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Abstract

Over the years, different characterizations of the curse of dimensionality have been pro-
vided, usually stating the conditions under which, in the limit of the infinite dimensionality,
distances become indistinguishable. However, these characterizations almost never address
the form of associated distributions in the finite, although high-dimensional, case. This
work aims to contribute in this respect by investigating the distribution of distances, and
of direct and reverse nearest neighbors, in intrinsically high-dimensional spaces. Indeed, we
derive a closed form for the distribution of distances from a given point, for the expected
distance from a given point to its kth nearest neighbor, and for the expected size of the ap-
proximate set of neighbors of a given point in finite high-dimensional spaces. Additionally,
the hubness problem is considered, which is related to the form of the function Nk repre-
senting the number of points that have a given point as one of their k nearest neighbors,
which is also called the number of k-occurrences. Despite the extensive use of this function,
the precise characterization of its form is a longstanding problem. We derive a closed form
for the number of k-occurrences associated with a given point in finite high-dimensional
spaces, together with the associated limiting probability distribution. By investigating the
relationships with the hubness phenomenon emerging in network science, we find that the
distribution of node (in-)degrees of some real-life, large-scale networks has connections with
the distribution of k-occurrences described herein.

Keywords: high-dimensional data, distance concentration, distribution of distances,
nearest neighbors, reverse nearest neighbors, hubness

1. Introduction

Although the size and the dimensionality of collected data are steadily growing, traditional
techniques usually slow down exponentially with the number of attributes to be considered
and are often overcome by linear scans of the whole data. In particular, the term curse
of dimensionality (Bellmann, 1961), is used to refer to difficulties arising whenever high-
dimensional data has to be taken into account.

One of the main aspects of this curse is known as distance concentration (Demartines,
1994), which is the tendency for distances to become almost indiscernible in high-dimensional
spaces. This phenomenon may greatly affect the quality and performances of machine learn-
ing, data mining, and information-retrieval techniques. This effect results because almost
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all these techniques rely on the concept of distance, or dissimilarity, among data items in
order to retrieve or analyze information. However, whereas low-dimensional spaces show
good agreement between geometric proximity and the notion of similarity, as dimensional-
ity increases, different counterintuitive phenomena arise that may be harmful to traditional
techniques.

Over time, different characterizations of the curse of dimensionality and related phe-
nomena have been provided (Demartines, 1994; Beyer et al., 1999; Aggarwal et al., 2001;
Hinneburg et al., 2000; François et al., 2007). These characterizations usually state con-
ditions under which, according to the limits of infinite dimensionality, distances become
indistinguishable. However, almost never do these conditions address the form of associ-
ated distributions in finite, albeit high-dimensional, cases.

This work aims to contribute in this area by investigating the distribution of distances
and of some related measures in intrinsically high-dimensional data. In particular, the
analysis is conducted by applying the central limit theorem to the Euclidean distance ran-
dom variable to approximate the distance probability distribution between pairs of random
vectors, between a random vector and realizations of a random vector, and to obtain the
expected distance from a given point to its kth nearest neighbor. It is then shown that an
understanding of these distributions can be exploited to gain knowledge of the behavior of
high-dimensional spaces, specifically the number of approximate nearest neighbors and the
number of reverse nearest neighbors that are also investigated herein.

Nearest neighbors are transversal to many disciplines (Preparata and Shamos, 1985;
Dasarathy, 1990; Beyer et al., 1999; Duda et al., 2000; Chávez et al., 2001; Shakhnarovich
et al., 2006). In order to try to overcome the difficulty of answering nearest neighbor queries
in high-dimensional spaces (Weber et al., 1998; Beyer et al., 1999; Pestov, 2000; Giannella,
2009; Kabán, 2012), the concept of the ε-approximate nearest neighbor (Indyk and Motwani,
1998; Arya et al., 1998) has been introduced. The ε-neighborhood of a query point is the
set of points located at a distance not greater than (1 + ε) times the distance separating the
query from its true nearest neighbor.

