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Abstract

Our work in this paper is inspired by a statistical observation that is both elementary and broadly
relevant to network analysis in practice—that the uncertainty in approximating some true graph
G = (V, E) by some estimated graph G = (V, E) manifests as errors in our knowledge of the
presence/absence of edges between vertex pairs, which must necessarily propagate to any estimates
of network summaries 7(G) we seek. Motivated by the common practice of using plug-in estimates

n(G) as proxies for n(G), our focus is on the problem of characterizing the distribution of the
discrepancy D = n(G) — n(G), in the case where 7(-) is a subgraph count. Specifically, we
study the fundamental case where the statistic of interest is |E|, the number of edges in G. Our
primary contribution in this paper is to show that in the empirically relevant setting of large graphs
with low-rate measurement errors, the distribution of D = |E| — | E| is well-characterized by a
Skellam distribution, when the errors are independent or weakly dependent. Under an assumption
of independent errors, we are able to further show conditions under which this characterization
is strictly better than that of an appropriate normal distribution. These results derive from our
formulation of a general result, quantifying the accuracy with which the difference of two sums of
dependent Bernoulli random variables may be approximated by the difference of two independent
Poisson random variables, i.e., by a Skellam distribution. This general result is developed through
the use of Stein’s method, and may be of some general interest. We finish with a discussion of
possible extension of our work to subgraph counts 7(G) of higher order.

Keywords: Limit distribution, network analysis, Skellam distribution, Stein’s method.

1. Introduction

The analysis of network data is widespread across the scientific disciplines. Technological and
infrastructure, social, biological, and information networks are a few of the major network classes
in which such analyses have been employed. However, despite the already substantial body of
work in network analysis generally (e.g., see Jackson, 2010; Kolaczyk, 2009; Newman, 2010),
with contributions from a variety of different fields of study, much work still remains to more fully
develop the theory and methods of statistical analysis of network data, particularly for certain classes
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of problems of a fairly fundamental nature. Here in this paper we pose and address a version of one
such fundamental problem, that regarding the propagation of error through the process of network
construction and summary.

In applied network analysis, a common modus operandi is to (i) gather basic measurements
relevant to the interactions among elements in a system of interest, (ii) construct a graph-based rep-
resentation of that system, with nodes serving as elements and links indicating interactions between
pairs of elements, and (iii) summarize the structure of the resulting graph using a variety of nu-
merical and visual tools. See Kolaczyk (2009, Chs 3 & 4) for background and several case studies
illustrating this process. Key here is the point that the process of network analysis usually rests upon
some collection of measurements of a more basic nature. For example, online social networks (e.g.,
Facebook) are based on the extraction and merging of lists of ‘friends’ from millions of individual
accounts (Hansen et al., 2010, Ch 11.8). Similarly, biological networks (e.g., of gene regulatory
relationships) are often based on notions of association (e.g., correlation, partial correlation, etc.)
among experimental measurements of gene activity levels (Fogelberg and Palade, 2009). Finally,
maps of the logical Internet traditionally have been synthesized from the results of surveys in which
paths along which information flows are learned through a large set of packet probes (e.g., Cheswick
et al., 2000).

Importantly, while it is widely recognized that there is measurement error associated with these
and other common types of network constructions, most applied network analyses in practice effec-
tively proceed as if there were in fact no error. There are at least two possible reasons for this current
state of affairs: (1) there is comparatively little in the way of formal probabilistic analyses charac-
terizing the propagation of such error and of statistical methods accounting for such propagation,
and (2) in many settings (arguably due at least in part to (1)), much attention is given at the stages
of measurement and network construction to trying to keep the rate of error ‘low’ in declaring the
presence and absence of links between nodes.

Here we offer a formal treatment of the problem of propagation of error. We provide a general
framework within which it is possible to characterize the manner in which errors made in assigning
links between nodes accumulate in the reporting of certain functions of the network as a whole.
Our treatment is probabilistic, wherein our goal is to understand the nature of the distribution in-
duced on the graph functions by that of the errors in the graph construction. We anticipate that
this contribution will provide part of a critical foundation upon which, in turn, it should be possi-
ble to develop a statistical treatment, e.g., the construction of appropriate confidence intervals for
graph-based quantities of interest.

More formally, we consider a setting wherein an underlying (undirected) network-graph G pos-
sesses a network characteristic 77 (G) of interest. While there are many types of functions 7(-) used
in practice to characterize networks (e.g., centralities, path-based metrics, output from methods of
community detection, etc.) we restrict our attention here to the canonical problem of subgraph
counting. That is, we are interested in the class of functions 7 of the form

1 !
nu(G) = [Tso(H)| H/gKanH/%H {H C G}, (D

where n,, = |V (G)| is the number of vertices in G, K,,, is the complete graph on n, vertices, H
is a graph of interest (i.e., copies of which we desire to count), and H C G indicates that H is a
subgraph of G (i.e., V(H) C V(G) and E(H) C E(G)). The value |Iso(H)| is a normalization
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factor for the number of isomorphisms of H. We will concentrate primarily on the fundamental
case where 1(G) = | E|, i.e., the number of edges in G.

IfGisa network-graph resulting from an attempt to construct GG from some collection of basic
measurements, then the common practice of reporting the analogous characteristics of G is equiv-

alent to the use of n (G’) i.e., effectively a plug in estimator. Let the discrepancy between these

two quantities be defined as D = n (G’) — 1 (@), which in the case of counting edges reduces to

D = |E| — |E|. Our goal is to make precise probabilistic statements about the behavior of D
under certain conditions.

Importantly, in the case where 7 is defined as a subgraph count, as in (1), D may be expressed as
the difference of (i) the number of times the subgraph H arises somewhere in G but does not in fact
exist in the same manner in G, and (ii) vice versa. Hence, D may be understood in this context to
be the difference in total number of Type I and Type II errors, respectively. Intuitively, in the cases
where a sufficiently low rate of error occurs on a large graph G, each of these two sums should have
a Poisson-like behavior. This observation suggests that the propagation of low-rate measurement
error to subgraph counts should behave, under appropriate conditions, like the difference of two
Poisson random variables, i.e., a so-called Skellam distribution (Skellam, 1946).

Our contribution in this paper is to provide an initial set of results on the accuracy with which the
Skellam distribution may be used in approximating the distribution of D, under the setting where
the graph G is large and the rate of error is low. We consider the cases of both sparse and dense
networks. The primary technical device used here is Stein’s method (e.g, Barbour and Chen, 2005).
Specifically, we present a Stein operator for the Skellam probability distribution and, in a manner
consistent with the Stein methodology, we derive several bounds on the discrepancy between the
distribution of the difference of two arbitrary sums of binary random variables to an appropriately
parameterized Skellam distribution. The latter in turn is then used to establish in particular the rate
of weak convergence of D to an appropriate Skellam random variable, under either independent
or weakly dependent measurement errors.

As remarked above, there appears to be little in the way of a formal and general treatment of the
error propagation problem we consider here. However, there are, of course, several areas in which
the probabilistic or statistical treatment of uncertainty enters prominently in network analysis. The
closest area to what we present here is the extensive literature on distributions of subgraph counts
in random graphs. See Janson et al. (2011), for example, for comprehensive coverage. Importantly,
there the graph G is assumed to emerge according to a (classical) random graph and uncertainty
typically is large enough that normal limit theorems are the norm (although Poisson limit theorems
also have been established). In contrast, in our setting we assume that G is a fixed, true underlying
graph, and then study the implications of observing a ‘noisy’ version G of that graph, under various
assumptions on the nature of the noise, which involves two specific types of error (i.e., Type I
and II errors), the contributions of which are informed in part by the topology of G itself. An
area related to this work in random graphs is the work in statistical models for networks, such
as exponential random graph models (ERGMs). See Lusher et al. (2012) for a recent treatment.
Here, while these models are inherently statistical in nature, the randomness due to generation of
the graph GG and due to observation of G—resulting in what we call G’—usually are combined into
a single realization from the underlying distribution. And while subgraph counts do play a key
role in traditional ERGMs, they typically enter as covariates in these (auto)regressive models. In
a somewhat different direction, uncertainty in network construction due to sampling has also been
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studied in some depth. See, for example, Kolaczyk (2009, Ch 5) or Ahmed et al. (2014) for surveys
of this area. However, in this setting, the uncertainty arises only from sampling—the subset of
vertices and edges obtained through sampling are typically assumed to be observed without error.
Finally, we note that there just recently have started to emerge in the statistics literature formal
treatments of the same type of graph observation error model that we propose here. There the
emphasis is on producing estimators of network model parameters and/or classifiers (e.g., Priebe
et al., 2015), for example, rather than on the type of basic network summary statistics that are the
focus here.

