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Abstract
We propose a pool-based non-parametric active learning algorithm for general metric spaces, called
MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-
neighbor classifier. We give prediction error guarantees that depend on the noisy-margin prop-
erties of the input sample, and are competitive with those obtained by previously proposed passive
learners. We prove that the label complexity of MARMANN is significantly lower than that of
any passive learner with similar error guarantees. MARMANN is based on a generalized sample
compression scheme, and a new label-efficient active model-selection procedure.
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1. Introduction

Active learning is a framework for reducing the amount of label supervision for prediction tasks.
While labeling large amounts of data can be expensive and time-consuming, unlabeled data is often
much easier to come by. In this paper we propose a non-parametric pool-based active learning
algorithm for general metric spaces, which outputs a nearest-neighbor classifier.

In pool-based active learning (McCallum and Nigam, 1998), a collection of random examples
is provided, and the algorithm can interactively query an oracle to label some of the examples.
The goal is good prediction accuracy, while keeping the label complexity — that is, the number
of labels queried — low. Our algorithm, MArgin Regularized Metric Active Nearest Neighbor
(MARMANN), receives a pool of unlabeled examples in a general metric space, and outputs a vari-
ant of the 1-nearest-neighbor classifier, implemented by a 1-nearest-neighbor rule. The algorithm
obtains a prediction error guarantee that depends on a noisy-margin property of the input sample,
and has a provably smaller label complexity than any passive learner with a similar guarantee.

Active learning has been mostly studied in a parametric setting, in which learning takes place
with respect to a fixed hypothesis class with a bounded capacity. There has also been some work
on analyzing non-parametric active learning strategies under certain distributional assumptions (see
Section 1.1 for more discussion on this). However, the question of whether active querying strate-
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gies can yield label savings for non-parametric methods in a general setting, without distributional
assumptions, had not been analyzed prior to this work. Here, we provide a first demonstration that
this is indeed possible. We discuss related work in detail in Section 1.1 below.

Our contributions. MARMANN is a new non-parametric pool-based active learning algorithm,
which obtains an error guarantee competitive with that of a noisy-margin-based passive learner.
Additionally, it provably uses significantly fewer labels in nontrivial regimes. As far as the authors
are aware, this is the first non-parametric active learner for general metric spaces, which achieves
competitive prediction error guarantees to the passive learner, while provably improving label com-
plexity. The guarantees of MARMANN are given in Theorem 4 in Section 3. We further provide a
passive learning lower bound (Theorem 5), which together with Theorem 4 shows that MARMANN
can have a significantly reduced label complexity compared to any passive learner. The passive
lower bound is more general than previous lower bounds, relies on a novel technique, and may be
of independent interest. Additionally, we give an active label complexity lower bound (Theorem
6), which holds for any active learner with similar error guarantees as MARMANN. The proof of
this active lower bound relies on a new No-Free-Lunch type result, which holds for active learning
algorithms.

Our approach. Previous passive learning approaches to classification using nearest-neighbor
rules under noisy-margin assumptions (Gottlieb et al., 2014b, 2017) provide statistical guarantees
using sample compression bounds (Graepel et al., 2005). Their finite-sample guarantees depend on
the number of noisy labels relative to an optimal margin scale.

A central challenge in the active setting is performing model selection to select a margin scale
with a low label complexity. A key insight that we exploit in this work is that by designing a
new labeling scheme for the compression set, we can construct the compression set and estimate
its error with label-efficient procedures. We obtain statistical guarantees for this approach using
generalization bounds for sample compression with side information.

We derive a label-efficient, as well as computationally efficient, active model-selection proce-
dure. This procedure finds a good scale by estimating the sample error for some scales, using a
small number of active querying rounds. Crucially, unlike cross-validation, our model-selection
procedure does not require a number of labels that depends on the worst possible scale, nor does
it test many scales. This allows our label complexity bounds to be low, and to depend only on the
final scale selected by the algorithm. Our error guarantee is a constant factor over the error guar-
antee of the passive learner of Gottlieb et al. (2017). An approach similar to Gottlieb et al. (2017),
proposed in Gottlieb et al. (2014a), has been shown to be Bayes consistent (Kontorovich and Weiss,
2015). The Bayes-consistency of the passive version of our approach has recently been established
(Kontorovich et al., 2017).

Paper structure. Related work is discussed in Section 1.1. We lay down the preliminaries in
Section 2. In Section 3 we provide our main result: Theorem 4, which gives error and label complex-
ity guarantees for MARMANN. Additionally we state the passive and active lower bounds, Theorem
5 and Theorem 6. The rest of the paper is devoted to the description and analysis of MARMANN,
and proof of the main results. Section 4 shows how MARMANN defines the nearest neighbor rule
for a given scale, and Section 5 describes the model selection procedure of MARMANN. Theorem
4 is proved in Section 6, based on a framework for compression with side information. The passive
lower bound in Theorem 5 is proved in Section 7. The active lower bound Theorem 6 is proved in
Section 8. We conclude with a discussion in Section 9.
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1.1 Related Work

The theory of active learning has received considerable attention in the past decade (e.g., Dasgupta,
2004; Balcan et al., 2007, 2009; Hanneke, 2011; Hanneke and Yang, 2015). Active learning theory
has been mostly studied in a parametric setting (that is, learning with respect to a fixed hypothesis
class with a bounded capacity). Benefits and limitations of various active querying strategies have
been proven in the realizable setting (Dasgupta, 2004; Balcan et al., 2007; Gonen et al., 2013) as
well as in the agnostic case (Balcan et al., 2009; Hanneke, 2011; Awasthi et al., 2014). It has
also been shown that active queries can also be beneficial for regression tasks (Castro et al., 2005;
Sabato and Munos, 2014). Further, an active model selection procedure has been developed for the
parametric setting (Balcan et al., 2010).

The potential benefits of active learning for non-parametric settings are less well understood.
Practical Bayesian graph-based active learning methods (Zhu et al., 2003; Wei et al., 2015) rely on
generative model assumptions, and therefore come without distribution-free performance guaran-
tees. From a theoretical perspective, the label complexity of graph based active learning has mostly
been analyzed in terms of combinatorial graph parameters (Cesa-Bianchi et al., 2010; Dasarathy
et al., 2015). While the latter work provides some statistical guarantees under specific conditions
on the data-generating distribution, this type of analysis does not yield distribution-free statistical
performance guarantees.

Castro et al. (2005); Castro and Nowak (2008) analyze minimax rates for non-parametric re-
gression and classification respectively, for a class of distributions in Euclidean space, characterized
by decision boundary regularity and noise conditions with uniform marginals. The paradigm of
cluster-based active learning (Dasgupta and Hsu, 2008) has been shown to provide label savings
under some distributional clusterability assumptions (Urner et al., 2013; Kpotufe et al., 2015). Das-
gupta and Hsu (2008) showed that a suitable cluster-tree can yield label savings in this framework,
and papers following up (Urner et al., 2013; Kpotufe et al., 2015) quantified the label savings un-
der distributional clusterability assumptions. However, no active non-parametric strategy has been
proposed so far that has label complexity guarantees for i.i.d. data from general distributions and
general metric spaces. Here, we provide the first such algorithm and guarantees.

The passive nearest-neighbor classifier, introduced by Fix and Hodges (1951, 1989), is popular
among theorists and practitioners alike (Fix and Hodges, 1989; Cover and Hart, 1967; Stone, 1977;
Kulkarni and Posner, 1995; Boiman et al., 2008). This paradigm is applicable in general metric
spaces, and its simplicity is an attractive feature for both implementation and analysis. When ap-
propriately regularized — either by taking a majority vote among the k nearest neighbors (Stone,
1977; Devroye and Györfi, 1985; Zhao, 1987), or by enforcing a margin separating the classes (von
Luxburg and Bousquet, 2004; Gottlieb et al., 2014a; Kontorovich and Weiss, 2015; Kontorovich
et al., 2017) — this type of learner can be made Bayes-consistent. Another desirable property
of nearest-neighbor-based methods is their ability to generalize at a rate that scales with the in-
trinsic data dimension, which can be much lower than that of the ambient space (Kpotufe, 2011;
Gottlieb et al., 2014a, 2016; Chaudhuri and Dasgupta, 2014). Furthermore, margin-based regu-
larization makes nearest neighbor classifiers ideally suited for sample compression, which yields
a compact representation, faster classification runtime, and improved generalization performance
(Gottlieb et al., 2014b). The resulting error guarantees can be stated in terms of the sample’s noisy-
margin, which depends on the distances between differently-labeled examples in the input sample.
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Active learning strategies specific to nearest neighbor classification have recently received at-
tention. It has been shown that certain active querying rules maintain Bayes consistency for nearest
neighbor classification, while other, seemingly natural, rules do not lead to a consistent algorithm
(Dasgupta, 2012). A selective querying strategy has been shown to be beneficial for nearest neigh-
bors under covariate shift (Berlind and Urner, 2015), where one needs to adapt to a change in the
data generating process. However, the querying rule in that work is based solely on information in
the unlabeled data, to account for a shift in the distribution over the covariates. It does not imply
any label savings in the standard learning setting, where training and test distribution are identi-
cal. In contrast, our current work demonstrates how an active learner can take label information
into account, to reduce the label complexity of a general nearest neighbor method in the standard
setting.

1.2 A Remark on Bayes-Consistency

We remark on the Bayes-consistency of the margin-based passive 1-NN methods. In Gottlieb et al.
(2014a), a PAC-style generalization bound was given. At a given scale t, the algorithm first ensured
t-separation of the sample by solving solving a minimum vertex cover problem to eliminate the
t-blocking pairs. Following that, the hypothesis was constructed as a Lipschitz extension from
the remaining sample; the latter is computationally implemented as a nearest neighbor classifier.
Structural Risk Minimization (SRM) was used to select the optimal scale t. A very close variant
of this learner was shown to be Bayes-consistent by Kontorovich and Weiss (2015). The only
difference between the two is that the former analyzed the hypothesis complexity in terms of fat-
shattering dimension while the latter via Rademacher averages. Thus, a margin-regularized 1-NN
classifier was shown to be Bayes-consistent; however, no compression was involved.

A compression-based alternative to Lipschitz extension was proposed in Gottlieb et al. (2014b).
The idea is again to ensure t-separation via vertex cover and then compress the remaining sample
down to a t-net. We conjecture that this latter algorithm is also Bayes-consistent, but currently
have no proof. If instead one considers a compression-based passive learner implemented as in this
paper (by taking majority vote in each Voronoi region rather than enforcing t-separation via vertex
cover), the resulting classifier is indeed Bayes-consistent, as was recently shown by Kontorovich
et al. (2017).

2. Preliminaries

In this section we lay down the necessary preliminaries. We formally define the setting and nec-
essary notation in Section 2.1. We discuss nets in metric spaces in Section 2.2, and present the
guarantees of the compression-based passive learner of Gottlieb et al. (2017) in Section 2.3.

2.1 Setting and Notation

For positive integers n, denote [n] := {1, . . . , n}. We consider learning in a general metric space
(X , ρ), where X is a set and ρ is the metric on X . Our problem setting is that of classification of
the instance space X into some finite label set Y . Assume that there is some distribution D over
X ×Y , and let S ∼ Dm be a labeled sample of size m, where m is an integer. Denote the sequence
of unlabeled points in S by U(S). We sometimes treat S and U(S) as multisets, since the order is
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unimportant. For a labeled multiset S ⊆ X × Y and y ∈ Y , denote Sy := {x | (x, y) ∈ S}; in
particular, U(S) = ∪y∈YSy.

The error of a classifier h : X → Y on D, for any fixed h, is denoted

err(h,D) := P[h(X) 6= Y ],

where (X,Y ) ∼ D. The empirical error on a labeled sample S instantiates to

err(h, S) =
1

|S|
∑

I[h(X) 6= Y ].

A passive learner receives a labeled sample Sin as input. An active learner receives the unlabeled
part of the sample Uin := U(Sin) as input, and is allowed to interactively select examples from Uin

and request their label from Sin. In other words, the active learner iteratively selects an example and
requests its label, wherein all the labels requested so far can be used to make the next selection.

