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Abstract

For spiked population model, we investigate the large dimension N and large sample size
M asymptotic behavior of the Support Vector Machine (SVM) classification method in the
limit of N,M → ∞ at fixed α = M/N . We focus on the generalization performance by
analytically evaluating the angle between the normal direction vectors of SVM separating
hyperplane and corresponding Bayes optimal separating hyperplane. This is an analogous
result to the one shown in Paul (2007) and Nadler (2008) for the angle between the sample
eigenvector and the population eigenvector in random matrix theorem. We provide not just
bound, but sharp prediction of the asymptotic behavior of SVM that can be determined by
a set of nonlinear equations. Based on the analytical results, we propose a new method of
selecting tuning parameter which significantly reduces the computational cost. A surprising
finding is that SVM achieves its best performance at small value of the tuning parameter
under spiked population model. These results are confirmed to be correct by comparing
with those of numerical simulations on finite-size systems. We also apply our formulas to
an actual dataset of breast cancer and find agreement between analytical derivations and
numerical computations based on cross validation.
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1. Introduction

The Support Vector Machine (SVM) is a state-of-the-art powerful classification method
proposed by Vapnik (Vapnik, 1995). It has been widely used in bioinformatics and many
other disciplines and has achieved a lot of success. Like other classification methods, SVM
may suffer from a loss of generalization ability in high dimensional situations as shown
by Figure 1 which displays the application of SVM to a high dimensional two class toy
example with class labels +1 and −1. The data have dimension N = 100, with M+ =
45 data vectors from Class +1 represented as circles, and M− = 45 data vectors from
Class −1 represented as plus. The two distributions are nearly standard normal except
that the mean in the first dimension is shifted to +µ and −µ for Class +1 and Class
−1 respectively. Here µ = 1. Figure 1 shows the projections of the data onto the two-
dimensional subspace determined by the first dimension (dashed line) and the normal vector
(solid line) of the SVM separating hyperplane. The angle between these two directions can
be used to determine the generalization ability of the classifier. A classifier who has good
generalization properties should have small angle. For the particular example shown in

c©2017 Hanwen Huang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-564.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-564.html


Hanwen Huang

Figure 1, the angle is 56.6◦. Therefore, projection of a new data vector onto the SVM
direction cannot be expected to provide effective discrimination. As mentioned by Marron
et al. (2007), the reason is that the estimated SVM classifier is driven only by very particular
aspects of the realization of the training data at hand. New data will have their own quite
different quirks, which will bear no relation to these.

Hall et al. (2005) studied the High Dimensional Low Sample Size (HDLSS) asymptotics
of SVM and shown that for fixed sample size M = M+ +M−, as N →∞ the angle depends
on the signal size µ which is defined as half of the distance between the means of two
distributions for this example. Assume that µ increases with N as Nγ , then if γ>1/2,
SVM is strongly consistent, i.e., the angle approaches to 0◦; if γ<1/2, SVM is strongly
inconsistent, i.e., the angle approaches to 90◦; if γ = 1/2, the angle is between 0◦ and 90◦.
Therefore the signal size µ has to be large enough in order to gain some prediction power.
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Figure 1: Toy examples, illustrating the performance of SVM on high dimensional data
with N = 100 and sample size M = M+ +M− = 90. The circles denote the data
from Class +1 and and the plus denote the data from Class −1. The dashed line
represents the first dimension which is the true difference in the Gaussian means.
The solid line represents the normal vector of SVM separating hyperplane. The
angle between the solid and dashed lines is 56.6◦.

Analogous conclusion has been drawn in the context of unsupervised learning for Princi-
pal Component Analysis (PCA). The study of sample covariance matrices is fundamental in
multivariate analysis. It is well known that the sample covariance matrix is a consistent es-
timator of the population covariance matrix for fixed dimension N and sample size M →∞.
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The PCA consistency in HDLSS context (fixed M and N → ∞) was studied in Jung and
Marron (2009); Jung et al. (2012) and it was shown that the asymptotic behavior of the
Principal Component (PC) directions of sample covariance matrix depend on the size of the
corresponding eigenvalues. Assume that the eigenvalue of the sample covariance matrix λ
increases with N in the order of power γ, i.e. λ ∼ Nγ . Then, if γ>1/2, the corresponding
estimated PC direction is strongly consistent, i.e. the angle between the estimated direction
and its population counterpart is 0◦; if γ<1/2, the corresponding estimated PC direction
is strongly inconsistent, i.e. the angle is 90◦; if γ = 1/2, the angle is random and follows a
certain distribution.

