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Abstract

We study estimation properties of regularized procedures of the form

f̂ ∈ argmin
f∈F

( 1

N

N∑
i=1

(
Yi − f(Xi)

)2
+ λΨ(f)

)
for a convex class of functions F , regularization function Ψ(·) and some well chosen regu-
larization parameter λ, where the given data is an independent sample (Xi, Yi)

N
i=1.

We obtain bounds on the L2 estimation error rate that depend on the complexity of
the true model F ∗ := {f ∈ F : Ψ(f) ≤ Ψ(f∗)}, where f∗ ∈ argminf∈F E(Y − f(X))2 and
the (Xi, Yi)’s are independent and distributed as (X,Y ). Our estimate holds under weak
stochastic assumptions – one of which being a small-ball condition satisfied by F – and for
rather flexible choices of regularization functions Ψ(·). Moreover, the result holds in the
learning theory framework: we do not assume any a-priori connection between the output
Y and the input X.

As a proof of concept, we apply our general estimation bound to various choices of
Ψ, for example, the `p and Sp-norms (for p ≥ 1), weak-`p, atomic norms, max-norm and
SLOPE. In many cases, the estimation rate almost coincides with the minimax rate in the
class F ∗.

Keywords: Empirical processes theory, high-dimensional Statistics, regularization, learn-
ing theory, minimax rates.

1. Introduction

In the standard learning framework, one would like to approximate / predict an unknown
random variable Y using functions from a given class F , and to do so using only random
data. To be more accurate, let (X , µ) be a probability space and consider a class of functions
F on (X , µ). Let X be distributed according to µ and set X1, . . . , XN ∈ X to be N
independent copies of X.

Given an unknown random variable Y , letD = (Xi, Yi)
N
i=1 be a sample selected according

to the joint distribution of (X,Y ). One would like to use the data D and construct a
(random) function f̂(·) = f̂(D, ·) ∈ F , with f̂(X) serving as a good guess of Y .
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While there are various interpretations of the meaning of ‘a good guess’, the notion we
will focus on here is as follows.

In a typical problem, very little is assumed on the target Y or on the measure µ; on
the other hand, the class F is known and a typical assumption is that F is convex and
closed in L2(µ). Therefore, the functional f → E(f(X) − Y )2 has a unique minimizer in
F ,

f∗ = argmin
f∈F

E(Y − f(X))2. (1.1)

The notion of ‘a good guess’ is that f̂ is close to f∗ in L2(µ), and one would like to
obtain a high probability bound on the L2(µ) distance of the form∥∥∥f̂ − f∗∥∥∥2

L2

= E
[(
f∗(X)− f̂(X)

)2|D] ≤ α2
N . (1.2)

In this case, α2
N is called a rate of convergence, the error rate or the L2(µ)-estimation rate

of the problem.

Clearly, one has to pay a price for allowing a rather general target Y . Also, to have any
hope that f∗(X) is reasonably close to Y , one has to consider large classes, leading to an
error α2

N that is often too large to be of any use.
A possible way of bypassing the fact that F may be very large, is the classical approach

to regularization, where a certain property one believes f∗ to possess is emphasized by
penalizing functions that do not have that property. The penalty is endowed via a regular-
ization function Ψ(·), defined on an appropriate subspace E ⊂ L2(µ) that contains F , and
for which Ψ(f∗) is believed to be small (though one does not know that for certain). As
a consequence, regularization procedures are designed to fit the data and to have a small
Ψ value at the same time. One way of achieving that is to search for functions in F that
realize a good tradeoff between fitting that data, which is measured via an empirical loss
function PN`f , and the size of the regularization term λΨ(f).

Definition 1.1 The Regularized Empirical Risk Minimization procedure (RERM) is defined
by

f̂ ∈ argmin
f∈F

(
PN`f + λΨ(f)

)
, (1.3)

where here and throughout the article, PNh denotes the empirical mean of h, `f is the loss
function associated with f and λ is the so-called regularization parameter.

We only consider the square loss `f (x, y) = (y − f(x))2, and thus,

PN`f =
1

N

N∑
i=1

(Yi − f(Xi))
2.

A well known example to this, the “classical approach” to regularization, is the cubic
smoothing spline that can be obtained with the choice

Ψ(f) =

∫ (
f ′′(t)

)2
dt.
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Another well-studied example is of the form

Ψ(f) =

∫
Rd

∣∣f̄(t)
∣∣2

Ḡ(t)
dt

where the integration is with respect to the Lebesgue measure, f̄ is the Fourier trans-
form of f and Ḡ is some positive function tending to zero when |t| goes to infinity (cf.
Girosi et al. (1995)). In fact, this type of regularization methods dates back to Tikhonov
(Tikhonov (1943)) and is sometimes called Tikhonov regularization; it is also known as
L2-regularization or Ridge regularization (Golub et al. (1979)).

These methods and others like them have been used to “smooth” estimators that have
poor generalization capability because of their tendency to over-fit the data, and for the
corresponding regularization functions, having a small Ψ value is a guarantee of smoothness.
We refer to Hastie et al. (2009) for other examples of regularization functions that have been
used to “smooth” estimators.

We said “classical approach to regularization” because in the more modern approach
the aim is somewhat different. One uses a penalty that seemingly has little to do with the
property one wishes to emphasize (usually, some notion of sparsity). Yet somehow, almost
magically, the penalty enhances a hidden property and the resulting error rate does not
depend on Ψ(f∗) but on that hidden property of f∗. We call such error rates sparsity-
dependent error rates.

The first part of this article (Lecué and Mendelson (to appear)) has dealt with the
modern approach to regularization. Here we would like to complete the picture by exploring
bounds that depend on Ψ(f∗) rather than on some hidden sparsity structure of f∗. Such
error rates will be called complexity-dependent error rates, since the aim is to obtain
rates of convergence that depend on the complexity of the unknown true model {f ∈ F :
Ψ(f) ≤ Ψ(f∗)}. Of course, the two approaches may sometimes be combined advantageously
(see some examples below).

In this context, we will consider regularization functions that satisfy the following prop-
erties, which are more general than the ones considered in Lecué and Mendelson (to appear).

Assumption 1.1 A function Ψ : E → R+ is a regularization function if

• It is nonnegative, even, convex and Ψ(0) = 0.

• There is a constant η ≥ 1, for which, for every f, h ∈ E,

Ψ(f + h) ≤ η(Ψ(f) + Ψ(h)).

• For every 0 ≤ α ≤ 1 and h ∈ E, Ψ(αh) ≤ αΨ(h).

Remark 1.2 Classical Model Selection regularization functions, such as the cardinality of
the support of a vector or the rank of a matrix, are usually not convex and do not satisfy
Assumption 1.1. Such examples are therefore not considered in what follows.
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1.1 Classical vs. modern

As mentioned above, the direction we take here is closely related to the classical approach to
regularization and is rather different from the modern approach. To explain the differences
we shall use the celebrated LASSO estimator (cf. Tibshirani (1996); Donoho and Johnstone
(1994)) as an example.

Let F be a class of linear functionals on Rd of the form
〈
t, ·
〉
. Set t∗ ∈ argmint∈Rd E(Y −〈

X, t
〉
)2, and consider the RERM (1.3) with the `d1-norm, ‖t‖1 =

∑d
i=1 |ti|, serving as a

regularization function. Let

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ λ ‖t‖1

)
,

and the resulting minimizer is the LASSO estimator.
Estimation, de-noising, prediction and support recovery results have been obtained for

the LASSO in the last decades (see, for example, Tibshirani (1996), Bickel et al. (2009),
and the books Giraud (2015); Bühlmann and van de Geer (2011) and Koltchinskii (2011)
for additional references).

The LASSO has been used in high-dimensional problems, in which the aim was to
enhance a low-dimensional structure. The hope was that if the signal t∗ were sparse (that
is, supported on relatively few coordinates), the regularization procedure t̂ would estimate
t∗ with an error rate depending on the cardinality of the support of t∗, denoted by ‖t∗‖0 =
|{j ∈ {1, . . . , d} : t∗j 6= 0}|.

However, if t∗ happens to be ‘well-spread’ rather than sparse, though with a reasonable `d1
norm, the sparsity-dependent error rate is useless, while a complexity-dependent error rate,
which yields bounds in terms of ‖t∗‖1, is sharper. The obvious example is t∗1 = (1/d, ..., 1/d)
and t∗2 = (1, 0, ..., 0): although ‖t∗1‖1 = ‖t∗2‖1 = 1, the cardinalities of their supports are
very different, and sparsity-dependent error rates when t∗ = t∗1 are likely to be bad.

Examples of that nature are the reason why error rates combining both sparsity and com-
plexity have been obtained for the LASSO. A typical example is Corollary 9.1 in Koltchinskii
(2011). To formulate it, Let W1, · · · ,WN be N independent, centered subgaussian variables
with variance σ2 and set x1, . . . , xN to be N deterministic vectors in Rd. Assume that the
design matrix, Γ = N−1/2

∑N
i=1

〈
xi, ·

〉
ei, whose rows are xi/

√
N , satisfies some Restricted

Isometry Property (cf. Candès et al. (2006)). If Yi =
〈
xi, t

∗〉 + Wi, i = 1, . . . , N , then for
a well chosen regularization parameter λ, one has, with high probability,

E
〈
X, t̂− t∗

〉2 ≤ C min

{
σ2 ‖t∗‖0 log d

n
, σ ‖t∗‖1

√
log d

n

}
(1.4)

for a suitable absolute constant C.
The error rate from (1.4) consists of two components: the sparsity-dependent error

term σ2(‖t∗‖0 log d)/n, and the complexity-dependent error term σ ‖t∗‖1
√

(log d)/n, and
in what follows we will present a few other examples that combine the two rates – because
the procedure one uses to obtain both types of rate is the same.
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The aim of this article is to address the “complexity-based” aspect of the problem: to
study regularization problems in which one believes that the Ψ(f∗) is relatively small, and
obtain an error rate that depends on Ψ(f∗) rather than on some sparsity property of f∗.

1.2 Attaining Minimax rates

A natural benchmark for measuring the success of a regularization method is the minimax
error rate, assuming that Ψ(f∗) is known: if one is given additional information on Ψ(f∗),
e.g., that f∗ ∈ {f : Ψ(f) ≤ R}, one may consider the estimation problem in {f : Ψ(f) ≤ R}
using the given random data. Such a problem has an optimal error rate (called the minimax
rate): it is the best rate any learning procedure may achieve in the class {f : Ψ(f) ≤ R}
given the random data (Xi, Yi)

N
i=1. This minimax rate will serve as our benchmark, and

will be compared with the error rates that we obtain.

Of course, one is not given additional information on Ψ(f∗) and it is reasonable to
expect that the error rate of the regularization procedure will be significantly slower than
this benchmark. The question we shall study here focuses on that gap. In fact, we will
show that the price one has to pay for not knowing Ψ(f∗) is surprisingly small, under rather
weak assumptions.

From a technical perspective, all regularization-based procedures share one crucial as-
pect: the calibration of the regularization parameter λ. That choice is very important as λ
is an essential component in ensuring that the error rate of the estimator f̂ is well-behaved.
Thus, to study the gap between the regularization error rate and the minimax rate, one has
to identify the right choice of λ.

Question 1.3 What is the ‘correct choice’ of the regularization parameter λ, and given
that choice, what is the rate of convergence of RERM? Specifically, how far is the resulting
rate from the one that could have been achieved had Ψ(f∗) been given in advance?

An answer to Question 1.3 requires one to identify λ; to find a high probability upper
bound on ‖f̂ − f∗‖2L2(µ) where f̂ is defined in Definition 1.1 for that choice of λ; and
then to compare the error rate to the minimax rate of the estimation problem in the class
{f ∈ F : Ψ(f) ≤ Ψ(f∗)} (the so-called true model).

The strategy we use below follows a similar path to Lecué and Mendelson (to appear)
and is based on the small ball method, introduced in Mendelson (2015, 2014); Koltchinskii
and Mendelson (2015); Mendelson (To appear).

1.3 The small-ball method

Given a closed and convex class F and an unknown target Y , recall that f∗ ∈ F is a
minimizer in F of the functional f → E(f(X)− Y )2.

The excess loss functional associated with f ∈ L2(µ) is

f → Lf (X,Y ) =`f (X,Y )− `f∗(X,Y ) = (f(X)− Y )2 − (f∗(X)− Y )2

=(f − f∗)2(X) + 2(f∗(X)− Y )(f − f∗)(X). (1.5)
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Moreover, since F is closed and convex, then by the characterization of the nearest point
map in a Hilbert space,

E(f∗(X)− Y )(f − f∗)(X) ≥ 0 for every f ∈ F ;

thus

1

N

N∑
i=1

(f∗(Xi)− Yi)(f − f∗)(Xi) ≥
1

N

N∑
i=1

(f∗(Xi)− Yi)(f − f∗)(Xi)− E(f∗(X)− Y )(f − f∗)(X).

(1.6)

Let E be a subspace that contains F and set Ψ(·) to be a regularization function on E
(i.e., a functional that satisfies Assumption 1.1). Set ρ ≥ 0 and put

Kρ(f
∗) = {h ∈ E : Ψ(h− f∗) ≤ ρ},

which, by the convexity of Ψ, is a convex set.

Definition 1.4 For every λ > 0 and any f ∈ L2(µ), define the regularized excess loss by

Lλf = (`f + λΨ(f))− (`f∗ + λΨ(f∗)) = Lf + λ (Ψ(f)−Ψ(f∗)) .

Note that for every sample (Xi, Yi)
N
i=1, a minimizer f̂ of the empirical regularized loss

functional (1.3) also minimizes in F the empirical regularized excess loss f → PNLλf . Hence,

since Lλf∗ = 0, it follows that for every (Xi, Yi)
N
i=1, the empirical regularized excess loss in

f̂ is non-positive:
PNLλf̂ ≤ 0. (1.7)

This observation is at the heart of our analysis, as it allows one to exclude functions f in
F that satisfy PNLλf > 0 as potential minimizers of the empirical regularized loss function.
Our strategy is therefore to show that if f ∈ F and ‖f − f∗‖L2(µ) is not ‘too small’, then

necessarily PNLλf > 0 (for the right choice of λ); hence, functions cannot be minimizers of
the empirical regularized (excess) loss function.

To simplify notation, set ξ = Y − f∗(X),

Mf−f∗(X,Y ) = ξ(f − f∗)(X)− Eξ(f − f∗)(X) and Qf−f∗(X) = (f − f∗)2(X);

therefore, combining (1.5) and (1.6),

PNLf ≥ PNQf−f∗ − 2 |PNMf−f∗ | . (1.8)

The main step in the small-ball method is to find a lower bound on the quadratic process
f → PNQf−f∗ and an upper bound on f → |PNMf−f∗ |. The two estimates should hold
with high probability on certain subsets of F . Then, they have to be compared with the
behaviour of the regularization term λ(Ψ(f)−Ψ(f∗)) on those sets to ensure that PNLλf > 0.