Related to the notion of the ε-approximate nearest neighbor is the notion of neigh-
borhood or query instability (Beyer et al., 1999): a query is said to be unstable if the ε-
neighborhood of the query point consists of most of the data points. Although asymptotic
results, such as that reported by Beyer et al. (1999), tell what happens when dimensionality
is taken to infinity, nothing is said about the dimensionality at which the nearest neigh-
bors become unstable. Pursuant to this scenario, this paper derives a closed form for the
expected size of the ε-neighborhood in finite high-dimensional spaces, an expression that is
then exploited to determine the critical dimensionality. Also, to quantify the difficulty of
(approximate) nearest neighbor search, He et al. (2012) introduced the concept of relative
contrast, a measure of separability of the nearest neighbor of the query point from the
rest of the data, and provided an estimate which is applicable for finite dimensions. By
leveraging the results concerning distance distributions, this paper derives a more accurate
estimate for the relative contrast measure.

The number Nk of reverse nearest neighbors, also called the number of k-occurrences
or the reverse nearest neighbor count, is the number of data points for which a given
point is among their k nearest neighbors. Reverse nearest neighbors are of interest both
in the database, information retrieval, and computational geometry literatures (Korn and
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Muthukrishnan, 2000; Singh et al., 2003; Tao et al., 2007; Cheong et al., 2011; Yang et al.,
2015), with uses having been proposed in the data mining and machine learning fields
(Williams et al., 2002; Hautamäki et al., 2004; Radovanovic et al., 2009, 2010; Tomasev
et al., 2014; Radovanovic et al., 2015; Tomasev and Buza, 2015), beyond being the objects of
study in applied probability and mathematical psychology (Newman et al., 1983; Maloney,
1983; Tversky et al., 1983; Newman and Rinott, 1985; Yao and Simons, 1996).

Despite the usefulness and the extensive use of this construct, the precise characteri-
zation of the form of the function Nk both in the finite and infinite dimensional cases is
a longstanding problem. What is already known is that for the infinite limit of size and
dimension, Nk must converge in its distribution to zero; however, this result and its inter-
pretations seem to be insufficient to characterize its observed behavior in finite samples and
dimensions. Consequently, this paper derives a closed form of the number of k-occurrences
associated with a given point in finite high-dimensional spaces, together with a generalized
closed form of the associated limiting probability distribution that encompasses previous
results and provides interpretability of its behavior and of the related hubness phenomenon.

The results, which are first illustrated for independent and identically distributed data,
are subsequently extended to independent non-identically distributed data satisfying certain
conditions, and then, connections with non-independent real data are depicted. Finally, it
is discussed how to potentially extend the approach to Minkowski’s metrics and, more
generally, to distances satisfying certain conditions of spatial centrality.

Because hubness is a phenomenon of primary importance in network science, we also
investigate if the findings relative to the distribution of the reverse nearest neighbors and the
emergence of hubs in intrinsically high-dimensional contexts is connected to an analogous
phenomenon occurring in the context of networks. The investigation reveals that for some
real-life large-scale networks, the distribution of the incoming node degrees is connected
to the herein-derived distribution of the infinite-dimensional k-occurrences function, which
models the number of reverse k-nearest neighbors in an arbitrarily large feature space of
independent dimensions. Hence, the provided distribution also appears to be suitable for
modelling node-degree distributions in complex real networks.

The current study can be leveraged in several ways and in different contexts, such as
in direct and reverse nearest neighbor searches, density estimation, anomaly and novelty
detection, density-based clustering, and network analysis, among others. With regard to
its possible applications, we can highlight approximations of measures related to distance
distributions, worst-case scenarios for data analysis and retrieval techniques, design strate-
gies that try to mitigate the curse of dimensionality, and models of complex networks. We
refer to the concluding section for a more extensive discussion.

