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Abstract

In deterministic optimization, line searches are a standard tool ensuring stability and
efficiency. Where only stochastic gradients are available, no direct equivalent has so far
been formulated, because uncertain gradients do not allow for a strict sequence of decisions
collapsing the search space. We construct a probabilistic line search by combining the
structure of existing deterministic methods with notions from Bayesian optimization. Our
method retains a Gaussian process surrogate of the univariate optimization objective, and
uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm
has very low computational cost, and no user-controlled parameters. Experiments show
that it effectively removes the need to define a learning rate for stochastic gradient descent.

Keywords: stochastic optimization, learning rates, line searches, Gaussian processes,
Bayesian optimization

1. Introduction

This work substantially extends the work of Mahsereci and Hennig (2015) published at NIPS
2015. Stochastic gradient descent (sgd, Robbins and Monro, 1951) is currently the standard
in machine learning for the optimization of highly multivariate functions if their gradient
is corrupted by noise. This includes the online or mini-batch training of neural networks,
logistic regression (Zhang, 2004; Bottou, 2010) and variational models (e.g. Hoffman et al.,
2013; Hensman et al., 2012; Broderick et al., 2013). In all these cases, noisy gradients arise
because an exchangeable loss-function L(x) of the optimization parameters x ∈ RD, across
a large dataset {di}i=1 ...,M , is evaluated only on a subset {dj}j=1,...,m:

L(x) :=
1

M

M∑
i=1

`(x, di) ≈
1

m

m∑
j=1

`(x, dj) =: L̂(x) m�M. (1)

If the indices j are i.i.d. draws from [1,M ], by the Central Limit Theorem, the error
L̂(x)− L(x) is unbiased and approximately normal distributed. Despite its popularity and
its low cost per step, sgd has well-known deficiencies that can make it inefficient, or at least
tedious to use in practice. Two main issues are that, first, the gradient itself, even without
noise, is not the optimal search direction; and second, sgd requires a step size (learning
rate) that has drastic effect on the algorithm’s efficiency, is often difficult to choose well,
and virtually never optimal for each individual descent step. The former issue, adapting
the search direction, has been addressed by many authors (see George and Powell, 2006, for
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an overview). Existing approaches range from lightweight ‘diagonal preconditioning’ like
Adam (Kingma and Ba, 2014), AdaGrad (Duchi et al., 2011), and ‘stochastic meta-descent’
(Schraudolph, 1999), to empirical estimates for the natural gradient (Amari et al., 2000) or
the Newton direction (Roux and Fitzgibbon, 2010), to problem-specific algorithms (Rajesh
et al., 2013), and more elaborate estimates of the Newton direction (Hennig, 2013). Most of
these algorithms also include an auxiliary adaptive effect on the learning rate. Schaul et al.
(2013) provided an estimation method to explicitly adapt the learning rate from one gradient
descent step to another. Several very recent works have proposed the use of reinforcement
learning and ‘learning-to-learn’ approaches for parameter adaption (Andrychowicz et al.,
2016; Hansen, 2016; Li and Malik, 2016). Mostly these methods are designed to work well on
a specified subset of optimization problems, which they are also trained on; they thus need
to be re-learned for differing objectives. The corresponding algorithms are usually orders of
magnitude more expensive than the low-level black box proposed here, and often require a
classic optimizer (e.g sgd) to tune their internal hyper-parameters.

None of the mentioned algorithms change the size of the current descent step. Accu-
mulating statistics across steps in this fashion requires some conservatism: If the step size
is initially too large, or grows too fast, sgd can become unstable and ‘explode’, because
individual steps are not checked for robustness at the time they are taken.
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Figure 1: Sketch: The task of a classic line search is
to tune the step taken by an optimization
algorithm along a univariate search direction.
The search starts at the endpoint À of the
previous line search, at t = 0. The upper
plot shows function values, the lower plot
corresponding gradients. A sequence of ex-
trapolation steps Á,Â finds a point of positive
gradient at Â. It is followed by interpolation
steps until an acceptable point ¹ is found.
Points of insufficient decrease, above the line
f(0) + c1tf

′(0) (white area in upper plot) are
excluded by the Armijo condition W-I, while
points of steep negative gradient (white area
in lower plot) are excluded by the curvature
condition W-II (the strong extension of the
Wolfe conditions also excludes the light green
area in the lower plot). Point ¹ is the first to
fulfill both conditions, and is thus accepted.

In essence, the same problem exists in deterministic (noise-free) optimization problems.
There, providing stability is one of several tasks of the line search subroutine. It is a
standard constituent of algorithms like the classic nonlinear conjugate gradient (Fletcher
and Reeves, 1964) and bfgs (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
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methods (Nocedal and Wright, 1999, §3).1 In the noise-free case, line searches are considered
a solved problem (Nocedal and Wright, 1999, §3). But the methods used in deterministic
optimization are not stable to noise. They are easily fooled by even small disturbances,
either becoming overly conservative or failing altogether. The reason for this brittleness is
that existing line searches take a sequence of hard decisions to shrink or shift the search
space. This yields efficiency, but breaks hard in the presence of noise. Section 3 constructs a
probabilistic line search for noisy objectives, stabilizing optimization methods like the works
cited above. As line searches only change the length, not the direction of a step, they could
be used in combination with the algorithms adapting sgd’s direction, cited above. In this
paper we focus on parameter tuning of the sgd algorithm and leave other search directions
to future work.

2. Connections

2.1 Deterministic Line Searches

There is a host of existing line search variants (Nocedal and Wright, 1999, §3). In essence,
though, these methods explore a univariate domain ‘to the right’ of a starting point, until an
‘acceptable’ point is reached (Figure 1). More precisely, consider the problem of minimizing
L(x) : RD _R, with access to ∇L(x) : RD _RD. At iteration i, some ‘outer loop’ chooses,
at location xi, a search direction si ∈ RD (e.g. by the bfgs-rule, or simply si = −∇L(xi) for
gradient descent). It will not be assumed that si has unit norm. The line search operates
along the univariate domain x(t) = xi + tsi for t ∈ R+. Along this direction it collects
scalar function values and projected gradients that will be denoted f(t) = L(x(t)) and
f ′(t) = sᵀi∇L(x(t)) ∈ R. Most line searches involve an initial extrapolation phase to find
a point tr with f ′(tr) > 0. This is followed by a search in [0, tr], by interval nesting or by
interpolation of the collected function and gradient values, e.g. with cubic splines.2

2.1.1 The Wolfe Conditions for Termination

As the line search is only an auxiliary step within a larger iteration, it need not find an exact
root of f ′; it suffices to find a point ‘sufficiently’ close to a minimum. The Wolfe conditions
(Wolfe, 1969) are a widely accepted formalization of this notion; they consider t acceptable
if it fulfills

f(t) ≤ f(0) + c1tf
′(0) (W-I) and f ′(t) ≥ c2f ′(0) (W-II), (2)

using two constants 0 ≤ c1 < c2 ≤ 1 chosen by the designer of the line search, not the user.
W-I is the Armijo or sufficient decrease condition (Armijo, 1966). It encodes that acceptable
functions values should lie below a linear extrapolation line of slope c1f

′(0). W-II is the
curvature condition, demanding a decrease in slope. The choice c1 = 0 accepts any value
below f(0), while c1 = 1 rejects all points for convex functions. For the curvature condition,

1. In these algorithms, another task of the line search is to guarantee certain properties of the surrounding
estimation rule. In bfgs, e.g., it ensures positive definiteness of the estimate. This aspect will not feature
here.

2. This is the strategy in minimize.m by C. Rasmussen, which provided a model for our implementation. At
the time of writing, it can be found at http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
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Figure 2: Sketch of a probabilistic line search. As
in Fig. 1, the algorithm performs extrapo-
lation (Á,Â,Ã) and interpolation (Ä,Ï),
but receives unreliable, noisy function
and gradient values. These are used to
construct a gp posterior (top. solid pos-
terior mean, thin lines at 2 standard de-
viations, local pdf marginal as shading,
three dashed sample paths). This implies
a bivariate Gaussian belief (§3.3) over
the validity of the weak Wolfe conditions
(middle three plots. pa(t) is the marginal
for W-I, pb(t) for W-II, ρ(t) their corre-
lation). Points are considered acceptable
if their joint probability pWolfe(t) (bot-
tom) is above a threshold (gray). An ap-
proximation (§3.3.1) to the strong Wolfe
conditions is shown dashed.

c2 = 0 only accepts points with f ′(t) ≥ 0; while c2 = 1 accepts any point of greater slope than
f ′(0). W-I and W-II are known as the weak form of the Wolfe conditions. The strong form
replaces W-II with |f ′(t)| ≤ c2|f ′(0)|. This guards against accepting points of low function
value but large positive gradient. Figure 1 shows a conceptual sketch illustrating the typical
process of a line search, and the weak and strong Wolfe conditions. The exposition in §3.3
will initially focus on the weak conditions, which can be precisely modeled probabilistically.
Section 3.3.1 then adds an approximate treatment of the strong form.

2.2 Bayesian Optimization

A recently blossoming sample-efficient approach to global optimization revolves around
modeling the objective f with a probability measure p(f); usually a Gaussian process (gp).
Searching for extrema, evaluation points are then chosen by a utility functional u[p(f)]. Our
line search borrows the idea of a Gaussian process surrogate, and a popular acquisition
function, expected improvement (Jones et al., 1998). Bayesian optimization (bo) methods
are often computationally expensive, thus ill-suited for a cost-sensitive task like a line
search. But since line searches are governors more than information extractors, the kind of
sample-efficiency expected of a Bayesian optimizer is not needed. The following sections
develop a lightweight algorithm which adds only minor computational overhead to stochastic
optimization.
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3. A Probabilistic Line Search

We now consider minimizing f(t) = L̂(x(t)) from Eq. 1. That is, the algorithm can access
only noisy function values and gradients yt, y

′
t at location t, with Gaussian likelihood

p(yt, y
′
t | f) = N

([
yt
y′t

]
;

[
f(t)
f ′(t)

]
,

[
σ2f 0

0 σ2f ′

])
. (3)

The Gaussian form is supported by the Central Limit argument at Eq. 1. The function value
yt and the gradient y′t are assumed independent for simplicity; see §3.4 and Appendix A
regarding estimation of the variances σ2f , σ

2
f ′ , and some further notes on the independence

assumption of y and y′. Each evaluation of f(t) uses a newly drawn mini-batch.
Our algorithm is modeled after the classic line search routine minimize.m2 and translates

each of its building blocks one-by-one to the language of probability. The following table
illustrates these four ingredients of the probabilistic line search and their corresponding
classic parts.

building block classic probabilistic

1) 1D surrogate for
objective f(t)

piecewise cubic splines gp where the mean are piece-
wise cubic splines

2) candidate selection one local minimizer of cubic
splines xor extrapolation

local minimizers of cubic
splines and extrapolation

3) choice of best candidate ——— bo acquisition function

4) acceptance criterion classic Wolfe conditions prob. Wolfe conditions

The table already motivates certain design choices, for example the particular choice of
the gp-surrogate for f(t), which strongly resembles the classic design. Probabilistic line
searches operate in the same scheme as classic ones: 1) they construct a surrogate for
the underlying 1D-function 2) they select candidates for evaluation which can interpolate
between datapoints or extrapolate 3) a heuristic chooses among the candidate locations and
the function is evaluated there 4) the evaluated points are checked for Wolfe-acceptance.
The following sections introduce all of these building blocks with greater detail: A robust yet
lightweight Gaussian process surrogate on f(t) facilitating analytic optimization (§ 3.1); a
simple Bayesian optimization objective for exploration (§ 3.2); and a probabilistic formulation
of the Wolfe conditions as a termination criterion (§ 3.3). Appendix D contains a detailed
pseudocode of the probabilistic line search; Algorithm 1 very roughly sketches the structure
of the probabilistic line search and highlights its essential ingredients.

