2 <
2η

3Mnζn

)
≥ πn

({
||β(r)

j,n − β
0(r)
j,n ||2 ≤ κn, j = 1, ..., D; r = 1, ..., R

})
.

Note that

πn

({
||β(r)

j,n − β
0(r)
j,n ||2 ≤ κn, j = 1, ..., D; r = 1, ..., R

}
|{wjr,l}

pj,n
l=1 , {λjr}

D,R−1
j,r=1 , {φr}R−1

r=1 , τ
)

≥

 D∏
j=1

R∏
r=1

πn

(
||β(r)

j,n − β
0(r)
j,n ||2 ≤ κn|{wjr,l}

pj,n
l=1 , {λjr}

D,R−1
j,r=1 , {φr}R−1

r=1 , τ
) .

Therefore, it is enough to bound πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn, j = 1, ..., D; r = 1, ..., R). For

j = 1, ..., D, r = 1, ..., R,

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn|{wjr,l}

pj,n
l=1 , λjr, {φr}

R−1
r=1 , τ)

≥
pj,n∏
l=1

πn

(
|β(r)
j,n,l − β

0(r)
j,n,l| ≤

κn√
pj,n
|{wjr,l}

pj,n
l=1 , λjr, {φr}

R−1
r=1 , τ

)

≥
pj,n∏
l=1


(

2κn√
2pj,nπwjr,lφrτ

)
exp

−|β0(r)
j,n,l|

2 + κ2
n/pj,n

wjr,lφrτ

 ,

where the last step follows from the fact that
∫ b
a e
−x2/2dx ≥ e−(a2+b2)/2(b− a). Thus,

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn|λjr, {φr}

R−1
r=1 , τ)

= E
[
πn(||β(r)

j,n − β
0(r)
j,n || ≤ κn|{wjr,l}

pj,n
l=1 , λjr, {φr}

R−1
r=1 , τ)

]
≥

(
2κn√

2pj,nπφrτ

)pj,n pj,n∏
l=1

E

 1
√
wjr,l

exp

−|β0(r)
j,n,l|

2 + κ2
n/pj,n

wjr,lφrτ


≥

(
2κnλ

2
jr

2
√

2pj,nπφrτ

)pj,n pj,n∏
l=1

∫
wjr,l

 1
√
wjr,l

exp

−|β0(r)
j,n,l|

2 + κ2
n/pj,n

wjr,lφrτ
−
λ2
jrwjr,l

2

 dwjr,l

 .

(19)
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Use the change of variable 1
wjr,l

= zjr,l and the normalizing constant from the inverse

Gaussian density to deduce

∫
wjr,l

 1
√
wjr,l

exp

−|β0(r)
j,n,l|

2 + κ2
n/pj,n

wjr,lφrτ
−
λ2
jrwjr,l

2

 dwjr,l


=

∫
zjr,l

 1√
z3
jr,l

exp

−(|β0(r)
j,n,l|

2 + κ2
n/pj,n)

φrτ
zjr,l −

λ2
jr

2zjr,l

 dzjr,l


=

√√√√( 2π

λ2
jr

)
exp

−λjr
√

2
(
|β0(r)
j,n,l|2 + κ2

n/pj,n

)
√
φrτ

 .

(19) can be written as

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn|λjr, {φr}

R−1
r=1 , τ)

≥

(
2κnλ

2
jr

2
√

2pj,nπφrτ

)pj,n pj,n∏
l=1


√√√√( 2π

λ2
jr

)
exp

−λjr
√

2
(
|β0(r)
j,n,l|2 + κ2

n/pj,n

)
√
φrτ




=

(
2κnλjr

2
√
pj,nφrτ

)pj,n
exp

−λjr
∑pj,n

l=1

√
2
(
|β0(r)
j,n,l|2 + κ2

n/pj,n

)
√
φrτ

 .