A uniform lower bound on the quadratic component PNQf−f∗ can be obtained under
the following small-ball condition:
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Assumption 1.2 Assume that there are constants κ > 0 and 0 < ε ≤ 1, for which, for
every f, h ∈ F ,

Pr
(
|f(X)− h(X)| ≥ κ‖f − h‖L2(µ)

)
≥ ε.

There are numerous examples in which Assumption 1.2 may be verified for κ and ε that are
absolute constants and we refer the reader to Mendelson (2014, 2015); Lecué and Mendel-
son (2017); Mendelson (To appear); Koltchinskii and Mendelson (2015); Rudelson and Ver-
shynin (2015) for some of them.

To put Assumption 1.2 in some perspective, recall that the class F = {ft =
〈
·, t
〉

:
t ∈ Rd} is identifiable if for every t1, t2 ∈ Rd, Pr(ft1 6= ft2) > 0, (where the probability is
taken with respect to the underlying measure µ). By linearity, this condition is equivalent
to assuming that for every t ∈ Rd, Pr(|

〈
X, t

〉
| > 0) > 0. Thus, the small-ball condition

(which in this case implies that for every t ∈ Rd, Pr(|
〈
X, t

〉
| ≥ κ

∥∥〈X, t〉∥∥
L2

) ≥ ε) is simply
a uniform estimate on the degree of identifiability of class F and is therefore a rather weak
assumption from a statistical point of view.

Now, let us introduce two complexity parameters that play a central role in our analysis.
Let D be the unit ball in L2(µ) and for r > 0 set

rDf∗ = {f ∈ L2(µ) : ‖f − f∗‖L2(µ) ≤ r} = f∗ + rD.

Definition 1.5 Given a class F of functions and τ > 0, let

rQ(F, τ) = rQ(F, f∗, τ) = inf

{
r > 0 : E sup

f∈F∩rDf∗

∣∣∣∣∣ 1

N

N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ τr
}
,

where (εi)
N
i=1 are independent, symmetric, {−1, 1}-valued random variables that are also

independent of (Xi, Yi)
N
i=1.

Set

φN (F, f∗, s) = sup
f∈F∩sDf∗

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi(f − f∗)(Xi)

∣∣∣∣∣ (1.9)

and put

rM (F, τ, δ) = rM (F, f∗, τ, δ) = inf
{
s > 0 : Pr

(
φN (F, f∗, s) ≤ τs2

√
N
)
≥ 1− δ

}
.

One may show the following (see Theorem 3.1 in Mendelson (2015)):

Theorem 1.6 Let F be a closed, convex class of functions that satisfies Assumption 1.2
with constants κ and ε, and set θ = κ2ε/16. For every δ ∈ (0, 1), with probability at least
1− δ − 2 exp(−Nε2/2) one has both:

• for every f ∈ F ,

|PNMf−f∗ | ≤
θ

4
max

{
‖f − f∗‖2L2(µ), r

2
M (F, θ/5, δ/4)

}
,
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• for every f ∈ F with ‖f − f∗‖L2(µ) ≥ rQ (F, κε/32),

PNQf−f∗ ≥ θ‖f − f∗‖2L2(µ).

In particular, with probability at least 1 − δ − 2 exp(−Nε2/2), PNLf ≥ θ
2‖f − f

∗‖2L2(µ) for
every f ∈ F that satisfies

‖f − f∗‖L2(µ) ≥ max {rM (F, θ/5, δ/4) , rQ (F, κε/32)} .

Remark 1.7 An immediate outcome of Theorem 1.6 is that with high probability, a mini-
mizer in F of the empirical excess-loss functional PNLf must satisfy

‖f̃ − f∗‖L2(µ) ≤ max {rM (F, θ/5, δ/4) , rQ (F, κε/32)} . (1.10)

In fact, results from Lecué and Mendelson show that (1.10) is optimal in the minimax
sense under additional mild technical assumptions on F when the data is assumed to satisfy
the Gaussian regression model, that is, when the targets are of the form Y = f0(X)+W for
f0 ∈ F and W that is a centered Gaussian random variable, independent of X. Empirical
risk minimization performed in the set

F ∗ = {f ∈ F : Ψ(f) ≤ Ψ(f∗)}

yields
‖f̃ − f∗‖L2 ≤ max {rM (F ∗, θ/5, δ/4) , rQ (F ∗, κε/32)} , (1.11)

and the r.h.s. of (1.11) is the minimax rate of the estimation problem in F ∗ (up to some
mild technical assumptions). This will serve as a benchmark for the performance of the
regularization procedure (1.3).

1.4 The Main result

Let F ∩Kρ(f
∗) = {f ∈ F : Ψ(f − f∗) ≤ ρ} and observe that these are convex subsets of F .

To simplify notation, set

rM (ρ) = rM

(
F ∩Kρ(f

∗),
κ2ε

80
,
δ

4

)
and rQ(ρ) = rQ

(
F ∩Kρ(f

∗),
κε

32

)
. (1.12)

Let r(·) be a function that satisfies that for every ρ ≥ 0, one has

r(ρ) ≥ max{rM (ρ), rQ(ρ)}. (1.13)

It should be noted that r(ρ) may depend on f∗, and that it also depends on other parameters
– like δ, κ and ε. We will not specify the dependence on those parameters, but rather, only
on the radius ρ.

When sharp estimates on rM (ρ) and rQ(ρ) can be obtained, one may set r(ρ) to be of the
order of max{rM (ρ), rQ(ρ)} for the class F ∩Kρ(f

∗). This choice leads to the rate appearing
in Theorem 1.6 and in (1.10). As we mentioned previously, the rate max{rM (ρ), rQ(ρ)} is
optimal in the minimax sense under additional mild technical assumptions on F ∩Kρ(f

∗).
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More information on the r(ρ) may be found in Section 1 of Lecué and Mendelson or in
Mendelson (2015).

AS it happens, the geometry of the sets F ∩Kρ(f
∗) (see Figure 1) determines both the

error rate and the regularization parameter λ, while r(ρ) measures the sets’ ‘sizes’.
The choice of λ is made as follows:

f∗ Kρ(f
∗) ∩ F

rDf∗

Figure 1: Localization of the set F ∩Kρ(f
∗), i.e. its intersection with L2(µ)-balls of various

radii r for the right choice of radius ρ, plays a central role in the analysis of the
quadratic and multiplier processes.

Let
O(ρ) = sup

(
|PNMf−f∗ | : f ∈ F ∩Kρ(f

∗) ∩ r(ρ)Df∗

)
and for τ > 0 and 0 < δ < 1, set

γO(ρ, τ, δ) = inf {x > 0 : Pr (O(ρ) ≤ τx) ≥ 1− δ}

and
γO(ρ) = γO(ρ, 3/(80η3), δ).

In other words, γO(ρ) is proportional to the smallest possible upper estimate on O(ρ) that
still holds with probability at least 1− δ.

Definition 1.8 For any τ > 0 and 0 < δ < 1, set

λ0(δ, τ) = sup
ρ>0,f∗∈F

γO(ρ, τ, δ)

ρ
.

To compare λ0(δ, τ) with rQ and rM , first note that rM (ρ) and O(ρ) both depend on
properties of the multiplier processes indexed by localizations of F ∩Kρ(f

∗), and recall that
symmetrized and centered processes are essentially equivalent. Second, if r(ρ) = rM (ρ)
then γO(ρ) ∼ r2

M (ρ); moreover, γO(ρ) is trivially bounded by ∼ r2(ρ) for the right choice of
τ and δ. However, if rM (ρ) ≤ rQ(ρ), that is, when r(ρ) = rQ(ρ) – which is the case when ρ
is very large – one may find that γO(ρ) is actually significantly smaller than ∼ r2(ρ). This
observation is of crucial importance because of the choice of the regularization parameter:
for the right choice of τ , γO(ρ) ≤ r2(ρ) and

λ0(δ, τ) ≤ sup
ρ>0,f∗∈F

r2(ρ)/ρ;
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thus, one may be tempted to select the latter as a regularization term. However, there
are natural examples in which supρ>0 r

2(ρ)/ρ = ∞, rendering that choice impossible,
whereas supρ>0,f∗∈F γO(ρ)/ρ turns out to be finite. Of course, there are still cases in
which supρ>0,f∗∈F r

2(ρ)/ρ is finite, and λ0(δ, τ) is of the same order as supρ>0,f∗∈F r
2
M (ρ)/ρ,

though that is not the generic situation.

We now come to the main result of the article.

Theorem 1.9 Let F be a closed, convex class of functions that satisfies Assumption 1.2
with constants κ and ε. Set Ψ(·) to be a regularization function that satisfies Assumption 1.1
with constant η. Furthermore, assume that limρ→0 r(ρ) = 0 and put λ > λ0(δ, 3/(80η3)).

If f̂ is the RERM with a regularization parameter λ as in (1.3), then with probability at
least 1− 2δ − 2 exp(−Nε2/2),

‖f̂ − f∗‖2L2(µ) ≤ max
{
r2
(
10ηΨ(f∗)

)
,
( 32

κ2ε

)
λΨ(f∗)

}
. (1.14)

Observe that λ0 depends only on the oscillations of the multiplier process. Hence, if the
problem is noise-free then λ0 = 0, showing that any regularization parameter λ > 0 would
do. Moreover, in that case rM (ρ) = 0 and so one can choose r(ρ) ≥ rQ(ρ) obtaining an
error rate that depends only on r2

Q(10ηΨ(f∗)).

As noted previously, if one considers empirical risk minimization performed in F ∗ =
{f ∈ F : Ψ(f) ≤ Ψ(f∗)}, the resulting error rate is ‖f̃ − f∗‖2L2(µ) ≤ c0r

2(cΨ(f∗)) for
a suitable absolute constant c0 and a constant c that depends on κ, ε and δ; moreover,
under some minor additional assumptions, that rate is optimal in the minimax sense (cf.
Lecué and Mendelson) when one takes r(ρ) ∼ max

{
rM (ρ), rQ(ρ)

}
. Hence, up to constants

involved, the first term in Theorem 1.9 is essentially the minimax rate that one can obtain
if Ψ(f∗) were known.

If one chooses λ ∼ λ0(δ, τ) for τ = 3/(80η3) then the second term in (1.14) is of the
order of

λΨ(f∗) =
(

sup
ρ,f∗

γO(ρ, τ, δ)

ρ

)
·Ψ(f∗).

Note that for ρ that is of the order of Ψ(f∗), one has

γO(ρ, τ, δ)

ρ
·Ψ(f∗) ≤ c1γO(ρ, τ, δ) ≤ c2r

2(c3Ψ(f∗)),

which coincides with the first term, up to the constants involved. Thus, the price that one
has to pay for not knowing Ψ(f∗) is manifested in the need to take the supremum over all
possible choices of ρ in the second term, rather than considering only the level ρ ∼ Ψ(f∗).

Thankfully, there are many natural cases in which that price is rather small, allowing
for satisfactory outcomes of Theorem 1.9 that are close to the minimax rate.

2. Proof of Theorem 1.9

Before we present the proof, let us introduce some notation. Throughout, absolute con-
stants or constants that depend on other parameters are denoted by c, C, c1, c2, etc., (and,

10
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of course, we will specify when a constant is absolute and when it depends on other pa-
rameters). The values of these constants may change from line to line. The notation x ∼ y
(resp. x . y) means that there exist absolute constants 0 < c < C for which cy ≤ x ≤ Cy
(resp. x ≤ Cy). If b > 0 is a parameter, then x .b y means that x ≤ C(b)y for some
constant C(b) that depends only on b.

The normed space `dp is Rd endowed with the norm ‖x‖p =
(∑

j |xj |p
)1/p

; the corre-

sponding unit ball is denoted by Bd
p and the unit Euclidean sphere in Rd is Sd−1.

Finally, from here on we write Pr and ‖ ‖L2 without specifying the underlying measure.
The proof of Theorem 1.9 follows an almost identical path as the proof of Theorem 3.2

from Lecué and Mendelson (to appear). The differences between the two arguments are
minor and their source is the fact that unlike Lecué and Mendelson (to appear), here we do
not assume that Ψ is a norm. In Remark 2.2 we will outline how a version of Theorem 1.9
may be derived directly from Theorem 3.2 in Lecué and Mendelson (to appear) when Ψ is
a norm.

Theorem 1.9 is an immediate outcome of the following lemma:

Lemma 2.1 Let λ0 = λ0(δ, 3/(80η3)) and set λ > λ0. If limρ→0 r(ρ) = 0, ρ ≥ 5ηΨ(f∗)
and ρ > 0, then with probability at least 1− 2δ − 2 exp(−Nε2/2),

‖f̂ − f∗‖2L2
≤ max

{
r2(ρ), (32/(κ2ε))λΨ(f∗)

}
.

To see how Lemma 2.1 can be used to conclude the proof of Theorem 1.9, observe that
if Ψ(f∗) > 0, one may simply select ρ = 5ηΨ(f∗) in the lemma. If, on the other hand,
Ψ(f∗) = 0, let (γn)∞n=1 be a positive sequence decreasing to 0 and set An = {‖f̂ − f∗‖L2 ≤
γn}, which is a decreasing sequence of events. If Pr(An) ≥ 1 − ν for some 0 ≤ ν ≤ 1 and
every n then Pr({f̂ = f∗}) ≥ 1 − ν. Since limρ→0 r(ρ) = 0, one may apply Lemma 2.1 to
each member of a nonnegative sequence ρn that decreases to zero and for which γn = r(ρn)
decreases to zero. By Lemma 2.1, Pr(An) ≥ 1 − 2δ − 2 exp(−Nε2/2) for every n and the
proof of Theorem 1.9 follows.

Proof of Lemma 2.1. Fix f∗ and set ρ > 0 that satisfies ρ ≥ 5ηΨ(f∗). Let

F1 = {f ∈ F : Ψ(f − f∗) ≤ ρ} = F ∩Kρ(f
∗),

and

F2 = {f ∈ F : Ψ(f − f∗) = ρ}.

Clearly, F1 is a convex set that contains f∗, and by the continuity of the real-valued function
t → Ψ(f∗ + t(f − f∗)), every ray [f∗, f) that originates in f∗ and passes through some
f ∈ F\F1 intersects F2.

Let θ = κ2ε/16 and set

rQ(ρ) = rQ(F1, κε/32) and rM (ρ) = rM (F1, θ/5, δ/4).

There is an event A0 of probability at least 1−δ−2 exp(−Nε2/2), and for every (Xi, Yi)
N
i=1 ∈

A0 the following holds:

11
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• If f ∈ F1 and ‖f − f∗‖L2 ≥ rQ(ρ) then

1

N

N∑
i=1

(f − f∗)2(Xi) ≥ θ‖f − f∗‖2L2
.

