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Abstract

The paper considers suprema of empirical processes for linear time series indexed by func-
tional classes. We derive an upper bound for the tail probability of the suprema under
conditions on the size of the function class, the sample size, temporal dependence and the
moment conditions of the underlying time series. Due to the dependence and heavy-tailness,
our tail probability bound is substantially different from those classical exponential bounds
obtained under the independence assumption in that it involves an extra polynomial de-
caying term. We allow both short- and long-range dependent processes. For empirical
processes indexed by half intervals, our tail probability inequality is sharp up to a multi-
plicative constant.
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1. Introduction

Concentration inequalities for suprema of empirical processes play a fundamental role in
statistical learning theory. They have been extensively studied in the literature; see for
example Vapnik (1998), Ledoux (2001), Massart (2007), Boucheron et al. (2013) among
others. To fix the idea, let (Ω,F ,P) be the probability space on which a sequence of
random variables (Xi) is defined, A be a set of real-valued measurable functions. For a
function g, denote Sn(g) =

∑n
i=1 g(Xi). We are interested in studying the tail probability

T (z) := P(∆n ≥ z), where ∆n = sup
g∈A
|Sn(g)− ESn(g)|. (1)

When A is uncountable, P is understood as the outer probability (van der Vaart (1998)).
In the special case in which X1, . . . , Xn are independent and identically distributed (i.i.d.)
random variables and A = {1(−∞,t], t ∈ R} is the set of indicator functions of half intervals,
the Dvoretzky-Kiefer-Wolfowitz-Massart (Dvoretzky et al. (1956); Massart (1990)) theorem
asserts that for all z ≥ 0,

T (z) ≤ 2e−2z2/n. (2)

Talagrand (1994) obtained a concentration inequality with A = {1A, A ∈ C}, where C is
a VC class; cf Vapnik and Chervonenkis (1971). For empirical processes of independent
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random variables, a substantial theory has been developed and various powerful techniques
have been invented; see Talagrand (1995, 1996), Ledoux (1997), Massart (2000), Boucheron
et al. (2003), Klein and Rio (2005) and the monograph Boucheron et al. (2013).

In this paper we shall consider tail probability inequalities for temporally dependent data
which are commonly encountered in economics, engineering, finance, geography, physics and
other fields. It is considerably more challenging to deal with dependent data. Previous re-
sults include uniform laws of large numbers and central limit theorems; see, for example,
Adams and Nobel (2012), Levental (1988), Arcones and Yu (1994), Kontorovich and Brock-
well (2014) and Yu (1994). Various uniform deviation results have been derived for mixing
processes, Markov chains and their variants; see Marton (1996, 1998), Samson (2000),
Kontorovich and Ramanan (2008), Adamczak (2008), Kontorovich and Weiss (2014), Kon-
torovich and Raginsky (2017), Kuznetsov and Mohri (2014, 2015) and Agarwal and Duchi
(2013) among others. In many of the aforementioned papers, exponentially decaying tail
bounds have been obtained which are similar to those obtained under independence.

Here we shall consider the widely used linear or moving average (MA) process

Xi =
∑
k≥0

akεi−k, (3)

where innovations εi, i ∈ Z, are i.i.d random variables with mean 0 and ak, k ≥ 0, are real
numbers such that Xi is a proper random variable. Assume that εi ∈ Lq, q ≥ 1, namely
µq := ‖εi‖q = (E|εi|q)1/q <∞ and coefficients ak = O(k−β), β > 1/q. Namely there exists a
constant C > 0 such that |ak| ≤ Ck−β holds for all large k. Then by Kolmogorov’s three-
series theorem (Chow and Teicher (1997)), the sum in (3) exists and Xi is well-defined.
If q ≥ 2 and 1/2 < β < 1, then the auto-covariances of the process (Xi) may not be
summable, suggesting that the process is long-memory or long-range dependent (LRD).
When β > 1, the process is short-range dependent (SRD). The linear or MA(∞) process
(3) is very widely used in practice and it includes many important time series models such
as the autoregressive moving average (ARMA) process

(1−
p∑
j=1

θjB
j)Xi = Xi −

p∑
j=1

θjXi−j =

q∑
k=0

φkεi−k, (4)

where θj and φk are real coefficients such that the roots to the equation 1−
∑p

j=1 θju
j = 0

are all outside the unit disk and B is the backshift operator, and the fractional autoregressive
integrated moving average (FARIMA) (cf. Granger and Joyeux (1980); Hosking (1981))

(1−B)d(Xi −
p∑
j=1

θjXi−j) =

q∑
k=0

φkεi−k, (5)

where the fractional integration index d ∈ (0, 1/2). For (4), the corresponding coefficients
|ai| = O(ρi) for some ρ ∈ (0, 1). While for (5) under suitable causality and invertibility
conditions the limit limi→∞ i

1−dai = c 6= 0 exists (Granger and Joyeux (1980); Hosking
(1981)). Hence ai ∼ ci−β with β = 1− d.

The primary goal of the paper is to establish a concentration inequality for T (z) in (1)
for the linear process (3). Our theory allows both short- and long-range dependence and
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heavy-tailed innovations. Heavy-tailed distributions have been substantially studied in the
literature. For instance, Mandelbrot (1963) documented evidence of power-law behavior in
asset prices. Rachev and Mittnik (2000) showed long memory and heavy tails in the high
frequency asset return data. Recently researchers extended tail probability inequalities
to independent heavy-tailed random variables. Lederer and van de Geer (2014) applied
the truncation method to develop bounds for an envelope of functions with finite moment
assumptions on the envelope. Based on the robust M-estimator introduced in Catoni (2012),
Brownlees et al. (2015) proposed a risk minimization procedure using the generic chaining
method. The case with both dependence and heavy tails is more challenging. Jiang (2009)
introduced a triplex inequality to handle unbounded and dependent situations. Mohri and
Rostamizadeh (2010) considered ϕ-mixing and β-mixing processes. It is generally not easy
to verify that a process is strong mixing and computation of mixing coefficients can be
very difficult. Some simple and widely used AR processes are not strong mixing (Andrews
(1984)).

In the present paper, we propose a martingale approximation based method. An in-
tuitive illustration is given in Section 6.2. Our tail probability bound is a combination of
an exponential term and a polynomial term (cf. Theorems 4 and 8), whose order depends
on both β and q, which quantify the dependence and the moment condition, respectively.
Larger β or q implies thinner tails. Our tail inequality allows both short- and long- range
dependent processes and can also be adapted to discontinuous function classes including
empirical distribution functions, which is fundamental and is of independent interest. Our
theorem implies that, if the innovation ε0 has tail

P(|ε0| ≥ x) = O(log−r0(x)x−q), as x→∞, (6)

where r0 > 1 and q > 1 signifies heaviness of the tail, namely there exists a constant C > 0
such that P(|ε0| ≥ x) ≤ Clog−r0(x)x−q holds for all large x, and the coefficients

ak = O(k−β), β > 1 and qβ ≥ 2, (7)

where β quantifies the dependence with larger β implying weaker dependence, then for
z ≥
√
nlog(n), the tail probability

P
(

sup
t∈R

∣∣∣ n∑
i=1

[1Xi≤t − F (t)]
∣∣∣ > z

)
.

n

zqβlogr0(z)
, (8)

where the constant in . is independent of n and z, F (t) = P(Xi ≤ t) is the cumulative
distribution function (c.d.f.) for Xi. Note that the bound (8) involves both the dependence
parameter β and the tail heaviness parameter q. In comparison with the sub-Gaussian
bound e−2z2/n in (2), the polynomial bound (8) is much larger. On the other hand, however,
it turns out that the polynomial bound (8) is sharp and it is essentially not improvable. For
example, let Fε(t) = P(ε0 ≤ t) be the c.d.f. of ε0, and assume that the innovation εi has a
symmetric regularly varying tail: for some r0 > 1,

Fε(−x) = 1− Fε(x) ∼ log−r0(x)x−q as x→∞, (9)

namely limx→∞(1− Fε(x))logr0(x)xq = 1, and that the coefficients

ak = (k ∨ 1)−β, β > 1. (10)
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Then by Theorem 14, when n/logα0(n) ≥ z ≥
√
nlog(n) for some α0 > 0, we can have the

precise order of the tail probability

P
( n∑
i=1

[1Xi≤t − F (t)] > z
)

= C1
n

zqβlogr0(z)
(1 + o(1)), n→∞,

and

P
( n∑
i=1

[1Xi≤t − F (t)] < −z
)

= C2
n

zqβlogr0(z)
(1 + o(1)), n→∞,

where the constants C1, C2 are independent of z and n. Hence the bound in (8) is sharp up
to a multiplicative constant.

On the technical side, to establish inequality (8) and more generally, a tail probabil-
ity inequality for empirical processes indexed by function classes, we need to develop new
approaches so that the two main challenges posed by dependence and heavy tails can be
dealt with. Techniques developed for empirical processes with independent random vari-
ables are not directly applicable. Here, we apply the martingale approximation method,
together with the Fuk-Nagaev inequalities for high-dimensional vectors recently obtained
by Chernozhukov et al. (2017), projection techniques and martingale inequalities, so that
an optimal bound can be derived. Intuitions are given in the proof of Theorem 4 in Section
6.2. As a result, we can allow short- and long-range dependent, and light- and heavy-tailed
linear processes.

The remainder of the paper is organized as follows. Section 2 states the theoretical
results: Subsections 2.1 and 2.2 show the tail probabilities for short- and long- range de-
pendence situations respectively with heavy tailness, Subsection 2.3 presents results for light
tailed innovations. In Section 3, we apply the concentration inequality to empirical distri-
bution functions as an important special case. We also derive an exact order of decay speed
under certain settings, which demonstrates the sharpness of our upper bound. Sections 4
and 5 present applications in kernel density estimation and empirical risk minimization,
respectively. Detailed proofs are provided in Section 6.

We now introduce some notation. For a random variable X and q > 0, we write X ∈ Lq
if ‖X‖q := E(|X|q)1/q <∞. Write ‖ · ‖ = ‖ · ‖2. For a function g, define |g|∞ := supx |g(x)|.
Let x ∨ y = max{x, y} and x ∧ y = min{x, y}. For two sequences of positive numbers (an)
and (bn), write an . bn (resp. an � bn, an � bn, an ∼ bn) if there exists a positive constant
C such that an/bn ≤ C for all large n (resp. limn→∞ an/bn = 0, 1/C ≤ an/bn ≤ C for all
large n, limn→∞ an/bn = 1). Denote by Fε (resp. F ) the c.d.f. of the innovation εi (resp.
Xi) and by fε = F ′ε (resp. f = F ′) the probability density function (p.d.f.) of εi (resp. Xi).

2. Main results

Recall (3) for the MA(∞) process (Xi), where εj ∈ Lq, j ∈ Z, are i.i.d. with c.d.f. Fε and
p.d.f. fε. Assume a0 6= 0 and without loss of generality, let a0 = 1.

For a function class A of bounded functions, define the covering number

NA(δ) := min
{
m : there exist g1, . . . , gm ∈ A such that sup

g∈A
min

1≤j≤m
|g − gj |∞ ≤ δ

}
. (11)
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Let HA(δ) := log(NA(δ)) be the metric entropy.

Before stating the main theorems, we shall introduce some assumptions.

(A) (Smoothness) For any g ∈ A, g′, g′′ exist and |g|, |g′|, |g′′| are uniformly bounded,
without loss of generality set the bound to be 1.

(A′) Functions in A are uniformly bounded in | · |∞ with supg∈A |g|∞ ≤ 1. Assume that
f ′ε, f

′′
ε exist and the integrals

∫∞
−∞ |f

′
ε(x)|dx,

∫∞
−∞ |f

′′
ε (x)|dx are bounded by 1.

(B) (Algebraically Decaying Coefficients) For some γ, β > 0, |ak| ≤ γk−β holds for all
k ≥ 1.

(B′) (Exponentially Decaying Coefficients) For some γ > 0, 0 < ρ < 1, |ak| ≤ γρk holds for
all k ≥ 1.

(D) (Exponential Class) For some constants N,C, θ > 0, the covering number NA(δ) ≤
Nexp(Cδ−θ) holds for all 0 < δ ≤ 1.

(D′) (Algebraical Class) For some constants N, θ > 0, the covering number NA(δ) ≤ Nδ−θ
holds for all 0 < δ ≤ 1.

Remark 1 Assumption (A) requires that functions in A have up to second order deriva-
tives. This is relaxed in (A′), where an extra differentiability condition of fε is imposed. It
holds for many commonly used distributions such as Gaussian and t distributions.

Remark 2 Assumption (B) specifies the decay rate of the MA(∞) coefficients to be at
most polynomial. The parameter β controls the dependence strength, with larger β implying
weaker dependence. By Theorem 4(v) in Chen and Wu (2016), the AR(∞) process

Xt =
∑
i≥1

biXt−i + εt (12)

with coefficients |bi| = O(i−β), β > 1, and
∑

i≥1 |bi| < 1, can also be rewritten as an MA(∞)
process with coefficients (ai) decaying at the same polynomial rate. Assumption (B′) allows
ARMA processes (4).

Remark 3 Assumptions (D) and (D′) quantify the magnitudes of the class A. They are
satisfied for many function classes; see van der Vaart and Wellner (1996) and Kosorok
(2008). For example, the former holds for Hölder or Sobolev classes, while the latter holds
for VC classes.

In the MA(∞) model described in (3), the parameter β controls the dependence: if
β > 1, the covariances Cov(Xi, X0), i ≥ 1, are absolutely summable and the process (Xi)
is short-range dependent; if 1/2 < β < 1, then the covariances may not be absolutely
summable and the process exhibits long-range dependence. The two cases are dealt with
in Subsections 2.1 and 2.2, respectively. Subsection 2.3 deals linear processes with sub-
exponential innovations.
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2.1 Short-range dependent linear processes

We first consider the short-range dependence case with β > 1 in model (3). Recall (1) for
∆n. Assume throughout the paper that n ≥ 2. Let q′ := q ∧ 2 and

c(n, q) =

{
n1/q′ , if q > 2 or 1 < q < 2,

n1/2log1/2(n), if q = 2.
(13)

Theorems 4 and 7 concern algebraically and exponentially decaying coefficients, respectively.
In the statements of our theorems we use the notation Cα,β,γ,... to denote constants that
only depend on subscripts α, β, γ, .... Since |g|∞ ≤ 1, we have T (z) = 0 if z > n and thus
assume throughout the paper that z ≤ n.