The organization of this paper is as follows. In Section 2 we provide necessary background. In
Section 3 we then provide a general set of results useful for our general problem. Specifically, we
establish a bound for the Kolmogorov-Smirnov distance between the distribution of the difference
of two arbitrary sums of binary random variables from a certain Skellam. This work is based on
the application of Stein’s method to the Skellam distribution, a first of its kind to the best of our
knowledge, and the results therefore are of some independent interest as well. In Section 4 we
then illustrate the way in which these general results may be used to understand the propagation
of error in networks for counting edges. In doing so, several other general results are established.
Some implications of these results on the problem of counting subgraphs of higher order are noted
in Section 5, along with other related discussion. Proofs of our key results may be found in the
appendices.

2. Background

In this section, we provide essential notation and background for our forthcoming general results.

2.1 Notation and Assumptions

By G = (V, E) we will mean an undirected graph, with vertex set V' of cardinality |V| and edge
set F of cardinality |F|. Vertex pairs in the complement of F, i.e., in E¢, will be referred to as
non-edges. Much of the results that follow will be stated as a function of the number of vertices
which, for notational convenience, we denote n, = |V'|. Let u = u(G) = 2|E|/n, correspond to
the average degree of a vertex in G. We assume the vertex set V' is known but that the edge set E is
unknown. However, we assume there is information by which to construct an approximation to £
or, more formally, by which to infer F, as a set E, yielding an inferred graph G = (V, E ).

While there are many ways in practice by which the set E is obtained, one principled way
of viewing the task is as one of performing ("2”) hypothesis tests, using the data underlying the
graph construction process as input, one for each of the vertex pairs {7, j} in the graph G. In some
contexts, G is literally obtained through hypothesis testing procedures; for instance, in construct-
ing some gene regulatory networks from microarray expression data. See Kolaczyk (2009, Ch 7),
for example. Formally, in such cases we can think of G as resulting from a collection of testing
problems

Hy:{i,j} ¢ Eversus Hy : {i,j} € E ,

for {i,7} € V), where
V@ = {{i,j}ijeVii<j} .
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Ny

»*) binary random variables {Y;; : {i,j} € V(?)}, where

These tests amount to a collection of (

V. 1 if Hy is rejected
7| 0 if Hy is not rejected.

Note that the random variables Y;; need not be independent and, in fact, in many contexts will most
likely be dependent. Gene regulatory networks inferred by correlating gene expression values at
each vertex ¢ with that of all other vertices j € V' \ {i} and maps of the logical Internet obtained
through merging paths learned by sending traffic probes between many sources and destinations are
just two examples where dependency can be expected.

Whether obtained informally or formally, we can define the inferred edge set F as

E={{i,j}ev®:v;=1]

It is useful to think of the collection of random variables {Yj; : {i,j} € V(2)} as being associated
with two types of errors. That is, we express the marginal distributions of the Y;; in the form

Bernoulli (ay5) ,if {7, 5} € E°,

Bernoulli (1 — 3;5) ,if {4, j} € E,

where E¢ = V(2 \ E. Again pursuing the example of network construction based on hypothesis
testing, «;; can be interpreted as the probability of Type-I error for the test on vertex pair {7, j} €
E*, while 3;; is interpreted as the probability of Type-II error for the test on vertex pair {7,j} € E.
For example, «;; might be the probability of incorrectly inferring a regulatory relationship between
two genes ¢ and j, based on thresholding the empirical correlation between their expression values,
as quantified through deep sequencing measurements over a series of experiments. Similarly, j3;;
might be the probability of missing a logical link in the Internet topology between two routers ¢ and
7, due to artifacts in measurement technologies (e.g., traceroute).

Our interest in this paper is in characterizing the manner in which the uncertainty in the Y;;
propagates to subgraph counts on G. More specifically, we seek to characterize the distribution of
the difference

1 .
D=——_ HH CGY—1{H CG}| , 3
lfw(H)iH/CK%;H/gH[{ C G} - |{H' C G} 3)

for a given choice of subgraph H. Naturally, this distribution will depend in no small part on
context. Here we focus on a general formulation of the problem in which we make the following
three assumptions.

(A1) Large Graphs: n, — oo.
(A2)  Edge Unbiasedness: Z{i,j}eEC = Z{i,j}GE Bii (= N).

(A3)  Low Error Rate: A = © (u).

Assumption (A1) reflects both the fact that the study of large graphs is a hallmark of modern ap-
plied work in complex networks and, accordingly, our desire to make statements that are asymptotic
in n,.
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Our use of assumption (A2) reflects the understanding that a ‘good’ approximation G to the
graph GG should at the very least have roughly the right number of edges. The difference of the
two sums defined in (A2) is in fact the expectation of the statistic D in (3) for the case where the
subgraph being counted is just a single edge, i.e., it is the expected discrepancy between the number
of observed edges |E| and the actual number of edges | E|. So (A2) states that this particular choice
of D has expectation zero. Alternatively, (A2) may be interpreted as saying that the total numbers
of Type I and Type II errors should be equal to a common value A.

Finally, we capture the notion of a ‘low’ rate of error in G through assumption (A3). Specifically,
we assume that the number of Type I or Type II errors in edge status that we expect throughout the
network is roughly on par with the average number of edges incident to any given vertex in the
network. This condition can be re-expressed in a useful manner with respect to n,, if, as is common
in the literature, we distinguish between sparse and dense graphs. By the term sparse we will mean
a graph for which |E| = © (n,logn,), and by dense, |E| = © (n2). Hence, assumption (A3)
reduces to A = O (logn,) in the case of sparse graphs, and to A = O(n,), in the case of dense
graphs.

In addition, for convenience, we add to the core assumptions (A1)-(A3) a fourth assumption,
upon which we will call periodically throughout the paper when desiring to simplify some of our
expressions.

(A4)  Homogeneity: a;j = ovand f3;; = f3, for o, § € (0, 1).

In other words, we assume that the probability of making a Type I or II error (as the case may be)
does not depend upon the specific (non)edge in question.

Lastly, for completeness, we recall the definition of the Skellam distribution. A random variable
W defined on the integers is said to have a Skellam distribution, with parameters Ay, Ao > 0, i.e.,
W ~ Skellam (A1, Ag), if

k
P(W = k) = e~ 1) ( ?) I (2\/)\1)\2) for k € Z, @
2
where I}, (2\/)\1 )\2) is the modified Bessel function of the first kind with index k& and argument
24/ A1 2. The Skellam distribution may be constructed by defining W through the difference of two
independent Poisson random variables, with means A; and A9, respectively. The mean and variance
of this distribution are given by E[IWW] = A\; — A9 and Var(WW') = A; + A2. The distribution of W is

in general asymmetric, with symmetry holding if and only if A; = s.

The main results we provide in this paper are in the form of bounds on the extent to which
the distribution of random variables like the discrepancy D in (3) may be well-approximated by an
appropriate Skellam distribution. For this purpose, we adopt the Kolmogorov-Smirnov distance to
quantify the distance between distributions of two random variables, say, X; and Xo, i.e.,

dsgs(X1,X2) =sup|P(X; <z) - P (X2 <z)|.
zeR

2.2 Counting Edges

Generic subgraph counts, and the corresponding noise in obtaining them, can be quite varied in real
applications. Accordingly, most of our specific results pertain to the fundamental case of counting
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edges. That is, where the choice of subgraph H is simply a single edge, and therefore the function
n(G) in (1) is just the total number of edges in G, i.e., n(G) = | E|. We will consider two scenarios
for this case, wherein the random variables Y;; are independent or weakly dependent.

In the case where the edge noise is independent, the discrepancy

Dg = |E|-|E|
= 2 Y- ) -y
{i,j}eE*° {i,j}€FE

has expectation E[Dg] = a|E¢|—B|E| = A=\ = 0 and variance 02 = a(1—a)|E°|+8(1-3)|E|,
and its behavior can be established using existing methods from the literature (i.e., essentially, Chen-
Stein methods). However, we include it as an important base case, comparing results obtainable by
our methods to those obtainable by more traditional techniques, in Section 4.1.