When either learner terminates, it outputs a classifier ĥ : X → Y , with the goal of achieving a
low err(ĥ,D). An additional goal of the active learner is to achieve a performance competitive with
that of the passive learner, while querying considerably fewer labels.

The diameter of a set A ⊆ X is defined by

diam(A) := sup
a,a′∈A

ρ(a, a′).

For a finite set U =
{
u1, . . . , u|U |

}
⊆ X with some fixed numbering of its elements,1 denote the

index of the closest point in U to x ∈ X by

κ(x, U) := argmin
i:xi∈U

ρ(x, xi).

We assume here and throughout this work that when there is more than one minimizer for ρ(x, xi),
ties are broken arbitrarily (but in a consistent and deterministic fashion). Any labeled sample S =
((xi, yi))i∈[k] naturally induces the 1-nearest-neighbor classifier hnnS : X → Y , via hnnS (x) :=
yκ(x,U(S)). For a set Z ⊆ X , denote by

κ(Z,U) := {κ(z, U) | z ∈ Z}

the set of all the indices κ(z, U), as defined above. For x ∈ X , and t > 0, denote by ball(x, t) the
(closed) ball of radius t around x:

ball(x, t) :=
{
x′ ∈ X | ρ(x, x′) ≤ t

}
.

2.2 Nets

A set A ⊆ X is t-separated if infa,a′∈A:a6=a′ ρ(a, a′) ≥ t. For A ⊆ B ⊆ X , the set A is a t-net of
B if A is t-separated and B ⊆

⋃
a∈A ball(a, t). Thus, A is a t-net of B if it is both a t-covering and

a t-packing.

1. Invoking the well-ordering principle, we may assumeX to be well-ordered and then any U ⊆ X inherits the ordering
of X .
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The size of a t-net of a metric space is strongly related to its doubling dimension. The doubling
dimension is the effective dimension of the metric space, which controls generalization and runtime
performance of nearest-neighbors (Kpotufe, 2011; Gottlieb et al., 2014a). It is defined as follows.
Let λ = λ(X ) be the smallest number such that every ball in X can be covered by λ balls of half its
radius, where all balls are centered at points of X . Formally,

λ(X ) := min{λ ∈ N : ∀x ∈ X , r > 0, ∃x1, . . . , xλ ∈ X : ball(x, r) ⊆ ∪λi=1ball(xi, r/2)}.

Then the doubling dimension of X is defined by ddim(X ) := log2 λ. In line with modern literature,
we work in the low-dimension, large-sample regime, where the doubling dimension is assumed to
be constant, and hence sample complexity and algorithmic runtime may depend on it exponentially.
This exponential dependence is unavoidable, even under margin assumptions, as previous analyses
(Kpotufe, 2011; Gottlieb et al., 2014a) indicate. Generalization bounds in terms of the doubling
dimension of the hypothesis space were established in Bshouty et al. (2009), while runtime and
generalization errors in terms of ddim(X ) were given in Gottlieb et al. (2014a).

As shown in Gottlieb and Krauthgamer (2013), the doubling dimension is “almost hereditary”
in the sense that for A ⊂ X , we have ddim(A) ≤ cddim(X ) for some universal constant c ≤
2 (Feldmann et al., 2015, Lemma 6.6). In the works cited above, where generalization bounds
are stated in terms of ddim(X ), one can obtain tighter bounds in terms of ddim(U(S)) when the
latter is substantially lower than that of the ambient space, and it is also possible to perform metric
dimensionality reduction, as in Gottlieb et al. (2016).

Constructing a minimum size t-net for a general set B is NP-hard (Gottlieb and Krauthgamer,
2013). However, a simple greedy algorithm constructs a (not necessarily minimal) t-net in time
O(m2) (Gottlieb et al., 2014b, Algorithm 1). There is also an algorithm for constructing a t-net in
time 2O(ddim(X ))m log(1/t) (Krauthgamer and Lee, 2004; Gottlieb et al., 2014b). The size of any
t-net of a metric space A ⊆ X is at most

ddiam(A)/teddim(X )+1 (1)

(Krauthgamer and Lee, 2004). In addition, the size of any t-net is at most 2ddim(A)+1 times the size
of the minimal t-net, as the following easy lemma shows.

Lemma 1 (comparison of two nets) Let t > 0 and suppose that M1,M2 are t-nets of A ⊆ X .
Then |M1| ≤ 2ddim(A)+1|M2|.

Proof Suppose that |M1| ≥ k|M2| for some positive integer k. Since M1 ⊆
⋃
x∈M2

ball(x, t), it
follows from the pigeonhole principle that at least one of the points in M2 must cover at least k
points in M1. Thus, suppose that x ∈ M2 covers the set Z = {z1, . . . , zl} ⊆ M1, meaning that
Z ⊆ ball(x, t), where l = |Z| ≥ k. By virtue of belonging to the t-net M1, the set Z is t-separated.
Therefore Z is a t-net of Z. Since Z is contained in a t-ball, we have diam(Z) ≤ 2t. It follows
from Eq. (1) that |Z| ≤ 2ddim(A)+1, whence the claim.

Throughout the paper, we fix a deterministic procedure for constructing a t-net, and denote its
output for a multiset U ⊆ X by Net(U, t). Let Par(U, t) be a partition of X into regions induced by
Net(U, t), that is: for Net(U, t) = {x1, . . . , xN}, define Par(U, t) := {P1, . . . , PN}, where

Pi = {x ∈ X | κ(x,Net(U, t)) = i}.

For t > 0, let N (t) := |Net(Uin, t)| be the size of the t-net for the input sample.
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2.3 Passive Compression-Based Nearest-Neighbors

Non-parametric binary classification admits performance guarantees that scale with the sample’s
noisy-margin (von Luxburg and Bousquet, 2004; Gottlieb et al., 2014a, 2017). The original margin-
based methods of von Luxburg and Bousquet (2004) and Gottlieb et al. (2014a) analyzed the gen-
eralization performance via the technique of Lipschitz extension. Later, it was noticed in Gottlieb
et al. (2014b) that the presence of a margin allows for compression — in fact, nearly optimally so.

We say that a labeled multiset S is (ν, t)-separated, for ν ∈ [0, 1] and t > 0 (representing
a margin t with noise ν), if one can remove a ν-fraction of the points in S, and in the resulting
multiset, any pair of differently labeled points is separated by a distance of at least t. Formally, we
have the following definition.

Definition 2 S is (ν, t)-separated if there exists a subsample S̃ ⊆ S such that

1. |S \ S̃| ≤ ν|S| and

2. ∀y1 6= y2 ∈ Y, a ∈ S̃y1 , b ∈ S̃y2 , we have ρ(a, b) ≥ t.

For a given labeled sample S, denote by ν(t) the smallest value ν such that S is (ν, t)-separated.
Gottlieb et al. (2017) propose a passive learner with the following guarantees2 as a function of the
separation of S. Setting α := m/(m−N), define the following form of a generalization bound:

GB(ε,N, δ,m, k) := αε+
2

3

(N + 1) log(mk) + log(1δ )

m−N
+

3√
2

√
αε((N + 1) log(mk) + log(1δ ))

m−N
.

Further, for an integer m and δ ∈ (0, 1), denote

Gmin(m, δ) := min
t>0

GB(ν(t),N (t), δ,m, 1).

The quantity Gmin(m, δ) is small for datasets where we only need to remove few points to obtain
a reasonably well separated subset. As an example, consider data generated by two well separated
Gaussians (one generating the positively labeled points, and one generating the negatively labeled
points). Then, most of the data points will be close to their respective means, but some will be
farther, and may lie closer to the mean of the other Gaussian. Removing those few will result in a
separated set.

Theorem 3 (Gottlieb et al. 2017) Let m be an integer, δ ∈ (0, 1). There exists a passive learn-
ing algorithm that returns a nearest-neighbor classifier hnnSpas

, where Spas ⊆ Sin, such that, with
probability 1− δ,

err(hnnSpas
,D) ≤ Gmin(m, δ).

The bound above is data-dependent, meaning that the strength of the generalization guarantee de-
pends on the quality of the random sample. Specifically, the passive algorithm of Gottlieb et al.
(2017) generates Spas of size approximately N (t) for the optimal scale t > 0 (found by searching
over all scales), by removing the |Sin|ν(t) points that obstruct the t-separation between different
labels in Sin, and then selecting a subset of the remaining labeled examples to form Spas, so that the

2. The guarantees hold for the more general case of semimetrics.
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examples are a t-net for Sin (not including the obstructing points). For the binary classification case
(|Y| = 2) an efficient algorithm is shown in Gottlieb et al. (2017). However, in the general multi-
class case, it is not known how to find a minimal t-separation efficiently — a naive approach requires
solving the NP-hard problem of vertex cover. Our approach, which we detail below, circumvents
this issue, and provides an efficient algorithm also for the multiclass case.

3. Main Results

We propose a novel approach for generating a subset for a nearest-neighbor rule. This approach,
detailed in the following sections, does not require finding and removing all the obstructing points
in Sin, and can be implemented in an active setting using a small number of labels. The resulting
active learning algorithm, MARMANN, has an error guarantee competitive with that of the passive
learner, and a label complexity that can be significantly lower. We term the subset used by the
nearest-neighbor rule a compression set.

Algorithm 1 MARMANN: MArgin Regularized Metric Active Nearest Neighbor
input Unlabeled sample Uin of size m, δ ∈ (0, 1).
t̂← SelectScale(δ). # SelectScale is given in Section 5, Alg. 4.
Ŝ ← GenerateNNSet(t̂, [N (t̂)], δ). # GenerateNNSet is given in Section 4, Alg. 2.
Output hnn

Ŝ
.

MARMANN, listed in Alg. 1, operates as follows. First, a scale t̂ > 0 is selected, by calling
t̂ ← SelectScale(δ), where SelectScale is our model selection procedure. SelectScale has access
to Uin, and queries labels from Sin as necessary. It estimates the generalization error bound GB
for several different scales, and executes a procedure similar to binary search to identify a good
scale. The binary search keeps the number of estimations (and thus requested labels) small. Cru-
cially, our estimation procedure is designed to prevent the search from spending a number of labels
that depends on the net size of the smallest possible scale t, so that the total label complexity of
MARMANN depends only on the error of the selected t̂. Second, the selected scale t̂ is used to
generate the compression set by calling Ŝ ← GenerateNNSet(t̂, [N (t̂)], δ), where GenerateNNSet
is our procedure for generating the compression set, and [N (t̂)] ≡ {1, . . . ,N (t̂)}. Our main result
is the following guarantee for MARMANN.

Theorem 4 (Main result; Guarantee for MARMANN) Let Sin ∼ Dm, where m ≥ max(6, |Y|),
δ ∈ (0, 14). Let hnn

Ŝ
be the output of MARMANN(Uin, δ), where Ŝ ⊆ X × Y , and let N̂ := |Ŝ|.

Let ĥ := hnn
Ŝ

and ε̂ := err(ĥ, Sin), and denote Ĝ := GB(ε̂, N̂ , δ,m, 1). With a probability of 1− δ
over Sin and randomness of MARMANN,

err(ĥ,D) ≤ 2Ĝ ≤ O (Gmin(m, δ)) ,

and the number of labels from Sin requested by MARMANN is at most

O

(
log3(

m

δ
)

(
1

Ĝ
log(

1

Ĝ
) +mĜ

))
. (2)

Here the O(·) notation hides only universal multiplicative constants.

8



ACTIVE NEAREST-NEIGHBOR LEARNING IN METRIC SPACES

Our error guarantee is thus a constant factor over the error guarantee of the passive learner of (Got-
tlieb et al., 2017), given in Theorem 3. The constant factor that we derive in our analysis is in the
order of 2000 (this can be seen in the proof of Theorem 15). Note that we did not focus on optimiz-
ing it, opting instead for a more streamlined analysis. As the lower bound in Theorem 6 shows, the
additive term mĜ in Eq. (2) is essentially unavoidable. Whether the dependence on 1/Ĝ is indeed
necessary is currently an open problem.

