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Abstract

The robust improper maximum likelihood estimator (RIMLE) is a new method for robust
multivariate clustering finding approximately Gaussian clusters. It maximizes a pseudo-
likelihood defined by adding a component with improper constant density for accommo-
dating outliers to a Gaussian mixture. A special case of the RIMLE is MLE for multi-
variate finite Gaussian mixture models. In this paper we treat existence, consistency, and
breakdown theory for the RIMLE comprehensively. RIMLE’s existence is proved under
non-smooth covariance matrix constraints. It is shown that these can be implemented via
a computationally feasible Expectation-Conditional Maximization algorithm.

Keywords: Robustness, Improper density, Mixture models, Model-based clustering,
Maximum likelihood, ECM-algorithm

1. Introduction

Maximum likelihood estimation (MLE) in a Gaussian mixture model with mixture com-
ponents interpreted as clusters is a popular approach to cluster analysis (see, e.g., Fraley
and Raftery (2002)). In many datasets not all observations can be assigned appropriately
to clusters that can be properly modelled by a Gaussian distribution, and it is also well
known that the MLE can be strongly affected by outliers (Hennig (2004)). In this paper
we investigate the recently introduced “robust improper maximum likelihood estimator”
(RIMLE, see Coretto and Hennig, 2016), a method for robust clustering with clusters that
can be approximated by multivariate Gaussian distributions. The basic idea of RIMLE
is to fit an improper density to the data that is made up by a Gaussian mixture density
and a “pseudo mixture component” defined by a small constant density, which is meant
to capture outliers and observations in low density areas of the data that cannot properly
be assigned to a Gaussian mixture component (called “noise” in the following). This is
inspired by the addition of a uniform “noise component” to a Gaussian mixture suggested
by Banfield and Raftery (1993). Hennig (2004) showed that using an improper density
improves the breakdown robustness of this approach for one-dimensional datasets. As in
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many other statistical problems, violations of the model assumptions may cause problems
in cluster analysis. Our general attitude to the use of statistical models in cluster analysis
is that the models should not be understood as reflecting some underlying but in practice
unobservable “truth”, but rather as thought constructs implying a certain behaviour of
methods derived from them (e.g., maximizing the likelihood), which may or may not be
appropriate in a given application (more details on the general philosophy of clustering can
be found in Hennig and Liao (2013); Hennig (2015b)). Using a model such as a mixture of
multivariate Gaussian distributions, interpreting every mixture component as a “cluster”,
implies that we look for clusters that are approximately “Gaussian-shaped”, but we do not
want to rely on whether the data really were generated i.i.d. by a Gaussian mixture. We
focus on situations in which the number of clusters G is fixed.

There is a number of proposals already in the literature for accounting for the presence
of noise and outliers in model-based clustering problems. The contributions can be divided
in two groups: methods based on mixture modelling, and methods based on fixed partition
models. Within the first group Banfield and Raftery (1993) and Coretto and Hennig (2011)
dealt with uniform distributions added as “noise components” to a finite Gaussian mix-
ture. Peel and McLachlan (2000) proposed to model data based on Student t-distributions.
Cuesta-Albertos et al. (1997) and Garćıa-Escudero and Gordaliza (1999) introduced and
studied trimming in order to robustify the k-means partitioning method. Robust partition-
ing methods with homoscedastic clusters based on ML–type procedures where proposed in
Gallegos (2002) and Gallegos and Ritter (2005). Heteroscedasticity in ML-type partition-
ing methods has been introduced with the TCLUST algorithm of Garćıa-Escudero et al.
(2008) and the “k–parameters clustering” of Gallegos and Ritter (2013). More references
and an in-depth overview are given in Garćıa-Escudero et al. (2015). Different from the
methods based on fixed partition models, mixture models and RIMLE allow a smooth
transition between different clusters and between clustered observations and noise, which
improves parameter estimation in the presence of overlap between mixture components.
The one-dimensional version of the RIMLE was introduced in Coretto and Hennig (2010)
and was investigated based on Monte Carlo experiments. Extension of the methods to the
multivariate setting is not straightforward. Existence and consistency of the MLE for the
multivariate Gaussian mixtures is a long standing problem due to the ill-posedness of the
likelihood function. Even for ML for plain multivariate Gaussian mixtures (i.e. the RIMLE
with the improper constant density set to zero), consistency theory is limited to the situa-
tion in which the model is assumed to hold precisely, and restrictive conditions are required
(e.g., Redner and Walker (1984)). Chen and Tan (2009) and Alexandrovich (2014) propose
and study a penalized ML estimator. Garćıa-Escudero et al. (2014) studied a classification
ML estimator for Gaussian mixture that is based on the TCLUST idea.

In this paper we study the theoretical properties of the RIMLE as well as its compu-
tation. A comprehensive treatment of existence, consistency and robustness is given. This
treatment includes the case of ML for multivariate Gaussian mixture as special case. Par-
ticularly, the robustness properties of RIMLE are superior to those of the mixture-based
methods proposed by Banfield and Raftery (1993) and Peel and McLachlan (2000), as
demonstrated later in the paper. For fitting plain Gaussian mixtures, some issues that
are treated here arise as well, particularly the need to constrain the covariance matrices in
order to avoid degeneration of the likelihood. Some literature on this is cited in Section
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3.2. The consistency results given here in Section 4 are of a nonparametric nature and
show the consistency of the RIMLE for the RIMLE-functional defined for a general class
of sampling distributions. Similar results have been shown for a partition likelihood model
(Gallegos and Ritter (2013)) and for alternative, trimming-based approaches to robust clus-
tering (e.g., Garćıa-Escudero et al. (2008); Gallegos and Ritter (2009)). Compared to these
results, there is an additional difficulty for the RIMLE, namely that degeneration of the
likelihood needs to be prevented also in the case that almost all observations are assigned
to the noise component and the remaining observations are fitted arbitrarily well. This may
look like a disadvantage, but in the literature cited above such problems are only avoided
by fixing the trimming rate. An analysis like the one given here, and in Coretto and Hen-
nig (2016), is required for understanding the case in which both the proportion of points
considered as “noise” and the density level at which this happens are flexible. Coretto and
Hennig (2016) introduce the OTRIMLE, a data-adaptive choice of the improper constant
density, the method’s tuning constant for achieving robustness. That paper also includes a
comprehensive simulation study comparing the different approaches to robust clustering. In
the study, every method turns out to be superior for one or more setups, but the OTRIMLE
achieves the most satisfactory overall performance.

The paper is organized as follows. We first discuss in Section 2 an artificial dataset to
illustrate the issues RIMLE is meant to deal with. The RIMLE is introduced and defined
in Section 3. In Section 4 existence and consistency of the RIMLE are proved. Section 5
treats the computation of the RIMLE and the choice of input parameters for the algorithms.
Section 6 studies the breakdown robustness of RIMLE. Numerical experiments are presented
in Section 7. Section 8 concludes the paper.

2. Artificial data examples

Every clustering method is designed to recover certain types of clusters even when they
are based on methods and algorithms that apply universally. For instance, the well known
k-means method aims to discover spherical balanced clusters, although the algorithm will
find a solution when this is not the case. In this section we introduce some issues in robust
clustering by showing examples of data affected by noise that cause trouble to most cluster-
ing methods, including those that supposedly explicitly account for it. These examples will
illustrate the kind of clustering problem that the method investigated in this paper aims
to address. Two artificial data sets are generated in dimension p = 20 from two sampling
designs, called AsyNoise and GEM respectively, also considered for the numerical experi-
ments presented in Section 7. The two data sets are shown in Figure 1 and 3. A detailed
description of the sampling designs is given in Section 7.

In AsyNoise (Figure 1) there are 500 observations in 5 moderately separated clusters
from student-t distributions with varying degrees of freedom, 187 observations (37.4%) are
background noise. We have symmetric and elliptical clusters that are not well separated
along all directions, and they are of different size. Although there is a deviation from
Gaussianity in the tails of the clusters’ distribution, methods based on Gaussian shapes are
candidates to reconstruct such groups. Plain Gaussian mixture clustering (without noise
component) fixing the number of clusters at G = 5 using the popular R package mclust of
Fraley et al. (2012) puts the clustered points into two big clusters and assigns the noise to the
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Figure 1: Scatter plots of n = 500 data points sampled from the AsyNoise design defined
in Section 7. Marginals 1 to 5 are represented, further dimensions show a similar
pattern. Colors denote the 5 clusters, while noise is represented by the “+”
symbol.
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over a grid of log(δ) values for the data set in Figure 1.
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remaining clusters achieving a misclassification rate of 61.4% (i.e., the best misclassification
rate that can be achieved by permutation of the cluster labels so that no cluster is identified
with the noise). Note that in this paper, mclust always automatically chooses an optimal
covariance matrix parametrization by the BIC (see Fraley et al., 2012; Celeux and Govaert,
1995). One could wonder whether the data set may be an easy job for clustering methods
that take into account outliers, but this is not the case as shown in Section 7. All robust
methods require tuning that, directly or indirectly, controls the amount of noise present in
the data set. Perhaps the only exception is the MLE for Gaussian mixtures with uniform
noise of Banfield and Raftery (1993) implemented in the mclust package, but this can be
led astray if the noise in fact behaves very differently from a uniform distribution. In real
situations a priori information on the level of the noise is rarely available. The RIMLE
method treated in this paper also requires tuning. The level of the noise is essentially
controlled by the level of the improper noise density, called δ. For a given value of δ, the
noise proportion then is estimated from the data.

For the data set in Figure 1 we computed the RIMLE for several values of log(δ) (there
are other constants required, chosen as γ = 100 and πmax = 0.5, see Algorithm 2 and
Sections 3). When choosing log(δ) appropriately, namely log(δ) ∈ [−53,−36], the RIMLE
gets the structure of the data set right, and it stably produces a misclassification rate in
the range [6.4%, 11%] with an estimated noise proportion in the range [34.38%, 45.8%].
This is clearly better than most other robust clustering methods we tried, see Section 7.
Values of log(δ) below -100 do not change the results. For large values of log(δ) too much
noise is found, hence the RIMLE’s noise proportion constraint (see Section 3) becomes
active and the resulting estimated noise proportion gets close to zero. The OTRIMLE
criterion of Coretto and Hennig (2016) selects an optimal value log(δ) = −40, which is in
the region where RIMLE shows its best performance. The RIMLE at log(δ) = −40 produces
a misclassification rate of 8.8% with estimated noise proportion equal to 44.8%. Figure 2
shows how solutions change with changing values of log(δ).

Another experimental situation considered in this paper is the GEM (“Gross Error
Model”) sampling design (Figure 3). In the GEM, 100 points are sampled from two normal
populations with extremely different scatters, 2 points (2%) are outliers almost lying on a
hyperplane. These outliers are not extremely separated from the regular points, and this
can cause trouble to robust methods. Surprisingly, in a situation like this, some non-robust
methods perform better than some robust alternatives. In fact, ML for plain Gaussian
mixtures performed with mclust (without the noise component) assigns the two outliers
to cluster 1 and achieves a misclassification rate of 2%, although the estimated mixture
parameters are strongly biased. Robust methods may do worse if not well tuned (see
Section 7). As for the previous data set the RIMLE has been computed for several values of
log(δ) maintaining all other parameters as before. The result can be seen in Figure 4. For
any −∞ < log(δ) ≤ −46 the RIMLE is 100% accurate and estimates a noise proportion of
2%. The OTRIMLE method for the data-driven choice of δ selects log(δ) = −200, which is
in the region where the RIMLE achieves the best results.
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Figure 3: Scatter plots of n = 100 points sampled from the GEM sampling design defined
in Section 7. Marginals 1,2,5,10, and 20 are represented, further dimensions show
a similar pattern. Colors denote the 2 clusters, while noise is represented by the
“+” symbol.
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Figure 4: Misclassification rates (blue), and estimated noise proportions (red) by RIMLE
over a grid of log(δ) values for the data set in Figure 3.
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3. Basic definitions

In this section we define the robust improper maximum likelihood estimator (RIMLE) along
with its constrained parameter space.