Alternatively, suppose that the variables Y;; are dependent. The random variable D again has
expectation zero, although its variance—and hence its asymptotic behavior—will differ from the
independent case, in a manner dictated by the nature of the underlying dependency in the noise.
It often can be expected in practice that the error associated with construction of the empirical
graph G will involve dependency across (non)edges. For example, relations in gene regulatory
networks are often declared based on sufficiently strong levels of association between gene-specific
measurements (e.g., measures of gene expression). The comparison of the measurements for each
gene with those of all of the others necessarily induces potential dependencies among the random
variables Y;;. However, a precise characterization of such dependency is typically problem-specific
and, more often than not, nontrivial in nature. In Section 4.2 we will assume general dependency
conditions in the spirit of traditional monotone coupling arguments, which will allow for further
analysis and interpretation.

3. General Results on Approximation by Skellam

Recall the general form of our statistic of interest D in (3), as the difference of two sums of binary
random variables. Under appropriate conditions it seems reasonable to expect that the distribution
of D be well-approximated by a Skellam distribution. And for the simplest case, in which we
are counting edges under independent noise, it is possible to show that this is in fact the case,
through manipulation of existing results for approximating sums by Poisson distributions. Without
independence, however, it is necessary to approach the problem directly, by explicitly using the
Skellam distribution. In this section, we therefore provide the results of such an approach. This
is a completely general treatment—devoid of the motivating context of counting subgraphs—and
therefore also likely of some independent interest. In Section 4 we return to the problem of counting
subgraphs under low-rate error and illustrate the use of the results presented here in this section
through application to the case of counting edges.

Our approach in this section is through Stein’s method. This choice is reminiscent, naturally,
of the Chen-Stein treatment for Poisson approximations. However, the task is technically more
involved at several points, as it requires handling a Stein function that is defined through a second-
order difference, rather than the first-order difference encountered in the Poisson problem. More-
over, the kernel of the Skellam distribution includes a modified Bessel function of the first kind,
which emerges in ways necessitating a somewhat delicate treatment.



BALACHANDRAN, KOLACZYK, AND VILES

3.1 A Stein Bound for the Skellam Distribution

Let U be a random variable defined as
n m
U=> Lp—» M, ©)
k=1 k=1

where {{Ly};_, , {M}};-,} is a collection of two sets of indicator random variables with E[L] =
pp for k = 1,...,n and E[My] = g for k = 1,...,m. In the case of our subgraph counting
problem, U = D, where D is defined in (3), although for the remainder of this current section U is
defined generally.

Recall the definition of a Skellam random variable W in (4). We desire a bound on

dics(U,W) := sup [P (U < z) = P(W < )| |, ©)
z€R

quantifying how close the distribution of U is to that of W. In pursuing the standard paradigm for
Stein’s method, we first determine an operator A [f (k)] such that

EA[f (W) =0 ifandonlyif W ~ Skellam (A1, \2)

for any bounded function f : Z — R. This operator need not be unique, but the theory only requires
one. This is accomplished through the following result, the proof of which uses several properties
of the modified Bessel function of the first kind, as detailed in the appendix, in Section A.1.

Theorem 1 A Stein operator A for the Skellam (A1, A2) distribution is
AL (R)] =M f (B +1) = kf (k) = Aaf (k= 1).

With this operator in hand, and again following the usual paradigm under Stein’s method, we
set

Alf (k)] =g (k)

for a class of test functions g (k), and allow that to implicitly define the function f. The choice of
the test functions g is guided by the choice of the metric used to measure the distance between U and
W. Since the metric we choose to measure the distance between U and W is given by dxs(U, W)
in (6), we choose the test function g := g, given by

gx (k) = 1{k <z} —P(W < ) (M

forany x € R.

At this point it is common to exhibit a solution f defined by our choice of g. Instead, we forestall
that step until later in this section, choosing rather to state a general result that will allow us to more
quickly gain insight into the nature of the bounds we are able to obtain. Our result employs a minor
variant of the notion of coupling that is common to the literature on Chen-Stein approximations.

Theorem 2 Let U be as in (5) and let L(U) denote the law of U. Let

L(U,§”+1):L(U|Lk:1) for k=1,...,n

8
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and
L(U;M>—1)=L(U|Mk=1), for k=1...,m

be a collection of random variables all defined on a common probability space. If \1 = > ;'_, pk
and Xy =Y 1, q, and W ~ Skellam(A1, X2), then

dis(U,W) < [[Af] {ZmE U -+ Y aE|U - U,EM)\} , ®)
k=1

where

I|Af]] = SUPSUP‘fm (G+1) = fz ()l
z€R jEZ

and fy is a solution to A [f(k)] = g.(k) for k € Z.

The proof of this result relies on elementary considerations of the equation A[f, (k)] = g.(k)
and may be found in the appendix in Section A.2. The extent to which it allows one to obtain error
estimates of practical interest in a particular setting will depend on the extent to which both the
main expression within brackets in (8) and the preceding constant ||A f|| can be further controlled.
While control of the former is problem dependent, control of the latter is not, and may be dealt
with separately, as we do next. Afterwards, in Section 4, we illustrate the control of the bracketed
expression in (8), in the context of the problem of counting edges introduced in Section 2.2.

3.2 Controlling the Constant Term

Controlling ||Af|| in (8) first requires understanding the solution f, (k). We provide a family of
closed-form expressions for this solution in the following.

Theorem 3 Let gi be defined as in equation (7). If f. is a bounded solution to the difference
equation

A fz (k + 1) —kfx (k) — Ao fe (k - 1) = Oz (k)
for k € Z, then f, is given by

0 (V3) e o (V3) 2

(¢)
S Sl C)" W <min{n,z})P (W > max {n,x})} ifm>c
(¢)

far; (m) _ \/)\1)\ n=c Iplp41

P(
T ) o (/) b

\ —%Zn m ]n)::ll (W <min{n,z})P (W>max{n,x})} ifm < c.

for any initial condition (c, f; (c)) with ¢ € Z and f; (c) € R. Here I, is used as short-hand for

Ln(2v/ A1 02).

The proof of this theorem is similar to that of solving a second order linear differential equation.
An integrating factor is found, integration is performed with a boundary condition at —oo, and then
a second integration is performed with the initial condition. Details are provided in the appendix in
Section A.3.

Leveraging our insight into f, to control ||A f|| means producing a bound on the absolute dif-
ferences |Afy(7)| = | f=(j+1) — fz(j)| independent of z € R and j € Z. Consider first the special
case where \; and A9 are equal, for which we are able to offer the following result.
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Theorem 4 Suppose that A\ = Ao = A\, so that E[U] = 0 and W is a Skellam(\, \) distribution,
symmetric about zero. Assume A > 1. Then

160
Afll < —.
ISR

The proof of this theorem is highly technical in nature, and relies on a concentration inequality for
the Skellam(A, \) distribution (Balachandran et al., 2013b) with several other technical arguments.
A sketch of the proof may be found in the appendix in Section A.4, while a detailed presentation is
available in the online appendix.

Note that the bound in Theorem 4 is essentially the analogue of the classical result for Poisson
approximation, in which, for sufficiently large A, the term 1/ is the standard factor. In both cases,
therefore, the corresponding term ||A f|| is bounded by the inverse of the expected total number of
counts, where here that is E[T] + Tb] = 2.

The above result is of immediate relevance to the problem of counting edges, given assumption
(A2), whether under the assumption that the edge noise is independent or dependent. We will make
use of this result in the next section. For applications involving higher-order subgraphs, we can
expect to need an extension of Theorem 4 to the general case of A\; # Ao. For arbitrary A1, Ao > 0,
we are unable to produce a satisfactory bound. However, supported by preliminary numerical work,
we have the following conjecture.

Conjecture 5 In general, for \1 and \s sufficiently close and large,

C
AL+ A2’

IAf]] <

for some constant C > 0 independent of \1, Aa.

4. Application of General Results to Counting Edges

We now illustrate the use of our general results for the problem of characterizing the propagation
of low-rate measurement error to subgraph counts in large graphs, for the specific case of counting
edges.

4.1 Edge Counts Under Independent Edge Noise

Recall the problem wherein the function of interest (1) counts the number of edges in G, i.e., n(G) =
|E'|, and the variables Y;; in (2) are independent. In light of Theorems 2 and 4, we have the following
result characterizing the behavior of the discrepancy D in (3), which here is simply Dg = |E|—|E|.

Theorem 6 Under assumptions (Al)-(A4) and independence among errors in declaring (non)edge
status (i.e., among the Y;;),

dis (Dg, Skellam(A\,\)) < O (ny') 9)

for both sparse and dense graphs G.

10
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Proof of this result may be found in the appendix, in Section A.5. The theorem establishes a rate
at which—in large networks, whether sparse or dense, with independent and homogeneous low-rate
errors—the distribution of the discrepancy D tends to that of an appropriate Skellam distribution,
i.e., symmetric and centered on zero, with variance 2\. The same rate may be established using more
standard arguments from Chen-Stein theory, the proof of which we also include in the appendix, for
completeness. These latter arguments, of course, only hold in the case of independence assumed
here, and do not extend generally to the case of dependence in the edge noise.

