Erratum: Second-Order Stochastic Optimization for Machine Learning in Linear Time

Naman Agarwal

Computer Science Department Princeton University Princeton, NJ 08540, USA

Brian Bullins

Computer Science Department Princeton University Princeton, NJ 08540, USA

Elad Hazan

Computer Science Department Princeton University Princeton, NJ 08540, USA NAMANA@CS.PRINCETON.EDU

BBULLINS@CS.PRINCETON.EDU

EHAZAN@CS.PRINCETON.EDU

Editor: Tong Zhang

An error is present in Algorithm 4 and the proof of Theorem 15 in Section 5 of the original manuscript, as a result of an incorrect handling of the quadratic model and its conditioning properties. Thus, we provide in this erratum a correction to this error. First, we amend the bullet points in Section 5.1 to now say:

- Given A we will compute a low complexity constant spectral approximation B of A. Specifically, $B = \sum_{i=1}^{O(d \log(d))} \mathbf{u}_i \mathbf{u}_i^T$ and $\frac{1}{2}B \leq A \leq 2B$. This is achieved by techniques developed in matrix sampling/sketching literature, especially those of Cohen et al. (2015). The procedure requires solving a constant number of $O(d \log(d))$ sized linear systems, which we do via Accelerated SVRG.
- We then observe that the quadratic function in A is $\frac{1}{2}$ -strongly convex and 2-smooth w.r.t. $\|\cdot\|_B$ (and thus has constant condition number), at which point we may follow the standard descent analysis, accounting for the approximation error incurred when approximately solving a system in B.

Next, we present the corrected versions of Algorithm 4 and the proof of Theorem 15. **Proof** [Proof of Theorem 15 (Corrected)] We may first observe that $W(\tilde{\mathbf{v}})$ (defined in Algorithm 4) is $\frac{1}{2}$ -strongly convex and 2-smooth with respect to the norm given by $\|\tilde{\mathbf{v}}\|_B \triangleq \sqrt{\tilde{\mathbf{v}}^\top B \tilde{\mathbf{v}}}$. In this case, it is well-known that running an iterative method of the form

$$\tilde{\mathbf{v}}_{t+1} = \tilde{\mathbf{v}}_t - \frac{1}{4} B^{-1} \nabla W(\tilde{\mathbf{v}}_t)$$
(1)

will converge to an ε -approximate minimizer of $W(\tilde{\mathbf{v}})$ in $O(\log(h_0/\varepsilon))$ iterations, where $h_0 \triangleq W(\tilde{\mathbf{v}}_0) - \min_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})$. Thus, all that is left is to handle the approximation error incurred by Acc-SVRG.

Algorithm 4 Fast Quadratic Solver (FQS) (Corrected)

- 1: Input: $A = \sum_{i=1}^{m} (\mathbf{v}_i \mathbf{v}_i^T + \lambda I), \mathbf{b}, \varepsilon > 0, K = \tilde{O}(\log(1/\varepsilon)), \tilde{\mathbf{v}}_0 = 0$
- 2: **Output** : $\tilde{\mathbf{v}}_{K}$ s.t. $\|A^{-1}\mathbf{b} \tilde{\mathbf{v}}_{K}\| \leq \varepsilon$
- 3: Compute *B* s.t. $2B \succeq A \succeq \frac{1}{2}B$ using REPEATED HALVING (Algorithm 3) 4: Define $W(\tilde{\mathbf{v}}) = \frac{1}{2}\tilde{\mathbf{v}}^{\top}A\tilde{\mathbf{v}} \mathbf{b}^{\top}\tilde{\mathbf{v}}$
- 5: for t = 0 to K 1 do
- Define $Q_t(\mathbf{y}) = \frac{\mathbf{y}^\top B \mathbf{y}}{2} \nabla W(\tilde{\mathbf{v}}_t)^\top \mathbf{y}$ 6:
- Let $\tilde{\varepsilon} = \frac{\lambda_{\min}(A)\varepsilon}{2}$ 7:
- Compute approximate minimizer $\hat{\mathbf{y}}_t$ of $Q_t(\mathbf{y})$ using Acc-SVRG, such that 8:

$$\frac{1}{4}\|\hat{\mathbf{y}}_t - B^{-1}\nabla W(\tilde{\mathbf{v}}_t)\| \le \min\left\{\frac{\tilde{\varepsilon}}{100(G_W+1)}\|B\|^{1/2}, 1\right\}$$