To observe the advantages of MARMANN over a passive learner, consider a scenario in which
the upper bound Gmin of Theorem 3, as well as the Bayes error of D, are of order Θ̃(1/

√
m). Then

Ĝ = Θ(1/
√
m) as well. Therefore, MARMANN obtains a prediction error guarantee of Θ̃(1/

√
m),

similarly to the passive learner, but it uses only Θ̃(
√
m) labels instead of m. In contrast, the follow-

ing result shows that no learner that selects labels uniformly at random from Sin can compete with
MARMANN: Theorem 5 below shows that for any passive learner that uses Θ̃(

√
m) random labels

from Sin, there exists a distributionD with the above properties, for which the prediction error of the
passive learner in this case is Ω̃(m−1/4), a decay rate which is almost quadratically slower than the
Õ(1/

√
m) rate achieved by MARMANN. Thus, the guarantees of MARMANN cannot be matched

by any passive learner.

Theorem 5 (Passive lower bound) Let m > 0 be an integer, and suppose that (X , ρ) is a metric
space such that for some t̄ > 0, there is a t̄-net T of X of size Θ(

√
m). Consider any passive

learning algorithm that maps i.i.d. samples S` ∼ D` from some distribution D over X × {−1, 1},
to functions ĥ` : X → {−1, 1}. For any such algorithm and any ` = Θ̃(

√
m), there exists a

distribution D such that:

i. The Bayes error of D is Θ(1/
√
m);

ii. With at least a constant probability, both of the following events occur:

(a) The passive learner achieves error err(ĥ`,D) = Ω̃(m−1/4),

(b) Gmin(m, δ) = Θ̃(1/
√
m).

Furthermore, i. and ii. continue to hold when the learning algorithm has access to the full marginal
distribution over X .

Thus, MARMANN even improves over a semi-supervised learner: its label savings stem from ac-
tively selecting labels, and are not achievable by merely exploiting information from unlabeled data
or by randomly selecting examples to label.

We deduce Theorem 5 from a more general result, which might be of independent interest. The-
orem 18, given in Section 7, improves existing passive learning sample complexity lower bounds. In
particular, our result removes the restrictions of previous lower bounds on the relationship between
the sample size, the VC-dimension, and the noise level, which render existing bounds inapplicable
to our parameter regime. The proof of Theorem 5 is given thereafter in Section 7, as a consequence
of Theorem 18.

We further provide a label complexity lower bound, in Theorem 6 below, which holds for any
active learner that obtains similar guarantees to those of MARMANN. The lower bound shows that
any active learning algorithm which guarantees a multiplicative accuracy over Gmin(m, δ) has a
label complexity which is Ω̃(mGmin(m, δ)), for a wide range of values of Gmin(m, δ) — essen-
tially, as long as Gmin(m, δ) is not trivially large or trivially small. This implies that the term mĜ

9
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in the upper bound of the label complexity of MARMANN in Theorem 4 cannot be significantly
improved.

Theorem 6 (Active lower bound) Let X = R, δ ∈ (0, 1/14). Let C ≥ 1, and let A be an active
learning algorithm that outputs ĥ. Suppose that for any distribution D over X × Y , if the input
unlabeled sample is of size m, then err(ĥ,D) ≤ CGmin(m, δ) with probability at least 1− δ. Then
for any α ∈ ( log(m)+log(28)

8
√
2m

, 1
240C ) there exists a distribution D such with probability at least 1

28

over S ∼ Dm and the randomness of A, both of the following events hold:

1. α ≤ Gmin(m, δ) ≤ 30α

2. A queries at least 1
2

⌊
mGmin(m,δ)−log(mδ )

30 log(m)

⌋
≡ Ω̃(mGmin(m, δ)) labels.

The proof of this lower bound is provided in Section 8. In the rest of the paper, the components
of MARMANN are described in detail, and the main results are proved.

4. Active Nearest-Neighbor at a Given Scale

A main challenge for active learning in our non-parametric setting is performing model selection,
that is, selecting a good scale t similarly to the passive learner of Gottlieb et al. (2017). In the
passive supervised setting, the approach developed in several previous works (Gottlieb et al., 2014b;
Kontorovich and Weiss, 2014; Gottlieb et al., 2014a; Kontorovich and Weiss, 2015) performs model
selection by solving a minimum vertex cover problem for each considered scale t, so as to eliminate
all of the t-blocking pairs — i.e., pairs of differently labeled points within a distance t. The passive
algorithm generates a compression set by first finding and removing from Sin all points that obstruct
(ν, t)-separation at a given scale t > 0. This incurs a computational cost but no significant sample
complexity increase, aside from the standard logarithmic factor that comes from stratifying over
data-dependent hierarchies (Shawe-Taylor et al., 1998).

While this approach works for passive learning, in the active setting we face a crucial challenge:
estimating the error of a nearest-neighbor rule at scale t using a small number of samples. A key
insight that we exploit in this work is that instead of eliminating the blocking pairs, one may simply
relabel some of the points in the compression set, and this would also generate a low-error nearest
neighbor rule. This new approach enables estimation of the sample accuracy of a (possibly rela-
beled) t-net by label-efficient active sampling. In addition, this approach is significantly simpler
than estimating the size of the minimum vertex cover of the t-blocking graph. Moreover, we gain
improved algorithmic efficiency, by avoiding the relatively expensive vertex cover procedure.

A small technical difference, which will be evident below, is that in this new approach, examples
in the compression set might have a different label than their original label in Sin. Standard sample
compression analysis (e.g. Graepel et al., 2005) assumes that the classifier is determined by a small
number of labeled examples from Sin. This does not allow the examples in the compression set to
have a different label than their original label in Sin. Therefore, we require a slight generalization
of previous compression analysis (following previous works on compression, see details in Section
6.1), which allows adding side information to the compression set. This side information will be
used to set the label of each of the examples in the compression set. The generalization incurs a
small statistical penalty, which we quantify in Section 6, as a preliminary to proving Theorem 4.

10
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We now describe our approach to generating a compression set for a given scale t > 0. Recall
that ν(t) is the smallest value for which Sin is (ν, t)-separated. We define two compression sets.
The first one, denoted Sa(t), represents an ideal compression set, constructed (solely for the sake of
analysis) so that it induces an empirical error of at most ν(t). Calculating Sa(t) might require many
labels, thus it is only used for analysis purposes; the algorithm never constructs it. The second
compression set, denoted Ŝa(t), represents an approximation to Sa(t), which can be constructed
using a small number of labels, and induces a sample error of at most 4ν(t) with high probability.

We first define the ideal set Sa(t) := {(x1, y1), . . . , (xN , yN )}. The examples in Sa(t) are the
points in Net(Uin, t/2), and the label of each example is the majority label, out of the labels of the
examples in Sin to which xi is closest. Formally, {x1, . . . , xN} := Net(Uin, t/2), and for i ∈ [N ],
yi := argmaxy∈Y |Sy ∩ Pi|, where Pi = {x ∈ X | κ(x,Net(U, t/2)) = i} ∈ Par(Uin, t/2).

Lemma 7 Let S be a labeled sample of size m, and let {P1, . . . , PN} be a partition of U(S), with
maxi diam(Pi) ≤ t for some t ≥ 0. For i ∈ [N ], let Λi := Syi ∩ Pi. Then

ν(t) ≥ 1− 1

m

∑
i∈[N ]

|Λi|.

Proof Let S̃ ⊆ S be a subsample that witnesses the (ν(t), t)-separation of S, so that |S̃| ≥ m(1− ν(t)),
and for any two points (x, y), (x′, y′) ∈ S̃, if ρ(x, x′) ≤ t then y = y′. Denote Ũ := U(S̃). Since
maxi diam(Pi) ≤ t, for any i ∈ [N ] all the points in Ũ ∩ Pi must have the same label in S̃.
Therefore,

∃y ∈ Y s.t. Ũ ∩ Pi ⊆ S̃y ∩ Pi.
Hence |Ũ ∩ Pi| ≤ |Λi|. It follows

|S| −
∑
i∈[N ]

|Λi| ≤ |S| −
∑
i∈[N ]

|Ũ ∩ Pi| = |S| − |S̃| = m · ν(t).

Dividing by m we get the statement of the lemma.

From Lemma 7, we get Cor. 8, which upper bounds the empirical error of hnnSa(t)
by ν(t).

Corollary 8 For every t > 0, err(hnnSa(t)
, Sin) ≤ ν(t).

This corollary is immediate from Lemma 7, since for any Pi ∈ Par(Uin, t/2), diam(Pi) ≤ t, and

err(hnnSa(t)
, Sin) = 1− 1

m

∑
i∈[N ]

|Λi|.

Now, calculating Sa(t) requires knowing most of the labels in Sin. MARMANN constructs
instead an approximation Ŝa(t), in which the examples are the points in Net(Uin, t/2) (so that
U(Ŝa(t)) = U(Sa(t)) ), but the labels are determined using a bounded number of labels requested
from Sin. The labels in Ŝa(t) are calculated by the simple procedure GenerateNNSet given in
Alg. 2. The empirical error of the output of GenerateNNSet is bounded in Theorem 9 below.3

3. In the case of binary labels (|Y| = 2), the problem of estimating Sa(t) can be formulated as a special case of the
benign noise setting for parametric active learning, for which tight lower and upper bounds are provided in Hanneke
and Yang (2015). However, our case is both more general (as we allow multiclass labels) and more specific (as we
are dealing with a specific “hypothesis class”). Thus we provide our own procedure and analysis.

11
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A technicality in Alg. 2 requires explanation: In MARMANN, the generation of Ŝa(t) will be
split into several calls to GenerateNNSet, so that different calls determine the labels of different
points in Ŝa(t). Therefore GenerateNNSet has an additional argument I , which specifies the in-
dices of the points in Net(Uin, t/2) for which the labels should be returned this time. Crucially, if
during the run of MARMANN, GenerateNNSet is called again for the same scale t and the same
point in Net(Uin, t/2), then GenerateNNSet returns the same label that it returned before, rather
than recalculating it using fresh labels from Sin. This guarantees that despite the randomness in
GenerateNNSet, the full Ŝa(t) is well-defined within any single run of MARMANN, and is dis-
tributed like the output of GenerateNNSet(t, [N (t/2)], δ), which is convenient for the analysis.
Define

Q(m) :=
⌈
18 log(4m3/δ)

⌉
. (3)

Algorithm 2 GenerateNNSet(t, I, δ)

input Scale t > 0, a target set I ⊆ [N (t/2)], confidence δ ∈ (0, 1).
output A labeled set S ⊆ X × Y of size |I|
{x1, . . . , xN} ← Net(Uin, t/2), {P1, . . . , PN} ← Par(Uin, t/2), S ← ()
for i ∈ I do

if ŷi has not already been calculated for Uin with this value of t then
Draw Q(m) points uniformly at random from Pi and query their labels.
Let ŷi be the majority label observed in these Q(m) queries.

end if
S ← S ∪ {(xi, ŷi)}.

end for
Output S

Theorem 9 Let Ŝa(t) be the output of GenerateNNSet(t, [N (t/2)], δ). With a probability at least
1− δ

2m2 , the following event, which we denote by E(t), holds:

err(hnn
Ŝa(t)

, Sin) ≤ 4ν(t).

Proof By Cor. 8, err(hnnSa(t)
, Sin) ≤ ν(t). In Sa(t), the labels assigned to each point in Net(Uin, t/2)

are the majority labels (based on Sin) of the points in the regions in Par(Uin, t/2). As above, we
denote the majority label for region Pi by yi := argmaxy∈Y |Sy ∩ Pi|. We now compare these
labels to the labels ŷi assigned by Alg. 2. Let p(i) = |Λi|/|Pi| be the fraction of points in Pi which
are labeled by the majority label yi, where Λi is as defined in Lemma 7. Let p̂(i) be the fraction of
labels equal to yi out of those queried by Alg. 2 in round i. Let β := 1/6. By Hoeffding’s inequality
and union bounds, we have that with a probability of at least

1− 2N (t/2) exp(−Q(m)

18
) ≥ 1− δ

2m2
,

we have maxi∈[N (t/2)] |p̂(i)− p(i)| ≤ β. Denote this “good” event by E′. We now prove that
E′ ⇒ E(t). Let J = {i ∈ [N (t/2)] | p̂(i) > 1

2}. It can be easily seen that ŷi = yi for all i ∈ J .
Therefore, for all x such that κ(x,U(Sa(t))) ∈ J , hnn

Ŝa(t)
(x) = hnnSa(t)

(x), and hence

err(hnnS , Sin) ≤ PX∼Sin [κ(X,U(Sa(t))) /∈ J ] + err(hnnSa(t)
, Uin).