To put the rate established in the above theorem in better context, it is interesting to compare
to the case where a normal distribution is used instead to approximate that of the discrepancy Dpg.
The following theorem, proof of which also may be found in Section A.5, provides both upper and
lower bounds.

Theorem 7 Let 0> = Var(Dg). Under the same conditions as Theorem 6 , in the case of sparse
graphs
0 (log™ n,) < dics (Dig/or, N(0,1))) O (log ™ m, ) (10)

while in the case of dense graphs,
@ (n;!) < dis (Defo, N(0,1))) < O (ng"2) | an

where N (0, 1) refers to a standard normal random variable.

These two theorems together indicate that in this context a Skellam approximation is clearly
superior to a normal for sparse graphs, and they suggest that it can be better as well for dense graphs.
These statements are supported by the results of a small simulation study, shown in Figure 1. There
we compared the two approximations as n, ranges from 100 to 1000 to 10,000, for error rates
A defined to be constant, logarithmic, square root, or linear functions of n,. For the sparse and
dense cases, we let |E| equal n,logn, and n,(n, — 1)/4, respectively. Looking at the sparse
case, for when A = logn,, the Skellam approximation clearly dominates the normal. However,
interestingly, this dominance continues even when the error rate is set equal to nql,/ 2, Only once the
error rate is n, do we see the normal approximation begin to overtake the Skellam approximation.
Note that by this stage, 5 = O(1), and so essentially there is no ‘signal’ standing out from the
‘noise’. Similarly, looking at the dense case, we see that the Skellam approximation is better than
the normal approximation at all error rates, including, in particular, when the error rate equals n,,
the case addressed by the above two theorems.

In summary, in the independent case, the Skellam distribution dominates the normal as an ap-
proximation when there can be expected to be a clear graph ‘signal’ standing out against the ‘noise’
induced by underlying low-rate measurement errors.

4.2 Edge Counts Under Dependent Edge Noise

Again, as just above, consider the context wherein counting edges is of interest, so that n(G) = | F|
and our goal is to characterize the accuracy with which D = |E| — |E| is approximated by a
Skellam(\, ) random variable. Now, however, we assume that the error associated with construc-
tion of the empirical graph G will involve dependency across (non)edges. That is, the random vari-
ables Y;; are now dependent. A precise characterization of such dependency is typically problem-
specific and, more often than not, nontrivial in nature. Here, for the purposes of illustration, we
instead provide certain results of a general nature, working from the bound (8) of Theorem 2.
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Figure 1: (Log)Kolmogorov-Smirnov distance between Skellam and standard normal approxima-
tions to the distribution of discrepancy D in edge counts under independent errors. Left:
Sparse case. Right: Dense case.

Of the two terms in (8), the first term ||A f|| is again known to behave as O(A~1), by Theorem 4.
On the other hand, control of the second term, in brackets, requires some care. For example, naive
inter-change of absolute values and summations with expectation yields that

m
L
B |U = UP| <52+ 3 pwps + EILLy] + Y peae + EILM
k] (=1

and similarly for gxE ‘U -U, IEM) ’ Unfortunately, it is straightforward to show that for the de-

pendent error version of the problem considered in the previous subsection (i.e., involving in-
dependent and homogeneous low-rate errors on large-spare networks) the bound we obtain for
dis (Dg, Skellam(A, X)) will be no better than O(\)—regardless of the nature of the dependency
among the Y;;.

One possible approach to a more subtle handling of these terms is motivated by considerations
of hypothesis testing. Suppose that the Lj correspond to indicators of Type I error for n tests
under their corresponding null hypotheses, and the Mj, to indicators of Type II error for m tests
under their corresponding alternative hypotheses. Furthermore, suppose that the corresponding test
statistics are all defined on the same scale and compared to the same threshold. Moreover, for
simplicity, we assume these statistics all have non-negative values and that their distribution under
the null sits to the left of that under the alternative, so that more extreme positive values tend to
support the alternative. In this setting, if we know, for example, that L; = 1, we know that at
least one rejection of a null hypothesis has occurred, indicating that the threshold sits to the left of
the right-most extreme of the empirical null distribution. Accordingly, we are inclined to expect
that there may be other such rejections of the null, i.e., other Type I errors. At the same time, we
would expect fewer Type II errors, i.e., fewer M that equal 1. Conversely, if we see a Type Il error,
say M; = 1, it can be argued that we would be inclined to expect more Type II errors and, at
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the same time, fewer Type I errors. These arguments are heuristic, of course, although intuitively
appealing. From a practical perspective, their validity would need to be examined within specific
applied contexts. However, that work lies beyond the scope of the present manuscript.

Together these high-level arguments suggest that a reasonable generic model for these errors
is one in which there is positive correlation within the L’s and M'’s, respectively, but negative
correlation between. The conditions of the following theorem capture this notion, which in turn
allow us to produce a sensible bound, improving on that of Theorem 8.

Theorem 8 Let iJL’“ and M ; * be random variables distributed as L; and M, respectively, con-

ditional on Ly, = 1. Similarly, let I:;w’“ and M eM * be distributed as L; and My, conditional on
My, = 1. Suppose that

i fL]Lk ZLjand]\;[eL"’ < My, forj#kandl=1,...,m, while
ii. f/y’“ SLjand]\;[é\/[’“ >Myj=1...,nand ¥l # k.

Then
dis(U,W) < [|Af[[{Var(U) — (A1 + A2)} (12)

where W~ Skellam(\1, \2), with \1, \y defined as in Theorem 2.

The proof of this theorem is given in the appendix, in Section A.6. We note that for a collection of
binary random variables to satisfy conditions () and (#7) in the above theorem, it is sufficient, for ex-
ample, to generate a vector of positively associated random variables (L1, ..., Ly, 1 —My,..., 1 —
M,,). The L’s and the M’s will then be positively associated within, but negatively associated
between, which in turn implies the conditions (i.e., analogous to positive and negative relatedness,
respectively). See Barbour and Chen (2005, p. 78), for example, for a brief summary of these latter
notions and their relationships.

With this theorem, the following then holds for large networks with dependent and homoge-
neous errors, when the dependency is of the nature just defined.

Corollary 9 Suppose that the collections of edge indicator random variables {Yij}{z‘,j}e ge and
{Yij}ijyer satisfy conditions (i) and (ii) of Theorem 8, playing the roles of the L's and M's,
respectively. Then under assumptions (Al)-(A2),

dis (Dg, Skellam(\, X)) = O <Var(DE)2A>

2\

This result can be compared to that of Theorem 6 , where the edge noise was independent and the
error in approximating by a Skellam decayed like n;!. By way of contrast, Corollary 9 tells us
that in order to achieve a decay in approximation error like O(f(n,)), we must have Var(Dg) =
2 (1 + O(f(n))).

More generally, the quality of the approximation of Dg by a Skellam will be influenced by the
nature of the dependency in the errors, as the latter manifests itself through the overall variance
Var(Dp). The nature of that dependency is highly problem-specific, and a detailed investigation of
possible cases is well beyond the scope of the present paper, although we provide some initial insight

later as it arises in the context of counting higher-order subgraphs, through Theorem 10 in Section 5.
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However, nontrivial insight also can be gained into the influence of the level of dependency on
accuracy through numerical work under the following simple model.

For a vector of binary random variables (L1, ..., Ly, 1 — My,...,1 — My,),let S = D + m,
where D = Y | L; — >, M;. We equip S with a distribution of the form

n-+m

v—1
IP’(S—k:)oc( . ) P(U+V=k) , (13)

for v a real number, where U and V' are binomial, with parameters (n, p) and (m, ¢), respectively.
This distribution is a rescaling of that of the sum of two independent binomials, in a spirit analogous
to the Conway-Maxwell binomial (COMB) distribution introduced recently by Kadane (2014). The
COMB distribution is a simple extension of the binomial distribution that introduces dependency
among the corresponding Bernoulli random variables. Our proposed distribution for .S in (13) in-
volves two binomial random variables, for which the corresponding Bernoulli random variables are
dependent both within and between the two. Accordingly, we call this a COMB?2 distribution.

