
Journal of Machine Learning Research 18 (2017) 1-42 Submitted 11/16; Revised 5/17; Published 7/17

Stochastic Primal-Dual Coordinate Method for Regularized
Empirical Risk Minimization∗

Yuchen Zhang zhangyuc@cs.stanford.edu
Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Lin Xiao lin.xiao@microsoft.com

Microsoft Research

Redmond, WA 98052, USA

Editor: Leon Bottou

Abstract

We consider a generic convex optimization problem associated with regularized empirical
risk minimization of linear predictors. The problem structure allows us to reformulate it
as a convex-concave saddle point problem. We propose a stochastic primal-dual coordi-
nate (SPDC) method, which alternates between maximizing over a randomly chosen dual
variable and minimizing over the primal variables. An extrapolation step on the primal
variables is performed to obtain accelerated convergence rate. We also develop a mini-
batch version of the SPDC method which facilitates parallel computing, and an extension
with weighted sampling probabilities on the dual variables, which has a better complexity
than uniform sampling on unnormalized data. Both theoretically and empirically, we show
that the SPDC method has comparable or better performance than several state-of-the-art
optimization methods.

Keywords: empirical risk minimization, randomized algorithms, convex-concave saddle
point problems, primal-dual algorithms, computational complexity

1. Introduction

We consider a generic convex optimization problem that arises often in machine learning:
regularized empirical risk minimization (ERM) of linear predictors. More specifically, let
a1, . . . , an ∈ Rd be the feature vectors of n data samples, φi : R → R be a convex loss
function associated with the linear prediction aTi x, for i = 1, . . . , n, and g : Rd → R be a
convex regularization function for the predictor x ∈ Rd. Our goal is to solve the following
optimization problem:

minimize
x∈Rd

{
P (x)

def
=

1

n

n∑
i=1

φi(a
T
i x) + g(x)

}
. (1)

Examples of this formulation include many well-known classification and regression prob-
lems. For binary classification, each feature vector ai is associated with a label bi ∈ {±1}.

∗. A short paper based on a previous version of this manuscript (arXiv:1409.3257) appeared in the Pro-
ceedings of The 32nd International Conference on Machine Learning (ICML), Lille, France, July 2015.

c©2017 Yuchen Zhang and Lin Xiao.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-568.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-568.html

Zhang and Xiao

We obtain the linear SVM (support vector machine) by setting φi(z) = max{0, 1 − biz}
(the hinge loss) and g(x) = (λ/2)‖x‖22, where λ > 0 is a regularization parameter. Reg-
ularized logistic regression is obtained by setting φi(z) = log(1 + exp(−biz)). For linear
regression problems, each feature vector ai is associated with a dependent variable bi ∈ R,
and φi(z) = (1/2)(z − bi)2. Then we get ridge regression with g(x) = (λ/2)‖x‖22, and the
Lasso with g(x) = λ‖x‖1. Further background on regularized ERM in machine learning
and statistics can be found, e.g., in the book by Hastie et al. (2009).

We are especially interested in developing efficient algorithms for solving the problem (1)
when the number of samples n is very large. In this case, evaluating the full gradient or
subgradient of the function P (x) is very expensive, thus incremental methods that operate
on a single component function φi at each iteration can be very attractive. There has been
extensive research on incremental gradient and subgradient methods (e.g., Tseng, 1998;
Blatt et al., 2007; Nedić and Bertsekas, 2001; Bertsekas, 2011, 2012) as well as variants of
the stochastic gradient method (e.g., Zhang, 2004; Bottou, 2010; Duchi and Singer, 2009;
Langford et al., 2009; Xiao, 2010). While the computational cost per iteration of these
methods is only a small fraction, say 1/n, of that of the batch gradient methods, their
iteration complexities are much higher (they need a lot more iterations to reach the same
precision). In order to better quantify the complexities of various algorithms and position
our contributions, we need to make some concrete assumptions and introduce the notion of
condition number and batch complexity.

1.1 Condition Number and Batch Complexity

Let γ and λ be two positive real parameters. We make the following assumption:

Assumption A Each φi is convex and differentiable, and its derivative is (1/γ)-Lipschitz
continuous (same as φi being (1/γ)-smooth), i.e.,

|φ′i(α)− φ′i(β)| ≤ (1/γ)|α− β|, ∀α, β ∈ R, i = 1, . . . , n.

In addition, the regularization function g is λ-strongly convex, i.e.,

g(x) ≥ g(y) + g′(y)T (x− y) +
λ

2
‖x− y‖22, ∀ g′(y) ∈ ∂g(y), x, y ∈ Rn.

For example, the logistic loss φi(z) = log(1 + exp(−biz)) is (1/4)-smooth, the squared
error φi(z) = (1/2)(z − bi)

2 is 1-smooth, and the squared `2-norm g(x) = (λ/2)‖x‖22 is
λ-strongly convex. The hinge loss φi(z) = max{0, 1− biz} and the `1-regularization g(x) =
λ‖x‖1 do not satisfy Assumption A. Nevertheless, we can treat them using smoothing and
strongly convex perturbations, respectively, so that our algorithm and theoretical framework
still apply (see Section 3).

Under Assumption A, the gradient of each component function, ∇φi(aTi x), is also Lips-
chitz continuous, with Lipschitz constant Li = ‖ai‖22/γ ≤ R2/γ, where R = maxi ‖ai‖2. In
other words, each φi(a

T
i x) is (R2/γ)-smooth. We define the condition number

κ = R2/(λγ), (2)

and focus on ill-conditioned problems where κ� 1. In statistical learning, the regularization
parameter λ is usually on the order of 1/

√
n or 1/n (e.g., Bousquet and Elisseeff, 2002),

2

Stochastic Primal-Dual Coordinate Method

thus the condition number κ is on the order of
√
n or n. It can be much larger if the strong

convexity in g is added purely for numerical regularization purposes (see Section 3). We
note that the actual conditioning of problem (1) may be better than κ, if the empirical
loss function (1/n)

∑n
i=1 φi(a

T
i x) by itself is strongly convex. In those cases, our complexity

estimates in terms of κ can be loose (upper bounds), but they are still useful in comparing
different algorithms for solving the same problem.

Let P ? be the optimal value of problem (1), i.e., P ? = minx∈Rd P (x). In order to find an
approximate solution x̂ satisfying P (x̂)− P ? ≤ ε, the classical full gradient method and its
proximal variants require O((1 + κ) log(1/ε)) iterations (e.g., Nesterov, 2004, 2013). Accel-
erated full gradient methods enjoy the improved iteration complexity O((1 +

√
κ) log(1/ε))

(Nesterov, 2004; Tseng, 2008; Beck and Teboulle, 2009; Nesterov, 2013)1. However, each it-
eration of these batch methods requires a full pass over the dataset, computing the gradient
of each component function and forming their average, which cost O(nd) operations (as-
suming the features vectors ai ∈ Rd are dense). In contrast, the stochastic gradient method
and its proximal variants operate on one single component φi(a

T
i x) (chosen randomly) at

each iteration, which only costs O(d). But their iteration complexities are far worse. Under
Assumption A, it takes them O(κ/ε) iterations to find an x̂ such that E[P (x̂) − P ?] ≤ ε,
where the expectation is with respect to the random choices made at all the iterations (e.g.,
Polyak and Juditsky, 1992; Nemirovski et al., 2009; Duchi and Singer, 2009; Langford et al.,
2009; Xiao, 2010).

To make fair comparisons with batch methods, we measure the complexity of stochastic
or incremental gradient methods in terms of the number of equivalent passes over the dataset
required to reach an expected precision ε. We call this measure the batch complexity, which
is usually obtained by dividing their iteration complexities by n. For example, the batch
complexity of the stochastic gradient method is O(κ/(nε)). The batch complexities of full
gradient methods are the same as their iteration complexities.

By exploiting the finite average structure in (1), several recent work (e.g., Le Roux
et al., 2012; Shalev-Shwartz and Zhang, 2013a; Johnson and Zhang, 2013; Xiao and Zhang,
2014; Defazio et al., 2014) proposed new variants of the stochastic gradient and dual co-
ordinate ascent methods which achieve the iteration complexity O((n+ κ) log(1/ε)). Since
their computational cost per iteration is O(d), the equivalent batch complexity is 1/n of
their iteration complexity, i.e., O((1 + κ/n) log(1/ε)). This complexity has much weaker
dependence on n than the full gradient methods, and also much weaker dependence on ε
than the stochastic gradient methods.

In this paper, we propose a stochastic primal-dual coordinate (SPDC) method, which
has the iteration complexity

O
(
(n+

√
κn) log(1/ε)

)
,

or equivalently, the batch complexity

O
(
(1 +

√
κ/n) log(1/ε)

)
. (3)

When κ > n, this is lower than the O((1+κ/n) log(1/ε)) batch complexity mentioned above.
Indeed, it reaches a lower bound for minimizing finite sums established in Lan and Zhou

1. For the analysis of full gradient methods, we should use (R2/γ + λ)/λ = 1+ κ as the condition number
of problem (1); see Nesterov (2013, Section 5.1). Here we used the upper bound

√
1 + κ < 1 +

√
κ for

easy comparison. When κ� 1, the additive constant 1 can be dropped.

3

Zhang and Xiao

(2015); see also Agarwal and Bottou (2015) and Woodworth and Srebro (2016). Several
other recent work also achieved the same complexity bound, either with a dual or a primal
accelerated randomized algorithm (Lin et al., 2015b; Lan and Zhou, 2015; Allen-Zhu, 2017)
or through the proximal-point algorithm (Shalev-Shwartz and Zhang, 2015; Frostig et al.,
2015; Lin et al., 2015a). We will discuss these related work in Section 5.

1.2 Outline of the Paper

Our approach is based on reformulating problem (1) as a convex-concave saddle point
problem, and then devising a primal-dual algorithm to approximate the saddle point. More
specifically, we replace each component function φi(a

T
i x) through convex conjugation, i.e.,

φi(a
T
i x) = sup

yi∈R
{yi〈ai, x〉 − φ∗i (yi)} ,

where φ∗i (yi) = supα∈R{αyi − φi(α)}, and 〈ai, x〉 denotes the inner product of ai and x
(which is the same as aTi x, but is more convenient for later presentation). This leads to a
convex-concave saddle point problem

min
x∈Rd

max
y∈Rn

{
f(x, y)

def
=

1

n

n∑
i=1

(
yi〈ai, x〉 − φ∗i (yi)

)
+ g(x)

}
. (4)

Under Assumption A, each φi is (1/γ)-smooth, which implies that φ∗i is γ-strongly convex
(see, e.g., Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.2). In addition, the regular-
ization g is λ-strongly convex. As a consequence, the saddle point problem (4) has a unique
solution, which we denote by (x?, y?).

The above saddle-point formulation allows the regularized ERM problem to be solved
by the primal-dual first-order algorithms developed in Chambolle and Pock (2011). Under
Assumption A, Algorithm 3 in Chambolle and Pock (2011) have the complexity O(1 +√
κ) log(1/ε), which is that same as that of the accelerated full gradient methods. Our SPDC

method can be viewed as a randomized coordinate variant of the primal-dual algorithm
in Chambolle and Pock (2011), which achieves a much better complexity by exploiting the
finite-sum structure of the regularized ERM problem.

In Section 2, we present the SPDC method as well as its convergence analysis. It alter-
nates between maximizing f over a randomly chosen dual coordinate yi and minimizing f
over the primal variable x. In order to accelerate the convergence, an extrapolation step
is applied in updating the primal variable x. We also give a mini-batch SPDC algorithm
which is well suited for parallel computing.

In Section 3 and Section 4, we present two extensions of the SPDC method. We first
explain how to solve problem (1) when Assumption A does not hold. The idea is to apply
small regularizations to the saddle point function so that SPDC can still be applied, which
results in accelerated sublinear rates for solving the original problem. The second extension
is a SPDC method with non-uniform sampling. The batch complexity of this algorithm has
the same form as (3), but with κ = R̄/(λγ), where R̄ = 1

n

∑n
i=1 ‖ai‖, which can be much

smaller than R = maxi ‖ai‖ if there is considerable variation in the norms ‖ai‖.
In Section 5, we discuss related work. In particular, we explain the connection of SPDC

with the primal-dual batch methods in Chambolle and Pock (2011), and several recent work
that achieves the same complexity as SPDC.

4

Stochastic Primal-Dual Coordinate Method

In Section 6, we discuss efficient implementation of the SPDC method when the feature
vectors ai are sparse. We focus on two popular cases: when g is a squared `2-norm penalty
and when g is an `1 + `2 penalty. We show that the computational cost per iteration of
SPDC only depends on the number of non-zero elements in the feature vectors.

In Section 7, we present experiment results comparing SPDC with several state-of-the-
art optimization methods, including both batch algorithms and randomized incremental
and coordinate gradient methods. On all scenarios we tested, SPDC has comparable or
better performance.