Theorem 4 (Algebraically decaying coefficients) Assume (A) and (B), β > 1, q > 1
and qβ ≥ 2. Then there exist positive constants Cq, Cβ,q,γ and Cβ,γ such that for all z > 0,

P
(

∆n ≥ Cqa∗µqc(n, q) + z
)

≤Cβ,q,γµqq
n

zqβ
+ 3exp

(
− z2

Cβ,γµ
q′

q′n
+HA(z/(4n))

)
+ 2exp

(
− zv

8µv′q
+HA(z/(4n))

)
, (14)

where µq = (E|εi|q)1/q, a∗ =
∑∞

i=0 |ai|, and

v = vq,β = (q′β − 1)(3q′β − 1)−1, v′ = 2q′(3q′β − 1)−1. (15)

The specific values of the constants Cq, Cβ,q,γ and Cβ,γ will be given in Remark 25
(Section 6.2). The bound (14) is a combination of exponential and polynomial terms. For
z relatively small, the exponential term contributes more, while for z relatively large, the
polynomial term n/zqβ dominates. Note that 0 < v < 1/3. Comparing the last two terms
in (14), if n1/(2−v) . z, then the last term dominates, and vise versa.

In Theorem 4, under Assumption (A), the class A consists of differentiable functions.
To incorporate non-continuous functions, we can impose Assumption (A′), which requires
differentiability of fε; cf Proposition 5. Corollary 6 follows from Theorem 4 and Proposition
5.

Proposition 5 Assume (A′) and (B), β > 1, q > 1 and qβ ≥ 2. Then there exist positive
constants Cq, Cβ,q,γ and Cβ,γ such that for all z > 0,

P
(

∆n ≥ Cqa∗µqc(n, q) + z
)

≤Cβ,q,γµqq
n

zqβ
+ 5exp

(
− z2

Cβ,γ(µq
′

q′ ∨ 1)n
+HA(z/(4n))

)
+ 2exp

(
− zv

8µv′q
+HA(z/(4n))

)
,

where c(n, q) is defined in (13) and v, v′ are defined in (15).

Corollary 6 Assume (A) (or (A′)) and (B). Let β > 1, q > 1 and qβ ≥ 2. Define c(n, q)
and v as in (13) and (15), respectively. If either (i) Assumption (D) holds, α = max{θ/(θ+
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2), (θ − v)/(θ + v)}/2, and z ≥ cn1/2+α for a sufficiently large c; or (ii) for some N, θ > 0,
Assumption (D′) holds and z ≥ cn1/2log1/2(n) for a sufficiently large c, then we have

P
(

∆n ≥ Cqa∗µqc(n, q) + z
)
≤ Cµqq

n

zqβ
, (16)

where the constant C only depends on β, q, γ, θ, c and N.

Observe that in (16), when q > 2, the term Cqa∗µqc(n, q) + z can actually be replaced
by z by choosing a larger constant C at the right hand side of (16), since z ≥ cn1/2+α or
z ≥ cn1/2log1/2(n) for a sufficiently large c, under (i) or (ii), respectively. The tail bound
depends on both the dependence parameter β and the moment q.

If the coefficients (ak) decay exponentially (cf Assumption (B′)), then the process is
very weakly dependent. It turns out that the polynomial term can be removed and an
exponential upper bound can be derived; cf Theorem 7. Note that the bound in Theorem 7
explicitly involves ρ, with larger ρ indicating stronger dependence. We emphasize that the
constants Cq, Cq,γ and C ′q,γ in (17) does not depend on ρ and they are given in Remark
26 (Section 6.3). Concentration inequality of this form is useful in situations in which one
needs to deal with the dependence on ρ.

Theorem 7 (Exponentially decaying coefficients) Assume that the coefficients (ak)
of (Xi) defined in (3) satisfy (B′) and µq = ‖εi‖q <∞, q > 1. Let A = {g : R 7→ R, |g|∞ ≤
1, |g′|∞ ≤ 1}. Then

P(∆n ≥ Cqµqc∗(n, ρ, q) + z) ≤ Cq,γ
exp{−q(1− ρ)n}µqq
zq(1− ρ)q+q/q′

+ exp
{
− C ′q,γ

z2(1− ρ)2

n(µqq ∨ 1)

}
, (17)

where q′ = min{q, 2},

c∗(n, ρ, q) =

{
n1/q′(1− ρ)−1−1/q′ , if q 6= 2,
√
n(1− ρ)−3/2log(n(1− ρ)−1), if q = 2.

2.2 Long-range dependent linear processes

The phenomenon of long-range dependence has been observed in various fields including
economics, finance, hydrology, geophysics etc; see, for example, Beran (1994), Baillie (1996).
This subsection considers 1/2 < β < 1, the long-range dependence case in model (3). Weak
convergence for empirical processes for long-memory time series was studied by Ho and
Hsing (1996) and Wu (2003) among others. Under suitable conditions on the class A, by
Corollary 1 in Wu (2003), one has E(∆2

n) . n3−2β, which by Markov’s inequality implies

P(∆n ≥ z) ≤
E(∆2

n)

z2
.
n3−2β

z2
.

Here we shall derive a much sharper and more general bound; cf Theorem 8, which allows
strong dependence with non-summable algebraically decaying coefficients since β < 1. In
comparison the coefficients (ak) in Theorem 4 are summable, since β > 1, and the pro-
cess is weakly dependent. Proposition 9 is an analogous version of Proposition 5 which
allows discontinuous functions. Corollary 10 provides an explicit upper bound under cer-
tain conditions on the bracketing numbers and it follows from Theorem 8 and Proposition
9.
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Theorem 8 Assume (A) and (B), q > 2, 1/2 < β < 1. Then there exist positive constants
C ′β,q,γ, Cβ,q,γ and Cβ,γ such that for all z > 0,

P
(

∆n ≥ C ′β,q,γµqn3/2−β + z
)

≤Cβ,q,γ(µ2q
q ∨ µqq)

n1+(1−β)q

zq

(
1 +

[HA(z/4n) + log(n)]q

c̃q(n, β)

)
+ 3exp

(
− z2

Cβ,γn3−2βµ2
2

+HA(z/(4n))
)
,

(18)

where

c̃(n, β) =

{
n1/4−|3/4−β| if β 6= 3/4,

n1/4/log(n) if β = 3/4.
(19)

Values of constants C ′β,q,γ , Cβ,q,γ and Cβ,γ in Theorem 8 are given in Remark 29 (Section

6.4). In comparison with the bound nz−qβ in the short-range dependence case Theorem
4, the bound n1+(1−β)qz−q in (18) of Theorem 8 is larger since nz−qβ ≤ n1+(1−β)qz−q and
n ≥ z.

Proposition 9 Assume (A′) and (B), q > 2, 1/2 < β < 1. Recall (19) for c̃(n, q). Then
there exist positive constants C ′β,q,γ, Cβ,q,γ and Cβ,γ such that for all z > 0,

P
(

∆n ≥ C ′β,q,γµqn3/2−β + z
)
≤ Cβ,q,γ(µ2q

q ∨ µqq)
n1+(1−β)q

zq

(
1 +

[HA(z/4n) + log(n)]q

c̃q(n, β)

)
+5exp

(
− z2

Cβ,γn3−2β(µ2
2 ∨ 1)

+HA(z/(4n))
)
.

Corollary 10 Assume (A) (or (A′)) and (B). Let q > 2, 1/2 < β < 1. If either (i)
for some N, θ > 0, Assumption (D) holds and z ≥ cn3/2−β+α for α = (β − 1/2)θ/(θ +
2) and a sufficiently large c or (ii) for some N, θ > 0, Assumption (D′) holds and z ≥
cn3/2−βlog1/2(n) for a sufficiently large c. Then there exists a constant C ′q,β,γ such that

P
(

∆n ≥ C ′q,β,γµqn3/2−β + z
)
.
n1+(1−β)q

zq
(µ2q
q ∨ µqq)

(
1 +

tqn
c̃q(n, β)

)
, (20)

where tn = nθ(β−1/2−α) and log(n) for (i) and (ii) respectively, and the constant in . only
depends on q, β, γ, θ, c and N .

2.3 Linear processes with sub-exponential innovations

In this subsection, we shall consider concentration inequalities for linear processes with
innovations having very light tails. In particular, we assume that innovations εi have sub-
exponential tails. In this case for both short- and long-range dependent processes we have
exponentially decaying tail probabilities, with different norming sequences.

Theorem 11 Let G = {g : |g|∞ ≤ 1, |g′|∞ ≤ 1}. Assume (B) and there exist constants
c0 > 0, f∗ > 0 such that |fε|∞ ≤ f∗, where fε is the p.d.f of ε0, and µe := E(ec0|ε0|) < ∞.
Then there exist constants C1, C2, C3 and C4 such that
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(a) for SRD case (β > 1), we have for all z > 0,

P(∆n ≥ C1

√
n+ z) ≤ 2e−C2z2/n,

(b) for LRD case (1/2 < β < 1), we have for all z > 0,

P(∆n ≥ C3n
3/2−β + z) ≤ 2e−C4z2/n3−2β

.

Here the constants C1 and C3 only depend on f∗, β, γ, c0, µe, constants C2, C4 only depend on
β, γ, c0, µ, µe and their values are given in Remark 30 (Section 6.5). Note that Theorem 11(a)
implies P(∆ ≥ z) ≤ 2e−C5z2/n for all z > 0, where constant C5 depends on f∗, β, γ, c0, µ
and µe. A similar claim can be made for case (b).

In comparison with the results in Theorem 4 and Theorem 8, due to the light tails of
the innovations, we do not encounter the polynomial terms n/zqβ or n3−2β/zqβ here.

3. Empirical distribution functions

In this section we shall consider the important class of indicators indexed by half intervals.
Let

Sn(t) = n[F̂n(t)− F (t)] =
n∑
i=1

[1Xi≤t − F (t)]. (21)

In Massart (1990)’s result (2), Xi are i.i.d. In Theorem 12, we present a concentration
inequality for dependent and possibly heavy-tailed random variables, which has a very
different upper bound that involves a polynomial decaying tail. Theorem 14 provides a
lower bound for the deviation with regularly varying innovations. That lower bound assures
the sharpness of Theorem 12: the polynomial decaying tail is unavoidable. Recall Fε is the
c.d.f. of ε0 and fε its p.d.f. The values of constants in Theorem 12 are given in Remark 31
(Section 6.6). Following assumption states the boundedness of |fε|∞ and |f ′ε|∞.

(A1) Let f∗ := max(1, |fε|∞, |f ′ε|∞). Assume f∗ <∞.

Theorem 12 Assume (A1) and (B). Recall c(n, q) and v, v′ in (13) and (15) respectively.

(i). Let β > 1, q > 1 (SRD case) and qβ ≥ 2. Then there exist constants C0, C1, C2, C3

such that

P
(

sup
t∈R
|Sn(t)|/f∗ > C0a∗µqc(n, q) + z

)
≤C1µ

q
q

n

zqβ
+ 4exp

{
− C2

z2

n(µq
′

q′ ∨ 1)
+ C3log(nµq)

}
+ 2exp

{
− zv

23+2vµv′q
+ C3log(nµq)

}
,

In particular, if z ≥ cn1/2log1/2(n), where c is a sufficiently large constant, then the
above upper bound becomes 2C1µ

q
qn/zqβ.

9
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(ii). If 1/2 < β < 1 (LRD case) and q > 2, then there exist constants C ′0, C
′
1, C

′
2, C

′
3 such

that

P
(

sup
t∈R
|Sn(t)|/f∗ > C ′0µqn

3/2−β + z

)
≤C ′1(µ2q

q ∨ µqq)
n1+(1−β)q

zq
+ 4exp

{
− C ′2

z2

n3−2β(µ2
2 ∨ 1)

+ C ′3log(nµq)
}
,

If z ≥ cn3/2−βlog1/2(n) for a sufficiently large c, then the above upper bound becomes
2C ′1(µ2q

q ∨ µqq)n1+(1−β)q/zq.

In (i) the constant C0 only depends on q, C1, C3 only depend on β, q, γ and C2 only depends
on β, γ; In (ii) the constants C ′0, C

′
1, C

′
3 only depend on β, q, γ and C ′2 only depends on β, γ,

their specific values can be found in Remark 31 (Section 6.6).
Under certain forms of tail probability of the innovations, we can have a more refined

result.

Proposition 13 Assume (A1), (B), β > 1 and q > 2. Assume for any x > 1, P(|ε0| >
x) ≤ Llog−r0(x)x−q, with some constants r0 > 1, L > 0. If z ≥ c

√
nlogα(n), α > 1/2, then

P
(

sup
t∈R
|Sn(t)|/f∗ > z

)
.

µqqn

zqβlogr0(z)
,

where the constant in . only depends on β, q, γ, r0, L, c and α.

To appreciate the sharpness of the upper bound in Proposition 13, we derive an exact
decay rate when ak = (k ∨ 1)−β and ε0 is symmetric with a regularly varying tail.

Theorem 14 Assume (A1), (B) with coefficients ak = (k ∨ 1)−β, k ≥ 0, and that ε0 is
symmetric with tail distribution

P(ε0 ≥ x) ∼ log−r0(x)x−q, as x→∞, (22)

where r0 > 1 is a constant. Let β > 1, q > 2 and α > 1/2. Then there exists a constant
Γ > 0 such that for all z with

√
nlogα(n) ≤ z ≤ n/logΓ(n),

P (Sn(t) > z) = (1 + o(1))C1
n

logr0(z)zqβ
, (23)

and

P (Sn(t) < −z) = (1 + o(1))C2
n

logr0(z)zqβ
, (24)

where the constants C1, C2 only depend on q, β, r0, t and F.

Values of C1 and C2 are given in Lemma 34, and the constant Γ can be found in Remark
35 (Section 6.7). The asymptotic expressions (23) and (24) in Theorem 14 precisely depict
the magnitude of the tail probability P (Sn(t) > z) and P (Sn(t) < −z). It asserts that
the upper bound order in Proposition 13 is optimal within the range

√
nlogα(n) ≤ z ≤

n/logΓ(n). Thus the polynomial n/zqβ in Theorems 4 and 12 is sharp up to a multiplicative
logarithmic term.

10
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4. Kernel density estimation

Let (Xi) be a stationary sequence satisfying (3) with the marginal p.d.f. f . Given the
observations X1, . . . , Xn, the kernel density estimator of f is

f̂n(x) =
1

n

n∑
j=1

Kb(x−Xj), Kb(·) = b−1K(·/b),

where the bandwidth b = bn satisfies the natural condition bn → 0 and nbn →∞. Wu and
Mielniczuk (2002) established an asymptotic distribution theory for An(f̂n(x)−Ef̂n(x)) for
both short- and long-range dependent processes, where An is a proper norming sequence.
In this section we shall derive a bound for the tail probability

P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ z
)
.

Such a bound is useful for constructing non-asymptotic confidence bounds. Giné and Guillou
(2002) and Giné and Nickl (2010) considered the latter problem for i.i.d. data. Einmahl
and Mason (2005) derived uniform in bandwidth consistency result for kernel-type function
estimators. Hang et al. (2016) studied consistency properties for observations generated
by certain dynamical systems under mixing conditions. Rinaldo et al. (2012), Chen et al.
(2016) and Arias-Castro et al. (2016) applied such bounds in clustering problem. Liu et al.
(2011) and Lafferty et al. (2012) used it in forest density estimation. Here, we shall provide
a polynomial decay bound for linear time series.