3.1 RIMLE and clustering

The RIMLE is based on the “noise component” idea for robustification of the MLE based
on the Gaussian mixture model. This models the noise by a uniform distribution, but in
fact we are interested in more general patterns of noise or outliers. However, regions of
high density are rather associated with clusters than with noise, so the noise regions should
be those with the lowest density. This kind of distinction can be achieved by using the
uniform density as in Banfield and Raftery (1993), but in the presence of gross outliers the
dependence of the uniform distribution on the convex hull of the data causes a robustness
problem (Hennig (2004)). The uniform distribution is not really used here as a model for
the noise, but rather as a technical device to account for whatever goes on in low density
regions. The RIMLE drives this idea further by using an improper uniform distribution the
density value of which does not depend on how far awy extreme points in the data are from
the main bulk. In the following, assume an observed sample x1, x2, . . . , xn, where xi is the
realization of a random variable Xi ∈ Rp with p > 1; X1, . . . , Xn i.i.d. The goal is to cluster
the sample points into G distinct groups. RIMLE then maximizes a pseudo-likelihood,
which is based on the improper pseudo-density

ψδ(x, θ) = π0δ +
G∑
j=1

πjφ(x;µj ,Σj), (1)

where φ(·, µ,Σ) is the Gaussian density with mean µ and covariance matrix Σ, π0, πj ∈ [0, 1]

for j = 1, 2, . . . , G, π0 +
∑G

i=1 πj = 1, while δ is the improper constant density. The pa-
rameter vector θ contains all Gaussian parameters plus all proportion parameters including
π0, ie. θ = (µ1, . . . , µG, vect(Σ1), . . . , vect(ΣG), π0, . . . , πG), where vect(A) is the vectorized
upper (or lower) triangle including the main diagonal of the symmetric square matrix A. δ
and the number of Gaussian components G are considered fixed and known. Although this
does not define a proper probability model, it yields a useful procedure for data modelled
as a proportion of (1− π0) of a mixture of Gaussian distributions, which have high enough
density peaks to be interpreted as clusters plus a proportion π0 times something unspec-
ified with density smaller than or equal to δ (which may even contain further Gaussian
components with so few points and/or so large within-component variation that they are
not considered as “clusters”). The definition of the pseudo-model in (1) requires that the
value of δ is fixed in advance. The choice of δ will be discussed in Section 5.2.

Given the sample improper pseudo-log-likelihood function

ln(θ) =
1

n

n∑
i=1

logψδ(xi, θ), (2)

the RIMLE is defined as
θn(δ) = arg max

θ∈Θn

ln(θ), (3)
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where Θn is a constrained parameter space defined in Section 3.2. θn(δ) is then used to
cluster points using pseudo posterior probabilities for belonging to the Gaussian components
or the improper uniform. These pseudo posterior probabilities are given by

τj(xi, θ) :=

{
π0δ

ψδ(xi,θ)
if j = 0

πjφ(xi,µj ,Σj)
ψδ(xi,θ)

if j = 1, 2, . . . , G;
for i = 1, 2, . . . , n.

Points are assigned to the component for which the pseudo posterior probability is maxi-
mized. The assignment rule is then given by

J(xi, θ) := arg max
j∈{0,1,2,...,G}

τj(xi, θ). (4)

The assignment based on maximum posterior probabilities is common to all model-based
clustering methods. Here, an improper density is involved, and so these are “pseudo poste-
rior probabilities”.

We also define a population version of the RIMLE for later deriving consistency results
for the sequence {θn(δ)}n∈N. Let EP f(x) be the expectation of f(x) under P . The RIMLE
population target function and the constrained parameter set can be obtained by replacing
the empirical measure with P , and the population version of ln(θ) is given by

L(θ) = EP log(ψδ(x, θ)).

Define LG = supθ∈ΘG(P ) L(θ), where ΘG(P ) is a constrained parameter space defined in
Section 3.2.

3.2 The constrained parameter space

Some notation: the kth element of µj is denoted by µj,k for k = 1, 2, . . . , p and j = 1, 2, . . . , G.
Let λj,k be the kth eigenvalue of Σj , define Λ(θ) = {λj,k : j = 1, 2, . . . , G; k = 1, 2, . . . , p},
λmin(θ) = minj,k{Λ(θ)}, λmax(θ) = maxj,k{Λ(θ)}.

Remark 1 The p-dimensional Gaussian density can be written in terms of the eigen-de-
composition of the covariance matrix:

φ(x;µ,Σ) = (2π)−
p
2

(
p∏

k=1

λk

)− 1
2

exp

(
−1

2

p∑
k=1

λ−1
k (x− µ)′vkv

′
k(x− µ)

)
,

where λk is the k-th eigenvalue of Σ, and vk is its associated eigenvector, for k = 1, 2, . . . , p.
Let λ0 = min{λk; k = 1, 2, . . . , p}. Then, limλ0↘0 φ(µ;µ,Σ) = ∞, with φ(µ;µ,Σ) =

O(λ
−p/2
0 ) as λ0 ↘ 0. On the other hand limλ0↘0 φ(x;µ,Σ) = 0 for all x 6= µ, with

φ(x;µ,Σ) = o(λq0) for any fixed q as λ0 ↘ 0. This implies that

lim
λ0↘0

φ(µ;µ,Σ)φ(x;µ,Σ)→ 0 for any x 6= µ

Furthermore, each of the density components in ψδ(·) can be bounded above in terms of
λmax(θ) and λmin(θ):

φ(x;µj ,Σj) ≤ (2πλmin(θ))−
p
2 exp

{
−1

2
λmax(θ)−1‖x− µj‖2

}
≤ (2πλmin(θ))−

p
2 . (5)

8



Robust Improper Maximum Likelihood Clustering

The optimization problem in (3) requires that Θn is suitably defined, otherwise θn(δ) may
not exist. Consider a sequence (θm)m∈N, as discovered by Kiefer and Wolfowitz (1956), the
likelihood of a Gaussian mixtures degenerates if λ1,1,m ↘ 0 if µ1,m = x1, and this holds for
(2), too. We here use the eigenratio constraint

λmax(θ)/λmin(θ) ≤ γ < +∞ (6)

with a constant γ ≥ 1, where γ = 1 constrains all component covariance matrices to be
spherical and equal, as in k-means clustering. This type of constraint has been proposed by
Jr (1981), while Hathaway (1985) showed consistency of the scale-ratio constrained MLE
for one-dimensional Gaussian mixtures. Ingrassia (2004) and Ingrassia and Rocci (2007)
introduced EM algorithms for implementing these constraints for multivariate datasets.
TCLUST by Garćıa-Escudero et al. (2008) and Garćıa-Escudero et al. (2014) also makes
use of eigenratio constraints. Moreover there are a number of alternative constraints, see
Ingrassia and Rocci (2011); Gallegos and Ritter (2009). It may be seen as a disadvantage of
(6) that the resulting estimator will not be affine equivariant (this would require allowing
λmax(θ)/λmin(θ) → ∞ within any component). Affine equivariance can be achieved by
defining a sphered version of the RIMLE as

θ∗n(δ) = θ∗n(δ, x1, . . . , xn) = θn(δ, x∗1, x
∗
2, . . . , x

∗
n)

with x∗i = A(xi−m), i = 1, . . . , n, where S(x1, . . . , xn)−1 = A′A; S(x1, . . . , xn) could be the
sample covariance matrix or another scale matrix and m the mean vector or another location
estimator. This yields affine equivariance because the sphered versions of {x1, . . . , xn} and
{Bx1 +b, . . . , Bxn+b} with some invertible p×p-matrix B and b ∈ Rp are the same. Affine
equivariance is not necessarily desirable though, see Hennig (2015a), Sec. 31.3.4.

This defines the parameter space

Θ̃ :=

θ : πj ≥ 0 ∀j ≥ 1, π0 +

G∑
j=1

πj = 1;
λmax(θ)

λmin(θ)
≤ γ

 . (7)

Occasionally, later, the notation ‖θ‖ will refer to the Euclidean norm of a vector pieced to-
gether from all the parameters collected in θ, in which all covariance matrices are interpreted
as subvectors of all the matrix entries.

Although (6) ensures the boundedness of the likelihood in standard mixture models
and TCLUST, for RIMLE this is not enough. The Gaussian components could degenerate
on a few points and all other points could be fitted by the improper uniform component.
Therefore we impose an additional constraint:

1

n

n∑
i=1

τ0(xi, θ) ≤ πmax, (8)

for fixed 0 < πmax < 1. The quantity n−1
∑n

i=1 τ0(xi, θ) can be interpreted as the estimated
proportion of noise points. This constraint depends on the dataset. Unfortunately the
similar looking constraint π0 ≤ πmax independent of the data will not do, because this
could not stop more than a portion of π0 points to be fitted by the improper uniform
component.

9
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There is therefore a constrained effective parameter space for RIMLE estimation de-
pending on the dataset:

Θn :=

θ ∈ Θ̃ : πj ≥ 0 ∀j ≥ 1, π0 +

G∑
j=1

πj = 1;
1

n

n∑
i=1

τ0(xi, θ) ≤ πmax;
λmax(θ)

λmin(θ)
≤ γ

 .

(9)
Analogously, existence and consistency of the RIMLE functional can only be showed on a
parameter subset of Θ̃ that depends on the underlying distribution and enforces that enough
probability mass is fitted by Gaussian components rather than the improper uniform:

ΘG(P ) :=

θ ∈ Θ̃ : πj ≥ 0 ∀j ≥ 1; π0 +

G∑
j=1

πj = 1; EP
π0δ

ψδ(x, θ)
≤ πmax;

λmax(θ)

λmin(θ)
≤ γ

 .

(10)

4. RIMLE existence and consistency

We first show existence of the RIMLE for finite samples Let #(A) denote the cardinality
of the set A. Let xn = {x1, x2, . . . , xn}. Lemma 2 concerns the important case of plain
Gaussian mixtures (δ = 0) and requires a weaker assumption A0(a) for existence than A0
required for the RIMLE with δ > 0. Here are some assumptions:

A0(a) #(xn) > G.

A0 #(xn) > G+ dnπmaxe.

Lemma 2 Assume A0(a), δ = 0. Let (θm)m∈N be a sequence such that λmax(θm)/λmin(θm)
≤ γ. Assume also that for some j = 1, 2, . . . , G and k = 1, 2, . . . , p, λk,j,m ↘ 0 as m→∞;
then sup ln(θm)→ −∞.

Proof λk,j,m ↘ 0 implies λmax(θm) ↘ 0, λmin(θm) ↘ 0 at the same speed because of
(6). Assume w.l.o.g. (otherwise consider a suitable subsequence) that (θm)m∈N is such
that µj,m, j = 1, 2, . . . , G either leave every compact set for m large enough or converge,
and assume w.l.o.g., that if their limits are in {x1, . . . , xn}, they are in xG = {x1, . . . , xG}.
A0(a) implies that ∃ xi 6∈ xG, and ∃ν > 0 such that for all such xi, j = 1, 2, . . . , G and large
enough m : ‖xi − µj,m‖ ≥ ν. Because the likelihood

Ln(θm) =
∏
xi∈xG

{ G∑
j=1

πjφ(xi;µj,m,Σj,m)
} ∏
xi 6∈xG

{ G∑
j=1

πjφ(xi;µj,m,Σj,m)
}
, (11)

and Remark 1, the first product is of order O(λmin(θm)−p/2)G, and the second one of order
o(λmin(θm)q) for any fixed q, which implies that Ln(θm)→ 0 and ln(θm)→ −∞.