On the other hand, with the development of modern high-throughput technologies, it is
not uncommon to have data where M is comparable in size to N , or substantially larger.
There has been considerable effort to establish asymptotic results for sample eigenvalues
and eigenvectors under the assumption that N and M grow at the same rate, that is,
M/N → α>0 (see review Bai (1999)). The limiting distribution of eigenvalues of the sample
covariance matrix was derived in Marcenko and Pastur (1967). Johnstone (2001) studied
the distribution of the largest eigenvalue in PCA. Baik and Silverstein (2006) investigated
the convergence of the sample eigenvalues and eigenvectors under the spiked population.
The degree of discrepancy in terms of the angle between the directions of sample and
population eigenvectors was further derived in Paul (2007); Nadler (2008) for both 0<α<1
and α>1 situations. A phenomenon of retarded learning was observed that the angle goes
through a critical phase transition from angle equal to 90◦ for λ<

√
α to angle less than

90◦ for λ>
√
α. Therefore, one can only detect signals whose corresponding eigenvalues are

larger than the critical value
√
α in PCA. More general results have been obtained by Hoyle

and Rattray (2004) and Hoyle and Rattray (2007); Hoyle (2010) for general population
covariance matrix.

In the present work, we study the analogous asymptotic results in the joint limit N,M →
∞ with M/N = α in the supervised learning context for the SVM classification method. We
focus on the generalization performance of SVM by deriving analytical results for the angle
between the estimated direction and the true direction and investigating how this angle
depends on µ, α and other model parameters. We consider a spiked population model and
assume that the data from each class are generated from a purely noise model spiked with
a few significant eigenvalues. We derive the analytical results using the replica method
developed in statistical mechanics and also compare with numerical simulations on finite
size systems. To the best of our knowledge, the present paper is the first that provides not
just bounds, but sharp predictions of the asymptotic behavior of the SVM estimators in
the limit N,M →∞ at fixed M/N = α.

An immediate application of our analytical findings is for tuning parameter selection.
SVM is required to solve problem of determining the tuning parameter τ that characterizes
the strength of the penalty term. Cross validation (CV) is a practically useful strategy for
handling this task; its basic concept is to evaluate the prediction error by examining the
data under control. Smaller values of the CV error are expected to be better to express the
generative model of the data. The minimum, if it exists, of the CV error when changing
τ is thus considered to obtain an optimal value of τ . However, conducting CV through
grid search for finding the minimizer of the CV error is rather computationally expensive
especially for high dimensional data. Here we propose a new method of selecting optimal
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value of τ base on analytical evaluation for the angle between the estimated SVM direction
and true direction which considerably reduces the computational cost. Under the spiked
population assumption, smaller angle indicates smaller test error. A surprising finding
is that SVM achieves its best performance at small value of the tuning parameter. All
analytical results are confirmed by numerical experiments on finite-size systems and our
formula is clarified to work well for moderate-size systems.

The rest of this paper is organized as follows: In Section 2, we state SVM in the context
of spike population model. The analytical results for large N, M asymptotics are presented.
In Section 3, we show the result of numerical experiments to support our analytical results.
An application of the proposed tuning parameter selection method to the breast cancer
data is also presented in this section. The last section is devoted to the conclusion.

2. Method

In the classification problem, we are given a training dataset consisting of M observations
(xi, yi), for i = 1, · · · ,M . Here xi ∈ RN represents an input vector and yi ∈ {+1,−1}
denotes the corresponding output class label. Each (xi, yi) is an independent random vec-
tor distributed according to a joint distribution function p(x, y). We assume that y has
probability p+ to be +1 and probability p− to be −1 with p+ + p− = 1. Conditional on
y = +1,−1, x follows multivariate distributions p(x|y = +1), p(x|y = −1) with mean
µ+,µ− and covariance matrices Σ+,Σ−, respectively. Without loss of generality, assume
µ+ = −µ− = µ. Similar to linear discriminant analysis, we make an additional simplifying
homoscedasticity assumption Σ+ = Σ− = Σ. Here µ ∈ RN and Σ denotes the N × N
matrix. Based on this setting, the data from two classes are generated from two multi-
variate distributions with the same covariance but different means. The signal size can be

characterized by µ = ‖µ‖ =
√∑N

j=1 µ
2
j .