Corollary 15 Assume (B), the kernel K is symmetric with support [−1, 1], max(|K|∞, |K ′|∞) ≤
K∗ and max(1, |fε|∞, |f ′ε|∞, |f ′′ε |∞) ≤ f∗ for some constants K∗, f∗ > 0.

(a) In the SRD case with β > 1, q > 1, qβ ≥ 2, if z ≥ c(n/bn)1/2log1/2(n) for a sufficiently
large c, then

P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ max(f∗,K∗)z
)
. µqqn/z

qβ, (25)

where the constant in . only depends on β, q, γ and c.

(b) In the LRD case with 1/2 < β < 1, q > 2, if z ≥ cmax{n3/2−β, (n/bn)1/2}log1/2(n)
holds for a sufficiently large c, then

P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ max(f∗,K∗)z
)
. (µ2q

q ∨ µqq)
n1+(1−β)q

zq
, (26)

where the constant in . only depends on β, q, γ and c.

5. Empirical risk minimization

Empirical risk minimization is of fundamental importance in the statistical learning theory
and it is studied in various contexts including classification, regression and clustering among
others. To fix the notation, let (X,Y ) be a random vector taking values in the space X ×Y

11
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and H be a class of measurable functions h : X → Y. For a function h ∈ H, define the risk
R(h) = E[L(X,Y, h(X))], where L is a loss function. Let h∗ = argminh∈HR(h). Based on
the observations (X1, Y1), . . . , (Xn, Yn) which are identically distributed as (X,Y ), consider
the empirical risk minimizer

ĥ = argminh∈HRn(h), where Rn(h) = n−1
n∑
i=1

L(Xi, Yi, h(Xi)) (27)

is the empirical risk. Since Rn(h∗) ≥ Rn(ĥ), it follows (cf. Devroye et al. (1996)) that

0 ≤ R(ĥ)−R(h∗) ≤ 2Ψn, where Ψn = sup
h∈H
|Rn(h)−R(h)|. (28)

A primary goal in statistical learning theory is to bound the uniform deviation Ψn. The lat-
ter problem has been widely studied when (Xi, Yi) are assumed to be i.i.d.; see, for example,
Caponnetto and Rakhlin (2006), Vapnik (1998, 2000) and Gottlieb et al. (2017). In recent
years various dependent processes have been considered; see Modha and Masry (1996), Guo
and Shi (2011), Zou and Li (2007), Zou et al. (2009), Alquier and Wintenberger (2012),
Mohri and Rostamizadeh (2010), Steinwart and Christmann (2009), Hang and Steinwart
(2014, 2016), Shalizi and Kontorovich (2013) among others.

Here we shall provide an upper bound for Ψn with (Xi) being the MA(∞) process (3)
and the regression model

Yi = H0(Xi, ηi),

where ηi, i ∈ Z, are i.i.d. random errors independent of (εi) and H0 is an unknown measur-
able function. Denote A = {g(x, y) = L(x, y, h(x)), h ∈ H} and

NA(δ) = min{m : there exist g1, . . . , gm ∈ A, such that sup
g∈A

min
1≤j≤m

|g − gj |∞ ≤ δ},

where |g|∞ = supx,y |g(x, y)|. Assume that the loss function L take values in [0, 1]. Here for
the sake of presentational clarity we do not seek the fullest generality but as an illustration
on how to apply our main results. Recall that fε is the density function of εi.

Corollary 16 Assume (B), the density fε ∈ C2(R) with f∗ := max(
∫∞
−∞ |f

′
ε(x)|dx,

∫∞
−∞ |f

′′
ε (x)|dx, 1).

Under conditions (i) or (ii) in Corollary 6 on the function class H, q, β > 1 and qβ ≥ 2
(resp. conditions (i) or (ii) in Corollary 10 on H, q > 2 and 1/2 < β < 1), we have (16)
(resp. (20)) holds with ∆n therein replaced by nΨn/f∗.

Remark 17 In literature, many concentration inequalities for time series are derived under
various mixing conditions (see, for example, Mohri and Rostamizadeh (2010)). Since mixing
and our model (3) cover different ranges of processes, our results are not directly comparable
with theirs. Here we consider an example in which our result and Corollary 21 in Mohri
and Rostamizadeh (2010) can be compared. Let Xi =

∑
k≥0 akεi−k, where εt are i.i.d. with

finite qth moment, q > 2 and a0 = 1, ak � k−α, α > 2 + 1/q. Assume the p.d.f. of εi
satisfies

∫
x∈R |f

′
ε(x)|dx < ∞ and

∫
x∈R |f

′′
ε (x)|dx < ∞. By Theorem 2.1 in Pham and Tran

(1985), Xi is β-mixing and its β-mixing coefficient β(k) = O(k1−(α−1)q/(1+q)).

12
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Assume functions h ∈ H are bounded and the function class H satisfies condition (D′).
Also assume that a β̂-stable algorithm yields an estimate ĥS with β̂ = O(n−1) where the
definition for β̂-stable can be found in Definition 4 of Mohri and Rostamizadeh (2010).

Let K = 1/4− (q+ 1)/(2(α−1)q). By Corollary 21 in Mohri and Rostamizadeh (2010),
there exists a constant C > 0 such that for δ > n−K ,

P(n|Rn(ĥ)−R(ĥ)| ≥ Czδ) ≤ δ, where zδ = n1−K(log(δ − n−K)−1)1/2. (29)

By our Corollary 17,

P(sup
h∈H

n|Rn(h)−R(h)| ≥ Czδ) .
n

zqαδ
. (30)

Note that, if δ > n−K , nz−qαδ = O(n1−(1−K)qα), which is of order o(n−K) since 1 − (1 −
K)qα < −K. To give a numeric example, let α = 4, q = 4. Then K = 1/24, 1−(1−K)qα =
−43/3. So (30) gives a much smaller upper bound O(n−43/3), while (29) leads to the bound
O(n−1/24). The latter phenomenon could be explained by the sharpness of our upper
bounds.

6. Proofs

In this section we shall provide proofs for results stated in the previous sections. We shall
first introduce some notation. For k ≥ 1 define the functions

gk(x) := E
[
g(

k−1∑
i=0

aiε−i + x)
]
, g∞(x) := E[g(X0 + x)]. (31)

Since a0 = 1, g1(x) = Eg(ε0 + x). Write g0(·) = g(·). Define projection operator Pk, k ∈ Z,
by Pk· = E(·|Fk) − E(·|Fk−1), where Fi = (εi, εi−1, . . .), that is Pkf = E(f(X)|Fk) −
E(f(X)|Fk−1). For j ≤ i, let

Xi,j =
∑
k≥0

ai−j+kεj−k

be the truncated process. Then Xi,j = E(Xi|Fj) and gi−j(Xi,j) = E(g(Xi)|Fj).
Let bxc = max{i ∈ Z, i ≤ x} and dxe = min{i ∈ Z, i ≥ x}. Recall µq = (E|ε0|q)1/q and

let µ = µ1.
In Section 6.1 we shall first present some inequalities and lemmas that will be extensively

used. Theorem 4 and Proposition 5 (resp. Theorem 8 and Proposition 9 ) are proved in
Section 6.2 (resp. Section 6.4). Theorem 7 (resp. Theorem 11, Theorem 14) is shown in
Section 6.3 (resp. Section 6.5, Section 6.7). Section 6.6 gives proofs of Theorem 12 and
Proposition 13. Proofs of Corollaries 15 and 16 are provided in Section 6.8.

6.1 Some useful lemmas

Lemma 18 is a maximal form of Freedman’s martingale inequality (cf Freedman (1975)) and
it is a simple modified version of Lemma 1 in Haeusler (1984). Lemma 19 is Burkholder’s
martingale inequality for moments (Burkholder (1988)). Lemma 20 is a Fuk-Nagaev in-
equality for high dimensional vectors (Chernozhukov et al. (2017)).
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Lemma 18 Let A be an index set with |A| < ∞. For each a ∈ A, let {ξa,i}ni=1 be a
martingale difference sequence with respect to the filtration {Fi}ni=1. Let Ma =

∑n
i=1 ξa,i

and Va =
∑n

i=1 E[ξ2
a,i|Fi−1]. Then for all z, u, v > 0

P
(

max
a∈A
|Ma| ≥ z

)
≤

n∑
i=1

P
(

max
a∈A
|ξa,i| ≥ u

)
+ 2P

(
max
a∈A

Va ≥ v
)

+ 2|A|e−z2/(2zu+2v).

Lemma 19 (Burkholder (1988), Rio (2009)) Let q > 1, q′ = min{q, 2}. Let MT =∑T
t=1 ξt, where ξt ∈ Lq are martingale differences. Then

‖MT ‖q
′
q ≤ Kq′

q

T∑
t=1

‖ξt‖q
′
q , where Kq = max((q − 1)−1,

√
q − 1).

Lemma 20 (A Fuk-Nagaev type inequality) Let X1, . . . , Xn be independent mean 0
random vectors in Rp and σ2 = max1≤j≤p

∑n
i=1 E(X2

i,j). Then for every s > 1 and t > 0,

P
(

max
1≤j≤p

|
n∑
i=1

Xi,j | ≥ 2E( max
1≤j≤p

|
n∑
i=1

Xi,j |) + t
)
≤e−t2/(3σ2) +

Ks

ts

n∑
i=1

E( max
1≤j≤p

|Xi,j |s),

where Ks is a constant depending only on s.

Lemma 21 Assume that function g has second order derivative and |g|, |g′|, |g′′| are all
bounded by M < ∞. Then gk, k ≥ 1, and g∞ also have second order derivatives and
|gk|, |g′k|, |g′′k |, |g∞|, |g′∞|, |g′′∞| are all bounded by M, where gk and g∞ are defined in (31).

Proof Since |g′| is bounded by M , by the dominated convergence theorem,

lim
δ→0

E
(g(

∑k−1
i=0 aiε−i + x+ δ)− g(

∑k−1
i=0 aiε−i + x)

δ

)
= E

(
g′
( k−1∑
i=0

aiε−i + x
))
.

Since gk(x) = Eg(
∑k−1

i=0 aiε−i + x), g′k(x) exists and equals to E(g′(
∑k−1

i=0 aiε−i + x)) with
|g′k| ≤ M. Similarly g′′k exists and |g′′k |∞ ≤ M . Note that g∞(x) = Eg(

∑∞
i=0 aiε−i + x).

Hence same arguments lead to the existence of g′∞ and g′′∞, and they are also bounded in
absolute value by M .

Lemma 22 Let λ > 0, β > 1 and G(y) =
∑∞

k=0 min{λ, (k ∨ 1)−βy}, y > 0. Then for all
y > 0, G(y) ≤ Kβ,λ min{y, y1/β}, where Kβ,λ = max{(β − 1)−1, λ}+ 2.

Proof Clearly G(y) ≤
∑∞

k=0(k ∨ 1)−βy ≤ (2 + (β − 1)−1)y. If y ≥ 1, we have y1/β ≤ y and

G(y) ≤
dy1/βe∑
k=0

λ+
∞∑

k=dy1/βe+1

k−βy ≤ λ(y1/β + 2) + (β − 1)−1y(1−β)/βy

≤ max{(λ+ 2), (β − 1)−1}y1/β.

So the lemma follows by considering two cases 0 < y < 1 and y ≥ 1 separately.
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6.2 Proof of Theorem 4 and Proposition 5

The proof of Theorem 4 is quite involved. Here we shall first provide intuitive ideas of
our martingale approximation approach. Recall the projection operator Pk· = E(·|Fk) −
E(·|Fk−1) and (31) for gk and g∞. Then Pkg(Xi) = 0 if k > i. Note that φj(g) := PjSn(g),
j = . . . , n− 1, n, are martingale differences. Since gi−j(Xi,j) = E(g(Xi)|Fj), j ≤ i,

Sn(g)− ESn(g) =
∑
j≤n

φj(g), where φj(g) =
n∑

i=1∨j
(gi−j(Xi,j)− gi−j+1(Xi,j−1)). (32)

Let εi, ε
′
j , ε
′′
k, i, j, k ∈ Z be i.i.d. Since gi−j+1(x) = E(gi−j(x + ai−jεj)), gi−j(x + ai−jεj) −

gi−j+1(x) = E(
∫ ai−jεj
ai−jε′j

g′i−j(x+ t)dt|Fj). Note that Xi,j −Xi,j−1 = ai−jεj . Then

gi−j(Xi,j)− gi−j+1(Xi,j−1) = E
(∫ ai−jεj

ai−jε′j

g′i−j(x+Xi,j−1)dx|Fj
)
. (33)

Let X ′′i,j =
∑

k≥0 ai−j+kε
′′
j−k. Then g∞(x) = E(gi−j(X

′′
i,j + x)) = E(gi−j(X

′′
i,j + x)|Fj) and

g∞(ai−jεj)− Eg∞(ai−jεj) = E
(∫ ai−jεj

ai−jε′j

g′i−j(x+X ′′i,j)dx|Fj
)
. (34)

Since ‖Xi,j‖q → 0 as j →∞, intuitively we have g′i−j(x+Xi,j−1) ≈ g′i−j(x) ≈ g′i−j(x+X ′′i,j).
These relations (33) and (34) motivate us to approximate Sn(g)− ESn(g) by

Tn(g) =
∑
j≤n

φ̃j(g), where φ̃j(g) =

n∑
i=1∨j

(
g∞(ai−jεj)− Eg∞(ai−jεj)

)
. (35)

Note that φ̃j(g), j ≤ n, are independent random variables. Hence we can apply correspond-
ing inequalities. In Lemma 23 a Fuk-Nagaev type inequality for Tn(g) is derived. Lemma
24 concerns the closeness of Sn(g)− ESn(g) and Tn(g). Similar arguments are also applied
in the proofs of other theorems in the paper.
Proof We now proceed with the formal argument. By (11), there exists a set An such that
for any g ∈ A, minh∈An |h− g|∞ ≤ z/(4n) and |An| = NA(z/(4n)). Then

sup
g∈A

∣∣∣ n∑
i=1

[
(g − τn(g))(Xi)− E(g − τn(g))(Xi)

]∣∣∣ ≤ z/2,
where τn(g) := argminh∈An |h− g|∞. Hence ∆n ≤ z/2 + maxg∈An |Sn(g)− ESn(g)| and

∆n ≤
z

2
+ max
g∈An
|Sn(g)− ESn(g)− Tn(g)|+ max

g∈An
|Tn(g)| =:

z

2
+ Ωn + Un. (36)

For Un = maxg∈An |Tn(g)|, by Lemma 23, we have

P
(
Un ≥ Cqa∗µqc(n, q) +

z

4

)
≤ exp

(
− z2

Cβ,γµ
q′

q′n

)
+ Cβ,q,γ,1µ

q
q

n

zqβ
. (37)
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For the difference term Ωn = maxg∈An |Sn(g)− ESn(g)− Tn(g)|, by Lemma 24,

P(Ωn ≥
z

4
) ≤ Cβ,q,γ,2µqq

n

zqβ
+ 2|An|exp

(
− z2

Cβ,γµ
q′

q′n

)
+ 2|An|exp

(
− zv

8µv′q

)
, (38)

where Cβ,q,γ,1 and Cβ,q,γ,2 are constants only depending on β, q, γ and Cβ,q,γ = Cβ,q,γ,1 +
Cβ,q,γ,2. Combining (36), (37) and (38), we complete the proof.