3.1 Lightweight Gaussian Process Surrogate

We model information about the objective in a probability measure p(f). There are two
requirements on such a measure: First, it must be robust to irregularity (low and high
variability) of the objective. And second, it must allow analytic computation of discrete
candidate points for evaluation, because a line search should not call yet another optimization
subroutine itself. Both requirements are fulfilled by a once-integrated Wiener process, i.e. a
zero-mean Gaussian process prior p(f) = GP(f ; 0, k) with covariance function

k(t, t′) = θ2
[
1/3 min3(t̃, t̃′) + 1/2|t− t′|min2(t̃, t̃′)

]
. (4)
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Algorithm 1 probLineSearchSketch(f , y0, y
′
0, σf0 , σf ′0)

GP ^initGP(y0, y
′
0, σf0 , σf ′0)

T, Y, Y ′^initStorage(0, y0, y
′
0) . for observed points

t^ 1 . scaled position of initial candidate

while budget not used and no Wolfe-point found do
[y, y′] ^ f(t) . evaluate objective
T, Y, Y ′^updateStorage(t, y, y′)
GP ^updateGP(t, y, y′)
PWolfe ^probWolfe(T , GP ) . compute Wolfe probability at points in T

if any PWolfe above Wolfe threshold cW then
return Wolfe-point

else
Tcand ^computeCandidates(GP ) . positions of new candidates
EI^expectedImprovement(Tcand, GP )
PW ^probWolfe(Tcand, GP )
t^ where (PW � EI) is maximal . find best candidate among Tcand

end if
end while

return observed point in T with lowest gp mean since no Wolfe-point found

Here t̃ := t+ τ and t̃′ := t′ + τ denote a shift by a constant τ > 0. This ensures this kernel
is positive semi-definite, the precise value τ is irrelevant as the algorithm only considers
positive values of t (our implementation uses τ = 10). See §3.4 regarding the scale θ2. With
the likelihood of Eq. 3, this prior gives rise to a gp posterior whose mean function is a cubic
spline3 (Wahba, 1990). We note in passing that regression on f and f ′ from N observations
of pairs (yt, y

′
t) can be formulated as a filter (Särkkä, 2013) and thus performed in O(N)

time. However, since a line search typically collects < 10 data points, generic gp inference,
using a Gram matrix, has virtually the same, low cost.

Because Gaussian measures are closed under linear maps (Papoulis, 1991, §10), Eq. 4
implies a Wiener process (linear spline) model on f ′:

p(f ; f ′) = GP
([

f
f ′

]
;

[
0
0

]
,

[
k k∂

k∂ k∂ ∂

])
, (5)

3. Eq. 4 can be generalized to the ‘natural spline’, removing the need for the constant τ (Rasmussen and
Williams, 2006, §6.3.1). However, this notion is ill-defined in the case of a single observation, as in the
line search.
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Figure 3: Integrated Wiener process: gp marginal posterior of function values; posterior
mean in solid orange and, two standard deviations in thinner solid orange, local
pdf marginal as shading; function value observations as gray circles (corresponding
gradients not shown). Classic interpolation by piecewise cubic spline in dark blue.
Left: observations are exact; the mean of the gp and the cubic spline interpolator
of a classic line search coincide. Right: same observations with additive Gaussian
noise (error-bars indicate ± 1 standard deviations); noise free interpolator in
dashed gray for comparison. The classic interpolator in dark blue, which exactly
matches the observations, becomes unreliable; the gp reacts robustly to noisy
observations; the gp-mean still consists of piecewise cubic splines.

with (using the indicator function I(x) = 1 if x, else 0)

k∂tt′ :=
∂k(t, t′)
∂t′

= θ2
[
I(t < t′)

t̃2

2
+ I(t ≥ t′)

(
t̃t̃′ − t̃′2

2

)]
k∂ tt′ :=

∂k(t, t′)
∂t

= θ2
[
I(t′ < t)

t̃′2

2
+ I(t′ ≥ t)

(
t̃t̃′ − t̃2

2

)]
(6)

k∂ ∂
tt′ :=

∂2k(t, t′)
∂t′∂t

= θ2 min(t̃, t̃′).

Given a set of evaluations (t,y,y′) (vectors, with elements ti, yti , y
′
ti) with independent

likelihood 3, the posterior p(f |y,y′) is a gp with posterior mean function µ and covariance
function k̃ as follows: [

µ(t)
µ′(t)

]
=

[
ktt k∂tt
k∂ tt k∂ ∂

tt

] [
ktt + σ2fI k∂tt

k∂ tt k∂ ∂
tt + σ2f ′I

]−1
︸ ︷︷ ︸

=:gᵀ(t)

[
y
y′

]
[
k̃(t, t′) k̃∂(t, t′)
k̃∂ (t′, t) k̃∂ ∂(t, t′)

]
=

[
ktt′ k∂tt′

k∂ t′t k∂ ∂
tt′

]
− gᵀ(t)

[
ktt′ k∂tt′

k∂ t′t k∂ ∂
tt′

] (7)

The posterior marginal variance will be denoted by V(t) = k̃(t, t). To see that µ is indeed
piecewise cubic (i.e. a cubic spline), we note that it has at most three non-vanishing
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derivatives4, because

k∂2
tt′ :=

∂2k(t, t′)
∂t2

= θ2I(t ≤ t′) k∂3
tt′ :=

∂3k(t, t′)
∂t3

= θ2I(t ≤ t′)(t′ − t)

k∂2 ∂
tt′ :=

∂4k(t, t′)
∂t2∂t′

= −θ2I(t ≤ t′) k∂3 ∂
tt′ :=

∂4k(t, t′)
∂t3∂t′

= 0. (8)

This piecewise cubic form of µ is crucial for our purposes: having collected N values of f
and f ′, respectively, all local minima of µ can be found analytically in O(N) time in a single
sweep through the ‘cells’ ti−1 < t < ti, i = 1, . . . , N (here t0 = 0 denotes the start location,
where (y0, y

′
0) are ‘inherited’ from the preceding line search. For typical line searches N < 10,

c.f. §4. In each cell, µ(t) is a cubic polynomial with at most one minimum in the cell, found
by an inexpensive quadratic computation from the three scalars µ′(ti), µ′′(ti), µ′′′(ti). This
is in contrast to other gp regression models—for example the one arising from a squared
exponential kernel—which give more involved posterior means whose local minima can be
found only approximately. Another advantage of the cubic spline interpolant is that it
does not assume the existence of higher derivatives (in contrast to the Gaussian kernel,
for example), and thus reacts robustly to irregularities in the objective. In our algorithm,
after each evaluation of (yN , y

′
N ), we use this property to compute a short list of candidates

for the next evaluation, consisting of the ≤ N local minimizers of µ(t) and one additional
extrapolation node at tmax + α, where tmax is the currently largest evaluated t, and α is an
extrapolation step size starting at α = 1 and doubled after each extrapolation step.5

A conceptual (rather than algorithmic) motivation for using the integrated Wiener
process as surrogate for the objective, as well as for the described candidate selection, are
classic line searches. There, the 1D-objective is modeled by piecewise cubic interpolations
between neighboring datapoints. In a sense, this is a non-parametric approach, since a
new spline is defined, when a datapoint is added. Classic line searches always only deal
with one spline at a time, since they are able to collapse all other parts of the search space.
Indeed, for noise free observations, the mean of the posterior gp is identical to the classic
cubic interpolations, and thus candidate locations are identical as well; this is illustrated in
Figure 3. The non-parametric approach also prevents issues of over-constrained surrogates
for more than two datapoints. For example, unless the objective is a perfect cubic function,
it is impossible to fit a parametric third order polynomial to it, for more than two noise
free observations. All other variability in the objective would need to be explained away
by artificially introducing noise on the observations. An integrated Wiener process very
naturally extends its complexity with each newly added datapoint without being overly
assertive – the encoded assumption is that the objective has at least one derivative (which is
also observed in this case).

4. There is no well-defined probabilistic belief over f ′′ and higher derivatives—sample paths of the Wiener
process are almost surely non-differentiable almost everywhere (Adler, 1981, §2.2). But µ(t) is always
a member of the reproducing kernel Hilbert space induced by k, thus piecewise cubic (Rasmussen and
Williams, 2006, §6.1).

5. For the integrated Wiener process and heteroscedastic noise, the variance always attains its maximum
exactly at the mid-point between two evaluations; including the variance into the candidate selection
biases the existing candidates towards the center (additional candidates might occur between evaluations
without local minimizer, even for noise free observations/classic line searches). We did not explore this
further since the algorithm showed very good sample efficiency already with the adopted scheme.
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Figure 4: Candidate selection by Bayesian optimization. Top: gp marginal posterior of
function values. Posterior mean in solid orange and, two standard deviations in
thinner solid orange, local pdf marginal as shading. The red and the blue point
are evaluations of the objective function, collected by the line search. Middle:
gp marginal posterior of corresponding gradients. Colors same as in top plot. In
all three plots the locations of the two candidate points (§3.1) are indicated as
vertical dark red lines. The left one at about tcand1 ≈ 1.54 is a local minimum of
the posterior mean in between the red and blue point (the mean of the gradient
belief (solid orange, middle plot) crosses through zero here). The right one at
tcand2 = 4 is a candidate for extrapolation. Bottom: Decision criterion in arbitrary
scale: The expected improvement uEI (Eq. 9) is shown in dashed light blue, the
Wolfe probability pWolfe (Eq. 14 and Eq. 16) in light red and their decisive product
in solid dark blue. For illustrative purposes all criteria are plotted for the whole
t-space. In practice solely the values at tcand1 and tcand2 are computed, compared,
and the candidate with the higher value of uEI · pWolfe is chosen for evaluation. In
this example this would be the candidate at tcand1 .

3.2 Choosing Among Candidates

The previous section described the construction of < N + 1 discrete candidate points for the
next evaluation. To decide at which of the candidate points to actually call f and f ′, we make
use of a popular acquisition function from Bayesian optimization. Expected improvement
(Jones et al., 1998) is the expected amount, under the gp surrogate, by which the function
f(t) might be smaller than a ‘current best’ value η (we set η = mini=0,...,N{µ(ti)}, where ti
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the validity of the Wolfe conditions (Eq. 11) at the red, blue and green point
respectively. Points are considered acceptable if their Wolfe probability pWolfe

t

is above a threshold cW = 0.3; this means that at least 30% of the orange 2D
Gauss density must cover greenish shaded area. Only the green point fulfills this
condition and is therefore accepted.
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Figure 6: Curated snapshots of line searches (from N-I on MNIST), showing variability of
the objective’s shape and the decision process. Top row: gp marginal posterior
of function values and evaluations, bottom row: approximate pWolfe over strong
Wolfe conditions. Accepted point marked red.
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are observed locations),

uEI(t) = Ep(ft |y,y′)[min{0, η − f(t)}]

=
η − µ(t)

2

(
1 + erf

η − µ(t)√
2V(t)

)
+

√
V(t)

2π
exp

(
−(η − µ(t))2

2V(t)

)
.