Lemma 3 Assume A0, δ > 0. (θm)m∈N is a sequence in Θn. Assume also that for some
j = 1, 2, . . . , G and k = 1, 2, . . . , p, λk,j,m ↘ 0 as m→∞. Then ln(θm)→ −∞.
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Proof Using the definitions of the proof of Lemma 2, instead of (11) now

Ln(θm) =
∏
xi∈xG

{
π0,mδ +

G∑
j=1

πjφ(xi;µj,m,Σj,m)
} ∏
xi 6∈xG

{
π0,mδ +

G∑
j=1

πjφ(xi;µj,m,Σj,m)
}

(12)
has to be considered, so that the limit behaviour of (π0,m)m∈N is relevant. (8) implies

1

n

∑
xi∈xG

1 +

G∑
j=1

πjφ(xi, µj,m,Σj,m)

π0,mδ

−1

+
1

n

∑
xi 6∈xG

1 +

G∑
j=1

πjφ(xi, µj,m,Σj,m)

π0,mδ

−1

≤ πmax.

(13)
Suppose that (π0,m)m∈N does not converge to zero as O(φ(xi, µj,m,Σj,m)) for at least one
xi 6∈ xG. For m → ∞, the left term of (13) is ≥ 0, and the right term (at least a subse-

quence) converges to
#(xn\xG)

n , which A0 requires to be > πmax with contradiction, thus
π0,m = O(φ(xi, xj ,Σj,m)). Therefore, by the same argument as in the proof of Lemma 2,
the right product in (12) vanishes fast enough so that ln(θm)→ −∞.

From these Lemmas:

Theorem 4 (Finite Sample Existence) Assume A0. Then θn(δ) exists for all δ ≥ 0.

Proof Θn depends on δ via (8). Θn is not empty for any δ, because for any fixed values of
the other parameters, small enough π0 will fulfil (8). Next show that there exists a compact
set Kn ⊂ Θn such that supθ∈Kn ln(θ) = supθ∈Θn ln(θ).
Step A: consider θ such that π1 = 1, µ1 = x1, Σj = Ip for all j = 1, 2, . . . , G, arbitrary µj and
πj = 0 for all j 6= 1. For this, ln(θ) =

∑n
i=1 log φ(xi;x1,Σ1) > −∞, thus supθ∈Θn ln(θ) >

−∞.
Step B: consider a sequence (θ̇m)m∈N . It needs to be proved that if (θ̇m)m∈N leaves a
suitably chosen compact set Kn, it cannot achieve as large values of ln as one could find
within Kn. Lemma 3 (Lemma 2 for δ = 0) rules out the possibility of any λk,j,m ↘ 0.
Step C: (5) implies that ln(θ) can be bounded from above in terms of π0, λmin and δ:

ln(θ) =
1

n

n∑
i=1

log

π0δ +
G∑
j=1

πjφ(xi;µj ,Σj)

 ≤ log
(
π0δ + (1− π0)(2πλmin(θ))−

p
2

)
.

Consider θ̇ ∈ Θn such that λ̇k,j < +∞ for all k = 1, 2, . . . , p and j = 1, 2, . . . , G (using
the obvious notation of components of “dotted” parameter vectors). Also consider a se-
quence (θ̈m)m∈N such that θ̈m → θ̈ where θ̈ is equal to θ̇ except that λ̈k,j,m → +∞ for
some k ∈ {1, . . . , p} and j ∈ {1, . . . , G}. By (6), λmin(θ̈m) → +∞ and thus ln(θ̈m) →
log(π̈0δ). Clearly π̈0 < 1 because otherwise n−1

∑n
i=1 τ0(xi, θ̈) = 1, violating (8). Therefore

limm→∞ ln(θ̈m) ≤ ln(θ̇).
Step D: now consider ||µ̇j,m|| → +∞, for j = 1, w.l.o.g. Choose θ̈m equal to θ̇m except
now µ̈1,m = 0 for all m. Note that φ(xi; µ̇1,m, Σ̇1) → 0 for all i = 1, 2, . . . , n, which implies
that ψδ(xi, θ̇m) < ψδ(xi, θ̈m) for large enough m, for which then ln(θ̇m) < ln(θ̈m). Applying
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this argument to all j with ||µ̇j,m|| → +∞ shows that better ln can be achieved inside a
compact set.

Continuity of ln now guarantees existence of θn(δ).

We now derive consistency for the sequence {θn(δ)}n∈N as estimator of LG. Consistency
of the RIMLE can be achieved only if LG exists. In order to ease the notation we define
η(x, θ) =

∑G
j=1 πjφ(x;µj ,Σj). Consider the following assumptions on P :

A1 For every x1, . . . , xG ∈ Rp : P{x1, . . . , xG} < 1− πmax.

A2 LG > LG−1, where for G ∈ N let LG = supθ∈ΘG(P ) L(θ).

A3 There exist ε1, ε2 > 0 so that for every θ with π0 < ε1 : L(θ) ≤ LG − ε2.

Remark 5 Assumption A1 requires that no set of G points carries probability 1 − πmax

or more. Otherwise the log-likelihood can be driven to ∞ by fitting G mixture components
to G points with all covariance matrix eigenvalues converging to zero. The improper noise
component could take care of all other points.

Note that assumptions A2 and A3 are not both required, but only any single one of them.
A2 states that G mixture components fit the data better than G − 1 components. If this is
not the case, there is at least one redundant component, and one cannot make sure that L(θ)
is bounded away from LG for large n in some distance from the “true” RIMLE-functional
as the redundant component can be moved around, see Theorem 11. In case that A2 is
not fulfilled, a weaker result can still be achieved, namely the existence of a not necessarily
unique consistent sequence of local maximizers of ln. This requires A3, which states that a
noise proportion bounded away from zero is required for maximizing L. If neither A2 nor
A3 are fulfilled, P can be fitted perfectly by fewer than G mixture components and no noise.
In this case one cannot stop the remaining mixture components from leaving every compact
set, and therefore one cannot expect consistency of all components for any method; as long
as there is still noise bounded away from zero, those mixture components still can contribute
to fitting what otherwise would be noise, and fits become worse if these degenerate.

Note that this is less often the case than one might expect; for example, a plain Gaussian
mixture with G−1 components may still fulfill A3: if the density of one of the components is
uniformly smaller than δ, a better pseudo-likelihood can obviously be achieved by assigning
its proportion to the noise component than by choosing π0 = πG = 0 and otherwise the true
parameters. A Gaussian component that “looks like noise” rather than like a “cluster” will
be treated as noise.

Lemma 6 For any probability measure P on Rp, LG > −∞.

Proof Choose compactK ⊂ Rp with P (K) > 0. Let q = 1−P (K) and chooseK big enough
that πmax > q. Choose µ1 = EP (x|x ∈ K), Σ1 = CovP (x|x ∈ K), π2 = . . . = πG = 0. If all
eigenvalues of Σ1 are zero, choose Σ1 = Ip. Let λmax,1 be the largest eigenvalue of Σ1. If
λmax,1/λi,1 > γ for any eigenvalue λi,1 of Σ1, modify Σ1 by replacing all eigenvalues smaller
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than γλmax,1 by γλmax,1 in its spectral decomposition. Let φmin = minx∈K φ(x, µ1,Σ1) > 0.
Choose

π0 =
(πmax − q)φmin

2((1− πmax)δ + (πmax − q)φmin)
> 0, π1 = 1− π0.

Observe that the resulting θ ∈ ΘG(P ) (with all other parameters chosen arbitrarily) by

EP
π0δ

ψδ(x, θ)
=

∫
K

π0δ

π0δ + η(x, θ)
dP (x) +

∫
Kc

π0δ

π0δ + η(x, θ)
dP (x) ≤

≤ (1− q) π0δ

π0δ + (1− π0)φmin
+ q.

This is smaller than πmax if π0 < (πmax−q)φmin

(1−πmax)c+(πmax−q)φmin
. Furthermore, L(θ) ≥ (1 −

q) log(π0δ + (1− π0)φmin) + q log(π0δ) > −∞.

Lemma 7 Assume A1. There are λ∗min > 0, λ∗max <∞, ε > 0, so that

(a) L(θ) ≤ LG − ε for every θ with λmin(θ) < λ∗min or λmax(θ) > λ∗max,

(b) for x1, x2, . . . i.i.d. with L(x1) = P , for sequences (θn)n∈N with λmin(θn) < λ∗min or
λmax(θn) > λ∗max for large enough n: ln(θn) ≤ ln(θn(δ))− ε a.s.

Proof Start with part (a). First consider a sequence {θm}m∈N ∈ ΘG(P )N with λmax(θm)→
∞. The eigenvalue ratio constraint forces all covariance matrix eigenvalues to infinity, and
therefore supx φ(x, µj,m,Σj,m) ↘ 0. But this means that EP

π0δ
ψδ(x,θ)

→ 1 > πmax and

θm 6∈ ΘG(P ) eventually, unless π0,m ↘ 0, too. If the latter is the case, ψδ(x, θ) ↘ 0
uniformly over all x and L(θm)↘ −∞, which together with Lemma 6 makes it impossible
that L(θm) is close to LG for m large enough and λmax(θm) too large, proving the existence
of the upper bound λ∗max <∞ as required.
Now consider a sequence {θm}m∈N ∈ ΘG(P )N with λmin(θm)→ 0. Define

Am,ε =

{
x : min

j=1,2,...,G
‖x− µj,m‖ > ε

}
.

A1 ensures that for 0 < ε3 there exists ε > 0 so that for all m ∈ N : P (Am,ε) ≥ πmax + ε3.

Based on (5) derive an upper bound for π0,m from the constraint
∫ π0,mδ
π0,mδ+η(x,θm)dP (x) ≤

πmax:∫
π0,mδ

π0,mδ + η(x, θm)
dP (x) =

∫
Am,ε

π0,mδ

π0,mδ + η(x, θm)
dP (x) +

∫
Acm,ε

π0,mδ

π0,mδ + η(x, θm)
dP (x) ≥

≥ P (Am,ε)
π0,mδ

π0,mδ + maxx∈Am,ε η(x, θm)
,

which by (5) implies

π0,m ≤
πmax maxx∈Am,ε η(x, θm)

δ(P (Am,ε)− πmax)
≤
πmax exp(− ε2

2γλmin(θm))

δε3(2π)p/2λmin(θm)p/2
.
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For the log-likelihood,

L(θm) =

∫
Am,ε

log(π0,mδ + η(x, θm))dP (x) +

∫
Acm,ε

log(π0,mδ + η(x, θm))dP (x) ≤

≤
∫
Am,ε

log

δπmax exp(− ε2

2γλmin(θm))

δε3(2π)p/2λmin(θm)p/2
+

exp(− ε2

2γλmin(θm))

(2π)p/2λmin(θm)p/2

 dP (x)+

+

∫
Acm,ε

log

δπmax exp(− ε2

2γλmin(θm))

δε3(2π)p/2λmin(θm)p/2
+

1

(2π)p/2λmin(θm)p/2

 dP (x) ≤

≤ P (Am,ε)

(
− c1

λmin(θm)
− c2 log(λmin(θm)) + c3

)
+

+ P (Acm,ε) (o(1)− c4 log(λmin(θm)) + c5) =

= − c6

λmin(θm)
− c7 log(λmin(θm)) + c8

for positive constants c1, c2, c4, c6, c7 and constants c3, c5, c8, all independent of θm. If
λmin(θm)↘ 0, this implies L(θm)↘ −∞, proving together with Lemma 6 the existence of
the lower bound λ∗min > 0.

Part (b) holds because if (θm)m∈N is chosen as above for m = n→∞ and P is replaced
by the empirical distribution Pn, Glivenko-Cantelli enforces Pn(An,ε) − P (An,ε) → 0 a.s.
Glivenko-Cantelli applies because the class of all An,ε is a subset of the class of intersections
of the complements of all closed balls, and therefore a Vapnik-Chervonenkis class, see van der
Vaart and Wellner (1996). The argument carries over using all other integrals in the finite
sample-form, i.e., w.r.t. Pn. Lemma 6 carries over because ln(θ)→ L(θ) a.s. by the strong
law of large numbers for θ with L(θ) > −∞.