Lemma 23 Recall the definitions of φ̃j(g) and Tn(g) in (32) and (35) respectively. Under
assumptions of Theorem 4, we have (37).

Proof Recall Un = maxg∈An |Tn(g)|. The proof contains two parts:

(i). Apply the Fuk-Nagaev type inequality (Lemma 20) to bound P(Un − 2EUn ≥ z/4).

(ii). Show that 2EUn ≤ Cqa∗µqc(n, q).

Part (i): For g ∈ An, since |g|, |g′| are bounded by 1, by Lemma 21, |g∞| and |g′∞| are also
bounded by 1. Then

|φ̃j(g)| =
∣∣∣ n∑
i=1∨j

E
( ∫ ai−jεj

ai−jε′j

g′∞(x)dx|Fj
)∣∣∣ ≤ n∑

i=1∨j
min

{
|ai−j |(|εj |+ µ), 2

}
. (39)

Therefore for j < −n and any g ∈ An, by (39),

|φ̃j(g)| ≤ min{γn(−j)−β(|εj |+ µ), 2n}, (40)

for −n ≤ j ≤ n and any g ∈ An, by Lemma 22 and (39),

|φ̃j(g)| ≤ γKβ,2/γ(|εj |+ µ)1/β. (41)

Denote V = maxg∈An
∑

j≤n Eφ̃2
j (g). Hence by (40) and (41),

V ≤
∑
j<−n

(γn(−j)−β)q
′
E(|ε0|+ µ)q

′
(2n)2−q′ + (γKβ,2/γ)2

∑
−n≤j≤n

E[(|εj |+ µ)2/β]

≤
( 4γ2

β − 1
+ 21+2/β(γKβ,2/γ)2

)
nµq

′

q′ . (42)

By (40),∑
j<−n

E
(

max
g∈An

|φ̃j |qβ
)
≤
∑
j<−n

(2n)qβ−q(γn(−j)−β)qE[(|εj |+ µ)q] ≤ 2qβγq

qβ − 1
nµqq. (43)

By (41),∑
−n≤j≤n

E
(

max
g∈An

|φ̃j |qβ
)
≤ 2n(γKβ,2/γ)qβE[(|εj |+ µ)q] ≤ 2q+1(γKβ,2/γ)qβnµqq. (44)
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Inserting the bounds (42), (43) and (44) into Lemma 20, we obtain

P(Un − 2EUn ≥ z/4) ≤e−z2/(48V ) +
4qβKqβ

zqβ

∑
j≤n

E
(

max
g∈An

|φ̃j |qβ
)

≤exp
(
− z2

Cβ,γµ
q′

q′n

)
+ Cβ,q,γ,1µ

q
q

n

zqβ
, (45)

where Cβ,γ = 48(4γ2/(β − 1) + 21+2/β(γKβ,2/γ)2) and Cβ,q,γ,1 = 4qβKqβ(2qβγq/(qβ − 1) +

2q+1(γKβ,2/γ)qβ).

Part (ii): Recall a∗ =
∑∞

k=0 |ak|. Note that Tn(g) can be rewritten as

Tn(g) =
∑
j≤n

φ̃j(g) =
∑
k≥0

n∑
i=1

{g∞(akεi−k)− Eg∞(akεi−k)}

=
∑
k≥0

∫ ∞
−∞

n∑
i=1

(
1akεi−k≥x − P(akεi−k ≥ x)

)
g′∞(x)dx.

Let Wn(x) =
∑n

i=1

(
1εi≥x − P(εi ≥ x)). By Lemma 21, |g′∞(x)| ≤ 1. Then

E
[

max
g∈An

∣∣Tn(g)
∣∣] ≤∑

k≥0

∫ ∞
−∞

E|
n∑
i=1

(
1akεi−k≥x − P(akεi−k ≥ x)

)
|dx

=
∑
k≥0

∫ ∞
−∞

E|Wn(x/ak)|dx = a∗

∫ ∞
−∞

E|Wn(y)|dy, (46)

where the last equality is obtained by change of variables y = x/ak and a∗ =
∑∞

k=0 |ak|.
Let TF (x) = P(|ε0| ≥ |x|). Note that E|1εi≥x − P(εi ≥ x)| = 2Fε(x)(1 − Fε(x)) ≤ 2TF (x),
and E(1εi≥x − P(εi ≥ x))2 = Fε(x)(1− Fε(x)) ≤ TF (x). Hence

E|Wn(x)| ≤ min{‖Wn(x)‖, 2nTF (x)} ≤ min{
√
nTF (x)1/2, 2nTF (x)}. (47)

We have different bounds for (46) when q > 2, 1 < q < 2 and q = 2. By Markov’s inequality,

TF (x) ≤ min{|x|−qµqq, 1}. (48)

When q > 2, we have∫ ∞
−∞

TF (x)1/2dy ≤ 2
(∫ µq

0
1dx+

∫ ∞
µq

|x|−q/2µq/2q dx
)

= q/(q/2− 1)µq.

Inserting above into (46) and (47), we obtain

EUn ≤ a∗
∫ ∞
−∞

E|Wn(x)|dx ≤ q/(q/2− 1)a∗µq
√
n. (49)
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When 1 < q < 2, by (47) and (48),∫ ∞
−∞

E|Wn(x)|dx ≤ 2
(∫ n1/qµq

0

√
nx−q/2µq/2q dx+

∫ ∞
n1/qµq

2nx−qµqqdx
)

≤ 4(1/(2− q) + 1/(q − 1))µqn
1/q.

When q = 2, I1 :=
∫
|x|≤µ2

√
nTF (x)1/2dx ≤ 2µ2

√
n. By (48), I2 :=

∫
|x|>nµ2 2nTF (x)dx ≤

4
∫∞
nµ2

nµ2
2x
−2dx = 4µ2. By the Cauchy-Schwarz inequality,

I2
3 :=

[∫
µ2<|x|≤nµ2

√
nTF (x)1/2dx

]2

≤ 4n

∫ nµ2

µ2

xTF (x)dx

∫ nµ2

µ2

x−1dx

≤ 4n

∫ ∞
0

xP(|ε0| ≥ x)dx(logn) = 2E(ε20)nlog(n) = 2µ2
2nlog(n).

Then by (47),
∫∞
−∞ E|Wn(x)|dx ≤ I1 + I2 + I3 ≤ 2µ2

√
n+ 4µ2 + µ2(2nlogn)1/2. Combining

the three cases q > 2, 1 < q < 2 and q = 2, by (46), we have EUn ≤ cqa∗µqc(n, q). where
cq = max{q/(q/2− 1), 4(1/(2− q) + 1/(q − 1)), 6 +

√
2}.

Lemma 24 Recall the definitions of φj(g), φ̃j(g) and Tn(g) in (32) and (35). Under con-
ditions of Theorem 4, we have (38).

Proof Since Sn(g) − ESn(g) − Tn(g) is the sum of martingale differences φj(g) − φ̃j(g),
j ≤ n, we can apply Lemma 18 to bound the tail probability. To this end, we shall:

(i). Derive the upper bound for I1 =
∑

j≤n P(maxg∈An |φj(g)− φ̃j(g)| ≥ u).

(ii). Bound the term I2 = maxg∈An
∑

j≤n E[(φj(g)− φ̃j(g))2|Fj−1].

First we derive some inequalities that will be used for I1 and I2. Let εi, ε
′
j , ε
′′
k, i, j, k ∈ Z, be

i.i.d. and X ′′i,j =
∑

k≥0 ai−j+kε
′′
j−k. Write φj(g)− φ̃j(g) =

∑n
i=1∨j di,j(g), where

di,j(g) =gi−j(Xi,j)− gi−j+1(Xi,j−1)− g∞(ai−jεj) + Eg∞(ai−jεj) (D1)

=E
[ ∫ ai−jεj

ai−jε′j

(
g′i−j(x+Xi,j−1)− g′i−j(x+X ′′i,j)

)
dx
∣∣Fj] (D2)

=E
[ ∫ Xi,j−1

X′′i,j

(
g′i−j(x+ ai−jεj)− g′i−j(x+ ai−jε

′
j)
)
dx
∣∣Fj] (D3)

=E
[ ∫ ai−jεj

ai−jε′j

∫ Xi,j−1

X′′i,j

g′′i−j(x+ y)dydx
∣∣Fj]. (D4)

By Lemma 21, |gj |, |gj ′| and |gj ′′| are bounded by 1. Hence by (D1)-(D4), we have

max
g∈An

|di,j(g)|

≤min
{

4, 2|ai−j |(|εj |+ µ), 2(|Xi,j−1|+ E|Xi,j |), |ai−j |(|εj |+ µ)(|Xi,j−1|+ E|Xi,j |)
}

= min
{
|ai−j |(|εj |+ µ), 2

}
min

{
(|Xi,j−1|+ E|Xi,j |), 2

}
. (50)
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Part (i): Recall q′ = min(q, 2). For i > j, by Lemma 19,

‖Xi,j−1‖q
′
q ≤ Kq′

q

∑
k≥1

(|ai−j+k|‖εj−k‖q)q
′ ≤

(
Kq′
q γ

q′(βq′ − 1)−1
)
(i− j)−q′β+1µq

′
q . (51)

Let r = (q′β − 1)/(2q′), by Markov’s inequality,

I1 ≤
∑

−n≤j≤n
u−q(β+r)E[max

g∈An
|φj(g)− φ̃j(g)|q(β+r)] +

∑
j<−n

u−qE[max
g∈An

|φj(g)− φ̃j(g)|q]. (52)

We shall consider the two cases −n ≤ j ≤ n and j < −n separately. For −n ≤ j ≤ n, by
(50) and since εj and Xi,j−1 are independent,

‖max
g∈An

|φj(g)− φ̃j(g)|‖q(β+r)

≤
n∑

i=j∨1

∥∥min{|ai−j |(|εj |+ µ), 2}
∥∥
q(β+r)

∥∥min{|Xi,j−1|+ E|Xi,j |, 2}
∥∥
q(β+r)

≤
n∑

i=j∨1

(
|ai−j |qE(|εj |+ µ)q2q(β+r)−q

)1/q(β+r)(
E(|Xi,j−1|+ E|Xi,j |)q2q(β+r)−q

)1/q(β+r)
.

By (51) and 2βq′ − 1 > (β + r)q′, above inequality is further bounded by

‖max
g∈An

|φj(g)− φ̃j(g)|‖q(β+r) ≤ c1

n∑
i=j∨1

((i− j) ∨ 1)
−2βq′+1
(β+r)q′ µ2/(β+r)

q ≤ c2µ
2/(β+r)
q , (53)

where c1 = (Kqγ(βq′ − 1)−12β+r)1/(β+r) and c2 = 4(2βq′ − 1)(βq′ − 1)−1c1.
For j < −n, again by (50) and the independence between εj and Xi,j−1,

‖max
g∈An

|φj(g)− φ̃j(g)|‖q ≤
n∑
i=1

|ai−j |‖|εj |+ µ‖q‖|Xi,j−1|+ E|Xi,j |‖q

≤
(
4γ(βq′ − 1)1/q′

)
n(−j)−

2βq′−1
q′ µ2

q , (54)

where the last inequality is due to (51).
Applying (53) and (54) to (52), we have

I1 ≤ c3µ
2q
q nu

−β(q+r), where c3 = 2c
q(β+r)
2 + (4γ(βq′ − 1)1/q′)q.

Part (ii): We shall bound maxg∈An |φj(g) − φ̃j(g)| for −n ≤ j ≤ n and j < −n seperately.
For −n ≤ j ≤ n, by (50) and Lemma 22,

max
g∈An

|φj(g)− φ̃j(g)| ≤
n∑

i=1∨j
min{|ai−j |(|εj |+ µ), 2} ≤ γKβ,γ/2(|εj |+ µ)1/β,
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Since εj is independent of Fj−1, we have

I21 :=
∑

−n≤j≤n
E
[

max
g∈An

(φj(g)− φ̃j(g))2|Fj−1

]
≤

∑
−n≤j≤n

(γKβ,γ/2)2E[(|εj |+ µ)2/β] ≤
(
21+2/β(γKβ,γ/2)2

)
nµq

′

q′ .

For j < −n, by Lemma 22,

max
g∈An

|φj(g)− φ̃j(g)| ≤ nmin{γ(−j)−β(|εj |+ µ), 2}.

Since εj is independent of Fj−1, we have

I22 :=
∑
j<−n

E
[

max
g∈An

(φj(g)− φ̃j(g))2|Fj−1

]
≤ n2

∑
j<−n

22−q′γq
′
(−j)−q′βE[(|εj |+ µ)q

′
] ≤

(
4γ2/(β − 1)

)
nµq

′

q′ ,

Hence we have I2 = I21 + I22 ≤ c4nµ
q′

q′ , where c4 = 21+2/β(γKβ,γ/2)2 + 4γq
′
/(q′β − 1).

Inserting the bounds for I1 and I2 into Lemma 18 leads to

P(Ωn ≥ z/4) ≤ c3nµ
2q
q u
−q(β+r) + 2|An|exp

(
− z2

32c4µ
q′

q′n

)
+ 2|An|exp

(
− z2

8zu

)
. (55)

Take u = zβ/(β+r)µ
1/(β+r)
q and we complete the proof.

Remark 25 Let Kqβ (resp. Kq and Kβ,2/γ) be the constant in Lemma 20 (resp. Lemma
19 and Lemma 22). With a careful check of the proofs of Theorem 4, Lemmas 23 and 24,
we can choose constants in Theorem 4 as follows:

• Cq = 2 max{q/(q/2− 1), 4(1/(2− q) + 1/(q − 1)), 6 +
√

2}.

• Cβ,q,γ = Cβ,q,γ,1 +Cβ,q,γ,2, where Cβ,q,γ,1 = 4qβKqβ(2qβγq/(qβ−1) + 2q+1(γKβ,2/γ)qβ)

and Cβ,q,γ,2 = 2c
q(β+r)
2 + (4γ(βq′ − 1)1/q′)q with r = (q′β − 1)/(2q′), c1 = (Kqγ(βq′ −

1)−12β+r)1/(β+r) and c2 = 4(2βq′ − 1)(βq′ − 1)−1c1.

• Cβ,γ = 48
(
4γ2/(β − 1) + 21+2/β(γKβ,2/γ)2

)
.