(9)

The next evaluation point is chosen as the candidate maximizing the product of Eq. 9 and
Wolfe probability pWolfe, which is derived in the following section. The intuition is that
pWolfe precisely encodes properties of desired points, but has poor exploration properties; uEI
has better exploration properties, but lacks the information that we are seeking a point with
low curvature; uEI thus puts weight on (by W-II) clearly ruled out points. An illustration of
the candidate proposal and selection is shown in Figure 4.

In principle other acquisition functions (e.g. the upper-confidence bound, gp-ucb
(Srinivas et al., 2010)) are possible, which might have a stronger explorative behavior;
we opted for uEI since exploration is less crucial for line searches than for general bo
and some (e.g. gp-ucb) had one additional parameter to tune. We tracked the sample
efficiency of uEI instead and it was very good (low); the experimental Subsection 4.3 contains
further comments and experiments on the alternative choices of uEI and pWolfe as standalone
acquisition functions; they performed equally well (in terms of loss and sample efficiency) to
their product on the tested setups.

3.3 Probabilistic Wolfe Conditions for Termination

The key observation for a probabilistic extension of the Wolfe conditions W-I and W-II is
that they are positivity constraints on two variables at, bt that are both linear projections of
the (jointly Gaussian) variables f and f ′:

[
at
bt

]
=

[
1 c1t −1 0
0 −c2 0 1

]
f(0)
f ′(0)
f(t)
f ′(t)

 ≥ 0. (10)

The gp of Eq. (5) on f thus implies, at each value of t, a bivariate Gaussian distribution

p(at, bt) = N
([
at
bt

]
;

[
ma
t

mb
t

]
,

[
Caat Cabt
Cbat Cbbt

])
, (11)

with ma
t = µ(0)− µ(t) + c1tµ

′(0)

mb
t = µ′(t)− c2µ′(0) (12)

and Caat = k̃00 + (c1t)
2 k̃∂ ∂

00 + k̃tt + 2[c1t(k̃
∂
00 − k̃∂ 0t)− k̃0t]

Cbbt = c22 k̃∂ ∂
00 − 2c2 k̃∂ ∂

0t + k̃∂ ∂
tt

Cabt = Cbat = −c2(k̃∂00 + c1t k̃
∂ ∂

00) + c2 k̃∂ 0t + k̃∂ t0 + c1t k̃
∂ ∂

0t − k̃∂tt.
(13)

The quadrant probability pWolfe
t = p(at > 0 ∧ bt > 0) for the Wolfe conditions to hold, is an

integral over a bivariate normal probability,

pWolfe
t =

∫ ∞
− mat√

Caat

∫ ∞
− mbt√

Cbbt

N
([
a
b

]
;

[
0
0

]
,

[
1 ρt
ρt 1

])
da db, (14)
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with correlation coefficient ρt = Cabt /
√
Caat Cbbt . It can be computed efficiently (Drezner and

Wesolowsky, 1990), using readily available code.6 The line search computes this probability
for all evaluation nodes, after each evaluation. If any of the nodes fulfills the Wolfe conditions
with pWolfe

t > cW , greater than some threshold 0 < cW ≤ 1, it is accepted and returned.
If several nodes simultaneously fulfill this requirement, the most recently evaluated node
is returned; there are additional safeguards for cases where e.g. no Wolfe-point can be
found, which can be deduced from the pseudo-code in Appendix D; they are similar to
standard safeguards of classic line search routines (e.g. returning the node of lowest mean).
Section 3.4.1 below motivates fixing cW = 0.3. The acceptance procedure is illustrated in
Figure 5.

3.3.1 Approximation for Strong Conditions:

As noted in Section 2.1.1, deterministic optimizers tend to use the strong Wolfe conditions,
which use |f ′(0)| and |f ′(t)|. A precise extension of these conditions to the probabilistic
setting is numerically taxing, because the distribution over |f ′| is a non-central χ-distribution,
requiring customized computations. However, a straightforward variation to 14 captures the
spirit of the strong Wolfe conditions that large positive derivatives should not be accepted:
Assuming f ′(0) < 0 (i.e. that the search direction is a descent direction), the strong second
Wolfe condition can be written exactly as

0 ≤ bt = f ′(t)− c2f ′(0) ≤ −2c2f
′(0). (15)

The value −2c2f
′(0) is bounded to 95% confidence by

−2c2f
′(0) . 2c2(|µ′(0)|+ 2

√
V′(0)) =: b̄. (16)

Hence, an approximation to the strong Wolfe conditions can be reached by replacing the

infinite upper integration limit on b in Eq. 14 with (b̄ − mb
t)/
√
Cbbt . The effect of this

adaptation, which adds no overhead to the computation, is shown in Figure 2 as a dashed
line.

3.4 Eliminating Hyper-parameters

As a black-box inner loop, the line search should not require any tuning by the user. The
preceding section introduced six so-far undefined parameters: c1, c2, cW , θ, σf , σf ′ . We will
now show that c1, c2, cW , can be fixed by hard design decisions: θ can be eliminated by
standardizing the optimization objective within the line search; and the noise levels can
be estimated at runtime with low overhead for finite-sum objectives of the form in Eq. 1.
The result is a parameter-free algorithm that effectively removes the one most problematic
parameter from sgd—the learning rate.

3.4.1 Design Parameters c1, c2, cW

Our algorithm inherits the Wolfe thresholds c1 and c2 from its deterministic sibling. We set
c1 = 0.05 and c2 = 0.5. This is a standard setting that yields a ‘lenient’ line search, i.e. one

6. e.g. http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m

12

http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m


Probabilistic Line Searches

that accepts most descent points. The rationale is that the stochastic aspect of sgd is not
always problematic, but can also be helpful through a kind of ‘annealing’ effect.

The acceptance threshold cW is a new design parameter arising only in the probabilistic
setting. We fix it to cW = 0.3. To motivate this value, first note that in the noise-free limit,
all values 0 < cW < 1 are equivalent, because pWolfe then switches discretely between 0 and
1 upon observation of the function. A back-of-the-envelope computation, assuming only
two evaluations at t = 0 and t = t1 and the same fixed noise level on f and f ′ (which then
cancels out), shows that function values barely fulfilling the conditions, i.e. at1 = bt1 = 0, can
have pWolfe ∼ 0.2 while function values at at1 = bt1 = −ε for ε_ 0 with ‘unlucky’ evaluations
(both function and gradient values one standard-deviation from true value) can achieve
pWolfe ∼ 0.4. The choice cW = 0.3 balances the two competing desiderata for precision and
recall. Empirically (Fig. 6), we rarely observed values of pWolfe close to this threshold. Even
at high evaluation noise, a function evaluation typically either clearly rules out the Wolfe
conditions, or lifts pWolfe well above the threshold. A more in-depth analysis of c1, c2, and
cW is done in the experimental Section 4.2.1.

3.4.2 Scale θ

The parameter θ of Eq. 4 simply scales the prior variance. It can be eliminated by scaling
the optimization objective: We set θ = 1 and scale yi ^ (yi−y0)/|y′0|, y

′
i ^ y′i/|y′0| within the

code of the line search. This gives y(0) = 0 and y′(0) = −1, and typically ensures the
objective ranges in the single digits across 0 < t < 10, where most line searches take place.
The division by |y′0| causes a non-Gaussian disturbance, but this does not seem to have
notable empirical effect.

3.4.3 Noise Scales σf , σf ′

The likelihood 3 requires standard deviations for the noise on both function values (σf )
and gradients (σf ′). One could attempt to learn these across several line searches; but the
resulting estimator would be biased. In exchangeable models as captured by Eq. 1, however,
the variance of the loss and its gradient can be estimated locally and unbiased, directly for
the mini-batch, at low computational overhead—an approach already advocated by Schaul
et al. (2013). We collect the empirical statistics

Ŝ(x) :=
1

m

m∑
j

`2(x, yj), and ∇̂S(x) :=
1

m

m∑
j

∇`(x, yj)�2 (17)

(where �2 denotes the element-wise square) and estimate, at the beginning of a line search
from xk,

σ2f =
1

m− 1

(
Ŝ(xk)− L̂(xk)

2
)

and σ2f ′ = s�2i
ᵀ
[

1

m− 1

(
∇̂S(xk)− (∇L̂(xk))

�2
)]
. (18)

This amounts to the assumption that noise on the gradient is independent (see also Ap-
pendix A). We finally scale the two empirical estimates as described in Section §3.4.2:
σf ^σf/|y′(0)|, and ditto for σf ′ . The overhead of this estimation is small if the computa-
tion of `(x, yj) itself is more expensive than the summation over j. In the neural network
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examples N-I and N-II of the experimental Section 4, the additional steps added only ∼ 1%
cost overhead to the evaluation of the loss. This is rather at the lower end for these models;
A more general statement about memory and time requirements for neural networks can be
found in Sections 3.6 and 3.7. Estimating noise separately for each input dimension captures
the often inhomogeneous structure among gradient elements, and its effect on the noise
along the projected direction. For example, in multi-layer models, gradient noise is typically
higher on weights between the input and first hidden layer, hence line searches along the
corresponding directions are noisier than those along directions affecting higher-level weights.

3.4.4 Propagating Step Sizes Between Line Searches

As will be demonstrated in §4, the line search can find good step sizes even if the length of
the direction si is mis-scaled. Since such scale issues typically persist over time, it would be
wasteful to have the algorithm re-fit a good scale in each line search. Instead, we propagate
step lengths from one iteration of the search to another: We set the initial search direction
to s0 = −α0∇L̂(x0) with some initial learning rate α0. Then, after each line search ending
at xi = xi−1 + t∗si, the next search direction is set to si+1 = −αext · t∗α0∇L̂(xi) (with
αext = 1.3). Thus, the next line search starts its extrapolation at 1.3 times the step size of
its predecessor (Section 4.2.2 for details).

3.5 Relation to Bayesian Optimization and Noise-Free Limit

The probabilistic line search algorithm is closely related to Bayesian optimization (bo) since
it approximately minimizes a 1D-objective under potentially noisy function evaluations.
It thus uses notions of bo (e.g. a gp-surrogate for the objective, and an acquisition
function to discriminate locations for the next evaluation of the loss), but there are some
differences concerning the aim, requirements on computational efficiency, and termination
condition, which are shortly discussed here: (i) Performance measure: The final performance
measure in bo is usually the lowest found value of the objective function. Line searches
are subroutines inside of a greedy, iterative optimization machine, which usually performs
several thousand steps (and line searches); many, very approximate steps often performs
better than taking less, but preciser steps. (ii) Termination: The termination condition
of a line search is imposed from the outside in the form of the Wolfe conditions. Stricter
Wolfe conditions do not usually improve the performance of the outer optimizer, thus, no
matter if a better (lower) minimum could be found, any Wolfe-point is acceptable at all
times. (iii) Sample efficiency: Since the last evaluation from the previous line search can
be re-used in the current line search, only one additional value and gradient evaluation is
enough to terminate the procedure. This ‘immediate-accept’ is the desired behavior if the
learning rate is currently well calibrated. (iv) Locations for evaluation: bo, usually calls an
optimizer to maximize some acquisition function, and the preciseness of this optimization is
crucial for performance. Line searches just need to find a Wolfe-acceptable point; classic
line searches suggest that it is enough to look at plausible locations, like minimizer of a
local interpolator, or some rough extrapolation point; this inexpensive heuristic usually
works rather well. (v) Exploration: bo needs to solve an intricate trade-off problem in
between exploring enough of the parameters space for possible locations of minima, and
exploiting locations around them further. Since line searches are only concerned with finding

14



Probabilistic Line Searches

a Wolfe-point, they do not need to explore the parameter space of possible step sizes to
that extend; crucial features are rather the possibility to explore somewhat larger steps than
previous ones (which is done by extrapolation-candidates), and likewise to shorted steps
(which is done by interpolation-candidates).