The rest of the work is organized as follows. Section 2 discusses related work concerning
the concentration of distances, intrinsic dimensionality, and the number of k-occurrences
and the associated hubness phenomenon. Section 3 presents the notation used to provide
results. Section 4 introduces the main results of the paper. Section 5 discusses relationships
between the study of the hubness phenomena occurring in high-dimensional spaces with
the analogous phenomena observed in real-life, large-scale, complex networks. Section 6
concludes the work. Finally, the Appendix contains the proofs that are not reported within
the main text.
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2. Related Work

As already noted, the term curse of dimensionality is used to refer to difficulties arising
when high-dimensional data must be taken into account, and one of the main aspects of
this curse is distance concentration. In this regard, Demartines (1994) has shown that
the expectation of the Euclidean norm of independent and identically distributed (i.i.d.)
random vectors increases as the square root of the dimension, whereas its variance tends
toward a constant and, hence, does not depend on the dimensionality. Specifically:

Theorem 1 (Demartines, 1994, cf. Theorem 2.1) Let Xd be an i.i.d. d-dimensional
random vector with common cdf FX . Then

E[‖Xd‖2] =
√
ad− b+O(1/d) and σ2(‖Xd‖2) = b+O(1/

√
d),

where a and b are constants depending on the central moments of FX up to the fourth order
but do not depend on the dimensionality d.

Demartines noticed that, because the Euclidean distance corresponds to the norm of the
difference of two vectors, the distance between the i.i.d. random vectors must also exhibit
the same behavior. This insightful result explains why high-dimensional vectors appear to
be distributed around the surface of a sphere of radius E[‖Xd‖] and why, because they seem
to be normalized, the distances between pairs of high-dimensional random vectors tend to
be similar.

The distance concentration phenomenon is usually characterized in the literature by
means of a ratio between some measure related to the spread and some measure related
to the magnitude of the norm, sometimes presented as the distance from a point located
in the origin of the space. In particular, the conclusion is that there is a concentration of
distances when the above ratio converges to 0 as the dimensionality tends to infinity.

Some authors have studied the concentration phenomenon by representing a data set

as a set of n d-dimensional i.i.d. random vectors X
(j)
d (1 ≤ j ≤ n) with not-necessarily

common pdfs fX(j) . Specifically, the contrast is defined as the difference between the largest
and the smallest observed norm, or rather the distance from a query point located at the
origin, whereas the relative contrast is defined as

RCd =
maxj ‖X(j)

d ‖p −minj ‖X(j)
d ‖p

minj ‖X(j)
d ‖p

,

where ‖ · ‖p denotes the p-norm ‖xd‖p =
(∑d

i=1 |xi|p
)1/p

, is the contrast normalized with

respect to the smallest norm/distance.

Theorem 2 (Adapted from Beyer et al., 1999, cf. Theorem 1) Let X
(j)
d (1 ≤ j ≤ n)

be n d-dimensional random vectors with common cdfs. If

lim
d→∞

σ2

(
‖X(j)

d ‖p
E[‖X(j)

d ‖p]

)
= 0, then, for any ε > 0, lim

d→∞
Pr [RCd ≤ ε] = 1.
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If the hypothesis is verified, that is, if the variance of the ratio between the norm of the
vectors and their expected value vanishes as the dimensionality goes to infinity, then the
relative contrast also becomes smaller and smaller, and all the vectors seem to be located at
approximatively the same distance from the reference vector. That is, given a query point
Qd, the distance from the nearest and the furthest neighbor become negligible:

lim
d→∞

Pr

[
max
j
‖Qd −X

(j)
d ‖p ≤ (1 + ε) min

j
‖Qd −X

(j)
d ‖p

]
= 1.

In (Beyer et al., 1999), it is shown that i.i.d. random vectors satisfy the above condition.
Other authors have provided characterizations of the concentration phenomenon by

providing upper and lower bounds to the relative contrast in the cases of Minkowski and
fractional norms (Hinneburg et al., 2000; Aggarwal et al., 2001).

Subsequently, (François et al., 2007) posed the following problem: is the concentration
phenomenon a side effect of the Empty Space Phenomenon (Bellmann, 1961), just because
we consider a finite number of points in a bounded portion of a high-dimensional space?
To explore this problem, they studied the concentration phenomenon by taking the same
perspective as Demartines, i.e., to refer to a distribution rather than to a finite set of points.
The relative variance

RVd =
σ(‖Xd‖p)
E[‖Xd‖p]

is a measure of concentration for distributions, corresponding to the ratio between the
standard deviation and the expected value of the norm.

Theorem 3 (Adapted from François et al., 2007, cf. Theorem 5) Let Xd be an
i.i.d. d-dimensional random vector. Then

lim
d→∞

RVd = 0.