12
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The second term is at most ν(t) by Cor. 8, and it remains to bound the first term, on the condition
that E′ holds. We have PX∼U [κ(X,U(Sa(t))) /∈ J ] = 1

m

∑
i/∈J |Pi|. If E′ holds, then for any

i /∈ J , p(i) ≤ 1
2 + β, therefore

|Pi| − |Λi| = (1− p(i))|Pi| ≥ (
1

2
− β)|Pi|.

Recall that, by Lemma 7, ν(t) ≥ 1− 1
m

∑
i∈[N (t/2)] |Λi|. Therefore,

ν(t) ≥ 1− 1

m

∑
i∈[N (t/2)]

|Λi|

=
1

m

∑
i∈[N (t/2)]

(|Pi| − |Λi|)

≥ 1

m

∑
i/∈J

(|Pi| − |Λi|)

≥ 1

m

∑
i/∈J

(
1

2
− β)|Pi|.

Thus, under E′,

PX∼U [κ(X,U(Sa(t))) /∈ J ] ≤ ν(t)
1
2 − β

= 3ν(t).

It follows that under E′, err(hnnS , Uin) ≤ 4ν(t).

5. Model Selection

We now show how to select the scale t̂ that will be used to generate the output nearest-neighbor rule.
The main challenge is to do this with a low label complexity: Generating the full classification rule
for scale t requires a number of labels that depends on N (t), which might be very large. We would
like the label complexity of MARMANN to depend only on N (t̂) (where t̂ is the selected scale),
which is of the order mĜ. Therefore, during model selection we can only invest a bounded number
of labels in each tested scale. In addition, to keep the label complexity low, we would like to avoid
testing all scales. In Section 5.1 we describe how we estimate the error on a given scale. In Section
5.2 we provide a search procedure, resembling binary search, which uses the estimation procedure
to select a single scale t̂.

5.1 Estimating the Error at a Given Scale

For t > 0, let Ŝa(t) be the compressed sample that MARMANN would generate if the selected
scale were set to t. Our model selection procedure performs a search, similar to binary search,
over the possible scales. For each tested scale t, the procedure estimates the empirical error ε(t) :=
err(hnn

Ŝa(t)
, S) within a certain accuracy, using an estimation procedure given below, called EstimateErr.

EstimateErr outputs an estimate ε̂(t) of ε(t), up to a given threshold θ > 0, using labels requested
from Sin.

13
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To estimate the error, we sample random labeled examples from Sin, and check the prediction
error of hnn

Ŝa(t)
on these examples. The prediction error of any fixed hypothesis h on a random labeled

example from Sin is an independent Bernoulli variable with expectation err(h, Sin). EstimateErr is
implemented using the following procedure, EstBer, which adaptively estimates the expectation of
a Bernoulli random variable to an accuracy specified by the parameter θ, using a small number of
random independent Bernoulli experiments. Let B1, B2, . . . ∈ {0, 1} be i.i.d. Bernoulli random
variables. For an integer n, denote p̂n = 1

n

∑n
i=1Bi. The estimation procedure EstBer is given

in Alg. 3. We prove a guarantee for this procedure in Theorem 10. Note that we assume that the
threshold parameter is in (0, 1], since for θ ≥ 1 one can simply output 1 using zero random draws
to satisfy Theorem 10.

Algorithm 3 EstBer(θ, β, δ)

input A threshold parameter θ ∈ (0, 1], a budget parameter β ≥ 7, confidence δ ∈ (0, 1)
S ← {B1, . . . , B4}
K ← 4β

θ log(8βδθ )
for i = 3 : dlog2(β log(2K/δ)/θ)e do
n← 2i

S ← S ∪ {Bn/2+1, . . . , Bn}.
if p̂n > β log(2n/δ)/n then

break
end if

end for
Output p̂n.

The following theorem states that Alg. 3 essentially estimates p, the expectation of the i.i.d.
Bernoulli variables B1, B2, . . ., up to a multiplicative constant, except if p is smaller than a value
proportional to the threshold θ, in which case the algorithm simply returns a value at most θ. More-
over, the theorem shows that the number of random draws required by the algorithm is inversely
proportional to the maximum of the threshold θ and the expectation p. Thus, if p is very small, the
number of random draws does not increase without bound. The parameter β controls the trade-off
between the accuracy of estimation and the number of random draws.

Theorem 10 Let δ ∈ (0, 1), θ ∈ (0, 1], β ≥ 7. Let B1, B2, . . . ∈ {0, 1} be i.i.d Bernoulli random
variables with expectation p. Let po be the output of EstBer(θ, β, δ). The following holds with a

probability of 1− δ, where f(β) := 1 + 8
3β +

√
2
β .

1. If po ≤ θ, then p ≤ f(β)θ. Otherwise, p
f(β) ≤ po ≤

p
2−f(β) .

2. Let ψ := max(θ, p/f(β)). The number of random draws in EstBer is at most
4β log( 8β

δψ
)

ψ .

Proof First, consider any single round i with n = 2i. By the empirical Bernstein bound (Maurer
and Pontil, 2009, Theorem 4), with a probability of 1− δ/n, for n ≥ 8, we have4

|p̂n − p| ≤
8 log(2n/δ)

3n
+

√
2p̂n log(2n/δ)

n
. (4)

4. This follows from Theorem 4 of Maurer and Pontil (2009) since 7
3(n−1)

≤ 8
3n

for n ≥ 8.
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Define g := (β + 8/3 +
√

2β), so that f(β) = g/β. Conditioned on Eq. (4), there are two cases:

(a) p̂n ≤ β log(2n/δ)/n. In this case, p ≤ g log(2n/δ)/n.

(b) p̂n > β log(2n/δ)/n. In this case, n ≥ β log(2n/δ)/p̂n. Thus, by Eq. (4),

|p̂n − p| ≤ p̂n(
8

3β
+
√

2/β) = p̂n(g/β − 1).

Therefore
βp

g
≤ p̂n ≤

p

2− g/β
.

Taking a union bound on all the rounds, we have that the guarantee holds for all rounds with a
probability of at least 1− δ.

Condition now on the event that these guarantees all hold. First, we prove the label complexity
bound. Note that since β ≥ 7, K ≥ 28, thus we have 2 log(2K) > 8, therefore there is always
at least one round. Let no be the value of n in the last round that the algorithm runs, and let
po = p̂no . Let i such that no = 2i+1, thus the algorithm stops during round i + 1. This implies
p̂n ≤ β log(2n/δ)/n for n = 2i, therefore case (a) holds for n, which means n ≤ g log(2n/δ)/p.
It follows that n ≤ 2g log(4g/δ)/p, therefore no ≤ 4g log(4g/(δp))/p. In addition, the number of
random draws in the algorithm is n0, which is bounded by

n0 ≤ 2dlog2(β log(2K/δ)/θ)e ≤ 2 · 2log2(β log(2K/δ)/θ) ≤ 2β log(2K/δ)/θ.

Therefore we have the following bound on the number of random draws:

no ≤ min

(
2β log(2K/δ)

θ
,
4g log(4g/(δp))

p

)
.

Plugging in the definition of K and substituting β · f(β) for g yields

n0 ≤βmin

2 log(8βδθ log(8βδθ ))

θ
,
4f(β) log(4βf(β)δp )

p

 ≤
βmin

4 log(8βδθ )

θ
,
4f(β) log(4βf(β)δp )

p

 ≤
4βmin

(
1

θ
(log(

8β

δ
) + log(

1

θ
)),

f(β)

p
(log(

4β

δ
) + log(

f(β)

p
))

)
.

Using the definition of ψ, we get that the number of draws is at most
4β log( 8β

δψ
)

ψ .
Next, we prove the accuracy of po (item 1 in the theorem statement) by considering two cases.

(I) If po > β log(2no/δ)/no, then case (b) above holds for no, thus

βp

g
≤ po ≤

p

2− g/β
.

In addition, if po ≤ θ, the LHS implies p ≤ f(β)θ. Thus item 1 in the theorem statement
holds in this case.
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(II) If po ≤ β log(2no/δ)/no, then EstBer could not have ended by breaking out of the loop, thus
it ran until the last round. Therefore no ≥ β log(2K/δ)/θ. In addition, case (a) holds for n0,
therefore

p ≤ g log(2no/δ)

no
≤ gθ log(2n0/δ)

β log(2K/δ)
. (5)

Now, for any possible value of no,

no ≤ 2β log(2K/δ)/θ ≤ K.

The first inequality follows from the bound on i in EstBer, and the second inequality holds
since, as defined in EstBer, K ≥ 4β

θ log(8βθδ ). Since n0 ≤ K, Eq. (5) implies that

p ≤ gθ

β
= f(β)θ.

In addition, we have

po ≤ β log(2no/δ)/no ≤
θ log(2n0/δ)

log(2K/δ)
≤ θ.

Therefore in this case, necessarily po ≤ θ and p ≤ f(β)θ, which satisfies item 1 in the
theorem statement.

In both cases item 1 holds, thus the theorem is proved.

The procedure EstimateErr(t, θ, δ) is then implemented as follows:

• Call EstBer(θ, 52, δ/(2m2)), where the random variables Bi are independent copies of the
Bernoulli variable

B := I[hnn
Ŝa(t)

(X) 6= Y ]

and (X,Y ) ∼ Sin.

• To draw a single Bi, sample a random pair (x′, y′) from Sin, set

i := κ(x′,Net(Uin, t/2)),

and get S ← GenerateNNSet(t, {i}, δ). This returns S = ((xi, ŷi)) where ŷi is the label of xi
in Ŝa(t). Then Bi := I[ŷi 6= y′]. Note that Bi is indeed distributed like B, and E[B] = ε(t).
Note further that this call to GenerateNNSet(t, {i}, δ) uses Q(m) label queries. Therefore
the overall label complexity of a single draw of a Bi is Q(m) + 1.

Cor. 11 gives a guarantee for the accuracy and label complexity of EstimateErr. The proof is
immediate from Theorem 10, by setting β = 52, which implies f(β) ≤ 5/4.

Corollary 11 Let t, θ > 0 and δ ∈ (0, 1), and let ε̂(t)← EstimateErr(t, θ, δ). Let Q(m) as defined
in Eq. (3) The following properties hold with a probability of 1 − δ

2m2 over the randomness of
EstimateErr (and conditioned on Ŝa(t)).
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1. If ε̂(t) ≤ θ, then ε(t) ≤ 5θ/4. Otherwise,

4ε(t)

5
≤ ε̂(t) ≤ 4ε(t)

3
.

2. Let ψ′ := max(θ, ε(t)). The number of labels that EstimateErr requests is at most

260(Q(m) + 1) log(1040m
2

δψ′ )

ψ′
.

To derive item 2. above from Theorem 10, note that for β = 52,

ψ′ = max(θ, ε(t)) ≤ f(β) max(θ, ε(t)/f(β)) = f(β)ψ ≤ 5

4
ψ,

where ψ is as defined in Theorem 10. Below we denote the event that the two properties in Cor. 11
hold for t by V (t).

5.2 Selecting a Scale

The model selection procedure SelectScale, given in Alg. 4, implements its search based on the
guarantees in Cor. 11. First, we introduce some notation. We would like MARMANN to obtain a
generalization guarantee that is competitive with Gmin(m, δ). Denote

φ(t) :=
(N (t) + 1) log(m) + log(1δ )

m
, (6)

and let
G(ε, t) := ε+

2

3
φ(t) +

3√
2

√
εφ(t).