Therefore,

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn|{φr}

R−1
r=1 , τ)

≥

(
2κn

2
√
pj,nφrτ

)pj,n b
aλ,r
λ,r

Γ(aλ,r)

∫
λjr

λ
pj,n+aλ,r−1
jr exp

−λjr

∑pj,n

l=1

√
2
(
|β0(r)
j,n,l|2 + κ2

n/pj,n

)
√
φrτ

+ bλ,r


 dλjr

=

(
2κn

2
√
pj,nφrτ

)pj,n b
aλ,r
λ,r

Γ(aλ,r)

Γ(pj,n + aλ,r)∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
√
φrτ

+ bλ,r

pj,n+aλ,r

=

(
2κn

2bλ,r
√
pj,nφrτ

)pj,n
1

Γ(aλ,r)

Γ(pj,n + aλ,r)∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r
√
φrτ

+ 1

pj,n+aλ,r
.
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The final expression as in the above yields

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn, j = 1, ..., D, r = 1, ..., R|{φr}R−1

r=1 , τ)

≥ E


D∏
j=1

R∏
r=1


(

2κn

2bλ,r
√
pj,nφrτ

)pj,n
1

Γ(aλ,r)
λ
pj,n+aλ,r−1
j,r

Γ(pj,n + aλ,r)∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r
√
φrτ

+ 1

pj,n+aλ,r




.

We will now use the fact that for φr ≤ 1,

1∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r
√
φrτ

+ 1

pj,n+aλ,r
≥ 1∑pj,n

l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r
√
φrτ

+ 1√
τφr

pj,n+aλ,r
Iτ∈[0,1].

This inequality is critical to provide a lower bound on πn(||β(r)
j,n−β

0(r)
j,n || ≤ κn, j = 1, ..., D, r =

1, ..., R) as following

πn(||β(r)
j,n − β

0(r)
j,n || ≤ κn, j = 1, ..., D, r = 1, ..., R)

≥ λλ12 Γ(Ra)

Γ(λ1)Γ(a)R

D∏
j=1

R∏
r=1

[(
κn√
pj,nbλ,r

)pj,n Γ(pj,n + aλ,r)

Γ(aλ,r)

] ∫
τ
τλ1−R

∑D
j=1

pj,n
2
−1 exp(−λ2τ)

∫
φ∈SR−1

∏R
r=1 φ

a−1
r∏R

r=1 φ
∑D
j=1

pj,n
2

r

D∏
j=1

R∏
r=1

1∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r
√
φrτ

+ 1

pj,n+aλ,r
dφdτ

≥ λλ12 Γ(Ra)

Γ(λ1)Γ(a)R

D∏
j=1

R∏
r=1

[(
κn√
pj,nbλ,r

)pj,n Γ(pj,n + aλ,r)

Γ(aλ,r)

] D∏
j=1

R∏
r=1

1∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r

+ 1

pj,n+aλ,r

(∫ 1

τ=0
τλ1+

∑R
r=1 aλ,r

D
2
−1 exp(−τλ2)dτ

)∫
φ∈SR−1

R∏
r=1

φ
a+aλ,r

D
2
−1

r dφ

=
λλ12 Γ(Ra)

Γ(λ1)Γ(a)R

D∏
j=1

R∏
r=1

[(
κn√
pj,nbλ,r

)pj,n Γ(pj,n + aλ,r)

Γ(aλ,r)

] D∏
j=1

R∏
r=1

1∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r

+ 1

pj,n+aλ,r

× exp(−λ2)

(λ1 +
∑R

r=1 aλ,r
D
2 )

∏R
r=1

[
Γ(a+ aλ,r

D
2 )
]

Γ(Ra+ D
2

∑R
r=1 aλ,r)

.
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Denote C6 =
λ
λ1
2 Γ(Ra)

Γ(λ1)[Γ(a)]R
exp(−λ2)

(λ1+
∑R
r=1 aλ,r

D
2 )

∏R
r=1[Γ(a+aλ,r

D
2

)]
Γ(Ra+

∑R
r=1 aλ,r

D
2

)
. Then the above expression gives

us

− log

(
||Bn −B0

n||2 <
2η

3Mnζn

)
≤ − log(C6) +

D∑
j=1

R∑
r=1

pj,n

[
− log(κn) +

1

2
log(pj,n) + log(bλ,r) + log(Γ(aλ,r)

]

−
R∑
r=1

D∑
j=1

log(Γ(pn,j + aλ,r)) +

D∑
j=1

R∑
r=1

(pj,n + aλ,r) log


∑pj,n

l=1

√
2
(
|β0(r)
j,n,l|2 + κ2

n/pj,n

)
bλ,r

+ 1

 .
(20)