We consider a spiked covariance model here. For high dimensional data, typically only
few components are biologically important. The remaining structures can be considered as
i.i.d. background noise. Therefore, in high-dimensional settings, a collection of data can
be modeled by a low-rank signal plus noise structure (Ma, 2013; Liu et al., 2008). We use
a factor analysis model to explain correlations between a set of N variables by means of a
smaller set of K causal factors. Specifically, we assume the following:

Assumption 1 Each observation vector x from Class +1 can be viewed as an independent
instantiation of the following generative model

x = µ +
K∑
m=1

σ
√
λmvmzm + ε. (1)

Here µ is the mean vector, λm>0, vm ∈ RN are orthonormal vectors, i.e. vTmvm = 1 and

vTmvm′ = 0 for m 6= m′, µ̂ = µ/µ = v1. The random variables z1, · · · , zK
i.i.d∼ N(0, 1).

The vector ε = {ε1, · · · , εN} whose elements εjs are i.i.d random variables with E(εj) = 0,
E(ε2j ) = σ2 and E(ε3j )<∞. The εjs are independent of zms. The x from Class −1 can be
modeled in a similar way with µ replaced by −µ.
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In model (1), λm represents the strength of the m-th biological component, and σ2

represents the level of background noise. The real biology is typically low-dimensional, i.e.
K � N . Considering signal as one of the biological components, without loss of generality,
we assume that µ is in the same direction as v1, i.e. µ̂ = v1. Note that the eigenvalue λm
is not necessarily decreasing in m and λ1 is not necessarily the largest eigenvalue. From
(1), the covariance matrix is

Σ = σ2IN +
K∑
m=1

σ2λmvmvTm, (2)

where IN is N-dimensional identity matrix. Although the εjs are i.i.d, we didn’t impose any
parametric form for the distribution of εj which allows for very flexible covariance struc-
tures for x, and thus the results are quite general. The requirement for the finite third
order moment is to ensure Berry-Esseen central limit theorem applies. The Assumption
1 is also called spiked population model and has been used in many situations, see Baik
and Silverstein (2006); Marcenko and Pastur (1967); Johnstone (2001) for examples. Such
a population covariance is a finite rank perturbation of multiple of the identity matrix. In
other words, all but finitely many eigenvalues of the population covariance matrix are the
same. Examples of spiked data include speech recognition (Trevor Hastie, 1995), mathemat-
ical finance (LALOUX et al., 2000), wireless communications (Telatar, 1999), and physics
of mixture (Sear and Cuesta, 2003).

The task of linear classification is to construct a hyperplane xTw = 0 (w ∈ RN ) so that
the new data vector x is assigned to Class +1 when xTw>0 and Class −1 otherwise. If
the training data are linearly separable, SVM seeks to find this hyperplane such that the
minimal distance between the hyperplane and the data point from each class is maximized.
The hard-margin SVM solution can be formulated in terms of the following optimization
problem

min
w

[
wTw

]
s.t.

yix
T
i w√
N
≥ 1, i = 1, · · · ,M. (3)

To extend SVM to cases in which the data are not linearly separable, we introduce the slack
variables ξi for i = 1, · · · ,M . The soft-margin SVM solution can be formulated in terms of
the following optimization problem

min
w

[
wTw + τ

M∑
i=1

ξi

]

s.t.
yix

T
i w√
N

+ ξi ≥ 1, ξi ≥ 0, i = 1, · · · ,M, (4)

where the tuning parameter τ determines the trade-off between increasing the margin-size
and ensuring that the xi lie on the correct side of the margin. For sufficiently large values of
τ , the soft-margin SVM will behave identically to the hard-margin SVM. We will show below
that, as τ → ∞, the asymptotic result of soft-margin SVM is the same as the asymptotic
result of hard-margin SVM.
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For the setting described in Assumption 1, the normal direction vector of the separating
hyperplane based on Bayes optimal rule is in the same direction as µ. Therefore, the
performance of any classification method can be evaluated by the angle between the normal
direction vector of its separating hyperplane and µ. Propositions 1 and 2 provide the sharp
prediction of the high-dimensional limiting angles for hard-margin SVM and soft-margin
SVM respectively.