Now impose assumption (A2) on this model. Since the assumption implies that E [D] = 0, it
follows that necessarily we must have E [S] = m. Furthermore, the limiting Skellam distribution
in Corollary 9 will be symmetric under this assumption. Symmetry can be imposed here on the
distribution of S, and hence D, by taking n = m and ¢ = 1 — p. Therefore, we let |E| = (") /2 =
ny(ny — 1)/4 and @ = 1 — 3. Note that this choice of | E| means that our numerical work pertains
to the case of dense graphs. (We are unable to exhibit a sparse variant of the COMB2 model with
the necessary characteristics above.)

Note that when v = 1, the binary random variables (L1,..., L,,1 — Mj,...,1 — M,,) are
independent. On the other hand, proceeding along lines of reasoning similar to those in Kadane
(2014), it can be argued that the COMB2 distribution, with the parameter constraints just described,
renders the (Lq,...,L,, 1 — My,...,1 — M,,) positively associated when v < 1, with the mass
being transferred increasingly to the endpoints of the support of the distribution of D as v — —o0.
As aresult, per the discussion immediately following Theorem 8, the particular COMB2 distribution
we have defined can be used to simulate network edge data in a way that satisfies the conditions of
Corollary 9.

In Figure 2 are shown the results of numerical work calculating the Kolmogorov-Smirnov dis-
tance between the Skellam and standard normal approximations to the distribution of the discrep-
ancy Dp in edge counts under the COMB?2 distribution, for v = 0, 0.5, and 1.0. The noise levels
used here are the same as used earlier in producing Figure 1. We see that the accuracy of the Skel-
lam distribution decays slightly with increasing dependency in the errors, and with increasing noise
levels.

5. Discussion

The propagation of uncertainty in network analysis is a topic that currently lags the field in devel-
opment. Despite almost 15 years of work in the modern ‘network science’ era, on a vast array of
topics, from researchers in many different disciplines, there remains a sizable gap in our under-
standing of how ‘low level’ errors (i.e., at the level of declaration of edge / non-edge status between
vertex pairs) propagate to ‘high level’ summaries (e.g., subgraph counts, centralities, etc.). As a
result, in most practical work, network summary statistics are cited without any indication of likely
erTor.
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Figure 2: (Log)Kolmogorov-Smirnov distances to the distribution of the discrepancy D in edge
counts under the COMB?2 distribution, with v = 0 (top left), v = 0.5 (top right), and
v = 1.0 (bottom left), for the Skellam and standard normal approximations. Also shown
is a comparison of Skellam approximations as a function of v (bottom right).

Our contributions in this paper are aimed at helping to begin laying a foundation for work in this
area, with a focus on establishing an initial understanding of the distributional behavior of certain
simple network summary statistics. Our choice to work with subgraph counts is both natural and
motivated by convenience, whereas our emphasis on the specific case of large networks with low-
rate measurement error is intended to capture a sizable fraction of what arguably is encountered in
practice.

Ultimately, however, this initial work leaves us still well short of natural practical endpoints
in applied statistics and machine learning for network science—for example, even to be able to
do hypothesis testing or construct confidence intervals for graph-based parameters of interest (i.e.,
for n(G)). To close this gap is well beyond the scope of this paper. Indeed, we anticipate that it
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will require the contributions of many papers in this emerging topic area, from researchers across
a combination of probability, statistics and machine learning, and domain areas. Accordingly, we
devote the remainder of this paper to a brief discussion of what we view as key challenges in terms
of applied probability, statistical and machine learning methodology, and practical applications.

5.1 Challenges in Applied Probability

From the perspective of applied probability—including random graph theory—our problem formu-
lation appears to be new. Our formulation is reminiscent of the type of ‘signal plus noise’ model
commonly used in nonparametric function estimation and digital signal processing. Notably, in our
formulation the true underlying graph G is fixed. This necessitates a different treatment than, say,
traditional analysis of subgraph counts in classical Erd6s-Rényi random graphs (e.g., Janson et al.,
2011, Chs 3 & 6). In the special case where an Erd6s-Rényi model is assumed, as well as assum-
ing independence among the measurement errors, and the analysis is done without conditioning on
G, then the problem could be viewed as involving a classical random graph wherein the (marginal)
probability of an edge is a function not only of an initial edge frequency but also the Type I and Type
I error rates. In general, however, either when G is fixed, as assumed in this paper, or from some
other class of random graph models (e.g., various models with heterogeneous degree distributions),
or when the measurement errors are dependent, the problem is more involved. By conditioning on
G, our formulation allows us to focus our analysis firstly on a high-level notion of Type I and II
errors among (non)edges, and then secondly on the manner in which the structure of the underlying
graph G may interact with those errors.

We view our work in part as laying a key initial piece of the foundation on an important new
class of problems in applied probability. However, we have provided a detailed analysis only for
the most fundamental of subgraph count statistics, i.e., the number of edges in a network. Our
initial work on extension to counts for subgraphs of higher order suggests that the problem becomes
increasingly nontrivial. Specifically, the interaction of noise level, graph topology, and choice of
subgraph would appear to need to be studied with care.

The following general theorem should be useful in exploring further in this direction.

Theorem 10 Let H be a given subgraph of interest. Re-express the difference D in subgraph counts

defined in equation (3) as
Du= Yt X M
H’QCH H/GCH

forCy ={H' CK,, : H = H H C G}, where Ly and My are indicator variables of Type I
and Type II error; respectively, for a subgraph H'. Under the assumption of independent edge noise,

drs(Du, W) < |[Af|[{Var(Dy) — (A1 + A2)} (14)

where W~ Skellam(A1, A2), with Ay = 3 ppige, prr and Ao = 3 pice, am, for prr = E[Lp/]
and qH' = E [MH’]

This result follows directly from application of Theorem 8 and the comment immediately following
that theorem. In particular, each of the indicator random variables Ly and 1 — My may be
expressed as a product of n,) choose two binary random variables, where n,,g) is the order of
the subgraph H. Since these products are non-decreasing functions of their arguments, and their
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arguments are independent, it follows that the collection of random variables defined by the union
of the Ly and the 1 — My are positively associated (e.g., Esary et al., 1967).

Application of this theorem to specific choices of subgraphs H requires calculation or bounding
of the two key elements within brackets in (14), i.e., Var(Dy) and \; + A2, as well as control of
the constant ||A f||. For the case of independent edge noise (which, nevertheless, yields dependent
indicator variables L and M g), there is some hope that the former two quantities may be bounded
through straightforward calculations, at least for low-order subgraphs. As for the latter quantity,
under Conjecture 5 this term is controlled by a term of order (A; + )\2)*1, but this conjecture, while
supported by numerical work, remains to be proven.

By way of illustration, consider the problem of counting two-stars on the one-dimensional
toroidal lattice of degree 2r, r > 1. That is, the graph G is composed of a ring, with each ver-
tex connected to its r nearest neighbors in each direction. The subgraph H is simply a chain of
length two, i.e., a subgraph on three vertices {1, j, k} with edges {,j} and {4, k}. In this case, the
total number of two-stars is 7(G) = n, (227). Under homogeneous Type I and Type II error rates «
and S, the parameters A\; and Ay in Theorem 10 take the values

)\1:2rnv(nv—2r—1)a(1—5)+nu(nv_2r_1>a2

2
() 0

Here the two terms defining \; derive from counting the number of vertex triples in G that possess
only one edge or no edges among them, respectively. Under assumptions (A1) - (A4), and suppos-
ing that G is sparse, \; and Ay, are both O(log® n,), so that neither of the sums in Dy dominates
the other. However, \; is in general not equal to A2, and so Conjecture 5 is pertinent here. At
the same time, calculation of the variance in (14) is decidedly more involved, as it requires eval-
uation of the covariances Cov (Ly, Lgr), Cov (Mpyr, Myn), and Cov (Ly:, M) over all pairs
of vertex-triples, corresponding to putative subgraphs H' and H”. Under independent edge noise,
the calculations simplify to some extent, in that these covariances are non-zero only in the case
where the relevant pair of vertex triples is defined in terms of a total of only either three or four
unique vertices. (When five or six unique vertices define the two triples, the indicators L and/or
M are functions of two independent sets of edge indicators Y;;.) Nevertheless, there still remain
several subcases to enumerate for each of the three forms of covariance above in order to complete
the calculation, rendering the exercise arguably feasible but tedious. Ultimately, however, since the
denominator in (14) is O (log2 nv) under Conjecture 5, we see that under this particular noise level,
with this particular graph topology, the convergence to Skellam is unlikely to be fast. Numerical
experiments confirm this expectation.