• If f ∈ F1 then∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)

∣∣∣∣∣ ≤ θ

4
max{‖f − f∗‖2L2

, r2
M (ρ)}.

In particular, if f ∈ F1 and ‖f − f∗‖L2 ≥ r(ρ) ≥ max{rM (ρ), rQ(ρ)} then

PNLf ≥
θ

2
‖f − f∗‖2L2

.

By the choice of λ, there is an event A1 of probability at least 1− δ on which if f ∈ F1 and
‖f − f∗‖L2

≤ r(ρ), then∣∣∣∣∣ 2

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)

∣∣∣∣∣ < 3

80η3
λρ <

3

5η
λρ. (2.1)

Set A = A0 ∩ A1 and let (Xi, Yi)
N
i=1 ∈ A. The proof now follows in three steps:

(1) Show that the functional f → PNLλf is bounded from below – away from zero – in F2.

(2) An outcome of (1) is that if f ∈ F\F1, PNLλf > 0; hence, f̂ 6∈ F\F1.

(3) Finally, pin-point f̂ within F1 = {f ∈ F : Ψ(f − f∗) ≤ ρ}.

Step 1. Fix f ∈ F2 and note that by the ‘triangle inequality’ satisfied by Ψ,

Ψ(f) ≥ η−1Ψ(f − f∗)−Ψ(f∗).

Recall that η−1Ψ(f − f∗) ≥ η−1ρ ≥ 5Ψ(f∗) and thus, Ψ(f) − Ψ(f∗) ≥ (3/5)η−1ρ. Hence,
if ‖f − f∗‖L2 ≥ r(ρ) then

PNLλf ≥ (θ/2)‖f − f∗‖2L2
+ λρ · 3

5η
> 0.

On the other hand, by the choice of λ, if ‖f − f∗‖L2 ≤ r(ρ) then

PNLλf ≥−

∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)

∣∣∣∣∣+ λ (Ψ(f)−Ψ(f∗))

≥−

∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)

∣∣∣∣∣+ λρ · 3

5η
> 0.
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f∗0

R > MR > M

R > MR > M

Q > M

Q > M Q > M

Q > M

f

h

Figure 2: PNLλf > 0 for two different reasons: either Q > M – the quadratic component
dominates the multiplier component, or R > M – the regularization component
dominates the multiplier component. Unlike Theorem 3.2 in Lecué and Mendelson
(to appear), here we choose ρ ∼ Ψ(f∗) to ensure that 0 ∈ F ∩Kρ(f

∗).

It should be noted that the same proof shows that on the event A, for every f ∈ F2,

PNLf +
λ

2η2
(Ψ(f)−Ψ(f∗)) > 0, (2.2)

a fact that will be used below. Indeed, (λ/2η2) · (Ψ(f)−Ψ(f∗)) ≥ (λ/2η2) · (3ρ/5η) and by
(2.1), if ‖f − f∗‖L2 ≤ r(ρ) then PNLf ≥ −(3/80) · (λρ/η3).

Step 2. Let f ∈ F\F1 and note that by the convexity of F and the continuity of Ψ on
rays, there is some h ∈ F2 and R > 1 for which f = f∗ +R(h− f∗). Thus,

PNLλf =
R2

N

N∑
i=1

(h− f∗)2(Xi) +
2R

N

N∑
i=1

ξi(h− f∗)(Xi) + λ (Ψ(f)−Ψ(f∗)) .

Observe that

Ψ(f)−Ψ(f∗) ≥ R

2η2
(Ψ(h)−Ψ(f∗)) ; (2.3)

indeed,

Ψ(f∗ +R(h− f∗)) ≥ η−1Ψ(R(h− f∗))−Ψ(f∗) ≥ Rη−1Ψ(h− f∗)−Ψ(f∗),

and thus it suffices to show that

R

η
Ψ(h− f∗) ≥ R

2η2
Ψ(h) + 2Ψ(f∗).

13
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But since Ψ(h− f∗) ≥ 5ηΨ(f∗), η ≥ 1 and R ≥ 1, one has

R

η
Ψ(h− f∗) ≥ R

2η
Ψ(h− f∗) +

R

2
Ψ(f∗) + 2RΨ(f∗)

≥ R
2η

(Ψ(h− f∗) + Ψ(f∗)) + 2Ψ(f∗) ≥ R

2η2
Ψ(h) + 2Ψ(f∗),

and (2.3) follows.

Finally, applying (2.2) to h ∈ F2,

PNLλf ≥
R2

N

N∑
i=1

(h− f∗)2(Xi) +
2R

N

N∑
i=1

ξi(h− f∗)(Xi) + λ
R

2η2
(Ψ(h)−Ψ(f∗))

≥R
(
PNLh +

λ

2η2
(Ψ(h)−Ψ(f∗))

)
> 0,

and f̂ 6∈ F\F1.

Step 3. Turning to F1 = {f ∈ F : Ψ(f − f∗) ≤ ρ} = F ∩Kρ(f
∗), recall that if f ∈ F1 and

‖f − f∗‖L2 ≥ r(ρ), then PNLf ≥ (θ/2)‖f − f∗‖2L2
; hence, if f is a potential minimizer and

‖f − f∗‖L2 ≥ r(ρ) then

0 ≥ PNLλf ≥(θ/2)‖f − f∗‖2L2
+ λ (Ψ(f)−Ψ(f∗)) ≥ (θ/2)‖f − f∗‖2L2

− λΨ(f∗),

and

‖f̂ − f∗‖2L2
≤ 2λ

θ
Ψ(f∗),

as claimed.

Remark 2.2 If Ψ happens to be a norm (which is an assumption slightly stronger than As-
sumption 1.1), one may apply Theorem 3.2 from Lecué and Mendelson (to appear) directly.
Indeed, and using the notation from Lecué and Mendelson (to appear) if ρ & Ψ(f∗) then
the set K = {f : Ψ(f − f∗) ≤ ρ/20} contains a Ψ-ball around 0, and Γf∗(ρ) – the collection
of norming functionals (i.e., the sub-gradient of Ψ) of any h ∈ K – is the entire unit ball
in the dual space to (E,Ψ). Recall that

∆(ρ) = inf
h

sup
z∗∈Γf∗ (ρ)

z∗(h− f∗),

where the infimum is taken in the set

{h ∈ F : Ψ(h− f∗) = ρ and ‖h− f∗‖L2 ≤ r(ρ)}.

Since Γf∗(ρ) is the entire dual unit ball, it follows that ∆(ρ) = ρ, and Theorem 3.2 in Lecué
and Mendelson (to appear) may be applied. The desired version of Theorem 1.9 now follows
from Remark 3.3 in Lecué and Mendelson (to appear).
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3. Towards the examples - preliminary estimates

It is rather obvious that any implementation of Theorem 1.9 requires specific estimates
on rM , rQ and λ0. This section is devoted to some preliminary facts that will play an
instrumental part in establishing such estimates.

Our main interest is the study of upper bounds on the three processes used to define
the parameter rM , rQ and γO, and which have the following forms:

(∗) = sup
f∈F

∣∣∣∣∣
N∑
i=1

εiξif(Xi)

∣∣∣∣∣ , (∗∗) = sup
f∈F

∣∣∣∣∣
N∑
i=1

(ξif(Xi)− Eξf(X))

∣∣∣∣∣ and E sup
f∈F

∣∣∣ N∑
i=1

εif(Xi)
∣∣∣,

where X1, ..., XN are independent and distributed according to the underlying measure µ,
ξ1, ..., ξN are independent copies of ξ ∈ Lq for some q > 2 (though (ξi)

N
i=1 need not be

independent of (Xi)
N
i=1), and (εi)

N
i=1 are independent, symmetric {−1, 1}-valued random

variables that are independent of (Xi)
N
i=1 and (ξi)

N
i=1.

Standard symmetrization methods (see, e.g., Giné and Zinn (1984); Ledoux and Tala-
grand (1991); van der Vaart and Wellner (1996)) show that (∗) and (∗∗) are equivalent in
expectation and in deviation (up to a slight restriction on the deviation parameter). We will
present one example in which this symmetrization argument is carried out in full (Theorem
4.2), but in the other examples we will only consider the symmetrized case.

3.1 Estimates for subgaussian classes

The first result is from Mendelson (2016), under the assumption that F is an L-subgaussian
class of functions.

Definition 3.1 A class of functions F ⊂ L2(µ) is L-subgaussian if for every f, h ∈ F ∪{0}
and every u ≥ 1,

Pr(|f(X)− h(X)| ≥ Lu‖f − h‖L2(µ)) ≤ 2 exp(−u2/2),

where X is distributed according to µ.

Let F ⊂ L2(µ) and set {Gf : f ∈ F} to be the centered, canonical Gaussian process
indexed by F (i.e., the covariance operator of the process is EGfGg = Ef(X)g(X) for every
f, g ∈ F ). Put

`∗(F ) = E sup
f∈F

Gf , and d2(F ) = sup
f∈F
‖f‖L2(µ). (3.1)

Theorem 3.2 (Corollary 1.10 in Mendelson (2016)) Let X be distributed according
to µ, set ξ ∈ Lq for some q > 2 and assume that F ⊂ L2(µ) is an L-subgaussian class.
There are constants c, c0, c1, c2 and c3 that depend only on q, for which, for any w, u > c,
with probability at least

1− c0 logqN

wqN q/2−1
− 2 exp

(
−c1u

2(`∗(F )/d2(F ))2
)
,
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sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

εiξif(Xi)

∣∣∣∣∣ ≤ c2Lwu ‖ξ‖Lq
`∗(F )√
N

and

sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

ξif(Xi)− Eξf(X)

∣∣∣∣∣ ≤ c2Lwu ‖ξ‖Lq
`∗(F )√
N

.

Corollary 3.3 Using the notation and assumptions of Theorem 3.2, let ξ = Y − f∗(X)
and assume that ξ ∈ Lq for some q > 2. Fix τ > 0 and 0 < δ < 1, and set A > 0 for which

c2Lwu ‖ξ‖Lq `
∗ (F ∩ADf∗) ≤ τA2

√
N. (3.2)

If

δ ≥ c0 logqN

wqN q/2−1
+ 2 exp

(
−c1a0u

2
)

(3.3)

then rM (F, τ, δ) ≤ A.

Proof. Clearly, it follows from Theorem 3.2 that if

δ ≥ c0 logqN

wqN q/2−1
+ 2 exp

(
−c1u

2

(
`∗(F ∩ADf∗)

d2(F ∩ADf∗)

)2
)

then rM (F, τ, δ) ≤ A. The claim follows because if F ∩ADf∗ is nonempty,

`∗(F ∩ADf∗)

d2(F ∩ADf∗)
≥ a0

for a suitable absolute constant a0.

Remark 3.4 The estimate in Corollary 3.3 can be rather loose. The reason for the sub-
optimal estimate is that usually, the Gaussian mean-width `∗(F ∩ ADf∗) is much larger
than d2(F ∩ ADf∗). For example, let F = {

〈
t, ·
〉

: t ∈ Sd−1} be the class of linear func-
tionals on Rd indexed by the Euclidean unit ball. Assume that X is an isotropic vector –
that is, its covariance structure coincides with the standard Euclidean structure on Rd; that
f∗ = 0; and that A ≤ 1. Then F ∩ ADf∗ = {

〈
t, ·
〉

: ‖t‖2 ≤ A}, d2(F ∩ ADf∗) = A and

`∗(F ∩ADf∗) = A
√
d, implying that

`∗(F ∩ADf∗)

d2(F ∩ADf∗)
≥
√
d (3.4)

which is significantly larger than an absolute constant.
Having said that, the question of an accurate probability estimate is not the main issue

of this article and we will not explore that point further.

Next, we provide an estimate on γO(ρ, τ, δ) that follows from Theorem 3.2 when F is
L-subgaussian and ξ ∈ Lq for some q > 2. The proof is identical to the one of Corollary 3.3
and is omitted.
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Corollary 3.5 Let F be a closed, convex L-subgaussian class of functions and let ξ =
Y − f∗(X) ∈ Lq for some q > 2. Set w, u > c, τ > 0, 0 < δ < 1 and ρ > 0. If A > 0
satisfies

c2Lwu ‖ξ‖Lq `
∗ (F ∩Kρ(f

∗) ∩ r(ρ)Df∗) ≤ τA
√
N.

and

δ ≥ c0 logqN

wqN q/2−1
+ 2 exp

(
−c1a0u

2
)

then γO(ρ, τ, δ) ≤ A.

Finally, when F is an L-subgaussian class it follows from a standard chaining argument
(cf. Talagrand (2005) or Mendelson (2016)) that

E sup
f∈F

∣∣∣ 1

N

N∑
i=1

εif(Xi)
∣∣∣ ≤ c0L`

∗(F )√
N

. (3.5)

This observation will be used in what follows to upper bound rQ.

3.2 Estimates under a limited moment condition

In this section we shall consider the case of a class that need not be subgaussian, but rather,
the growth of moments of class members is well-behaved up to some point. More accurately,
we will assume that there is some p0 for which, for every f, h ∈ F ∪ {0} and 2 ≤ p ≤ p0,

‖f − h‖Lp ≤ L
√
p‖f − h‖L2 . (3.6)

In contrast, a subgaussian condition is equivalent to having ‖f − h‖Lp ≤ L
√
p‖f − h‖L2 for

every p ≥ 2.

The motivation behind this type of limited moment assumption is the LASSO estimator.
Recent results on properties of the basis pursuit algorithm in Rd Lecué and Mendelson
(2017); Dirksen et al. (2014) indicate that the limited moment assumption (3.6) for p0 ∼
log d should suffice for an optimal estimate on the performance of the LASSO – as if the
class were subgaussian.

When analyzing the LASSO via the computation of the fixed points rM and rQ, one
encounters the following scenario. Let X = (xj)

d
j=1 be a random vector in Rd and set

X1, . . . , XN to be independent copies of X. Let Xi(j) be the j-th coordinate of Xi and thus
(Xi(j))

N
i=1 is a random vector with independent coordinates, distributed as xj .

Consider the random variables appearing in the definition of rM and rQ in the LASSO
case:

max
1≤j≤d

∣∣∣∣∣
N∑
i=1

εiXi(j)

∣∣∣∣∣ , (3.7)

and

max
1≤j≤d

∣∣∣∣∣
N∑
i=1

εiξiXi(j)

∣∣∣∣∣ (3.8)
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The aim of this section is to derive upper bounds on (3.7) in expectation and (3.8) in
deviation when each xj satisfies that

‖xj‖Lp ≤ L
√
p‖xj‖L2

for p . log d. Note that an upper bound on the centered empirical process involved in the
definition of γO(ρ) will follow from a symmetrization argument and a bound on (3.8).

