
Second-Order Stochastic Optimization for Machine Learning in Linear Time

Erratum: Second-Order Stochastic Optimization for
Machine Learning in Linear Time

Naman Agarwal namana@cs.princeton.edu
Computer Science Department
Princeton University
Princeton, NJ 08540, USA

Brian Bullins bbullins@cs.princeton.edu
Computer Science Department
Princeton University
Princeton, NJ 08540, USA

Elad Hazan ehazan@cs.princeton.edu

Computer Science Department

Princeton University

Princeton, NJ 08540, USA

Editor: Tong Zhang

An error is present in Algorithm 4 and the proof of Theorem 15 in Section 5 of the
original manuscript, as a result of an incorrect handling of the quadratic model and its
conditioning properties. Thus, we provide in this erratum a correction to this error. First,
we amend the bullet points in Section 5.1 to now say:

• Given A we will compute a low complexity constant spectral approximation B of A.

Specifically, B =
∑O(d log(d))

i=1 uiu
T
i and 1

2B � A � 2B. This is achieved by techniques
developed in matrix sampling/sketching literature, especially those of Cohen et al.
(2015). The procedure requires solving a constant number of O(d log(d)) sized linear
systems, which we do via Accelerated SVRG.

• We then observe that the quadratic function in A is 1
2 -strongly convex and 2-smooth

w.r.t. ‖·‖B (and thus has constant condition number), at which point we may follow
the standard descent analysis, accounting for the approximation error incurred when
approximately solving a system in B.

Next, we present the corrected versions of Algorithm 4 and the proof of Theorem 15.
Proof [Proof of Theorem 15 (Corrected)] We may first observe that W (ṽ) (defined in
Algorithm 4) is 1

2 -strongly convex and 2-smooth with respect to the norm given by ‖ṽ‖B ,√
ṽ>Bṽ. In this case, it is well-known that running an iterative method of the form

ṽt+1 = ṽt −
1

4
B−1∇W (ṽt) (1)

will converge to an ε-approximate minimizer of W (ṽ) in O(log(h0/ε)) iterations, where
h0 , W (ṽ0) − minṽW (ṽ). Thus, all that is left is to handle the approximation error
incurred by Acc-SVRG.

1



Agarwal, Bullins and Hazan

Algorithm 4 Fast Quadratic Solver (FQS) (Corrected)

1: Input: A =
∑m

i=1(viv
T
i + λI), b, ε > 0, K = Õ(log(1/ε)), ṽ0 = 0

2: Output : ṽK s.t. ‖A−1b− ṽK‖ ≤ ε
3: Compute B s.t. 2B � A � 1

2B using REPEATED HALVING (Algorithm 3)
4: Define W (ṽ) = 1

2 ṽ
>Aṽ − b>ṽ

5: for t = 0 to K − 1 do
6: Define Qt(y) = y>By

2 −∇W (ṽt)
>y

7: Let ε̃ = λmin(A)ε
2

8: Compute approximate minimizer ŷt of Qt(y) using Acc-SVRG, such that

1

4
‖ŷt −B−1∇W (ṽt)‖ ≤ min

{
ε̃

100(GW + 1)‖B‖1/2
, 1

}

9: ṽt+1 = ṽt − 1
4 ŷt

10: end for
11: Output ṽK such that ‖A−1b− ṽK‖ ≤ ε

Running Time Analysis: Define ht ,W (ṽt)−minṽW (ṽ). Using the standard descent
analysis, we show that the following holds true for t ≥ 0:

ht ≤ max{ε̃, (0.9)th0}.

This follows directly from the (matrix norm-based) gradient descent analysis which we
outline below. To make the analysis easier, we define a sequence of exact iterates as:

zt+1 = ṽt −
1

4
B−1∇W (ṽt).

Furthermore, our approximate solution ŷt is such that

‖zt+1 − ṽt+1‖ =
1

4
‖ŷt −B−1∇W (ṽt)‖ ≤ min

{
ε̃

100(GW + 1)‖B‖1/2
, 1

}
, (2)

where GW is a bound on ‖∇W (ṽ)‖B−1 . The bound GW can be taken as a bound on the
gradient of the quadratic at the start of the procedure (for ṽ0 = 0), so it is enough to take
GW = ‖B−1‖1/2‖b‖, since ‖∇W (0)‖B−1 ≤ ‖B−1‖1/2‖∇W (0)‖ = ‖B−1‖1/2‖b‖. We now

2



Second-Order Stochastic Optimization for Machine Learning in Linear Time

have that

ht+1 − ht = W (ṽt+1)−W (ṽt)