The SPDC method was first proposed and analyzed in Zhang and Xiao (2015). This
manuscript is a significant expansion, which includes several major technical changes, as
well as new experiment results. More specifically, the main theoretical result (Theorem 1)
has been strengthened to include both iterate convergence and a new result on saddle-point
function convergence. This required major changes in the technical proof in Appendix A.
Moreover, the convergence rate analysis of the primal-dual gap in Zhang and Xiao (2015)
required additional assumptions than those in Theorem 1. In this paper (Section 2.2), we
present a new proof that do not require additional assumptions. The SPDC method with
non-uniform sampling (Section 4) has been extended with a more general parametrized sam-
pling probability, and we give the optimal parameterization based on the condition number.
Additional numerical experiments are presented for both synthetic and real datasets, includ-
ing new comparisons with the accelerated SDCA algorithm by Shalev-Shwartz and Zhang
(2015), and also comparisons between uniform and weighted sampling.

2. The SPDC Method

In this section, we describe and analyze the Stochastic Primal-Dual Coordinate (SPDC)
method. The basic idea of SPDC is quite simple: to approach the saddle point of f(x, y)
defined in (4), we alternatively maximize f with respect to y, and minimize f with respect
to x. Since the dual vector y has n coordinates and each coordinate is associated with a
feature vector ai ∈ Rd, maximizing f with respect to y takes O(nd) computation, which
can be very expensive if n is large. We reduce the computational cost by randomly picking
a single coordinate of y at a time, and maximizing f only with respect to this coordinate.
Consequently, the computational cost of each iteration is O(d).

We give the details of the SPDC method in Algorithm 1. The dual coordinate update and
primal vector update are given in equations (5) and (6) respectively. Instead of maximizing f
over yk and minimizing f over x directly, we add two quadratic regularization terms to

penalize y
(t+1)
k and x(t+1) from deviating from y

(t)
k and x(t). The parameters σ and τ control

their regularization strength, which we will specify in the convergence analysis (Theorem 1).
Moreover, we introduce two auxiliary variables u(t) and x(t). Combining the initialization

u(0) = (1/n)
∑n

i=1 y
(0)
i ai and the update rules (5) and (7), we have

u(t) =
1

n

n∑
i=1

y
(t)
i ai, t = 0, . . . , T.

Equation (8) obtains x(t+1) based on an extrapolation from x(t) and x(t+1). This step is
similar to Nesterov’s acceleration technique (Nesterov, 2004, Section 2.2), and yields faster
convergence rate.

5

Zhang and Xiao

Algorithm 1: The SPDC method

Input: parameters τ, σ, θ ∈ R+, number of iterations T , initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do

Pick k ∈ {1, 2, . . . , n} uniformly at random, and execute the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− 1

2σ (β − y(t)i)2
}

if i = k,

y
(t)
i if i 6= k,

(5)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) + (y

(t+1)
k − y(t)k)ak, x

〉
+
‖x− x(t)‖22

2τ

}
, (6)

u(t+1) = u(t) +
1

n
(y

(t+1)
k − y(t)k)ak, (7)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)). (8)

end

Output: x(T) and y(T)

The mini-batch SPDC method in Algorithm 2 is a natural extension of Algorithm 1.
The difference between these two algorithms is that, the mini-batch SPDC method may
simultaneously select more than one dual coordinates to update. Let m be the mini-batch
size. During each iteration, the mini-batch SPDC method randomly picks a subset of indices
K ⊂ {1, . . . , n} of size m, such that the probability of each index being picked is equal to
m/n. The following is a simple procedure to achieve this. First, partition the set of indices
into m disjoint subsets, so that the cardinality of each subset is equal to n/m (assuming m
divides n). Then, during each iteration, randomly select a single index from each subset and
add it to K. Other approaches for mini-batch selection are also possible; see the discussions
in Richtárik and Takáč (2016).

In Algorithm 2, we also switched the order of updating x(t+1) and u(t+1) (comparing
with Algorithm 1), to better illustrate that x(t+1) is obtained based on an extrapolation
from u(t) to u(t+1). However, this form is not recommended in implementation, because
u(t) is usually a dense vector even if the feature vectors ak are sparse. Details on efficient
implementation of SPDC are given in Section 6. In the following discussion, we do not
make sparseness assumptions.

With a single processor, each iteration of Algorithm 2 takes O(md) time to accomplish.
Since the updates of each coordinate yk are independent of each other, we can use parallel
computing to accelerate the mini-batch SPDC method. Concretely, we can use m processors
to update the m coordinates in the subset K in parallel, then aggregate them to update
x(t+1). In terms of wall-clock time, each iteration takes O(d) time, which is the same
as running one iteration of the basic SPDC algorithm. Not surprisingly, we will show
that the mini-batch SPDC algorithm converges faster than SPDC in terms of the iteration
complexity, because it processes multiple dual coordinates in a single iteration.

6

Stochastic Primal-Dual Coordinate Method

Algorithm 2: The mini-batch SPDC method

Input: mini-batch size m, parameters τ, σ, θ ∈ R+, number of iterations T , and the
initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do

Randomly pick a subset K ⊂ {1, 2, . . . , n} of size m, such that the probability of
each index being picked is equal to m/n. Execute the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− 1

2σ (β − y(t)i)2
}

if i ∈ K,

y
(t)
i if i /∈ K,

(9)

u(t+1) = u(t) +
1

n

∑
k∈K

(y
(t+1)
k − y(t)k)ak,

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

n

m
(u(t+1) − u(t)), x

〉
+
‖x− x(t)‖22

2τ

}
, (10)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)).
end

Output: x(T) and y(T)

2.1 Convergence Analysis

Since the basic SPDC algorithm is a special case of mini-batch SPDC with m = 1, we
only present a convergence theorem for the mini-batch version. The expectations in the
following results are taken with respect to the random variables {K(0), . . . ,K(T−1)}, where
K(t) denotes the random subset K ⊂ {1, . . . , n} picked at the t-th iteration of the mini-batch
SPDC method.

Theorem 1 Suppose Assumption A holds. Let (x?, y?) be the unique saddle point of f
defined in (4), R = max{‖a1‖2 , . . . , ‖an‖2}, and define

∆(t) =

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
1

4σ
+
γ

2

)
‖y(t) − y?‖22

m

+ f(x(t), y?)− f(x?, y?) +
n

m

(
f(x?, y?)− f(x?, y(t))

)
. (11)

If the parameters τ, σ and θ in Algorithm 2 are chosen such that

τ =
1

2R

√
mγ

nλ
, σ =

1

2R

√
nλ

mγ
, θ = 1−

(
n

m
+ 2R

√
n

mλγ

)−1
, (12)

then for each t ≥ 1, the mini-batch SPDC algorithm achieves

E[∆(t)] ≤ θt

(
∆(0) +

‖y(0) − y?‖22
4mσ

)
.

7

Zhang and Xiao

Comparing with Theorem 1 in Zhang and Xiao (2015), our definition of ∆(t) in (11)
includes the additional terms f(x(t), y?) − f(x?, y?) + n

m

(
f(x?, y?)− f(x?, y(t))

)
. This is a

weighted sum of the primal and dual gaps for the saddle-point problem. It will help us
establish the convergence rate of the objective value for the ERM problem in Section 2.2,
which is missing in Zhang and Xiao (2015).

The proof of Theorem 1 is given in Appendix A. The following corollary establishes the
expected iteration complexity of mini-batch SPDC for obtaining an ε-accurate solution.

Corollary 2 Suppose Assumption A holds and the parameters τ , σ and θ are set as in (12).
In order for Algorithm 2 to obtain

E[‖x(T) − x?‖22] ≤ ε, E[‖y(T) − y?‖22] ≤ ε, (13)

it suffices to have the number of iterations T satisfy

T ≥
(
n

m
+ 2R

√
n

mλγ

)
log

(
C

ε

)
,

where

C =
∆(0) +

∥∥y(t) − y?∥∥2
2
/(4mσ)

min
{

1/(2τ) + λ/2, (1/(4σ) + γ/2)/m
} .

Proof By Theorem 1, we have E[‖x(t) − x?‖22] ≤ θtC and E[‖y(t) − y?‖22] ≤ θtC for each
t > 0. To obtain (13), it suffices to ensure that θTC ≤ ε, which is equivalent to

T ≥ log(C/ε)

− log(θ)
=

log(C/ε)

− log
(

1−
(

(n/m) + 2R
√

(n/m)/(λγ)
)−1) .

Applying the inequality − log(1− x) ≥ x to the denominator above completes the proof.

Recall the definition of the condition number κ = R2/(λγ) in (2). Corollary 2 establishes
that the iteration complexity of the mini-batch SPDC method for achieving (13) is

O
((

(n/m) +
√
κ(n/m)

)
log(1/ε)

)
.

So a larger batch size m leads to less number of iterations. In the extreme case of n = m, we
obtain a full batch algorithm, which has iteration or batch complexity O((1+

√
κ) log(1/ε)).

This complexity is also shared by the accelerated gradient methods (Nesterov, 2004, 2013),
as well as the batch primal-dual algorithm of Chambolle and Pock (2011); see discussions
in Section 1.1 and related work in Section 5.

Since an equivalent pass over the dataset corresponds to n/m iterations, the batch
complexity (the number of equivalent passes over the data) of mini-batch SPDC is

O
((

1 +
√
κ(m/n)

)
log(1/ε)

)
.

The above expression implies that a smaller batch size m leads to less number of passes
through the data. In this sense, the basic SPDC method with m = 1 is the most efficient
one. However, if we prefer the least amount of wall-clock time, then the best choice is to
choose a mini-batch size m that matches the number of parallel processors available.

8

Stochastic Primal-Dual Coordinate Method

2.2 Convergence Rate of Primal-Dual Gap

In the previous subsection, we established iteration complexity of the mini-batch SPDC
method in terms of approximating the saddle point of the minimax problem (4), more
specifically, to meet the requirement in (13). Next we show that it has the same order
of complexity in reducing the primal-dual objective gap P (x(t)) − D(y(t)), where P (x) is
defined in (1) and

D(y)
def
= min

x∈Rd
f(x, y) =

1

n

n∑
i=1

−φ∗i (yi)− g∗
(
− 1

n

n∑
i=1

yiai

)
. (14)

where g∗(u) = supx∈Rd{xTu− g(x)} is the conjugate function of g.

Under Assumption A, the function f(x, y) defined in (4) has a unique saddle point
(x?, y?), and

P (x?) = f(x?, y?) = D(y?).

However, in general, for any point (x, y) ∈ dom(g)× dom(φ∗), we have

P (x) = max
y
f(x, y) ≥ f(x, y?), D(y) = min

x
f(x, y) ≤ f(x?, y).

Thus the result in Theorem 1 does not translate directly into a convergence bound on the
primal-dual gap. We need to bound P (x) and D(y) by f(x, y?) and f(x?, y), respectively,
in the opposite directions. For this purpose, we need the following result extracted from Yu
et al. (2015). We provide the proof in Appendix B for completeness.

Lemma 3 Suppose Assumption A holds. Let (x?, y?) be the unique saddle-point of f(x, y),
and R = max1≤i≤n ‖ai‖2. Then for any point (x, y) ∈ dom(g)× dom(φ∗), we have

P (x) ≤ f(x, y?) +
R2

2γ
‖x− x?‖22, D(y) ≥ f(x?, y)− R2

2λn
‖y − y?‖22.

Corollary 4 Suppose Assumption A holds and the parameters τ , σ and θ are set as in (12).

Let ∆̃(0) := ∆(0) +
‖y(0)−y?‖22

4mσ . Then for any ε ≥ 0, the iterates of Algorithm 2 satisfy

E[P (x(T))−D(y(T))] ≤ ε

whenever

T ≥
(
n

m
+ 2R

√
n

mλγ

)
log

((
1 +

R2

λγ

)
∆̃(0)

ε

)
.

Proof The function f(x, y?) is strongly convex in x with parameter λ, and x? is the min-
imizer. Similarly, −f(x?, y) is strongly convex in y with parameter γ/n, and is minimized
by y?. Therefore,

λ

2
‖x(t) − x?‖22 ≤ f(x(t), y?)− f(x?, y?),

γ

2n
‖y(t) − y?‖22 ≤ f(x?, y?)− f(x?, y(t)). (15)

9

Zhang and Xiao

We bound the following weighted primal-dual gap

P (x(t))− P (x?) +
n

m

(
D(y?)−D(y(t))

)
≤ f(x(t), y?)− f(x?, y?) +

n

m

(
f(x?, y?)− f(x?, y(t))

)
+
R2

2γ
‖x(t)−x?‖22 +

n

m

R2

2nλ
‖y(t)−y?‖22

≤ ∆(t) +
R2

λγ

(
λ

2
‖x(t) − x?‖22 +

n

m

γ

2n
‖y(t) − y?‖22

)
≤ ∆(t) +

R2

λγ

(
f(x(t), y?)− f(x?, y?) +

n

m

(
f(x?, y?)− f(x?, y(t))

))
≤
(

1 +
R2

λγ

)
∆(t).

The first inequality above is due to Lemma 3, the second and fourth inequalities are due to
the definition of ∆(t), and the third inequality is due to (15). Taking expectations on both
sides of the above inequality, then applying Theorem 1, we obtain

E
[
P (x(t))− P (x?) +

n

m

(
D(y?)−D(y(t))

)]
≤ θt

(
1 +

R2

λγ

)
∆̃(0) = (1 + κ)∆̃(t).

Since n ≥ m and D(y?)−D(y(t))) ≥ 0, this implies the desired result.

3. Extensions to Non-Smooth or Non-Strongly Convex Functions

The complexity bounds established in Section 2 require each φi be (1/γ)-smooth, and the
function g be λ-strongly convex. For general loss functions where either or both of these
conditions fail (e.g., the hinge loss and `1-regularization), we can slightly perturb the saddle-
point function f(x, y) so that the SPDC method can still be applied.