The obvious difference between (3.7) and (3.8) are the multipliers (ξi)
N
i=1: although the

xj ’s have ∼ log d moments, ξ may be heavy-tailed, in the sense that it only belongs to Lq
for some fixed q > 2; this difference makes the analysis of (3.8) more difficult.

Upper bounds on (3.7) and (3.8) are obtained under the following assumption.

Assumption 3.1 Let N ≤ d, t ≥ 4 and set p0 = t log d. Assume that p0 . N (and note
that p0 ≥ logN) and that for every 1 ≤ j ≤ d and p ≤ p0, ‖xj‖Lp ≤ L

√
p‖xj‖L2. Consider

ξ ∈ Lq for some q > 2; let r = min{1/2 + q/4, 2}; set r′ to be the conjugate index of r; and
assume that 4r′max{2, 1 + a0/a1} ≤ t logN (where a0 and a1 are two absolute constants to
be specified later – in Lemma 7.3 and Lemma 7.4).

Under this assumption we will prove the following:

Theorem 3.6 Let the random vector X and ξ = Y −f∗(X) satisfy Assumption 3.1. Then,

E max
1≤i≤d

∣∣∣∣∣ 1√
N

N∑
i=1

εiXi(j)

∣∣∣∣∣ ≤ c0

√
log d · L max

1≤j≤d
‖xj‖L2 . (3.9)

Also, for every u > 2, v > 0, w ≥ 2 and for p = p0/2 and m = p/ log(eN/p), one has that
with probability at least

1− exp(−p/2)

u2p
− 4 exp(−p/2)

uc1m
− c2 logqN

wqN q/2−1
− 2 exp(−v2t log d), (3.10)

max
1≤j≤d

∣∣∣ N∑
i=1

εiξiXi(j)
∣∣∣ ≤ c3(q)(uw + u2v)L‖ξ‖Lq

√
N
√
t log d max

1≤j≤d
‖xj‖L2 . (3.11)

The proofs of both estimates in Theorem 3.6 follow from a more general result, es-
tablished in Mendelson (2016), on the supremum of a centered multiplier process under a
limited moment assumption like (3.6). Although the estimate in Mendelson (2016) is stated
for the centered empirical process (cf. Section 4 there) its proof is actually based on an
estimate on the symmetrized process. The proof of Theorem 3.6 will be presented in a final
section of this article.

4. The LASSO under a limited moment assumption

In this section, we obtain complexity-dependent error rates for the LASSO. Our aim is
to show that the LASSO (almost) achieves the minimax rates of convergence in the true
model. Observe that in this case, the true model is the smallest `d1-ball centered at 0 that
contains t∗. Thus, the price one has to pay for not knowing ‖t∗‖1 is rather minimal.
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The rate we shall be comparing the LASSO’s performance to is the minimax rate of the
following problem. Let X ∼ N (0, Id×d) and set ξ ∼ N (0, σ2) to be independent of X. Let
ρ > 0, consider an unknown t0 ∈ ρBd

1 and put Y =
〈
X, t0

〉
+ ξ.

Let c0, c1 and c2 be well-chosen absolute constants and consider the cases log d ≤ N ≤
c0d or c1d ≤ N . Following Lecué and Mendelson, if

s2
M (ρ) = c2


σ2d
N if ρ2N ≥ σ2d2

ρσ

√
1
N log

(
eσd
ρ
√
N

)
if σ2 log d ≤ ρ2N ≤ σ2d2

ρσ
√

log d
N if ρ2N ≤ σ2 log d

and s2
Q(ρ)


= 0 if N ≥ c0d

. ρ2/d if c0d ≤ N ≤ c1d

∼ ρ2

N log
(
d
N

)
if N ≤ c1d,

then the minimax rate of convergence in the class ρBd
1 is

max
{
s2
M (ρ), s2

Q(ρ)
}

(4.1)

when ρ ≥ σ
√

(log d)/N and ρ2 when ρ ≤ σ
√

(log d)/N . Note that when c0d ≤ N ≤ c1d

(i.e. N ∼ d), s2
Q(ρ) decays rapidly from ρ2

N log(d/N) to 0 and there are no precise estimates
on the minimax rate in that range.

It turns out that for this problem – the so-called Gaussian linear model – the minimax
rate in ρBd

1 is achieved by the Empirical Risk Minimization procedure (see, e.g., Lecué and
Mendelson); however, an underlying assumption is that ρ is given. Thanks to regularization,
and specifically, thanks to the LASSO, one does not need to know the value of ‖t0‖1 in
advance to achieve the minimax rate, at least up to a logarithmic term. In fact, as will
be explained below, the optimal rate can be achieved using regularization in a much more
general framework than just the Gaussian linear model.

In what follows we focus on the performance of the LASSO in the high-dimensional
case, that is, when N ≤ c1d. One may do the same when N ≥ c0d and we leave that to the
reader.

Let X be a random vector in Rd and consider the class of linear functionals F = {ft =〈
·, t
〉

: t ∈ Rd}. In particular, if Y ∈ L2 is an arbitrary target random variable then
f∗ = ft∗ =

〈
·, t∗
〉

satisfies

t∗ ∈ argmin
t∈Rd

E
(
Y −

〈
X, t

〉)2
. (4.2)

As noted in the introduction, the regularization function associated with the LASSO is the
`d1-norm: for every t = (tj)

d
j=1 ∈ Rd,

Ψ(ft) = ‖t‖1 =
d∑
j=1

|tj |.

Clearly, as a norm, the `d1-regularization function satisfies Assumption 1.1 for η = 1.

The LASSO with regularization parameter λ produces

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ λ ‖t‖1

)
, (4.3)
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and one would like to control ‖ft̂ − ft∗‖2L2
= E

〈
X, t̂− t∗

〉2
, where the expectation is taken

with respect to X conditionally on the data.

It should be noted that despite the LASSO’s popularity, there are relatively few results
in the random design scenario we are interested in (see, e.g., Bartlett et al. (2012), Massart
and Meynet (2011) and chapter 8.2 in Koltchinskii (2011)). The overwhelming majority
of existing results have been obtained for the linear model with subgaussian noise and a
fixed design (i.e., each data point is of the form Yi =

〈
t∗, zi

〉
+ ξi), and the deterministic

design matrix, whose rows are the vectors zi, which satisfies some form of the restricted
isometry property – for example, the Restricted Eigenvalue Condition (REC) from Bickel
et al. (2009) or the Compatibility Condition (CC) from van de Geer (2007)).

To define the restricted eigenvalue condition, let us introduce the following notation: for
x ∈ Rd and a set S0 ⊂ {1, . . . , d} of cardinality |S0| ≤ s, let S1 be the set of indices of the
m largest coordinates of (|xi|)di=1 that are outside S0. Let xS01 be the restriction of x to
the set S01 = S0 ∪ S1.

Definition 4.1 (Bickel et al. (2009)) Let Γ be an N × d matrix. For c0 ≥ 1 and an
integer 1 ≤ s ≤ m ≤ d for which m+ s ≤ d, the restricted eigenvalue constant is

κ(s,m, c0) = min

{
‖Γx‖2
‖xS01‖2

: S0 ⊂ {1, . . . , d}, |S0| ≤ s,
∥∥xSc0∥∥1

≤ c0 ‖xS0‖1

}
.

The matrix Γ satisfies the Restricted Eigenvalue Condition (REC) of order s with
a constant c if κ(s, s, 3) ≥ c.

One can show (see, Bickel et al. (2009), Bühlmann and van de Geer (2011)) that if Γ
satisfies REC and λ & σ

√
(log d)/N , then with high probability (with respect to the noise),

simultaneously for every 1 ≤ p ≤ 2,

∥∥t̂− t∗∥∥p
p
.p ‖t∗‖0

(
σ

κ(s, s, 3)

√
log d

N

)p
(4.4)

where ‖t∗‖0 is the cardinality of the support of t∗.

The main result in this section is an estimate on ‖f̂ − f∗‖2L2
that depends on ‖t∗‖1

rather than on the cardinality of the support of t∗ (we refer to Lecué and Mendelson (to
appear) for sparsity-dependent rates of convergence for the LASSO in the same framework
as we consider here). Such a result follows from Theorem 1.9, and to that end, one has to
construct a function r(·) as in (1.13) and to compute λ0(δ, γ) as in Definition 1.8. We will do
so in the following case: Set a2 ≥ 4, 2 ≤ p0 = a2 log d . N , q > 2, r = min{1/2+q/4, 2} and
r′ that is the conjugate index of r. Assume that 4r′max{2, 1 + a0/a1} ≤ a2 logN (which
is equivalent to assuming that q > 2 + c1/ logN for some constant c1 = c1(a0, a1, a2)).
Let X = (xj)

d
j=1 be a random vector and note that the coordinates x1, ..., xd need not be

independent.

Assumption 4.1 Using the above notation, assume that there are constants κ0, κ and ε
for which the following holds:
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• For every 1 ≤ j ≤ d and every 2 ≤ p ≤ p0, ‖xj‖Lp ≤ κ0
√
p ‖xj‖L2

.

• X satisfies a small-ball condition with constants κ and ε; that is, for every t ∈ Rd,

Pr
(
|
〈
X, t

〉
| ≥ κ

∥∥〈X, t〉∥∥
L2

)
≥ ε. (4.5)

• ξ = Y − f∗(X) ∈ Lq.

To put this assumption in some perspective, note that an obvious underlying condition
in any estimation problem with respect to the squared loss is that E(f(X)− Y )2 is defined
for any f ∈ F , and in particular, that ξ = Y − f∗(X) ∈ L2. Thus, assuming that ξ ∈ Lq
for some q > 2 + c1/ logN is not very restrictive. Also, as noted previously, the small-ball
assumption is rather minimal.

The most restrictive component of Assumption 4.1 is the moment assumption on the
coordinates of X, namely that their moments exhibit a subgaussian behavior, up to, roughly,
p ∼ log d.

While this assumption can be weakened to other types of moment growth condition
(e.g., ‖xj‖Lp ≤ κ0p

α ‖xj‖L2
for some α ≥ 1/2 and up to p ∼ log d), the resulting analysis is

more involved (see Lecué and Mendelson (2017)), and will not be explored here.

Finally, Lecué and Mendelson (2017) shows that even if one assumes a subgaussian
behavior of the coordinates xi, but only up to p ∼ (log d)/(log log d), Basis Pursuit may fail
to recover even a 1-sparse vector, implying that the choice of p0 in Assumption 4.1 can not
be relaxed significantly.

Given any ρ ≥ 0, set M = max1≤j≤d ‖xj‖L2
, let σq = ‖ξ‖q and put

Λ(ρ) =
κ0ρM

κ2ε

√
log d

N
.

Moreover, for R(t) = E(Y −
〈
X, t

〉
)2, one has

R(t)−R(t∗) = E
〈
X, t− t∗

〉2
,

because
〈
X, t∗

〉
is the best approximation of Y in a closed subspace of L2. Thus, the

estimation bounds also lead to excess risk bounds.

Theorem 4.2 There are absolute constants c0, ..., c6 for which the following holds. Assume
that X and ξ = Y − f∗(X) satisfy Assumption 4.1 and that N ≤ d. Let u > 2, v > 0 and
w ≥ 2, and set p = (a2/2) log d and m = p/ log(eN/p). Put

δ =
exp(−p/2)

u2p
− 4 exp(−p/2)

uc0m
− c1 logqN

wqN q/2−1
− 2 exp(−v2t log d) (4.6)

and set

r2(ρ) = c2

{
(uw + u2w)σqΛ(ρ) if N ≥ (κε/32)2d

max
{

(uw + u2v)σqΛ(ρ), κ2Λ2(ρ)
}

otherwise.
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If t̂ is produced by the LASSO for a regularization parameter

λ > c4(uw + u2v)κ0 ‖ξ‖Lq η
3M

√
log d

N
,

then with probability at least 1− 5δ − 2 exp(−ε2N/2),

R(t̂)−R(t∗) =
∥∥〈X, t̂− t∗〉∥∥2

L2
≤ c5 max

{
r2(c6 ‖t∗‖1),

λ

κ2ε
‖t∗‖1

}
.

Observe that like known estimates on the LASSO, and despite imposing considerably
weaker assumptions on X and Y , the regularization parameter in Theorem 4.2 is of the
order of ‖ξ‖Lq

√
(log d)/N . And, when ‖ξ‖Lq is equivalent to σ – the L2 norm of ξ – then

for N . d, the rate of convergence is

c(M) max

{
σ ‖t∗‖1

√
log d

N
, ‖t∗‖21

log d

N

}

for a constant c(M) that depends only on M .
Hence, up to a logarithmic factor, the LASSO attains the minimax rate in ‖t∗‖1Bd

1

when log d ≤ N . d and when ‖t∗‖1 ≥ σ
√

log d/N ; moreover, it does so without knowing
in advance the identity of the true model ‖t∗‖1Bd

1 .
Note that one may want to combine the sparsity-dependent error rate from Theorem 1.3

in Lecué and Mendelson (to appear) and the complexity-dependent error rate from Theo-
rem 4.2. To simplify the formulation we assume that X is subgaussian, in which case the
probability estimate in Theorem 4.2 can be improved and the third condition in Assump-
tion 4.1 (i.e. that q > 2 + c1/ logN) can be relaxed to only q > 2 (see more details in
the next section, and, in particular, Theorem 5.4). Combining the two approaches, one has
that when X is isotropic and L-subgaussian, and when ξ ∈ Lq for some q > 2 then for any
u,w > c with probability larger than 1− δ for

δ = 2 exp(−c2N/L
8)− c0 logqN

wqN q/2−1
− c0 exp(−c1u

2/L2),

the LASSO estimator t̂ with the universal regularization parameter ‖ξ‖Lq
√

(log d)/N sat-
isfies that

∥∥t̂− t∗∥∥2

2
.L,q min

{
‖t∗‖0 σ2 log d

N
,max

{
σ ‖t∗‖1

√
log d

N
, ‖t∗‖21

log d

N

}}
(4.7)

when N & ‖t∗‖0 log(d/ ‖t∗‖0).
Observe that (4.7) seemingly exhibits a different rate than Corollary 9.1 in Koltchinskii

(2011) (see also (1.4)), the difference being the extra (and necessary) ‖t∗‖21
log d
N term in (4.7).

This extra term appears only in the random design scenario, and the rates of convergence
of the LASSO appear to deteriorate when

σ

√
N

log d
≤ ‖t∗‖1 ≤ σ

√
‖t∗‖0. (4.8)

22



Regularization and the small-ball method

However, the sparsity-dependent error rate, and therefore Equation (4.7), holds only when
N & ‖t∗‖0 log(d/ ‖t∗‖0). And, when N & ‖t∗‖0 log d (which is only slightly larger than
‖t∗‖0 log(d/ ‖t∗‖0)), the error rates in the two scenarii (random and deterministic design)
are the same and are given by

min

{
σ2 ‖t∗‖0 log d

N
, σ ‖t∗‖1

√
log d

N

}
.