In the limit of noise free observed gradients and function values (σf = σf ′ = 0) the
probabilistic line search behaves like its classic parent, except for very slight variations in
the candidate choice (building block 3): The gp-mean reverts to the classic interpolator; all
candidate locations are thus identical, but the probabilistic line search might propose a second
option, since (even if there is a local minimizer) it always also proposes an extrapolation
candidate. This is illustrated in the following table.

building block classic probabilistic (noise free)

1) 1D surrogate for
objective f(t)

piecewise cubic splines gp-mean identical to classic
interpolator

2) candidate selection local minimizer of cubic
splines xor extrapolation

local minimizer of cubic
splines or extrapolation

3) choice of best candidate ——— bo acquisition function

4) acceptance criterion classic Wolfe conditions pWolfe identical to classic
Wolfe conditions

3.6 Computational Time Overhead

The line search routine itself has little memory and time overhead; most importantly it
is independent of the dimensionality of the optimization problem. After every call of the
objective function, the gp (§3.1) needs to be updated which, at most, is at the cost of
inverting a 2N × 2N -matrix, where N usually is equal to 1, 2, or 3 but never > 10. In
addition, the bivariate normal integral pWolfe

t of Eq. 14 needs to be computed at most N
times. On a laptop, one evaluation of pWolfe

t costs about 100 microseconds. For the choice
among proposed candidates (§3.2), again at most N , for each, we need to evaluate pWolfe

t

and uEI(t) (Eq. 9) where the latter comes at the expense of evaluating two error functions.
Since all of these computations have a fixed cost (in total some milliseconds on a laptop),
the relative overhead becomes less the more expensive the evaluation of ∇L̂(x).

The largest overhead actually lies outside of the actual line search routine. In case the
noise levels σf and σf ′ are not known, we need to estimate them. The approach we took is

described in Section 3.4.3 where the variance of ∇L̂ is estimated using the sample variance
of the mini-batch, each time the objective function is called. Since in this formulation the
variance estimation is about half as expensive as one backward pass of the net, the time
overhead depends on the relative cost of the feed forward and backward passes (Balles
et al., 2017). If forward and backward pass are the same cost, the most straightforward
implementation of the variance estimation would make each function call < 1.3 times as
expensive. This is an upper bound and the actual cost is usually lower.7 At the same time
though, all exploratory experiments which very considerably increase the time spend when

7. It is desirable to decrease this value in the future reusing computation results or by approximation but
this is beyond this discussion.
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using sgd with a hand tuned learning rate schedule need not be performed anymore. In
Section 4.1 we will also see that sgd using the probabilistic line search often needs less
function evaluations to converge, which might lead to overall faster convergence in wall clock
time than classic sgd in a single run.

3.7 Memory Requirement

Vanilla sgd, at all times, keeps around the current optimization parameters x ∈ RD and the
gradient vector ∇L̂(x) ∈ RD. In addition to this, the probabilistic line search needs to store
the estimated gradient variances Σ′(x) = (1−m)−1(∇̂S(x)−∇L̂(x)�2) (Eq. 18) of same
size. The memory requirement of sgd+probLS is thus comparable to AdaGrad or Adam.
If combined with a search direction other than sgd always one additional vector of size D
needs to be stored.

4. Experiments

This section reports on an extensive set of experiments to characterise and test the line
search. The overall evidence from these tests is that the line search performs well and is
relatively insensitive to the choice of its internal hyper-parameters as well the mini-batch
size. We performed experiments on two multi-layer perceptrons N-I and N-II; both were
trained on two well known datasets MNIST and CIFAR-10.

• N-I: fully connected net with 1 hidden layer and 800 hidden units + biases, and 10
output units, sigmoidal activation functions and a cross entropy loss. Structure without
biases: 784-800-10. Many authors used similar nets and reported performances.8

• N-II: fully connected net with 3 hidden layers and 10 output units, tanh-activation
functions and a squared loss. Structure without biases: 784-1000-500-250-10. Similar
nets were also used for example in Martens (2010) and Sutskever et al. (2013).

• MNIST (LeCun et al., 1998): multi-class classification task with 10 classes: hand-
written digits in gray-scale of size 28× 28 (numbers ‘0’ to ’9’); training set size 60 000,
test set size 10 000.

• CIFAR-10 (Krizhevsky and Hinton, 2009): multi-class classification task with 10
classes: color images of natural objects (horse, dog, frog,. . . ) of size 32× 32; training
set size 50 000, test set size 10 000; like other authors, we only used the “batch 1”
sub-set of CIFAR-10 containing 10 000 training examples.

In addition we train logistic regressors with sigmoidal output (N-III) on the following binary
classification tasks:

• Wisconsin Breast Cancer Dataset (WDBC) (Wolberg et al., 2011): binary classification
of tumors as either ‘malignant’ or ‘benign’. The set consist of 569 examples of which
we used 169 to monitor generalization performing; thus 400 remain for the training
set; 30 features describe for example radius, area, symmetry, et cetera. In comparison

8. http://yann.lecun.com/exdb/mnist/
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to the other datasets and networks, this yields a very low dimensional optimization
problem with only 30 (+1 bias) input parameters as well as just a small number of
datapoints.

• GISETTE (Guyon et al., 2005): binary classification of the handwritten digits ‘4’ and
‘9’. The original 28× 28 images are taken from the MNIST datset; then the feature set
was expanded and consists of the original normalized pixels, plus a randomly selected
subset of products of pairs of features, which are slightly biased towards the upper
part of the image; in total there are 5000 features, instead of 784 as in the original
MNIST. The size of the training set and test set is 6000 and 1000 respectively.

• EPSILON: synthetic dataset from the PASCAL Challenge 2008 for binary classification.
It consists of 400 000 training set datapoint and 100 000 test set datapoints, each
having 2000 features.

In the text and figures, sgd using the probabilistic line search will occasionally be denoted as
sgd+probLS. Section 4.1 contains experiments on the sensitivity to varying gradient noise
levels (mini-batch sizes) performed on both multi-layer perceptrons N-I and N-II, as well
as on the logistic regressor N-III. Section 4.2 discusses sensitivity to the hyper-parameters
choices introduced in Section 3.4 and Section 4.3 contains additional diagnostics on step size
statistics. Each single experiment was performed 10 times with different random seeds that
determined the starting weights and the mini-batch selection and seeds were shared across
all experiments. We report all results of the 10 instances as well as means and standard
deviations.

4.1 Varying Mini-batch Sizes

The noise level of the gradient estimate ∇L̂(x) and the loss L̂(x) is determined by the
mini-batch size m and ultimately there should exist an optimal m that maximizes the
optimizer’s performance in wall-clock-time. In practice of course the cost of computing
∇L̂(x) and L̂(x) is not necessarily linear in m since it is upper bounded by the memory
capacity of the hardware used. We assume here that the mini-batch size is chosen by the
user; thus we test the line search with the default hyper-parameter setting (see Sections 3.4
and 4.2) on four different mini-batch sizes:

• m = 10, 100, 200 and 1000 (for MNIST, CIFAR-10, and EPSILON)

• m = 10, 50, 100, and 400 (for WDBC and GISETTE)

which correspond to increasing signal-to-noise ratios. Since the training set of WDBC
only consists of 400 datapoints, the run with the larges mini-batch size of 400 in fact runs
full-batch gradient descent on WDBC; this is not a problem, since—as discussed above—the
probabilistic line search can also handle noise free observations.9 We compare to sgd-runs
using a fixed step size (which is typical for these architectures) and an annealed step size
with annealing schedule αt = α0/t. Because annealed step sizes performed much worse than

9. Since the dataset size M of WDBC is very small, we used the factor (M−m)/(mM) instead of 1/m to scale
the sample variances of Eq. 17. The former encodes sampling mini-batches B with replacement, the latter
without replacement; for m�M both factors are nearly identical.
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Figure 7: Performance of N-II on MNIST for varying mini-batch sizes. Top: final logarithmic
test set and train set error after 40 000 function evaluations of training versus a
large range of learning rates each for 10 different initializations. sgd-runs with
fixed learning rates are shown in light blue (test set) and dark blue (train set);
sgd+probLS-runs in light red (test set) and dark red (train set); means and two
standard deviations for each of the 10 runs in gray. Columns from left to right
refer to different mini-batch sizes m of 10, 100, 200 and 1000 which correspond
to decreasing relative noise in the gradient observations. Not surprisingly the
performance of sgd-runs with a fixed step size are very sensitive to the choice of
this step size. sgd using the probabilistic line search adapts initially mis-scaled
step sizes and performs well across the whole range of initial learning rates. Middle
and bottom: Evolution of the logarithmic test and train set error respectively for
all sgd-runs and sgd+probLS-runs versus # function evaluations (colors as in
top plot). For mini-batch sizes of m = 100, 200 and 1000 all instances of sgd using
the probabilistic line search reach the same best test set error. Similarly a good
train set error is reached very fast by sgd+probLS. Only very few instances of
sgd with a fixed learning rate reach a better train set error (and this advantage
usually does not translate to test set error). For very small mini-batch sizes
(m = 10, first column) the line search performs poorly on this architecture, most
likely because of the variance estimation becoming too inaccurate.
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sgd+fixed step size, we will only report on the latter results in the plots.10 Since classic
sgd without the line search needs a hand crafted learning rate we search on exhaustive
logarithmic grids of

αN-I
sgd = [10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1, 5 · 10−1]

αN-II
sgd = [αN-I

sgd, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]

αN-III
sgd = [10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102].

We run 10 different initialization for each learning rate, each mini-batch size and each net
and dataset combination (10 · 4 · (2 · 10 + 2 · 17 + 3 · 11) = 3480 runs in total) for a large
enough budget to reach convergence; and report all numbers. Then we perform the same
experiments using the same seeds and setups with sgd using the probabilistic line search
and compare the results. For sgd+probLS, αsgd is the initial learning rate which is used
in the very first step. After that, the line search automatically adapts the learning rate, and
shows no significant sensitivity to its initialization.

Results of N-I and N-II on both, MNIST and CIFAR-10 are shown in Figures 7, 14, 15,
and 16; results of N-III on WDBC, GISETTE and EPSILON are shown in Figures 18, 17,
and 19 respectively. All instances (sgd and sgd+probLS) get the same computational
budget (number of mini-batch evaluations) and not the same number of optimization steps.
The latter would favour the probabilistic line search since, on average, a bit more than one
mini-batch is evaluated per step. Likewise, all plots show performance measure versus the
number of mini-batch evaluations, which is proportional to the computational cost.

All plots show similar results: While classic sgd is sensitive to the learning rate choice, the
line search-controlled sgd performs as good, close to, or sometimes even better than the (in
practice unknown) optimal classic sgd instance. In Figure 7, for example, sgd+probLS con-
verges much faster to a good test set error than the best classic sgd instance. In all
experiments, across a reasonable range of mini-batch sizes m and of initial αsgd values,
the line search quickly identified good step sizes αt, stabilized the training, and progressed
efficiently, reaching test set errors similar to those reported in the literature for tuned versions
of these kind of architectures and datasets. The probabilistic line search thus effectively
removes the need for exploratory experiments and learning-rate tuning.

Overfitting and training error curves: The training error of sgd+probLS often plateaus
earlier than the one of vanilla sgd, especially for smaller mini-batch sizes. This does not
seem to impair the performance of the optimizer on the test set. We did not investigate
this further, since it seemed like a nice natural annealing effect; the exact causes are unclear
for now. One explanation might be that the line search does indeed improve overfitting,
since it tries to measure descent (by Wolfe conditions which rely on the noise-informed gp).
This means that, if—close to a minimum—successive acceptance decisions can not identify a
descent direction anymore, diffusion might set in.