≤ 〈∇W (ṽt), ṽt+1 − ṽt〉+ ‖ṽt+1 − ṽt‖2B
= 〈∇W (ṽt), zt+1 − ṽt〉+ 〈∇W (ṽt), ṽt+1 − zt+1〉+ ‖zt+1 − ṽt + ṽt+1 − zt+1‖2B
= 〈∇W (ṽt), zt+1 − ṽt〉+ 〈∇W (ṽt), ṽt+1 − zt+1〉+ ‖zt+1 − ṽt‖2B + ‖ṽt+1 − zt+1‖2B

+2〈ṽt+1 − zt+1, B(zt+1 − ṽt)〉

= 〈∇W (ṽt), zt+1 − ṽt〉+
1

2
〈∇W (ṽt), ṽt+1 − zt+1〉+ ‖zt+1 − ṽt‖2B + ‖ṽt+1 − zt+1‖2B

≤ −1

4
‖∇W (ṽt)‖2B−1 +

1

2
〈∇W (ṽt), ṽt+1 − zt+1〉+

1

8
‖∇W (ṽt)‖2B−1 + ‖ṽt+1 − zt+1‖2B

≤ −1

8
‖∇W (ṽt)‖2B−1 +

1

2
‖∇W (ṽ)‖B−1‖ṽt+1 − zt+1‖B + ‖ṽt+1 − zt+1‖2B

≤ −1

8
‖∇W (ṽt)‖2B−1 +

(
1

2
‖∇W (ṽ)‖B−1 + ‖ṽt+1 − zt+1‖B

)
‖ṽt+1 − zt+1‖B

≤ −1

8
‖∇W (ṽt)‖2B−1 +

(
1

2
‖∇W (ṽ)‖B−1 + 1

)
‖ṽt+1 − zt+1‖B.

By 1
2 -strong convexity of W (·) w.r.t. ‖·‖B, we have that, for all x,y ∈ Rd,

W (y) ≥W (x) +∇W (x)>(y − x) +
1

4
‖y − x‖2B

≥ min
z
{W (x) +∇W (x)>(y − x) +

1

4
‖y − x‖2B}

= W (x)− ‖∇W (x)‖2B−1 .

It follows that

−‖∇W (ṽt)‖2B−1 ≤ −ht, (3)

and so

ht+1 − ht ≤ −
1

8
ht +

(
1

2
‖∇W (ṽ)‖B−1 + 1

)
‖ṽt+1 − zt+1‖B,

which gives us

ht+1 ≤ 0.9ht +

(
1

2
‖∇W (ṽ)‖B−1 + 1

)
‖ṽt+1 − zt+1‖B

≤ 0.9ht +

(
1

2
‖∇W (ṽ)‖B−1 + 1

)
‖B‖1/2‖ṽt+1 − zt+1‖

≤ 0.9ht + 0.01ε̃,

where the final inequality follows by our approximation guarantee in (2).

Using the inductive assumption that ht ≤ max{ε̃, (0.9)th0}, it follows that

ht+1 ≤ max{ε̃, (0.9)t+1h0}.

3



Agarwal, Bullins and Hazan

Using the above inequality, it follows that for t ≥ O(log(h0ε̃ )), we have that ht ≤ ε̃. Note
that W (ṽ) is λmin(A)-strongly convex w.r.t. ‖·‖. Thus, we have that if ht ≤ ε̃, then

λmin(A)

2
‖ṽt − argmin

ṽ
W (ṽ)‖ ≤ ht ≤ ε̃,

and so it follows that

‖ṽt − argmin
ṽ

W (ṽ)‖ ≤ 2ε̃

λmin(A)
. (4)

The running time of the above sub-procedure is bounded by the time to calculate ∇W (ṽ),
which takes at most O(md) time, and the time required to compute ŷt, which involves
approximately solving a linear system in B at each step to ε̂ accuracy, where

ε̂ , min

{
ε̃

100(GW + 1)‖B‖1/2
, 1

}
.

Combining these we get that the total running time is

Õ(md+ LIN(B, ε̂)) log

(
1

ε̃

)
.

Note that we set ε̃ = λmin(A)ε
2 , and so ‖ṽt − argminṽW (ṽ)‖ ≤ ε. Now we can bound

LIN(B, ε̂) by Õ(d2 + d
√
κ(A)d) log(1/ε) by using Acc-SVRG to solve the linear system

and by noting that B is an O(d log(d)) sized 2-approximation sample of A, which finishes
the proof.

Acknowledgements

We would like to thank Ulysse Marteau-Ferey for pointing out this error to us.

4