Proof of Theorem 4.2. As noted previously, since ‖·‖1 is a norm, Ψ(t) = ‖t‖1 satisfies
Assumption 1.1 for η = 1 and Theorem 1.9 may be applied. To that end, one has to
control r(ρ) ≡ max{rM (ρ), rQ(ρ)} and λ0(δ, τ). In what follows we will invoke the results
of Section 3 and estimate these parameters.

Set F (f∗, ρ) = F ∩ Kρ(f
∗) − f∗ and recall that rQ(ρ) = rQ(F ∩ Kρ(f

∗), κε/32) is
determined by the behavior of

(?) = E sup
f∈F (f∗,ρ)∩rD

∣∣∣∣∣ 1√
N

N∑
i=1

εif(Xi)

∣∣∣∣∣ ; (4.9)

as a consequence, it suffices to upper bound (?). Let E = {t ∈ Rd : E
〈
X, t

〉2 ≤ 1}, put E◦
to be the polar of E (that is, E◦ = {u : supt∈E |

〈
u, t
〉
| ≤ 1}), and set ‖t‖E = supx∈E

〈
x, t
〉
.

Thus,

(?) = E sup
t∈ρBd1∩rE

∣∣∣∣∣ 1√
N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣ ≤ min

{
E sup
t∈ρBd1

∣∣∣∣∣ 1√
N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣ ,E sup
t∈rE

∣∣∣∣∣ 1√
N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣∣∣
}

= min

ρE
∥∥∥∥∥ 1√

N

N∑
i=1

εiXi

∥∥∥∥∥
`d∞

, rE

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
E◦

 .

It is standard to verify (see, for instance, the proof of Lemma 2.2 in Lecué and Mendelson
(2016)) that

E

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
E◦
≤
√
d.

Moreover, by (3.9),

E

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
`d∞

=E max
1≤j≤d

∣∣∣∣∣ 1√
N

N∑
i=1

εiXi(j)

∣∣∣∣∣ ≤ c0κ0

√
log d max

1≤j≤d
‖xj‖L2

.

Therefore,

(?) ≤ min

{
c0ρκ0

√
log d max

1≤j≤d
‖xj‖L2

, r
√
d

}
, (4.10)
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and setting γ = κε/32, one has

rQ(ρ) ≤

{
0 if N ≥ γ2d

c0ρκ0
γ

√
log d
N M otherwise.

Next, let us establish a high probability upper bound on rM (ρ) = rM (F∩Kρ(f
∗), κ2ε/80, δ/4).

Note that

φN (F ∩Kρ(f
∗), f∗, s) = sup

t∈ρBd1∩sE

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi
〈
Xi, t

〉∣∣∣∣∣ ≤ ρ max
1≤j≤d

∣∣∣∣∣ 1√
N

N∑
i=1

εiξiXi(j)

∣∣∣∣∣ .
Applying the second part of Theorem 3.6 for u > 2, v > 0, w ≥ 2, p = (a2/2) log d,m =
p/ log(eN/p) and

δ =
exp(−p/2)

u2p
− 4 exp(−p/2)

uc0m
− c1 logqN

wqN q/2−1
− 2 exp(−v2t log d), (4.11)

it follows that with probability at least 1− δ,

φN (F ∩Kρ(f
∗), f∗, s) ≤ c2κ0(uw + u2v) ‖ξ‖Lq ρM

√
log d;

thus,

r2
M (ρ) ≤ c3κ0(uw + u2v)

κ2ε
‖ξ‖Lq ρM

√
log d

N
.

Finally, let us identify an upper bound on λ0(δ, τ) for τ = 3/(80η3). Let {e1, . . . , ed} be
the canonical basis of Rd. Since Kρ(f

∗) = {t : ‖t− t∗‖1 ≤ ρ}, we have

(?1) = sup
f∈F∩Kρ(f∗)∩r(ρ)Df∗

(
1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)

)

≤ ρ max
t−t∗∈{±e1,...,±ed}

(
1

N

N∑
i=1

ξi
〈
Xi, t− t∗

〉
− Eξ

〈
X, t− t∗

〉)

= ρ max
t∈{±e1,...,±ed}

(
1

N

N∑
i=1

ξi
〈
Xi, t

〉
− Eξ

〈
X, t

〉)
.

Recall that X = (xj)
d
j=1. By a standard symmetrization argument (see, for example,

Lemma 2.3.7 in van der Vaart and Wellner (1996)), if z ≥ 4 max1≤j≤d
√

Var(ξxj)/N then

Pr
(

max
t∈{±e1,...,±ed}

1

N

N∑
i=1

ξi
〈
Xi, t

〉
− Eξ

〈
X, t

〉
≥ z
)
≤ 4Pr

(
max

t∈{±e1,...,±ed}

1

N

N∑
i=1

εiξi
〈
Xi, t

〉
≥ z

4

)
.

Note that
√

Var(ξxj) ≤
√
Eξ2x2

j ≤ ‖ξ‖Lq ‖xj‖L2q′
where q′ is the conjugate index of q/2.

Therefore,
√

Var(ξxj) ≤ κ0
√

2q′ ‖ξ‖Lq M as long as 2q′ ≤ a2 log d, i.e., when q ≥ 2 +
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2/(a2 log d− 1) – which is the case under Assumption 4.1. Therefore, applying the second
part of Theorem 3.6 for δ as in (4.11), it follows that with probability at least 1− δ,

(?1) ≤ ρc0κ0(uw + u2v) ‖ξ‖Lq M
√

log d

N
,

and, for τ = 3/(80η3) one may select

λ0(δ, τ) = c4κ0(uw + u2v) ‖ξ‖Lq η
3wM

√
log d

N
.

5. Regularization methods for subgaussian classes

In this section, we assume that X is a random vector that takes its values in a Hilbert space
H. The main examples we consider are when H is the d-dimensional Euclidean space and
when it is the space of m× T matrices endowed with the Frobenius norm.

The inner product in H is denoted by
〈
·, ·
〉
, and the norm and unit ball endowed by the

inner product are denoted by ‖·‖H and BH = {t ∈ H : ‖t‖H ≤ 1} respectively.
There is another natural Hilbertian structure on H, endowed by Σ = EXX>, the

covariance operator associated with the random vector X. The corresponding unit ball
E = {t ∈ H : E

〈
X, t

〉2 ≤ 1}, is an ellipsoid in H.

Let T ⊂ H be a closed and convex set and put

t∗ ∈ argmin
t∈T

E(Y −
〈
X, t

〉
)2.

Let Ψ(·) be a regularization function on H that satisfies Assumption 1.1 and set

t̂ ∈ argmin
t∈T

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ λΨ(t)

)
(5.1)

for a well-chosen regularization parameter λ.
Unlike the results of the previous section, in what follows we assume that F = {

〈
t, ·
〉

:
t ∈ T} is an L-subgaussian class (see Definition 3.1). Moreover, F satisfies a small-ball
property with constants that depend only on L. Indeed, observe that for every t ∈ T∥∥〈X, t〉∥∥

L4
. L

∥∥〈X, t〉∥∥
L2
,

and applying the Paley-Zygmund inequality (see, e.g., Corollary 3.3.2 in de la Peña and
Giné (1999)),

Pr
(
|
〈
X, t

〉
| ≥ κ

∥∥〈X, t〉∥∥
L2

)
≥ ε for κ = 1/2 and ε = c/L4. (5.2)

From here on we say that the random vector X taking its values in H is L-subgaussian if
the class consisting of all the linear functionals on H, i.e., {

〈
t, ·
〉

: t ∈ H}, is L-subgaussian.
Also, throughout this section, we assume that ξ = Y − f∗(X) ∈ Lq for some q > 2, and
denote σq = ‖ξ‖Lq and

T ∩Kρ(t
∗) = {t ∈ T : Ψ(t− t∗) ≤ ρ}.
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5.1 ‘Heavy tailed’ noise

Thanks to the subgaussian assumption, both r(ρ) and λ0 = λ0(δ, 3/(80η3)) may be deter-
mined using the Gaussian mean-widths of the sets T ∩ Kρ(t

∗) for all ρ > 0. Recall that
for T0 ⊂ H the Gaussian mean-width of T0 is `∗(T0) = E supt∈T0 Gt, where (Gt)t∈T0 is
the centered canonical Gaussian process indexed by T0 with covariance structure given by
EGt1Gt2 = E

〈
X, t1

〉〈
X, t2

〉
for every t1, t2 ∈ T .

Definition 5.1 Let rEt∗ =
{
t ∈ H : ‖

〈
t− t∗, ·

〉
‖L2(µ) ≤ r

}
= t∗ + rE, and for α, β > 0 set

r̃Q(ρ, α) = inf
{
r > 0 : `∗ (T ∩Kρ(t

∗) ∩ rEt∗) ≤ αr
√
N
}

and

r̃M (ρ, β) = inf
{
r > 0 : `∗ (T ∩Kρ(t

∗) ∩ rEt∗) ≤ βr2
√
N
}
.

Let c0 be an absolute constant to be specified later. Fix u,w > c, and ε and κ as in
(5.2). Consider

α =
κε

c0L
, β =

κ2c1ε

Lwu ‖ξ‖Lq
, and γ = c0η

3Lwu ‖ξ‖Lq , (5.3)

put

r(ρ) ≥ max {r̃Q(ρ, α), r̃M (ρ, β)} (5.4)

and set

λ0(γ) = γ sup
ρ>0,t∗∈T

`∗(T ∩Kρ(t
∗) ∩ r(ρ)Et∗)

ρ
√
N

. (5.5)

The first result we present is rather general and holds for any closed and convex subset
T ⊂ H and any regularization function satisfying Assumption 1.1. It allows one to take
into account an additional constraint on the “signal” t∗ ∈ T .

Theorem 5.2 There are absolute constants c, c1 and c2 for which the following holds. Let
Ψ be a regularization function satisfying Assumption 1.1. Assume that X is L-subgaussian
for some L > 0 and that ξ = Y −

〈
X, t∗

〉
is in Lq for some q > 2.

If t̂ is given by (5.1) for a regularization parameter λ > λ0(γ) as in (5.5), then with
probability larger than

1− 2 exp(−Nε2/8)− c0 logqN

wqN q/2−1
− c0 exp(−c1u

2/L2), (5.6)

∥∥〈X, t̂− t∗〉∥∥2

L2
≤ max

{
r(10ηΨ(t∗))2, (32/κ2ε)λΨ(t∗)

}
for r(·) given by (5.4).

Proof. The proof follows from Theorem 1.9 by estimating r(ρ) and λ0 using the ‘local’
Gaussian mean-widths of the sets T ∩Kρ(t

∗).
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Since X is L-subgaussian, the process
{〈
X, t

〉
: t ∈ H

}
is L-subgaussian. Setting F =

{
〈
t, ·
〉

: t ∈ H} and f∗ =
〈
t∗, ·
〉
, a standard chaining argument shows that

E sup
f∈F∩Kρ(f∗)∩rDf∗

∣∣∣ 1

N

N∑
i=1

εi(f − f∗)(Xi)
∣∣∣ ≤ c0L

`∗(T ∩Kρ(t
∗) ∩ rEt∗)√
N

.

Thus,

rQ

(
F ∩Kρ(f

∗),
κε

32

)
≤ r̃Q(ρ, α). (5.7)

As for the fixed point associated with the multiplier process, it follows from Corollary 3.3
that

rM

(
F ∩Kρ(f

∗),
κ2ε

160
,
δ

4

)
≤ r̃M (ρ, β) (5.8)

for β as defined in (5.3), and as long as

δ

4
≥ c0 logqN

wqN q/2−1
+ 2 exp(−c1u

2/L2).

Finally by Corollary 3.5, λ0(δ, γ) ≤ λ0(γ). The claim now follows from Theorem 1.9.

If one is to apply Theorem 5.2, an essential component is an upper bound on `∗(T ∩
Kρ(t

∗) ∩ rEt∗), leading to estimates on r and λ. To simplify the analysis we shall use an
additional assumption on Ψ:

Assumption 5.1 Assume that for every x, y ∈ H and λ ≥ 0,

Ψ(x) = Ψ(−x), Ψ(x+ y) ≤ η
(
Ψ(x) + Ψ(y)

)
and Ψ(λx) ≤ λΨ(x). (5.9)

Also, recall that E = {t ∈ H : E
〈
X, t

〉2 ≤ 1}, σq = ‖ξ‖q and set K = {t ∈ H : Ψ(t) ≤ 1}.

Theorem 5.3 Assume that Ψ satisfies Assumption 5.1 and that the assumptions of Theo-
rem 5.2 hold. Let Λ(ρ) ≥ ρ`∗(K)/

√
N for every ρ > 0, w, u > c and consider the RERM

t̂ ∈ argmin
t∈H

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c0η

3LwuσqΛ(Ψ(t))
)
.

Then, with probability larger than the one in (5.6),

R(t̂)−R(t∗) =
∥∥〈X, t̂− t∗〉∥∥2

L2
≤ c0r

2(10ηΨ(t∗))

where, for α and β defined in (5.3) and, for any ρ ≥ 0,

r2(ρ) =

{ Λ(ρ)
β if N ≥

(
`∗(E)/α

)2
max

{
Λ(ρ)
β , Λ2(ρ)

α2

}
otherwise.

(5.10)

Proof. The result follows immediately from Theorem 5.2. Indeed, for every ρ > 0, r > 0
and t∗ ∈ T = H,

`∗(T ∩Kρ(t
∗) ∩ rEt∗) = `∗(Kρ(0) ∩ rE) ≤ `∗(ρK ∩ rE) ≤ min {ρ`∗(K), r`∗(E)} ,

because Kρ(0) ⊂ ρK = {ρt : t ∈ K}.
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Note that in a d-dimensional space, the trivial bound `∗(E) ≤
√
d holds (see, e.g.,

Lemma 2.2 in Lecué and Mendelson (2016)). Therefore, one only needs to control `∗(K).
In the next section, we provide several examples of applications of Theorem 5.3 that follow
from estimates on `∗(K). We will simplify the analysis further by assuming that there is
some compatibility between the norm ‖·‖H and the one endowed by the covariance structure
of X:

Assumption 5.2 Assume that X is isotropic; that is, for every t ∈ H,
(
E
〈
X, t

〉2)1/2
=

‖t‖H.

Observe that Assumption 5.2 implies that `∗(K) = E supt∈K Gt, where (Gt)t∈K is the
canonical Gaussian process indexed by K with the covariance EGt1Gt2 =

〈
t1, t2

〉
for every

t1, t2 ∈ K. Indeed, this follows because the inner-product in H coincides with the one
endowed by L2(µ).

