Erratum: Second-Order Stochastic Optimization for Machine Learning in Linear Time

Naman Agarwal
NAMANA@CS.PRINCETON.EDU
Computer Science Department
Princeton University
Princeton, NJ 08540, USA
\section*{Brian Bullins}
BBULLINS@CS.PRINCETON.EDU
Computer Science Department
Princeton University
Princeton, NJ 08540, USA
Elad Hazan
EHAZAN@CS.PRINCETON.EDU
Computer Science Department
Princeton University
Princeton, NJ 08540, USA

Editor: Tong Zhang

An error is present in Algorithm 4 and the proof of Theorem 15 in Section 5 of the original manuscript, as a result of an incorrect handling of the quadratic model and its conditioning properties. Thus, we provide in this erratum a correction to this error. First, we amend the bullet points in Section 5.1 to now say:

- Given A we will compute a low complexity constant spectral approximation B of A. Specifically, $B=\sum_{i=1}^{O(d \log (d))} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$ and $\frac{1}{2} B \preceq A \preceq 2 B$. This is achieved by techniques developed in matrix sampling/sketching literature, especially those of Cohen et al. (2015). The procedure requires solving a constant number of $O(d \log (d))$ sized linear systems, which we do via Accelerated SVRG.
- We then observe that the quadratic function in A is $\frac{1}{2}$-strongly convex and 2 -smooth w.r.t. $\|\cdot\|_{B}$ (and thus has constant condition number), at which point we may follow the standard descent analysis, accounting for the approximation error incurred when approximately solving a system in B.

Next, we present the corrected versions of Algorithm 4 and the proof of Theorem 15. Proof [Proof of Theorem 15 (Corrected)] We may first observe that $W(\tilde{\mathbf{v}})$ (defined in Algorithm 4) is $\frac{1}{2}$-strongly convex and 2 -smooth with respect to the norm given by $\|\tilde{\mathbf{v}}\|_{B} \triangleq$ $\sqrt{\tilde{\mathbf{v}}^{\top} B \tilde{\mathbf{v}}}$. In this case, it is well-known that running an iterative method of the form

$$
\begin{equation*}
\tilde{\mathbf{v}}_{t+1}=\tilde{\mathbf{v}}_{t}-\frac{1}{4} B^{-1} \nabla W\left(\tilde{\mathbf{v}}_{t}\right) \tag{1}
\end{equation*}
$$

will converge to an ε-approximate minimizer of $W(\tilde{\mathbf{v}})$ in $O\left(\log \left(h_{0} / \varepsilon\right)\right)$ iterations, where $h_{0} \triangleq W\left(\tilde{\mathbf{v}}_{0}\right)-\min _{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})$. Thus, all that is left is to handle the approximation error incurred by Acc-SVRG.

```
Algorithm 4 Fast Quadratic Solver (FQS) (Corrected)
    Input: \(A=\sum_{i=1}^{m}\left(\mathbf{v}_{i} \mathbf{v}_{i}^{T}+\lambda I\right), \mathbf{b}, \varepsilon>0, K=\tilde{O}(\log (1 / \varepsilon)), \tilde{\mathbf{v}}_{0}=0\)
    Output : \(\tilde{\mathbf{v}}_{K}\) s.t. \(\left\|A^{-1} \mathbf{b}-\tilde{\mathbf{v}}_{K}\right\| \leq \varepsilon\)
    Compute \(B\) s.t. \(2 B \succeq A \succeq \frac{1}{2} B\) using REPEATED HALVING (Algorithm 3)
    Define \(W(\tilde{\mathbf{v}})=\frac{1}{2} \tilde{\mathbf{v}}^{\top} A \tilde{\mathbf{v}}-\mathbf{b}^{\top} \tilde{\mathbf{v}}\)
    for \(t=0\) to \(K-1\) do
        Define \(Q_{t}(\mathbf{y})=\frac{\mathbf{y}^{\top} B \mathbf{y}}{2}-\nabla W\left(\tilde{\mathbf{v}}_{t}\right)^{\top} \mathbf{y}\)
        Let \(\tilde{\varepsilon}=\frac{\lambda_{\text {min }}(A) \varepsilon}{2}\)
        Compute approximate minimizer \(\hat{\mathbf{y}}_{t}\) of \(Q_{t}(\mathbf{y})\) using Acc-SVRG, such that
            \(\frac{1}{4}\left\|\hat{\mathbf{y}}_{t}-B^{-1} \nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\| \leq \min \left\{\frac{\tilde{\varepsilon}}{100\left(G_{W}+1\right)\|B\|^{1 / 2}}, 1\right\}\)
        \(\tilde{\mathbf{v}}_{t+1}=\tilde{\mathbf{v}}_{t}-\frac{1}{4} \hat{\mathbf{y}}_{t}\)
    end for
    Output \(\tilde{\mathbf{v}}_{K}\) such that \(\left\|A^{-1} \mathbf{b}-\tilde{\mathbf{v}}_{K}\right\| \leq \varepsilon\)
```