This small illustration is sufficient to illustrate the point we assert above, i.e., that the interaction
of noise level, graph topology, and choice of subgraph are likely to be nontrivial in the class of prob-
lems introduced here in this paper, and will likely require substantial and careful study in applied
probability. Of course, looking even more broadly, by restricting our attention to subgraph counts
we have only considered a portion of the full universe of network summary statistics. Clearly there
are other classes of summaries of interest to be explored, and which can be expected to potentially
display different behavior. Summaries relying on shortest path behavior (e.g., the diameter of a
graph, between centrality of nodes, etc.) are a natural example.

and
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5.2 Challenges in Statistics and Machine Learning Methodology

From the perspective of statistics and machine learning, the work in this paper is largely a necessary
means to an end. In the context of network-based propagation of error, a central goal of interest in
these fields would be, for example, to develop methods of hypothesis testing or confidence interval
construction for graph-based parameters of interest (i.e., for 1(G)) based on an observed graph
G. Alternatively, one might wish to use such network summaries (or perhaps even the networks
themselves) as input into a regression or classifier. Here, again, much work remains to be done.

For parameter estimation and testing in the spirit of classical statistics (e.g., Statistics 101), it is
typical to first understand the probability distribution underlying a quantity of interest. That is the
goal of this manuscript and, for an important subclass of problems in this space, our results offer
some initial insight. But knowledge of this distribution does not necessarily yield a tool for statistical
inference. For example, to apply the Skellam results here in practice would require knowledge of
the Type I and II error rates. If that knowledge is lacking (as generally is the case), then they must
be estimated. How best to perform such estimation will presumably depend on context. To the best
of our knowledge, this question has not been explored broadly in the literature. See Section 5.3 for
additional comments in this direction.

In our work here, we have purposely taken an agnostic stance on the nature of G. However, it
can be expected that additional leverage on the propagation of error problem—and, in particular,
related problems of statistical inference—can be gained by incorporating additional model structure
into the problem. For example, within the statistics and machine learning literatures, arguably the
canonical methodology for producing an estimate G of a graph GG from data is the neighborhood
selection approach of Meinshausen and Biihlmann (2006) and the many derivatives thereof. In this
approach, we assume we have available n independent and identically distributed observations of a
n,-dimensional random vector X that follows a multivariate normal distribution, with mean 0 and
covariance matrix . The graph G in this setting is taken to be the so-called concentration graph,
defined so as to have an edge between a given vertex pair ¢ and j if and only if the ¢, j-th entry of
the concentration matrix X~ ! is non-zero. Since it is typical to have n < n,, in practice, methods of
inference for this problem generally make use of complexity-penalized optimization. The original
proposal in Meinshausen and Biihlmann (2006) makes use of ¢;-penalized regression. In what ap-
pears to be a first, the combination of Gaussian graphical models and hypothesis testing for network
structure has been explored by Neykov et al. (2016) in recent work. There they characterize the
complexity of what they call combinatorial inference problems through the use of minimax lower
bounds. Algorithms are provided for tests that achieve those lower bounds.

Examples of other related work in this space include methodology for predicting network topol-
ogy or attributes with models that explicitly include a component for network noise (e.g., Jiang
et al., 2011; Jiang and Kolaczyk, 2012), the ‘denoising’ of noisy networks (e.g., Chatterjee, 2015),
and the adaptation of methods for vertex classification using networks observed with errors Priebe
et al. (2015). Also related is recent work by Cai et al. (2017) on the detection of ring lattice struc-
ture in the presence of random connections (i.e., small worlds). While there are undoubtedly other
examples in this space that we have not cited here, it is nevertheless the case that we are currently
still only at the start of methodological development of this type.

Finally, we note that network summary statistics have also long been used in practice as input
to regressions and classifiers. A canonical example in the field of marketing is Hill et al. (2006),
where the focus is on the identification of early adopters through the use of consumer networks,
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with neighborhood summaries (e.g., proportion of neighbors adopting a product) being used as pre-
dictors. Similar use has been made in the social sciences. For example, Hahm et al. (2012) use
vertex centrality measures from a friendship network as input in an effort to predict adolescents at
risk of binge drinking. In these and other cases, it is certainly conceivable that the network summary
measures are observed with error. In that case, incorporation of ideas like errors-in-variables regres-
sion might be appropriate (Fuller, 2009). Characterization of distributional properties for network
summary measures, as in this paper, can be an important step towards understanding an appropriate
error model for the predictors.

5.3 Challenges for Practical Applications

When all is said and done, probabilistic and statistical / machine learning development in the area of
network-based propagation of error will only have significant practical impact when paired with an
appropriate degree of context-specific understanding of the nature and magnitude of errors that arise
in network construction. Certainly in most applied settings it is widely recognized by practitioners
that there is measurement error associated with common types of network constructions. And in
many settings the general issue has received nontrivial attention, such as, for example, in the context
of protein-protein interaction networks (e.g., Hart et al., 2006) or social networks (e.g, Almquist,
2012).

In order to interface in a productive manner with theoretical and methodological development,
such as offered in this paper, it will be important to be able to quantify the noise levels in applica-
tions. The difficulty of this task, of course, can vary greatly by context, as well as can the magnitude
of the noise. In the case of protein-protein interaction networks, for example, it is understood that
Type I and Type II error rates associated with traditional affinity binding experiments can be alarm-
ingly high. Hart et al. (2006) summarized the fairly substantial literature on quantifying these rates,
finding that values of o =~ 0.35 and 8 ~ 0.40 were not atypical. In this case, such rates derive
largely from experimental evidence. Alternatively, Balachandran et al. (2013a) employ empirical
null principles (Efron, 2012) for correlation-based inference of a small gene regulatory network in
yeast to estimate error rates o = 0.004 and 8 =~ 0.009. But these later should be taken with a grain
of salt. Cosgrove et al. (2010) show that such nominal estimates of error rates can be decidedly off
from actual error rates when the underlying model assumptions are violated in ways that can often
be expected in practice (e.g., due to experimental batch effects).

Finally, it is important to note that in some areas of network science the notion of ‘ground
truth’—in the sense of what constitutes a true (non)edge—can be a slippery concept. For exam-
ple, there continues to be much discussion and debate in computational neuroscience as to what
functional (or, alternatively, effective) connectivity represents, as inferred from data (e.g., from
neuroimaging measurements), in contrast to anatomical (or, alternatively, physical or structural)
connectivity. See, for instance, the review by Friston (2011). Such concerns further complicate the
task of defining and quantifying appropriately the notions of Types I and II errors used in this paper.
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Appendix A.
A.1 Proof of Theorem 1

Proof We begin with the operator,

ALf(R)] = f (k+1) —kf (k) = Aaf (k—1)

with the intent of showing that the random variable W ~ Skellam (A1, \2) if and only if
EA[f (W)] = 0 for any bounded function f : Z — R.
We begin with the necessity direction and the computation of

EA[f(W)] = Ef(W+1) = Wf (W)= Aof (W - 1)
oo k
x 3 [Alf(k+1)—k‘f(k)—Azf(k—l)]( i) I

k=—o00 2

where o is to be read as “proportional to,” and as shorthand, we write Ij for [;;(21/A1A2). By
standard properties of Ij; (e.g., Abramowitz and Stegun, 1972) we have that

k
I — Iy = ﬁfk
112

or, in other words,

I I
VA Ay AL ’“ 1 \/Am%:k. (15)

This means that

EA[f (W) L{W <n}] [\ff (k+1) = 2L r )+

Now, since f is bounded,

n+1 n
lim {( f) Inf(n+1)+< ?) In+1f(n)}0
n—00 2 2
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so that by monotone convergence,

E[A[f(W)]) = lim EA[f (W)1{W < n}]

n+1 n
= lim <\/§> If(n+1)+ ( f\\l> In1f (n)
n—00 2 2

=0

which proves the claim.
To prove sufficiency, we begin with EA[f (1W)] = 0 and suppose that fy (j) = 1{j = k} for
some j € Z in which case

Mp(k—1) —kp (k) —Aep(k+1) =0

where p (k) =P (W = k). An ansatz of

S (k) = <\/%>ka (2v/A1h3) and T (k) = (\/%)km (2v/A1A2)

shows that S and T" form two linearly independent solutions to this second order linear difference
equation, where I (x) and Kj(z) are the modified Bessel functions of the first and second kinds.
Thus, we know that the general solution is given by,

p(k) = C1S (k) + CoT (k)

for some constants C7, Cy € R.