Remark 8 Lemma 7 (a) and (5) imply that for all θ with L(θ) > LG − ε, j = 1, 2, . . . , G
and all x:

φ(x, µj ,Σj) ≤ φmax =
1

(2π)p/2(λ∗min)p/2
.

This implies LG <∞.

The same holds because of Lemma 7 (b) for x1, x2, . . . i.i.d. with L(x1) = P for large
enough n a.s. for all θ with ln(θ) > ln(θn(δ))− ε.

Lemma 9 Assume A1 and A2. There is a compact set K ⊂ Rp so that

(a) L reaches its supremum for µ1, . . . , µG ∈ K and is bounded away from the supremum
if not all of µ1, . . . , µG ∈ K (i.e., ∃ε4 > 0 so that L in this case is bounded from above
by supL− ε4),

(b) for x1, x2, . . . i.i.d. with L(x1) = P for large enough n, ln reaches its supremum for
µ1, . . . , µG ∈ K and is bounded away from the supremum if not all of µ1, . . . , µG ∈ K,
a.s.
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Proof Start with part (a). Consider a sequence {θm}m∈N ∈ ΘG(P )N with ‖µjm‖ → ∞ for
j = 1, . . . , k, 1 ≤ k < G and a compact set K with µjm ∈ K for j > k. Let

Am =

{
x : ∀j ∈ {1, . . . , k} : φ(x, µj,m,Σj,m) ≤ εm

G∑
l=k+1

πl,mφ(x, µl,m,Σl,m)

}
,

where εm ↘ 0 slowly enough that P (Am) → 1. Let π∗m =
∑k

j=1 πj,m. Let θ(G−k),m for

m ∈ N be defined by π0,(G−k),m = π0,m, π(j−k),(G−k),m = πj,m(1 − π0,m)(1 − π∗m − π0,m)−1

for j = k + 1, . . . , G accompanied by the µj ,Σj-parameters belonging to the components
k + 1, . . . , G of θm. Observe, using Remark 8,

L(θm) =

∫
Am

log(ψδ(x, θm))dP (x) +

∫
Acm

log(ψδ(x, θm))dP (x) ≤

≤
∫
Am

log((1 + εm)ψδ(x, θ(G−k)m))dP (x) + P (Acm) log(δ + φmax)

implying L(θ(G−k)m) − L(θm) → 0. EP [π0,(G−k),mδ(ψδ(x, θ(G−k)m))−1] ≤ πmax will be ful-
filled for m large enough because it is fulfilled for θm by definition and ψδ(x, θ(G−k),m) >
ψδ(x, θm) on Am with P (Am)→ 1. L(θ(G−k)m) < LG−1 implies that, because of A2, θm is
bounded away from LG.

Regarding existence of a maximum with µ1, . . . , µG ∈ K, observe that with Remark 8,
ψδ(x, θ) can be bounded by δ + φmax for all θ for which L(θ) > LG − ε. Now consider
a sequence (θm)m∈N so that ∀m : µ1m, . . . , µGm ∈ K, with the notation of Lemma 7,
λ∗min ≤ λmin(θm) ≤ λmax(θm) ≤ λ∗max and L(θm)→ LG. Because of compactness, w.l.o.g.,
θm → θ+ and, using Fatou’s Lemma, LG = limm→∞ L(θm) ≤ EP lim supm ψδ(x, θm) =
L(θ+) ≤ LG.

Part (b) holds because if (θm)m∈N is chosen as above for m = n→∞ and P is replaced
by the empirical distribution Pn, Glivenko-Cantelli enforces Pn(An) − P (An) → 0 a.s.
Glivenko-Cantelli applies here because a sequence of closed balls (Bn)n∈N can be constructed
so that Bn ⊆ An, P (Bn) → 1 a.s.; the closed balls are a Vapnik-Chervonenkis class, and
Pn(An) ≥ Pn(Bn) → 1 a.s. Furthermore, for θ ∈ ΘG(P ) with L(θ) > LG−1: ln(θ) → L(θ)
a.s. by the strong law of large numbers, so that for large enough n: supθ∈ΘG(P ) ln(θ) > LG−1

a.s. On the other hand, θ(G−k),n can be chosen optimally in a compact set K because of
Lemma 7, within which ln converges uniformly to L a.s. (Theorem 2 in Jennrich (1969)),
and therefore, lim supn→∞ ln(θ(G−k),n) ≤ LG−1. With these ingredients, the argument of
part (a) carries over.

Lemma 10 Assume A1 and A3. There is a compact set K ⊂ Rp so that

(a) L reaches its supremum for µ1, . . . , µG ∈ K,

(b) for x1, x2, . . . i.i.d. with L(x1) = P , there exists a sequence (θ̃n)n∈N maximizing ln
locally for µ1, . . . , µG ∈ K so that ln(θ̃n) → LG a.s., and a.s. there is no sequence
θn ∈ ΘG(P ) so that lim supn→∞ ln(θn) > LG.
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Proof Start with part (a). Consider a sequence {θm}m∈N ∈ ΘG(P )N with ‖µj,m‖ → ∞
for j = 1, . . . , k, 1 ≤ k < G (the case k = G is treated at the end), and a compact set
K with µj,m ∈ K for j > k. By selecting a subsequence if necessary, assume that there
exists µj = limm→∞ µj,m, Σj = limm→∞Σj,m for k + 1 ≤ j ≤ G and that πj,m converge for
j = 0, . . . , G. Let j∗ = arg max

k+1≤j≤G
EPφ(x, µj ,Σj). Suppose L(θm) ↗ LG monotonically and,

by A3, assume π0,m > ε1.

Consider first the case
∑k

j=1 πj,m → ε3 > 0. Construct another sequence {θ∗m}m∈N ∈
ΘG(P )N for which µ1,∗m = . . . = µk,∗m = µj∗ ∈ K, Σ1,∗m = . . . = Σk,∗m = Σj∗ . All other
parameters are the same as in θm. Let Am = {x : ∀j ∈ {1, . . . , k} : 2φ(x, µj,m,Σj,m) ≤
φ(x, µj∗ ,Σj∗)}. Observe P (Am)→ 1. Now

L(θ∗m)− L(θm) =

∫
Am

log
ψδ(x, θ∗m)

ψδ(x, θm)
dP (x) +

∫
Acm

log
ψδ(x, θ∗m)

ψδ(x, θm)
dP (x). (14)

For large enough m, ∫
Am

log
ψδ(x, θ∗m)

ψδ(x, θm)
dP (x) ≥ ε5 > 0,

whereas (using Remark 8)∫
Acm

log
ψδ(x, θ∗m)

ψδ(x, θm)
dP (x) ≥ P (Acm) log

ε1δ

δ + φmax
→ 0. (15)

Therefore L(θ∗m) − L(θm) > 0 for large enough m so that L(θm) is improved by a θ with
µj ∈ K for j = 1, 2, . . . , G.

Consider now
∑k

j=1 πjm → 0. Construct another sequence {θ∗m}m∈N ∈ ΘG(P )N for which
µ1,∗m = . . . = µk,∗m = µj∗ ∈ K, Σ1,∗m = . . . = Σk,∗m = Σj∗ , π1∗m = . . . = πk∗m = 0,

π0∗m =
∑k

j=0 πjm, all other parameters taken from θm. Set Am = {x : ∀j ∈ {1, . . . , k} :
φ(x, µjm,Σjm) < δ}. Again P (Am)→ 1. With this, (14) holds again. This time∫

Am

log
ψδ(x, θ∗m)

ψδ(x, θm)
dP (x) > 0

and again (15).
Let θ∗ = limm→∞ θ∗m (this exists by construction). Continuity of L implies that L(θ∗) =

LG and therefore for all m : L(θ∗) ≥ L(θm).
∑k

j=1 πj,m → 0 is required here because π0,∗m ≥
π0,m does not necessarily fulfill EP

π0,∗mc
ψδ(x,θ∗m) ≤ πmax, but limm→∞ π0,∗m = limm→∞ π0,m

does.
Finally, consider k = G. With Am,ε = {x : ∀j ∈ {1, . . . , k} : φ(x, µj,m,Σj,m) < δε}, observe

EP
π0,mδ

ψδ(x, θm)
≥ P (Am,ε)

π0,mδ

π0,m(c+ ε)
> πmax,

for small enough ε and large enough m, violating for large m the corresponding constraint
in ΘG(P ) as long as π0,m is bounded from below, as was assumed. Existence follows in the
same way as in the proof of Lemma 9.

For part (b) let θ∗ have µ∗1, . . . , µ
∗
G ∈ K and L(θ∗) = LG, which exists because of part

(a) and Lemma 7, which ensures further that θ∗ is in a compact K∗. Then the strong law
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of large numbers yields ln(θ∗) → LG a.s., and Theorem 2 of Jennrich (1969) implies that
for all sequences (θn)n∈N ∈ (K∗)N : lim supn→∞ ln(θn) ≤ LG. This also holds for sequences
(θn)n∈N that are eventually outside K∗ because of part (a) of Lemma 7 and the proof of
part (a) above, because if (θm)m∈N is chosen as above for m = n → ∞ and P is replaced
by the empirical distribution Pn, Glivenko-Cantelli (which applies by the same argument
as used in the proof of Lemma 9) enforces Pn(An)− P (An)→ 0 a.s., which means that as
in part (a), a.s., eventually ln(θn) cannot converge to anything larger than LG.

Theorem 11 (RIMLE existence) Assume A1 and any one of A2 or A3. There is a
compact subset K ⊂ ΘG(P ) so that there exists θ ∈ K : ∞ > L(θ) = LG > −∞. Assuming
A2, for θ 6∈ K, L(θ) is bounded away from LG.

Proof Pieced together from Lemmas 6-9 parts (a) and Remark 8.

Theorem 11 establishes existence of the RIMLE functional

θ?(δ) = arg max
θ∈ΘG(P )

L(θ). (16)

Unfortunately neither L(θ) nor ln(θ) can be expected to have a unique maximum. If we
take the vector θ and we permute some of the triples (πj , µj ,Σj) we still obtain the same
value for L(θ) and ln(θ). This known as “label switching” in the mixture literature. There
could be other causes for multiple maxima. Without strong restrictions on P , we cannot
identify any specific source of multiple optima in the target function. Instead we show
that asymptotically the sequence of estimators is close to some maximum of the pseudo-
loglikelihood, which amounts to consistency of the RIMLE with respect to a quotient space
topology identifying all loglikelihood maxima, as done in Redner (1981). By θ?(δ) in (16)
we mean any of the maximizer of L(θ). Define the sets

S(θ̇) =

{
θ ∈ ΘG(P ) :

∫
logψδ(x; θ)dP (x) =

∫
logψδ(x; θ̇)dP (x)

}
,

K(θ̇, ε) =
{
θ ∈ ΘG(P ) : ‖θ − θ̈‖ < ε ∀ θ̈ ∈ S(θ̇)

}
, for any ε > 0.

The following theorem makes a stronger statement assuming A2 than A3, because if A2
does not hold, the Gth mixture component is asymptotically not needed and cannot be
controlled for finite n outside a compact set.

Theorem 12 (Consistency) Assume A1 and A2. Then for every ε > 0 and every se-
quence of maximizers θn(δ) of ln:

lim
n→∞

P {θn(δ) ∈ K(θ?(δ), ε)} = 1.

Assuming A3 instead of A2, for every compact K ⊃ K(θ?(δ), ε) there exists a sequence of
θn that maximize ln locally in K so that

lim
n→∞

P {θn ∈ K(θ?(δ), ε)} = 1.
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Proof Under A2, because of the parts (b) of the Lemmas 7 and 9 it can be assumed
that there is a compact set K so that all θn(δ) ∈ K for large enough n a.s. Under A3,
considerations are restricted to K anyway.