From the above result, they conclude that the concentration of the norms in high-dimensional
spaces is an intrinsic property of the norms and not a side effect of the finite sample size or
of the Empty Space Phenomenon. Because it does not depend on the sample size, this can
be regarded as an extension of Demartines’ results to all p-norms.

As a consequence of the distance concentration, the separation between the nearest
neighbor and the farthest neighbor of a given point tend to become increasingly indistinct
as the dimensionality increases.

Related to the analysis of i.i.d. data is the concept of intrinsic dimensionality. Although
variables used to identify each datum could not be statistically independent, ultimately, the
intrinsic dimensionality of the data is identified as the minimum number of variables needed
to represent the data itself (van der Maaten et al., 2009). This corresponds in linear spaces
to the number of linearly independent vectors needed to describe each point. As a matter
of fact, an extensively used notion of intrinsic dimensionality, the correlation dimension
(Grassberger and Procaccia, 1983), is based on identifying the dimensionality D at which
the Euclidean space is homeomorphic to the manifold containing the support of the data:

D = lim
δ→0

lnFdst(δ)

ln δ
,
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where Fdst denotes the cumulative distribution function of pairwise distances, which for-
malizes the notion that in the limit of small length-scales (δ → 0) upon which the manifold
the data lie, the manifold is homeomorphic to the Euclidean space of dimension D.

And, indeed, (Demartines, 1994) mentions that if random vector components are not
independent, the concentration phenomenon is still present provided that the actual number
D of “degrees of freedom” is sufficiently large. Thus, results derived for i.i.d. data continue
to be valid provided that the dimensionality d is replaced with D. Moreover, (Beyer et al.,
1999) provided different examples of data presenting concentration, all of which share with
the i.i.d. case a sparse correlation structure. (Durrant and Kabán, 2009) noted that it is
difficult to identify meaningful workloads that do not exhibit concentration, and showed
that for the family of linear latent variable models, a class of data distributions having
non-i.i.d. dimensions, the Euclidean distance will not become concentrated as long as the
number of relevant dimensions grows no more slowly than the overall data dimensions do.
This also confirms that weakly dependent data lead to concentration; however, they also
noted that the condition to avoid concentration is not often met in practice.

Another aspect of the curse of dimensionality problem, closely related to the distance
concentration and the nearest neighbor relationship, is the so called hubness phenomenon.
This phenomenon has been previously observed in several applications (Doddington et al.,
1998; Singh et al., 2003; Aucouturier and Pachet, 2007), has recently undergone to direct
investigation (Radovanovic et al., 2009, 2010; Low et al., 2013), and has been subjected to
several different proposed techniques for overcoming the phenomenon (Radovanovic et al.,
2015; Tomasev, 2015).

Specifically, consider the number Nk(xd) of observed points that have xd among their k
nearest neighbors. Nk is also called k-occurrences or the reverse k-nearest neighbor count.

It is known that in low dimensional spaces, the distribution of Nk complies with the
binomial one and, in particular, for uniformly distributed data in low dimensions, it can
be modeled as node in-degrees in the k-nearest neighbor graph, which follows the Erdős-
Rényi random graph model, with a binomial degree distribution (Erdős and Rényi, 1959).
However, it has been observed that as dimensionality increases, the distribution of Nk

becomes skewed to the right, resulting in the emergence of hubs, which are points whose
reverse k-nearest neighbor counts tend to be meaningfully larger than that associated with
any other point.

The distribution of Nk has been explicitly studied in the applied probability and mathe-
matical psychology communities (Newman et al., 1983; Maloney, 1983; Newman and Rinott,
1985; Tversky and Hutchinson, 1986; Yao and Simons, 1996). Almost all the results pro-
vided concern a Poisson process that spreads the vectors uniformly over Rd, leading to
the conclusion that the limiting distribution of Nk converges to the Poisson distribution
with mean k. The case of continuous distributions with i.i.d. components has been con-
sidered in (Newman et al., 1983; Newman and Rinott, 1985), where the expression for the
infinite-dimensional distribution of N1 is characterized as follows.