Proof [Proof of Proposition 5] Construct An as in the proof of Theorem 4. Recall (31) for
the function gk. Note that g1(Xi,i−1) = E[g(Xi)|Fi−1]. By (36), we have

P(|∆n| ≥ a+ z) ≤P
(

max
g∈An

|Sn(g)− ESn(g)| ≥ a+ z/2
)

≤P
(

max
g∈An

∣∣∣ n∑
i=1

(
g1(Xi,i−1)− Eg1(Xi,i−1)

)∣∣∣ ≥ a+ z/4

)

+
∑
g∈An

P
(∣∣∣ n∑

i=1

(g(Xi)− E[g(Xi)|Fi−1])
∣∣∣ ≥ z/4) =: I1 + I2,
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where a = Cqa∗µqc(n, q).
Since |g| ≤ 1 and g(Xi) − E[g(Xi)|Fi−1], 1 ≤ i ≤ n, are martingale differences, by

Azuma’s inequality, I2 ≤ 2|An|exp{−z2/(64n)}. For I1, notice

g1(x) =

∫ ∞
−∞

g(x+ y)fε(y)dy =

∫ ∞
−∞

g(y)fε(y − x)dy.

By Assumption (A′), supg∈A |g1|∞, supg∈A |g′1|∞ and supg∈A |g′′1 |∞ are all bounded by 1.
Thus in the I1 part, the function g1 satisfies Assumption (A) and can be dealt with by
Theorem 4. Combining I1 and I2, we complete the proof.

6.3 Proof of Theorem 7

Proof [Proof of Theorem 7] Recall the projection operator Pk· = E(·|Fk)− E(·|Fk−1). Let
Dk = Pk∆n, k ≤ n. Then ∆n − E∆n =

∑
k≤nDk and

P(∆n − E∆n ≥ z) ≤ P(
∑
k≤−n

Dk ≥ z/2) + P(
∑

−n<k≤n
Dk ≥ z/2) =: I1 + I2. (56)

Then the theorem follows from the following three claims which will be proved in the sequel:

(i). I1 ≤ Cq,γe−qn(1−ρ)µqq(zq(1− ρ)q+q/q
′
)−1.

(ii). I2 ≤ exp{−C ′q,γz2(1− ρ)2((µqq ∨ 1)n)−1}.

(iii). E∆n ≤ Cqµqc∗(n, ρ, q).

To prove (i) and (ii), we need to apply coupling. Let εi, ε
′
j , i, j ∈ Z, be i.i.d. For a

random variable Z = H(ε), where H is a measurable function and ε = (εi)i∈Z, we define
the coupled version Z{j} = H(ε′{j}), where ε′{j} = (..., εj−1, ε

′
j , εj+1, ...). We shall now derive

an upper bound for |Dk|. Since |g|, |g′| are bounded by 1, for any k ≤ i,

E
(

sup
g∈A
|g(Xi)− g(Xi,{k})|

∣∣Fk) ≤ E
(
|Xi −Xi,{k}|

∣∣Fk) ≤ |ai−k|(|εk|+ µ). (57)

Note E(∆n|Fk−1) = E(∆n,{k}|Fk), thus Dk = E(∆n −∆n,{k}|Fk) and by (57),

|Dk| ≤ E
(

sup
g∈A

∣∣ n∑
i=1

[g(Xi)− g(Xi,{k})]
∣∣∣∣∣Fk) ≤ n∑

i=1∨k
min{|ai−k|(|εk|+ µ), 2}. (58)

Part (i): Since Dk are martingale differences, by Lemma 19,

I1 ≤ (z/2)−q‖
∑
k≤−n

Dk‖qq ≤ Kq
q (z/2)−q

( ∑
k≤−n

‖Dk‖q
′
q

)q/q′
. (59)

Since (58) implies |Dk| ≤ γρ−k(1 − ρ)−1(|εk| + µ) for any k ≤ −n, we further obtain from
(59) and the elementary inequality log(ρ−1) ≥ 1− ρ that

I1 ≤ (4Kqγ)q
ρnqµqq

zq(1− ρ)q(1− ρq′)q/q′
≤ (4Kqγ)q

e−nq(1−ρ)µqq

zq(1− ρ)q+q/q′
. (60)
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Part (ii): Note for any y ≥ 1, since log(ρ−1) ≥ 1− ρ,∑
i≥0

min(ρiy, 1) ≤
∑

i≥−logρy

ρiy + (−logρy)

≤ (1− ρ)−1 − logρy ≤ (1− ρ)−1[1 + log(y)]. (61)

Hence for k > −n, by (58) and (61),

|Dk| ≤ (2 ∨ γ)(1− ρ)−1
[
1 + log(|εk|+ µ)1{|εk|+µ≥1}

]
. (62)

Let h∗ := (2 ∨ γ)−1(1 − ρ)q. Since εk ∈ Lq, for any 0 < h ≤ h∗, E(eDkh) < ∞. Note
E(Dk|Fk−1) = 0, then

E(eDkh|Fk−1) = 1 + E(eDkh −Dkh− 1|Fk−1)

≤ 1 + E
[e|Dk|h − |Dk|h− 1

h2(1− ρ)−2

∣∣∣Fk−1

]
h2(1− ρ)−2 (63)

in view of ex − x ≤ e|x| − |x| for any x. Note that for any fixed x > 0, (etx − tx − 1)/t2 is
increasing on t ∈ (0,∞). Applying the upper bound of Dk in (62), we have

E
[e|Dk|h − |Dk|h− 1

h2(1− ρ)−2

∣∣∣Fk−1

]
≤ E

[e|Dk|h∗ − |Dk|h∗ − 1

h∗2(1− ρ)−2

∣∣∣Fk−1

]
≤ E

[eq[1+log(|εk|+µ)1{|εk|+µ>1}]

h∗2(1− ρ)−2

∣∣∣Fk−1

]
≤ c1µ

q
q, (64)

where c1 = 2qeq(2 ∨ γ)2q−2. Hence for any h ≤ h∗,

E(eDkh|Fk−1) ≤ 1 + c1µ
q
qh

2(1− ρ)−2. (65)

By Markov’s inequality we have I2 ≤ e−zh/2E[exp(
∑
−n<k≤nDkh)]. Then by recursively

applying (65), let h = z(1− ρ)2[8c1(µqq ∨ 1)n]−1 ≤ h∗, we further obtain

I2 ≤e−zh/2E
(
e
∑n−1
k=−n+1DkhE(eDnh|Fn−1)

)
≤ e−zh/2(1 + c1µ

q
qh

2/(1− ρ)2)2n

≤exp
(
− zh/2 + 2nc1µ

q
qh

2/(1− ρ)2
)
≤ exp

(
− z2(1− ρ)2

32c1(µqq ∨ 1)n

)
, (66)

where the third inequality is due to 1 + x ≤ ex for x > 0.

Part (iii): Note

g(Xi)− Eg(Xi) =
∑
j≥0

(gj(Xi,i−j)− gj+1(Xi,i−j−1))

=
∑
j≥0

∫ ∞
−∞

g′j(x)
(
1x≤Xi,i−j − E(1x≤Xi,i−j |Fi−j−1)

)
dx.
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By above inequality and that |g′j | are bounded by 1,

E(∆n) ≤
∑
j≥0

∫ ∞
−∞

E
∣∣∣ n∑
i=1

(
1x≤Xi,i−j − E(1x≤Xi,i−j |Fi−j−1)

)∣∣∣dx. (67)

Let Hj(x) = P(|X0,−j | ≥ |x|). Since for any fixed j, 1x≤Xi,i−j − E(1x≤Xi,i−j |Fi−j−1), i =
1, . . . , n, are martingale differences, by the same arguments as for (47), we have

E
∣∣∣ n∑
i=1

(
1x≤Xi,i−j − E(1x≤Xi,i−j |Fi−j−1)

)∣∣∣ ≤ min{
√
nHj(x)1/2, nHj(x)}. (68)

For any 1 < r ≤ q and r′ = min{r, 2}, by Lemma 19,

Hj(x) ≤ ‖X0,−j‖rr
|x|r

≤ Kr
r

|x|r
(∑
k≥j
|ak|r

′
µr
′
r

)r/r′
≤ Kr

r

|x|r
ρjr(1− ρ)−r/r

′
µrr. (69)

We need to deal with the three cases separately: q > 2, 1 < q < 2 and q = 2.
Case q > 2: Let r = 3/2. By (67) and (68),

E(∆n) ≤
∑
j≥0

√
n

∫ ∞
−∞

Hj(x)1/2dx.

Since 1− ρx ≥ 1− ρ for x ≥ 1 and 1− ρx ≥ 1− ρ1/2 ≥ (1− ρ)/2 for 1/2 ≤ x < 1, by (69),

E(∆n) ≤ (Kr ∨Kq)
q/2
∑
j≥0

√
n
(∫
|x|>µq

ρjq/2(1− ρ)−q/4|x|−q/2µq/2q dx

+

∫
|x|≤µq

ρjr/2(1− ρ)−1/2|x|−r/2µr/2r dx
)

≤ (Kr ∨Kq)
q/2(2/(q − 2) + 8)

√
n(1− ρ)−3/2µq.

Case 1 < q < 2: By (67) and (68), for a = n1/q(1− ρ)−1/qKqµq,

E(∆n) ≤
∑
j≥0

(∫
|x|>a

nHj(x)dx+

∫
|x|≤a

n1/2Hj(x)1/2dx
)
.

By (69), we further obtain

E(∆n) ≤ Kq
qn
∑
j≥0

∫
|x|>a

ρjqµqq
(1− ρ)|x|q

dx+Kq/2
q n1/2

∑
j≥0

∫
|x|≤a

ρqj/2µ
q/2
q

(1− ρ)1/2|x|q/2
dx

≤ (1/(q − 1) + 2/(2− q))Kqn
1/q(1− ρ)−1/q−1µq.
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Case q = 2: Take a = n1/2(1− ρ)−1/2µ2, b = µ2, then by (67) and (68),

E(∆n) ≤
∑
j≥0

(∫
|x|>a

nFj(x)dx+

∫
b<|x|≤a

n1/2Fj(x)1/2dx+

∫
|x|≤b

n1/2Fj(x)1/2dx
)

By (69), for r = 3/2,

E(∆n) ≤ n
∑
j≥0

∫
|x|>a

ρ2jµ2
2

(1− ρ)|x|2
dx+ n1/2

∑
j≥0

∫
b<|x|≤a

ρjµ2

(1− ρ)1/2|x|
dx

+ n1/2
∑
j≥0

∫
|x|≤b

ρjr/2µ
r/2
2

(1− ρ)1/2|x|r/2
dx ≤ 10

√
nµ2

(1− ρ)3/2
log(n(1− ρ)−1).

Remark 26 Let K3/2 and Kq be the constants defined in Lemma 19. With a careful check
of the proof of Theorem 7, we can choose constants in Theorem 7 as follows:

• Cq = max{(K3/2 ∨Kq)
q/2(2/(q − 2) + 8), (1/(q − 1) + 2/(2− q))Kq, 10},

• Cq,γ = (4Kqγ)q,

• C ′q,γ = 2q+5eq(2 ∨ γ)2q−2.

6.4 Proofs of Theorem 8 and Proposition 9

Proof [Proof of Theorem 8] The idea of proving Theorem 8 is similar to the proof of
Theorem 4. Recall the definitions of φj(g), φ̃j(g), Tn(g) in (32), (35) and definitions of Ωn,
Un in (36). Then the same argument as in Theorem 4 leads to

P(∆n ≥ C ′β,q,γµqn3/2−β + z) ≤P
(

max
g∈An
|Sn(g)− ESn(g)| ≥ C ′β,q,γµqn3/2−β + z/2

)
.

≤P
(
Un ≥ C ′β,q,γµqn3/2−β + z/4

)
+ P(Ωn ≥ z/4). (70)

Again we shall use Tn(g) to approximate Sn(g) − ESn(g), and apply Fuk-Nagaev’s in-
equality to deal with Tn(g) part. By Lemma 27,

P
(
Un ≥ C ′β,q,γµqn3/2−β + z/4

)
≤ Cβ,q,γ,1µqq

n1+(1−β)q

zq
+ exp

(
− z2

Cβ,γn3−2βµ2
2

)
, (71)

and by Lemma 28,

P(Ωn ≥
z

4
) ≤ Cβ,q,γ,2µ2q

q

n1+(1−β)q[log|An|+ log(n)]q

c̃q(n, β)zq
+ 2|An|exp

(
− z2

Cβ,γn3−2βµ2
2

)
. (72)

Combining (70), (71) and (72) with Cβ,q,γ = Cβ,q,γ,1 + Cβ,q,γ,2, the result follows.
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Lemma 27 Recall the definitions of φj(g), Tn(g) in (32), (35) and Un in (36). Under
assumptions of Theorem 8, we have (71).

Proof The proof is similar to the one of Lemma 23. We shall

(i). Bound the probability P(Un − 2EUn ≥ z/4).

(ii). Bound the expectation EUn.

Part (i): For j < −n, by (39),

|φ̃j(g)| ≤
n∑
i=1

|ai−j |(|εj |+ µ) ≤ γn(−j)−β(|εj |+ µ). (73)

For −n ≤ j ≤ n, by (39),

|φ̃j(g)| ≤
n∑

i=1∨j
|ai−j |(|εj |+ µ) ≤ 2(1− β)−1γn1−β(|εj |+ µ). (74)

Denote V = maxg∈An
∑

j≤n Eφ̃2
j (g). Hence by (73) and (74),

V ≤ max
g∈An

∑
j<−n

E|φ̃j |2 + max
g∈An

n∑
j=−n

E|φ̃j |2 ≤ c1µ
2
2n

3−2β, (75)

where c1 = 4γ2((2β − 1)−1 + 8(1− β)−2). Also by (73) and (74), we have

∑
j≤n

E
(

max
g∈An

|φ̃j |q
)
≤
∑
j<−n

E
(

max
g∈An

|φ̃j |q
)

+
n∑

j=−n
E
(

max
g∈An

|φ̃j |q
)
≤ c2n

1+(1−β)qµqq, (76)

where c2 = γq2q(21+q(1− β)−q + (qβ − 1)−1).
Using the bounds (75) and (76) in the Fuk-Nagaev inequality Lemma 20, we obtain

P
(
Un − 2EUn ≥ z/4

)
≤ exp

(
− z2

Cβ,γn3−2βµ2
2

)
+ Cβ,q,γ,1µ

q
q

n1+(1−β)q

zq
. (77)

Part (ii): By Lemma 21 the derivatives |g′∞(x)| ≤ 1, thus

max
g∈An

|Tn(g)| = max
g∈An

∣∣∣ ∫ ∞
−∞

∑
j≤n

n∑
i=1∨j

(
1ai−jεj≥x − P(ai−jεj ≥ x)

)
g′∞(x)dx

∣∣∣
≤
∫ ∞
−∞

∣∣∣ ∑
j≤−n

n∑
i=1∨j

(
1ai−jεj≥x − P(ai−jεj ≥ x)

)∣∣∣dx
+

∫ ∞
−∞

∣∣∣ ∑
−n≤j≤n

n∑
i=1∨j

(
1ai−jεj≥x − P(ai−jεj ≥ x)

)∣∣∣dx =: I1 + I2.
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For I1 : since εj are independent,

E(I1) ≤
n∑
i=1

∫ ∞
−∞

∥∥∥ ∑
j<−n

(
1ai−jεj≥x − P(ai−jεj ≥ x)

)∥∥∥dx

=

n∑
i=1

∫ ∞
−∞

[ ∑
j<−n

(1− Fε(x/ai−j))Fε(x/ai−j)
]1/2

dx. (78)

Denote F ∗(x) = P(|ε0| ≥ |x|), then

max
{
Fε(x) ∧ (1− Fε(x)), Fε(−x) ∧ (1− Fε(−x))

}
≤ F ∗(x).