Proposition 1 Under Assumption 1, in the limit N,M →∞, with fixed α = M/N , denote
θ the angle between µ and w solved from the hard-margin SVM algorithm (3), then cos θ
converges to ρ that is determined by the following two nonlinear equations

1− ρ2

1 + λ1ρ2
= α

∫ zc

−∞
Dz(zc − z)2, (5)

ρ√
1 + λ1ρ2

= α

∫ zc

−∞
Dz(zc − z)

(
µ

σ
+

λ1ρ√
1 + λ1ρ2

z

)
. (6)

where zc is an unknown parameter needs to be estimated, µ, σ, λ1 are defined in (2), and the

standard notation Dz = dz√
2π

exp
(
− z2

2

)
.

All the proofs are given in the supplementary materials. From equations (5) and (6), we
can solve two unknown parameters ρ and zc given α, µ, σ, and λ1. It is interesting to note
that the results do not depend on λ2, · · · , λK which means that only the variance along the
signal direction has influence on SVM performance. This observation is also confirmed by
extensive simulations in Section 3.1. All the biological components in orthogonal directions
have no impact. The nonlinear equations (5) and (6) have no closed form solution. We
have to use some numerical algorithms to solve them. As expected, it can be easily checked
from the numerical studies in Section 3 that cos(θ) increases with α as well as the signal to
noise ratio µ/σ, but decreases with λ1.

Proposition 2 Under Assumption 1, in the limit N,M →∞, with fixed α = M/N , denote
θ the angle between µ and w solved from the soft-margin SVM algorithm (4), then cos θ
converges to ρ that is determined by the following three nonlinear equations

1− ρ2

1 + λ1ρ2
− αq2τ̂2

∫ zc−qτ̂

−∞
Dz − α

∫ zc

zc−qτ̂
Dz(zc − z)2 = 0, (7)

2q − 1− αqτ̂
∫ zc−qτ̂

−∞
Dzz − α

∫ zc

zc−qτ̂
Dz(zc − z)z = 0, (8)

ρF√
1 + λ1ρ2

− αqτ̂µ

σ

∫ zc−qτ̂

−∞
Dz − αµ

σ

∫ zc

zc−qτ̂
Dz(zc − z) = 0, (9)

where

F = 1− αλ1qτ̂
∫ zc−qτ̂

−∞
Dzz − αλ1

∫ zc

zc−qτ̂
Dz(zc − z)z,

and

zc =
1/
√
q0 − µρ

σ
√

1 + λ1ρ
, τ̂ =

στ
√
q0
√

1 + λ1ρ
.
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Therefore, given α, λ1, µ, σ, and τ , equations (7), (8), (9) can be used to solve three unknown
parameters ρ, q0, and q. The nonlinear equations (7), (8), and (9) have no closed form
solution. We have to use some numerical algorithms to solve them. Under Assumption 1,
if we further assume that ε in (1) follows a normal distribution, then the SVM test error is

ε = Φ

(
− ρ√

1+λ1ρ2
µ
σ

)
, where Φ(·) is the cumulative distribution function of N(0, 1).

It is interesting to note that, as τ → ∞, the two equations (7) and (9) are equivalent
to (5) and (6) respectively. Therefore, for large τ , the behavior of soft-margin SVM is the
same as hard-margin SVM. Our simulation studies in Section 3.2 will also confirm this.

For a given dataset, α, λ1, µ, and σ can be estimated, therefore Proposition 2 allows
us to select optimal tuning parameter τ by studying the dependence of ρ on τ for fixed
α, λ1, µ, σ.

We now discuss how to estimate λ1, µ, and σ from the data. To estimate the background
noise level σ2, we use a robust variance estimate based on the full matrix of data values (Liu
et al., 2008); that is, for the full set of M ×N entries of the original M ×N data matrix X,
we calculate the robust estimate of scale, the median absolute deviation from the median
(MAD), to estimate σ as

σ̂ =
MADX

MADN(0,1)
. (10)

Here MADX = median(|xij − median(X)|) and MADN(0,1) = median(|ri − median(r)|),
where r is a MN -dimensional vector whose elements are i.i.d. samples from N(0, 1) distri-
bution.