4.2 Sensitivity to Design Parameters

Most, if not all, numerical methods make implicit or explicit choices about their hyper-
parameters. Most of these are never seen by the user since they are either estimated at run

10. An example of annealed step size performance can be found in Mahsereci and Hennig (2015).
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Figure 8: Sensitivity to varying hyper-parameters θreset. Plot and color coding as in Figure 9.
Adopted parameter in dark red at θreset = 100. Resetting the gp scale occurs very
rarely. For example for θreset = 100 the reset occurred in 0.02% of all line searches.

time, or set by design to a fixed, approximately insensitive value. Well known examples are
the discount factor in ordinary differential equation solvers (Hairer et al., 1987, §2.4), or the
Wolfe parameters c1 and c2 of classic line searches (§3.4.1). The probabilistic line search
inherits the Wolfe parameters c1 and c2 from its classical counterpart as well as introducing
two more: The Wolfe threshold cW and the extrapolation factor αext. cW does not appear
in the classical formulation since the objective function can be evaluated exactly and the
Wolfe probability is binary (either fulfilled or not). While cW is thus a natural consequence
of allowing the line search to model noise explicitly, the extrapolation factor αext is the
result of the line search favoring shorter steps, which we will discuss below in more detail,
but most prominently because of bias in the line search’s first gradient observation.

In the following sections we will give an intuition about the task of the most influential
design parameters c2, cW , and αext, discuss how they affect the probabilistic line search, and
validate good design choices through exploring the parameter space and showing insensitivity
to most of them. All experiments on hyper-parameter sensitivity were performed training
N-II on MNIST with mini-batch size m = 200. For a full search of the parameter space
cW -c2-αext we performed 4950 runs in total with 495 different parameter combinations. All
results are reported.

4.2.1 Wolfe II Parameter c2 and Wolfe Threshold cW

As described in Section 3.4, c2 encodes the strictness of the curvature condition W-II.
Pictorially speaking, a larger c2 extends the range of acceptable gradients (green shaded are
in the lower part of Figure 5) and leads to a lenient line search while a smaller value of c2
shrinks this area, leading to a stricter line search. cW controls how certain we want to be
that the Wolfe conditions are actually fulfilled (pictorially, how much mass of the 2D-Gauss
need to lie in the green shaded area). In the extreme case of complete uncertainty about
the collected gradients and function values (roughly det[cov[a, b]]→∞) pWolfe will always
be ≤ 0.25, if the strong Wolfe conditions are imposed. In the limit of certain observations
(σf , σf ′ → 0) pWolfe is binary and reverts to the classic Wolfe criteria. An overly strict
line search, therefore (e.g. cW = 0.99 and/ or c2 = 0.1), will still be able to optimize the
objective function well, but will waste evaluations at the expense of efficiency. Figure 10
explores the c2-cW parameter space (while keeping αext fixed at 1.3). The left column shows
final test and train set error, the right column the average number of function evaluations
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Figure 9: Sensitivity to varying hyper-parameters c2, and αext. Runs were performed training
N-II on MNIST with mini-batch size m = 200. For each parameter setting 10
runs with different initializations were performed. Left column: logarithmic test
set error (light green) and train set error (dark green) after 40 000 function
evaluations; mean and ± two standard deviations of the 10 runs in gray. Right
Column: average number of function evaluations per line search. A low number
indicates an efficient line search procedure (perfect efficiency at 1). For most
parameter combinations this lies around ≈ 1.3− 1.5. Only at extreme parameter
values, for example αext = 1.0, which amounts to no extrapolation at all in between
successive line searches, the line search performs poorer. The hyper-parameters
adopted in the line search implementation are indicated as vertical dark red line
at αext = 1.3 and c2 = 0.5.
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Figure 10: Sensitivity to varying hyper-parameters c2, and cW . Plot and color coding as
in Figure 9 but this time for varying cW instead of αext. Right Column: Again
a low number indicates an efficient line search procedure (perfect efficiency at
1). For most parameter combinations this lies around ≈ 1.3 − 1.5. Only at
extreme parameter values for example cW = 0.99, which amounts to imposing
nearly absolute certainty about the Wolfe conditions, the line search becomes
less efficient. Adopted parameters again in dark red at cW = 0.3 and c2 = 0.5
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per line search, both versus different choices of Wolfe parameter c2. The left column thus
shows the overall performance of the optimizer, while the right column is representative for
the computational efficiency of the line search. Intuitively, a line search which is minimally
invasive (only corrects the learning rate, when it is really necessary) is preferred. Rows in
Figure 10 show the same plot for different choices of the Wolfe threshold cW .

The effect of strict c2 can be observed clearly in Figure 10 where for smaller values of
c2 <≈ 0.2 the average number of function evaluations spend in one line search goes up
slightly in comparison to looser restrictions on c2, while still a very good perfomace is reached
in terms of train and test set error. Likewise, the last row of Figure 10 for the extreme
value of cW = 0.99 (demanding 99% certainty about the validity if the Wolfe conditions),
shows significant loss in computational efficiency having an average number of 7 function
evaluations per line search. Besides loosing efficiency, it is still optimizing the objective well.
Lowering this threshold a bit to 90% increases the computational efficiency of the line search
to be nearly optimal again.

Ideally, we want to trade off the desiderata of being strict enough to reject too small and
too large steps that prevent the optimizer to converge, but being lenient enough to allow all
other reasonable steps, thus increasing computational efficiency. The values cW = 0.3 and
c2 = 0.5, which are adopted in our current implementation are marked as dark red vertical
lines in Figure 10.

4.2.2 Extrapolation Factor αext

The extrapolation parameter αext, introduced in Section 3.4.4, pushes the line search to try
a larger learning rate first, than the one which was accepted in the previous step. Figure 9
is structured like Figure 10, but this time explores the line search sensitivity in the c2-αext

parameter space (abscissa and rows respectively) while keeping cW fixed at 0.3. Unless we
choose αext = 1.0 (no step size increase between steps) in combination with a lenient choice
of c2 the line search performs well. For now we adopt αext = 1.3 as default value which
again is shown as dark red vertical line in Figure 9.

The introduction of αext might seem arbitrary at first, but is a necessity and well-working
fix because of a few shortcomings of the current design. First, the curvature condition W-II
is the single condition that prevents too small steps and pushes optimization progress. On
the other hand both W-I and W-II simultaneously penalize too large steps (see Figure 1 for a
sketch). This is not a problem in case of deterministic observation (σf , σf ′ → 0), where W-II
undoubtedly decides if a gradient is still too negative. Unless W-II is chosen very tightly
(small c2) or cW unnecessarily large (both choices, as discussed above, are undesirable),
in the presence of noise, pWolfe will thus be more reliable in preventing overshooting than
pushing progress. The first row of Figure 9 illustrates this behavior, where the performance
drops somewhat if no extrapolation is done (αext = 1.0) in combination with a looser version
of W-II (larger c2).

Another factor that contributes towards accepting small rather than larger learning rates
is a bias introduced in the first observation of the line search at t = 0. Observations y′(t)
that the gp gets to see are projections of the gradient sample ∇L̂(t) onto the search direction
s = −∇L̂(0). Since the first observations y′(0) is computed from the same mini-batch as
the search direction (not doing this would double the optimizer’s computational cost) an
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inevitable bias is introduced of approximate size of cos−1(γ) (where γ is the expected angle
between gradient evaluations from two independent mini-batches at t = 0). Since the scale
parameter θ of the Wiener process is implicitly set by y′(0) (§3.4.2), the gp becomes more
uncertain at unobserved points than it needs to be; or alternatively expects the 1D-gradient
to cross zero at smaller steps, and thus underestimates a potential learning rate. The
posterior at observed positions is little affected. The over-estimation of θ rather pushes the
posterior towards the likelihood (since there is less model to trust) and thus still gives a
reliable measure for f(t) and f ′(t). The effect on the Wolfe conditions is similar. With y′(0)
biased towards larger values, the Wolfe conditions, which measure the drop in projected
gradient norm, are thus prone to accept larger gradients combined with smaller function
values, which again is met by making small steps. Ultimately though, since candidate points
at tcand > 0 that are currently queried for acceptance, are always observed and unbiased,
this can be controlled by an appropriate design of the Wolfe factor c2 (§3.4.1 and §4.2.1)
and of course αext.

4.2.3 Full Hyper-Parameter Search: cW -c2-αext

An exhaustive performance evaluation on the whole cW -c2-αext-grid is shown in Appendix C
in Figures 20-24 and Figures 25-35. As discussed above, it shows the necessity of introducing
the extrapolation parameter αext and shows slightly less efficient performance for obviously
undesirable parameter combinations. In a large volume of the parameter space, and most
importantly in the vicinity of the chosen design parameters, the line search performance is
stable and comparable to carefully hand tuned learning rates.

4.2.4 Safeguarding Mis-scaled gps: θreset

For completeness, we performed an additional experiment on the threshold parameter which
is denoted by θreset in the pseudo-code (Appendix D) and safeguards against gp mis-scaling.
The introduction of noisy observations necessitates to model the variability of the 1D-
function, which is described by the kernel scale parameter θ. Setting this hyper-parameter
is implicitly done by scaling the observation input, assuming a similar scale than in the
previous line search (§3.4.2). If, for some reason, the previous line search accepted an
unexpectedly large or small step (what this means is encoded in θreset) the gp scale θ for the
next line search is reset to an exponential running average of previous scales (αstats in the
pseudo-code). This occurs very rarely (for the default value θreset = 100 the reset occurred
in 0.02% of all line searches), but is necessary to safeguard against extremely mis-scaled
gp’s. θreset therefore is not part of the probabilistic line search model as such, but prevents
mis-scaled gps due to some unlucky observation or sudden extreme change in the learning
rate. Figure 8 shows performance of the line search for θreset = 10, 100, 1000 and 10 000
showing no significant performance change. We adopted θreset = 100 in our implementation
since this is the expected and desired multiplicative (inverse) factor to maximally vary the
learning rate in one single step.

4.3 Candidate Selection and Learning Rate Traces

In the current implementation of the probabilistic line search, the choice among candidates
for evaluation is done by evaluating an acquisition function uEI(t

cand
i ) · pWolfe(tcandi ) at every
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Figure 11: Different choices of acquisition function. We compare between using expected
improvement uEI (blue), the Wolfe probability pWolfe (red) and their product
uEI ·pWolfe (green) which is the default in our code. Top: evolution of logarithmic
test and train set error. Different lines of the same color correspond to different
seeds. Rows 2-4: learning rate traces of a single seed (colors same as in top plot).
For plotting purposes the curves were smoothed and thinned out. The thick
light green, light red and light blue horizontal lines show the mean of the raw
(non-smoothed) values of accepted learning rates across the whole optimization
process, the dotted lines show ± two standard deviations and the gray solid lines
mark a range of well performing constant learning rates.
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Figure 12: Traces of accepted logarithmic learning rates. All runs are performed with default
design parameters. Different rows show the same plot for different mini-batch
sizes of m = 100, 200 and 1000; plots and smoothing as in rows 2-4 of Figure 11
(details in text).
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Curves of the same color correspond to different seeds (3 shown).
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candidate point tcandi ; then choosing the one with the highest value for evaluation of the
objective (§3.2). The Wolfe probability pWolfe actually encodes precisely what kind of
point we want to find and incorporates both (W-I and W-II) conditions about the function
value and to the gradient (§3.3). However pWolfe does not have very desirable exploration
properties. Since the uncertainty of the gp grows to ‘the right’ of the last observation, the
Wolfe probability quickly drops to a low, approximately constant value there (Figure 4). Also
pWolfe is partially allowing for undesirably short steps (§4.2.2). The expected improvement
uEI, on the other hand, is a well studied acquisition function of Bayesian optimization trading
off exploration and exploitation. It aims to globally find a point with a function value lower
than a current best guess. Though this is a desirable property also for the probabilistic
line search, it is lacking the information that we are seeking a point that also fulfills the
W-II curvature condition. This is evident in Figure 4 where pWolfe significantly drops at
points where the objective function is already evaluated but uEI does not. In addition, we
do not need to explore the positive t space to an extend, the expected improvement suggests,
since the aim of a line search is just to find a good, acceptable point at positive t and
not the globally best one. The product of both acquisition function uEI · pWolfe is thus a
trade-off between exploring enough, but still preventing too much exploitation in obviously
undesirable regions. In practice, though, we found that all three choices ((i) uEI · pWolfe,
(ii) uEI only, (iii) pWolfe only) perform comparable. The following experiments were all
performed training N-II on MNIST; only the mini-batch size might vary as indicated.