Since F ∗(x) decreases in |x| and |ai−j | ≤ γ(−j)β, (78) can be further bounded by

E(I1) ≤ 2
n∑
i=1

∫ ∞
0

[ ∑
j<−n

F ∗(x/ak)
]1/2

dx

≤ 2n

∫ ∞
0

[ ∑
j<−n

F ∗(xγ−1(−j)β)
]1/2

dx

≤ 2n

∫ ∞
0

[ ∫ ∞
n

F ∗(γ−1xyβ)dy
]1/2

dx

= 2n3/2−βγ

∫ ∞
0

[ ∫ ∞
1

F ∗(xyβ)dy
]1/2

dx, (79)

where the last equality is due to a change of variables: x 7→ nβx/γ, y 7→ y/n.

Let r = 1 + 1/(2β). Then 1/β < r < 2. Since r < q, we have F ∗(x) ≤ |x|−rµrq,
F ∗(x) ≤ |x|−qµqq and∫ ∞

0

[ ∫ ∞
1

F ∗(xyβ)dy
]1/2

dx ≤
∫ µq

0

[ ∫ ∞
1

x−ry−rβµrqdy
]1/2

dx

+

∫ ∞
µq

[ ∫ ∞
1

x−qy−qβµqqdy
]1/2

dx ≤ c3µq,

where c3 = 2(2− r)−1(rβ − 1)−1 + 2(q − 2)−1(qβ − 1)−1/2.

For I2: Since εj are independent, we have

E(I2) = E
∫ ∞
−∞

∣∣∣ 2n∑
k=0

n∑
i=(k−n)∨1

(
1akεi−k≥x − P(akεi−k ≥ x)

)∣∣∣dx
≤

2n∑
k=0

∫ ∞
−∞

( n∑
i=(k−n)∨1

(1− Fε(x/ak))Fε(x/ak)
)1/2

dx

≤
2n∑
k=0

|ak|
∫ ∞
−∞

[nF ∗(x)]1/2dx ≤ γ(1− β)−121−βn3/2−1

∫ ∞
−∞

F ∗(x)1/2dx,
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where the second inequality is by a change of variable and the last inequality is by |ak| ≤
γk−β. Note by definition of F ∗(x),∫ ∞

−∞
F ∗(x)1/2dx = 2

∫ µq

0
1dx+ 2

∫ ∞
µq

F ∗(x)1/2dx ≤ 2q/(q − 2)µq.

Combining I1 and I2, EUn ≤ c4µqn
3/2−β, where c4 = 2γc3 + 4γ(1− β)−1q(q − 2)−1.

Lemma 28 Recall the definitions of φj(g), φ̃j(g), Tn(g) in (32), (35) and definition of Ωn

in (36). Under assumptions of Theorem 8, we have (72).

Proof The argument is similar to the proof of Lemma 24, that is, we shall apply Lemma
18 to bound the tail probability. To this aim, we need to:

(i). Derive the upper bound for I1 =
∑

j≤n P(maxg∈An |φj(g)− φ̃j(g)| ≥ u).

(ii). Bound the term I2 = maxg∈An
∑

j≤n E[(φj(g)− φ̃j(g))2|Fj−1].

Part (i): By (50), we have

max
g∈An

|φj(g)− φ̃j(g)| ≤
n∑

i=1∨j
|ai−j |(|εj |+ µ)(|Xi,j−1|+ E|Xi,j |).

Since εj are independent of Xi,j−1, above together with (51) leads to

‖max
g∈An

|φj(g)− φ̃j(g)|‖q ≤ c′1
n∑

i=1∨j
(i− j)−2β+1/2µ2

q ≤

{
c′1n(−j)−2β+1/2, if j < −n,
2c′1h(n, β)µ2

q , if − n ≤ j ≤ n,

where c′1 = 4(2β − 1)−1/2γ2Kq, h(n, β) = log(n) if β = 3/4; h(n, β) = (4β − 1)/(4β − 3) if
β > 3/4; h(n, β) = 2(3− 4β)−1n3/2−2β if β < 3/4. Therefore by Markov’s inequality

I1 ≤ u−q
( ∑
−n≤j≤n

‖max
g∈An

|φj(g)− φ̃j(g)|‖qq +
∑
j<−n

‖max
g∈An

|φj(g)− φ̃j(g)|‖qq
)

. u−qn1+(1−β)q c̃−q(n, β)µ2q
q ,

where the constant in . only depends on β, q, γ.
Part (ii): By (50) we obtain

max
g∈An

|φj(g)− φ̃j(g)| ≤
n∑

i=1∨j
2|ai−j |(|εj |+ µ) ≤

{
2γn(−j)−β(|εj |+ µ), if j < −n,
2γn1−β(|εj |+ µ), if − n ≤ j ≤ n.

Since εj is independent of Fj−1, E(|εj |2|Fj−1) = µ2
2. Hence

I2 ≤
∑

−n≤j≤n
E
[

max
g∈An

(φj(g)− φ̃j(g))2|Fj−1

]
+
∑
j<−n

E
[

max
g∈An

(φj(g)− φ̃j(g))2|Fj−1

]
≤16γ2

∑
−n≤j≤n

n2(1−β)µ2
2 + 16γ2

∑
j<−n

n2(−j)−2βµ2
2 ≤ c′2n3−2βµ2

2,
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where c′2 = 32γ2β(2β − 1)−1.
Combining two parts and applying them to Lemma 18, we have

P
(

Ωn ≥
z

4

)
.
n1+(1−β)q c̃−q(n, β)µ2q

q

uq
+ 2|An|exp

(
− z2

Cβ,γn3−2βµ2
2

)
+ 2|An|exp

(
− z2

2zu

)
,

where the constant in . only depends on β, q, γ. Let Rn = 2|An|c̃q(n, β)zq/n1+(1−β)q and
u = z/(4log(Rn)). Notice log(Rn) . log|An|+ log(n), where constant in . only depends on
β, q, γ. Then the desired result follows.

Remark 29 With a careful check of the proofs of Theorem 8, Lemmas 27 and 28, we can
choose constants in Theorem 8 as follows:

• Cβ,γ = 64 max{3γ2((2β − 1)−1 + 8(1− β)−2), 16γ2β(2β − 1)−1}.

• Cβ,q,γ = max{Cβ,q,γ,1, Cβ,q,γ,2}, where Cβ,q,γ,1 = 4qK ′qc2, with c2 = γq2q(21+q(1 −
β)−q + (qβ − 1)−1) and Cβ,q,γ,2 = 1 + 8c′1

q(2βq − q/2− 1)−1 + 2q+3c′1
q maxq{1, (4β −

1)/(4β − 3), 2(3− 4β)−1}, with c′1 = 4(2β − 1)−1/2γ2Kq.

• C ′β,q,γ = 2γc3 + 4γ(1 − β)−1q(q − 2)−1, where c3 = 2(2 − r)−1(rβ − 1)−1 + 2(q −
2)−1(qβ − 1)−1/2 with r = 1 + 1/(2β).

Here Kq (resp. K ′q ) is the constant given in Lemma 19 (resp. Lemma 20).

Proof [Proof of Proposition 9] Construct An as in the proof of Theorem 4. Recall (31) for
the function gk. Note that g1(Xi,i−1) = E[g(Xi)|Fi−1]. By (36), we have

P(|∆n| ≥ a+ z) ≤P
(

max
g∈An

|Sn(g)− ESn(g)| ≥ a+ z/2
)

≤P
(

max
g∈An

∣∣∣ n∑
i=1

(
g1(Xi,i−1)− Eg1(Xi,i−1)

)∣∣∣ ≥ a+ z/4

)

+
∑
g∈An

P
(∣∣∣ n∑

i=1

(g(Xi)− E[g(Xi)|Fi−1])
∣∣∣ ≥ z/4) =: I1 + I2,

where a = Cqa∗µqc(n, q) and a = C ′β,q,γµqn
3/2−β for Propositions 5 and 9, respectively.

Since |g| ≤ 1 and g(Xi) − E[g(Xi)|Fi−1], 1 ≤ i ≤ n, are martingale differences, by
Azuma’s inequality, I2 ≤ 2|An|exp{−z2/(64n)}. For I1, notice

g1(x) =

∫ ∞
−∞

g(x+ y)fε(y)dy =

∫ ∞
−∞

g(y)fε(y − x)dy.

By Assumption (A′), supg∈A |g1|∞, supg∈A |g′1|∞ and supg∈A |g′′1 |∞ are all bounded by 1.
Thus in the I1 part, the function g1 satisfies Assumption (A) and can be dealt with by
Theorem 4 and Theorem 8 for Propositions 5 and 9 respectively. Combining I1 and I2, we
complete the proof.
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6.5 Proof of Theorem 11

Proof [Proof of Theorem 11] We shall apply the argument in the proof of Theorem 7.
Recall (56) for Dk, I1 and I2. Case (a) follows from the following three claims:

(a.i) I1 ≤ e−C2z2/n, (a.ii) I2 ≤ e−C2z2/n, (a.iii) E∆n ≤ C1
√
n,

while Case (b) follows from the following three:

(b.i) I1 ≤ e−C4z2n−(3−2β)
, (b.ii) I2 ≤ e−C4z2n−(3−2β)

, (b.iii) E∆n ≤ C3n
3/2−β.

Part (a.i) and (b.i): By (58), for k ≤ −n,

|Dk| ≤
n∑

i=1∨k
|ai−k|(|εk|+ µ) ≤ γn(−k)−β(|εk|+ µ). (80)

Let h∗ = c0/(2γ). By the same argument in (63) and (64), for 0 < h ≤ h∗,

E(eDkh|Fk−1) ≤ 1 + E
[e|Dk|h∗ − |Dk|h∗ − 1

h∗2

∣∣∣Fk−1

]
h2. (81)

Denote θ = n(−k)−β/2. Note that for any fixed x > 0, etx−tx−1 is increasing on t ∈ (0,∞).
Applying the upper bound for |Dk| in (80), we have

E(e|Dk|h
∗ − |Dk|h∗ − 1|Fk−1) ≤ E

[
ec0θ(|εk|+µ) − c0θ(|εk|+ µ)− 1

]
= E

[ ∫ ∞
0

d

dx
(eθx − θx− 1) · 1{c0(|εk|+µ)≥x}dx

]
=

∫ ∞
0

(θeθx − θ)P(c0(|εk|+ µ) ≥ x)dx,

where the last equality is by Fubini’s theorem. Note that P(c0(|εk|+µ) ≥ x) ≤ c1e
−x, where

c1 = ec0µµe. Then we further have

E(e|Dk|h
∗ − |Dk|h∗ − 1|Fk−1) ≤

∫ ∞
0

c1e
−x(θeθx − θ)dx = c1θ

2/(1− θ) ≤ 2c1θ
2. (82)

where the last inequality is due to θ ≤ 1/2. Hence by (81) and (82) we have for any h ≤ h∗,

E(eDkh|Fk−1) ≤ 1 + c2n
2(−k)−2βh2 ≤ ec2n2(−k)−2βh2 . (83)

where c2 = 2c1γ
2/c2

0 and the last inequality is due to 1 + x ≤ ex. By Markov’s inequality

I1 ≤ e−zh/2E
(
e
∑
k≤−nDkh

)
≤ e−zh/2E

(
e
∑
k≤−n−1DkhE(eD−nh|F−n−1)

)
.

Hence recursively applying (83), we obtain

I1 ≤ exp
(
− zh/2 + c2n

2
∑
k≤−n

(−k)−2βh2
)
≤ exp

(
− zh/2 + c2c3(2β − 1)−1n3−2βh2

)
,

where c3 = max{(2β − 1)/(4c2h
∗), 1}. Take h = (2β − 1)(4c2c3)−1z/n for (a.i) and h =

(2β − 1)(4c2c3)−1z/n3−2β for (b.i) respectively, then h ≤ h∗ and we have I1 ≤ e−C21z2/n for

(a.i) and I1 ≤ e−C21z2/n3−2β
for (b.i), where C21 = (2β − 1)/(16c2c3).
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Part (a.ii): By (58), for −n < k ≤ n,

|Dk| ≤
n∑

i=1∨k
|ai−k|(|εk|+ µ) ≤ 2β(β − 1)−1γ(|εk|+ µ). (84)

Let c4 = 2β(β−1)−1γ and h∗ = c0c
−1
4 . By the same argument as (83) in Part (a.i), we have

for any h ≤ h∗,

E(eDkh|Fk−1) ≤ ec5h2 , (85)

where c5 = c1c
2
4/(2c

2
0). Similarly to Part (a.i), by Markov’s inquality and recursively apply-

ing (85),

I2 ≤ e−zh/2E
(
e
∑
−n<k≤nDkh

)
≤ exp

(
− zh/2 + 2c5c6nh

2
)
,

where c6 = max{c4/(8c0c5), 1}. Let h = (8c5c6)−1z/n. Then h ≤ h∗ and we have I2 ≤
e−C22z2/n, where C22 = (32c5c6)−1.
Part (b.ii): By (58), for −n < k ≤ n,

|Dk| ≤ (1− β)−1γn1−β(|εk|+ µ). (86)

Let c7 = (1 − β)−1γ, h∗ = c0c
−1
7 n−1+β and c8 = 2 max{c7/(8c0), c1c

2
7/(2c

2
0)}. By the same

argument as in Part (a.ii) with the bound in (84) replaced by (86), we have for any h ≤ h∗,

I2 ≤ e−zh/2E
(
e
∑
−n<k≤nDkh

)
≤ exp

(
− zh/2 + c8n

3−2βh2
)
.

Take h = (4c8)−1zn−(3−2β), then h ≤ h∗ and we have I2 ≤ e−C42z2n−(3−2β)
.

Part (a.iii) and (b.iii): Applying Theorem 1 in Wu (2003) with p = 0, k = 1 and γ = 2

therein, we have E(∆n) = C1n
1/2 (resp. E(∆n) = C3n

3/2−β) for SRD (resp. LRD) pro-
cesses, where the constants C1 and C3 only depend on β, γ, f∗, µe, c0.