Using (16) and assumption (b), it is easy to see that 1
κn

< G5n
ρ2+

ρ3+1
2
∏D
j=1 pj,n for a con-

stantG5 > 0 for all large n. Therefore,
∑D

j=1

∑R
r=1 pj,n

[
log
(

1
κn

)
+ 1

2 log(pj,n) + log(bλ,r) + log(Γ(aλ,r)
]

=

o(n). Also,
∑R

r=1

∑D
j=1 log(Γ(pj,n + aλ,r))] ≤

∑D
j=1(pj,n + aλ,r) log(pj,n + aλ,r) = o(n), by

assumption (c). Finally,
∑D

j=1

∑R
r=1(pj,n + aλ,r) log

[∑pj,n
l=1

√
2
(
|β0(r)
j,n,l|2+κ2n/pj,n

)
bλ,r

+ 1
]

= o(n),

by assumptions (b) and (c). Thus, − log
(
πn(Bn : ||Bn − B0

n||2 <
2η

3Mnζn
)
)
< dn for all

d > 0, for all large n. This proves the result.

Appendix B

This Section contains additional Lemmas relevant to the article.

Lemma 7 Suppose T = T1 ◦ · · · ◦ TD and F = F1 ◦ · · · ◦ FD are two rank one tensors of
same dimension. Then

T − F = (T1 − F1) ◦ · · · ◦ (TD − FD) +
D−1∑
l=1

∑
I1∪I2=1:D,|I1|=l,|I2|=D−l

γ1 ◦ · · · ◦ γD,

where γj = Fj if j ∈ I2; = Tj − Fj if j ∈ I1.

Proof We will show it by induction. If D = 2 then,

T − F = T1 ◦ T2 − F1 ◦ F2 = (T1 − F1) ◦ T2 + F1 ◦ T2 − F1 ◦ F2

= (T1 − F1) ◦ (T2 − F2) + (T1 − F1) ◦ F2 + F1 ◦ (T2 − F2).
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Assume the result to hold for D − 1. For D,

T1 ◦ · · · ◦ TD − F1 ◦ · · · ◦ FD
= (T1 − F1) ◦ T2 ◦ · · · ◦ TD + F1 ◦ [T2 ◦ · · · ◦ TD − F2 ◦ · · · ◦ FD]

= (T1 − F1) ◦ [(T2 − F2) ◦ · · · ◦ (TD − FD) + F2 ◦ · · · ◦ FD+

D−2∑
l=1

∑
I1∪I2,|I1|=l,|I2|=D−1−l

γ2 ◦ · · · ◦ γD]+

F1 ◦ [(T2 − F2) ◦ · · · ◦ (TD − FD) +
D−2∑
l=1

∑
I1∪I2,|I1|=l,|I2|=D−1−l

γ2 ◦ · · · ◦ γD]

= (T1 − F1) ◦ · · · ◦ (TD − FD) +
D−1∑
l=1

∑
I1∪I2,|I1|=l,|I2|=D−l

γ1 ◦ · · · ◦ γD].

Hence proved.

Lemma 8 Let x∗ be a real root of the polynomial P (x) = akx
k +ak−1x

k−1 + · · ·+a1x−a0.

Then 1/|x∗| < 1 + maxi=1,...,k

∣∣∣ aia0 ∣∣∣.
Proof Consider the polynomial P1(ζ) = ζk−

(
a1
a0

)
ζk−1−· · ·−

(
ak
a0

)
. By making a change

of variable with ζ = 1
x , we obtain

P1

(
1

x

)
=

1

xk
−
(
a1

a0

)
1

xk−1
− · · · −

(
ak
a0

)
= −akx

k + · · ·+ a1x− a0

a0xk
.

Note that P1

(
1
x

)
= 0 is solved by x = x∗. Therefore, P1(ζ) = 0 is solved by ζ = 1

x∗ . The
result follows by using Cauchy bound on the roots of a polynomial.

Lemma 9 Suppose T1, . . . , Tm are independent random variables with Tj having density fj

supported in (0,∞). Let φj =
Tj∑m
l=1 Tm

. Then the joint density of (φ1, . . . , φm−1) has a joint

density supported on the simplex Sm−1 and is given by

f(φ1, . . . , φm−1) =

∫ ∞
t=0

tm−1
m∏
l=1

fj(φjt)dt,

where φm = 1−
∑m−1

l=1 φl.

Proof This result is well known in the theory of normalized random measures (Kruijer
et al., 2010).
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