To be concise, we only consider the case where neither φi is smooth nor g is strongly
convex. Instead, we only assume that each φi and g are convex and Lipschitz continuous,
and f(x, y) has a saddle point (x?, y?). We choose a scalar δ > 0 and consider the modified
saddle-point function:

fδ(x, y)
def
=

1

n

n∑
i=1

(
yi〈ai, x〉 −

(
φ∗i (yi) +

δy2i
2

))
+ g(x) +

δ

2
‖x‖22. (16)

Denote the saddle-point of fδ by (x?δ , y
?
δ). We employ the mini-batch SPDC method in

Algorithm 2 to approximate (x?δ , y
?
δ), treating φ∗i + δ

2(·)2 as φ∗i and g+ δ
2‖·‖

2
2 as g, which are

all δ-strongly convex. We note that adding strongly convex perturbation on φ∗i is equivalent
to smoothing φi, which becomes (1/δ)-smooth (see, e.g., Nesterov, 2005). Letting γ = λ = δ,
the parameters τ , σ and θ in (12) become

τ =
1

2R

√
m

n
, σ =

1

2R

√
n

m
, and θ = 1−

(
n

m
+

2R

δ

√
n

m

)−1
.

10

Stochastic Primal-Dual Coordinate Method

Although (x?δ , y
?
δ) is not exactly the saddle point of f , the following corollary shows that ap-

plying SPDC to the perturbed function fδ effectively minimizes the original loss function P .
Similar results for the convergence of the primal-dual gap can also be established.

Corollary 5 Assume that each φi is convex and Gφ-Lipschitz continuous, and g is convex
and Gg-Lipschitz continuous. In addition, assume that f has a saddle point (x?, y?) and let
the unique saddle point of fδ be (x?δ , y

?
δ). Define two constants:

C1 = (‖x?‖22 +G2
φ), C2 = (GφR+Gg)

2

(
∆

(0)
δ +

∥∥y(0) − y?δ∥∥22R/(4√mn)

1/(2τ) + λ/2

)
,

where ∆
(0)
δ is evaluated as in (11) but in terms of the perturbed function fδ. If we choose

δ ≤ ε/C1, then we have E[P (x(T))− P (x?)] ≤ ε whenever

T ≥
(
n

m
+

2R

δ

√
n

m

)
log

(
4C2

ε2

)
.

Proof Let ỹ = arg maxy f(x?δ , y) be a shorthand notation. We have

P (x?δ)
(i)
= f(x?δ , ỹ)

(ii)

≤ fδ(x
?
δ , ỹ) +

δ‖ỹ‖22
2n

(iii)

≤ fδ(x
?
δ , y

?
δ) +

δ‖ỹ‖22
2n

(iv)

≤ fδ(x
?, y?δ) +

δ‖ỹ‖22
2n

(v)

≤ f(x?, y?δ) +
δ‖x?‖22

2
+
δ‖ỹ‖22

2n

(vi)

≤ f(x?, y?) +
δ‖x?‖22

2
+
δ‖ỹ‖22

2n
(vii)
= P (x?) +

δ‖x?‖22
2

+
δ‖ỹ‖22

2n
.

Here, equations (i) and (vii) use the definition of the function f , inequalities (ii) and (v)
use the definition of the function fδ, inequalities (iii) and (iv) use the fact that (x?δ , y

?
δ) is

the saddle point of fδ, and inequality (vi) is due to the fact that (x?, y?) is the saddle point
of f .

Since φi is Gφ-Lipschitz continuous, the domain of φ∗i is in the interval [−Gφ, Gφ], which
implies ‖ỹ‖22 ≤ nG2

φ (see, e.g., (Shalev-Shwartz and Zhang, 2015, Lemma 1)). Thus, we have

P (x?δ)− P (x?) ≤ δ

2
(‖x?‖22 +G2

φ) =
δ

2
C1. (17)

On the other hand, since P is (GφR+Gg)-Lipschitz continuous, Theorem 1 implies

E[P (x(T))− P (x?δ)] ≤ (GφR+Gg)E[‖x(T) − x?δ‖2]

≤
√
C2

(
1−

(
n

m
+

2R

δ

√
n

m

)−1)T/2
. (18)

Combining (17) and (18), in order to obtain E[P (x(T)) − P (x?)] ≤ ε, it suffices to have
C1δ ≤ ε and

√
C2

(
1−

(
n

m
+

2R

δ

√
n

m

)−1)T/2
≤ ε

2
. (19)

11

Zhang and Xiao

φi g iteration complexity Õ(·)
(1/γ)-smooth λ-strongly convex n/m+

√
(n/m)/(λγ)

(1/γ)-smooth non-strongly convex n/m+
√

(n/m)/(εγ)

non-smooth λ-strongly convex n/m+
√

(n/m)/(ελ)

non-smooth non-strongly convex n/m+
√
n/m/ε

Table 1: Iteration complexities of the SPDC method under different assumptions on the
functions φi and g. For the last three cases, we solve the perturbed saddle-point
problem with δ = ε/C1.

The corollary is established by finding the smallest T that satisfies inequality (19).

There are two other cases that can be considered: when φi is not smooth but g is
strongly convex, and when φi is smooth but g is not strongly convex. They can be handled
with the same technique described above, and we omit the details here. Alternatively, it
is possible to use the techniques described in Chambolle and Pock (2011, Section 5.1) to
obtain accelerated sublinear convergence rates without using strongly convex perturbations.
In Table 1, we list the complexities of the mini-batch SPDC method for finding an ε-optimal
solution of problem (1) under various assumptions. Similar results are also obtained in
Shalev-Shwartz and Zhang (2015).

4. SPDC with Non-Uniform Sampling

One potential drawback of the SPDC algorithm is that, its convergence rate depends on
a problem-specific constant R, which is the largest `2-norm of the feature vectors ai. As
a consequence, the algorithm may perform badly on unnormalized data, especially if the
`2-norms of some feature vectors are substantially larger than others. In this section, we
propose an extension of the SPDC method to mitigate this problem, which is given in
Algorithm 3.

The basic idea is to use non-uniform sampling in picking the dual coordinate to update
at each iteration. In Algorithm 3, we pick coordinate k with the probability

pk = (1− α)
1

n
+ α

‖ak‖2∑n
i=1 ‖ai‖2

, k = 1, . . . , n, (20)

where α ∈ (0, 1) is a parameter. In other words, this distribution is a (strict) convex com-
bination of the uniform distribution and the distribution that is proportional to the feature
norms. Therefore, instances with large feature norms are sampled more frequently, con-
trolled by α. Simultaneously, we adopt an adaptive regularization in step (21), imposing
stronger regularization on such instances. In addition, we adjust the weight of ak in (23)
for updating the primal variable. As a consequence, the convergence rate of Algorithm 3
depends on the average norm of feature vectors, as well as the parameter α. This is sum-
marized in the following theorem, whose proof is given in Appendix C.

12

Stochastic Primal-Dual Coordinate Method

Algorithm 3: SPDC method with weighted sampling

Input: parameters τ, σ, θ ∈ R+, number of iterations T , initial points x(0) and y(0).

Initialize: x(0) = x(0), u(0) = (1/n)
∑n

i=1 y
(0)
i ai.

for t = 0, 1, 2, . . . , T − 1 do
Randomly pick k ∈ {1, 2, . . . , n}, with probability pk given in (20).
Execute the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− pin

2σ (β − y(t)i)2
}

i = k,

y
(t)
i i 6= k,

(21)

u(t+1) = u(t) +
1

n
(y

(t+1)
k − y(t)k)ak, (22)

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

pk
(u(t+1) − u(t)), x

〉
+
‖x− x(t)‖22

2τ

}
, (23)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)).
end

Output: x(T) and y(T).

Theorem 6 Suppose Assumption A holds. Let R := maxi ‖ai‖2, R := 1
n

∑n
i=1 ‖ai‖2 and

Rα :=
(
(1− α)/R+ α/R

)−1
. If the parameters τ, σ, θ in Algorithm 3 are chosen such that

τ =
1

2Rα

√
γ

nλ
, σ =

1

2Rα

√
nλ

γ
, θ = 1−

(
n

1− α
+Rα

√
n

λγ

)−1
, (24)

then for each t ≥ 1, we have(1

2τ
+ λ
)
E
[
‖x(t) − x?‖22

]
+
(1

4σ
+
γ

n

)
E
[
‖y(t) − y?‖22

]
≤ θ t

((1

2τ
+ λ
)
‖x(0) − x?‖22 +

(1

2σ
+

γ

1− α

)
‖y(0) − y?‖22

)
.

Note that Rα ≤ R/α always holds. If we choose α = 1/2, then the contraction ratio

θ is bounded by 1 −
(

n
1−α + 2R

√
n
λγ

)−1
. Comparing this bound with Theorem 1 with

m = 1, the convergence rate of Theorem 6 is determined by the average norm of the
features, R = 1

n

∑n
i=1 ‖ai‖2, instead of the largest one R = maxi ‖ai‖2. This difference

makes Algorithm 3 more robust to unnormalized feature vectors. For example, if the ai’s
are sampled i.i.d. from a multivariate normal distribution, then maxi{‖ai‖2} almost surely
goes to infinity as n→∞, but the average norm 1

n

∑n
i=1 ‖ai‖2 converges to E[‖ai‖2].

Since θ is a bound on the convergence factor, we would like to make it as small as
possible. Let ρ := R/R− 1. The expression of θ in (24) can be minimized by choosing

α? =

{
0 if ρ ≤

√
n/κ,

ρ1/2(κ/n)1/4−1
ρ1/2(κ/n)1/4+ρ

if ρ >
√
n/κ.

(25)

13

Zhang and Xiao

where κ = R2/(λγ) is the condition number. The value of α? will be equal to zero if the
condition number is large enough, and increases slowly to one as the condition number
increases. Thus, we choose a (more conservative) uniform distribution for ill-conditioned
problems, but a more aggressively weighted distribution for well-conditioned problems.

For simplicity of presentation, we described in Algorithm 3 a weighted sampling SPDC
method with single dual coordinate update, i.e., the case of m = 1. In fact, the non-uniform
sampling scheme can also be extended to mini-batch SPDC. For mini-batch size m > 1, we
randomly pick a subset of indices K ⊂ {1, 2, . . . , n} of size m. The probability of i ∈ K is
denoted by pi and should satisfy the constraint:

min
{

1,m
(1− α

n
+
α‖ai‖2
nR

)}
≤ pi ≤ 1 (26)

for i = 1, . . . , n, and
n∑
i=1

pi = m.

This constraint can be satisfied by first adding all indices {i : pi = 1} to the set K, then
sampling without replacement from the remaining indices in order to make |K| = m. More
concretely, there is an efficient sampling-without-replacement algorithm (Chao, 1982) which

adds each remaining index i to the set K with probability proportional to 1−α
n + α‖ai‖2

nR
. It

can be verified that the lower bound in (26) holds with such a procedure.
For the mini-batch extension, we replace the updates (21)-(23) by the following updates:

y
(t+1)
i =

{
arg maxβ∈R

{
β〈ai, x(t)〉 − φ∗i (β)− pin

2σm(β − y(t)i)2
}

i ∈ K,

y
(t)
i i /∈ K,

u(t+1) = u(t) +
1

n

∑
k∈K

(y
(t+1)
k − y(t)k)ak,

x(t+1) = arg min
x∈Rd

{
g(x) +

〈
u(t) +

1

n

∑
k∈K

y
(t+1)
k − y(t)k

pk
ak, x

〉
+
‖x− x(t)‖22

2τ

}
,

which resembles the updates of Algorithm 2. Similar to the mini-batch SPDC, we are able
to show that by increasing the batch size m, the convergence rate of the algorithm will be
improved. On the other hand, the lower bound on pi given by constraint (26) implies that
with a proper choice of α (e.g. α = 1/2), the convergence rate will depend on

max
{
R,

m

n
R
}
,

instead of the maximum norm R. For m = 1, we have max{R, mnR} = R, so that it captures
the theoretical guarantee for Algorithm 3 as a special case. We omit the proof details.

5. Related Work

Chambolle and Pock (2011) considered a class of convex optimization problems with the
following saddle-point structure:

min
x∈Rd

max
y∈Rn

{
〈Kx, y〉+G(x)− F ∗(y)

}
, (27)

14

Stochastic Primal-Dual Coordinate Method

algorithm τ σ θ batch complexity

Chambolle-Pock
√
n

‖A‖2

√
γ
λ

n
√
n

‖A‖2

√
λ
γ 1− 1

1+‖A‖2/(2
√
nλγ)

(
1 + ‖A‖2

2
√
nλγ

)
log(1/ε)

SPDC with m = n 1
R

√
γ
λ

1
R

√
λ
γ 1− 1

1+R/
√
λγ

(
1 + R√

λγ

)
log(1/ε)

SPDC with m = 1 1
R

√
γ
nλ

1
R

√
nλ
γ 1− 1

n+R
√
n/λγ

(
1 + R√

nλγ

)
log(1/ε)

Table 2: Comparing step sizes and complexity of SPDC with Chambolle and Pock (2011,
Algorithm 3, Theorem 3). Here A ∈ Rn×d and its spectral norm ‖A‖2 usually
grows with n, but always bounded by

√
nR.

where K ∈ Rm×d, G and F ∗ are proper closed convex functions, with F ∗ itself being the
conjugate of a convex function F . They developed the following first-order primal-dual
algorithm:

y(t+1) = arg max
y∈Rn

{
〈Kx(t), y〉 − F ∗(y)− 1

2σ
‖y − y(t)‖22

}
, (28)

x(t+1) = arg min
x∈Rd

{
〈KT y(t+1), x〉+G(x) +

1

2τ
‖x− x(t)‖22

}
, (29)

x(t+1) = x(t+1) + θ(x(t+1) − x(t)). (30)

When both F ∗ and G are strongly convex and the parameters τ , σ and θ are chosen
appropriately, this algorithm obtains accelerated linear convergence rate (Chambolle and
Pock, 2011, Theorem 3).