Now, to determine the constants C'; and C, we appeal to the fact that Zzo:_ P (k) = 1. Since
I, K, > Oforall k € Zand ) ;2 Kj = oo it must be that Cy = 0. Now, consider the
generating function

—00

o0

6§(t+1/t) — Z tkjk (Z)
k=—o00
which means that
1
C, = :
D he oo <\/ %) I (221 h2)
1
e—(>\1+)\2)
so that
X k
— o~ (1tA2) 21
p(k)=e (, / A2> I (2 )\1)\2>
so that W ~ Skellam (A, A2). [
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A.2 Proof of Theorem 2

Proof Given that f, is a solution to A[f, (k)] = g.(k), we have
Mfe(k+1) —kfe(k) = Afe(k—1)=1(k<z)-PW < z].
Substituting £ = U and taking expected values, we obtain,
PIU<a] -P[W <z]| = [EMfe(U+1) = Ufe(U) = Ao fo(U =1 . (16)

Next, recall from (5) that U = ;| Ly—> ;) M. Since \y = Y, ppand Ao = Y )" g,
we have after conditioning on L and My,

’E P‘lfx(U + 1) - Ufm(U) - >\2fx( - 1)“
= ZE[pkfx(U+1) kam +ZE Mkfm )_Qk’fx(U_l)]

m

= Zpk [fo(U+ 1] = E[fo(U)| Ly = 1) + D ax (B [fo(U)| My, = 1] = E[fo(U — 1)])‘

k=1

_ Zpk( f(U+1) - fz(U,EL)H)D+§:qk(E[fx(U,§M)—1)—fx(U—l)D‘

<> nlIAFIE[U - U |+ 3 adlAfIE U — 0
k=1 k=1

n m
= a1 | S peE|U - U+ > k| - UM
k=1 k=1
Combining this with (16) yields the result. |

A.3 Proof of Theorem 3

Proof First, consider the solution to

Mf(k+1) = kf (k) = Xaf (k=1) = g(k), amn

for some bounded function g : Z — R, with the boundary condition

k
. A1 _
kggloo< A2> I.f (k) = 0. (18)
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k
We use (15) to substitute for k in (17). Then, multiplying both sides of (17) by (N / )\1/)\2> I, we

obtain,
X k X k—1
M L) Lfk+1) = N - I—1 f (k)
/\2 >\2
X k41 X k
+x () Denf) =X (/5] Leflk—1)
)\2 )\2
X k
1
= — | Ig(k
( )\2> kg (k)
which is the same as,
X k41 X k
S Lfk+ 1) = (/5] Teeaf ()
)\2 /\2

X k X k—1
+< Q) Ikﬂf(k)—( Q) Tef (k= 1)

k
_ 1 (M
‘m( A2> Teg(k).

Notice that we have grouped terms together so that summing over k yields a telescoping sum.
So, summing over k € {—00,...,n} and using the boundary condition (18),

n+1 n n k
)\1 )\1 1 A1
( M) Inf(n+1)+<\/)\2> ILysif (n) = TA”Z_@( M) Iig (k).

Now, multiplying both sides by (—1)"Jrl /(InI,+1) and summing over n € {¢,c+1,...,m} for
m > cand over n € {m,m+1,...,c— 1}, for some initial condition ¢ € Z and f (c) € R, we

obtain

1" (P)mfm [CN %)C%f( )
o + 7 T nj S (Cf ) Lok } N

0" (VE) [ (VB) e
VA L Inf:: DI/ (\/g) Irg (k } if m < c.

Note that if
g (k) = go(k) =1{k <} —P(W < z)
then

" k
Z AL Teg (k) = MTRP (W <n)P(W >z) ifn<a
A2 RIWE) = ehtrap (W<z)P(W>n) ifn>z
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since, for example if n < x

n k n
23( ig Lg(k) = et Y P(W=k)g (k)

k=—o00 k=—o00
n

= MR N PW =k)[1{k<a}-P(W <)
k=—0o0

= M2 P (W <min{n,z}) —P(W < z)P(W < n)

MTRP (W < n)[1 —P(W < x)]

= MTRP(W <n)P(W > z).

The case that n > x is similar. This means that

[0 (3) [ () Ao
)n+1

) )
- ;%ch Tnlnit (W<mln{nx})P(W>max{n,x})} ifm > c
1) )

fo(m) = (_1)m(\/%> [( C( %)Cflc(

P(W < min{n,z})P (W > max {n,x})] ifm <ec.

A1+Ag z
\/)\1)\2 n=m InInJrl

A.4 Proof of Theorem 4

Our proof of Theorem 4 is highly involved, from an analysis perspective, but the overall program
can be stated in a relatively succinct manner. Accordingly, we sketch here the overall program
behind our proof and refer the interested reader to the online appendix for a detailed account.
Proof Recall that we are trying to obtain a bound on |Af,(j)| = | fz(j + 1) — f=(j)| independent
of z € Rand j € Z. From Theorem 3, we have the solution to the Stein equation, however to use it
to bound |A f.(7)], instead
of f, and g instead of g,.

First, note that we have the freedom to choose the initial condition (¢, f(c)). Making the choice
that ¢ = A2 — A1, and hence that ¢ = 0 under the assumption that A\; = A3, we are able to simplify
our expression for f in Theorem 3 to read, in the case that m > 0, as

fom+ 1) = (<) Ly | 1£(0)
e 1
_ TIOT]P) (W <min{0,z})P (W > max {0, z})
22 T ( )n+1
- Z Trlis P(W <min{n+1,z})P(W > max{n +1,z})
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and, in the case that if m < 0, as

fm = 1) = ()" Fa | 77 O
e 1
- TEP(W <min{-1,2})P(W > max{-1,z})
e2A —1 (_1)n+l .
T ;MP(W <min{n—1,2})P(W > max{n — 1,z2}) |.

Finally, for the case m = 0, we have

62)\
fo) = St i POV < min 0,21 P (W > max{0,2})

+P (W <min{-1,z})P(W > max{—1,z})].

Next, through manipulation of the arguments in the sums defining the above expressions for f,
exploiting properties of the modified Bessel functions i, and applying the triangle inequality, we
are able to produce bounds on the differences | f(m + 1) — f(m)]| of the form

19)

P(W <z Lo I
f(m+1) = f(m)] < (A) st _ I
n=13,.. "2 n-1
-1
X Im—}—lIn I, Im—i—l I,
" B s T 1 I
n=1,3,... n+14n+2 n+1 n+1 n—1
1 1
+ L £ (0) + Ipt1 § + £ (0)
IO Io
e 1
———P (W <min{0,2}) P (W > max{0,z}) ¢| ,
A Igly
if m is even, and
(20)
If (m+1)— f(m)] < <A> st _ I
n=13,. nt2 n-l
m—1
JAY T I I
+ H(n) mtlin _ tm m+1+ m
n=1,3,... Inyilny2  Inga Iny I
+|H (m+1) — H (m)|}
1 1
IO IO

_ngmmwmww>mwm@ﬁw
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if m is odd. Here H(n) = P(W > n) /P (W = n) is the inverse of the hazard function of the
Skellam distribution (and is not to be confused with our use of [ in the main body of the paper as
a subgraph of the graph G7).

Note that (19) is defined by three key terms, while (20) has the same three, augmented by the
addition of a fourth, i.e., |H (m + 1) — H (m)|. Through a series of arguments (the result for each
of which is presented as a separate proposition in the online appendix), we are able to control each
of these terms as follows. First, we show that

I I
sup m+l  tm < 5
meN+ n=1,3,... In+2 I"_l
Next we show that
m—1
I I I I I
S H@m) | o <73
n=1,3,... Lnvilnye  Inyr Inyi Ina

for A > 1. And furthermore, we show that

1 1 e 1 ,
I £ O) T { 17 0) = S 7 POV < min 0,0) POV > max 0,01
POV <2)
< BWsn)

Finally, it is clear that

H(m)—H(m+1)
P(W>m) PW>m+1)
P(W=m) P(W=m+1)

- ]P(Wl:m)[IP’(W>m)—IP’(W>m+1)]
 PW=m+1)
- P(W=m)

—_

<
and, at the same time H (m) — H (m + 1) > 0 so, we have that we may bound the magnitude of

this final term by 1.
As aresult of all of the above, we may conclude that

[f (m+1) = f(m)] <+
for m > 0. Or, equivalently, we may express the right-hand side above as 160/2.
The argument for the case of m < 0 involves similar reasoning, as described in the online

appendix. |
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A.5 Proof of Theorems 6 and 7
A.5.1 PROOF OF THEOREM 6

Proof The terms E ‘U —U, ,E,L) ‘ and E ‘U - U ,iM) ‘ in (8) measure the dependence of U on the events

Li = 1 and M), = 1, respectively. In the context of the empirical graph G, the random variables
L are equal to Y, for {i,j} € E°, while the random variables A are equal to Y;;, for {4, j} € E.