To estimate λ1, we use the results from Baik and Silverstein (2006) which shows that
in the limit of M,N →∞, with fixed α = M/N , the sample eigenvalue λ̃1 satisfies

λ̃1
a.s.−−→

{
(λ1 + 1)

(
1 + 1

αλ1

)
− 1, for λ1>

√
1/α,

(1 +
√

1/α)2 − 1, for λ1 ≤
√

1/α.
(11)

Therefore, for any finite α, λ̃1 is not a consistent estimator of λ1. We use equation (11) to
estimate λ1 as

λ̂1 =


1
2

(
λ̃1 − 1

α +

√(
λ̃1 − 1

α

)2
− 4

α

)
, for λ̃1>1/α+ 2

√
1/α,√

1/α, for λ̃1 ≤ 1/α+ 2
√

1/α.

(12)

To estimate µ, let M+,M1 denote the sample sizes of Class +1 and Class −1 respectively.
Define µc = x̄+− x̄−, where x̄+ and x̄− represent the sample means for Class +1 and Class
−1 respectively. The following Proposition describes the relationship between µc and µ.

Proposition 3 Under Assumption 1, in the limit N,M → ∞, with fixed α = M/N ,
r+ = M+/M , and r− = M−/M , then ‖µc‖2 converges to

4µ2 +
σ2

αr+r−
. (13)
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Therefore, we estimate µ as

µ̂ =
1

2

√
‖µ̂c‖2 −

σ̂2

αr+r−
,

where σ̂ is given from (10) and µ̂c = 1
M+

∑M+

i=1 xi− 1
M−

∑M−
i=1 xi is the sample estimation of

µc .

3. Numerical Results

3.1 Hard-margin SVM
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Figure 2: (a) Dependence of cos(θ) on µ for fixed σ = 1, λ1 = 1 and α = 0.1 (solid), 0.5
(dashed), 1.5 (dotted); (b) Dependence of cos(θ) on α for fixed λ1 = 1 and µ = 3
(solid), 5 (dashed), 7 (dotted); (c) Dependence of cos(θ) on λ1 for fixed α = 1
and µ = 3 (solid), 5 (dashed), 7 (dotted).

Figure 2 shows the dependence of cos(θ) on the parameters µ, α, and λ1 based on
numerical solutions of equations (5) and (6). Here θ represents the angle between the
directions of SVM separating hyperplane and Bayes optimal separating hyperplane. For
spiked population model (1), the normal vector of Bayes optimal separating hyperplane lies
in the direction of µ. Discrimination methods whose normal vector w/‖w‖ lies close to this
direction should have good “generalization” properties, i.e., new data will be discriminated
as well as possible. Figure 2(a) shows that, for fixed α and λ1, the classification performance
is improved as we increase the signal size µ. Figure 2(b) shows that, for fixed µ and
λ1, cos(θ) increases with α, indicating that the classification performance is improved by
adding more samples to the training data. For α<1/2, the increasing is faster; for α>2,
the increasing becomes slower and saturated. This indicates that, for HDLSS situations,
increasing training data can improve the prediction power dramatically; while for situations
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when sample size is twice as big as the dimension, adding more samples can not gain too
much power. Figure 2(c) shows that, for fixed µ and α, cos(θ) decreases with λ1 as expected.
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Figure 3: Comparison of analytical calculations with simulation experiments. The solid
curves represent the theoretical results, the dots and bars represent the mean
and standard error of the estimated cos θ by applying SVM algorithm (3) to 100
simulated data sets for each parameter setting. In simulations, the dimension
N = 100, the background noise σ = 1. The other parameters are: (a) α =
1, λ1 = 2; (b) µ = 5, λ1 = 2; (c) α = 1, µ = 2.

To examine the validity of our analysis and to determine the finite-size effect, Figure
3 provides the comparison with numerical simulations on finite size systems. Similar to
Figure 2, we consider the dependence of cos(θ) on three parameters µ, α and λ1 in the plots
in Figure 3 (a), (b), and (c) respectively. Here the dimension of the simulated data N = 100
and the data are generated according to Assumption 1 with εj follows i.i.d standard normal
distribution. We repeat simulation 100 times for each parameter setting. The mean and
standard errors over 100 replications are presented. From Figure 3, we can see that our
analytical curves show fairly good agreement with the simulation experiment. Thus our
analytical formulas (5) and (6) provide reliable estimates even for moderate system sizes.
The benefit of these formulas is their computational ease. We also find that the simulation
results for SVM estimators are independent of the choices of orthogonal components λm≥2
which further confirms that the analytical results described by Proposition 1 are correct.