Note that for all ε, t,
GB(ε,N (t), δ,m, 1) =

m

m−N (t)
G(ε, t).

When referring to G(ν(t), t), G(ε(t), t), or G(ε̂(t), t) we omit the second t for brevity.
Instead of directly optimizing G(ν(t)), we will select a scale based on our estimate G(ε̂(t))

of G(ε(t)). Let Dist denote the set of pairwise distances in the unlabeled dataset Uin (note that
|Dist| <

(
m
2

)
). We remove from Dist some distances, so that the remaining distances have a net

size N (t) that is monotone non-increasing in t. We also remove values with a very large net size.
Concretely, define

Distmon := Dist \ {t | N (t) + 1 > m/2} \ {t | ∃t′ ∈ Dist, t′ < t and N (t′) < N (t)}.

Then for all t, t′ ∈ Distmon such that t′ < t, we have N (t′) ≥ N (t). The output of SelectScale is
always a value in Distmon. The following lemma shows that it suffices to consider these scales.

Lemma 12 Assume m ≥ 6 and let t∗m ∈ argmint∈DistG(ν(t)). If Gmin(m, δ) ≤ 1/3 then t∗m ∈
Distmon.
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Algorithm 4 SelectScale(δ)

input δ ∈ (0, 1)
output Scale t̂

1: T ← Distmon, # T maintains the current set of possible scales
2: while T 6= ∅ do
3: t← the median value in T # break ties arbitrarily
4: ε̂(t)← EstimateErr(t, φ(t), δ).
5: if ε̂(t) < φ(t) then
6: T ← T \ [0, t] # go right in the binary search
7: else if ε̂(t) > 11

10φ(t) then
8: T ← T \ [t,∞) # go left in the binary search
9: else

10: t0 ← t, T0 ← {t0}.
11: break from loop
12: end if
13: end while
14: if T0 was not set yet then
15: If the algorithm ever went to the right, let t0 be the last value for which this happened, and

let T0 := {t0}. Otherwise, T0 := ∅.
16: end if
17: Let TL be the set of all t that were tested and made the search go left
18: Output t̂ := argmint∈TL∪T0 G(ε̂(t))

Proof Assume by way of contradiction that t∗m ∈ Dist \ Distmon. First, since G(ν(t∗m)) ≤
Gmin(m, δ) ≤ 1/3 we have

N (t∗m) + 1

m−N (t∗m)
log(m) ≤ 1

2
.

Therefore, since m ≥ 6, it is easy to verifyN (t∗m) + 1 ≤ m/2. Therefore, by definition of Distmon

there exists a t ≤ t∗m with φ(t) < φ(t∗m). Since ν(t) is monotone over all of t ∈ Dist, we also have
ν(t) ≤ ν(t∗m). Now, φ(t) < φ(t∗m) and ν(t) ≤ ν(t∗m) together imply that G(ν(t)) < G(ν(t∗m)), a
contradiction. Hence, t∗m ∈ Distmon.

SelectScale follows a search procedure similar to binary search, however the conditions for
going right and for going left are not exhaustive, thus it is possible that neither condition holds. The
search ends either when neither conditions hold, or when no additional scale should be tested. The
final output of the algorithm is based on minimizing G(ε̂(t)) over some of the values tested during
search.

For c > 0, define

γ(c) := 1 +
2

3c
+

3√
2c

and γ̃(c) :=
1

c
+

2

3
+

3√
2c
.

For all t, ε > 0 we have the implications

ε ≥ cφ(t) ⇒ γ(c)ε ≥ G(ε, t) and φ(t) ≥ cε ⇒ γ̃(c)φ(t) ≥ G(ε, t). (7)
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The following lemma uses Eq. (7) to show that the estimate G(ε̂(t)) is close to the true G(ε(t)).

Lemma 13 Let t > 0, δ ∈ (0, 1), and suppose that SelectScale calls ε̂(t)← EstimateErr(t, φ(t), δ).
Suppose that V (t) as defined in Cor. 11 holds. Then

1

6
G(ε̂(t)) ≤ G(ε(t)) ≤ 6.5G(ε̂(t)).

Proof Under V (t), we have that if ε̂(t) < φ(t) then ε(t) ≤ 5
4φ(t). In this case,

G(ε(t)) ≤ γ̃(4/5)φ(t) ≤ 4.3φ(t),

by Eq. (7). Therefore

G(ε(t)) ≤ 3 · 4.3
2

G(ε̂(t)).

In addition, G(ε(t)) ≥ 2
3φ(t) (from the definition of G), and by Eq. (7) and γ̃(1) ≤ 4,

φ(t) ≥ 1

4
G(ε̂(t)).

Therefore G(ε(t)) ≥ 1
6G(ε̂(t)). On the other hand, if ε̂(t) ≥ φ(t), then by Cor. 11

4

5
ε(t) ≤ ε̂(t) ≤ 4

3
ε(t).

Therefore G(ε̂(t)) ≤ 4
3G(ε(t)) and G(ε(t)) ≤ 5

4G(ε̂(t)). Taking the worst-case of both possibili-
ties, we get the bounds in the lemma.

The next theorem bounds the label complexity of SelectScale. Let Ttest ⊆ Distmon be the set of
scales that are tested during SelectScale (that is, their ε̂(t) was estimated).

Theorem 14 Suppose that the event V (t) defined in Cor. 11 holds for all t ∈ Ttest for the calls
ε̂(t)← EstimateErr(t, φ(t), δ). If the output of SelectScale is t̂, then the number of labels requested
by SelectScale is at most

9620|Ttest|(Q(m) + 1)
1

G(ε(t̂))
log(

38480m2

δG(ε(t̂))
).

Proof The only labels used by the procedure are those used by calls to EstimateErr. Let ψt :=
max(φ(t), ε(t)), and ψmin := mint∈Ttest ψt. Denote also ψ̂t := max(φ(t), ε̂(t)). From Cor. 11 we
have that the total number of labels in all the calls to EstimateErr in SelectScale is at most

∑
t∈Ttest

260(Q(m) + 1) log(1040m
2

δψt
)

ψt
≤ |Ttest|

260(Q(m) + 1) log(1040m
2

δψmin
)

ψmin
. (8)

We now lower bound ψmin using G(ε(t̂)). By Lemma 13 and the choice of t̂,

G(ε(t̂)) ≤ 6.5G(ε̂(t̂)) = 6.5 min
t∈TL∪T0

G(ε̂(t)).
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From the definition of G, for any t > 0,

G(ε̂(t)) ≤ γ(1) max(φ(t), ε̂(t)) ≤ 25ψ̂t.

Therefore
G(ε(t̂)) ≤ 25 min

t∈TL∪T0
ψ̂t. (9)

We will show a similar upper bound when minimizing over all of Ttest, not just over TL ∪ T0. This
is trivial if Ttest = TL ∪ T0. Consider the case TL ∪ T0 ( Ttest. For any t ∈ Ttest, we have one of:

• The search went left on t (step 8), hence t ∈ TL.

• The search went nowhere on t and the loop broke (step 11), hence t = t0 ∈ T0.

• The search went right on t (step 6) and this was the last value for which this happened, hence
t = t0 ∈ T0.

• The search went right on t (step 6) and this was not the last value for which this happened.
Hence t ∈ Ttest \ (TL ∪ T0).

Set some t1 ∈ Ttest \ (TL ∪ T0). Since the search went right on t1, then t0 also exists, since the
algorithm did go to the right for some t (see step 15). Since the binary search went right on t1, we
have ε̂(t1) ≤ φ(t1). Since the binary search did not go left on t0 (it either broke from the loop or
went right), ε̂(t0) ≤ 11

10φ(t0).
In addition, t0 ≥ t1 (since the search went right at t1, and t0 was tested later than t1), thus

φ(t0) ≤ φ(t1) (since t0, t1 ∈ Distmon). Therefore,

ψ̂t0 = max(φ(t0), ε̂(t0)) ≤
11

10
φ(t0) ≤

11

10
φ(t1) =

11

10
max(φ(t1), ε̂(t1)) = ψ̂t1 .

It follows that for any such t1,

min
t∈TL∪T0

ψ̂t ≤
11

10
ψ̂t1 .

Therefore
min

t∈TL∪T0
ψ̂t ≤

11

10
min
t∈Ttest

ψ̂t.

Therefore, by Eq. (9)
G(ε(t̂)) ≤ 27.5 min

t∈Ttest
ψ̂t.

By Cor. 11, ε̂(t) ≤ max(φ(t), 4ε(t)/3), therefore ψ̂t ≤ 4
3ψt. Therefore G(ε(t̂)) ≤ 37ψmin. There-

fore, from Eq. (8), the total number of labels is at most

9620|Ttest|(Q(m) + 1)
1

G(ε(t̂))
log(

38480m2

δG(ε(t̂))
).

The following theorem provides a competitive error guarantee for the selected scale t̂.
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Theorem 15 Suppose that V (t) and E(t), defined in Cor. 11 and Theorem 9, hold for all values
t ∈ Ttest, and that Gmin(m, δ) ≤ 1/3. Then SelectScale outputs t̂ ∈ Distmon such that

GB(ε(t̂),N (t̂), δ,m, 1) ≤ O(Gmin(m, δ)),

Where the O(·) notation hides only universal multiplicative constants.

The full proof of this theorem is given below. The idea of the proof is as follows: First, we
show (using Lemma 13) that it suffices to prove that G(ν(t∗m)) ≥ O(G(ε̂(t̂))) to derive the bound
in the theorem. Now, SelectScale ends in one of two cases: either T0 is set within the loop, or
T = ∅ and T0 is set outside the loop. In the first case, neither of the conditions for turning left
and turning right holds for t0, so we have ε̂(t0) = Θ(φ(t0)) (where Θ hides numerical constants).
We show that in this case, whether t∗m ≥ t0 or t∗m ≤ t0, G(ν(t∗m)) ≥ O(G(ε̂(t0))). In the second
case, there exist (except for edge cases, which are also handled) two values t0 ∈ T0 and t1 ∈ TL
such that t0 caused the binary search to go right, and t1 caused it to go left, and also t0 ≤ t1, and
(t0, t1)∩Distmon = ∅. We use these facts to show that for t∗m ≥ t1, G(ν(t∗m)) ≥ O(G(ε̂(t1))), and
for t∗m ≤ t0, G(ν(t∗m)) ≥ O(G(ε̂(t0))). Since t̂ minimizes over a set that includes t0 and t1, this
gives G(ν(t∗m)) ≥ O(G(ε̂(t̂))) in all cases.

Proof First, note that it suffices to show that there is a constant C, such that for the output t̂ of
SelectScale, we have G(ε(t̂)) ≤ CG(ν(t∗m)). This is because of the following argument: From
Lemma 12 we have that if Gmin(m, δ) ≤ 1/3, then t∗m ∈ Distmon. Now

Gmin(m, δ) =
m

m−N (t∗m)
G(ν(t∗m)) ≥ G(ν(t∗m)).

And, if we have the guarantee on G(ε(t̂)) and Gmin(m, δ) ≤ 1/3 we will have

GB(ε(t̂),N (t̂), δ,m, 1) =
m

m−N (t̂)
G(ε(t̂)) ≤ 2G(ε(t̂)) ≤ 2CG(ν(t∗m)) ≤ 2CGmin(m, δ).

(10)
We now prove the existence of such a guarantee and set C. Denote the two conditions checked

in SelectScale during the binary search by Condition 1: ε̂(t) < φ(t) and Condition 2: ε̂(t) > 11
10φ(t).

The procedure ends in one of two ways: either T0 is set within the loop (Case 1), or T = ∅ and T0
is set outside the loop (Case 2). We analyze each case separately.

In Case 1, none of the conditions 1 and 2 hold for t0. Therefore

φ(t0) ≤ ε̂(t0) ≤
11

10
φ(t0).

Therefore, by Eq. (7),

φ(t0) ≥ G(ε̂(t0))/γ̃(
10

11
).

By Cor. 11, since ε̂(t0) > φ(t0),

3

4
φ(t0) ≤

3

4
ε̂(t0) ≤ ε(t0) ≤

5

4
ε̂(t0) ≤

55

40
φ(t0).