 $\tilde{\mathbf{v}}_{t+1} = \tilde{\mathbf{v}}_t - \frac{1}{4}\hat{\mathbf{y}}_t$ 9: 10: **end for** 11: Output $\tilde{\mathbf{v}}_K$ such that $||A^{-1}\mathbf{b} - \tilde{\mathbf{v}}_K|| \leq \varepsilon$

Running Time Analysis: Define $h_t \triangleq W(\tilde{\mathbf{v}}_t) - \min_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})$. Using the standard descent analysis, we show that the following holds true for $t \ge 0$:

$$h_t \le \max\{\tilde{\varepsilon}, (0.9)^t h_0\}.$$

This follows directly from the (matrix norm-based) gradient descent analysis which we outline below. To make the analysis easier, we define a sequence of exact iterates as:

$$\mathbf{z}_{t+1} = \tilde{\mathbf{v}}_t - \frac{1}{4}B^{-1}\nabla W(\tilde{\mathbf{v}}_t)$$

Furthermore, our approximate solution $\hat{\mathbf{y}}_t$ is such that

$$\|\mathbf{z}_{t+1} - \tilde{\mathbf{v}}_{t+1}\| = \frac{1}{4} \|\hat{\mathbf{y}}_t - B^{-1} \nabla W(\tilde{\mathbf{v}}_t)\| \le \min\left\{\frac{\tilde{\varepsilon}}{100(G_W + 1) \|B\|^{1/2}}, 1\right\},\tag{2}$$

where G_W is a bound on $\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}$. The bound G_W can be taken as a bound on the gradient of the quadratic at the start of the procedure (for $\tilde{\mathbf{v}}_0 = 0$), so it is enough to take $G_W = \|B^{-1}\|^{1/2} \|\mathbf{b}\|$, since $\|\nabla W(0)\|_{B^{-1}} \leq \|B^{-1}\|^{1/2} \|\nabla W(0)\| = \|B^{-1}\|^{1/2} \|\mathbf{b}\|$. We now have that

$$\begin{split} h_{t+1} - h_t &= W(\tilde{\mathbf{v}}_{t+1}) - W(\tilde{\mathbf{v}}_t) \\ &\leq \langle \nabla W(\tilde{\mathbf{v}}_t), \tilde{\mathbf{v}}_{t+1} - \tilde{\mathbf{v}}_t \rangle + \|\tilde{\mathbf{v}}_{t+1} - \tilde{\mathbf{v}}_t\|_B^2 \\ &= \langle \nabla W(\tilde{\mathbf{v}}_t), \mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t \rangle + \langle \nabla W(\tilde{\mathbf{v}}_t), \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1} \rangle + \|\mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t + \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B^2 \\ &= \langle \nabla W(\tilde{\mathbf{v}}_t), \mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t \rangle + \langle \nabla W(\tilde{\mathbf{v}}_t), \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1} \rangle + \|\mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t\|_B^2 + \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B^2 \\ &+ 2\langle \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}, B(\mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t) \rangle \\ &= \langle \nabla W(\tilde{\mathbf{v}}_t), \mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t \rangle + \frac{1}{2}\langle \nabla W(\tilde{\mathbf{v}}_t), \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1} \rangle + \|\mathbf{z}_{t+1} - \tilde{\mathbf{v}}_t\|_B^2 + \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B^2 \\ &\leq -\frac{1}{4}\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 + \frac{1}{2}\langle \nabla W(\tilde{\mathbf{v}}_t), \tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1} \rangle + \frac{1}{8}\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 + \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B^2 \\ &\leq -\frac{1}{8}\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 + \frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}}\|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B + \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B \\ &\leq -\frac{1}{8}\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 + \left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}} + \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B \right)\|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B \\ &\leq -\frac{1}{8}\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 + \left(\frac{1}{2}\|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}} + 1\right)\|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B. \end{split}$$