3.2 Soft-margin SVM

Figure 4 shows the dependence of cos(θ) on the parameters µ, α, and λ1 based on the
solution of nonlinear equations (7), (8), and (9) for fixed τ = 1 and σ = 1. Similar to
Figure 2, the cos θ increases with µ and α but decreases with λ1.

To study the the influence of the tuning parameter τ on the performance of the soft-
margin SVM classification method (4). Figure 5 shows the dependence of cos(θ) as function
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Figure 4: Dependence of cos(θ) on µ, α, and λ1 for τ = 1 and σ = 1. (a) Dependence of
cos(θ) on µ for fixed λ1 = 2 and α = 1; (b) Dependence of cos(θ) on α for fixed
λ1 = 2 and µ = 2; (c) Dependence of cos(θ) on λ1 for fixed α = 1 and µ = 2.

of log τ for fixed α, µ, λ1, and σ. Both the analytical solution based on Proposition 2 and
numerical experiment based on simulated finite dimensional data are provided and they
excellently agree with each other. In simulation, we randomly generate a training set and
a test set for the given parameter setting, the test error can be obtained by applying the
classifier built from the training set to the test set. The results from the summary over 100
replications are given in Figure 5. From the upper panel, it is interesting to note that cos θ
reaches a maximum value as one decreases the tuning parameter τ to a threshold value.
After that value, further decreasing τ cannot change cos θ. On the other hand, if we increase
τ , cos θ will approach the value determined by the hard-margin SVM method as shown by
the dashed line in the upper panel of Figure 5. These observations are further confirmed by
the dependence of test error ε on log τ as shown in the lower panel. The test error reaches
a minimum value if we decrease τ to the same threshold value as for cos θ. From equations
(7), (8), and (9), it can be derived that the limiting value of cos θ as τ → 0 is

ρc = cos θc =

√√√√ α
(µ
σ

)2
1 + α

(µ
σ

)2 (14)

which is independent of λ1. This finding of λ1 independence is also confirmed by numerical
simulations with data on finite size systems. Therefore, if ε in (1) follows a normal dis-
tribution, then the best test error we can achieve using the soft-margin SVM classification

method (4) is Φ

(
− ρc√

1+λ1ρ2c

µ
σ

)
.

Koo et al. (2008) studied the asymptotic behavior of the coefficients of the linear SVM
in the limit of M → ∞ with N fixed. They established a Bahadur type representation of
the coefficients and derived their asymptotic normality and statistical variability. Denote
w? the minimizer of the population version of the SVM loss function. It was shown in Koo
et al. (2008) that the SVM solution ŵ converges to w? which is in the same direction as µ
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Figure 5: Upper panel: compare theoretical result with simulation experiment for the de-
pendence of cos(θ) on tuning parameter log(τ) for fixed α = 1, µ = 2, σ = 2,
and λ1 = 2. The solid line is the theoretical curve, the dots and bars represent
the mean and standard error based on 100 simulated data sets at each parameter
setting. In simulation, the dimension N = 100. The dashed line represents the
value based on the hard-margin SVM solution from equations (5) and (6). Lower
panel: dependence of the test error ε on log(τ) based on simulations.
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under the spiked population setting (1). Therefore ρ → 1 as M → ∞ with N fixed. This
can be confirmed in (14) by letting α → ∞ on the right hand side. On the other hand,
if we let N → ∞ with M fixed, from (14) we get ρc → 0 if µ/

√
N → 0 and ρc → 1 if

µ/
√
N →∞. This confirms the results of Hall et al. (2005) for HDLSS setting. Therefore,

our asymptotic results are more general with both traditional and HDLSS asymptotics as
special cases.

The analytical results in Figure 5 are based on the true values for α, λ1, µ and σ which
ultimately need to be estimated from the given data. In Figure 6 we provide the comparison
between the results using the true values and the results using the estimated values for
µ, α, λ1 and σ. For each simulated data, we first estimate µ, α, λ1 and σ and then use them
to derive theoretical results. Figure 6 indicates that the influence of moderate estimation
errors in the parameters is small.
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Figure 6: Comparison between the results using the true values and the results using the
estimated values for parameters. Here the true parameter values are α = 1, µ = 2,
σ = 1, and λ1 = 2. The solid curve represents the results derived using the true
values. The dots and bars represent the means and standard errors of the cos θ
values derived using the estimated parameters for 100 simulated data sets.