Based on Theorem 11 and related Lemmas | logψδ(x, θ)| ≤ C for some finite constant
C for all θ ∈ K. Sufficient conditions for Theorem 2 in Jennrich (1969) are satisfied, which
implies uniform convergence of ln(θ), that is supθ∈K |ln(θ)− L(θ)| → 0 P -a.s. Based on
the latter, and applying the same argument as in proof of Theorem 5.7 in van der Vaart
(2000), it holds true that L(θn(δ)) → L(θ?(δ)) P -a.s. By continuity of L(θ) and Theorem
11 we have that for every ε > 0 there exists a β > 0 such that L(θ?(δ)) − L(θ) > β for
all θ ∈ K \ K(θ?(δ), ε). Denote (Ω,A, P ) the probability space where the sample random
variables are defined and consider the following events

An = {ω ∈ Ω : θn(δ) ∈ K \ K(θ?(δ), ε)} ,

and
Bn = {ω ∈ Ω : L(θ?(δ))− L(θn(δ)) > β} .

Clearly An ⊆ Bn for all n. P (Bn) → 0 for n → ∞ implies P (An) → 0. The latter proves
the result.

5. Algorithms and practical issues

Following the presentation of the proposed algorithm to compute the RIMLE, we discuss
its initialization and tuning.

5.1 RIMLE computing

In this section we develop Expectation–Maximization type algorithms (EM) to compute the
RIMLE (for a fixed δ ). Let s = 0, 1, . . . be the iteration index. Let a(s+1) be the quantity
a computed at the sth step of the EM algorithm. Define

Q(θ, θ(s)) =
n∑
i=1

G∑
j=0

τj(xi, θ
(s)) log πj +

n∑
i=1

τ0(xi, θ
(s)) log δ+

+
n∑
i=1

G∑
j=1

τj(xi, θ
(s)) log φ(xi;µj ,Σj). (17)

Increasing (17) by an appropriate choice of θ increases ln(·). An approximate candidate
maximum of ln(θ) can be found by the EM Algorithm 1.

Proposition 13 Assume A0. The sequence {θ(s)}s∈N produced by Algorithm 1 converges
to a point θemn ∈ Θ, and ln(θ(s)) is increased in every step.

Proof Find a set An ⊂ Rp that contains all points in xn with Lebesgue measure M(An) =
1/δ. δ is then a proper uniform density function on An. Hence, for a given dataset the
pseudo-density ψδ(·) can be written as proper density function. Therefore the convergence
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Algorithm 1: EM-algorithm

input : {x1, x2, . . . , xn}, δ, πmax, γ, θ(0), tol¿0
output : θem

while |ln(θ(s+1))− ln(θ(s))| >tol do

E–step: compute τj(xi, θ
(s)), for all i = 1, 2, . . . , n and j = 0, 1, . . . , G

M–step: θ(s+1) ← arg maxθ∈ΘQ(θ, θ(s))
end

θem ← θ(s+1)

Theorem 4.1 in Redner and Walker (1984) holds, with Q(θ, θ(s)) playing the role of their
Q(·) function.

Algorithm 1 is the analog of the EM algorithm for plain Gaussian mixtures (see Redner
and Walker, 1984) except that now the M-step is a constrained optimization. Wu (1983)
showed that the EM algorithm converges to the global maximum if the likelihood function
is unimodal and certain differentiability conditions are satisfied. In general the limit of the
EM algorithm is not guaranteed to coincide with a global maximum of likelihood function.
However, Proposition 13 guarantees that θem

n is a stationary point of ln(·). Running the EM
algorithm for a large number of starting values increases the chances of finding the optimal
solution. For finite Gaussian mixtures models it is well known that the likelihood surface
is difficult to explore even when p is not too large, and the main advantage of the EM
algorithm is that the M-step can be divided in a number of simpler optimization problems
each of which has a closed form solution. However, for the RIMLE the constraints add some
complexity, and in particular the noise proportion constraint does not allow to separate the
M-step in simpler subprograms. One possibility is to perform the M-step using numerical
optimization packages, but the eigenratio constraints requires to parameterize each Σj terms
of its spectral components. The latter has the drawback to add G×p(1− p)/2 parameters.
Furthermore, the eigenratio constraint has a non-smooth nature that would make numerical
techniques hard to adapt.

In Coretto and Hennig (2016) computations are based on Algorithm 1 where the M-step
is performed as if the problem would be unconstrained, and breaking the iteration when
updates drive the parameters outside the constrained parameter space. Coretto and Hennig
(2016) also propose a heuristic method to enforce the constraints at the end of the iterations
if necessary. Of course in such situations there would be no guarantee that the delivered
solution is a stationary point of ln(·). Here, we propose Algorithm 2 where constraints
are applied exactly in each iteration. The M-step in Algorithm 1 is replaced with two
conditional maximization (CM) steps. This transforms Algorithm 1 into an Expectation-
Conditional Maximization algorithm (ECM) as introduced by Meng and Rubin (1993). For

ease of notation, for j = 0, 1, . . . , G define τ
(s)
i,j = τj(xi, θ

(s)) and T
(s)
j =

∑n
i=1 τj(xi, θ

(s)).
Rewrite (17), using θ1 = (µ1, . . . , µG, vect(Σ1), . . . , vect(ΣG)), θ2 = (π0, π1, . . . , πG)′, and
θ = (θ1, θ2)′, as

Q(θ1, θ2, θ
(s)) = Q1(θ1, θ

(s)) +Q2(θ2, θ
(s)) + const, (18)
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where

Q1(θ1, θ
(s)) =

n∑
i=1

G∑
j=1

τ
(s)
i,j log φ(xi;µj ,Σj), Q2(θ2, θ

(s)) =
G∑
j=0

T
(s)
j log πj ,

and const = T
(s)
0 log(δ) which does not depend on θ. Consider the following programs:

maximize
θ1

Q1(θ1, θ
(s)) subject to

λmax(θ1)

λmin(θ1)
≤ γ, (CM1)

and

maximize
θ2

Q2(θ2, θ
(s)) subject to

G∑
j=0

πj = 1,
n∑
i=1

τ0(xi, θ
(s+1)
1 , θ2) ≤ nπmax. (CM2)

The ECM algorithm consists of solving (CM1) and then (CM2). The sequence of opti-
mizations replaces the M-step in Algorithm 1. Notice that in (CM2), πj = 0 for some
j = 0, 1, . . . , G would drive the objective function toward −∞, so we do not need to restrict

the πj as > 0. T
(s)
j = 0 will not happen, see Remark 17. Also notice that for δ=0 the

noise proportion constraint is automatically fulfilled, and for more analysis on these cases
see Remark 17.

Before presenting the ECM Algorithm 2 we introduce additional notations. For a ∈ Rd
let diag(a) be the d×d diagonal matrix with elements of a on the main diagonal. For a matrix
A let Spec(A) = ΓΛΓ′ be the spectral decomposition of A, that is, Γ contains the normalized
eigenvectors of A corresponding to the eigenvalues contained in the diagonal matrix Λ.
Moreover for a,m ∈ R define the shrinkage operator `γ(a,m) = min{max{m, a}, γm}.
In each step of Algorithm 2 closed form expressions are computed except that for computing
m∗ in (CM1), and ω∗ in (CM2). m∗ is the solution of a one-dimensional convex problem.
The resulting updates for the eigenvalues almost coincide with those of TCLUST. For
TCLUST, Fritz et al. (2013) show that their analogue of m∗ can be computed by 2pG +
1 evaluations of the objective function. A similar result may hold here, however we do
not consider it because in numerical experiments we found that the simple golden section
search algorithm of Kiefer (1953) requires on average few objective function evaluations
independently of p and G. Computation of ω∗ can be performed by a one-dimensional root
finder algorithm. Both are simple problems that do not require much computational effort.

Some additional results are given to show how the CM1–step and the CM2–step solve
(CM1) and (CM2) respectively.

Lemma 14 Assume Algorithm 2 has been run for s iterations. The vector θ
(s+1)
1 = (µ

(s+1)
1 ,

. . . , µ
(s+1)
G , vect(Σ

(s+1)
1 ), . . . , vect(Σ

(s+1)
G ))′ computed in the CM1–step is the global optimal

solution to (CM1). Moreover, m∗ exists and it is unique.

Proof Based on standard normal likelihood theory, one can see that the unique maximum

of Q1(θ1, θ
(s)) with respect to mean parameters is µ

(s+1)
j for all j = 1, 2, . . . , G. Substituting

µ
(s+1)
j into Q1(·), and rearranging the exponent of the Gaussian density by using the cyclic
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Algorithm 2: ECM

input : {x1, x2, . . . , xn}, δ, πmax, γ, θ(0) ∈ Θ, tol¿0
output : θecm

while |ln(θ(s+1))− ln(θ(s))| >tol do

E–step

compute τ
(s)
i,j for all i = 1, 2, . . . , n and j = 0, 1, . . . , G

CM1–step
for j = 1, 2, . . . , G do

µ
(s+1)
j ← 1

T
(s)
j

∑n
i=1 τ

(s)
i,j xi

S
(s+1)
j ← 1

T
(s)
j

∑n
i=1 τ

(s)
i,j (xi − µ(s+1)

j )(xi − µ(s+1)
j )′,

V
(s+1)
j diag(ej,1, . . . , ej,p)V

(s+1)′
j ← Spec(S

(s+1)
j )

end
if max {ej,k/et,k; t, j = 1, 2, . . . , G, j 6= t, k = 1, 2, . . . , p} ≤ γ then

Σ
(s+1)
j ← S

(s+1)
j

else

m∗ ← arg min
m>0

G∑
j=1

T
(s)
j

p∑
k=1

(
log(`γ(ej,k,m)) +

ej,k
`γ(ej,k,m)

)

Σ
(s+1)
j ← V

(s+1)
j diag(`γ(ej,1,m∗), . . . , `γ(ej,p,m∗)) V

(s+1)′
j for all

j = 1, 2, . . . , G
end

CM2–step

if
∑n

i=1 τ0(xi, (θ
(s+1)
1 , θ̇2)) ≤ nπmax, where θ̇2 =

(
T

(s)
0 /n, . . . , T

(s)
G /n

)′
then

π
(s+1)
j ← T

(s)
j /n for all j = 0, 1, . . . , G

else

compute ω∗ :

 n∑
i=1

ω∗δ

ω∗δ + 1−ω∗
n−T (s)

0

∑G
j=1 T

(s)
j φ(xi;µ

(s+1)
j ,Σ

(s+1)
j )

− nπmax = 0

π
(s+1)
0 ← ω∗

π
(s+1)
j ← 1−ω∗

n−T (s)
0

T
(s)
j

end

end

θecm ← θ(s+1)
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property of the matrix trace (see Anderson and Olkin, 1985), program (CM1) is completed
by choosing Σ1, . . . ,ΣG maximizing

Q1(θ̇1, θ
(s)) = const− 1

2

G∑
j=1

T
(s)
j

(
tr(Σ−1

j S
(s+1)
j )− log det(Σ−1

j )
)

(19)

under the eigenratio constraint, where θ̇1 = (µ
(s+1)
1 , . . . , µ

(s+1)
j , vect(Σ1), . . . , vect(ΣG)).