We can map the saddle-point problem (4) into the form of (27) by lettingA = [a1, . . . , an]T

and

K =
1

n
A, G(x) = g(x), F ∗(y) =

1

n

n∑
i=1

φ∗i (yi). (31)

The SPDC method developed in this paper can be viewed as an extension of the batch
method (28)-(30), where the dual update step (28) is replaced by a single coordinate up-
date (5) or a mini-batch update (9). However, in order to obtain accelerated convergence
rate, more subtle changes are necessary in the primal update step. More specifically, we

introduced the auxiliary variable u(t) = 1
n

∑n
i=1 y

(t)
i ai = KT y(t), and replaced the primal

update step (29) by (6) and (10). The primal extrapolation step (30) stays the same.

To compare the batch complexity of SPDC with that of (28)-(30), we use the following
facts implied by Assumption A and the relations in (31):

‖K‖2 =
1

n
‖A‖2, G(x) is λ-strongly convex, and F ∗(y) is (γ/n)-strongly convex.

Based on these conditions, we list in Table 2 the equivalent parameters used by Algorithm 3
in Chambolle and Pock (2011) and the batch complexity obtained in Theorem 3 of that
paper, and compare them with SPDC.

15

Zhang and Xiao

The batch complexity of the Chambolle-Pock algorithm is Õ(1+‖A‖2/(2
√
nλγ)), where

the Õ(·) notation hides the log(1/ε) factor. We can bound the spectral norm ‖A‖2 by the
Frobenius norm ‖A‖F and obtain

‖A‖2 ≤ ‖A‖F ≤
√
nmax

i
{‖ai‖2} =

√
nR.

(Note that the second inequality above would be an equality if the columns of A are nor-
malized.) So in the worst case, the batch complexity of the Chambolle-Pock algorithm
becomes

Õ
(

1 +R/
√
λγ
)

= Õ
(
1 +
√
κ
)
, where κ = R2/(λγ),

which matches the worst-case complexity of the accelerated gradient methods (Nesterov,
2004, 2013); see Section 1.1 and also the discussions in Lin et al. (2015b, Section 5). This
is also of the same order as the complexity of SPDC with m = n (see Section 2.1). When
the condition number κ � 1, they can be

√
n worse than the batch complexity of SPDC

with m = 1, which is Õ(1 +
√
κ/n).

If either G(x) or F ∗(y) in (27) is not strongly convex, Chambolle and Pock (2011,
Section 5.1) proposed variants of the primal-dual batch algorithm to achieve accelerated
sublinear convergence rates. It is also possible to extend them to coordinate update methods
for solving problem (1) when either φ∗i or g is not strongly convex. Their complexities would
be similar to those in Table 1.

Our algorithms and theory can be readily generalized to solve the problem of

minimize
x∈Rd

1

n

n∑
i=1

φi(A
T
i x) + g(x),

where each Ai is an di×d matrix, and φi : Rdi → R is a smooth convex function. This more
general formulation is used, e.g., in Shalev-Shwartz and Zhang (2015). Most recently, Lan
and Zhou (2015) considered the case with di = d and Ai = Id, which corresponding to a
general class of problems with the finite-sum (or finite-average) structure. He extended the
primal-dual algorithm by replacing the quadratic penalty terms in (5) and (21) with the
Bregman divergence associated with the loss functions themselves. This led to an algorithm
that does not rely on computing the proximal mapping of the conjugate φ?i , but only requires
computing the primal gradient ∇φi at a particular sequence of the primal variables. As a
result, the algorithm in Lan and Zhou (2015) can be considered as a (primal-only or dual-
free) randomized incremental gradient algorithm, which share the same order of iteration
complexity as SPDC.

5.1 Dual Coordinate Ascent Methods

We can also solve the primal problem (1) via its dual:

maximize
y∈Rn

{
D(y)

def
=

1

n

n∑
i=1

−φ∗i (yi)− g∗
(
− 1

n

n∑
i=1

yiai

)}
, (32)

where g∗(u) = supx∈Rd{xTu − g(x)} is the convex conjugate of g. Due to the problem
structure, it is well-known that coordinate ascent methods can be more efficient than full

16

Stochastic Primal-Dual Coordinate Method

gradient methods for solving this problem (e.g., Platt, 1999; Chang et al., 2008; Hsieh
et al., 2008; Shalev-Shwartz and Zhang, 2013a). In the stochastic dual coordinate ascent
(SDCA) method a dual coordinate yi is picked at random during each iteration and up-
dated to increase the dual objective value. Shalev-Shwartz and Zhang (2013a) showed that
the iteration complexity of SDCA is O ((n+ κ) log(1/ε)), which corresponds to the batch
complexity O ((1 + κ/n) log(1/ε)).

For more general convex optimization problems, there is a vast literature on coordinate
descent methods; see, e.g., the recent overview by Wright (2015). In particular, the work
of Nesterov (2012) on randomized coordinate descent sparked a lot of recent activities on
this topic. Richtárik and Takáč (2014) extended the algorithm and analysis to composite
convex optimization. When applied to the dual problem (32), it becomes one variant of the
SDCA algorithm studied in Shalev-Shwartz and Zhang (2013a). Mini-batch and distributed
versions of SDCA have been proposed and analyzed in Takáč et al. (2013) and Yang (2013)
respectively. Non-uniform sampling schemes similar to the one used in Algorithm 3 have
been studied for both stochastic gradient and dual coordinate ascent methods (e.g., Needell
et al., 2016; Xiao and Zhang, 2014; Zhao and Zhang, 2015; Qu et al., 2015).

Shalev-Shwartz and Zhang (2013b) proposed an accelerated mini-batch SDCA method
which incorporates additional primal updates than SDCA, and bears some similarity to our
mini-batch SPDC method. They showed that its complexity interpolates between that of
SDCA and accelerated gradient methods by varying the mini-batch size m. In particular,
for m = n, it matches that of the accelerated gradient methods (as SPDC does). But for
m = 1, the complexity of their method is the same as SDCA, which is worse than SPDC
for ill-conditioned problems.

In addition, Shalev-Shwartz and Zhang (2015) developed an accelerated proximal SDCA
method which achieves the same batch complexity Õ

(
1 +

√
κ/n

)
as SPDC. Their method

is an inner-outer iteration procedure, where the outer loop is a full-dimensional accelerated
gradient method in the primal space x ∈ Rd. At each iteration of the outer loop, the SDCA
method (Shalev-Shwartz and Zhang, 2013a) is called to solve the dual problem (32) with
customized regularization parameter and precision. In contrast, SPDC is a straightforward
single-loop coordinate optimization methods. Two recent works extended the inner-outer
iteration method to derive more general accelerated proximal-point algorithms: Frostig et al.
(2015) and Lin et al. (2015a). Basically, one can replace the inner-loop SDCA algorithm by
other efficient algorithms such as Prox-SVRG (Xiao and Zhang, 2014) or SAGA (Defazio
et al., 2014) to obtain the same overall complexity.

More recently, Lin et al. (2015b) developed an accelerated proximal coordinate gradient
(APCG) method for solving a more general class of composite convex optimization problems.
When applied to solve the dual problem (32), APCG enjoys the same batch complexity
Õ
(
1 +

√
κ/n

)
for reducing the dual objective gap. In order to obtain the same complexity

for the primal-dual gap, One needs an extra primal proximal-gradient step at the end after
applying the APCG algorithm. The computational cost of this additional step is equivalent
to one pass of the dataset, thus it does not affect the overall complexity.

17

Zhang and Xiao

5.2 Other Related Work

Another way to approach problem (1) is to reformulate it as a constrained optimization
problem

minimize
1

n

n∑
i=1

φi(zi) + g(x) (33)

subject to aTi x = zi, i = 1, . . . , n,

and solve it by ADMM type of operator-splitting methods (e.g., Lions and Mercier, 1979;
Boyd et al., 2010). In fact, as shown in Chambolle and Pock (2011), the batch primal-dual
algorithm (28)-(30) is equivalent to a pre-conditioned ADMM or an inexact Uzawa method
(see, e.g., Zhang et al., 2011). Several authors (Wang and Banerjee, 2012; Ouyang et al.,
2013; Suzuki, 2013; Zhong and Kwok, 2014) have considered a more general formulation
than (33), where each φi is a function of the whole vector z ∈ Rn. They proposed online or
stochastic versions of ADMM which operate on only one φi in each iteration, and obtained
sublinear convergence rates. However, their cost per iteration is O(nd) instead of O(d).

Suzuki (2014) considered a problem similar to (1), but with more complex regularization
function g, meaning that g does not have a simple proximal mapping. Thus primal updates
such as step (6) or (10) in SPDC and similar steps in SDCA cannot be computed efficiently.
He proposed an algorithm that combines SDCA (Shalev-Shwartz and Zhang, 2013a) and
ADMM, and showed that it has linear rate of convergence under similar conditions as
Assumption A. It would be interesting to see if the SPDC method can be extended to their
setting to obtain accelerated linear convergence rate.

6. Efficient Implementation with Sparse Data

During each iteration of the SPDC method, the update of primal variables (i.e., computing
x(t+1)) requires full d-dimensional vector operations; see the step (6) of Algorithm 1, the
step (10) of Algorithm 2 and the step (23) of Algorithm 3. So the computational cost
per iteration is O(d), and this can be too expensive if the dimension d is very high. In
this section, we show how to exploit problem structure to avoid high-dimensional vector
operations when the feature vectors ai are sparse. We illustrate the efficient implementation
for two popular cases: when g is an squared-`2 penalty and when g is an `1+`2 penalty. For
both cases, we show that the computation cost per iteration only depends on the number
of non-zero components of the feature vector.

6.1 Squared `2-Norm Penalty

Suppose that g(x) = λ
2‖x‖

2
2. For this case, the updates for each coordinate of x are inde-

pendent of each other. More specifically, x(t+1) can be computed coordinate-wise in closed
form:

x
(t+1)
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j − τ∆uj), j = 1, . . . , n, (34)

where ∆u denotes (y
(t+1)
k −y(t)k)ak in Algorithm 1, or 1

m

∑
k∈K(y

(t+1)
k −y(t)k)ak in Algorithm 2,

or (y
(t+1)
k − y(t)k)ak/(pkn) in Algorithm 3, and ∆uj represents the j-th coordinate of ∆u.

18

Stochastic Primal-Dual Coordinate Method

Although the dimension d can be very large, we assume that each feature vector ak is
sparse. We denote by J (t) the set of non-zero coordinates at iteration t, that is, if for some
index k ∈ K picked at iteration t we have akj 6= 0, then j ∈ J (t). If j /∈ J (t), then the SPDC

algorithm (and its variants) updates y(t+1) without using the value of x
(t)
j or x

(t)
j . This can

be seen from the updates in (5), (9) and (21), where the value of the inner product 〈ak, x(t)〉
does not depend on the value of x

(t)
j . As a consequence, we can delay the updates on xj

and xj whenever j /∈ J (t) without affecting the updates on y(t), and process all the missing
updates at the next time when j ∈ J (t).

Such a delayed update can be carried out very efficiently. We assume that t0 is the last
time when j ∈ J (t), and t1 is the current iteration where we want to update xj and xj .
Since j /∈ J (t) implies ∆uj = 0, we have

xt+1
j =

1

1 + λτ
(x

(t)
j − τu

(t)
j), t = t0 + 1, t0 + 2, . . . , t1 − 1. (35)

Notice that u
(t)
j is updated only at iterations where j ∈ J (t). The value of u

(t)
j doesn’t

change during iterations [t0 +1, t1], so we have u
(t)
j ≡ u

(t0+1)
j for t ∈ [t0 +1, t1]. Substituting

this equation into the recursive formula (35), we obtain

x
(t1)
j =

1

(1 + λτ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j

λ

)
−
u
(t0+1)
j

λ
. (36)

The update (36) takes O(1) time to compute. Using the same formula, we can compute

x
(t1−1)
j and subsequently compute x

(t1)
j = x

(t1)
j + θ(x

(t1)
j − x

(t1−1)
j). Thus, the computa-

tional complexity of a single iteration in SPDC is proportional to |J (t)|, independent of the
dimension d.

We note that similar tricks of delayed updates, or “just-in-time” updates, have been
derived and used for the SAG algorithm (Schmidt et al., 2013). For SPDC, the delayed
updates become more complex due to the full vector extrapolation required for Nesterov-
type acceleration.