Theorem 4 (Newman et al., 1983, cf. Theorem 7) Let {X(0)
d , X

(1)
d , . . ., X

(n)
d } be

i.i.d. random vectors with a common continuous cdf having a finite fourth moment. Let

Nn,d
1 denote the number of elements from {X(1)

d , . . . ,X
(n)
d } whose nearest neighbor with
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respect to the Euclidean distance is X
(0)
d . Then

lim
n→∞

lim
d→∞

Nn,d
1

D−→ 0 and lim
n→∞

lim
d→∞

σ2(Nn,d
1 ) =∞.

The interpretation of the above result due to (Tversky et al., 1983) is that if the number
of dimensions is large relative to the number of points, a large portion of points will have
reverse nearest neighbor count equaling zero, whereas a small fraction (i.e., the hubs) will
score large counts.

In order to provide an explanation for hubness, (Radovanovic et al., 2010) noticed that
it is expected for points that are closer to the mean of the data distribution to be closer,
on average, to all other points. However, empirical evidence indicates that this tendency is
amplified by high-dimensionality, making points that reside in the proximity of the datas
mean become closer to all other points than their low-dimensional analogues are. This
tendency causes high-dimensional points that are closer to the mean to have increased
probability of being selected as k-nearest neighbors by other points, even for small values
of k.

In order to formalize the above evidence in finite-dimensional spaces, the authors con-
sidered the simplified setting of normally distributed i.i.d. d-dimensional random vectors,
for which the distribution of Euclidean distances, which are calculated as the square root
of the sum of squares of i.i.d. normal variables, corresponds to a chi distribution with d
degrees of freedom (Johnson et al., 1994) and the random variable ‖xd − Y d‖, represent-
ing the distance from a fixed point xd to the rest of the data, follows the noncentral chi
distribution with d degrees of freedom and noncentrality parameter λ = ‖xd‖ (Oberto and
Pennecchi, 2006).

Theorem 5 (Radovanovic et al., 2010, cf. Theorem 1) Let λd,1 = µχ(d) + c1σχ(d)

and λd,2 = µχ(d) + c2σχ(d), where d ∈ N+, c1 < c2 ≤ 0, and µχ(d) and σχ(d) are the
mean and standard deviation of the chi distribution with d degrees of freedom, respectively.
Define ∆µd(xd,1,xd,2) = µχ(d,λd,2) − µχ(d,λd,1), where µχ(d,λ) is the mean of the noncentral
chi distribution with d degrees of freedom and noncentrality parameter λ. Then, there exists
d0 ∈ N such that for every d > d0, ∆µd(λd,1, λd,2) > 0, and ∆µd+2(λd+2,1, λd+2,2) >
∆µd(λd,1, λd,2).

Intuitively, λd,1 and λd,2 represent two d-dimensional points whose norms are located
at c1 and c2, resp., standard deviations from the expected value of the norm in the dimen-
sionality d, and for which ∆µd(λd,1, λd,2) is the distance between the expected value of the
associated distribution of distances.

As stated by authors, the implication of the above theorem is that hubness is an inherent
property of data distributions in high-dimensional space, rather than an artifact of other
factors, such as finite sample size. However, Theorem 5 only formalizes the tendency of
the difference between the means of the two distance distributions to increase with the
dimensionality, and the proof is specific for Gaussian data. No model to predict the number
of k-occurrences or to infer the form of the underlying distribution is provided, and the
characterization of the distribution probability of Nk remains an open problem.
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3. Notation

In the rest of this section, upper case letters, such as X, Y , Z, . . ., denote random variables
(r.v.) taking values in R. fX (FX , resp.) denotes the probability density function (pdf)
(probability distribution function (cdf), resp.) associated with X.

Boldface uppercase letters with d as a subscript, such as Xd, Y d, Zd, . . ., denote d-
dimensional random vectors taking values in Rd. The components Xi (1 ≤ i ≤ d) of a
random vector Xd = (X1, X2, . . . , Xd) are random variables having pdfs fXi = fi (cdf
FXi = Fi). A d-dimensional random vector is said to be independent and identically
distributed (i.i.d. for short) if its random variables are independent and have common pdf
fX = fXi (cdf FX = FXi).