Suppose t∗m ≥ t0, then

G(ν(t∗m)) ≥ ν(t∗m) ≥ ν(t0) ≥
1

4
ε(t0) ≥

3

16
φ(t0).
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here we used ε(t0) ≤ 4ν(t0) by Theorem 9. Therefore, from Eq. (7) and Lemma 13,

G(ν(t∗m)) ≥ 3

16
φ(t0) ≥

3

16γ̃
(
40
55

)G(ε(t0)) ≥
1
2

16γ̃(4055)
G(ε̂(t0)).

Now, suppose t∗m < t0, then

G(ν(t∗m)) ≥ 2

3
φ(t∗m) ≥ 2

3
φ(t0) ≥

2

3γ̃(1011)
G(ε̂(t0)).

In this inequality we used the fact that t∗m, t0 ∈ Distmon, hence φ(t∗m) ≥ φ(t0). Combining the two
possibilities for t∗m, we have in Case 1,

G(ε̂(t0)) ≤ max(32γ̃(
40

55
),

3γ̃(1011)

2
)G(ν(t∗m)).

Since t̂ minimizes G(ε̂(t)) on a set that includes t0, we have, using Lemma 13

G(ε(t̂)) ≤ 6.5G(ε̂(t̂)) ≤ 6.5G(ε̂(t0)).

Therefore, in Case 1,

G(ε(t̂)) ≤ 6.5 max(32γ̃(
40

55
),

3γ̃(1011)

2
)G(ν(t∗m)). (11)

In Case 2, the binary search halted without satisfying Condition 1 nor Condition 2 and with
T = ∅. Let t0 be as defined in this case in SelectScale (if it exists), and let t1 be the smallest value
in TL (if it exists). At least one of these values must exist. If both values exist, we have t0 ≤ t1 and
(t0, t1) ∩Distmon = ∅.

If t0 exists, it is the last value for which the search went right. We thus have ε̂(t0) < φ(t0). If
t∗m ≤ t0, from condition 1 on t0 and Eq. (7) with γ̃(1) ≤ 4,

G(ν(t∗m)) ≥ 2

3
φ(t∗m) ≥ 2

3
φ(t0) ≥

1

6
G(ε̂(t0)).

Here we used the monotonicity of φ on t∗m, t0 ∈ Distmon, and Eq. (7) applied to condition 1 for t0.
If t1 exists, the search went left on t1, thus ε̂(t1) > 11

10φ(t1). By Cor. 11, it follows that ε̂(t1) ≤
4
3ε(t1). Therefore, if t∗m ≥ t1,

G(ν(t∗m)) ≥ ν(t∗m) ≥ ν(t1) ≥
1

4
ε(t1) ≥

3

16
ε̂(t1) ≥

3

16γ(11/10)
G(ε̂(t1)).

Here we used ε(t1) ≤ 4ν(t1) by Theorem 9 and Eq. (7). Combining the two cases for t∗m, we get
that if t0 exists and t∗m ≤ t0, or t1 exists and t∗m ≥ t1,

G(ν(t∗m)) ≥ min(
1

6
,

3

16γ(11/10)
) min
t∈TE

G(ε̂(t)).

where we define TE = {t ∈ {t0, t1} | t exists}. We now show that this covers all possible values
for t∗m: If both t0, t1 exist, then since (t0, t1) ∩Distmon = ∅, it is impossible to have t∗m ∈ (t0, t1).
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If only t0 exists, then the search never went left, which means t0 = max(Distmon), thus t∗m ≤ t0.
If only t1 exists, then the search never went right, which means t1 = min(Distmon), thus t∗m ≥ t1.

Since t̂minimizesG(ε̂(t)) on a set that has TE as a subset, we have, using Lemma 13G(ε(t̂)) ≤
6.5G(ε̂(t̂)) ≤ 6.5 mint∈TE G(ε̂(t)). Therefore in Case 2,

G(ν(t∗m)) ≥ 1

6.5
min

(
1

6
,

3

16γ(11/10)

)
G(ε(t̂). (12)

From Eq. (11) and Eq. (12) we get that in both cases

G(ν(t∗m)) ≥ 1

6.5
min

(
1

6
,

3

16γ(11/10)
,

2

3γ̃(10/11)
,

1

32γ̃(4055)

)
G(ε(t̂)) ≥ G(ε(t̂))/865.

Combining this with Eq. (10) we get the statement of the theorem.

6. Bounding the Label Complexity of MARMANN

We are now almost ready to prove Theorem 4. Our last missing piece is quantifying the effect of
side information on the generalization of sample compression schemes in Section 6.1. We then
prove Theorem 4 in Section 6.2.

6.1 Sample Compression with Side Information

It appears that compression-based generalization bounds were independently discovered by Lit-
tlestone and Warmuth (1986) and Devroye et al. (1996); some background is given in Floyd and
Warmuth (1995). As noted in Section 4, our algorithm relies on a generalized sample compression
scheme, which requires side information. This side information is used to represent the labels of
the sample points in the compression set. A similar idea appears in Floyd and Warmuth (1995) for
hypotheses with short description length. Here we provide a generalization that is useful for the
analysis of MARMANN.

Let Σ be a finite alphabet, and define a mapping RecN : (X × Y)N × ΣN → YX .5 This is
a reconstruction function mapping a labeled sequence of size N with side information T ∈ ΣN

to a classifier. For I ⊆ [|S|], denote by S[I] the subsequence of S indexed by I . For a labeled
sample S, define the set of possible hypotheses reconstructed from a compression of S of size N
with side information in Σ: HN (S) :=

{
h : X → Y | h = RecN (S[I], T ), I ∈ [m]N , T ∈ ΣN

}
.

The following result closely follows the sample compression arguments in Graepel et al. (2005,
Theorem 2), and Gottlieb et al. (2017, Theorem 6), but incorporates side information.

Theorem 16 Let m be an integer and δ ∈ (0, 1). Let S ∼ Dm. With probability at least 1 − δ, if
there existN < m and h ∈ HN (S) with ε := err(h, S) ≤ 1

2 , then err(h,D) ≤ GB(ε,N, δ,m, |Σ|).

Proof We recall a result of Dasgupta and Hsu (2008, Lemma 1): if p̂ ∼ Bin(n, p)/n and δ > 0,
then the following holds with probability at least 1− δ:

p ≤ p̂+
2

3n
log

1

δ
+

√
9p̂(1− p̂)

2n
log

1

δ
. (13)

5. If X is infinite, replace YX with the set of measurable functions from X to Y .
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Now fix N < m, and suppose that h ∈ HN (S) has ε̂ ≤ 1
2 . Let I ∈ [m]N , T ∈ ΣN such that

h = RecN (S[I], T ). We have err(h, S[[m] \ I]) ≤ ε̂m
m−N = θε̂. Substituting into (13) p :=

err(h,D), n := m−N and p̂ := err(h, S[[m] \ I]) ≤ θε̂, yields that for a fixed S[I] and a random
S[[m] \ I] ∼ Dm−N , with probability at least 1− δ,

err(h,D) ≤ θε̂+
2

3(m−N)
log

1

δ
+

√
9θε̂

2(m−N)
log

1

δ
. (14)

To make (14) hold simultaneously for all (I, T ) ∈ [m]N × ΣN , divide δ by (m|Σ|)N . To make the
claim hold for all N ∈ [m], stratify (as in Graepel et al. (2005, Lemma 1)) over the (fewer than) m
possible choices of N , which amounts to dividing δ by an additional factor of m.

For MARMANN, we use the following sample compression scheme with Σ = Y . Given a
subsequence S′ := S[I] := (x′1, . . . , x

′
N ) and T = (t1, . . . , tN ) ∈ YN , the reconstruction func-

tion RecN (S[I], T ) generates the nearest-neighbor rule induced by the labeled sample ψ(S′, T ) :=
((x′i, ti))i∈[N ]. Formally, RecN (S′, T ) = hnnψ(S′,T ). Note the slight abuse of notation: formally, the
yi in Sa(t) should be encoded as side information T , but for clarity, we have opted to “relabel”
the examples {x1, . . . , xN} as dictated by the majority in each region. The following corollary is
immediate from Theorem 16 and the construction above.

Theorem 17 Let m ≥ |Y| be an integer, δ ∈ (0, 14). Let Sin ∼ Dm. With probability at least 1− δ,
if there exist N < m and S ⊆ (X × Y)N such that U(S) ⊆ Uin and ε := err(hnnS , Sin) ≤ 1

2 , then
err(hnnS ,D) ≤ GB(ε,N, δ,m, |Y|) ≤ 2GB(ε,N, 2δ,m, 1).

If the compression set includes only the original labels, the compression analysis of Gottlieb et al.
(2017) gives the bound GB(ε,N, δ,m, 1). Thus the effect of allowing the labels to change is only
logarithmic in |Y|, and does not appreciably degrade the prediction error.

6.2 Proof of Theorem 4

The proof of the main theorem, Theorem 4, which gives the guarantee for MARMANN, is almost
immediate from Theorem 17, Theorem 9, Theorem 15 and Theorem 14.
Proof [of Theorem 4] We have |Distmon| ≤

(
m
2

)
. By a union bound, the events E(t) and V (t) of

Theorem 9 and Cor. 11 hold for all t ∈ Ttest ⊆ Distmon with a probability of at least 1−δ/2. Under
these events, we have by Theorem 15 that if Gmin(m, δ) ≤ 1/3,

GB(ε(t̂),N (t̂), δ,m, 1) ≤ O
(

min
t

GB(ν(t),N (t), δ,m, 1)
)
.

By Theorem 17, with a probability at least 1− δ/2, if ε(t̂) ≤ 1
2 then

err(ĥ,D) ≤ 2GB(ε(t̂),N (t̂), δ,m, 1).

The statement of the theorem follows. Note that the statement trivially holds for Gmin(m, δ) ≥
1/3 and for ε(t̂) ≥ 1

2 , thus these conditions can be removed. To bound the label complexity, note that
the total number of labels used by MARMANN is at most the number of labels used by SelectScale
plus the number of labels used by GenerateNNSet when the final compression set is generated.
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By Theorem 14, since Q(m) = O(log(m/δ)), the number of labels used by SelectScale is at
most

O

(
|Ttest|

log2(m/δ)

G(ε(t̂))
log

(
1

G(ε(t̂)

))
.

In addition,
G(ε(t̂)) ≥ GB(ε(t̂),N (t̂), δ,m, 1) = Ĝ.

The number of tested scales in SelectScale is bounded by

|Ttest| ≤ blog2(|Distmon|) + 1c ≤ 2 log2(m)

Therefore the number of labels used by SelectScale is

O

(
log3(m/δ)

Ĝ
log

(
1

Ĝ

))
.

The number of labels used by GenerateNNSet is at most Q(m)N (t̂), where Q(m) ≤ O(log(m/δ),
and from the definition of Ĝ, N (t̂) ≤ O(mĜ/ log(m)). Summing up the number of labels used by
SelectScale and the number used by GenerateNNSet, this gives the bound in the statement of the
theorem.

7. Passive Learning Lower Bounds

Theorem 5 lower bounds the performance of a passive learner who observes a limited number ` of
random labels from Sin. The number ` is chosen so that it is of the same order as the number of
labels MARMANN observes for the case analyzed in Section 3. We deduce Theorem 5 from a more
general result pertaining to the sample complexity of passive learning. The general result is given
as Theorem 18 in Section 7.1. The proof of Theorem 5 is provided in Section 7.2.

We note that while the lower bounds below assume that the passive learner observes only the
random labeled sample of size `, in fact their proofs hold also if the algorithm has access to the full
unlabeled sample of size m of which S` is sampled. This is because the lower bound is based on
requiring the learner to distinguish between distributions that all have the same marginal. Under this
scenario, access to unlabeled examples does not provide any additional information to the learner.