6.2 (`1 + `2)-Norm Penalty

Suppose that g(x) = λ1‖x‖1 + λ2
2 ‖x‖

2
2. Since both the `1-norm and the squared `2-norm are

decomposable, the updates for each coordinate of x(t+1) are independent. More specifically,

x
(t+1)
j = arg min

α∈R

{
λ1|α|+

λ2α
2

2
+ (u

(t)
j + ∆uj)α+

(α− x(t)j)2

2τ

}
, (37)

where ∆uj follows the definition in Section 6.1. If j /∈ J (t), then ∆uj = 0 and equation (37)
can be simplified as

x
(t+1)
j =

1

1+λ2τ
(x

(t)
j − τu

(t)
j − τλ1) if x

(t)
j − τu

(t)
j > τλ1,

1
1+λ2τ

(x
(t)
j − τu

(t)
j + τλ1) if x

(t)
j − τu

(t)
j < −τλ1,

0 otherwise,

t ∈ [t0 + 1, t1]. (38)

19

Zhang and Xiao

Similar to the approach of Section 6.1, we delay the update of xj until j ∈ J (t). We
assume t0 to be the last iteration when j ∈ J (t), and let t1 be the current iteration when

we want to update xj . During iterations [t0 + 1, t1], the value of u
(t)
j doesn’t change, so we

have u
(t)
j ≡ u

(t0+1)
j for t ∈ [t0 + 1, t1]. Using equation (38) and the invariance of u

(t)
j for

t ∈ [t0 + 1, t1], we have an O(1) time algorithm to calculate x
(t1)
j . More specifically, given

x
(t0+1)
j at iteration t0, we present an efficient algorithm for calculating x

(t1)
j . We begin by

examining the sign of x
(t0+1)
j .

Case I (x
(t0+1)
j = 0): If −u(t0+1)

j > λ1, then equation (38) implies x
(t)
j > 0 for all t > t0+1.

Consequently, we have a closed-form formula for x
(t1)
j :

x
(t1)
j =

1

(1 + λ2τ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j + λ1

λ2

)
−
u
(t0+1)
j + λ1

λ2
. (39)

If −u(t0+1)
j < −λ1, then equation (38) implies x

(t)
j < 0 for all t > t0 + 1. Therefore, we have

the closed-form formula:

x
(t1)
j =

1

(1 + λ2τ)t1−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j − λ1

λ2

)
−
u
(t0+1)
j − λ1

λ2
. (40)

Finally, if −u(t0+1)
j ∈ [−λ1, λ1], then equation (38) implies x

(t1)
j = 0.

Case II (x
(t0+1)
j > 0): If −u(t0+1)

j ≥ λ1, then it is easy to verify that x
(t1)
j is obtained

by equation (39). Otherwise, We use the recursive formula (38) to derive the latest time

t+ ∈ [t0 + 1, t1] such that xt
+

j > 0 is true. Indeed, since x
(t)
j > 0 for all t ∈ [t0 + 1, t+], we

have a closed-form formula for xt
+

j :

xt
+

j =
1

(1 + λ2τ)t+−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j + λ1

λ2

)
−
u
(t0+1)
j + λ1

λ2
. (41)

We look for the largest t+ such that the right-hand side of equation (41) is positive, which
is equivalent of

t+ − t0 − 1 < log
(

1 +
λ2x

(t0+1)
j

u
(t0+1)
j + λ1

)
/log(1 + λ2τ). (42)

Thus, t+ is the largest integer in [t0 + 1, t1] such that inequality (42) holds. If t+ = t1, then

x
(t1)
j is obtained by (41). Otherwise, we can calculate xt

++1
j by formula (38), then resort to

Case I or Case III, treating t+ as t0.

Case III (x
(t0+1)
j < 0): If −u(t0+1)

j ≤ −λ1, then x
(t1)
j is obtained by equation (40).

Otherwise, we calculate the largest integer t− ∈ [t0 + 1, t1] such that xt
−
j < 0 is true. Using

the same argument as for Case II, we have the closed-form expression

xt
−
j =

1

(1 + λ2τ)t−−t0−1

(
x
(t0+1)
j +

u
(t0+1)
j − λ1

λ2

)
−
u
(t0+1)
j − λ1

λ2
. (43)

20

Stochastic Primal-Dual Coordinate Method

where t− is the largest integer in [t0 + 1, t1] such that the following inequality holds:

t− − t0 − 1 < log
(

1 +
λ2x

(t0+1)
j

u
(t0+1)
j − λ1

)
/log(1 + λ2τ). (44)

If t− = t1, then x
(t1)
j is obtained by (43). Otherwise, we can calculate xt

−+1
j by formula (38),

then resort to Case I or Case II, treating t− as t0.

Finally, we note that formula (38) implies the monotonicity of x
(t)
j (t = t0+1, t0+2, . . .).

As a consequence, the procedure of either Case I, Case II or Case III is executed for at most

once. Hence, the algorithm for calculating x
(t1)
j has O(1) time complexity.

The vector x
(t1)
j can be updated by the same algorithm since it is a linear combination

of x
(t1)
j and x

(t1−1)
j . As a consequence, the computational complexity of each iteration in

SPDC is proportional to |J (t)|, independent of the dimension d.

7. Experiments

In this section, we compare the basic SPDC method (Algorithm 1) with several state-of-
the-art algorithms for solving problem (1). They include two batch-update algorithms:
the accelerated full gradient (AFG) method (Nesterov, 2004, Section 2.2), and the limited-
memory quasi-Newton method L-BFGS (Nocedal and Wright, 2006, Section 7.2)). For the
AFG method, we adopt an adaptive line search scheme (Nesterov, 2013) to improve its
efficiency. For the L-BFGS method, we use the memory size 30 as suggested by Nocedal
and Wright (2006, Section 7.2).

We also compare SPDC with three stochastic algorithms: the stochastic average gradient
(SAG) method (Le Roux et al., 2012; Schmidt et al., 2013), the stochastic dual coordinate
descent (SDCA) method (Shalev-Shwartz and Zhang, 2013a) and the accelerated stochastic
dual coordinate descent (ASDCA) method(Shalev-Shwartz and Zhang, 2015). We conduct
experiments on a synthetic dataset and three real datasets. The hyper-parameters τ, σ, θ of
the SPDC algorithm are chosen by their theoretical values given in (12). For SDCA, we use
their default parameter settings given in Shalev-Shwartz and Zhang (2013a), which can be
determined from the Lipschitz constant 1/γ of the loss functions and the strongly convex
regularization parameter λ. For SAG, we choose the learning rate α = γ/R as recommended
by Schmidt et al. (2013).

We caution the readers that our numerical experiments in this section focus on com-
paring the optimization performance of various algorithms, i.e., how fast they can reduce
the objective function to its minimum value. In order to illustrate their differences for
very ill-conditioned problems, we often run the algorithms with hundreds of passes over the
datasets in order to reach a small optimization error. Such large numbers of passes over
datasets and the small optimization errors may not be appropriate for machine learning
problems, especially from the point of view of generalization (reducing testing error). See
Bottou and Bousquet (2008) for discussions on the fundamental tradeoffs of large scale
learning problems.

21

Zhang and Xiao

Number of Passes

20 40 60 80

L
o
g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SAG

SDCA

ASDCA

SPDC

Number of Passes

50 100 150

L
o

g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SAG

SDCA

ASDCA

SPDC

(a) λ = 10−3 (b) λ = 10−4

Number of Passes

100 200 300

L
o

g
 L

o
ss

-10

-5

0

AFG

L-BFGS

SAG

SDCA

ASDCA

SPDC

Number of Passes

100 200 300

L
o

g
 L

o
ss

-4

-3

-2

-1

0

AFG

L-BFGS

SAG

SDCA

ASDCA

SPDC

(c) λ = 10−5 (d) λ = 10−6

Figure 1: Comparing SPDC with other methods for ridge regression on synthetic data,
with the regularization coefficient λ ∈ {10−3, 10−4, 10−5, 10−6}. The horizontal
axis is the number of passes through the entire dataset, and the vertical axis is
the logarithmic gap log(P (x(T))− P (x?)).

7.1 Ridge Regression with Synthetic Data

We first compare SPDC with other algorithms on a simple quadratic problem using synthetic
data. We generate n = 500 i.i.d. training examples {ai, bi}ni=1 according to the model

b = 〈a, x∗〉+ ε, a ∼ N (0,Σ), ε ∼ N (0, 1),

where a ∈ Rd and d = 500, and x∗ is the all-ones vector. To make the problem ill-
conditioned, the covariance matrix Σ is set to be diagonal with Σjj = j−2, for j = 1, . . . , d.
Given the set of examples {ai, bi}ni=1, we then solved a standard ridge regression problem

minimize
x∈Rd

{
P (x)

def
=

1

n

n∑
i=1

1

2
(aTi x− bi)2 +

λ

2
‖x‖22

}
.

In the form of problem (1), we have φi(z) = z2/2 and g(x) = (1/2)‖x‖22. As a consequence,
the derivative of φi is 1-Lipschitz continuous and g is λ-strongly convex.

22

Stochastic Primal-Dual Coordinate Method

Dataset name # of samples n # of features d sparsity size

Covtype 581,012 54 22% 71 MB
RCV1 20,242 47,236 0.16% 37 MB

News20 19,996 1,355,191 0.04% 140 MB

RCV1-test 677,399 47,236 0.15% 1.2 GB
URL 2,396,130 3,231,961 0.004% 2.2 GB

Table 3: Characteristics of real datasets from LIBSVM data (Fan and Lin, 2011).

We evaluate the algorithms by the logarithmic optimality gap log(P (x(t)) − P (x?)),
where x(t) is the output of the algorithms after t passes over the entire dataset, and x? is
the global minimum. When the regularization coefficient is relatively large, e.g., λ = 10−1

or 10−2, the problem is well-conditioned and we observe fast convergence of the stochastic
algorithms SAG, SDCA, ASDCA and SPDC, which are substantially faster than the two
batch methods AFG and L-BFGS.

Figure 1 shows the convergence of the five different algorithms when we varied λ from
10−3 to 10−6. As the plot shows, when the condition number is greater than n, the SPDC
algorithm also converges substantially faster than the other two stochastic methods SAG
and SDCA. It is also notably faster than L-BFGS. These results support our theory that
SPDC enjoys a faster convergence rate on ill-conditioned problems. In terms of their batch
complexities, SPDC is up to

√
n times faster than AFG, and (λn)−1/2 times faster than

SAG and SDCA.

Theoretically, ASDCA enjoys the same batch complexity as SPDC up to a multiplicative
constant factor. Figure 1 shows that the empirical performance of SPDC is substantially
faster that of ASDCA for small λ. This may due to the fact that ASDCA follows an inner-
outer iteration procedure, which requires careful selection of the regularization parameter
and accuracy to reach for each call of SDCA. SPDC is a single-loop algorithm that needs
less parameters to set up, thus it can be empirically more efficient.

7.2 Binary Classification with Real Data

Finally we show the results of solving the binary classification problem on real datasets.
The datasets are obtained from the LIBSVM data collection (Fan and Lin, 2011) and
summarized in Table 3. The first three datasets are selected to reflect different relations
between the sample size n and the feature dimensionality d, which cover n� d (Covtype),
n ≈ d (RCV1) and n � d (News20). The remaining two are relatively larger datasets
(RCV1-test and URL) that we did not test in previous experiments conducted in Zhang
and Xiao (2015). For all tasks, the data points take the form of (ai, bi), where ai ∈ Rd is
the feature vector, and bi ∈ {−1, 1} is the binary class label. As a preprocessing step, the
feature vectors are normalized to the unit `2-norm (meaning R = 1).

Our goal is to minimize the regularized empirical risk:

P (x) =
1

n

n∑
i=1

φi(a
T
i x) +

λ

2
‖x‖22, where φi(z) =

0 if biz ≥ 1
1
2 − biz if biz ≤ 0
1
2(1− biz)2 otherwise.

23

Zhang and Xiao

Here, φi is the smoothed hinge loss (see, e.g., Shalev-Shwartz and Zhang, 2013a). It is easy
to verify that the conjugate function of φi is φ∗i (β) = biβ + 1

2β
2 for biβ ∈ [−1, 0] and ∞

otherwise.

The performance of the five algorithms on the three smaller datasets are plotted in
Figure 2 and Figure 3. In Figure 2, we compare SPDC with the two batch methods: AFG
and L-BFGS. The results show that SPDC is substantially faster than AFG and L-BFGS for
relatively large λ, illustrating the advantage of stochastic methods over batch methods on
well-conditioned problems. As λ decreases to 10−8, the batch methods (especially L-BFGS)
become comparable to SPDC.

In Figure 3, we compare SPDC with the three stochastic methods: SAG, SDCA and
ASDCA. Note that the specification of ASDCA (Shalev-Shwartz and Zhang, 2015) requires

the regularization coefficient λ satisfies λ ≤ R2

10n where R is the maximum `2-norm of feature
vectors. To satisfy this constraint, we run ASDCA with λ ∈ {10−6, 10−7, 10−8}. In Figure 3,
the observations are just the opposite to that of Figure 2. All stochastic algorithms have
comparable performances on relatively large λ, but SPDC and ASDCA becomes substan-
tially faster when λ gets closer to zero. In particular, ASDCA converges faster than SPDC
on the Covtype dataset, but SPDC is faster on the remaining two datasets. In addition,
due to the outer-inner loop structure of the ASDCA algorithm, its error rate oscillates and
might be bad at early iterations. In contrast, the curve of SPDC is almost linear and it is
more stable than ASDCA.