With the Y;; assumed independent, U ,gL) and U, ]EM) are independent of their respective events, and

SO we obtain
n m
zpz+zq,z] | e

k=1 k=1

Accordingly, and drawing on definitions and the result of Theorem 4,

E° 2 E 2
dics (Dp, Skellam(\, \)) < Yookt ) B _ [Eflo” +1E]5

(l . |E|a
J)EE (i,5)eE

>/\v—*

e + 18] () 2

|E¢|ax
= o+ |EC|
|E|
L (3 - 1E
=+ \E| o
(%)
~ el

Noting that & = A/|E°|, and recalling that |[E°| = © (nZ) under both sparse and dense graphs G,
the last quantity above is seen to behave like A/|E| which, under assumption (A3) and our definition
of sparse and dense in Section 2 , reduces to O (n, ). So the bound in (9) is established.

Note that the right-hand side of (21) is analogous to the classical form of the bound for individual
sums of independent indicator random variables (e.g., Barbour and Chen, 2005). As remarked in the
main text, for this particular case of independent Y;;, those more classical techniques could also be
used to produce the result of Theorem 6. Specifically, Let 71, 75, T, and T be independent random
variables supported on the integers. Denote by dry (X1, X2) the total-variation distance between
two random variables X7 and X5>. Then

dis (Tl ~ T, T1 — T2> < drv ( ~ T, Th — Tz)
< drv ((Tl,Tz), (T17T2))
< drvy (leﬁ) +drv (T2,T2) ;

where the first inequality exploits the fact that total-variation distance provides an upper bound on
Kolmogorov-Smirnov distance, and the second and third inequalities follow from Lemmas 3.6.3
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and 3.6.2 of Durrett (2010), respectively. Now define
Y Vi and Th= Y (1-Yy) |
{i,jyekre {i.j}eE
and let Tl and Tz be independent Poisson random variables with common mean A. Setting A =

|E€|a = | E| 3, and applying to each of dpy (Tl, T1> and dry (Tg, Tg) the standard Stein bounds

for Poisson approximation to sums of independent indicators (e.g., Barbour and Chen, 2005, Eqn
2.6), we again obtain that

Ec° 2 E 2
ds (Dp, Skellam(\, \) < - | 3 a2y 37 g2 = [l HIEST

1
A |E¢|a
(i,5)€E° (i,5)eE

and the rest follows. [ |

A.5.2 PROOF OF THEOREM 7

To establish the bounds in (10) and (11), we use the following result from Stein’s method for the
normal distribution (e.g., Barbour and Chen, 2005).

Theorem 11 Let &1, ... ,&, be independent random variables which have zero means and finite
variances E [€2] = 02,1 < i < n, and satisfy y_ = 1. If F,,(x) is the cumulative distribution
function of "7 &, then, for every e > 0,

112

M

€

— IZE (6 T 16, >)] ZU <SUP\F( |<7ZE[I§Z }

Proof of Theorem 7 We apply Theorem 11, with §; = X; /o where X is a term in one of the sums
of D, to establish each of our upper and lower bounds in turn.

Upper Bounds in (10) and (11): First, note that since

n Y B
D> E |:|§i|3:| = 103{} ;
i=1
and
E[IXP] =a(l—a) [(1-a)* +a?] or 801-8)[(1-5)*+57]
with n understood to be either | E¢| or | E|, it follows that
En:E [l&'\?’] a(l—a) [(1—a)® +o?] |E°| + B(1 - ) [(1; B)* + 8] |E|
= (a(l —a)|E + B(1 - B)|E])>
a(l —a)|E°| + (1 = B)|E| i
(a(l —a)|E°| + (1= B)|E])>

<max{(1 - a)? +a?, (1 - p)? + 5%}

_ max{(1 - a)? +a2, (1 - B)? + 5
(o0 - B+ 40— )’
max{(1—a)® +0% (1= B+ 4% 1

e
«/2—(0[—1-5) NEE
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where in the last equality we have used the fact that 5 = (| E€|/|E|) « follows from (A2). Finally,
note that

1-a)Y+a’=1-20+2°=1-2a(l—a)<1

and the same holds for (1 — 3)% + 32, since 0 < a, 3 < 1, so that

& 3 1 1
;EW } = V2—(a+B) \alE]

This immediately implies, after another application of 5 = (| E€|/| E|)«,

7 1
sup | Fo(z) — B(z)] < . .
z€R \/2— (a+%a) ValEe|

Using a = A/|E¢|, and invoking the assumption of low-rate measurement error in (A3) and the
definitions of sparse and dense graphs in Section 2, the upper bounds in (10) and (11) follow.

Lower bound in (10) and (11): First, note that since &; = X;/0, 07 = a(l — a)/d? or 0? =
B(1 — B)/o?. Thus,

S 1 = (=PI + (50— )71
2270 = " (a(l — o)l B + B - B)|E]?

(0(1—))21E + (Bla1 - 5) " |B

@ (ot B)2 (B2 ,
I S U PR -7 PR
S @ (@1 h)? [“ URRTAS 5)]
o (1-a?  (1-5)
_(2—(a+ﬁ))2[ Bl B ]

where in the second equality, we have used 5 = (|E¢|/|E|)a.
Next, choose € = 1/(20). Note that this is the midpoint of the intervals

—, , and -,
o o o o
if a, 8 < 1/2 and of the intervals
(1—a a) <1—5 ﬂ)
,— ], and , —
o o o o

if @, 8 > 1/2. In either case, these are the endpoints of the interval formed by the values of
&l = [Xil /o
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Due to the symmetry in these intervals about % we may, without loss of generality, assume
a, 8 < 1/2. In doing so, and using 5 = (|E°|/|E|)c,

[V

€ n

l—e 71
—0 2 E & Te>a]

=1

»

1—e™T (1-a)%a|E+ (1-B)*B|E|

40  a(l-a)E]+B(1-B)E]

€

l—e 7 (1-a)+(1-p)?

»

40 2 —(a+p)
_2eTo1 (-aP(-p
- 10  2—(a+p)
2@ (1-a)+(1-p)
€0 2—(at B
_ 21 1 (=)’ +(1-p)
—° 610 a1 - )BT+ B1-BE] 22— (a+h)
_ 21 1 (1-a)?+(1-p)?
610 o[E ] 2—(a+hp)?

Combining the two sets of expressions above, the lower bound becomes

2
e &
=1 =1

S o2l 1 (a4 (-8 1 [(1a)2+(1ﬁ)2
- 640 alE¢| (2 (a+p))? 2—=(a+p))? | |E |E|
_ 1 1 o2 eXp(_Tlﬁ‘ﬁ'%(clwﬁ)) 1 1
= @iy [T 640 alE] T E
1 1 1
> exp(‘fﬁ'm'iz—mw)) 1 1
+(1-5) 610 oETE (22)

But for sufficiently large n,, the exponential term in (22) behaves like exp [—1/(16\)] ~ 1 —
(1/16X). Substituting accordingly and simplifying to ignore the various terms tending to a constant
in large n,, the expression in (22) can be seen to behave asymptotically like

1 1 1 i 1 1
4 |\ 640\ |E°| 640\  |E| '
Again, by the assumption of low-rate measurement error in (A3) and the definitions of sparse

and dense graphs given in Section 2, appropriate substitution of the values for A, ||, and | E¢| yield
the lower bounds in (10) and (11). This completes the proof of Theorem 7. [ |
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A.6 Proof of Theorem 8

Proof The proof follows by rewriting each of the two sums bracketed in (8), and then aggregating
terms. Under condition (i) of the theorem,

- = |n+ YL —ZME S Lk - ZML’“

J#£k J#k
- ij@k_ZMka_ ZL —ZMZ — Ly
7k ¢ 7k
- uvM-u.

Similarly, under condition (i) of the theorem, ’U — UlgM )‘ =U-U ,gM).
In the absence of having to deal directly with the absolute values, we find that

ZpkE‘U U )—ZZELkL ~ S E[LM] - E[UlM

k=1 k#£j Kt
and . .
quE‘U—U,E ‘ SO E MM - S E (LM + E U] he
k=1 k=1 {£k k.l

As a result, the bracketed term in (8) takes the form
ZpkE ‘U vt ‘ + quE‘U Ut )‘

- ZZE [LiL;] +ZZE My My —QZE Ly M) - (E [U])?

k=1 k#j k= u;ék

= E[U?] - ZE (L] ZE[M2
k= 71n (=1

= Var(U) ZE Li) =Y E[M]

= Var(U) ()\1+)\2) =
= Var(U) — Var(W) .
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