Consider the spectral decompositions

Spec(Σj) = ΓjΛjΓ
′
j , and Spec(S

(s+1)
j ) = V

(s+1)
j EjV

(s+1)′
j ,

where Λj = diag(λj,1, . . . , λj,p) and Ej = diag(ej,1, . . . , ej,p). Theorem 1 and Corollary 1 in
Theobald (1975) imply that

tr
(

Λ−1
j Ej

)
− log det(Λ−1

j ) ≤ tr
(

Σ−1
j S

(s+1)
j

)
− log det(Σ−1

j ), (20)

with the previous holding with equality if and only if Γj = V
(s+1)
j . Therefore, Σ

(s+1)
j =

V
(s+1)
j ΛjV

(s+1)′
j is plugged into (19), and (CM1) reduces to

minimize
λ1,1,...,λG,p

G∑
j=1

T
(s)
j

p∑
k=1

(
log(λj,k) +

ej,k
λj,k

)
,

subject to 0 < m ≤ λj,1, . . . ,≤ λj,p ≤ mγ ∀j = 1, 2, . . . , G.

(21)

Program (21) is separable in the optimization variables, and therefore the summands of (21)
can be minimized separately for a given m. Fix m > 0, then `γ(ej,k,m) is the unique optimal
solution to the minimization of log(λj,k) + ej,k λ

−1
j,k . Notice that ej,k ≤ ej,t=⇒`γ(ej,k,m) ≤

`γ(ej,t,m) for any m > 0 and t = 1, 2 . . . , p. This means that the relative ordering of
the elements on the diagonal of Ej remains unchanged after having applied the shrinkage
operator `(·). Replace λj,k with `γ(ej,k,m) and (21) is transformed into

minimize
m

G∑
j=1

T
(s)
j

p∑
k=1

(
log(`γ(ej,k,m)) +

ej,k
`γ(ej,k,m)

)
,

subject to m > 0

(22)

(22) is now a convex program in m. Therefore (CM1) is solved by the unique m∗ that

solves (22). This implies that the CM1–step is solved by taking Σ
(s+1)
j = V

(s+1)
j E∗j V

(s+1)′
j

where E∗j = diag(`γ(ej,1,m∗), . . . , `γ(ej,p,m∗)). Notice that uniqueness of m∗ implies the

uniqueness of the solution to CM1. Observe that when the eigenvalues of S
(s+1)
1 , . . . , S

(s+1)
G

fulfill the eigenratio constraint, then E∗j = Ej and Σ
(s+1)
j = S

(s+1)
j for all j = 1, . . . , G. The

latter completes the proof. (The result is connected to Lemma 1 in Won et al. (2013), by
which the last part of the proof is inspired.)
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Based on the previous Lemma, the constrained eigenvalues can be found by simply
solving a convex one-dimensional problem. The optimal choice of the covariances is a form
of Steinian-type nonlinear shrinkage (see Gavish and Donoho, 2017).

Lemma 15 Assume Algorithm 2 has been run for s iterations. The vector θ
(s+1)
2 = (π

(s+1)
0 ,

. . . , π
(s+1)
G )′ computed in the CM2–step is the global optimal solution to (CM2). Moreover,

ω∗ exists and it is unique.

Proof The objective function in (CM2) is strictly concave and the equality constraint is
linear. Take θ′2, θ

′′
2 ∈ {θ2 : π0 + . . . ,+πG = 1, πj ∈ [0, 1] ∀j = 0, 1, . . . , G}, if π′0 ≤ π′′0 then

τ0(·, ·, θ′2) ≤ τ0(·, ·, θ′′2). Therefore, for β ∈ (0, 1)

n∑
i=1

τ0(xi, θ
(s+1)
1 , βθ′2 + (1− β)θ′′2) ≤ max

{
n∑
i=1

τ0(xi, θ
(s+1)
1 , θ′2),

n∑
i=1

τ0(xi, θ
(s+1)
1 , θ′′2)

}
,

which implies that
∑n

i=1 τ0(xi, θ
(s+1)
1 , θ2) is quasiconvex in the optimization variable θ2. It is

concluded that Karush–Kuhn–Tucker (KKT) conditions are necessary for a global optimal
solution (see Bertsekas, 1999). Such a solution will be a stationary point of the Langrangean
function

H(θ2, h1, h2) := Q2(θ2, θ
(s)) + h1

1−
G∑
j=0

πj

+ h2

(
nπmax −

n∑
i=1

τ0(xi, θ
(s+1)
1 , θ2)

)
,

where h1 and h2 are the dual variables. Let ∇j denote derivatives with respect to the j
component of θ2. Let θ?2 the optimal solution, then based on KKT conditions there exists
h?1, h

?
2 such that the following hold

∇jQ2(θ?2, θ
(s))− h?1 − h?2∇j

n∑
i=1

τ0(xi, θ
(s+1)
1 , θ?2) = 0 for all j = 0, 1, . . . , G, (23)

h?2

(
n∑
i=1

τ0(xi, θ
(s+1)
1 , θ?2)− nπmax

)
= 0, h?2 ≥ 0. (24)

First consider the case when the noise proportion constraint does not bind, that is h?2 = 0.

Than (23) becomes T
(s)
j /π?j − h?1 = 0 for all j = 0, 1, . . . , G. Solving the latter for π?j , using

the equality constraints and that
∑G

j=0 T
(s)
j = n, it results that h?1 = n and π?j = T

(s)
j /n for

all j = 0, 1, . . . , G.
Now assume that the noise proportion constraints binds, hence h?2 > 0. Let π?0 = ω and
rewrite the equality constraint as π?1+, . . . ,+π?G = 1− ω. Stationary points of H(·) satisfy

T
(s)
j /π?j −h?1 = 0. Solving the latter for π?j and using the equality constraints it results that

h?1 =
∑G

j=1 T
(s)
j /(1− ω). Since

∑G
j=1 T

(s)
j = n− T (s)

0 , then

π?j =
1− ω
n− T (s)

0

T
(s)
j for all j = 1, 2, . . . , G.
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Now the solution for j = 1, 2, . . . , G is a function of ω, which can be determined by using
the fact that the inequality constraints binds. Define

g(ω) =

 n∑
i=1

ωδ

ωδ + 1−ω
n−T (s)

0

∑G
j=1 T

(s)
j φ(xi;µ

(s+1)
j ,Σ

(s+1)
j )

− nπmax.

g(ω) is bracketed on the interval [0, 1], in fact g(0) = −nπmax < 0 and g(1) = n(1−πmax) >
0. Moreover g(ω) is continuous, and it can be easily verified that it’s derivative is continuous
and positive at any ω ∈ (0, 1). This implies that there exists a unique ω∗ such that g(ω∗) = 0.
Setting π?0 = ω∗ and replacing ω∗ into π?j gives the optimal solution. We now compare the
two solutions in terms of objective function, and we show that there is hierarchy between
them. Define

θ̇2 =

(
T

(s)
0

n
,
T

(s)
1

n
, . . . ,

T
(s)
1

n

)′
, θ̈2 =

(
ω∗,

1− ω∗
n− T (s)

0

T
(s)
1 , . . . ,

1− ω∗
n− T (s)

0

T
(s)
G

)′
.

Using Wald’s information inequality it can be shown that

T
(s)
0

n
log (ω∗) +

G∑
j=1

T
(s)
j

n
log

(
1− ω∗
n− T (s)

0

T
(s)
j

)
≤

G∑
j=0

T
(s)
j

n
log

(
T

(s)
j

n

)
,

with the previous holding with equality if and only if ω∗ = T
(s)
0 /n. The latter implies

that Q2(θ̈2, θ
(s)) < Q2(θ̇2, θ

(s)) whenever θ̈2 6= θ̇2. Hence θ̇2 is the global optimal solution
whenever it is feasible, otherwise the global optimal solution is θ̈2. The latter proves that
the updating in CM2-step selects the global optimal solution to (CM2).

Theorem 16 Assume A0. The {θ(s)}s ∈ N produced by Algorithm 2 converges to a point
θecmn ∈ Θ, and ln(θ(s)) is increased in every step.

Proof As consequence of Lemma 14 and 15, Q(θ, θ(s)) is never decreased, in fact for all
s = 0, 1, . . .

Q(θ
(s+1)
1 , θ

(s+1)
2 , θ(s)) ≥ Q(θ

(s+1)
1 , θ

(s)
2 , θ(s)) ≥ Q(θ

(s)
1 , θ

(s)
2 , θ(s)),

A0 ensures existence of θn(δ), and the convergence Theorem 4.1 in Redner and Walker
(1984) holds with Q(θ, θ(s)) playing the role of their Q(·) function.

Remark 17 The eigenratio constraint together with the noise proportion constraint rule

out the possibility that at some point along the iteration T
(s)
j = 0 for some j = 1, 2, . . . , G

and updates in CM1-step are guaranteed to exist. In fact T
(s)
j = 0 means that according to

θ(s−1) none of points contributes to the jth Gaussian component. In theory this can only
happen if the jth component has an infinite dispersion according to θ(s−1). However, in
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that case the eigenratio constraint would force all eigenvalues in θ(s−1) to diverge to +∞ at

the same rate so that T
(s)
j ↘ 0 for all j = 1, 2, . . . , G, which is not possible because of the

noise proportion constraint. Although in theory an appropriate choice of θ(0) ∈ Θ should
not produce such a degeneracy, it may well be that in practice this is caused because of
limited numerical resolution. Notice also that for δ=0 the noise proportion constraint is
automatically fulfilled, and this would take the problem back to the EM algorithm for the
MLE of a finite Gaussian mixture model with the additional eigenratio constraint. Therefore
Algorithm 2 would become the EM Algorithm 1 where the M-step would coincide with CM1-

step of Algorithm 2 plus the usual updating for the proportion parameters: π
(s+1)
j ← T

(s)
j /n

for all j = 0, 1, . . . , G.

Remark 18 There are substantial differences between Algorithm 2 and the one proposed in
Coretto and Hennig (2016). Algorithm 2 implements the constraints of the RIMLE exactly
and it is shown to converge under mild conditions on the data set. The algorithm presented
in Coretto and Hennig (2016) handles the constraint heuristically as follows: (i) if the EM
iteration converges, the eigenratio constraint is checked at the end of the iteration, and it
is enforced simply increasing the eigenvalues smaller than λmax(θ)/γ; (ii) if at some point
along the EM iteration the estimated π0 hits πmax, the iteration is stopped and the solution
discarded. Of course, this approximate algorithm is on average faster than Algorithm 2
for low values of γ and πmax. In fact, in such a situation it is likely that Algorithm 2
needs to go through the additional computation of m∗ and ω∗ for most of the iterations. In
order to give an idea to the reader, we estimated the relative speed for the AsyNoise data
presented in Section 2 with γ = 1, πmax = 1%, and we found that on average the algorithm
of Coretto and Hennig (2016) runs ten times faster. However, setting γ = 100, πmax = 50%
the difference becomes negligible. Furthermore, for low settings of πmax the algorithm of
Coretto and Hennig (2016) is likely to record premature stops not leading to a solution (this
happened in the previous experiment with πmax = 1%).

5.2 Choice of initial values and input parameters

Algorithms 1 and 2 require the initial value θ(0), and the input parameters πmax, γ and
δ. The initial value θ(0) can be set by randomly assigning points to G clusters and then
computing cluster parameters. Initialization like this needs to be performed a number of
times so that the solution with the largest pseudo-likelihood is selected. Implementation
of the RIMLE given in the otrimle software of Coretto and Hennig (2017) relies on a more
refined initialization strategy which consist in the following steps.

Initial denoising: for each data point compute its kth-nearest neighbors distance (k-
NND), for some k. All points with k-NND larger than the (1 − πmax)-quantile of
the k-NND are initialized as noise. The interpretation of k is that (k− 1), but not k,
points close together may still be interpreted as noise/outliers, whereas k such points
would constitute a cluster. The default value in the otrimle package is k = 3.

Initial clusters: agglomerative hierarchical clustering based on ML criteria for Gaussian
mixture models as in Fraley (1998) is performed on the remaining bn(1 − πmax)c
regular points to find the initial clusters. The sample mean and covariance matrix of
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points belonging to each cluster are computed to define θ(0). This step is performed
based on the hc() function from the mclust package.