Figure 4 plots the convergence results on the last two datasets, where both the sample
size n and the dimension d are big. If the regularization parameter λ is also relatively
large, then the stochastic algorithms (SPDC, SAG and SDCA) will guarantee to converge
very quickly, making it an easy optimization problem. We report experiments on small
regularization values λ = 10−6 and λ = 10−8. The ASDCA algorithm is reported on
λ = 10−8 because it satisfies the constraint λ ≤ R2

10n . Comparing results on the RCV1
and RCV1-test datasets, the SPDC algorithm has a more significant advantage over the
batch methods (AFG and L-BFGS) on the bigger dataset, because the stochastic algorithm
converges faster with a larger sample size. On the other hand, the performance gaps between
SPDC and the two other stochastic methods (SAG and SDCA) are less significant on the
bigger dataset. We observe the same phenomenon on the URL dataset.

Summarizing Figure 2, Figure 3 and Figure 4, the performance of the SPDC algorithm
are always comparable or better than the other methods, for various of relations between
the sample size n and the dimension d, and on both small and large datasets.

7.3 Uniform Sampling versus Non-Uniform Sampling

In this subsection, we compare the uniform sampling strategy (Algorithm 1) and the non-
uniform sampling strategy (Algorithm 3) for SPDC. We repeat the binary classification
experiments on the Covtype, RCV1 and News20 datasets, but this time without performing
feature normalization. More precisely, for each data point taking the form of (ai, bi), we
don’t normalize the feature vector ai to the unit `2-norm. But instead, we multiply a
constant number to every feature vector so that the average `2-norm R is equal to one. It
ensures that the overall loss function is 1-smooth.

24

Stochastic Primal-Dual Coordinate Method

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−5

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

5 10 15 20 25 30
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−6

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

20 40 60 80 100
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−7

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

50 100 150 200 250 300
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

50 100 150 200 250 300
−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

10−8

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−12

−10

−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

100 200 300 400 500 600
−8

−6

−4

−2

0

Number of Passes

Lo
g

Lo
ss

AFG
L−BFGS
SPDC

Figure 2: Comparing SPDC with AFG and L-BFGS on three real datasets with smoothed
hinge loss. The horizontal axis is the number of passes through the entire dataset,
and the vertical axis is the logarithmic optimality gap log(P (x(t))− P (x?)). The
SPDC algorithm is faster than the two batch methods when λ is relatively large.

25

Zhang and Xiao

λ RCV1 Covtype News20

10−4

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−20

−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−5

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

5 10 15 20 25 30
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10 20 30 40 50 60
−15

−10

−5

0

Number of Passes

Lo
g

Lo
ss

SAG
SDCA
SPDC

10−6

Number of Passes

20 40 60 80 100

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

20 40 60 80 100

L
o
g
 L

o
ss

-20

-15

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

20 40 60 80 100
L

o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

10−7

Number of Passes

100 200 300

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

100 200 300

L
o
g
 L

o
ss

-15

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

100 200 300

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

10−8

Number of Passes

200 400 600

L
o
g
 L

o
ss

-8

-6

-4

-2

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

200 400 600

L
o
g
 L

o
ss

-10

-5

0

SAG

SDCA

ASDCA

SPDC

Number of Passes

200 400 600

L
o
g
 L

o
ss

-8

-6

-4

-2

0

SAG

SDCA

ASDCA

SPDC

Figure 3: Comparing SPDC with SAG, SDCA and ASDCA on three real datasets with
smoothed hinge loss. The horizontal axis is the number of passes through
the entire dataset, and the vertical axis is the logarithmic optimality gap
log(P (x(T))−P (x?)). The SPDC algorithm is faster than SAG and SDCA when λ
is small. It is faster than ASDCA on datasets RCV1 and News20.

26

Stochastic Primal-Dual Coordinate Method

Number of Passes

10 20 30 40 50

L
o
g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SPDC

Number of Passes

10 20 30 40 50

L
o
g
 L

o
ss

-20

-15

-10

-5

0

SAG

SDCA

SPDC

(a) RCV1-test (λ = 10−6)

Number of Passes

100 200 300

L
o
g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SPDC

Number of Passes

100 200 300
L

o
g
 L

o
ss

-15

-10

-5

0

SAG

SDCA

ASDCA

SPDC

(b) RCV1-test (λ = 10−8)

Number of Passes

10 20 30

L
o
g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SPDC

Number of Passes

10 20 30

L
o
g
 L

o
ss

-15

-10

-5

0

SAG

SDCA

SPDC

(c) URL (λ = 10−6)

Number of Passes

50 100 150 200

L
o
g
 L

o
ss

-15

-10

-5

0

AFG

L-BFGS

SPDC

Number of Passes

50 100 150 200

L
o
g
 L

o
ss

-20

-15

-10

-5

0

SAG

SDCA

ASDCA

SPDC

(d) URL (λ = 10−8)

Figure 4: Comparing SPDC with other methods on the two larger datasets. The vertical
axis is the logarithmic optimality gap log(P (x(t))− P (x?)).

27

Zhang and Xiao

Number of Passes

100 200 300 400 500

L
o
g
 L

o
ss

-8

-6

-4

-2

0
Uniform-SPDC

Non-Uniform-SPDC

Number of Passes

100 200 300 400 500

L
o
g
 L

o
ss

-15

-10

-5

0
Uniform-SPDC

Non-Uniform-SPDC

Number of Passes

100 200 300 400 500

L
o
g
 L

o
ss

-8

-6

-4

-2

0
Uniform-SPDC

Non-Uniform-SPDC

(a) RCV1 (R/R = 3.87) (b) Covtype (R/R = 1.25) (c) News20 (R/R = 6.71)

Figure 5: Comparing the uniform sampling and non-uniform sampling strategies for SPDC,
where the vertical axis is the logarithmic optimality gap log(P (x(t)) − P (x?)).
The quantity R/R represents the ratio between the largest feature norm and the
average feature norm. When this quantity is large, the non-uniform sampling
algorithm converges significantly faster.

For this experiment, we use a small regularization parameter λ = 10−8, so that the
problem has a large condition number. The hyper-parameters τ, σ, θ are chosen by their
theoretical values in (12) and (24), respectively for the two sampling strategies. For non-
uniform sampling, the hyper-parameter α is chosen by the optimal value given in (25).
Figure 5 plots their convergence profiles. On all of the three datasets, the non-uniform
sampling algorithm converges faster. The margin is quite significant when the ratio between
the largest feature norm R and the average feature norm R is relatively large. This is
consistent with our analysis in Theorem 1 and Theorem 6, which state that the convergence
rate of the uniform sampling algorithm depends R, while that of the non-uniform sampling
algorithm depends on R.

Acknowledgments

We are grateful to Qihang Lin for helpful discussions, especially on the proof of Lemma 3.

Appendix A. Proof of Theorem 1

We focus on characterizing the values of x and y after the t-th update in Algorithm 2. For

any i ∈ {1, . . . , n}, let ỹi be the value of y
(t+1)
i if i ∈ K, i.e.,

ỹi = arg max
β∈R

{
β〈ai, x(t)〉 − φ∗i (β)−

(β − y(t)i)2

2σ

}
.

Since by assumption φi is (1/γ)-smooth, its convex conjugate φ∗i is γ-strongly convex (see,
e.g., Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.2). Thus the function being maxi-

28

Stochastic Primal-Dual Coordinate Method

mized above is (1/σ + γ)-strongly concave. Therefore,

−y?i 〈ai, x(t)〉+ φ∗i (y
?
i) +

(y?i − y
(t)
i)2

2σ
≥− ỹi〈ai, x(t)〉+ φ∗i (ỹi) +

(ỹi − y(t)i)2

2σ

+
(1

σ
+ γ
)(ỹi − y?i)2

2
.

Multiplying both sides of the above inequality by m/n and re-arrange terms, we have

m

2σn
(y

(t)
i − y

?
i)

2 ≥
(1

σ
+ γ
)m

2n
(ỹi − y?i)2 +

m

2σn
(ỹi − y(t)i)2

− m

n
(ỹi − y?i)〈ai, x(t)〉+

m

n

(
φ∗i (ỹi)− φ∗i (y?i)

)
. (45)

According to Algorithm 2, the set K of indices to be updated are chosen randomly. For

every specific index i, the event i ∈ K happens with probability m/n. If i ∈ K, then y
(t+1)
i

is updated to the value ỹi, which satisfies inequality (45). Otherwise, y
(t+1)
i is assigned by

its old value y
(t)
i . Let Ft be the sigma field generated by all random variables defined before

round t, and taking expectation conditioned on Ft, we have

E[(y
(t+1)
i − y?i)2|Ft] =

m(ỹi − y?i)2

n
+

(n−m)(y
(t)
i − y?i)2

n
,

E[(y
(t+1)
i − y(t)i)2|Ft] =

m(ỹi − y(t)i)2

n
,

E[y
(t+1)
i |Ft] =

mỹi
n

+
(n−m)y

(t)
i

n

E[φ∗i (y
(t+1)
i)|Ft] =

m

n
φ∗i (ỹi) +

n−m
n

φ∗i (y
(t)
i).

As a result, we can represent (ỹi−y?i)2, (ỹi−y(t)i)2, ỹi and φ∗i (ỹi) in terms of the conditional

expectations on (y
(t+1)
i − y?i)2, (y

(t+1)
i − y(t)i)2, y

(t+1)
i and φ∗i (y

(t+1)
i), respectively. Plugging

these representations into inequality (45) and re-arranging terms, we obtain(
1

2σ
+

(n−m)γ

2n

)
(y

(t)
i − y

?
i)

2 ≥
(

1

2σ
+
γ

2

)
E[(y

(t+1)
i − y?i)2|Ft] +

1

2σ
E[(y

(t+1)
i − y(t)i)2|Ft]

−
(m
n

(y
(t)
i − y

?
i) + E[y

(t+1)
i − y(t)i |Ft]

)
〈ai, x(t)〉

+ E[φ∗i (y
(t+1)
i)|Ft]− φ∗i (y

(t)
i) +

m

n

(
φ∗i (y

(t)
i)− φ∗i (y?i)

)
. (46)

Then summing over all indices i = 1, 2, . . . , n and dividing both sides of the resulting
inequality by m, we have(

1

2σ
+

(n−m)γ

2n

)
‖y(t)−y?‖22

m
≥
(

1

2σ
+
γ

2

)
E[‖y(t+1) − y?‖22|Ft]

m
+

1

2σ

E[‖y(t+1) − y(t)‖22|Ft]
m

+ E
[1

m

∑
k∈K

(
φ∗k(y

(t+1)
k)−φ∗k(y

(t)
k)
)∣∣∣Ft]+ 1

n

n∑
i=1

(
φ∗i (y

(t)
i)−φ∗i (y?i)

)
− E

[〈
u(t) − u? +

n

m
(u(t+1) − u(t)), x(t)

〉∣∣∣Ft], (47)

29

Zhang and Xiao

where we used the shorthand notations (appeared in Algorithm 2)

u(t) =
1

n

n∑
i=1

y
(t)
i ai, u(t+1) =

1

n

n∑
i=1

y
(t+1)
i ai, and u? =

1

n

n∑
i=1

y?i ai. (48)

Since only the dual coordinates with indices in K are updated, we have

n

m
(u(t+1) − u(t)) =

1

m

n∑
i=1

(y
(t+1)
i − y(t)i)ai =

1

m

∑
k∈K

(y
(t+1)
k − y(t)k)ak.

We also derive an inequality characterizing the relation between x(t+1) and x(t). Since
the function being minimized on the right-hand side of (10) has strong convexity parameter
1/τ + λ and x(t+1) is the minimizer, we have

g(x?) +
〈
u(t) +

n

m
(u(t+1) − u(t)), x?

〉
+
‖x(t) − x?‖22

2τ

≥ g(x(t+1)) +
〈
u(t) +

n

m
(u(t+1) − u(t)), x(t+1)

〉
+

(
1

2τ
+
λ

2

)
‖x(t+1) − x?‖22

+
‖x(t+1) − x(t)‖22

2τ
. (49)

Rearranging terms and taking expectation conditioned on Ft, we have

‖x(t) − x?‖22
2τ

≥
(

1

2τ
+
λ

2

)
E[‖x(t+1) − x?‖22|Ft] +

E[‖x(t+1) − x(t)‖22|Ft]
2τ

+ E
[
g(x(t+1))− g(x?)|Ft

]
+ E

[〈
u(t) +

n

m
(u(t+1) − u(t)), x(t+1) − x?

〉∣∣∣Ft]. (50)

In addition, we consider a particular combination of the saddle-point function values at
different points. By the definition of f(x, y) in (4) and the notations in (48), we have

f(x(t+1), y?)− f(x?, y?) +
n

m

(
f(x?, y?)− f(x?, y(t+1))

)
− n−m

m

(
f(x?, y?)− f(x?, y(t))

)
= f(x(t+1), y?)− f(x?, y(t)) +

n

m

(
f(x?, y(t))− f(x?, y(t+1))

)
= 〈u?, x(t+1)〉 − 1

n

n∑
i=1

φ∗i (y
?
i) + g(x(t+1))− 〈u(t), x?〉+

1

n

n∑
i=1

φ∗i (y
(t)
i)− g(x?)