5.2 Regularization methods in Rd

Consider a regularization function Ψ(·) satisfying Assumption 5.1. Assume that X is L-
subgaussian and isotropic in Rd with respect to the standard Euclidean inner-product, and
that ξ ∈ Lq for some q > 2. Let u,w > c. For any ρ ≥ 0 set Λ(ρ) ≥ ρ`∗(K)/

√
N and put

r2(ρ) ∼L,q


wuσqΛ(ρ) when N &L d

max
{
wuσqΛ(ρ),Λ2(ρ)

}
otherwise.

It follows from Theorem 5.3 that if

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c0η

3LwuσqΛ(Ψ(t))
)

(5.11)

then with probability larger than the one in (5.6)∥∥〈t̂− t∗, ·〉∥∥2

L2(µ)
. r2(10ηΨ(t∗)).

As a consequence, one can derive an estimation result for (5.11) whenever `∗(K) may
be controlled from above. In the following section, we shall apply this observation to some
classical problems and compare the error rates obtained by the RERM (5.11) to the minimax
rate in the true model {t ∈ T : Ψ(t) ≤ Ψ(t∗)}.

Example: `p-regularization for 1 ≤ p ≤ ∞. Consider the regularization function
Ψ(t) = ‖t‖p for some p ≥ 1. Assumption 5.1 holds with η = 1 because ‖·‖p is a norm. In
order to apply the general result for the RERM in (5.11), one has to estimate the Gaussian
mean-width of the unit ball associated with the regularization function Ψ(·) = ‖·‖p.

In the range 1 ≤ p ≤ 1 + (log d)−1, we obtain the same performance as the LASSO,
because Bd

1 ⊂ Bd
p ⊂ cBd

1 for a suitable absolute constant c, implying that `∗(Bd
p) ∼ `∗(Bd

1) ∼√
log(ed).
When 1 + (log(ed))−1 ≤ p, set r to be the conjugate index for p and one may easily

verify that `∗(Bd
p) ∼

√
rd1/r.

Applying Theorem 5.3, one has the following:
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Theorem 5.4 Under the assumptions of Theorem 5.3 and using its notation,

• If 1 ≤ p ≤ 1 + 1/(log d) and

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2η

3
pLwuσq ‖t‖p

√
log d

N

)
then with probability larger than the one in (5.6),

∥∥t̂− t∗∥∥2

2
.p,L,q


wuσq ‖t∗‖p

√
log d
N if N &L d,

max

{
wuσq ‖t∗‖p

√
log d
N , ‖t∗‖2p

log d
N

}
otherwise.

• If p ≥ 1 + 1/(log d) and

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2σqLwu ‖t‖p

√
p/(p− 1)d(p−1)/p

√
N

)
,

then with probability larger than the one in (5.6)

∥∥t̂− t∗∥∥2

2
.L,q


wuσq ‖t∗‖p

d(p−1)/p

p
√
N

if N &L d,

max
{
wuσq ‖t∗‖p

d(p−1)/p
√
N

, ‖t∗‖2p
d2(p−1)/p

N

}
otherwise.

Remark. [the case 0 < p < 1] Despite being a non-convex function, `p-regularization
for 0 < p < 1 has attracted much attention in the context of Signal Processing and High-
Dimensional Statistics. Among the problems studied using `p regularization were the linear
regression model with a deterministic design (cf. Raskutti et al. (2011); Rigollet and Tsy-
bakov (2011); Verzelen (2012)); the sequence space model Donoho and Johnstone (1994);
Abramovich et al. (2006); and the random design linear regression model Wang et al. (2014).

From our point of view, there is no particular restriction on p as long as the regularization
function satisfies Assumption 5.1. We can therefore consider the regularization function
Ψ(t) = ‖t‖p for any 0 < p < 1. In that range of p, Assumption 5.1 holds for η = ηp = 21/p

(see, for example, page 2 in Edmunds and Triebel (1996)) and the Gaussian mean width of
the “unit ball” associated with Ψ(·) = ‖·‖p for 0 < p < 1 can also be computed.

To that end, let {e1, . . . , ed} be the canonical basis of Rd. Since {±e1, . . . ,±ed} ⊂ Bd
p ⊂

Bd
1 for p < 1, it is evident that `∗(Bd

p) ∼
√

log d. Thus, the error rates of the LASSO from
Theorem 4.2 dominate all the `p-regularization rates when 0 < p ≤ 1.

However, the resulting rate is not the minimax rate in the true model, as can be seen
from Raskutti et al. (2011). Indeed, fix 0 < p ≤ 1. Consider an unknown t∗ ∈ ρBd

p

and the corresponding Gaussian linear model Yi =
〈
xi, t

∗〉 + Wi, i = 1, . . . , N , where the
matrix whose rows are (xi)

N
i=1 satisfies some RIP property andW1, · · · ,WN are independent,

centered Gaussian variables with variance σ2. For specific asymptotic rates in N and d (see
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Raskutti et al. (2011) for a precise formulation), the authors show that minimax rate of the
problem is given by

σ2ρ
( log d

N

)1− p
2
,

and similar results have been obtained in Wang et al. (2014). Thus, our estimate recovers
the minimax rate in the true model only when p = 1. When 0 < p < 1, it is possible that
the choice of the Ψ(t) = ‖t‖p is suboptimal, and instead one should use Ψ(t) = ‖t‖pp as was
suggested in Rohde and Tsybakov (2011) for the problem of Sp-regularization for 0 < p ≤ 1.

Example: weak-`p-regularization for 0 < p ≤ 1. Weak-`p norms have been used to
model sparsity in High-Dimensional Statistics (see, for instance, Abramovich et al. (2006);
Wang et al. (2014)). To define those norms, let t∗1 ≥ t∗2 ≥ . . . ≥ t∗d be the non-increasing
rearrangement of (|ti|)di=1. Set ‖t‖p∞ = max1≤j≤d j

1/pt∗j and put Bd
p∞ = {t ∈ Rd : t∗j ≤

j−1/p for every 1 ≤ j ≤ d}.
One can use the following well-known fact (see, e.g., Theorem B in Gordon et al. (2007))

to control the Gaussian mean-width of the unit ball associated with ‖·‖p∞.

Proposition 5.5 For 0 < p ≤ 1,

`∗(Bp∞) .


√

log d
p−1 if 0 < p < 1

(
log d

)3/2
if p = 1.

Applying Theorem 5.3, one has the following:

Theorem 5.6 Under the assumptions of Theorem 5.3 and using its notation,

• If p < 1 and

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2η

3
pσqLwu ‖t‖p∞

√
log d

N

)
,

then with probability larger than the one in (5.6)

∥∥t̂− t∗∥∥2

2
.p,L,q


σqwu ‖t∗‖p∞

√
log d
N if N &L d,

max

{
σqwu ‖t∗‖p

√
log d
N , ‖t∗‖2p∞

log d
N

}
otherwise.

• If p = 1 and

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2η

3
1σq ‖t‖1∞

√
log3 d

N

)
,

then with probability larger than the one in (5.6)

∥∥t̂− t∗∥∥2

2
.L,δ,q


σqwu ‖t∗‖1∞

√
log3 d
N if N &L d,

max

{
σqwu ‖t∗‖1∞

√
(log d)3

N , ‖t∗‖21∞
log3 d
N

}
otherwise.
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Example: the Micchelli, Morales and Pontil’s regularization functions.

Let Θ be a nonempty convex cone in [0,∞)d, and for every t ∈ Rd set

Ω(t|Θ) = inf
θ∈Θ

1

2

d∑
j=1

( t2j
θj

+ θj

)
. (5.12)

It was shown in Maurer et al. (2010) that Ω(·|Θ) is a norm on Rd.
This family of norms captures several classical regularization functions, by an appropri-

ate choice of the cone Θ. For instance, the `d1-norm is obtained by selecting Θ = [0,∞)d.
Also, the group LASSO introduced in Yuan and Lin (2006) is generated by a cone: indeed,
if (G1, · · · , GT ) is a partition of {1, . . . , d} and

Θ = {θ ∈ [0,∞)d that is constant within each group G`}, (5.13)

then

Ω(t|Θ) =
T∑
`=1

√
|G`|

∥∥t|G`∥∥2
,

where |G`| is the cardinality of the set of coordinates G` and t|G` is the restriction of t to
G`.

Error bounds for procedures that use Ψ(t) = Ω(t|Θ) as regularization functions have
been established in Maurer and Pontil (2012), under the assumption that the loss functions
is bounded and Lipschitz (see Theorem 1 there). Naturally, the squared loss is not covered
by such a result because it is not bounded in Rd, nor is it Lipschitz. Our aim is to provide
a version of the result from Maurer and Pontil (2012) for the quadratic loss and when X is
subgaussian and the noise belongs to Lq for some q > 2. The first step in that direction is
the following estimate on the Gaussian mean width of the corresponding unit ball.

Proposition 5.7 Let Θ be a nonempty convex cone in [0,∞)d and set B = {t : Ω(t|Θ) ≤ 1}.
Let Sd−1

1 be the unit sphere of `d1 and put Ex to be the set of extreme points of Θ∩ Sd−1
1 . If

M = maxa∈Ex ‖a‖1/2∞ , then, for an absolute constant c,

`∗(B) ≤ 1 + cM
√

2 log
(
|Ex|

)
. (5.14)

The proof of Proposition 5.7 may be derived in various ways (see a similar result in
Maurer and Pontil (2012)), though we will use a chaining argument which actually leads to
a stronger estimate than (5.14).

Definition 5.8 Let T ⊂ Rd and set ‖·‖ to be a norm on Rd. For every α > 1 let

γα(T, ‖·‖) = inf
(Ts)

sup
t∈T

∞∑
s=0

2s/α ‖πs+1t− πst‖ ;

the infimum is taken with respect to all sequences (Ts) of subsets of T for which |T0| = 1
and for s ≥ 1, |Ts| ≤ 22s, and πst denotes the nearest point to t in Ts with respect to ‖·‖.
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Clearly, if T is finite then γα(T, ‖ ‖) . supt∈T ‖t‖ · log1/α |T |.

Proof of Proposition 5.7. It is straightforward to verify (see, e.g., Maurer et al. (2010))
that the dual norm to Ω(·|Θ) is

Ω∗(t|Θ) = max
a∈Ex

( d∑
j=1

ajt
2
j

)1/2
. (5.15)

Let g1, ..., gd be independent, standard Gaussian random variables, Applying a Bernstein
type inequality for a sum of independent ψ1 random variables (see Corollary 2.10 in Tala-
grand (1994)), it follows that for every a1, ..., aN , every u > 0 and any s ∈ N,

Pr

∣∣∣ d∑
j=1

aj(g
2
j − 1)

∣∣∣ ≥ u2s/2‖a‖2 + u22s‖a‖∞

 ≤ 2 exp(c12su2).

Hence, using a standard chaining argument,

E sup
a∈Ex

d∑
j=1

ajg
2
j ≤ 1 + c2 (γ2(Ex, ‖ ‖2) + γ1(Ex, ‖ ‖∞)) .

Now one may apply the trivial estimates on γ1 and γ2. Firstly, γ1(Ex, ‖·‖∞) .M2 log(|Ex|),
and secondly, noting that |

∑d
j=1 aj | ≤ ‖a‖1 = 1 and thus ‖a‖2 ≤ ‖a‖

1/2
∞ , one has γ2(Ex, ‖·‖2) .

M
√

log(|Ex|). Therefore, by Jensen’s inequality,

E sup
a∈Ex

( d∑
j=1

ajg
2
j

)1/2 ≤ 1 + cM
√

log(|Ex|).

Theorem 5.9 Using the notation above and of Theorem 5.3, let

Λ(t) = Ω(t|Θ)M

√
log(|Ex|)

N
.

If

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2σqLwuΛ(t)

)
then with probability larger than the one in (5.6)

‖
〈
t̂− t∗, ·

〉
‖2L2(µ) .L,q


σqwuΛ(t∗) if N &L d,

max
{
σqLwuΛ(t∗),Λ2(t∗)

}
otherwise.
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When Θ = [0,∞)d then M
√

log(Ex) .
√

log d. Hence, Theorem 5.9 yields the same
error rate as the one obtained for the LASSO in Theorem 4.2 and in Theorem 5.4, though
under a stronger assumption on X. This is not surprising because when Θ = [0,∞)d,
Ω(t|Θ) = ‖t‖1 and the resulting RERM is just the LASSO.

In the case of the group LASSO, for Θ as in (5.13), one has M
√

log(Ex) .
√

log |T |,
and Λ(t∗) ∼ Ω(t∗|Θ)M

√
(log |T |)/N .

Example: The SLOPE regularization
In Su and Candès (2016); Bogdan et al. (2015), the authors introduced the regularization

function:

Ψ(t) = ‖t‖SLOPE =

d∑
j=1

λjt
∗
j

where λ1 ≥ · · · ≥ λd ≥ 0 and t∗1 ≥ · · · ≥ t∗d ≥ 0 is the non-increasing rearrangement of
(|ti|)di=1.

In Su and Candès (2016) the given data is generated by the Gaussian linear model
Yi =

〈
Xi, t

∗〉+Wi, i = 1, . . . , N for a Gaussian design Xi ∼ N (0, N−1Id×d) (note that the
covariance matrix is normalized by 1/N) and a centered Gaussian noise Wi with variance σ2

that is independent of the design Xi. Setting Φ−1(α) to be the α-th quantile of a standard
normal distribution and q ∈ (0, 1), the weights were chosen to be

λi = Φ−1(1− iq/(2d)), (5.16)

and, for this choice of weights, SLOPE was defined by

t̂ ∈ argmin
t∈Rd

( 1

2N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + σ

‖t‖SLOPE√
N

)
.

The result in Su and Candès (2016) is of an asymptotic nature:

Theorem 5.10 (Theorem 1.2 Su and Candès (2016)) Let 0 < ε < 1 and set 1 ≤ k ≤
d that satisfy k/d = o(1) and (k log d)/N = o(1) when N →∞. Then,

lim
N→∞

sup
‖t∗‖0≤k

Pr
( N

∥∥t̂− t∗∥∥2

2

2σ2k log(d/k)
> 1 + 3ε

)
= 0,

where the supremum is taken with respect to all vectors that are supported on at most k
coordinates.

It was shown in Su and Candès (2016) that 2σ2k log(d/k)/N is the (asymptotic) minimax
rate for t∗ that is k-sparse.

The article Su and Candès (2016) (see Section 6 there) raises the question of extending
Theorem 5.10 beyond the Gaussian case, especially when the coordinates of X may be
correlated. We study this question in the context of sparse recovery and for an arbitrary
choice of weights in Lecué and Mendelson (to appear), leading to error bounds that depend
on ‖t∗‖0. Here, we obtain a complexity-dependent error rate that depends on ‖t∗‖SLOPE .
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Proposition 5.11 Set B = {t ∈ Rd : ‖t‖SLOPE ≤ 1}. There exists an absolute constant
C, for which, if M = max1≤j≤d λ

−1
j

√
log(ed/j), then `∗(B) ≤ CM .