Remark 30 Based on the proof of Theorem 11, the constants can take the following values:
C2 = max(C21, C22), C4 = max(C21, C42), where C21 = (2β−1)/(16c2c3), C22 = (32c5c6)−1

and C42 = (16c8)−1, with c1 = ec0µµe, c2 = 2c1γ
2/c2

0, c3 = max{(2β − 1)γ/(2c0c2), 1},
c4 = 2β(β − 1)−1γ, c5 = c1c

2
4/(2c

2
0), c6 = max{c4/(8c0c5), 1}, c7 = (1 − β)−1γ and c8 =

2 max{c7/(8c0), c1c
2
7/(2c

2
0)}. Constants C1 and C3 only depend on β, γ, f∗, µe, c0.

6.6 Proofs of Theorem 12 and Proposition 13

Proof [Proof of Theorem 12] Since Fε is the c.d.f of εi and a0 = 1, E(1Xi≤t|Fi−1) =
Fε(t−Xi,i−1). The summation Sn(t) can be decomposed into two parts:

Sn(t) =

n∑
i=1

[1Xi≤t − E(1Xi≤t|Fi−1)] +

n∑
i=1

[Fε(t−Xi,i−1)− F (t)] =: Qn(t) +Rn(t). (87)

Note that summands of Qn(t) are martingale differences. We shall derive bounds for
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(i). P(supt∈R |Qn(t)|/f∗ ≥ z/2).

(ii). P
(

supt∈R |Rn(t)|/f∗ ≥ C0a∗µqc(n, q) + z/2
)
, for SRD case;

P(supt∈R |Rn(t)|/f∗ ≥ C ′0µqn3/2−β + z/2), for LRD case.

We shall apply Azuma’s inequality on Qn(t) since it is the sum of martingale differences. For
Rn(t), since Fε is smooth, we apply Theorems 4 and 8 for SRD and LRD cases, respectively.

Part (i): Let M = 2µqn
2β, H(t) =

∑n
i=1 1Xi≤t and H̃(t) =

∑n
i=1 Fε(t − Xi,i−1). Then

Qn(t) = H(t)− H̃(t) and

P
(

sup
t∈R
|Qn(t)|/f∗ ≥ z/2

)
≤ I1 + I2, where

I1 = P
(

sup
t∈R
|H(t)− H̃(t)|/f∗ ≥ z/2, max

i≤n
|Xi,i−1| ≤M

)
, I2 =

n∑
i=1

P
(
|Xi,i−1| ≥M

)
.

For I1, let tk = −2M + δk, k = 0, . . . , d4M/δe, where δ = z/(4n). Since |F ′ε| ≤ f∗, under
this construction, |H̃(tk)− H̃(tk+1)|/f∗ ≤ z/4.

Moreover, since nP(|ε0| ≥ M) ≤ n1−2qβ ≤ z/4, H̃(t0) and 1 − H̃(td4M/δe) are less than
z/4 on the set {maxi≤n |Xi,i−1| ≤M}.

Since H(t) and H̃(t) are both non-decreasing, for s1 ≤ s2 and t ∈ [s1, s2], we have

|H(t)− H̃(t)| ≤ |H̃(s1)− H̃(s2)|+ max
{
|H(s1)− H̃(s1)|, |H(s2)− H̃(s2)|

}
.

Consequently,

I1 ≤
d4M/δe∑
k=0

P
(
|H(tk)− H̃(tk)|/f∗ > z/4

)
. (88)

For any t ∈ R, since the martingale differences 1Xi≤t − E(1Xi≤t|Fi−1), i = 1, . . . , n, are
bounded in absolute value by 1, by Azuma’s inequality,

P
(
|H(t)− H̃(t)| > z

)
≤ 2exp(−z2/2n). (89)

With (88) and (89), we obtain

I1 ≤ (64µq)z
−1n2β+1exp(−z2/(32n)).

For I2, by (51) and Markov’s inequality,

I2 ≤M−q
n∑
i=1

‖Xi,i−1‖qq ≤ c1n
1−2qβ, (90)

where c1 = (Kqγ/2)q(βq′−1)−q/q
′
. Combining I1 and I2 we complete the proof for this part.
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Part (ii): Let M = c2µqn
2β, where c2 = 2Kqγq

′β, then for any τ > 0,

P(sup
t∈R
|Rn(t)|/f∗ ≥ z/2 + τ)

≤P
(

sup
|t|≤2M

|Rn(t)|/f∗ ≥ z/4 + τ
)

+
n∑
i=1

P
(
|Xi,i−1| ≥M

)
+P
(

sup
|t|≥2M

|Rn(t)|/f∗ ≥ z/4, max
i≤n
|Xi,i−1| ≤M

)
=: I′1 + I′2 + I′3. (91)

For I′1, let

An = {−2M + δk|δ = z/(8n), k = 0, 1, . . . , d4M/δe}. (92)

Then sup|t|≤2M mins∈An(|Fε(t−·)−Fε(s−·)|∞+|F (t)−F (s)|)/f∗ ≤ z/(4n), and the cardinal

number |An| ≤ (32c2µq)n
2β+1/z. Hence under short- (resp. long-) range dependence, take

τ = Cqa∗µqc(n, q) (resp. τ = C ′β,qγµqn
3/2−β), then I′1 can be bounded by Theorem 4 (resp.

Theorem 8), that is, for SRD case,

I′1 ≤22qβCβ,q,γµ
q
q

n

zqβ
+ 3exp

(
− z2

16Cβ,γµ
q′

q′n
+ log(|An|)

)
+ 2exp

(
− zv

23+2vµv′q
+ log(|An|)

)
,

and for LRD case,

I′1 ≤ 22qCβ,q,γ(µ2q
q ∨µqq)

n1+(1−β)q

zq

(
1+

[log(|An|) + log(n)]q

c̃q(n, β)

)
+3exp

(
− z2

16Cβ,γn3−2βµ2
2

+log(|An|)
)
,

where Cβ,q,γ and Cβ,γ take the same values as in Theorems 4 and 8, respectively.

For I′2, by (90) we have I′2 ≤ n1−2qβ.

For I′3, if |Xi,i−1| ≤ M and t ≤ −2M , then Fε(t − Xi,i−1) ≤ Fε(−M) ≤ M−qµqq and
F (t) ≤ (2M)−qE|X0|q. By a similar argument for t ≥ 2M, we obtain Rn(x) < z/4 for
|Xi,i−1| ≤M and |t| ≥ 2M, that is I′3 = 0.

Remark 31 Recall Lemma 19 for Kq. We can choose constants in Theorem 12 as follows:

SRD C0 = Cq, C1 = (Kqγ/2)q(βq′ − 1)−q/q
′
+ 1 + 2qβCβ,q,γ , C2 = (16Cβ,γ ∨ 32)−1, C3 =

64Kqγq
′β(2β + 1), where Cβ,q,γ , Cβ,γ and Cq take same values as those in Theorem

4.

LRD C ′0 = C ′β,q,γ , C
′
1 = (Kqγ/2)q(βq′−1)−q/q

′
+1+22qCβ,q,γc0, C

′
2 = (16Cβ,γ∨32)−1, C ′3 =

64Kqγq
′β(2β + 1), where C ′β,q,γ , Cβ,q,γ , Cβ,γ take same values as those in Theorem

8, c0 = 1 + maxn≥1 logq(c′0n
2β+1)c̃−q(n, β), with c′0 = 64Kqγq

′β. Since c̃(n, β) = nα

some α > 0 and log(n)/nα → 0, c′0 is a finite constant.

The following lemma is a variant of the Fuk-Nagaev inequality which will be used in the
proof of Proposition 13.
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Lemma 32 Let Xi = (Xi1, . . . , Xip)
T, i ∈ Z, be independent mean 0 random vectors in Rp

and Snj =
∑

i≤nXij. Assume there exist constants s, r, c > 0 such that∑
i≤n

P
(

max
1≤j≤p

|Xij | ≥ y
)
≤ cn/(yslogr(y)), for all y > e.

Let σ2
n = max1≤j≤p

∑
i≤n E(X2

ij). Then for any z ≥ c′n1/2, where c′ > 0,

P
(

max
1≤j≤p

|Snj | ≥ 2E
[

max
1≤j≤p

|Snj |
]

+ z
)
≤ C1e

−z2/(3σ2
n) + C2n/(z

slogr(z)),

where C1, C2 are positive constants that only depend on c, c′, s and r.

Proof We shall apply the argument in Theorem 3.1 of Einmahl and Li (2008) with
(B, ‖ · ‖) = (Rp, | · |∞), η = δ = 1 and β(y) = βsr(y) = M/(yslogr(y)). Notice Λ2

n in
Theorem 3.1 of Einmahl and Li (2008) is bounded by σ2 in our settings (cf. proof of
Lemma A.2 in Chernozhukov et al. (2017)).

Proof [Proof of Proposition 13] Recall the proof of Theorem 12 for I1, I2, I′1-I′3 and
An in (92). For z ≥ c

√
nlogα(n), where α > 1/2, all terms except I′1 are of order

o
(
nz−qβlog−r0(z)

)
. Hence we only need to show that I′1 . z−qβlog−r0(z)nµqq for τ =

Cqa∗µq
√
n. Let

φj(t) =

n∑
i=1

PjFε(t−Xi,i−1) =

n∑
i=1∨(j+1)

(
Fi−j(t−Xi,j)− Fi−j+1(t−Xi,j−1)

)
,

Then Rn(t) =
∑

j≤n−1 φj(t). Define

φ̃j(t) =

n∑
i=1∨(j+1)

(
F (t− ai−jεj)− EF (t− ai−jεj)

)
and R̃n(t) =

∑
j≤n−1

φ̃j(t).

By the same argument for I′1 in the proof of Theorem 12, we have

I′1 ≤ P
(

max
t∈An
|Rn(t)|/f∗ ≥ z/4 + Cqa∗µq

√
n
)
.

The idea is similar to the proof of Theorem 4, that is, we shall show:

(i). Rn(t) can be approximated by R̃n(t), specifically,

P
(

max
t∈An

|Rn(t)− R̃n(t)|/f∗ ≥ z/8
)

= o
(
nz−qβlog−r0(z)

)
. (93)

(ii). The tail probability of R̃n(t),

P
(

max
t∈An

|R̃n(t)|/f∗ ≥ Cqa∗µq
√
n+ z/8

)
.

µqqn

zqβlogr0(z)
.
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Part (i): Note that log(|An|) . log(n) (actually log(|An|) � log(n)) and that Fε/f∗, fε/f∗,
f ′ε/f∗ are all bounded in absolute value by 1. By the same argument as in the proof of
Lemma 24, using u = z/log3/2(z) in inequality (55), we obtain (93).

Part (ii): Denote V = maxt∈An
∑

j≤n−1 E[φ̃2
j (t)], then by (39), we have V . n, where the

constant in . only depends on β, q, γ. For j ≤ −n, by (40) and f ′ ≤ f∗, we have∑
j≤−n

P(max
t∈An

|φ̃j(t)|/f∗ ≥ z) ≤
∑
j≤−n

P(γn(−j)−β(|εj |+ µ) ≥ z) . µqqn/(z
qβlogr0(z)),

where the constant in . only depends on β, q, γ, r0, L. For −n < j ≤ n, by (41),∑
−n<j≤n

P(max
t∈An

|φ̃j(t)|/f∗ ≥ z) ≤
∑

−n<j≤n
P(cβ(|εj |+ µ)1/β ≥ z) . µqqn/(z

qβlogr0(z)),

where the constant in . only depends on β, q, γ, r0, L. By Lemma 32 we have

P
(

max
t∈An

∣∣R̃n(t)
∣∣/f∗ − 2E

[
max
t∈An

|R̃n(t)|
]
/f∗ ≥ z

)
. e−z

2/(3V ) +
µqqn

zqβlogr0(z)
.

µqqn

zqβlogr0(z)
.

By (49), we have E[maxt∈An |R̃n(t)|] ≤ Cqa∗µq
√
n, which implies the desired result.

6.7 Proof of Theorem 14

Proof [Proof of Theorem 14] Define

Wn(t) =
n−1∑
j=0

ϕj(t), where ϕj(t) =
∑
k≥1

[
F (t− k−βεj)− EF (t− k−βεj)

]
. (94)

We claim that:

(i). Sn(t) can be approximated by Wn(t), specifically for θ0 = (2α− 1)/4,

P
(
|Sn(t)−Wn(t)| ≥ z/logθ0(z)

)
= o
(
nz−qβ/logr0(z)

)
. (95)

(ii). The tail distribution of ϕ0(t) satisfies

P (ϕ0(t) > z) ∼ C1

zqβlogr0(z)
and P (ϕ0(t) < −z) ∼ C2

zqβlogr0(z)
, (96)

where C1, C2 only depend on q, β, r0, t, F.

Proofs of (95) and (96) will be given in Lemmas 33 and 34, respectively. By (95),

P(Sn(t) > z) ≥P(Wn(t) ≥ z + z/logθ0(z))− P(|Sn(t)−Wn(t)| ≥ z/logθ0(z)),

=P(Wn(t) ≥ z + z/logθ0(z)) + o
(
nz−qβ/logr0(z)

)
, (97)
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and similarly

P(Sn(t) > z) ≤ P(Wn(t) ≥ z − z/logθ0(z)) + o
(
nz−qβ/logr0(z)

)
. (98)

Since ϕj has a regularly varying tail (96), by Theorem 1.9 in Nagaev (1979),

sup
w≥
√
nlogα(n)

| P(Wn(t) ≥ w)

nP(ϕ0(t) ≥ w)
− 1| → 0, as n→∞.

Hence we have P(Sn(t) ≥ z) ∼ C1nz
−qβlog−r0(z) by (96), (97) and (98) in view of

P(Wn(t) ≥ z + z/logθ0(z)) ∼ C1
n

zqβlogr0(z)
∼ P(Wn(t) ≥ z − z/logθ0(z)).

Similarly we can derive P(Sn(t) ≤ −z) ∼ C2nz
−qβlog−r0(z).

Lemma 33 Recall definitions of Sn(t), Wn(t) in (94). Under assumptions of Theorem 14,
we have for θ0 = (2α− 1)/4, (95) holds.

Proof Recall (87) for Qn(t) and Rn(t). Let

W̃n(t) =
∑
j≤n−1

n∑
i=1∨(j+1)

[F (t− (i− j)−βεj)− EF (t− (i− j)−βεj)].

Then

P
(
|Sn(t)−Wn(t)| ≥ zlog−θ0(z)

)
≤P
(
|Qn(t)| ≥ zlog−θ0(z)/3

)
+ P

(
|Rn(t)− W̃n(t)| ≥ zlog−θ0(z)/3

)
+P
(
|Wn(t)− W̃n(t)| ≥ zlog−θ0(z)/3

)
=: I1 + I2 + I3.