+
n

m

(
〈u(t), x?〉 − 1

n

n∑
i=1

φ∗i (y
(t)
i) + g(x?)− 〈u(t+1), x?〉+

1

n

n∑
i=1

φ∗i (y
(t+1)
i)− g(x?)

)

=
1

n

n∑
i=1

(
φ∗i (y

(t)
i)− φ∗i (y?i)

)
+

1

m

∑
k∈K

(
φ∗i (y

(t+1)
k)− φ∗i (y

(t)
k)
)

+ g(x(t+1))− g(x?)

+ 〈u?, x(t+1)〉 − 〈u(t), x?〉+
n

m
〈u(t) − u(t+1), x?〉. (51)

30

Stochastic Primal-Dual Coordinate Method

Next we add both sides of the inequalities (47) and (50) together, and then subtract
equality (51) after taking expectation with respect to Ft. This leads to the following in-
equality:

‖x(t) − x?‖22
2τ

+

(
1

2σ
+

(n−m)γ

2n

)
‖y(t) − y?‖22

m
+
n−m
m

(
f(x?, y?)− f(x?, y(t))

)
≥
(

1

2τ
+
λ

2

)
E[‖x(t+1)−x?‖22|Ft] +

(
1

2σ
+
γ

2

)
E[‖y(t+1) − y?‖22|Ft]

m
+

E[‖x(t+1) − x(t)‖22|Ft]
2τ

+
E[‖y(t+1)−y(t)‖22|Ft]

2σm
+ E

[
f(x(t+1), y?)−f(x?, y?) +

n

m

(
f(x?, y?)−f(x?, y(t+1))

) ∣∣∣∣Ft]
+ E

[〈
u(t) − u? +

n

m
(u(t+1) − u(t)), x(t+1) − x(t)

〉 ∣∣∣Ft] . (52)

We need to lower bound the last term on the right-hand-side of the above inequality. To
this end, we have〈

u(t) − u? +
n

m
(u(t+1) − u(t)), x(t+1) − x(t)

〉
=

(
y(t) − y?

n
+
y(t+1) − y(t)

m

)T
A(x(t+1) − x(t) − θ(x(t) − x(t−1)))

=
(y(t+1) − y?)TA(x(t+1) − x(t))

n
− θ(y(t) − y?)TA(x(t) − x(t−1))

n

+
n−m
mn

(y(t+1) − y(t))TA(x(t+1) − x(t))− θ

m
(y(t+1) − y(t))TA(x(t) − x(t−1)). (53)

Recall that ‖ak‖2 ≤ R and, according to (12), 1/τ = 4σR2. Therefore,

|(y(t+1) − y(t))TA(x(t+1) − x(t))| ≤ ‖x
(t+1) − x(t)‖22

4τ/m
+
‖(y(t+1) − y(t))TA‖22

m/τ

≤ ‖x
(t+1) − x(t)‖22

4τ/m
+

(
∑

k∈K |y
(t+1)
k − y(t)k | · ‖ak‖2)

2

4mσR2

≤ m‖x(t+1) − x(t)‖22
4τ

+
‖y(t+1) − y(t)‖22

4σ
,

Similarly, we have

|(y(t+1) − y(t))TA(x(t) − x(t−1))| ≤ m‖x(t) − x(t−1)‖22
4τ

+
‖y(t+1) − y(t)‖22

4σ
.

The above upper bounds on the absolute values imply

(y(t+1) − y(t))TA(x(t+1) − x(t)) ≥ −m‖x
(t+1) − x(t)‖22

4τ
− ‖y

(t+1) − y(t)‖22
4σ

,

(y(t+1) − y(t))TA(x(t) − x(t−1)) ≥ −m‖x
(t) − x(t−1)‖22

4τ
− ‖y

(t+1) − y(t)‖22
4σ

.

31

Zhang and Xiao

Combining the above two inequalities with (52) and (53), we obtain

‖x(t) − x?‖22
2τ

+

(
1

2σ
+

(n−m)γ

2n

)
‖y(t) − y?‖22

m

+ θ
(
f(x(t), y?)− f(x?, y?)

)
+
n−m
m

(
f(x?, y?)− f(x?, y(t))

)
+ θ
‖x(t) − x(t−1)‖22

4τ
+ θ

(y(t) − y?)TA(x(t) − x(t−1))
n

≥
(

1

2τ
+
λ

2

)
E[‖x(t+1) − x?‖22|Ft] +

(
1

2σ
+
γ

2

)
E[‖y(t+1) − y?‖22|Ft]

m

+ E
[
f(x(t+1), y?)− f(x?, y?) +

n

m

(
f(x?, y?)− f(x?, y(t+1))

) ∣∣∣∣Ft]
+

E[‖x(t+1) − x(t)‖22|Ft]
4τ

+
E[(y(t+1) − y?)TA(x(t+1) − x(t))|Ft]

n
. (54)

Note that we have added the nonnegative term θ
(
f(x(t), y?) − f(x?, y?)

)
to the left-hand

side in (54) to ensure that each term on one side of the inequality has a corresponding term
on the other side.

If the parameters τ , σ, and θ are chosen as in (12), that is,

τ =
1

2R

√
mγ

nλ
, σ =

1

2R

√
nλ

mγ
, and θ = 1− 1

(n/m) + 2R
√

(n/m)/(λγ)
,

Then the ratios between the coefficients of the corresponding terms on both sides of the
inequality (54) are either equal to θ or bounded by θ. More specifically,

n−m
m

/
n

m
= 1− m

n
≤ θ,

1

2τ

/(
1

2τ
+
λ

2

)
= 1− 1

1 + 2R
√

(n/m)/(λγ)
≤ θ,(

1

2σ
+

(n−m)γ

2n

)/(
1

2σ
+
γ

2

)
= 1− 1

n/m+ 2R
√

(n/m)/(λγ)
= θ.

Therefore, if we define the following sequence,

∆̃(t) =

(
1

2τ
+
λ

2

)
‖x(t) − x?‖22 +

(
1

2σ
+
γ

2

)
‖y(t) − y?‖22

m

+ f(x(t), y?)− f(x?, y?) +
n

m

(
f(x?, y?)− f(x?, y(t))

)
+
‖x(t) − x(t−1)‖22

4τ
+

(y(t) − y?)TA(x(t) − x(t−1))
n

,

then inequality (54) implies E
[
∆̃(t+1)|Ft

]
≤ θ ∆̃(t). Apply this relation recursively and

taking expectation with respect to all random variables up to time t, we have

E
[
∆̃(t)

]
≤ θt ∆̃(0). (55)

32

Stochastic Primal-Dual Coordinate Method

Comparing the definition of ∆(t) in (11), we have

∆̃(t) = ∆(t) +
‖y(t) − y?‖22

4σm
+
‖x(t) − x(t−1)‖22

4τ
+

(y(t) − y?)TA(x(t) − x(t−1))
n

. (56)

For t = 0, by letting x(−1) = x(0), the last two terms in (56) for ∆̃(0) disappears. Moreover,
we can show that the sum of the last three terms in (56) are nonnegative, and therefore we
can replace ∆̃(t) with ∆(t) on the left-hand side of (55). To see this, we bound the absolute
value of the last term:∣∣(y(t) − y?)TA(x(t) − x(t−1))

∣∣
n

≤ ‖x
(t) − x(t−1)‖22

4τ
+
‖A‖22 ‖y(t) − y?‖22

n2/τ

≤ ‖x
(t) − x(t−1)‖22

4τ
+
nR2‖y(t) − y?‖22

n2/τ

=
‖x(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22

4nσ

≤ ‖x
(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22

4mσ
,

where in the second inequality we used ‖A‖22 ≤ ‖A‖2F ≤ nR2, in the equality we used
τσ = 1/(4R2), and in the last inequality we used m ≤ n. The above upper bound on
absolute value implies

(y(t) − y?)TA(x(t) − x(t−1))
n

≥ − ‖x
(t) − x(t−1)‖22

4τ
− ‖y

(t) − y?‖22
4mσ

.

To summarize, we have proved

E
[
∆(t)

]
≤ θt

(
∆(0) +

‖y(0) − y?‖22
4mσ

)
,

which is the desired result.

Appendix B. Proof of Lemma 3

We can write P (x) = F (x) + g(x) where

F (x) =
1

n

n∑
i=1

φi(a
T
i x) = max

y∈Rn

{
1

n
yTAx− 1

n

n∑
i=1

φ∗i (yi)

}
.

Assumption A implies that F (x) is smooth and∇F (x) is Lipschitz continuous with constant
‖A‖22/(nγ). We can bound the spectral norm with the Frobenius norm, i.e., ‖A‖22 ≤ ‖A‖2F ≤
nR2, which results in ‖A‖22/(nγ) ≤ nR2/(nγ) = R2/γ. By definition of the saddle point,

33

Zhang and Xiao

the gradient of F at x? is ∇F (x?) = (1/n)AT y?. Therefore, we have

F (x) ≤ F (x?) + 〈∇F (x?), x− x?〉+
R2

2γ
‖x− x?‖22

= max
y∈Rn

{
1

n
yTAx? − 1

n

n∑
i=1

φ∗i (yi)

}
+

1

n
(y?)TA(x− x?) +

R2

2γ
‖x− x?‖22

=

{
1

n
(y?)TAx? − 1

n

n∑
i=1

φ∗i (y
?
i)

}
+

1

n
(y?)TA(x− x?) +

R2

2γ
‖x− x?‖22

=
1

n
(y?)TAx− 1

n

n∑
i=1

φ∗i (y
?
i) +

R2

2γ
‖x− x?‖22.

Combining the above inequality with P (x) = F (x) + g(x), we have

P (x) ≤ 1

n
(y?)TAx− 1

n

n∑
i=1

φ∗i (y
?
i) +

R2

2γ
‖x− x?‖22 + g(x) = f(x, y?) +

R2

2γ
‖x− x?‖22,

which is the first desired inequality.
Similarly, the second inequality can be shown by first writing

D(y) = − 1

n

n∑
i=1

φ∗i (yi)−G∗(y),

where

G∗(y) = g∗
(
− 1

n
AT y

)
= max

x∈Rd

{
− 1

n
xTAT y − g(x)

}
.

In this case, ∇G∗(y) is Lipschitz continuous with constant

‖A‖22/(n2λ) ≤ nR2/(n2λ) = R2/(nλ).

Again by definition of the saddle-point, we have ∇G∗(y?) = −(1/n)Ax?. Therefore,

G∗(y) ≤ G∗(y?) + 〈∇G∗(y?), y − y?〉+
R2

2nλ
‖y − y?‖22

= max
x∈Rd

{
− 1

n
xTAT y? − g(x)

}
− 1

n
(y − y?)TAx? +

R2

2nλ
‖y − y?‖22

=

{
− 1

n
(x?)TAT y? − g(x?)

}
− 1

n
(y − y?)TAx? +

R2

2nλ
‖y − y?‖22

= − 1

n
yTAx? − g(x?) +

R2

2nλ
‖y − y?‖22.

Recalling that D(y) = − 1
n

∑n
i=1 φ

∗
i (yi)−G∗(y), we conclude with

D(y) ≥ − 1

n
φ∗i (yi) +

1

n
yTAx? + g(x?)− R2

2nλ
‖y − y?‖22 = f(x?, y)− R2

2nλ
‖y − y?‖22.

This finishes the proof.

34

Stochastic Primal-Dual Coordinate Method

Appendix C. Proof of Theorem 6

The proof of Theorem 6 follows similar steps for proving Theorem 1. We start by establish-
ing relation between (y(t), y(t+1)) and between (x(t), x(t+1)). Suppose that the quantity ỹi

minimizes the function φ∗i (β)−β〈ai, x(t)〉+ pin
2σ (β−y(t)i)2. Also notice that φ∗i (β)−β〈ai, x∗〉

is a γ-strongly convex function minimized by y∗i , which implies

φ∗i (ỹi)− ỹi〈ai, x∗〉 ≥ φ∗i (y∗i)− y∗i 〈ai, x∗〉+
γ

2
(ỹi − y∗i)2. (57)

Then, following the same argument for establishing inequality (45) and plugging in inequal-
ity (57), we obtain

pin

2σ
(y

(t)
i − y

?
i)

2 ≥
(pin

2σ
+ γ
)

(ỹi − y?i)2 +
pin(ỹi − y(t)i)2

2σ
+ 〈ai, x? − x(t)〉(ỹi − y?i). (58)

Note that i = k with probability pi. Therefore, we have

(ỹi − y?i)2 =
1

pi
E[(y

(t+1)
i − y?i)2|Ft]−

1− pi
pi

(y
(t)
i − y

?
i)

2,

(ỹi − y(t)i)2 =
1

pi
E[(y

(t+1)
i − y(t)i)2|Ft],

ỹi =
1

pi
E[y

(t+1)
i |Ft]−

1− pi
pi

y
(t)
i ,

where Ft represents the sigma field generated by all random variables defined before iteration
t. Substituting the above equations into inequality (58), and averaging over i = 1, 2, . . . , n,
we have

n∑
i=1

(
1

2σ
+

(1− pi)γ
pin

)
(y

(t)
i − y

?
i)

2

≥
n∑
i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y?i)2|Ft] +

E[(y
(t+1)
k − y(t)k)2|Ft]

2σ

+ E
[〈

(u(t) − u?) +
1

pk
(u(t+1) − u(t)), x? − x(t)

〉∣∣∣Ft], (59)

where u? = 1
n

∑n
i=1 y

?
i ai and u(t) = 1

n

∑n
i=1 y

(t)
i ai have the same definition as in the proof

of Theorem 1.
For the relation between x(t) and x(t+1), we first notice that 〈u∗, x〉+g(x) is a λ-strongly

convex function minimized by x∗, which implies

〈u∗, x(t+1)〉+ g(x(t+1)) ≥ 〈u∗, x∗〉+ g(x∗)+
λ

2
(x(t+1) − x∗)2. (60)

Following the same argument for establishing inequality (49) and plugging in inequality (60),
we obtain

‖x(t) − x?‖22
2τ

≥
(

1

2τ
+ λ

)
‖x(t+1) − x?‖22 +

‖x(t+1) − x(t)‖22
2τ

+
〈

(u(t) − u?) +
1

pk
(u(t+1) − u(t)), x(t+1) − x?