Proof. The proof is an outcome of a standard binomial estimate. Let G = (gi)
d
i=1 be a

standard Gaussian vector and observe that

`∗(B) = E sup
t∈B

〈
G, t

〉
≤ E sup

t∈B

d∑
j=1

g∗j t
∗
j ≤ E sup

t∈B

d∑
j=1

g∗j
λj
λjt
∗
j ≤ E max

1≤j≤d

g∗j
λj
.

For u ≥ 1,

Pr
(

max
1≤j≤d

g∗j
λj
≥ u

)
≤

d∑
j=1

Pr
(
g∗j ≥ uλj

)
≤

d∑
j=1

(
d

j

)
Prj (|g| ≥ uλj)

≤ 2
d∑
j=1

exp
(
j log

(ed
j

)
− c1ju

2λ2
j

)
≤ 2 exp(−c2u

2),

where the last inequality follows if one sets u2 ≥ maxj λ
−2
j log(ed/j). The proof is concluded

by integrating the tails.

Theorem 5.3 leads to estimation properties of SLOPE.

Theorem 5.12 Using the notation of Theorem 5.3, if Ψ(t) = ‖t‖SLOPE, maxj λ
−1
j

√
log(ed/j) ≤

C and

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c2σqLwu

‖t‖SLOPE√
N

)
,

then with probability larger than the one in (5.6),

∥∥t̂− t∗∥∥2

2
.L,q,C


σqwu‖t∗‖SLOPE√

N
if N &L d,

max
{
σqLwu‖t∗‖SLOPE√

N
,
‖t∗‖2SLOPE

N

}
otherwise.

As in the case of the LASSO, one may combine the sparsity-dependent error rate for
SLOPE from Lecué and Mendelson (to appear) and the complexity-dependent error rate
from Theorem 5.12. To that end, assume that X is isotropic, L-subgaussian and that the
noise ξ is in Lq for some q > 2. Then, with probability larger than the one in (5.6)

∥∥t̂− t∗∥∥2

2
.L,q,C min

{
σq ‖t∗‖0
N

log
( ed

‖t∗‖0

)
,max

{
σqwu ‖t∗‖SLOPE√

N
,
‖t∗‖2SLOPE

N

}}
,

for N & ‖t∗‖0 log(ed/ ‖t∗‖0).
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5.3 Regularization methods in Rm×T

In this section, we assume that X takes values in the set of m× T matrices, endowed with
the inner product

〈
A,B

〉
=
∑

u,v AuvBuv. We consider A∗ ∈ argminA∈Rm×T E
(
Y −

〈
X,A

〉)2
and thus

〈
X,A∗

〉
is the best (linear) approximation of Y in the L2 sense.

Let Λ(ρ) ≥ ρ`∗(K)/
√
N for all ρ > 0, u,w > C and set

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + c2η

3σqLwuΛ(Ψ(A))
)
. (5.17)

By Theorem 5.3, with probability larger than the one in (5.6)∥∥∥Â−A∥∥∥2

2
=
∥∥∥〈X, Â−A∗〉∥∥∥2

L2

. r(10ηΨ(A∗))2

where for ρ ≥ 0,

r(ρ)2 ∼L,q


σqwuΛ(ρ) when N &L mT

max
{
σqwuΛ(ρ),Λ2(ρ)

}
otherwise.

Let us turn to estimates on `∗(K) for the unit balls of the regularization functions used
in the matrix completion and collaborative filtering problems.

Example: Sp-regularization for p ≥ 1.
For any A ∈ Rm×T , let σ1(A) ≥ σ2(A) ≥ · · · ≥ σm∧T (A) be the ordered singular values

of A and set m∧ T = min{m,T}. Recall that the p-Schatten norm ‖·‖Sp of A is defined by

‖A‖Sp =
(m∧T∑
j=1

σj(A)p
)1/p

.

Schatten norms have been used extensively in matrix completion and in collaborative fil-
tering. Exact reconstruction properties of various procedures have been established via the
minimization of the S1-norm, constrained to matching the data (see, e.g., Candès and Plan
(2011); Candès and Tao (2010); Candès and Recht (2009); Gross (2011); Chandrasekaran
et al. (2012)). S1 regularization has also been used in the noisy setup for independent sub-
gaussian noise and, in most cases, for subgaussian or deterministic designs, in Koltchinskii
et al. (2011); Rohde and Tsybakov (2011); Koltchinskii (2011); Negahban and Wainwright
(2012); Gäıffas and Lecué (2011); Klopp (2014).

A result that is closely related to ours is Theorem 9.2 from Koltchinskii (2011), in which
X is isotropic and L-subgaussian; ξ is a symmetric random variable that is independent of
X and for which ‖ξ‖ψα < ∞ for some α ≥ 1 (cf. Rao and Ren (1991) for more details on
the ψα-norms); and the target is Y =

〈
X,A∗

〉
+ ξ.

Let N & m · rank(A∗) and set

λ & max

{
‖ξ‖2

√
m(t+ logm)

N
, ‖ξ‖ψα log1/α

(‖ξ‖ψα
‖ξ‖L2

)√m(t+ logN)(t+ logm)

N

}
.
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The S1-regularization procedure with regularization parameter λ satisfies that for every
t > 0, with probability larger than 1− 3 exp(−t)− exp(−c0N),∥∥∥Â−A∗∥∥∥2

S2

. min
{
λ ‖A∗‖S1

, λ2rank(A∗)
}
. (5.18)

In comparison, an estimation result for Sp-norm regularization (for any p ≥ 1) follows
from Theorem 5.3, and does not require any assumptions on the “noise” ξ = Y −

〈
A∗, X

〉
,

other than ξ ∈ Lq for some q > 2. in particular, ξ need not belong to ψα, nor does it have to
be independent of X. The result uses the following estimate on the Gaussian mean-width
of the unit ball of Sp-norms (see, for instance, Proposition 1.4.4 in Chafäı et al. (2012)):

Proposition 5.13 Let p ≥ 1 and set BmT
p to be the unit ball of ‖·‖Sp. Then

`∗(BmT
p ) ∼ min{m,T}1−1/p

√
m+ T .

Combining the previous result with Theorem 5.3, one obtains the following:

Theorem 5.14 Assume that the assumptions of Theorem 5.3 hold. Let Λp(ρ) = ρmin{m,T}1−1/p
√

m+T
N

and

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + c2σqLwuΛp(‖A‖Sp)

)
.

Then with probability at least 1− δ,

∥∥∥Â−A∗∥∥∥2

S2

.p,L,q


σqwuΛp(‖A∗‖Sp) if N &L mT,

max
{
σqwuΛp(‖A∗‖Sp),Λ

2
p(‖A∗‖Sp)

}
otherwise.

Remark. As in the vector case mentioned earlier, Theorem 5.3 also applies for Sp-
regularization for 0 < p < 1. In that case, Assumption 1.1 is satisfied for η = 21/p and
the Gaussian mean width of the Sp-unit ball satisfies `∗(BmT

p ) .
√
m+ T . It therefore

follows from Theorem 5.3 that under the same assumptions as in Theorem 5.3 and for
Λ(ρ) = ρ

√
(m+ T )/N for all ρ > 0, the RERM

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + c2σqLwuΛ(‖A‖Sp)

)
,

satisfies, with probability larger than the one in (5.6),

∥∥∥Â−A∗∥∥∥2

S2

.p,L,q


σqwuΛ(‖A∗‖Sp) if N &L mT,

max
{
σqwuΛ(‖A∗‖Sp),Λ

2(‖A∗‖Sp)
}

otherwise.

Observe that just as in the vector case, when 0 < p < 1 this rate is not the minimax rate
in the true model ‖A∗‖Sp B

mT
p . Indeed, Rohde and Tsybakov (2011) provides the minimax

rate, and, in fact, also shows that the minimax rate may be attained using Ψ(A) = ‖A‖pSp
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as a regularization function. To be more accurate, Rohde and Tsybakov (2011) considers
the following problem: let x1, . . . , xN be N deterministic matrices in Rm×T satisfying some
RIP property and set Wi to be N independent, standard Gaussian variables with variance
σ2. Set Yi =

〈
xi, A

∗〉 + Wi, i = 1, . . . , N , leading to the so-called matrix regression model
with Gaussian noise and a deterministic design. It is shown in Rohde and Tsybakov (2011)
that when ρBmT

p for some 0 < p ≤ 1, the minimax rate of the problem in ρBmT
p is

σ2ρp
(m+ T

N

)1− p
2

in some specific range of N, σ and ρ. Our result recovers this rate only for p = 1.

Example: Max-norm regularization. The max-norm of a matrix is defined by

‖A‖max = inf
A=UV >

‖U‖2→∞ ‖V ‖2→∞ ,

with the infimum taken with respect to all pairs of matrices U, V for which A = UV >.
Constrained empirical risk minimization procedures that are based on the max-norm

have been used in Cai and Zhou (2016); Nathan and Adi (2005) for bounded and Lipschitz
loss functions, and in Lecué and Mendelson for the squared loss and for a subgaussian
and isotropic design vector X and a subgaussian noise ξ independent of X. Consider the
matrix regression model Yi =

〈
Xi, A

∗〉+Wi, i = 1, . . . , N where X1, . . . , XN are independent
isotropic and subgaussian matrices, W1, . . . ,WN are independent centered gaussian variables
with variance σ2 that are independent of the Xi’s and A∗ belongs to the max-norm ball of
radius ρ. One may show that the minimax rate in this case is

max

{
σρ

√
(mT )(m+ T )

N
,
ρ2(mt)(m+ T )

N

}
, (5.19)

at least in some specific regime of ρ, σ and N (cf. Lecué and Mendelson).
To apply Theorem 5.3, let us estimate the Gaussian mean-width of the unit ball of the

max-norm ball, that is, of B = {A ∈ Rm×T : ‖A‖max ≤ 1}.

Lemma 5.15 There exists an absolute constant c for which, for every m and T ,

`∗(B) .
√

(mT )(m+ T ).

Proof. An application of Grothendieck’s inequality (see, e.g., Nathan and Adi (2005))
shows that

conv
(
X±
)
⊂ B ⊂ KGconv

(
X±
)

where KG is the Grothendieck constant and X± = {uv> : u ∈ {±1}m, v ∈ {±1}T }. If
G = (gij)1≤u≤m:1≤v≤T is a standard m × T Gaussian matrix, it follows from the Gaussian
maximal inequality (see, e.g., Chapter 3 in Ledoux and Talagrand (1991)) that

`∗(B) = E sup
A∈B
|
〈
G, A

〉
| ≤ KGE sup

A∈conv(X±)
|
〈
G, A

〉
|

= KGE sup
A∈X±

|
〈
G, A

〉
| . max

A∈X±
‖A‖HS

√
log |X±| .

√
(mT )(m+ T ).
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Theorem 5.16 Using the assumptions and notation of Theorem 5.3, and setting Λ(ρ) =
ρ
√

(mT )(m+ T )/N , if

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + c2σqLwuΛ(‖A‖max)

)
,

then with probability larger than the one in (5.6)

‖Â−A∗‖2S2
.L,q


σqwuΛ(‖A∗‖max) if N &L mT,

max
{
σqwuΛ(‖A∗‖max),Λ2(‖A∗‖max)

}
otherwise.

As a consequence, we recover the minimax rate of convergence in the matrix regression
model with subgaussian design and gaussian noise in the class ‖A∗‖max B thanks to max-
norm regularization and without knowing ‖A∗‖max in advance.

Example: Atomic-norm regularization.
The atomic-norm has been used in Chandrasekaran et al. (2012) in the context of exact

and robust recovery using few Gaussian linear measurements of a signal or of a matrix.
Given A ⊂ Rm×T , the elements in A are called atoms. Set conv(A) to be the convex

hull of A and put
‖A‖A = inf {t > 0 : A ∈ t · conv(A)} . (5.20)

Even though ‖·‖A need not be a norm (because conv(A) need not be centrally-symmetric),
it is positive homogeneous and satisfies a triangle inequality: for every A,B ∈ Rm×T and
λ ≥ 0:

‖A+B‖A ≤ ‖A‖A + ‖B‖A and ‖λA‖A = λ ‖A‖A .

And, if we assume that A is centrally-symmetric, then ‖ ‖A is a norm, (5.9) is satisfied and
Theorem 5.3 applies.

Set B to be the unit ball with respect to ‖ ‖A and note that `∗(B) = `∗(A). For example,
assume that m = T and put A to be the set of all orthogonal matrices. Since the unit ball of
the spectral norm is the convex hull of the set of orthogonal matrices, one has ‖·‖A = ‖·‖S2

and
`∗(B) = E ‖G‖S2

≤
√
mE ‖G‖S∞ . m.

Theorem 5.17 Using the assumptions and notation of Theorem 5.3, let A ⊂ Rm×T be a
centrally-symmetric set of atoms and set Λ(ρ) ≥ ρ`∗(A)/

√
N . If

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + c2σqLwuΛ(‖A‖A)

)
then with probability larger than the one in (5.6)

∥∥∥Â−A∗∥∥∥2

S2

.L,q


σqwuΛ(‖A∗‖A) if N &L mT,

max
{
σqwuΛ(‖A∗‖A),Λ2(‖A∗‖A)

}
otherwise.
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6. Conclusions

We have presented a general result (Theorem 1.9) describing statistical properties of a con-
strained regularized procedure in the learning theoretical framework. This result highlights
the role played by the quadratic and multiplier processes in calibrating the regularization
parameter λ as well as their effect on the estimation error rate. It appears that:

1. The rates of convergence depend on Ψ(f∗) and we recover the minimax rate in the true
model {f ∈ F : Ψ(f) ≤ Ψ(f∗)} – up to a logarithmic factor – in many well-studied
examples .

2. No statistical model is needed to study RERM; all the analysis has been carried out
in the general learning theory setup, and thus without assuming any statistical model.
Theorem 1.9 and all its corollaries and applications are true regardless of any relation
between the target Y and the input X. For instance, when predicting Y using linear
functionals there is no need to assume that Y =

〈
t0, X

〉
+ W for an independent

noise W ; our results hold even if Y were, for instance, a noisy version of a quadratic
function of a linear functional of X (e.g. phase retrieval).

Our analysis shows that despite considering this general framework, the error rate and
the regularization parameter used to construct RERM almost match the ones that
would have been obtained with more information – namely, a given statistical model.
In the examples we considered, statistical models are superfluous to the analysis of
RERM and as a consequence, they may actually hide what really determines the error
rate and the right choice of a regularization parameter:

• calibration of the regularization parameter depends only on the multiplier process
– which measures the empirical correlation between the noise Y −f∗(X) and the
class F . When this correlation is small or even null (in the free-noise case) the
regularization parameter will also be small.