Running Time Analysis: Define $h_{t} \triangleq W\left(\tilde{\mathbf{v}}_{t}\right)-\min _{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})$. Using the standard descent analysis, we show that the following holds true for $t \geq 0$:

$$
h_{t} \leq \max \left\{\tilde{\varepsilon},(0.9)^{t} h_{0}\right\} .
$$

This follows directly from the (matrix norm-based) gradient descent analysis which we outline below. To make the analysis easier, we define a sequence of exact iterates as:

$$
\mathbf{z}_{t+1}=\tilde{\mathbf{v}}_{t}-\frac{1}{4} B^{-1} \nabla W\left(\tilde{\mathbf{v}}_{t}\right) .
$$

Furthermore, our approximate solution $\hat{\mathbf{y}}_{t}$ is such that

$$
\begin{equation*}
\left\|\mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t+1}\right\|=\frac{1}{4}\left\|\hat{\mathbf{y}}_{t}-B^{-1} \nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\| \leq \min \left\{\frac{\tilde{\varepsilon}}{100\left(G_{W}+1\right)\|B\|^{1 / 2}}, 1\right\} \tag{2}
\end{equation*}
$$

where G_{W} is a bound on $\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}$. The bound G_{W} can be taken as a bound on the gradient of the quadratic at the start of the procedure (for $\tilde{\mathbf{v}}_{0}=0$), so it is enough to take $G_{W}=\left\|B^{-1}\right\|^{1 / 2}\|\mathbf{b}\|$, since $\|\nabla W(0)\|_{B^{-1}} \leq\left\|B^{-1}\right\|^{1 / 2}\|\nabla W(0)\|=\left\|B^{-1}\right\|^{1 / 2}\|\mathbf{b}\|$. We now
have that

$$
\begin{aligned}
h_{t+1}-h_{t}= & W\left(\tilde{\mathbf{v}}_{t+1}\right)-W\left(\tilde{\mathbf{v}}_{t}\right) \\
\leq & \left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \tilde{\mathbf{v}}_{t+1}-\tilde{\mathbf{v}}_{t}\right\rangle+\left\|\tilde{\mathbf{v}}_{t+1}-\tilde{\mathbf{v}}_{t}\right\|_{B}^{2} \\
= & \left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right\rangle+\left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\rangle+\left\|\mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}+\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}^{2} \\
= & \left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right\rangle+\left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\rangle+\left\|\mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right\|_{B}^{2}+\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}^{2} \\
& \quad+2\left\langle\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}, B\left(\mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right)\right\rangle \\
= & \left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right\rangle+\frac{1}{2}\left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\rangle+\left\|\mathbf{z}_{t+1}-\tilde{\mathbf{v}}_{t}\right\|_{B}^{2}+\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}^{2} \\
\leq & -\frac{1}{4}\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\langle\nabla W\left(\tilde{\mathbf{v}}_{t}\right), \tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\rangle+\frac{1}{8}\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2}+\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}^{2} \\
\leq & -\frac{1}{8}\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2}+\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}+\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}^{2} \\
\leq & -\frac{1}{8}\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2}+\left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}+\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}\right)\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B} \\
\leq & -\frac{1}{8}\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2}+\left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}+1\right)\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B} .
\end{aligned}
$$