〉
. (61)

35

Zhang and Xiao

Taking expectation over both sides of inequality (61) and adding it to inequality (59) yields

‖x(t) − x?‖22
2τ

+
n∑
i=1

(
1

2σ
+

(1− pi)γ
pin

)
(y

(t)
i − y

?
i)

2 ≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x?‖22|Ft]

+
n∑
i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y?i)2|Ft] +

‖x(t+1) − x(t)‖22
2τ

+
E[(y

(t+1)
k − y(t)k)2|Ft]

2σ

+ E
[((y(t) − y?)TA

n
+

(y
(t+1)
k − y(t)k)aTk

pkn

)
((x(t+1) − x(t))− θ(x(t) − x(t−1)))︸ ︷︷ ︸

v

∣∣∣Ft],
(62)

where the matrix A is a n-by-d matrix, whose i-th row is equal to the vector aTi .

Next, we lower bound the last term on the right-hand side of inequality (62). Indeed, it
can be expanded as

v =
(y(t+1) − y?)TA(x(t+1) − x(t))

n
− θ(y(t) − y?)TA(x(t) − x(t−1))

n

+
1− pk
pkn

(y
(t+1)
k − y(t)k)aTk (x(t+1) − x(t))− θ

pkn
(y

(t+1)
k − y(t)k)aTk (x(t) − x(t−1)). (63)

Note that the probability pk given in (20) satisfies

pk =
1− α
n

+
α‖ak‖2∑n
i=1 ‖ai‖2

≥ (1− α)‖ak‖2
nR

+
α‖ak‖2∑n
i=1 ‖ai‖2

=
‖ak‖2
nRα

, k = 1, . . . , n.

Since the parameters τ and σ satisfies στR2
α = 1/4, we have p2kn

2/τ ≥ 4σ‖ak‖22 and conse-
quently

|(y(t+1)
k − y(t)k)aTk (x(t+1) − x(t))|

pkn
≤ ‖x

(t+1) − x(t)‖22
4τ

+
‖(y(t+1)

k − y(t)k)ak‖22
p2kn

2/τ

≤ ‖x
(t+1) − x(t)‖22

4τ
+

(y
(t+1)
k − y(t)k)2

4σ
.

Similarly, we have

|(y(t+1)
k − y(t)k)aTk (x(t) − x(t−1))|

pkn
≤ ‖x

(t) − x(t−1)‖22
4τ

+
(y

(t+1)
k − y(t)k)2

4σ
.

Combining the above two inequalities with lower bounds (62) and (63), we obtain

‖x(t) − x?‖22
2τ

+

n∑
i=1

(
1

2σ
+

(1− pi)γ
pin

)
(y

(t)
i − y

?
i)

2 ≥
(

1

2τ
+ λ

)
E[‖x(t+1) − x?‖22|Ft]

+
n∑
i=1

(
1

2σ
+

γ

pin

)
E[(y

(t+1)
i − y?i)2|Ft] +

E[‖x(t+1) − x(t)‖22|Ft]− θ‖x(t) − x(t−1)‖22
4τ

+
E[(y(t+1) − y?)TA(x(t+1) − x(t))|Ft]− θ(y(t) − y?)A(x(t) − x(t−1))

n
. (64)

36

Stochastic Primal-Dual Coordinate Method

Recall that the parameters τ , σ, and θ are chosen to be

τ =
1

2Rα

√
γ

nλ
, σ =

1

2Rα

√
nλ

γ
, and θ = 1−

(
n

1− α
+Rα

√
n

λγ

)−1
.

Plugging in these assignments and using the fact that pi ≥ 1−α
n , we find that

1/(2τ)

1/(2τ) + λ
= 1−

(
1 +

1

2τλ

)−1
= 1−

(
1 +Rα

√
n

λγ

)−1
≤ θ,

and for i = 1, 2, . . . , n,

1/(2σ) + (1− pi)γ/(pin)

1/(2σ) + γ/(pin)
= 1−

(1

pi
+

n

2σ

)−1
≤ 1−

(n

1− α
+

n

2σγ

)−1
= θ.

Therefore, if we define a sequence ∆(t) such that

∆(t) =

(
1

2τ
+ λ

)
E[‖x(t) − x?‖22] +

n∑
i=1

(
1

2σ
+

γ

pin

)
E[(y

(t)
i − y

?
i)

2]

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y?)TA(x(t) − x(t−1))]
n

,

then inequality (64) implies the recursive relation ∆(t+1) ≤ θ ·∆(t), which implies(
1

2τ
+ λ

)
E[‖x(t) − x?‖22] +

(
1

2σ
+
γ

n

)
E[‖y(t) − y?‖22]

+
E[‖x(t) − x(t−1)‖22]

4τ
+

E[(y(t) − y?)TA(x(t) − x(t−1))]
n

≤ θt∆(0), (65)

where

∆(0) =

(
1

2τ
+ λ

)
‖x(0) − x?‖22 +

n∑
i=1

(
1

2σ
+

γ

pin

)
(y

(0)
i − y

?
i)

2

≤
(

1

2τ
+ λ

)
‖x(0) − x?‖22 +

(
1

2σ
+

γ

1− α

)
‖y(0) − y?‖22.

To eliminate the last two terms on the left-hand side of inequality (65), we notice that

|(y(t) − y?)TA(x(t) − x(t−1))|
n

≤ ‖x
(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22 ‖A‖22

n2/τ

≤ ‖x
(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22 ‖A‖2F

n2/τ

=
‖x(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22

∑n
i=1 ‖ai‖22

4σ(
∑n

i=1 ‖ai‖2)2

≤ ‖x
(t) − x(t−1)‖22

4τ
+
‖y(t) − y?‖22

4σ
,

where in the equality we used n2/τ = 4σn2R2
α ≥ 4σn2R = 4σ (

∑n
i=1 ‖ai‖2)

2. This implies

(y(t) − y?)TA(x(t) − x(t−1))
n

≥ − ‖x
(t) − x(t−1)‖22

4τ
− ‖y

(t) − y?‖22
4σ

.

Substituting the above inequality into inequality (65) completes the proof.

37

Zhang and Xiao

References

Alekh Agarwal and Léon Bottou. A lower bound for the optimization of finite sums. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), pages
78–86, Lille, France, 2015.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1200–1205, Montreal, Canada, June 2017.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-threshold algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Dimitri P. Bertsekas. Incremental proximal methods for large scale convex optimization.
Mathematical Programming, Ser. B, 129:163–195, 2011.

Dimitri P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex
optimization: a survey. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization
for Machine Learning, chapter 4. The MIT Press, 2012.

Doron Blatt, Alfred Hero, and Hillel Gauchman. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves
Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th International Con-
ference on Computational Statistics (COMPSTAT’2010), pages 177–187, Paris, France,
August 2010. Springer.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 161–168. MIT Press, Cambridge, MA, 2008.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40
(1):120–145, 2011.

Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent method for large-
scale l2-loss linear support vector machines. Journal of Machine Learning Research, 9:
1369–1398, 2008.

Min-Te Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):
653–656, 1982.

38

Stochastic Primal-Dual Coordinate Method

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems 27, pages 1646–1654. 2014.

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10:2873–2898, 2009.

Rong-En Fan and Chih-Jen Lin. LIBSVM data: Classification, regression and multi-label.
URL: http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets, 2011.

Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approximate
proximal point and faster stochastic algorithms for empirical risk minimization. In Pro-
ceedings of The 32nd International Conference on Machine Learning (ICML), pages 2540–
2548. 2015.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, New York, 2nd edition, 2009.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex Analysis.
Springer, 2001.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan.
A dual coordinate descent method for large-scale linear svm. In Proceedings of the 25th
International Conference on Machine Learning (ICML), pages 408–415, 2008.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems 26, pages
315–323. 2013.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Techni-
cal report, Department of Industrial and System Engineering, University of Florida, July
2015.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10:777–801, 2009.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems 25, pages 2672–2680. 2012.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems 28, pages 3384–
3392. 2015a.

Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated randomized proximal coordinate
gradient method and its application to regularized empirical risk minimization. SIAM
Journal on Optimization, 25(4):2244–2273, 2015b.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16(6):964–979, December 1979.

39

Zhang and Xiao

Angelia Nedić and Dimitri P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12(1):109–138, 2001.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted
sampling, and the randomized Kaczmarz algorithm. Mathematical Programming, 155
(1-2):549–573, 2016.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on Op-
timization, 19(4):1574–1609, 2009.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

Yurii Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, Ser. B, 140:125–161, 2013.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, 2nd
edition, 2006.

Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating direction
method of multipliers. In Proceedings of the 30th International Conference on Machine
Learning (ICML), Atlanta, GA, USA, 2013.

John Platt. Fast training of support vector machine using sequential minimal optimization.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support
Vector Learning, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

Boris T. Polyak and Anatoli Juditsky. Acceleration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization, 30:838–855, 1992.

Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent
with arbitrary sampling. In Advances in Neural Information Processing Systems 28, pages
865–873. 2015.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming, 144
(1):1–38, 2014.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data opti-
mization. Mathematical Programming, 156(1):433–484, 2016.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochas-
tic average gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.

40

Stochastic Primal-Dual Coordinate Method

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for reg-
ularized loss minimization. Journal of Machine Learning Research, 14:567–599, 2013a.

Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate
ascent. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 378–385. 2013b.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. Mathematical Programming, 155(1):105–145,
2015.

Taiji Suzuki. Dual averaging and proximal gradient descent for online alternating direc-
tion multiplier method. In Proceedings of the 30th International Conference on Machine
Learning (ICML), pages 392–400, Atlanta, GA, USA, 2013.

Taiji Suzuki. Stochastic dual coordinate ascent with alternating direction method of multi-
pliers. In Proceedings of the 31st International Conference on Machine Learning (ICML),
pages 736–744, Beijing, 2014.

Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal and
dual methods for SVMs. In Proceedings of the 30th International Conference on Machine
Learning (ICML), 2013.

Paul Tseng. An incremental gradient(-projection) method with momentum term and adap-
tive stepsiz rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Unpublished manuscript, 2008.

Huahua Wang and Arindam Banerjee. Online alternating direction method. In Proceedings
of the 29th International Conference on Machine Learning (ICML), pages 1119–1126,
Edinburgh, Scotland, UK, 2012.

Blake Woodworth and Nathan Srebro. Tight complexity bounds for optimizing composite
objectives. arXiv:1605.08003, 2016.

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, Series B,
151(1):3–34, 2015.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-
tion. Journal of Machine Learning Research, 11:2534–2596, 2010.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Tianbao Yang. Trading computation for communication: Distributed stochastic dual coor-
dinate ascent. In Advances in Neural Information Processing Systems 26, pages 629–637.
2013.

41

Zhang and Xiao

Adams Wei Yu, Qihang Lin, and Tianbao Yang. Double stochastic primal-dual co-
ordinate method for regularized empirical risk minimization with factorized data.
arXiv:1508.03390, 2015.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine Learning
(ICML), pages 116–123, Banff, Alberta, Canada, 2004.

Xiaoqun Zhang, Martin Burger, and Stanley Osher. A unifoed primal-dual algorithm frame-
work based on Bregman iteration. Journal of Scientific Computing, 46(1):20–46, January
2011.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized
empirical risk minimization. In Proceedings of The 32nd International Conference on
Machine Learning (ICML), pages 353–361. 2015.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regular-
ized loss minimization. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of JMLR Proceedings, pages 1–9. JMLR.org, 2015.

Leon Wenliang Zhong and James T. Kwok. Fast stochastic alternating direction method
of multipliers. In Proceedings of the 31st International Conference on Machine Learning
(ICML), pages 46–54, Beijing, China, 2014.

42

	Introduction
	Condition Number and Batch Complexity
	Outline of the Paper

	The SPDC Method
	Convergence Analysis
	Convergence Rate of Primal-Dual Gap

	Extensions to Non-Smooth or Non-Strongly Convex Functions
	SPDC with Non-Uniform Sampling
	Related Work
	Dual Coordinate Ascent Methods
	Other Related Work

	Efficient Implementation with Sparse Data
	Squared 2-Norm Penalty
	(1 + 2)-Norm Penalty

	Experiments
	Ridge Regression with Synthetic Data
	Binary Classification with Real Data
	Uniform Sampling versus Non-Uniform Sampling

	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Theorem 6