7.1 A General Lower Bound

In this section we show a general sample complexity lower bound for passive learning, which may
be of independent interest. We are aware of two existing lower bounds for agnostic PAC with
bounded Bayes error: Devroye et al. (1996, Theorem 14.5) and Audibert (2009, Theorem 8.8).
Both place restrictions on the relationship between the sample size, VC-dimension, and Bayes error
level, which render them inapplicable as stated to some parameter regimes, including the one needed
for proving Theorem 5.

Let H be a hypothesis class with VC-dimension d and suppose that L is a passive learner6

mapping labeled samples S` = (Xi, Yi)i∈[`] to hypotheses ĥ` ∈ H. For any distribution D over

6. We allow L access to an independent internal source of randomness.
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X × {−1, 1}, define the excess risk of ĥ` by

∆(ĥ`,D) := err(ĥ`,D)− inf
h∈H

err(h,D).

Let D(η) be the collection of all η-bounded agnostic error distributionsD overX×{−1, 1} that sat-
isfy infh∈H err(h,D) ≤ η. We say that Z ∈ {−1, 1} has Rademacher distribution with parameter
b ∈ [−1, 1], denoted Z ∼ Rb, if

P[Z = 1] = 1− P[Z = −1] =
1

2
+
b

2
.

All distributions on {−1, 1} are of this form. For k ∈ N and b ∈ [0, 1], define the function

bayes(k, b) = 1
2

(
1− 1

2

∥∥∥Rk
b −Rk

−b

∥∥∥
1

)
,

where Rk
±b is the corresponding product distribution on {−1, 1}k and 1

2 ‖·‖1 is the total variation
norm. This expression previously appeared in Berend and Kontorovich (2015, Equation (25)) in
the context of information-theoretic lower bounds; the current terminology was motivated in Kon-
torovich and Pinelis (2016), where various precise estimates on bayes(·) were provided. In partic-
ular, the function bay̌es(κ, b) was defined as follows: for each fixed b ∈ [0, 1], bay̌es(·, b) is the
largest convex minorant on [0,∞) of the function bayes(·, b) on {0, 1, . . . }. It was shown in Kon-
torovich and Pinelis (2016, Proposition 2.8) that bay̌es(·, b) is the linear interpolation of bayes(·, b)
at the points 0, 1, 3, 5, . . . .

Theorem 18 Let 0 < η < 1
2 , ` ≥ 1, and H be a hypothesis class with VC-dimension d > 1. Then,

for all 0 < b, p < 1 satisfying

p

(
1

2
− b

2

)
≤ η, (15)

we have

inf
ĥ`

sup
D∈D(η)

E
D`

[
∆(ĥ`,D)

]
≥ bp bay̌es(`p/(d− 1), b). (16)

Furthermore, for 0 ≤ u < 1,

inf
ĥ`

sup
D∈D(η)

P
[
∆(ĥ`,Dσ,b,p) > bpu

]
> bay̌es(`p/(d− 1), b)− u. (17)

Proof This proof uses ideas from Devroye et al. (1996, Theorem 14.5), Anthony and Bartlett (1999,
Theorem 5.2) and Kontorovich and Pinelis (2016, Theorem 2.2).

We will construct adversarial distributions supported on a shattered subset of size d, and hence
there is no loss of generality in taking X = [d] and H = {−1, 1}X . A random distribution Dσ,b,p
over X ×{−1, 1}, parametrized by a random σ ∼ Unif({−1, 1}d−1) and scalars b, p ∈ (0, 1) to be
specified later, is defined as follows. The point x = d ∈ X gets a marginal weight of 1− p where p
is a parameter to be set; the remaining d− 1 points each get a marginal weight of p/(d− 1):

P
X∼Dσ,b,p

[X = d] = 1− p, P
X∼Dσ,b,p

[X < d] =
p

d− 1
. (18)
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The distribution of Y conditional on X is given by P(X,Y )∼Dσ,b,p [Y = 1 |X = d] = 1 and

P
(X,Y )∼Dσ,b,p

[Y = ±1 |X = j < d] =
1

2
± bσj

2
. (19)

Suppose that (Xi, Yi)i∈[`] is a sample drawn from D`σ,b,p. The assumption that Dσ,b,p ∈ D(η)
implies that b and p must satisfy the constraint (15).

A standard argument (e.g., Anthony and Bartlett (1999) p. 63 display (5.5)) shows that, for any
hypothesis ĥ`,

∆(ĥ`,Dσ,b,p) = err(ĥ`,Dσ,b,p)− inf
h∈H

err(h,Dσ,b,p)

= P
X∼Dσ,b,p

[X = d, ĥ`(X) 6= 1] + b P
X∼Dσ,b,p

[X < d, ĥ`(X) 6= σ(X)]

≥ b P
X∼Dσ,b,p

[X < d, ĥ`(X) 6= σ(X)]

= bp P
X∼Dσ,b,p

[ĥ`(X) 6= σ(X)|X < d]. (20)

It follows from Kontorovich and Pinelis (2016, Theorems 2.1, 2.5) that

E
σ

P
X∼Dσ,b,p

[ĥ`(X) 6= σ(X)|X < d] ≥ E
N∼Bin(`,p/(d−1))

[bayes(N, b)] (21)

≥ E
N∼Bin(`,p/(d−1))

[bay̌es(N, b)]

≥ bay̌es(E[N ], b) = bay̌es(`p/(d− 1), b),

where the second inequality holds because bay̌es is, by definition, a convex minorant of bayes, and
the third follows from Jensen’s inequality. Combined with (20), this proves (16).

To show (17), define the random variable

Z = Z(σ,L) = P
X∼Dσ,b,p

[ĥ`(X) 6= σ(X)|X < d].

Since Z ∈ [0, 1], Markov’s inequality implies

P[Z > u] ≥ E[Z]− u
1− u

> E[Z]− u, 0 ≤ u < 1.

Now (20) implies that ∆(ĥ`,Dσ,b,p) ≥ bpZ and hence, for 0 ≤ u < 1,

inf
ĥ`

sup
D∈D(η)

P
[
∆(ĥ`,Dσ,b,p) > bpu

]
= inf

ĥ`

sup
D∈D(η)

P[Z > u]

> inf
ĥ`

sup
D∈D(η)

E[Z]− u

≥ 1

bp
inf
ĥ`

sup
D∈D(η)

E[∆(ĥ`,Dσ,b,p)]− u

≥ bay̌es(`p/(d− 1), b)− u.
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7.2 Proof of Theorem 5

We break down the proof into several steps. For now, we assume that the labeled examples are
sampled i.i.d. as per the classic PAC setup. At the end, we show how to extend the proof to the
semi-supervised setting.

(i) Defining a family of adversarial distributions. Let T be a t̄-net of X of size Θ(
√
m) and

η = Θ(1/
√
m). For any passive learning algorithm mapping i.i.d. samples of size ` = Θ̃(

√
m) to

hypotheses ĥ` : X → {−1, 1}, we construct a random adversarial distribution Dσ,b,p with agnostic
error η. We accomplish this via the construction described in the proof of Theorem 18, with |T | =
d = Θ(

√
m). The marginal distribution over T = {x1, . . . , xd} puts a mass of 1 − p on xd ∈ T

and spreads the remaining mass uniformly over the other points, as in (18). The “heavy” point
has a deterministic label and the remaining “light” points have noisy labels drawn from a random
distribution with symmetric noise level b, as in (19). We proceed to choose b and p; namely,

p =
d− 1

2`

√
η = Θ̃(m−1/4), b = 1− 2η

p
= 1− Θ̃(m−1/4),

which makes the constraint in (15) hold with equality; this means that the agnostic error is exactly
η and in particular, establishes (i).

(ii.a) Lower-bounding the passive learner’s error. Our choice of p implies that `p/(d− 1) =√
η/2 =: κ < 1. For this range of κ, Kontorovich and Pinelis (2016, Proposition 2.8) implies that

bay̌es(κ, b) = 1
2(1 − κb) = Θ(1). Choosing u = 1

4(1 − κb) = Θ(1) in (17), Theorem 18 implies
that

inf
ĥ`

sup
D∈D(η)

P[∆(ĥ`,D) > Ω̃(m−1/4)] > Ω(1).

In more formal terms, there exist constants c0, c1 > 0 such that

inf
ĥ`

sup
D∈D(η)

P[∆(ĥ`,D) > c0p] > c1. (22)

(ii.b) Upper-bounding ν(t̄). To establish (ii.b), it suffices to show that for (Xi, Yi)i∈[`] ∼
D`σ,b,p, we will have ν(t̄) = O(m−1/2) with sufficiently high probability. Indeed, the latter condition
implies the requisite upper bound on mint>0:N (t)<m GB(ν(t),N (t), δ,m, 1), while (i) implies the
lower bound, since the latter quantity cannot be asymptotically smaller than the Bayes error (which
coincides with the agnostic error forH = {−1, 1}X ).

Recall that the t̄-net points {x1, . . . , xd−1} are the “light” ones (i.e., each has weight p/(d− 1))
and define the random sets Jj ⊂ [`] by

Jj = {i ∈ [`] : Xi = xj} , j ∈ [d− 1].

In words, Jj consists of the indices i of the sample points for which Xi falls on the net point xj . For
y ∈ {−1, 1}, put τyj =

∑
i∈Jj I[Yi = y] and define the minority count ξj at the net point xj by

ξj = min
y∈{−1,1}

τyj = 1
2(|τ+j + τ−j | − |τ

+
j − τ

−
j |).

Observe that by virtue of being a t̄-net, T is t̄-separated and hence the only contribution to ν(t̄) is
from the minority counts (to which the “heavy” point xd does not contribute due to its deterministic
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label):

ν(t̄) =
1

`

d−1∑
j=1

ξj .

Now

E |τ+j + τ−j | = E |Jj | =
`p

d− 1
= Θ(m−1/4)

and

E |τ+j − τ
−
j | = E

σj
E[|τ+j − τ

−
j |
∣∣σj ]

≥ E
σj

∣∣∣E[τ+j − τ
−
j

∣∣σj ]∣∣∣ .
Computing

E[τ+j |σj = +1] = (
1

2
+
b

2
)
`p

d− 1
, E[τ−j |σj = +1] = (

1

2
− b

2
)
`p

d− 1
,

with an analogous calculation when conditioning on σj = −1, we get

E |τ+j − τ
−
j | ≥

b`p

d− 1

and hence

E[ξj ] ≤
1

2

(
`p

d− 1
− b `p

d− 1

)
= (1− b) `p

2(d− 1)
=

2η

p
· `p

2(d− 1)
=

η`

d− 1
.

It follows that

E[ν(t̄)] =
1

`

d−1∑
j=1

E[ξj ]

≤ d− 1

`
· η`

d− 1
= η = Θ(m−1/2).

To give tail bounds on ν(t̄), we use Markov’s inequality: for all c2 > 0,

P[ν(t̄) > c2 E[ν(t̄)] ≤ 1

c2
.

Choosing c2 sufficiently large that 1 − 1/c2 > c1 (the latter from (22)) implies the existence of
constants c0, c2, c3 > 0 such that

inf
ĥ`

sup
D∈D(η)

P
[(

∆(ĥ`,D) > c0p
)
∧ (ν(t̄) ≤ c2η)

]
> c3.
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Since p = Θ̃(m−1/4) and η = Θ(m−1/2), this establishes (ii) and concludes the proof of Theorem
5.

(iii) Extending to the semi-supervised setting. Providing the learner with the exact weights
of X = [d] under our adversarial distribution does not give it any additional power. Indeed, the
information-theoretic excess risk lower bound in Eq. (21) hinges on the fact that to estimate σ(x)
with some desired certainty, the point x must be sampled some minimal number of times. The
marginal probability of x does not enter that calculation, and hence knowing its value does not
afford the learner an improved performance.

8. Active Learning Lower Bound

We now prove the active learning lower bound stated in Theorem 6. To prove the theorem, we first
prove a result which is similar to the classical No-Free-Lunch theorem, except it holds for active
learning algorithms. The proof follows closely the proof of the classical No-Free-Lunch theorem
given in Shalev-Shwartz and Ben-David (2014, Theorem 5.1), with suitable modifications.