By $\frac{1}{2}$ -strong convexity of $W(\cdot)$ w.r.t. $\|\cdot\|_B$, we have that, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$W(\mathbf{y}) \ge W(\mathbf{x}) + \nabla W(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{4} \|\mathbf{y} - \mathbf{x}\|_{B}^{2}$$

$$\ge \min_{z} \{W(\mathbf{x}) + \nabla W(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{4} \|\mathbf{y} - \mathbf{x}\|_{B}^{2} \}$$

$$= W(\mathbf{x}) - \|\nabla W(\mathbf{x})\|_{B^{-1}}^{2}.$$

It follows that

$$-\|\nabla W(\tilde{\mathbf{v}}_t)\|_{B^{-1}}^2 \le -h_t,\tag{3}$$

and so

$$h_{t+1} - h_t \le -\frac{1}{8}h_t + \left(\frac{1}{2} \|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}} + 1\right) \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B,$$

which gives us

$$h_{t+1} \leq 0.9h_t + \left(\frac{1}{2} \|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}} + 1\right) \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|_B$$

$$\leq 0.9h_t + \left(\frac{1}{2} \|\nabla W(\tilde{\mathbf{v}})\|_{B^{-1}} + 1\right) \|B\|^{1/2} \|\tilde{\mathbf{v}}_{t+1} - \mathbf{z}_{t+1}\|$$

$$\leq 0.9h_t + 0.01\tilde{\varepsilon},$$

where the final inequality follows by our approximation guarantee in (2).

Using the inductive assumption that $h_t \leq \max\{\tilde{\varepsilon}, (0.9)^t h_0\}$, it follows that

$$h_{t+1} \le \max\{\tilde{\varepsilon}, (0.9)^{t+1}h_0\}.$$

Using the above inequality, it follows that for $t \ge O(\log(\frac{h_0}{\tilde{\varepsilon}}))$, we have that $h_t \le \tilde{\varepsilon}$. Note that $W(\tilde{\mathbf{v}})$ is $\lambda_{\min}(A)$ -strongly convex w.r.t. $\|\cdot\|$. Thus, we have that if $h_t \le \tilde{\varepsilon}$, then

$$\frac{\lambda_{\min}(A)}{2} \| \tilde{\mathbf{v}}_t - \operatorname*{argmin}_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}}) \| \le h_t \le \tilde{\varepsilon},$$

and so it follows that

$$\|\tilde{\mathbf{v}}_t - \operatorname*{argmin}_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})\| \le \frac{2\tilde{\varepsilon}}{\lambda_{\min}(A)}.$$
(4)

The running time of the above sub-procedure is bounded by the time to calculate $\nabla W(\tilde{\mathbf{v}})$, which takes at most O(md) time, and the time required to compute $\hat{\mathbf{y}}_t$, which involves approximately solving a linear system in B at each step to $\hat{\varepsilon}$ accuracy, where

$$\hat{\varepsilon} \triangleq \min\left\{\frac{\tilde{\varepsilon}}{100(G_W+1)\|B\|^{1/2}}, 1\right\}.$$

Combining these we get that the total running time is

$$\tilde{O}(md + LIN(B, \hat{\varepsilon})) \log\left(\frac{1}{\tilde{\varepsilon}}\right).$$

Note that we set $\tilde{\varepsilon} = \frac{\lambda_{\min}(A)\varepsilon}{2}$, and so $\|\tilde{\mathbf{v}}_t - \operatorname{argmin}_{\tilde{\mathbf{v}}} W(\tilde{\mathbf{v}})\| \leq \varepsilon$. Now we can bound $LIN(B, \hat{\varepsilon})$ by $\tilde{O}(d^2 + d\sqrt{\kappa(A)d})\log(1/\varepsilon)$ by using Acc-SVRG to solve the linear system and by noting that B is an $O(d\log(d))$ sized 2-approximation sample of A, which finishes the proof.

Acknowledgements

We would like to thank Ulysse Marteau-Ferey for pointing out this error to us.