Figure 11 compares all three choices for mini-batch size m = 200 and default design
parameters. The top plot shows the evolution of the logarithmic test and train set error (for
plot and color description see Figure caption). All test and train set error curves respectively
bundle up (only lastly plotted clearly visible). The choice of acquisition function thus does
not change the performance here. Rows 2-4 of Figure 11 show learning rate traces of a
single seed. All three curves show very similar global behavior. First the learning rate grows,
then drops again, and finally settles around the best found constant learning rate. This
is intriguing since on average a larger learning rate seems to be better at the beginning
of the optimization process, then later dropping again to a smaller one. This might also
explain why sgd+probLS in the first part of the optimization progress outperforms vanilla
sgd (Figure 7). Runs that use just slightly larger constant learning rates than the best
performing constant one (above the gray horizontal lines in Figure 11) were failing after a
few steps. This shows that there is some non-trivial adaptation going on, not just globally,
but locally at every step.

Figure 12 shows traces of accepted learning rates for different mini-batch sizes m =
100, 200, 1000. Again the global behavior is qualitatively similar for all three mini-batch sizes
on the given architecture. For the largest mini-batch size m = 1000 (last row of Figure 12)
the probabilistic line search accepts a larger learning rate (on average and in absolute value)
than for the smaller mini-batch sizes m = 100 and 200, which is in agreement with practical
experience and theoretical findings (Hinton (2012, §4 and 7), Goodfellow et al. (2016, §9.1.3),
Balles et al. (2016)).

Figure 13 shows traces of the (scaled) noise levels σf and σf ′ and the average number of
function evaluations per line search for different noise levels (m = 100, 200, 1000; same colors
show the same setup but different seeds). The average number of function evaluations rises
very slightly to ≈ 1.5− 2 for mini-batch size m = 1000 towards the end of the optimization
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process, in comparison to ≈ 1.5 for m = 100, 200. This seems counter intuitive in a way, but
since larger mini-batch sizes also observe smaller value and gradients (especially towards the
end of the optimization process), the relative noise levels might actually be larger. (Although
the curves for varying m are shown versus the same abscissa, the corresponding optimizers
might be in different regions of the loss surface, especially m = 1000 probably reaches
regions of smaller absolute gradients). At the start of the optimization the average number
of function evaluations is high, because the initial default learning rate is small (10−4) and
the line search extends each step multiple times.

5. Conclusion

The line search paradigm widely accepted in deterministic optimization can be extended
to noisy settings. Our design combines existing principles from the noise-free case with
ideas from Bayesian optimization, adapted for efficiency. We arrived at a lightweight
“black-box” algorithm that exposes no parameters to the user. Empirical evaluations so
far show compatibility with the sgd search direction and viability for logistic regression
and multi-layer perceptrons. The line search effectively frees users from worries about
the choice of a learning rate: Any reasonable initial choice will be quickly adapted and
lead to close to optimal performance. Our matlab implementation can be found at http:

//tinyurl.com/probLineSearch.
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Appendix A. – Noise Estimation

Section 3.4.3 introduced the statistical variance estimators

Σ′(x) = (1−m)−1(∇̂S(x)−∇L̂(x)�2)

Σ(x) = (1−m)−1(Ŝ(x)− L̂(x)2)
(19)

of the function and gradient estimate L̂(x) and ∇L̂(x) at position x. The underlying
assumption is that L̂(x) and ∇L̂(x) are distributed according to[

L̂(x)

∇L̂(x)

]
∼ N

( [
L̂(x)

∇L̂(x)

]
;

[
L(x)
∇L(x)

]
,

[
Σ(x) 0D×1
01×D diag Σ′(x)

])
(20)

which implies Eq 3[
L̂(x)

s(x)′ · ∇L̂(x)

]
=

[
y(x)
y′(x)

]
∼ N

( [
f(x)
f ′(x)

]
,

[
σf (x) 0

0 σf ′(x)

])
. (21)

where s(x) is the possibly new search direction at x. This is an approximation since the true
covariance matrix is in general not diagonal. A better estimator for the projected gradient
noise would be (dropping x from the notation)

ηf ′ = sᵀ

[
1

m− 1

1

m

m∑
k=1

(∇`k −∇L̂)(∇`k −∇L̂)ᵀ

]
s

=
D∑

i,j=1

sisj
1

m− 1

1

m

m∑
k=1

(
∇`ki −∇L̂i

)(
∇`kj −∇L̂j

)

=
1

m− 1

D∑
i,j=1

sisj

(
1

m

m∑
k=1

∇`ki∇`kj −∇L̂i∇L̂j −∇L̂j∇L̂i +∇L̂i∇L̂j

)

=
1

m− 1

 1

m

m∑
k=1

D∑
i,j=1

si∇`ki sj∇`kj −
D∑

i,j=1

sj∇L̂jsi∇L̂i


=

1

m− 1

(
1

m

m∑
k=1

(s′ · ∇`k)2 − (s′ · ∇L̂)2

)
.

(22)

Comparing to σf ′ yields

ηf ′ =
1

m− 1

D∑
i,j=1

sisj

(
1

m

m∑
k=1

∇`ki∇`kj −∇L̂j∇L̂i

)

=
1

m− 1

D∑
i=1

s2i

(
1

m

m∑
k=1

(∇`ki )2 −∇L̂2i

)

+
1

m− 1

D∑
i 6=j=1

sisj

(
1

m

m∑
k=1

∇`ki∇`kj −∇L̂j∇L̂i

)

ηf ′ = σf ′ +
1

m− 1

D∑
i 6=j=1

sisj

(
1

m

m∑
k=1

∇`ki∇`kj −∇L̂j∇L̂i

)
.

(23)
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From Eq 22 we see that, in order to effectively compute ηf ′ , we need an efficient way of
computing the inner product (s′ · ∇`k) for all k. In addition, we need to know the search
direction s(x) of the potential next step (if x was accepted) at the time of computing
ηf ′ . This is possible e.g. for the sgd search direction where s(x) = − 1

m

∑m
k=1∇`k(x) but

potentially not possible or practical for arbitrary search directions. For all experiments in
this paper we used the approximate variance estimator σf ′ .

The following paragraph is concerned with the independence assumption of gradient and
function value y and y′ (in contrast to independence among gradient elements). In general y
and y′ are not independent since the algorithm draws them from the same mini-batch; the
likelihood including the correlation factor ρ reads

p(yt, y
′
t | f) = N

([
yt
y′t

]
;

[
f(t)
f ′(t)

]
,

[
σ2f ρ

ρ σ2f ′

])
. (24)

The noise covariance matrix enters the gp only in the inverse of the sum with the kernel
matrix of the observations. We can compute it analytically for one datapoint at position t,
since it is only a 2× 2 matrix. For ρ = 0, define:

detρ=0 := [ktt + σ2f ][ k∂ ∂
tt + σ2f ′ ]− k∂tt k∂ tt

G−1ρ=0 :=

[
ktt + σ2f k∂tt

k∂ tt k∂ ∂
tt + σ2f ′

]−1
=

1

detρ=0

[
k∂ ∂

tt + σ2f ′ −k∂tt
− k∂ tt ktt + σ2f

]
.

(25)

For ρ 6= 0 we thus get:

detρ 6=0 := [ktt + σ2f ][ k∂ ∂
tt + σ2f ′ ]− [k∂tt + ρ][ k∂ tt + ρ]

= detρ=0 − ρ( k∂ tt + k∂tt)− ρ2

G−1ρ 6=0 :=

[
ktt + σ2f k∂tt + ρ

k∂ tt + ρ k∂ ∂
tt + σ2f ′

]−1
=

1

detρ 6=0

[
k∂ ∂

tt + σ2f ′ −(k∂tt + ρ)

−( k∂ tt + ρ) ktt + σ2f

]
=
detρ=0

detρ 6=0
G−1ρ=0 −

ρ

detρ6=0

[
0 1
1 0

] (26)

The fraction detρ=0/detρ6=0 in the first term of the last row, is a positive scalar that scales
all element of G−1ρ=0 equally (since Gρ=0 and Gρ6=0 are positive definite matrices, we know
that detρ=0 > 0, detρ 6=0 > 0). If |ρ| is small in comparison to the determinant detρ=0, then
detρ 6=0 ≈ detρ=0 and the scaling factor is approximately one. The second term corrects
off-diagonal elements in Gρ 6=0 and is proportional to ρ; if |ρ| � detρ=0 this term is small as
well.