By $\frac{1}{2}$-strong convexity of $W(\cdot)$ w.r.t. $\|\cdot\|_{B}$, we have that, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\begin{aligned}
W(\mathbf{y}) & \geq W(\mathbf{x})+\nabla W(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})+\frac{1}{4}\|\mathbf{y}-\mathbf{x}\|_{B}^{2} \\
& \geq \min _{z}\left\{W(\mathbf{x})+\nabla W(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})+\frac{1}{4}\|\mathbf{y}-\mathbf{x}\|_{B}^{2}\right\} \\
& =W(\mathbf{x})-\|\nabla W(\mathbf{x})\|_{B^{-1}}^{2}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
-\left\|\nabla W\left(\tilde{\mathbf{v}}_{t}\right)\right\|_{B^{-1}}^{2} \leq-h_{t} \tag{3}
\end{equation*}
$$

and so

$$
h_{t+1}-h_{t} \leq-\frac{1}{8} h_{t}+\left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}+1\right)\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B}
$$

which gives us

$$
\begin{aligned}
h_{t+1} & \leq 0.9 h_{t}+\left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}+1\right)\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\|_{B} \\
& \leq 0.9 h_{t}+\left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}+1\right)\|B\|^{1 / 2}\left\|\tilde{\mathbf{v}}_{t+1}-\mathbf{z}_{t+1}\right\| \\
& \leq 0.9 h_{t}+0.01 \tilde{\varepsilon}
\end{aligned}
$$

where the final inequality follows by our approximation guarantee in (2).
Using the inductive assumption that $h_{t} \leq \max \left\{\tilde{\varepsilon},(0.9)^{t} h_{0}\right\}$, it follows that

$$
h_{t+1} \leq \max \left\{\tilde{\varepsilon},(0.9)^{t+1} h_{0}\right\}
$$

Using the above inequality, it follows that for $t \geq O\left(\log \left(\frac{h_{0}}{\tilde{\varepsilon}}\right)\right)$, we have that $h_{t} \leq \tilde{\varepsilon}$. Note that $W(\tilde{\mathbf{v}})$ is $\lambda_{\min }(A)$-strongly convex w.r.t. $\|\cdot\|$. Thus, we have that if $h_{t} \leq \tilde{\varepsilon}$, then

$$
\frac{\lambda_{\min }(A)}{2}\left\|\tilde{\mathbf{v}}_{t}-\underset{\tilde{\mathbf{v}}}{\operatorname{argmin}} W(\tilde{\mathbf{v}})\right\| \leq h_{t} \leq \tilde{\varepsilon},
$$

and so it follows that

$$
\begin{equation*}
\left\|\tilde{\mathbf{v}}_{t}-\underset{\tilde{\mathbf{v}}}{\operatorname{argmin}} W(\tilde{\mathbf{v}})\right\| \leq \frac{2 \tilde{\varepsilon}}{\lambda_{\min }(A)} \tag{4}
\end{equation*}
$$

The running time of the above sub-procedure is bounded by the time to calculate $\nabla W(\tilde{\mathbf{v}})$, which takes at most $O(m d)$ time, and the time required to compute $\hat{\mathbf{y}}_{t}$, which involves approximately solving a linear system in B at each step to $\hat{\varepsilon}$ accuracy, where

$$
\hat{\varepsilon} \triangleq \min \left\{\frac{\tilde{\varepsilon}}{100\left(G_{W}+1\right)\|B\|^{1 / 2}}, 1\right\} .
$$

Combining these we get that the total running time is

$$
\tilde{O}(m d+\operatorname{LIN}(B, \hat{\varepsilon})) \log \left(\frac{1}{\tilde{\varepsilon}}\right) .
$$

Note that we set $\tilde{\varepsilon}=\frac{\lambda_{\min }(A) \varepsilon}{2}$, and so $\left\|\tilde{\mathbf{v}}_{t}-\operatorname{argmin}_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})\right\| \leq \varepsilon$. Now we can bound $\operatorname{LIN}(B, \hat{\varepsilon})$ by $\tilde{O}\left(d^{2}+d \sqrt{\kappa(A) d}\right) \log (1 / \varepsilon)$ by using Acc-SVRG to solve the linear system and by noting that B is an $O(d \log (d))$ sized 2 -approximation sample of A, which finishes the proof.

Acknowledgements

We would like to thank Ulysse Marteau-Ferey for pointing out this error to us.