The constraint defining quantities πmax and γ are regularization parameters that allow
solving an otherwise ill-posed optimization problem. πmax also controls robustness because
it specifies the maximum proportion of points assignable to the noise component. In order
to be as robust as possible πmax = 1/2 is a convenient choice that guarantees maximum
protection. This implements a familiar condition in robust statistics that at most half of
the data should be classified as “outliers/noise”. A choice of πmax lower than the actual
noise/outlier proportion will enforce some outliers to be assigned to clusters with potentially
problematic implications. Hence, unless one has prior knowledge about the contamination
process, we suggested to stick to πmax = 1/2.

The role of the eigenratio can be twofold. If γ is set to a low-value, strong restrictions
on clusters’ shape are imposed. In this respect, the eigenratio constraint acts as a model
selector. Unless one knows precisely the implications of a low choice of γ, it is suggested
to use the eigenratio constraint as a regularization parameter. In fact, a large value of
γ will regularize the covariance matrices without affecting clusters’ shape too much. For
example, a large γ would allow discovering an elongated concentrated cluster along with
clusters having widespread spherical scatters. Ritter (2014) contains an in-depth analysis
of constraints in model-based clustering. In Section 7 we present Monte Carlo experiments
where the effect of different γ values is investigated.

Although through the presence of the product π0δ in (1) the parameters π0 and δ may
seem confounded, they actually play a very different role in the RIMLE. δ is not treated
as a model parameter to be estimated, but rather as a tuning device to enable a good
robust clustering. The interpretation is that δ is the density value below which groups
of observations should rather be treated as “noise” than as “cluster”. This means that a
larger value of δ will normally yield a larger estimate of π0 because more observations will
be classified as noise, as opposed to the intuition suggested by having the product π0δ in
(1). Whether small groups of observations of a certain size and with a certain density peak
should rather count as “cluster” or rather as “group of outliers” cannot be identified from
the data alone, but is rather a matter of interpretation. RIMLE may be sensitive to the
choice of δ, and a good choice of δ is therefore important in practice. For instance, in the
example of Figure 2 it has been shown that outside a certain interval of δ values the RIMLE
does not perform well. Occasionally, subject matter knowledge may be available aiding the
choice of a fixed value of δ, but often such knowledge may not exist. The OTRIMLE, a
data dependent method (“optimally tuned RIMLE”) to choose δ is presented in Coretto
and Hennig (2016). The basic idea is to find a δ that optimizes a weighted Kolmogorov-type
distance measure between the Mahalanobis distances of all objects to their corresponding
cluster centers and the χ2-distribution, which the Mahalanobis distances should follow if
the clusters were indeed Gaussian. The current implementation of the OTRIMLE in the
otrimle package selects the best RIMLE solution computed with algorithm 2 on a selected
grid of 50 values of log(δ). The default grid includes log(δ) = −∞ so that a pure Gaussian
mixture is always included in the competition (see the otrimle manual for more details).
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6. Breakdown robustness of the RIMLE

Although robustness results for some clustering methods can be found in the literature,
robustness theory in cluster analysis remains a tricky issue. Some work exists on breakdown
points (Garćıa-Escudero and Gordaliza, 1999; Hennig, 2004; Gallegos and Ritter, 2005),
addressing whether parameters can diverge to infinity (or zero, for covariance eigenvalues
and mixture proportions) under small modifications of the data. An addition breakdown
point of r/(n+ r) means that r, but not r − 1, points can be added to a data set of size n
so that at least one of the parameters “breaks down” in the above sense.

It is well known (Garćıa-Escudero and Gordaliza, 1999; Hennig, 2008), assuming the
fitted number of clusters to be fixed, that robustness in cluster analysis has to be data
dependent, for the following reasons:

• If there are two not well separated clusters in the data set, a very small amount of
“contamination” can merge them, freeing up a cluster to fit outliers converging to
infinity.

• Very small clusters cannot be robust because a group of outlying points can legiti-
mately be seen as a “cluster” and will compete for fit with non-outlying clusters of
the same size. Noise component-based and trimming methods are prone to trimming
whole clusters if they are small enough.

Therefore, all nontrivial breakdown results (i.e., with breakdown point larger than the
minimum 1/(n + 1)) in clustering require a condition that makes sure that the clusters in
the data set are strongly clustered in some sense, which usually means that the clusters are
homogeneous and strongly separated.

The theory for the RIMLE given here generalizes the argument given in Hennig (2004),
Theorem 4.11, to the multivariate setup. We consider fixed datasets xn = (x1, x2, . . . , xn)
and sequences of estimators (En)n∈N mapping observations from (Rp)n to Θ. Denote the
components of En(xn) by
(πEn0, πEn1, . . . , πEnG, µEn1, . . . , µEnG,ΣEn1, . . . ,ΣEnG), G being the number of mixture
components as usually.

The following assumption in the definition of the breakdown point makes sure that
En(xn) indeed parametrizes G different mixture components; if there was a mixture com-
ponent with proportion zero or two equal ones, one mixture component would be free to be
driven to breakdown.

A4 For j = 1, . . . , G : πEnj > 0, and all (µEnj ,ΣEnj) are pairwise different.

Definition 19 Assume that (En)n∈N and xn fulfil A4. Then,

B(En, xn) = min
r

{
r

n+ r
: ∃1 ≤ j ≤ G

∀D = [πmin, 1]× C for which πmin > 0, C ⊂ Rp × Sp compact

∃xn+r = (x1, x2, . . . , xn, xn+1, . . . xn+r) so that for

En+g(xn+g) : (πE(n+g)j , µE(n+g)j ,ΣE(n+g)j) 6∈ D
}
,
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where Sp is the set of all positive definite real valued p×p-matrices, is called the breakdown
point of En at dataset xn.

Denote the sequence of RIMLE estimators defined in (3) as (θmH)m∈N, write lmH(xm, θ)
for lm(θ) with any m ∈ N and number of components H in (2), lomH = lmH(xm, θmH(xm)).
Let θ∗ = θnG(xn) for the specific xn and G considered here. Components of θ∗ and later
θ+ are denoted with upper index “∗” and “+”, respectively. For j = 1, . . . , G, let φ∗j (x) =
φ(x, µ∗j ,Σ

∗
j ), same with upper index “+”. Assume δ > 0 fixed throughout this section. We

start with a straightforward extension of Lemma 3.

Lemma 20 Assume A0 for xn. If (θm)m∈N is any sequence in Θ so that for some j = 1, 2, . . . , G
and k = 1, 2, . . . , p, λk,j,m ↘ 0 as m → ∞. For xn+r = (x1, x2, . . . , xn, xn+1, . . . xn+r):
sup(xn+1,...,xn+r)∈(Rp)r l(n+r)G(xn+r, θm)→ −∞.

Proof The proof of Lemma 3 still applies because adding further observations only adds
further positive terms to the sum in (13).

Corollary 21 Assume that xn is a fixed dataset fulfilling A0 and A4 for En = θnG. Then
there is a λ0 > 0 bounding from below all λmin for θ = θ(n+r)G(xn+r) where xn+r =
(x1, x2, . . . , xn, xn+1, . . . xn+r) for any (xn+1, . . . , xn+r) ∈ (Rp)r. Consequently φmax =

(2π)−
p
2λ
− p

2
0 is an upper bound for all φ(x;µ,Σ) with (µ,Σ) occurring as component pa-

rameters in any such θ.

Proof Observe

l(n+r)G(xn+r, θ
∗) ≥ 1

n+ r

(
n∑
i=1

logψδ(xi, θ
∗) + r log(π∗0δ)

)
> −∞. (25)

If the Corollary was wrong, it would be possible to construct a sequence (θm)m∈N with
λk,j,m ↘ 0 for some j = 1, 2, . . . , G and k = 1, 2, . . . , p so that each θm = θ(n+r)G(xn+r)
for an admissible xn+r. But (25) implies that there is a lower bound for l(n+r)G(xn+r, θm),
contradicting Lemma 20.

The following theorem gives conditions under which the RIMLE estimator is breakdown
robust against adding r observation to xn. (26) states that the dataset needs to be fitted by
G Gaussian components considerably better than by G− 1 components, because otherwise
the remaining mixture component would be available for fitting the added observations
without doing much damage to the original fit. (27) makes sure that the noise proportion
in xn is low enough that the added observations can still be fitted by the noise component
without exceeding πmax.

Theorem 22 Assume that xn fulfils A0 and A4 for En = θnG. If

lon(G−1) <

n∑
i=1

log

 G∑
j=1

π∗jφ
∗
j (xi) +

(
π∗0 +

r

n

)
δ

+

r log
((
π∗0 +

r

n

)
δ
)

+ (n+ r) log
n

n+ r
− r log φmax, (26)
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φmax defined in Corollary 21, and

1

n+ r

(
n∑
i=1

(nπ∗0 + r)δ

(n+ r)ψδ(xi, θ∗)
+ r

)
< πmax, (27)

then B(θnG, xn) > r
n+r .

Proof For xn+r = (x1, . . . xn+r), let θ+ = θ(n+r)G(xn+r). Let H < G. Then,

lo(n+r)G ≤
n∑
i=1

log

 H∑
j=1

π+
j φ

+
j (xi) +

G∑
j=H+1

π+
j φ

+
j (xi) + π+

0 δ

+ r log φmax.

Assume w.l.o.g. that the parameter estimators of the mixture components H + 1, . . . , G
leave a compact set D of the form D = [πmin, 1] × C, C ⊂ Rp × Sp compact, πmin > 0.
Then there exists φmin bounding φ+

j (xi) from below for j = 1, . . . ,H and i = 1, . . . , n, so∑H
j=1 π

+
j φ

+
j (xi) ≥ Hπminφmin.

Consider sequences (θm)m∈N ∈ Θ with l(n+r)G(xn+r, θm) → lo(n+r)G and leaving any D

for j = H+1 . . . , G, i.e., ‖µmj‖ → ∞ or λk,j,m →∞ or πmj → 0, but with all λk,j,m ≥ λ0 as

established in Corollary 21. Observe that for such sequences
∑G

j=H+1 πmjφmj(xi) becomes
arbitrarily small for i = 1, . . . , n. Thus, for arbitrary ε > 0 and D large enough:

lo(n+r)G ≤
n∑
i=1

log

 H∑
j=1

π+
j φ

+
j (xi) + π+

0 δ

+ r log φmax + ε

≤ max
H<G

lonH + r log φmax + ε ≤ lon(G−1) + r log φmax + ε.

But a potential estimator θ̂ could be defined by π̂0 =
nπ∗

0+r
n+r , π̂j = n

n+rπ
∗
j , µ̂j = µ∗j , Σ̂j =

Σ∗j , j = 1, . . . , G. Note that θ̂ ∈ Θ because of (27). Therefore,

lo(n+r)G ≥
n∑
i=1

log

 G∑
j=1

π∗jφ
∗
j (xi) +

(
π∗0 +

r

n

)
δ


+r log

[(
π∗0 +

r

n

)
δ
]

+ (n+ r) log
n

n+ r

⇒ lon(G−1) ≥
n∑
i=1

log

 G∑
j=1

π∗jφ
∗
j (xi) +

(
π∗0 +

r

n

)
δ


+r log

[(
π∗0 +

r

n

)
δ
]

+ (n+ r) log
n

n+ r
− r log φmax − ε.

This contradicts (26) by ε→ 0.
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Table 1: Parameters of the AsyNoise sampling design. Let π and ν be the expected propor-
tion and the degrees of freedom. m1, v1 and m2, v2 are the mean parameters (m)
and variance parameters (v) along dimensions 1 and 2 respectively. c1,2 denotes
the covariance between marginals 1 and 2. All remaining variances are set equal
to 1, while all remaining mean and covariance parameters are set equal to 0.