Part I1: Since Qn(t) is the summation of martingale differences bounded in absolute value
by 1, Azuma’s inequality leads to

P
(
|Qn(t)| ≥ z/logθ0(z)

)
≤ 2 exp

{
− z2

2nlog2θ0(z)

}
= o
(
nz−qβ/logr0(z)

)
. (99)

Part I2: Note that

Rn(t) =
∑
j≤n−1

n∑
i=1∨(j+1)

(
Fi−j(t−Xi,j)− Fi−j+1(t−Xi,j−1)

)
.

Take Fε(t− ·) as g(·) in Lemma 24, then g∞(·) = F (t− ·). By Lemma 24, but in inequality
(55), take u = z/logθ0+2(z) instead, we obtain

P
(
|Rn(t)− W̃n(t)| ≥ z/logθ0(z)

)
= o
(
nz−qβlog−r0(z)

)
.
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Part I3: Since W̃n(t) can be rewritten as

W̃n(t) =
∑
j≤n−1

n−j∑
k=1∨(1−j)

[F (t− k−βεj)− EF (t− k−βεj)].

Notice that

W̃n(t)−Wn(t)

=
∑
j≤−1

n−j∑
k=1−j

[F (t− k−βεj)− EF (t− k−βεj)]−
n−1∑
j=0

∑
k≥n−j+1

[F (t− k−βεj)− EF (t− k−βεj)].

For j < 0, let φj =
∑n−j

k=1−j [F (t− k−βεj)− EF (t− k−βεj)], then by Lemma 22,

|φj | ≤
n−j∑
k=1−j

min
{
f∗k
−β(|εj |+ µ), 1

}
≤ f∗min

{
2β(β − 1)−1(|εj |+ µ)1/β, n(−j)−β(|εj |+ µ)

}
. (100)

Denote V =
∑

j≤−1 E(|φj |2). By Corollary 1.8 in Nagaev (1979), for x = bn/logΓ0(n)c with
Γ0 = r0 + θ0qβ + 1/2,

P
(∣∣ ∑

j≤−1

φj
∣∣ ≥ z/logθ0(z)

)
.

−1∑
j=−x

logθ0q(z)

zq
E(|φj |q) +

∑
j<−x

logθ0qβ(z)

zqβ
E(|φj |qβ)

+exp
(
− z2

log2θ0(z)V

)
= II1 + II2 + II3,

where the constant in . only depends on q and β.
For II1, by (100),

II1 .
logθ0qβ(z)

zqβ
xµqq =

n

zqβlogr0(z)

x

n
[log(z)]θ0qβ+r0µqq = o

(
nz−qβ/logr0(z)

)
,

where the constant in . only depends on µq, f∗, q and β.
For II2, by (100),

II2 .
logθ0q(z)

zq

∑
j<−x

nq(−j)qβµqq

.
n

zqβlogr0(z)

[log(z)]θ0q+r0zq(β−1)nq−1

xqβ−1
µqq = o

(
nz−qβ/logr0(z)

)
,

where the constants in . only depend on µq, f∗, q and β.
For II3, by (100),

V .
∑
j<−n

(n(−j)−β)q
′
n2−q′µq

′
q +

∑
−n≤j≤n

µqq . nµqq,
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where the constants in . only depends on f∗, q and β.
Combining II1-II3, we have P(|

∑
j≤−1 φj | ≥ z/logθ0(z)) = o(nz−qβ/logr0(z)). A similar

argument will lead to the same bound for j ≥ 0 part, thus

P
(
|W̃n(t)−Wn(t)| ≥ z/logθ0(z)

)
= o
(
nz−qβ/logr0(z)

)
.

Thus the lemma follows from I1-I3.

Lemma 34 Recall (94) for ϕ0(t). Under conditions of Theorem 14, we have

P (ϕ0(t) > z) ∼ C1

zqβlogr0(z)
and P (ϕ0(t) < −z) ∼ C2

zqβlogr0(z)
, as z →∞,

where C1 = Lqβ1 (t)β−r0, C2 = Lqβ2 (t)β−r0, and

L1(t) =

∫ ∞
0

F (t+ u)− F (t)

βu1+1/β
du, L2(t) =

∫ ∞
0

F (t)− F (t− u)

βu1+1/β
du. (101)

Proof Since fε ≤ 1, by Lemma 21, f is bounded by 1. Let

ϕ̃0(t) =

∫ ∞
0

[
F (t− s−βε0)− F (t)

]
ds. (102)

Since |F (t− s−βε0)− F (t)| ≤ min{1, s−β|ε0|}, we have

|ϕ̃0(t)| ≤ 1 +

∫ ∞
1

s−β|ε0|ds ≤ 1 + (β − 1)−1|ε0|.

Thus ϕ̃0(t) is well defined. Note that the lemma follows from the following two claims:

(i). |ϕ0(t)− ϕ̃0(t)| ≤ f∗µβ/(β − 1) + 1, which is bounded.

(ii). P(ϕ̃0(t) > z) ∼ C1log−r0(z)z−qβ and P(ϕ̃0(t) < −z) ∼ C2log−r0(z)z−qβ as z →∞.

Part (i): Since F is non-decreasing, for any s ∈ [k − 1, k],

|F (t− s−βε0)− F (t− k−βε0)| ≤ sign(ε0)
{
F (t− k−βε0)− F (t− (k − 1)−βε0)

}
.

Since F (−∞) = 0 and F (∞) = 1,

I1 :=
∞∑
k=1

∫ k

k−1
|F (t− s−βε0)− F (t− k−βε0)|ds ≤ 1.

Since f is bounded, we have

I2 :=

∞∑
k=1

|F (t)− EF (t− k−βε0)| ≤ f∗
∞∑
k=1

k−βµ ≤ f∗µβ/(β − 1).
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Thus |ϕ0(t)− ϕ̃0(t)| ≤ I1 + I2 ≤ f∗µβ/(β − 1) + 1, a finite constant.

Part (ii): Let u > 0. Then 0 ≤ F (t+ u)− F (t) ≤ min{f∗u, 1}. Hence L1(t) is bounded by∫∞
0 min{f∗u, 1}/(βu1+1/β)du ≤ f∗β/(β − 1). Similarly L2(t) ≤ f∗β/(β − 1). Note that∫ ∞

0

[
F (t− s−βy)− F (t)

]
ds =

{
L1(t)|y|1/β, if y < 0,

−L2(t)|y|1/β, if y > 0.

Since ε0 is symmetric, by (22) and the definition of ϕ̃0(t) in (102), (ii) follows.

Remark 35 Values of C1 and C2 are given in Lemma 34. A careful check of the proof of
Theorem 14 suggests that the constant Γ can be chosen as Γ = [θ0q+r0+(qβ−1)Γ′]/(qβ−q),
where θ0 = (2α− 1)/4 and Γ′ = r0 + θ0qβ + 1.

6.8 Proof of Corollaries 15 and 16

Proof [Proof of Corollary 15] We shall first deal with the SRD case. Recall Fj = (εj , εj−1, . . .).
Write

Mn(x) =
n∑
j=1

(
Kb(x−Xj)− E[Kb(x−Xj)|Fj−1]

)
,

Rn(x) =

n∑
j=1

(
E[Kb(x−Xj)|Fj−1]− E[Kb(x−Xj)]

)
= n(f̂n(x)− Ef̂n(x))−Mn(x).

Note that Mn(x) is a martingale w.r.t. filter σ(Fn). Let τn = nβ and l∗ = K∗ ∨ f∗. Then

I : = P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ l∗z
)

≤
n∑
j=1

P(|Xj | ≥ τn) + P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ l∗z, max
1≤j≤n

|Xj | < τn

)
=: I1 + I′1. (103)

Since K has support [−1, 1], Kb(x −Xj) = 0 when |Xj | < τn and |x| > τn + bn. Hence if

maxj≤n |Xj | < τn and |x| > τn + bn, we have f̂n(x) = 0. Note that sup|x|≤τn+bn |Mn(x)| +
sup|x|≤τn+bn |Rn(x)| ≥ sup|x|≤τn+bn n|f̂n(x)− Ef̂n(x)|, we have

I′1 ≤P
(

sup
|x|>τn+bn

n|EKb(x−X1)| ≥ l∗z/4
)

+ P
(

sup
|x|≤τn+bn

|Mn(x)| ≥ l∗z/2
)

+ P
(

sup
|x|≤τn+bn

|Rn(x)| ≥ l∗z/4
)

=: I2 + I3 + I4. (104)

Hence by (103) and (104), we have I ≤ I1 + I2 + I3 + I4. For I1-I3 we shall bound them
through some basic inequalities, for I4, we will apply Corollary 6.
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For I1: By Lemma 19, E(|X0|q) ≤ Kq
q (
∑

j≥0 |aj |q
′
)q/q

′
µqq. Hence by Markov’s inequality

I1 ≤ nτ−qn E(|X0|q) . nz−qβµqq, where the constant in . only depends on q, β and γ.

For I2: Since |K|∞ is bounded by K∗ with support [−1, 1], we have |EKb(x − X1)| ≤
K∗b

−1
n P(|X1 − x| ≤ bn). When |x| > τn + bn, P(|X1 − x| ≤ bn) ≤ P(|X1| ≥ τn). Hence

n|EKb(x−X1)| ≤ nK∗b−1
n P(|X1| ≥ τn) ≤ K∗b−1

n n1−qβE|X0|q = o(K∗z),

in view of z ≥ c(n/bn)1/2log1/2(n) and nbn →∞. Thus I2 = 0 for all large n.

For I3: Let An = {−(τn + bn) + δnk, k = 0, 1, . . . , b2(τn + bn)/δn + 1c}, where δn =
zb2n/(8n). Then

sup
|x|≤τn+bn

min
y∈An

|Mn(x)−Mn(y)| ≤ K∗z/4,

and I3 ≤
∑

x∈An P(|Mn(x)| ≥ l∗z/4). Since |K|∞ ≤ K∗ and |fε|∞ ≤ f∗, for Xj,j−1 =∑
k≥1 akεj−k,

E[K2
b (x−Xj)|Fj−1]| =

∫ ∞
−∞

b−2
n K2(

x−Xj,j−1 − u
bn

)fε(u)du

=

∫ ∞
−∞

b−1
n K2(y)fε(x− bny −Xj,j−1)dy

≤ K∗f∗b−1
n

∫ ∞
−∞

K(y)dy = K∗f∗b
−1
n .

Therefore for ξj(x) = Kb(x−Xj)− E[Kb(x−Xj)|Fj−1],

V (x) :=
n∑
j=1

E(ξj(x)2|Fj−1) ≤ nK∗f∗b−1
n .

Note |Kb| ≤ K∗/bn, therefore by Freedman’s inequality (Lemma 18), we have

I3 ≤
∑
x∈An

P
(
|Mn(x)| ≥ l∗z/4

)
≤ 2

∑
x∈An

exp(− z2

2zb−1
n + 2nb−1

n
)

≤ 32n(τn + bn)

zb2n
exp(−z

2bn
4n

).

Since z ≥ c(n/bn)1/2log1/2(n), for c sufficiently large I3 = o(n/zqβ).

For I4: Since E[Kbn(x−Xj)|Fj−1] =
∫
RK(u)fε(x− bnu−Xj,j−1)du, we have Rn(x) =∑n

j=1Nn(x,Xj,j−1), where

Nn(x, y) =

∫ ∞
−∞

K(u)[fε(x− bnu− y)− f(x− bnu)
]
du. (105)

Let function class An = {Nn(x, ·), |x| ≤ τn + bn}, then for any function in An, its up to
second order derivatives are bounded by f∗ and NAn(f∗z/n) ≤ 4n(τn + bn)/z. Therefore by
Corollary 6, we have I4 . µqqnz−qβ, where the constant in . only depends on β, q and γ.
Thus (25) follows from I1-I4.
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For the LRD case, define Mn(x) and Rn(x) as in the SRD case and let τn = z. Again
we have

P
(

sup
x∈R

n|f̂n(x)− Ef̂n(x)| ≥ l∗z
)
≤

n∑
j=1

P(|Xj | ≥ z)

+ P
(

sup
|x|>z+bn

n|EKb(x−X1)| ≥ l∗z/4
)

+ P
(

sup
|x|≤z+bn

|Mn(x)| ≥ l∗z/2
)

+ P
(

sup
|x|≤z+bn

|Rn(x)| ≥ l∗z/4
)

=: I1 + I2 + I3 + I4.

Using same argument as for SRD case with τn replaced by z, we obtain I1, I2, I3 . nz−qµqq,
where the constants in . only depend on q, β and γ. For I4, we still have (105). Let
An = {Nn(x, ·), |x| ≤ z + bn}. Then NAn(f∗z/n) ≤ 4n(z + bn)/z. Therefore by Corollary
10, we have I3 . (µ2q

q ∨µqq)n3/2−βz−q, where the constant in . only depends on β, q and γ.

Proof [Proof of Corollary 16] Let Gi = (εi, εi−1, . . . ; ηi, ηi−1, . . .) and Xi,i−1 =
∑∞

j=1 ajεi−j .
Then we have E[L(Xi, Yi, h(Xi))|Gi−1] = Qh(Xi,i−1), where

Qh(w) =

∫ ∞
−∞

E[L(u,H0(u, ηi), h(u))]fε(u− w)du. (106)

Let Jh(x) = Qh(x)− E[L(Xi, Yi, h(Xi))]. Write

n(Rn(h)−R(h)) =
n∑
i=1

[
L(Xi, Yi, h(Xi))−Qh(Xi,i−1)

]
+

n∑
i=1

Jh(Xi,i−1) =: I1(h) + I2(h).

For h, g ∈ H, let D(h, g) = supx,y∈R |L(x, y, h(x)) − L(x, y, g(x))|. Let Hn be the subset of
H such that suph1∈H infh2∈Hn D(h1, h2) ≤ z/(4n) and |Hn| ≤ NA(z/(4n)). Then for τ > 0,

P(nΨn/f∗ ≥ z + τ) ≤ P
(

max
h∈Hn

n|Rn(h)−R(h)|/f∗ ≥ z/2 + τ
)

≤
∑
h∈Hn

P(|I1(h)|/f∗ ≥ z/4) + P
(

max
h∈Hn

|I2(h)|/f∗ ≥ z/4 + τ
)
.

Since 0 ≤ L ≤ 1, f∗ ≥ 1 and the summands of I1(h) are bounded martingale differences
with respect to Gi, by Azuma’s inequality, we have

∑
h∈Hn P(|I1(h)| ≥ z) ≤ 2|Hn|e−z

2/(32n).
Since both

∫∞
−∞ |f

′
ε(x)|dx and

∫∞
−∞ |f

′′
ε (x)|dx are bounded by f∗, by (106), for h ∈ H, Qh, Q′h

and Q′′h exist and are uniformly bounded by f∗ in absolute value. Thus (16) (resp. (20))
follows from applying Corollary 6 to Qh/f∗ with τ = Cqa∗µqc(n, q) (resp. Corollary 10 with
τ = Cβ,q,γµqn

3/2−β).
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