In might be possible to estimate ρ as well from the mini-batch in a similar style to the
estimation of σf and σf ′ ; it is not clear, however, if the additional computational cost would
justify the improvements in the gp-inference.
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Appendix B. – Noise Sensitivity
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Figure 14: Performance of N-I on MNIST for varying mini-batch sizes; plots and colors
same as in Figure 7 (middle plots cropped for readability).
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Figure 15: Performance of N-II on CIFAR-10 for varying mini-batch sizes; plots and colors
same as in Figure 7, except the scaling of the y-axis which is not logarithmic
here.
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Figure 16: Performance of N-I on CIFAR-10 for varying mini-batch sizes; plots and colors
same as in Figure 15.
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Figure 17: Performance of N-III on GISETTE for varying mini-batch sizes ; plots and colors
same as in Figure 15 (middle plots cropped for readability).
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Figure 18: Performance of N-III on WDBC for varying mini-batch sizes; plots, colors, and
description same as in Figure 17. Remark: since the training set is of size 400, the
most right column (m = 400) in fact runs full-batch gradient descent; this is not
a problem, since the probabilistic line search can handle noise free observations
as well.
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Figure 19: Performance of N-III on EPSILON for varying mini-batch sizes ; plots, colors, and
description same as in Figure 17. EPSILON is the largest dataset that was used
in the experiments (400k samples); this did not seem to impair the performance
of the line search or variance estimator.
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Appendix C. – Parameter Sensitivity
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Figure 20: Sensitivity to varying hyper-parameters c2, and cW and fixed αext = 1.0. Exper-
imental setup as in Figures 9 and 10. Top row from left to right: logarithmic
test set error, train set error, and average number of function evaluations per
line search averaged over 10 different initializations. Bottom row: corresponding
relative standard deviations. In all plots darker colors are better. For extrapola-
tion parameters αext > 1 (see Figures 21, 22, 23, and 24) the different parameter
combinations all result in similar good performance. Only at extreme choices,
for example αext = 1.0 (this figure), which amounts to no extrapolation at all in
between successive line searches, the line search performs poorer. At the extreme
value of cW = 0.99, which amounts to imposing nearly absolute certainty about
the Wolfe conditions, the line search becomes less efficient. In Figure 23 the
default values adopted in the line search implementation (cW = 0.3, c2 = 0.5,
and αext = 1.3) are indicated as red dots.
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Figure 21: Same as Figure 20 but for fixed αext = 1.1
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Figure 22: Same as Figure 20 but for fixed αext = 1.2
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Figure 23: Same as Figure 20 but for fixed αext = 1.3. The default values adopted in the
line search implementation (cW = 0.3, c2 = 0.5, and αext = 1.3) are indicated as
red dots.
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Figure 24: Same as Figure 20 but for fixed αext = 1.4
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Figure 25: Sensitivity to varying hyper-parameters c2, and αext and fixed cW = 0.01. Ex-
perimental setup as in Figures 9 and 10 and plots like in Figure 20. In all plots
darker colors are better. All choices of cW result in good performance though
very tight choices of cW = 0.99 (Figure 35), which amounts to imposing nearly
absolute certainty about the Wolfe conditions, are less efficient. As described in
Figure 20, for a dropped extrapolation factor (αext → 1) in combination with
a loose curvature condition (large c2) the line searches performs poorer (top
row, right half of columns in Figures 25–34). In Figure 28 the default values
adopted in the line search implementation (cW = 0.3, c2 = 0.5, and αext = 1.3)
are indicated as red dots.
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Figure 26: Same as Figure 25 but for fixed cW = 0.10.
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Figure 27: Same as Figure 25 but for fixed cW = 0.20.
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Figure 28: Same as Figure 25 but for fixed cW = 0.30. The default values as red dots.
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Figure 29: Same as Figure 25 but for fixed cW = 0.40.
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Figure 30: Same as Figure 25 but for fixed cW = 0.50.
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Figure 31: Same as Figure 25 but for fixed cW = 0.60.
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Figure 32: Same as Figure 25 but for fixed cW = 0.70.
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Figure 33: Same as Figure 25 but for fixed cW = 0.80.
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Figure 34: Same as Figure 25 but for fixed cW = 0.90.
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Figure 35: Same as Figure 25 but for fixed cW = 0.99.
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Appendix D. – Pseudocode

Algorithm 1 of Section 3 roughly sketches the structure of the probabilistic line search
and its main ingredients. This section provides a detailed pseudocode which can be used
for re-implementation. It is based on the code which was used for the experiments in
this paper. A matlab implementation including a minimal example can be found at http:
//tinyurl.com/probLineSearch. The actual line search routine is called probLineSearch
below and is quite short. Most of the pseudocode is occupied with comments, helper function
that define the kernel of the gp, the gp-update or Gauss cdf and pdf which we printed here
for completeness such that a detailed re-implementation is possible. For better readability
of the pseudocode we use the following color coding:

• blue: comments

• green: variables of the integrated Wiener process.

• red: most recently evaluated observation (noisy loss and gradient). If the line search
terminates, these will be returned as ‘accepted’.

• orange: inputs from the main solver procedure and unchanged during each line search.

Notation and operators:

operator or function definition

A�B elementwise multiplication

A�B elementwise division

A�b elementwise power of b

A′ transpose of A

A ·B scalar-scalar, scalar-matrix or matrix-matrix multiplication

A/B right matrix division, the same as A ·B−1

A\B left matrix division, the same as A−1 ·B
sign(a) sign of scalar a

erf(x) error function erf(x) = 2√
π

∫ x
0 e
−t2dt

max(A) maximum element in A

min(A) minimum element in A

|a| absolute value of scalar a

A < B elementwise ‘less’ comparison

A ≤ B elementwise ‘less-or-equal’ comparison

A > B elementwise ‘greater’ comparison

A ≥ B elementwise ‘greater-or-equal’ comparison

[a, b, c]← f(x) function f called at x returns the values a, b and c

For better readability and to avoid confusion with transposes, we denote derivatives for
example as dy and df (instead of y′ and f ′ as in the main text).
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1: function SGDSolver(f)
2: I f – function handle to objective. Usage: [y, dy,Σf ,Σdf ] ^ f(x).

3:

4: I initial weights
5: x^initial weights
6:

7: I initial step size (rather small to avoid over-shooting in very first step)
8: α^ e.g. ≈ 10−4

9: αstats ^α
10:

11: I initial function evaluation at x
12: [y, dy,Σf ,Σdf ] ^ f(x)
13:

14: I initial search direction
15: d^−dy
16:

17: I loop over line searches
18: while budget not used do
19:

20: I line search finds step size
21: [α, αstats, x, y, dy,Σf ,Σdf ] ^probLineSearch(x, d, y, dy,Σf ,Σdf , α, αstats, f)
22:

23: I set new search direction
24: d^−dy
25: end while
26:

27: return x
28: end function

1: function probLineSearch(x0, d, f0, df0,Σf0 ,Σdf0 , α0, αstats, f)
2: I x0 – current weights [D × 1]
3: I f – function handle to objective.
4: I
5: I d – search direction [D × 1] (does not need to be normalized)
6: I f0 – function value at start, f0 = f(x0)
7: I df0 – gradient at start, df0 = ∇f(x0) [D × 1]
8: IΣf0 – sample variance of f0
9: IΣdf0 – sample variances of df0, [D × 1]

10: I α0 – initial step size
11:

12: I set maximum # of f evaluations per line search
13: L ^ 6
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14: I scaling and noise level of gp
15: β^ |d′ · Σdf0 | . scale factor
16: σf ^

√
Σf0/(α0 · β) . scaled sample variance of f0

17: σdf ^
√

((d�2)′ · Σdf0)/β . scaled and projected sample variances of df0
18:

19: I initialize counter and non-fixed parameters
20: N ^ 1 . size of gp= 2 ·N
21: text ^ 1 . scaled step size for extrapolation
22: tt^ 1 . scaled position of first function evaluation
23:

24: I initialize storage for gp. Dynamic arrays of maximum size [L+ 1× 1]
25: T ^[0] . scaled positions along search direction
26: Y ^[0] . scaled function values at T
27: dY ^[(df0

′ · d)/β] . scaled projected gradients at T
28:

29: I initialize gp with observation at start
30: [G,A] ^updateGP(T , Y , dY ,N, σf , σdf )
31:

32: I loop until budged is used or acceptable point is found
33: for N from 2 to L + 1 do
34:

35: I evaluate objective function at tt.
36: [y, dy,Σf ,Σdf , T , Y , dY ,N ] ^evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
37:

38: I update the gp which is now of size 2 ·N .
39: [G,A] ^updateGP(T , Y , dY ,N, σf , σdf )
40:

41: I initialize storage for candidates. Dynamic arrays of maximum size [N × 1].
42: Tcand ^[ ] . scaled position of candidates
43: Mcand ^[ ] . gp mean of candidates
44: Scand ^[ ] . gp standard deviation of candidates
45:

46: I current point is above the Wolfe threshold? If yes, accept point and return.
47: if probWolfe(tt, T ,A,G) then
48: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
49: return output
50: end if
51:

52: IWolfe conditions not satisfied at this point.
53: I find suitable candidates for next evaluation.
54:

55: I gp mean of function values and corresponding gradients at points in T .
56: M ^ map function m( , T , A) over T
57: dM ^ map function d1m( , T , A) over T
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58: I candidates 1: local minima of gp mean.
59: Tsorted ^ sort T in ascending order
60: TWolfes ^[ ] . prepare list of acceptable points
61:

62: I iterate through all N − 1 cells, compute locations of local minima.
63: for n from 1 to N − 1 do
64: Tn ^ value of Tsorted at n
65: Tn+1 ^ value of Tsorted at n+ 1
66:

67: I add a little offset for numerical stability
68: trep ^Tn + 10−6 · (Tn+1 − Tn)
69:

70: I compute location of cubic minimum in nth cell
71: tcubMin ^cubicMinimum(trep, T , A,N)
72:

73: I add point to candidate list if minimum lies in between Tn and Tn+1

74: if tcubMin > Tn and tcubMin < Tn+1 then
75: if (not isnanOrIsinf(tcubMin)) and (tcubMin > 0) then
76: Tcand ^ append tcubMin

77: Mcand ^ append m(tcubMin, T , A)
78: Scand ^ append V(tcubMin, T ,G)
79: end if
80: else
81:

82: I most likely uphill? If yes, break.
83: if n = 1 and d1m(0, T , A) > 0 then
84: r^ 0.01
85: tt^ r · (Tn + Tn+1)
86:

87: I evaluate objective function at tt and return.
88: [y, dy,Σf ,Σdf , T , Y , dY ,N ] ^evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
89:

90: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
91: return output
92: end if
93: end if
94:

95: I check whether there is an acceptable point among the old evaluations
96: if n > 1 and probWolfe(Tn, T , A,G) then
97: TWolfes ^ append Tn
98: end if
99: end for
100:

101: I check if acceptable points exists and return
102: if TWolfes is not empty then
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103: I if last evaluated point is among acceptable ones, return it.
104: if tt in TWolfes then
105: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
106: return output
107: end if
108:

109: I else, choose the one with the lowest gp mean and re-evaluate its gradient.
110: MWolfes ^ map m( , T , A) over TWolfes

111: tt^ value of TWolfes at index of min(MWolfes)
112:

113: I evaluate objective function at tt.
114: [y, dy,Σf ,Σdf , T , Y , dY ,N ] ^evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
115:

116: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
117: return output
118: end if
119:

120: I candidates 2: one extrapolation step
121: Tcand ^ append max(T ) + text
122: Mcand ^ append m(max(T ) + text, T , A)

123: Scand ^ append V(max(T ) + text, T ,G)
1
2

124:

125: I find minimal mean among M .
126: µEI ^ minimal value of M
127:

128: I compute expected improvement and Wolfe probabilities at Tcand
129: EIcand ^expectedImprovement(Mcand, Scand, µEI)
130: PWcand ^ map probWolfe( , T , A,G) over Tcand
131:

132: I choose point among candidates that maximizes EIcand ∧ PWcand

133: ibestCand ^ index of max(EIcand � PWcand)
134: ttbestCand ^ value of Tcand at ibestCand

135:

136: I extend extrapolation step if necessary
137: if ttbestCand is equal to tt+ text then
138: text ^ 2 · text
139: end if
140:

141: I set location for next evaluation
142: tt^ ttbestCand

143: end for
144:

145: I limit reached: evaluate a final time and return the point with lowest gp mean
146: [y, dy,Σf ,Σdf , T , Y , dY ,N ] ^evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
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147: I update the gp which is now of size 2 ·N .
148: [G,A] ^updateGP(T , Y , dY ,N, σf , σdf )
149:

150: I check last point for acceptance
151: if probWolfe(tt, T ,A,G) then
152: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
153: return output
154: end if
155:

156: I at the end of budget return point with the lowest gp mean
157: I compute gp means at T
158: M ^ map m( , T , A) over T
159: ilowest ^ index of minimal value in M
160: tlowest ^ value of T at ilowest
161:

162: I if tlowest is the last evaluated point, return
163: if tlowest is equal to tt then
164: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
165: return output
166: end if
167:

168: I else, re-evaluate its gradient and return
169: tt^ value of tlowest
170:

171: I evaluate objective function at tt.
172: [y, dy,Σf ,Σdf , T , Y , dY ,N ] ^evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
173:

174: output^rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β)
175: return output
176: end function