Parameter Cluster
1 2 3 4 5

π 10.05% 20.10% 6.70% 10.05% 20.10%
ν 10 11 12 13 14
m1 0 7 5 -11 -7
m2 3 1 9 11 5
v1 1 2 2 0.5 2.5
v2 1 2 2 0.5 2.5
c12 0.5 -1.5 1.3 0 0

7. Numerical experiments

In this section, we perform Monte Carlo experiments to compare robust clustering methods
on the two sampling designs introduced in Section 2. There is already a comprehensive
simulation study involving OTRIMLE and competitors in Coretto and Hennig (2016), so
here we use different setups. Below, apart from involving competing methods from the
literature, the two OTRIMLE algorithms are compared (see Remark 18).

The AsyNoise design of Figure 1 generates G = 5 clusters in p = 20 dimensions and
an expected noise proportion of 33%. The five clusters are generated from a mixture of
t-distributions with parameters given in Table 1. The five clusters show a combination
of structures that are often difficult to handle together. Some of them are not well sep-
arated, they are of different size, and although they are all elliptically shaped, there are
strong differences in cluster scatters, and deviations from normality. The noise originates
from a distribution obtained as the product of two independent one-dimensional uniform
distributions with support on the interval [−25, 25], and 18 independent one-dimensional
χ2-distributions with 1 degree of freedom. The first and the third marginal are distributed
uniformly, producing background noise on both clustered and non-clustered dimensions,
and the χ2-distribution adds a strong dose of asymmetry.

The second sampling design is called GEM (see Figure 3). In this case, the sampling
design is a mixture of two Gaussian distributions in p = 20 dimensions, with the addition of
a few potential outliers. In this design, the first cluster has strongly correlated marginals,
whereas the second one is spherical, and this produces a large discrepancy between the
clusters’ shapes. Define the p×p correlation matrix C(ρ) := (ρ|l−k|)l,k for l, k = 1, . . . , p
(also called AR(1) correlation model). The parameters of the GEM design are specified
in Table 2. An expected 2% of points are generated from a 20-dimensional t-distribution
with 3 degrees of freedom, centered at (0, 0,−7, . . . ,−7)′, with unit variances and correlation
matrix C(0.9999). This produces a few points far from both clusters, although these outliers
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Table 2: Parameters of the GEM sampling design. Let π be the expected proportion. m
is the mean parameter constant across all marginals for the same cluster. Each
clusters has unit variance across all marginals and correlation matrix given by
C(ρ).

Parameter Cluster
1 2

π 29.4% 68.6%
m 0 4
ρ 0.99 0

are not extremely separated from the regular data. While non-robust methods can cope
with weakly separated outliers at the expense of large estimation bias, some robust methods
capable of handling extreme outliers might get in trouble if the separation gap between
regular and nonregular points is modest.

In this experiment, ML for Gaussian mixtures with uniform noise and TCLUST are
compared with the RIMLE optimally tuned according to the OTRIMLE method introduced
in Coretto and Hennig (2016). Methods under comparison are set up as follow:

OtrimleECM: RIMLE is computed based on the ECM algorithm 2 on a grid of 50 log(δ))
values as described in Section 5.2. The OTRIMLE criterion proposed in Coretto
and Hennig (2016) selects the best solution. The input parameter πmax is always set
to the conventional 50%. The eigenratio constraint is varied between the strongest
restriction (γ = 0), and no restriction at all (γ = +∞). In particular, log10 (γ) =
{0, 0.5, 1, 2, 3, 6,+∞}. The initial partition is computed as described in Section 5.2.
OtrimleECM is computed using the otrimle package of Coretto and Hennig (2017).

OtrimleAEM: RIMLE is computed using the approximate EM-algorithm introduced in
Coretto and Hennig (2016). Both πmax and γ are set for OtrimleECM as well as initial
values. Software for OtrimleAEM is available as part of the supplementary materials
in Coretto and Hennig (2016).

TclustOracle: TCLUST with trimming rate set to the true underlying noise proportion.
The eigenratio constraint is treated as for OtrimleECM. TclustOracle is computed us-
ing the tclust package of Fritz et al. (2012) which does not allow the user to choose an
initial partition. TCLUST initialization is random, and we increased the default num-
ber of random starts to the sample size. The default maximum number of iterations
is also increased to 500 because several convergence problems were recorded.

TclustFix: same as TclustOracle but with trimming rate fixed to a low 5% for the GEM
design, and a high 50% for the AsyNoise design. The package tclust also includes the
“ctlcurves”-tool for guiding the user toward the choice of a suitable trimming rate.
Unfortunately, this graphical tool does not give any clear indication for the data sets
generated in this experiment.
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MCLUSTn: ML for Gaussian mixtures with uniform noise as implemented in the mclust
package of Fraley et al. (2012). Regularization of the covariance matrices is done
by choosing an appropriate covariance parameterization based on the BIC (Bayesian
Information Criterion). Mclust requires noise initialization, and this is initialized as
for the OtrimleECM. Note that the otrimle package uses mclust initialization for the
regular points, hence OtrimleECM and MCLUSTn both start from the same partition.

There exist other methods capable of handling noise not considered here. The true clusters
can be characterized by having a considerably higher density than the noise region, so
density based clustering would seem to be another promising approach, but it suffers from
the high dimensionality of the data, too. The DBSCAN algorithm of Ester et al. (1996) can
handle noise, however its performance strongly depends on a pair of tunings that need to
be carefully selected based on the dataset, and this makes it hardly comparable in a Monte
Carlo experiment like the present one. ML based on t-mixtures of Peel and McLachlan
(2000) would also be appropriate, however it requires discretionary decisions on how to
define noise in terms of the tails of the estimated student-t distributions.

The sample size is set to n = 500 for AsyNoise, and n = 100 for GEM. With these
relatively low sample sizes, the regularization of the covariance matrices becomes crucial
because often small clusters are found compared to the dimensionality p. For both data sets
1000 Monte Carlo replicates have been considered. The true cluster label of a point is defined
based on the component of the sampling distribution that generates it. Misclassification
rates are computed with respect to the minimizing permutation of clusters’ indexes not
involving the estimated noise, which is always matched to the true noise. The underlying
eigenratio behavior of these designs is largely varying. The true γ is 7 for AsyNoise, and it
is 3704.7 for GEM. However, if one computes the eigenratio of sample clusters’ covariances
based on true labels the figure can be completely different. In fact, we computed the (5%,
95%)-quantiles of the Monte Carlo distribution of these quantities, and we obtained (44.5,
273.4) for AsyNoise, and (19899.3, 246826.8) for GEM. In the examples given in Section 2
we fixed γ = 100, because in real world applications one typically does not have information
on it, and we used the central value adopted in these experiments.

Results are summarized in Tables 3 and 4, and Figures 5 and 6. Since MCLUSTn does
not enforce an eigenratio constraint, results are recorded at γ = +∞, although MCLUSTn
has its own covariance regularization. MCLUSTn is seriously affected by contamination
in both designs. Its performance is better for the AsyNoise design for which the boxplot
of Figure 5 shows that in some replica it can produce misclassification rates below 10%.
Regarding the Otrimle and Tclust versions, the performance depends on the setting of
the eigenratio constraint. However, OtrimleECM offers the most stable performance in
both designs. OtrimleECM achieves the best misclassification performance in all situations
except for few cases where TclustOracle does better, but in fact, TclustOracle is run with
the assumption that one knows the expected amount of noise exactly, which is never true
in reality. Note that TclustOracle seems to not tolerate large values of γ in both designs.
This is counterintuitive at least for GEM, where the true log10(γ) is between 3 and 6, but
in this range both TclustOracle and TclustFix have serious problems. OtrimleAEM is the
second best overall, although it shows a large positive skewness in the distribution of the
misclassification rates for AsyNoise, and in both designs it is not able to enforce low γ
values appropriately. This is because in OtrimleAEM an approximate eigenratio constraint
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Table 3: Monte Carlo averages, with standard errors in parenthesis, of misclassification
rates (%) for the AsyNoise sampling design. “na” is reported if the software did
not produce a valid answer in more than 50% of the replicates.

log10(γ) OtrimleECM OtrimleAEM TclustOracle TclustFix MCLUSTn

0 15.31(0.00) 31.96(0.03) 4.33(0.00) 18.63(0.00) —
0.5 11.25(0.01) 25.57(0.03) 5.31(0.00) 18.65(0.00) —

1 9.46(0.00) 22.14(0.02) 16.52(0.00) 23.30(0.00) —
2 11.48(0.00) 19.40(0.01) 50.26(0.00) 48.66(0.00) —
3 12.37(0.01) 19.71(0.01) 57.88(0.00) 56.72(0.00) —
6 12.05(0.01) 19.90(0.01) 57.26(0.00) 56.89(0.00) —

+∞ 12.08(0.00) 19.92(0.01) na na 27.05(0.02)

Table 4: Monte Carlo averages, with standard errors in parenthesis, of misclassification
rates (%) for the GEM sampling design. “na” is reported if the software did not
produce a valid answer in more than 50% of the replicates.

log10(γ) OtrimleECM OtrimleAEM TclustOracle TclustFix MCLUSTn

0 1.10(0.00) 63.97(0.04) 1.78(0.00) 3.32(0.00) —
0.5 0.87(0.00) 11.96(0.03) 1.50(0.00) 3.17(0.00) —

1 1.57(0.01) 3.49(0.01) 1.25(0.00) 3.11(0.00) —
2 0.52(0.00) 2.25(0.00) 8.10(0.01) 9.68(0.01) —
3 0.50(0.00) 0.71(0.00) 16.41(0.00) 18.08(0.00) —
6 3.82(0.01) 1.18(0.01) 14.07(0.00) 16.80(0.00) —

+∞ 4.66(0.01) 1.17(0.01) na na 41.60(0.01)
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Figure 5: Modified boxplots of the Monte Carlo distribution of misclassification rates for the
AsyNoise design: whiskers coincide with (5%, 95%)–quantiles of the distribution.
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Figure 6: Modified boxplots of the Monte Carlo distribution of misclassification rates for
the GEM design: whiskers coincide with (5%, 95%)–quantiles of the distribution.
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is applied at the end of the EM iteration (see Remark 18). These results show a remarkable
improvement of the ECM algorithm 2 over the approximate solution proposed in Coretto
and Hennig (2016).

In practice the user has to specify γ. According to the results shown here, OtrimleECM
is not very sensitive to this choice. Also the results show that good misclassification rates
can be achieved in GEM, with a true γ > 3000, using a much lower γ for OTRIMLE;
actually for TCLUST a much lower γ is even required to achieve good results. Choosing a
lower γ in such situations may provide some welcome regularization. γ = 100 often seems to
be a sensible choice. However, the user needs to have in mind that a straight interpretation
of γ requires that a variance of 1 (say) along a one-dimensional projection has the same
meaning in all directions in data space, which is particularly doubtful if variables have
different measurement units or variable-wise variations are not meaningfully comparable.
In such cases sphering or at least variable standardization may be advisable.

8. Concluding Remarks

The RIMLE robustifies the MLE in the Gaussian mixture model by adding an improper
constant mixture component to catch outliers and points that cannot appropriately assigned
to any cluster. Characteristics of the method compared to other robust clustering methods
aiming for approximately Gaussian clusters are a smooth mixture-type transition between
clusters and noise, and the fact that noise and outliers are not modelled by a specific and
usually misspecified distribution, but rather as anything where the estimated mixture den-
sity is so low that the observation is rather classified to the constant noise than to any
mixture component. If needed, the density value of the improper constant noise component
can be chosen in a data-adaptive based on the OTRIMLE criterion developed in (Coretto
and Hennig, 2016). The RIMLE/OTRIMLE has shown competitive performance when
compared with state of the art methods for robust model-based clustering methods. In this
paper we investigated theoretical properties of the RIMLE, and it is shown existence, con-
sistency, breakdown behaviour, and convergence of algorithms. Since the RIMLE coincides
with the MLE for Gaussian finite mixture models (when δ = 0), the present paper also
gives a comprehensive treatment for it which was missing in the literature.
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