Theorem 19 Let β ∈ [0, 12), and m be an integer. LetA any active learning algorithm over a finite
domain X which gets as input a random labeled sample S ∼ Dm (with hidden labels) and outputs
ĥ. If A queries fewer than X/2 labels from S, then there exists a distribution D over X × {0, 1}
such that

• Its marginal on X is uniform, and for each x ∈ X , P[Y = 1 | X = x] ∈ {β, 1− β}.

• E[err(ĥ,D)] ≥ 1
4 .

Proof Let F = {f1, . . . , fT } be the set of possible functions fi : X → {0, 1}. Let Di to be
a distribution with a uniform marginal over X , and P(X,Y )∼Di [Y = 1 | X = x] = fi(x)(1 −
β) + (1 − fi(x))β. Consider the following random process: First, draw an unlabeled sample
X = (x1, . . . , xm) i.i.d. from DmX . Then, draw B = (b1, . . . , bm) independently from a Bernoulli
distribution with P[bi = 1] = β. For i ∈ [T ], let Si(X,B) = ((x1, y1), . . . , (xm, ym)) such that xi
are set by X , and yi = fi(x) if bi = 0 and 1 − fi(x) otherwise. Clearly, Si(X,B) is distributed
according to Dmi . Let hi(S) be the output of A when the labeled sample is S. Denote by ĥi the
(random) output of A when the sample is drawn from Di. Clearly

E[err(ĥi,Di)] = E
X,B

[err(hi(S(X,B)),Di)].

Therefore (as in (5.4) in Shalev-Shwartz and Ben-David (2014)), for some j,X,B it holds that

E[err(ĥj ,Dj)] ≥
1

T

T∑
i=1

E[err(ĥi,Di)] ≥
1

T

T∑
i=1

err(hi(S(X,B)),Di). (23)

Fix X,B, j as above, and denote for brevity hi := hi(S(X,B)). Let Vi be the set of examples
x ∈ X for which thatA does not observe their label if the labeled sample is Si(X,B) (this includes
both examples that are not in the sample at all as well as examples that are in the sample but their
label is not requested by A). We have |Vi| > |X |/2 by assumption. Then (as in Eq. (5.6) therein)

1

T

T∑
i=1

err(hi,Di) ≥
1

T

T∑
i=1

1

2|Vi|
∑
x∈Vi

I[hi(x) 6= fi(x)]. (24)
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Since A is active, it selects which examples to request, which can depend on the labels observed by
A so far. Therefore, Vi can be different for different i. However, an argument similar to that of the
No-Free-Lunch theorem for the passive case still goes through, as follows.

Let i, i′ such that fi(x) = fi′(x) for all x /∈ Vi, and fi(x) = 1 − fi′(x) for all x ∈ Vi. Since
X,B are fixed,A observes the same labels for all x /∈ Vi for both Si

′
(X,B) and Si(X,B), thus all

its decisions and requests are identical for both samples, and so Vi = Vi′ , and hi = hi′ . Therefore,
it is possible to partition T into T/2 pairs of indices i, i′ such that for each such pair,

1

2|Vi|
∑
x∈Vi

I[hi(x) 6= fi(x)] +
1

2|Vi′ |
∑
x∈Vi′

I[hi′(x) 6= fi′(x)]

=
1

2|Vi|
∑
x∈Vi

I[hi(x) 6= fi(x)] + I[hi(x) 6= 1− fi(x)]

=
1

2
.

Therefore, 1
T

∑T
i=1 err(hi,Di) ≥ 1

4 . Therefore, from Eq. (24), 1
T

∑T
i=1 err(hi,Di) ≥ 1

4 . Combin-
ing this with Eq. (23), it follows that E[err(ĥj ,Dj)] ≥ 1

4 .

We will also make use of the following simple lemma.

Lemma 20 Let β ∈ [0, 1]. Let D be a distribution over X × {0, 1} such that for (X,Y ) ∼ D, for
any x in the support of D, P[Y = 1 | X = x] ∈ {β, 1− β}. Let N be the size of the support of D.
Let S ∼ Dm. Denote by nx the number of sample pairs (x′, y′) in S where x′ = x, and let n+x be
the number of sample pairs (x′, y′) where x′ = x and y′ = 1. Let p̂+x = n+x /nx (or zero if nx = 0).
Then

2β(1− β)(m−N) ≤
∑
x∈X

E[2nxp̂
+
x (1− p̂+x )] ≤ 2β(1− β)m.

Proof We have

E[2nxp̂
+
x (1− p̂+x )] =

∞∑
i=1

P[nx = i] · i · E[2p̂+x (1− p̂+x ) | nx = i].

Note that E[2p̂+x (1− p̂+x ) | nx = 1] = 0. For i > 1, let y1, . . . , yi be the labels of the examples that
are equal to x in S, then∑

j,k∈[i]

I[yk 6= yj ] = 2n+x (i− n+x ) = i2 · 2p̂+x (1− p̂+x ).

Therefore, letting (X1, Y1), (X2, Y2) ∼ D2,

E
S∼Dm

[2p̂+x (1− p̂+x ) | nx = i] =
1

i2
E

S∼Dm
[
∑

j,k∈[nx]

I[yk 6= yj ] | nx = i]

=
i2 − i
i2

P[Y1 6= Y2 | X1 = X2 = x]

= 2(1− 1

i
)β(1− β),
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Thus

E[2nxp̂
+
x (1− p̂+x )] = 2β(1− β)

∞∑
i=2

(i− 1)P[nx = i]

= 2β(1− β)(E[nx] + P[nx = 0]− 1).

To complete the proof, sum over all x in the support of D, and note that
∑

x E[nx] = m, and∑
x(P[nx = 0]− 1) ∈ [−N, 0].

We now prove our lower bound, stated in Theorem 6, on the number of queries required by any
active learning with competitive guarantees similar to ours.

Proof [of Theorem 6] Let N =
⌊
mα−log(m

δ
)

log(m)

⌋
. Let β = 8α ≤ 1

2 . Consider a marginal distribution
DX over X which is uniform over N points 1, . . . , N ∈ R. Consider the following family of
distributions: D such that its marginal over X is DX , and for each x ∈ X , P[Y = 1 | X = x] ∈
{β, 1− β}. Thus the Bayes optimal error for each of these distributions is β.

Let S ∼ Dm. If one example in S is changed, ν(12) changes by at most 1/m. Hence, by
McDiarmid’s inequality (McDiarmid, 1989), with probability at least 1 − 1

28 ,
∣∣ν(12)− E[ν(12)]

∣∣ ≤√
log(28)
2m . Denote the event that this holds EM . Since β = 8α ≥ log(m)+log(28)√

2m
, it follows that

under EM ,
|ν(1/2)− E[ν(1/2)]| ≤ β/8. (25)

We now bound E[ν(12)]. Using the notation p̂+x , nx, n
+
x as in Lemma 20, we have

ν(1/2) =
1

m

∑
x∈X

min(n+x , nx − n+x ) =
1

m

∑
x∈X

nx min(p+x , 1− p+x )

Also, for all p ∈ [0, 1], min(p, 1− p) ≤ 2p(1− p) ≤ 2 min(p, 1− p). Therefore

1

2m

∑
x∈X

2nxp
+
x (1− p+x ) ≤ ν(1/2) ≤ 1

m

∑
x∈X

2nxp
+
x (1− p+x ).

By Lemma 20, it follows that

m−N
m

β(1− β) ≤ E[ν(1/2)] ≤ 2β(1− β).

Since N ≤ m/2 and β ∈ [0, 12 ], E[ν(12)] ∈ (β/4, 2β). Combining this with Eq. (25), we get that
under EM , α = β/8 ≤ ν(12) ≤ 17

8 β = 17α.
Now, we bound Gmin from above and below assuming EM holds. Denote

G(t) := GB(ν(t),N (t), δ,m, 1).

To establish a lower bound on Gmin(m, δ), note that Gmin(m, δ) = mint>0G(t) ≥ mint>0 ν(t).
For t ∈ (0, 12), ν(t) = ν(12) (since the distances between any two distinct points in S is at least
1). In addition, since ν is monotonically increasing, we have ν(t) ≥ ν(12) for t ≥ 1

2 . Hence
mint>0 ν(t) ≥ ν(12) ≥ β/8 = α.
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To show an upper bound on Gmin(m, δ), we upper bound G(12). Note that N (12) ≤ N . Recall
the definition of φ(t) in Eq. (6). We have

φ(
1

2
) =

(N + 1) log(m) + log(1δ )

m
≤ α.

Then, since ν(12) ≤ 17α,

G(1/2) ≤ m

m−N
(ν(

1

2
) +

2

3
α+

3√
2

√
ν(

1

2
)α) ≤ 30α.

In the last inequality we used the fact that m
m−N ≤ 10/9. So if EM holds, Gmin(m, δ) ≤ G(12) ≤

30α.
From the assumption onA, with probability at least 1−δ, we have err(ĥ,D) ≤ CGmin(m, δ) ≤

30Cα ≤ 1/8 (since α ≤ 1
240C ). Let EL(D) denote the event that A queries fewer than N/2 labels,

where the probability is over the randomness of S and A. Let h′ be the output of an algorithm
that behaves like A in cases where EL(D) holds, and queries at most N/2 otherwise. By Theorem
19, there exists some D in the family of distributions such that E[err(h′,D)] ≥ 1

4 . By Markov’s
inequality, P[err(h′,D) ≥ 1

8 ] ≥ 1/7. Also, P[h′ = ĥ] ≥ P[EL(D)]. Therefore

P[err(ĥ,D) ≥ 1/8] ≥ P[err(h′,D) ≥ 1/8] + P[EL(D)]− 1 = P[EL(D)]− 6/7.

Therefore P[EL(D)]−6/7 ≤ P[err(ĥ,D) ≥ 1
8 ] ≤ δ. Since by assumption δ ≤ 1/14, it follows that

P[EL(D)] ≤ 6/7 + δ ≤ 13/14. It follows that with a probability of at least 1/14, the negation of
EL(D) holds. Since alsoEM holds with probability at least 1− 1

28 , it follows that with a probability
of at least 1

28 , both EM and the negation of EL(D) hold. Now, as shown above, EM implies the
bounds on Gmin(m, δ) (item 1 in the theorem statement). In addition, the negation of EL(D) im-
plies that A queries at least N/2 = 1

2

⌊
mα−log(m

δ
)

log(m)

⌋
labels (item 2 in the theorem statement). This

completes the proof.

9. Discussion

We have presented an efficient fully empirical proximity-based non parametric active learner. Our
approach provides competitive error guarantees for general distributions, in a general metric space,
while keeping label complexity significantly lower than any passive learner with the same guar-
antees. MARMANN yields fully empirical error estimates, easily computable from finite samples.
This is in contrast with classic techniques, that present bounds and rates that depend on unknown
distribution-dependent quantities.

An interesting question is whether the guarantees can be related to the Bayes error of the distri-
bution. Our error guarantees give a constant factor over the error guarantees of Gottlieb et al. (2017).
A variant of this approach (Gottlieb et al., 2014a) was shown to be Bayes-consistent (Kontorovich
and Weiss, 2015), and we conjecture that this holds also for the algorithm of Gottlieb et al. (2017).
The passive component of our learning algorithm is indeed Bayes-consistent (Kontorovich et al.,
2017). Since in our analysis MARMANN achieves a constant factor over the error of the passive
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learner, Bayes-consistency of the active learner cannot be inferred from our present techniques; we
leave this problem open for future research.

Another important issue is one of efficient implementation. We mentioned that the naiveO(m2)
runtime for constructing a t-net may be improved to 2O(ddim(X ))m log(1/t), as shown in Krauthgamer
and Lee (2004); Gottlieb et al. (2014b). The fast t-net construction was the algorithmic work-horse
of Gottlieb et al. (2014a,b, 2017) and inspired the passive component of our learner. We note that
implementing even this passive component efficiently is far from trivial; this formed the core of a
Master’s thesis (Korsunsky, 2017). The remaining obstacle to making our algorithm fully practical
is the magnitude of some of the constants. We believe these to be artifacts of the proof and intend
to bring them down to manageable values in future work.
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