1: function rescaleOutput(x0, f0, α0, d, tt, y, dy,Σf ,Σdf , β, αstats)
2: I design parameters
3: αext ^ 1.3 . extrapolation parameter
4: θreset ^ 100 . reset threshold for gp scale
5:

6: I rescale accepted step size
7: αacc ^ tt · α0

8:

9: I update weights
10: xacc ^x0 + αacc · d
11:

12: I rescale accepted function value
13: facc ^ y · (α0 · β) + f0
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14: I accepted gradient
15: dfacc ^ dy
16:

17: I sample variance of facc
18: Σfacc ^ Σf

19:

20: I sample variances of dfacc
21: Σdfacc ^ Σdf

22:

23: I update exponential running average of scalings
24: γ^ 0.95
25: αstats ^ γ · αstats + (1− γ) · αacc

26:

27: I next initial step size
28: αnext ^αacc · αext

29:

30: I if new gp scaling is drastically different than previous ones reset it.
31: if (αnext < αstats/θreset) or (αnext > αstats · θreset) then
32: αnext ^αstats

33: end if
34:

35: I compressed output for readability of pseudocode
36: output^[αnext, αstats, xacc, facc, dfacc,Σfacc ,Σdfacc ]
37:

38: return output
39: end function

1: function evaluateObjective(tt, x0, α0, d, T , Y , dY ,N, β, f)
2: I evaluate objective function at tt
3: [y, dy,Σf ,Σdf ] ^ f(x0 + tt · α0 · d)
4:

5: I scale output
6: y^(y − f0)/(α0 · β)
7: dy^(dy′ · d)/β
8:

9: I storage

10: T ^ append tt
11: Y ^ append y
12: dY ^ append dy
13: N ^N + 1
14:

15: return [y, dy,Σf ,Σdf , T, Y, dY,N ]
16: end function
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1: function cubicMinimum(t, T ,A,N)
2: I compute necessary derivatives of gp mean at t
3: d1mt ^d1m(t, T ,A)
4: d2mt ^d2m(t, T ,A)
5: d3mt ^d3m(t, T ,A,N)
6: a^ 0.5 · d3mt

7: b^ d2mt − t · d3mt

8: c^ d1mt − d2mt · t+ 0.5 · d3mt · t2
9:

10: I third derivative is almost zero → essentially a quadratic, single extremum
11: if |d3mt| < 1−9 then
12: tcubMin ^−(d1mt − t · d2mt)/d2mt

13: return tcubMin

14: end if
15:

16: I roots are complex, no extremum
17: λ^ b2 − 4 · a · c
18: if λ < 0 then
19: tcubMin ^ +∞
20: return tcubMin

21: end if
22:

23: I compute the two possible roots
24: LR^(−b− sign(a) ·

√
λ)/(2 · a) . left root

25: RR^(−b+ sign(a) ·
√
λ)/(2 · a) . right root

26:

27: I calculate the two values of the cubic at those points (up to a constant)
28: dtL ^LR− t . distance to left root
29: dtR ^RR− t . distance to right root
30: CVL ^ d1mt · dtL + 0.5 · d2mt · dt2L + (d3mt · dt3L)/6 . left cubic value
31: CVR ^ d1mt · dtR + 0.5 · d2mt · dt2R + (d3mt · dt3R)/6 . right cubic value
32:

33: I find the minimum and return it.
34: if CVL < CVR then
35: tcubMin ^LR
36: else
37: tcubMin ^RR
38: end if
39:

40: return tcubMin

41:

42: end function
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1: function updateGP(T , Y , dY ,N, σf , σdf )
2: I initialize kernel matrices
3: kTT ^[N ×N ] matrix with zeros . covariance of function values
4: kdTT ^[N ×N ] matrix with zeros . covariance of function values and gradients
5: dkdTT ^[N ×N ] matrix with zeros . covariance of gradients
6:

7: I fill kernel matrices
8: for i = 1 to N do
9: for j = 1 to N do

10: kTT (i, j) ^k(T (i), T (j))
11: kdTT (i, j) ^kd(T (i), T (j))
12: dkdTT (i, j) ^dkd(T (i), T (j))
13: end for
14: end for
15:

16: I build diagonal covariance matrix of Gaussian likelihood [2N × 2N ].

17: Λ ^
[
diag(σf

2)N×N 0N×N
0N×N diag(σdf

2)N×N

]
18:

19: G^
(

kTT kdTT
kd′TT dkdTT

)
+ Λ . [2N × 2N ] matrix

20:

21: I residual between observed and predicted data

22: ∆ ^
(

Y
dY

)
. [2N × 1] vector

23:

24: I compute weighted observations A.
25: A^G\∆ . [2N × 1] vector
26:

27: return [G,A]
28:

29: end function
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1: function m(t, T ,A)
2: I posterior mean at t

3: return [k(t, T ′), kd(t, T ′)] ·A
4: end function
5:

6: function d1m(t, T ,A)
7: I first derivative of mean at t
8: return [dk(t, T ′), dkd(t, T ′)] ·A
9: end function

10:

11: function d2m(t, T ,A)
12: I second derivative of mean at t
13: return [ddk(t, T ′), ddkd(t, T ′)] ·A
14: end function
15:

16: function d3m(t, T ,A,N)
17: I third derivative of mean at t
18: return [dddk(t, T ′), zeros(1, N)] ·A
19: end function
20:

21: function V(t, T ,G)
22: I posterior variance of function values at t
23: return k(t, t)−[k((t, T ′), kd(t, T ′)] · (G\[k(t, T ′), kd(t, T ′)]′)
24: end function
25:

26: function Vd(t, T ,G)
27: I posterior variance of function values and derivatives at t
28: return kd(t, t)−[k(t, T ′), kd(t, T ′)] · (G\[dk(t, T ′), dkd(t, T ′)]′)
29: end function
30:

31: function dVd(t, T ,G)
32: I posterior variance of derivatives at t
33: return dkd(t, t)−[dk(t, T ′), dkd(t, T ′)] · (G\[dk(t, T ′), dkd(t, T ′)]′)
34: end function
35:

36: function V0f(t, T ,G)
37: I posterior covariances of function values at t = 0 and t
38: return k(0, t)−[k(0, T ′), kd(0, T ′)] · (G\[k(t, T ′), kd(t, T ′)]′)
39: end function
40:

41: function Vd0f(t, T ,G)
42: I posterior covariance of gradient and function value at t = 0 and t respectively
43: return dk(0, t)−[dk(0, T ′), dkd(0, T ′)] · (G\[k(t, T ′), kd(t, T ′)]′)
44: end function
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45: function V0df(t, T ,G)
46: I posterior covariance of function value and gradient at t = 0 and t respectively
47: return kd(0, t) −[k(0, T ′), kd(0, T ′)] · (G\[dk(t, T ′), dkd(t, T ′)]′)
48: end function
49:

50: function Vd0df(t, T ,G)
51: I same as V0f( ) but for gradients
52: return dkd(0, t)−[dk(0, T ′), dkd(0, T ′)] · (G\[dk(t, T ′), dkd(t, T ′)]′)
53: end function

1: ————————————————–
2: I all following procedures use the same design parameter:
3: τ ^ 10
4: ————————————————–
5: function k(a, b)
6: IWiener kernel integrated once in each argument
7: return 1/3�min(a+ τ , b+ τ)�3 + 0.5� |a− b| �min(a+ τ , b+ τ)�2

8: end function
9:

10: function kd(a, b)
11: IWiener kernel integrated in first argument
12: return 0.5� (a < b)� (a+ τ)�2 + (a ≥ b)�

(
(a+ τ) · (b+ τ)− 0.5� (b+ τ)�2

)
13: end function
14:

15: function dk(a, b)
16: IWiener kernel integrated in second argument
17: return 0.5� (a > b)� (b+ τ)�2 + (a ≤ b)� ((a+ τ) · (b+ τ)− 0.5� (a+ τ)�2)
18: end function
19:

20: function dkd(a, b)
21: IWiener kernel
22: return min(a+ τ , b+ τ)
23: end function
24:

25: function ddk(a, b)
26: IWiener kernel integrated in second argument and 1x derived in first argument
27: return (a ≤ b)� (b− a)
28: end function
29:

30: function ddkd(a, b)
31: IWiener kernel 1x derived in first argument
32: return (a ≤ b)
33: end function
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34: function dddk(a, b)
35: IWiener kernel 2x derived in first argument and integrated in second argument
36: return −(a ≤ b)
37: end function

1: function probWolfe(t, T ,A,G)
2: I design parameters
3: c1 ^ 0.05 . constant for Armijo condition
4: c2 ^ 0.5 . constant for curvature condition
5: cW ^ 0.3 . threshold for Wolfe probability
6:

7: I mean and covariance values at start position (t = 0)
8: m0 ^ m(0, T , A)
9: dm0 ^d1m(0, T , A)

10: V0 ^ V(0, T ,G)
11: V d0 ^ Vd(0, T ,G)
12: dV d0 ^ dVd(0, T ,G)
13:

14: I marginal mean and variance for Armijo condition
15: ma ^m0−m(t, T ,A)+c1 · t · dm0

16: Vaa ^V0 + (c1 · t)2 · dV d0+V(t)+2 · (c1 · t · (V d0−Vd0f(t))−V0f(t))
17:

18: I marginal mean and variance for curvature condition
19: mb ^d1m(t)−c2 · dm0

20: Vbb ^ c2
2 · dV d0 − 2 · c2 ·Vd0df(t)+dVd(t)

21:

22: I covariance between conditions
23: Vab ^−c2 · (V d0 + c1 · t · dV d0) + c2 ·Vd0f(t)+V0df(t)+c1 · t·Vd0df(t)−Vd(t)
24:

25: I extremely small variances → very certain (deterministic evaluation)
26: if Vaa ≤ 10−9 and Vbb ≤ 10−9 then
27: pWolfe ^(ma ≥ 0) · (mb ≥ 0)
28:

29: I accept?
30: pacc ^ pWolfe > cW
31: return pacc
32: end if
33:

34: I zero or negative variances (maybe something went wrong?)
35: if Vaa ≤ 0 or Vbb ≤ 0 then
36: return 0
37: end if
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38: I noisy case (everything is alright)
39: I correlation
40: ρ^Vab/

√
Vaa · Vbb

41:

42: I lower and upper integral limits for Armijo condition
43: lowa ^−ma/

√
Vaa

44: upa ^ +∞
45:

46: I lower and upper integral limits for curvature condition
47: lowb ^−mb/

√
Vbb

48: upb ^
(
2 · c2 ·

(
|dm0|+ 2 ·

√
dV d0

)
−mb

)
/
√
Vbb

49:

50: I compute Wolfe probability
51: pWolfe ^bvn(lowa, upa, lowb, upb, ρ)
52:

53: I accept?
54: pacc ^ pWolfe > cW
55: return pacc
56:

57:

The function bvn(lowa, upa, lowb, upb, ρ) evaluates the 2D-integral∫ upa

lowa

∫ upb

lowb

N
([
a
b

]
;

[
0
0

]
,

[
1 ρ
ρ 1

])
dadb.

58:

59: end function

1: function gaussCDF(z)
2: I Gauss cumulative density function
3: return 0.5�

(
1 + erf(z/

√
2)
)

4: end function
5:

6: function gaussPDF(z)
7: I Gauss probability density function
8: return exp

(
−0.5� z�2

)
�
√

2π
9: end function

10:

11: function expectedImprovement(m, s, η)
12: I Jones et al. (1998)
13: return (η −m)�gaussCDF((η −m)� s) +s�gaussPDF((η −m)� s)
14: end function
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