Although Figure 5 suggests that, for spiked population model, the best performance of
SVM is achieved at the smallest value τ , in practice, using too tiny τ could cause difficulties
in numerically solving the optimization problem. In order to provide a practical recommen-
dation for the tuning parameter, we need to estimate the threshold value τc at which the
limiting value cos θc is almost achieved, i.e. the elbow point in Figure 5. More precisely,
τc is defined as τc = max{τ : ρ(τ) = ρc}. In practice, we can compute τc by numerically
finding the largest τ that can give cos θ = ρc and use it as a guideline for choosing τ . Figure
7 displays the change of log τc as functions of the parameters µ, α, λ1. It is shown that log τc
decreases with all three parameters.

3.3 Check the model assumptions

The key assumptions for deriving the results in Propositions 1 and 2 are homoscedasticity
(equal covariance) and spiked covariance condition (1). In this section, we use simulation to
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Figure 7: (a) Dependence of log(τc) on µ for fixed λ1 = 2 and α = 1; (b) Dependence of
log(τc) on α for fixed λ1 = 2 and µ = 2; (c) Dependence of log(τc) on λ1 for fixed
α = 1 and µ = 2.

study the validity of our method in situations where these assumptions are not true. Figure
8 is for situation where the two covariance matrices from the positive and negative classes
are different. In simulation, we first generate M samples from N(0, σ2Ip) distribution. Then
M/2 of them are shifted by µ in x1 direction to form the positive class and the remaining
M/2 are shifted by −µ in x1 direction to form the negative class. Both classes are further
divided into two subclasses with sample size M/4 for each. In the positive class, the two
subclasses are separated by shifting in x2 direction by µ and −µ respectively. Similarly,
the two subclasses in the negative class are separated by shifting in x3 direction by µ
and −µ respectively. The data generated in this way satisfies the spiked assumption but
the two classes have different covariances. Figure 8 shows that the theoretical estimation
and direct computation agree fairly well with each other. We have tried several different
settings for µ, α and σ and got similar results. Therefore, our method is fairly robust to
homoscedasticity as long as the spiked condition (1) holds for the covariance matrices of
both classes.

Figures 9, 10, and 11 are for situations where the spiked assumption is violated. In
simulation, we first generate M samples from N(0,Σ) distribution. Then M/2 of them are
shifted by µ in x1 direction to form the positive class and the remaining M/2 are shifted
by −µ in x1 direction to form the negative class. The covariance matrix Σ is diagonal with
the ith eigenvalue equal to iσ2 for i ≤ K and σ2 for i>K. The spiked condition requires
K � p. If we increase K, the spiked condition can be violated. Figures 9, 10, and 11
show the results for K = 0.1N , K = 0.3N , and K = 0.5N respectively. For situations
where the number of uncommon eigenvalues K is less than 10% of the total number of
variables N , our method can provide quite accurate estimation for cos θ and also bigger
cos θ corresponds to smaller test error as illustrated in Figure 9. For situations where K
is 30% of N , our method can still provide reasonable estimation for cos θ, but cos θ cannot
be used as a criterion for choosing τ because bigger cos θ does not always correspond to
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Figure 8: Comparison of theoretical prediction with direct computation for simulated data
using parameters α = 1, µ = 2, σ = 2, and λ1 = 2. In simulation, the covariances
are different between the positive class and the negative class.
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smaller test error as illustrated in Figure 10. For situations where K is 50% of N , our
method cannot provide estimation for cos θ. Moreover, cos θ and ε behavior in an opposite
way, i.e. smaller cos θ corresponds to smaller test error as illustrated in Figure 11.
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Figure 9: Comparison of theoretical prediction with direct computation for simulated data
using parameters α = 1, µ = 2, σ = 2, and λ1 = 2. In simulation, the number of
the uncommon eigenvalues K is equal to 10% of the total number of variables N .

In summary, our simulations indicate that the proposed method depends on the spiked
assumption but is not sensitive to the homoscedasticity violation. The spiked assumption
is based on factor analysis which is one of the most useful tools for modeling common
dependence among all the variables. In genetics, factor analysis modeling appeared to be
useful tools to investigate the dependence structure in high-dimensional microarray data.
It can fit the data with covariance matrix governed by linkage disequilibrium patterns
(Rochat et al., 2007). For data set which cannot be modeled using spiked population, our
results indicate that further exploring the data structure is useful for understanding the
classification performance.