• the key parameters are the structure of the “unit ball” of the regularization
function (measured here using the Gaussian mean width) and the noise level,
which is measured through the Lq norm of Y − f∗(X).

7. Proof of Theorem 3.6

Following Mendelson (2016), the proof of Theorem 3.6 is based on properties of the following
norm:

Definition 7.1 For a random variable Z and p ≥ 1, set

‖Z‖(p) = sup
1≤q≤p

‖Z‖Lq√
q
.

The ‖·‖(p) norm is a ‘local’ version of the ψ2 norm. While

‖Z‖ψ2 ∼ sup
q≥1

‖Z‖Lq√
q
,
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‖Z‖(p) captures the subgaussian behavior of Z up to the p-th moment.

Under Assumption 3.1, a high probability bound on (3.7) can be derived using the next
result.

Proposition 7.2 (Lemma 2.8 in Lecué and Mendelson (2017)) There exists an ab-
solute constant c0 for which the following holds. Let Z be a mean-zero real-valued ran-
dom variable and let Z1, ..., ZN be independent copies of Z. Let p1 ≥ 1 and assume that
‖Z‖(p1) ≤ L, then ∥∥∥∥∥ 1√

N

N∑
i=1

Zi

∥∥∥∥∥
(p1)

≤ c0L.

Setting Uj = N−1/2
∑N

i=1 εiXi(j) and p1 = log d (recalling that t ≥ 1 and d ≥ N in
Assumption 3.1), it follows from Proposition 7.2 that

‖Uj‖Lp1 ≤ c0L
√
p1‖xj‖L2 .

Therefore,

Pr

(
max

1≤j≤d
|Uj | ≥ u

)
≤

d∑
j=1

Pr (|Uj | ≥ u) ≤
d∑
j=1

(
‖Uj‖Lp1

u

)p1

≤ d
(
c0L
√
p1 max1≤j≤d ‖xj‖L2

u

)p1
= d

(
c0L
√

log dmax1≤j≤d ‖xj‖L2

u

)log d

.

Let w ≥ e and set u = c0Lw
√

log dmax1≤j≤d ‖xj‖L2
; therefore,

Pr

(
max

1≤j≤d
|Uj | ≥ c1Lw

√
log d max

1≤j≤d
‖xj‖L2

)
≤
( e
w

)log d
, (7.1)

which is a high probability estimate on (3.7) under a limited moment assumption. Inte-
grating the tail,

E max
1≤j≤d

∣∣∣∣∣ 1√
N

N∑
i=1

εiXi(j)

∣∣∣∣∣ . L
√

log d max
1≤j≤d

‖xj‖L2

proving (3.9).

Next, we obtain high probability bounds on (3.8),—estimates that require some prepa-
ration.

Let j ∈ {1, . . . , d} and set Zi = Xi(j). Consider the Bernoulli sums

Qj =

N∑
i=1

εiξiXi(j) =

N∑
i=1

εiξiZi.

Denote by (a∗i )
N
i=1 the non-increasing rearrangement of (|ai|)Ni=1. A straightforward appli-

cation of Höffding’s inequality shows that conditioned on (ξi)
N
i=1 and (Zi)

N
i=1, for any v > 0,
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with probability at least 1− 2 exp(−v2/2) relative to (εi)
N
i=1,

|Qj | ≤
∑
i≤m

ξ∗i Z
∗
i + v

∑
i≥m

(ξ∗i Z
∗
i )2

1/2

(7.2)

≤

∑
i≤m

(ξ∗i )2

1/2∑
i≤m

(Z∗i )2

1/2

+ v

∑
i≥m

(ξ∗i )2r

1/2r∑
i≥m

(Z∗i )2r′

1/2r′

,

where r and r′ are conjugate indices.
As a consequence, high probability bounds on the rearrangements (ξ∗i ) and (Z∗i ) can be

used to obtain high probability bounds on |Qj | (and therefore, on max1≤j≤d |Qj | as well,
using the union bound).

The next two observations, whose proofs may be found in Mendelson (2016), give in-
formation on the structure of a typical (Zi)

N
i=1 when Z has at least ∼ log d subgaussian

moments. It turns out that one may decompose (Zi)
N
i=1 to a sum of two vectors, supported

on disjoint sets: one consists of the largest m coordinates of (|Zi|)Ni=1, and its `N2 norm
is determined by relatively high moments of Z; the other consists of the N − m smaller
coordinates of (|Zi|)Ni=1, and if Z ∈ Lq1 , its `Nr norm is well-behaved for r < q1.

The ‘level’ m depends on the desired probability estimate and on the moments of Z: if
one wishes to obtain a probability estimate of 1−2 exp(−p) for p ≥ logN (as we will), then
Z should have roughly p moments and one should select m ∼ p/ log(eN/p).

First, let us consider the smaller coordinates:

Lemma 7.3 (Lemma 3.2 in Mendelson (2016)) There exist absolute constants a0 and
c1 for which the following holds. Let 1 ≤ r1 < q1, set Z ∈ Lq1 and put Z1, ..., ZN to be
independent copies of Z. Fix 1 ≤ p ≤ N , let u > 2 and set

m =

⌈
a0p

((q1/r1)− 1) log(4 + eN/p)

⌉
.

If m > 1, then, with probability at least 1− 2u−mq1 exp(−p),(
N∑
i=m

(Z∗i )r1

)1/r1

≤ c1

(
q1

q1 − r1

)1/r1

uN1/r1‖Z‖Lq1

and, if m = 1 and 0 < β < q1/r1 − 1 then with probability at least 1− c2u
−q1N−β,(

N∑
i=1

|Zi|r1
)1/r1

≤ c1

( q1

q1 − (β + 1)r1

)
u ‖Z‖Lq1 N

1/r1 .

Next, we consider the larger coordinates:

Lemma 7.4 (Lemma 3.4 in Mendelson (2016)) There exists absolute constants a1 and
c0 for which the following holds. Let Z1, ..., ZN be independent copies of a random variable
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Z, set p ≥ logN and put 1 ≤ m ≤ N/2e that satisfy m ≤ a1p/ log
(
eN/p

)
. Then, for every

u > 1, with probability at least 1− u−2p exp(−p), one has(
m∑
i=1

(Z∗i )2

)1/2

≤ c0u
√
p‖Z‖(2p).

In particular, under Assumption 3.1, we apply Lemma 7.3 and Lemma 7.4 to p, q1 and
r1 defined by

2p = t log d, r1 = 2r′ and q1 = r1 max
{

2, 1 +
a0

a1

}
,

where a0 and a1 are the absolute constants from Lemma 7.3 and 7.4. We also set

m =

⌈
a0p

log(4 + eN/p)

⌉
(7.3)

and observe that if

m0 =

⌈
a0p

((q1/r1)− 1) log(4 + eN/p)

⌉
then m0 ≤ m ≤

a1p

log(eN/p)

and m0q1 ∼ m. Moreover, if κ0 is a large enough absolute constant and t ≥ κ0, then
m0 > 1. Recalling that p ≥ 2 log d and setting Zi = Xi(j) for i = 1, . . . , N , it follows that
for any u > 2, with probability at least 1− u−2p exp(−p/2)− 2u−c0m exp(−p/2), for every
1 ≤ j ≤ d (

m∑
i=1

(Z∗i )2

)1/2

. u
√
p ‖Z‖(2p) . uL

√
t log d ‖xj‖L2

(7.4)

and (
N∑
i=m

(Z∗i )2r′

)1/2r′

. u ‖Z‖Lq1 N
1/2r′ . uL

√
r′ ‖xj‖L2

N1/2r′ . (7.5)

Let ξ1, ..., ξN be independent copies of ξ and recall that (ξ∗i )Ni=1 is the monotone non-
increasing rearrangement of (|ξi|)Ni=1. We apply Lemma 7.3 for q1 = q, r1 = 2r and set

m1 =

⌈
a0p

((q1/r1)− 1) log(4 + eN/p)

⌉
.

Thus, m1 > 1 when t ≥ κ0 for a large enough constant κ0, and if m is as in (7.3) one
has m ≥ m1 and m1q1 ∼ m. Hence, for p = (t/2) log d, with probability larger than
1− 2u−c0m exp(−p), (

N∑
i=m

(ξ∗i )2r

)1/2r

≤ c(q)u ‖ξ‖Lq N
1/2r. (7.6)

This provides a high probability bound on the smaller coordinates of (|ξi|)Ni=1. Next, let us
turn to estimating the larger ones.
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Lemma 7.5 (Lemma 4.3 in Mendelson (2016)) Let q > 2 and assume that ξ ∈ Lq.
If ξ1, . . . , ξN are independent copies of ξ then for every w > 1 with probability larger than
1− c0w

−qN−((q/2)−1) logqN ,(
m∑
i=1

ξ2
i

)1/2

≤

(
N∑
i=1

ξ2
i

)1/2

≤ c1w ‖ξ‖Lq
√
N.

Setting Zi = Xi(j) for i = 1, . . . , N and applying (7.4), (7.5), (7.6) and Lemma 7.5, we
obtain, with probability larger than

1− exp(−p/2)

u2p
− 4 exp(−p/2)

uc0m
− c0 logqN

wqN q/2−1

that for every j = 1, . . . , d∑
i≤m

(ξ∗i )2

1/2∑
i≤m

(Z∗i )2

1/2

. uwL
√
t log d ‖xj‖L2

‖ξ‖Lq
√
N

and ∑
i≥m

(ξ∗i )2r

1/2r∑
i≥m

(Z∗i )2r′

1/2r′

≤ c(q)u2L ‖ξ‖Lq
√
N ‖xj‖L2

.

Then, by plugging those inequalities in (7.2), it is evident that under Assumption 3.1, for
u > 2, v > 0, w ≥ 2, 2p = t log d and m ∼ p/ log(eN/p), with probability at least

1− exp(−p/2)

u2p
− 4 exp(−p/2)

uc0m
− c1 logqN

wqN q/2−1
− 2 exp(−v2t log d),

max
1≤j≤d

∣∣∣ N∑
i=1

εiξiXi(j)
∣∣∣ = max

1≤j≤d
|Qj | .q (uw + u2v)L‖ξ‖Lq

√
N
√
t log d max

1≤j≤d
‖xj‖L2 .
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Guillaume Lecué and Shahar Mendelson. Regularization and the small-ball method I: sparse
recovery. Ann. Statist., to appear.

Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)]. Springer-Verlag, Berlin, 1991. ISBN 3-540-52013-9. Isoperimetry and processes.

Pascal Massart and Caroline Meynet. The Lasso as an `1-ball model selection procedure.
Electron. J. Stat., 5:669–687, 2011. ISSN 1935-7524. doi: 10.1214/11-EJS623. URL
http://dx.doi.org/10.1214/11-EJS623.

46

http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.3150/12-BEJ486
http://dx.doi.org/10.1007/978-3-642-22147-7
http://dx.doi.org/10.1007/978-3-642-22147-7
http://dx.doi.org/10.1093/imrn/rnv096
http://dx.doi.org/10.1093/imrn/rnv096
http://dx.doi.org/10.1214/11-AOS894
http://dx.doi.org/10.1214/11-AOS894
http://dx.doi.org/10.3150/15-BEJ701
https://doi.org/10.4171/JEMS/682
https://doi.org/10.4171/JEMS/682
http://dx.doi.org/10.1214/11-EJS623


Regularization and the small-ball method

Andreas Maurer and Massimiliano Pontil. Structured sparsity and generalization. J. Mach.
Learn. Res., 13:671–690, 2012. ISSN 1532-4435.

Andreas Maurer, Charles Micchelli, and Massimiliano Pontil. A family of penalty functions
for structured sparsity. NIPS, 2010.

Shahar Mendelson. A remark on the diameter of random sections of convex bodies. In
Geometric aspects of functional analysis, volume 2116 of Lecture Notes in Math., pages
395–404. Springer, Cham, 2014. doi: 10.1007/978-3-319-09477-9 25. URL http://dx.

doi.org/10.1007/978-3-319-09477-9_25.

Shahar Mendelson. Learning without concentration. J. ACM, 62(3):Art. 21, 25, 2015. ISSN
0004-5411. doi: 10.1145/2699439. URL http://dx.doi.org/10.1145/2699439.

Shahar Mendelson. Upper bounds on product and multiplier empirical processes. Stochastic
Process. Appl., 126(12):3652–3680, 2016.

Shahar Mendelson. Learning without concentration for a general loss function. Probab.
Theory Related Fields, To appear.

Srebro Nathan and Shraibman Adi. Rank, trace-norm and max-norm. 18th Annual Con-
ference on Learning Theory (COLT), 2005.

Sahand Negahban and Martin J. Wainwright. Restricted strong convexity and weighted
matrix completion: optimal bounds with noise. J. Mach. Learn. Res., 13:1665–1697,
2012. ISSN 1532-4435.

M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks
in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991. ISBN 0-8247-
8478-2.

Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax rates of estimation for
high-dimensional linear regression over `q-balls. IEEE Trans. Inform. Theory, 57(10):
6976–6994, 2011. ISSN 0018-9448. doi: 10.1109/TIT.2011.2165799. URL http://dx.

doi.org/10.1109/TIT.2011.2165799.

Philippe Rigollet and Alexandre Tsybakov. Exponential screening and optimal rates of
sparse estimation. Ann. Statist., 39(2):731–771, 2011. ISSN 0090-5364. doi: 10.1214/
10-AOS854. URL http://dx.doi.org/10.1214/10-AOS854.

Angelika Rohde and Alexandre B. Tsybakov. Estimation of high-dimensional low-rank
matrices. Ann. Statist., 39(2):887–930, 2011. ISSN 0090-5364. doi: 10.1214/10-AOS860.
URL http://dx.doi.org/10.1214/10-AOS860.

Mark Rudelson and Roman Vershynin. Small ball probabilities for linear images of high-
dimensional distributions. Int. Math. Res. Not. IMRN, (19):9594–9617, 2015. ISSN 1073-
7928. doi: 10.1093/imrn/rnu243. URL http://dx.doi.org/10.1093/imrn/rnu243.

Weijie Su and Emmanuel J. Candès. SLOPE is adaptive to unknown sparsity and
asymptotically minimax. Ann. Statist., 44(3):1038–1068, 2016. ISSN 0090-5364. doi:
10.1214/15-AOS1397. URL http://dx.doi.org/10.1214/15-AOS1397.

47

http://dx.doi.org/10.1007/978-3-319-09477-9_25
http://dx.doi.org/10.1007/978-3-319-09477-9_25
http://dx.doi.org/10.1145/2699439
http://dx.doi.org/10.1109/TIT.2011.2165799
http://dx.doi.org/10.1109/TIT.2011.2165799
http://dx.doi.org/10.1214/10-AOS854
http://dx.doi.org/10.1214/10-AOS860
http://dx.doi.org/10.1093/imrn/rnu243
http://dx.doi.org/10.1214/15-AOS1397
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