3.4 Real Data

We apply our methods to a breast cancer dataset from The Cancer Genome Atlas Research
Network (Network, 2008) which include two subtypes: LumA and LumB. As in Liu et al.
(2008), we filter the genes using the ratio of the sample standard deviation and sample
mean of each gene. After gene filtering, the dataset contained 235 patients with 56 genes.
Among the 235 samples, there are 154 LumA samples and 81 LumB samples.
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Figure 10: Comparison of theoretical prediction with direct computation for simulated data
using parameters α = 1, µ = 2, σ = 2, and λ1 = 2. In simulation, the number of
the uncommon eigenvalues K is equal to 30% of the total number of variables
N .
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Figure 11: Comparison of theoretical prediction with direct computation for simulated data
using parameters α = 1, µ = 2, σ = 2, and λ1 = 2. In simulation, the number of
the uncommon eigenvalues K is equal to 50% of the total number of variables
N .
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Figure 12: Upper panel: theoretical prediction of the dependence of cos(θ) on tuning pa-
rameter log(τ) based on the solutions from equations (7), (8) and (9) using
parameters estimated from the breast cancer data. Lower panel: dependence of
cross-validation error ε on tuning parameter log(τ). The dots and bars represent
the mean and standard error of the cross validation error based on 100 random
splittings of the breast cancer data.
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We consider LumA as Class +1 and LumB as Class -1. Assume the data are generated
based on model (1), using the method discussed in Section 2, we obtain the following
parameter estimations: µ̂ = 3.80, σ̂ = 2.32, λ̂1 = 4.06, α = 4.20, N = 56, M = 235,
M+ = 154, M− = 81. The upper panel of Figure 12 shows the analytical curve for the
dependence of cos θ on τ . It shows that if we choose τ less than 6.19× 10−3, we can get the
smallest angle. The lower panel of Figure 12 shows the dependence of the cross validation
errors as a function of τ . The cross validation errors are computed by randomly splitting
the data into two parts, 90% for training and 10% for test. The mean and standard error
over 100 random splitting are reported in the lower panel of Figure 12. It shows that the
cross validation error can achieve minimum value if τ is less than around 5 × 10−3. The
two results are consistent with each other and similar to the previous simulation results as
shown in Figure 5. This indicates that model (1) is a reasonable assumption for this data
set.

4. Conclusion

In this study, we examine the asymptotic behavior of SVM in the limit of N,M → ∞
with fixed α = M/N . We investigate the estimators of both the hard-margin SVM and
the soft-margin SVM methods. Our focus is on the angle between the direction of the esti-
mated separating hyperplane and the Bayes optimal separating hyperplane. Under spiked
population model assumption, we analytically evaluate the relation between this angle and
the SVM tuning parameter. On the basis of this finding, a new method of selecting tuning
parameter is developed for analyzing high dimensional data which significantly reduces the
computational cost. The analytical calculations are compared with numerical simulations
on finite-size systems and the agreement between the numerical data and the analytical
result is fairly good, and thus, our formulas are validated. Although the asymptotic results
that we have obtained apply only to the spiked population model, they have shed a new
light on the asymptotic behavior of SVM and can also improve the practical use of SVM
in various aspects. For situations where the spiked model cannot be applied, one possible
solution is to use the generalized spiked population model proposed in Bai and Yao (2012)
to re-derive our results. This is one of our future research topics.

It is shown in Figure 1 that a lot of data points are piling up on the two boundaries.
This is a phenomenon called data piling which has been studied in Marron et al. (2007)
in more details. The reason is that the hinge loss function used in SVM is not continuous
differentiable. The consequence of data piling is that the generalization performance is
adversely affected. To overcome this problem, Marron et al. (2007) proposed a new classi-
fication method call Distance Weighted Discrimination (DWD) which does not have data
piling problem. Simulation studies have shown that DWD typically yields better classifica-
tion performance than SVM in high dimensions, but deeper theoretical evidence is strongly
desired. It will be interesting to study the asymptotic property of DWD and compare it
with SVM from a analytical point of view. This is another direction that we will pursue
in future. The same technique can also be used in other popular classifier that currently
heavily relies on cross validation. Examples include the hybrid of DWD and SVM proposed
in Qiao and Zhang (2015) and the Large-Margin Unified Machines proposed in Liu et al.
(2011).
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