Boldface lowercase letters with d as a subscript, such as xd, yd, zd, . . ., denote a specific
d-dimensional vector taking value in Rd. The components of a vector xd = (x1, x2, . . . , xd),
denoted as xi (1 ≤ i ≤ d), are real scalar values.

Given a random variable X, w.l.o.g. and for simplicity of treatment, sometimes it is
assumed that the expected value µ (or µX) of fX is µ = 0. If that is not the case, to satisfy
the assumption, it suffices to replace during the analysis the original random variable X
with the novel random variable X̂ = X−µX . Thus, X̂d denotes the random vectorXd−µX .

σX or σ(X) (or σ alone, whenever X is clear from the context) is the standard deviation
of the random variable X. By µk (µ̂k, resp.), or µX,k (µ̂X,k, resp.) whenever X is not clear
from the context, it is denoted the k-th moment (k-th central moment, resp.) (k > 0)
µk = E[Xk] (µ̂k = E[(X − µX)k], resp.) of the random variable X, where E[X] is the
expectation of X. Clearly, when µ = µ1 = 0, µk coincides with µ̂k and µ2 = σ2.

Moments of a pdf f (cdf F , resp.) are those associated with a random variable X having
pdf fX = f (cdf FX = f , resp.). The moments of an i.i.d. random vector Xd are those
associated with its cdf FX .

It is said that a distribution function has finite (central) moment µk, if there exists
0 ≤ µtop <∞ such that |µk| ≤ µtop.

Whenever moments are employed during the proofs, we always assume that they exist
and are finite. Moreover, if the random variable associated with a moment employed in a
proof is not explicitly stated, we assume that the moment is relative to the common cdf of
the random vector(s) occurring in the distribution reported in the statement of the theorem.

Moreover, it is sometimes considered the case that µ3 = 0, a condition that is referred
to as null skewness. It is known that odd central moments, provided they exist, are null if
the pdf of X is symmetric with respect to the mean (with examples of distributions having
null µ3 value being the Uniform and Normal distributions).

The notation N
(
µ, σ2

)
represents the Normal distribution function with mean µ and

variance σ2. By Φ (φ, resp.) one denotes the cdf (pdf, resp.) of the standard normal
distribution, whereas by ΦX (φX , resp.) one denotes the cdf (pdf, resp.) of the normal
distribution with mean µX and variance σ2

X .

Let X represent a univariate random variable that is defined in terms of a real-valued
function of one or more d-dimensional random vectors. For example, X could be defined
as ‖Xd‖2. The notation X ' N

(
µX , σ

2
X

)
is shorthand to denote the fact that, as d→∞,

the distribution F̂X of the standard score X−µX
σX

of X converges to the normal distribution

8



On the Behavior of Intrinsically High-Dimensional Spaces

N (0, 1). Thus, for large values of d, N (µX , σ
2
X) approximates the distribution probability

FX of X, and Pr[X ≤ δ] ≈ Φ
(
δ−µX
σX

)
.

In the following, ‖ ·‖ denotes the L2 norm, i.e., ‖xd‖ =
√∑d

i=1 x
2
i . Moreover, dist(P,Q)

denotes the Euclidean distance ‖P −Q‖ between (random) vector P and (random) vector
Q.

Let x ∈ R, and let X be a random variable. Then

zx,X =
x− µX
σX

represents the value x standardized with respect to the mean and the standard deviation of
X. For a d-dimensional vector xd, which is the realization of a d-dimensional i.i.d. random
vector Y d, the notation zxd is used as shorthand for z‖xd‖2,‖Y d‖2 , i.e.,

zxd = z‖xd‖2,‖Y d‖2 =
‖xd‖2 − µ‖Y d‖2

σ‖Y d‖2
.

Results in the following are derived by considering distributions. However, these results
can be applied to a finite set of points by taking into account large samples. In order to

deal with a finite set of points, {Y d}n denotes a set of n random vectors {Y (1)
d , . . . ,Y

(n)
d },

each one distributed as Y d.
Now we recall the Lyapunov Central Limit Theorem (CLT) condition. Consider the

sequence W1,W2,W3, . . . of independent, but not identically distributed, random variables,
and let Vd =

∑d
i=1Wi. By the Lyapunov CLT condition (Ash and Doléans-Dade, 1999), if

for some δ > 0 it holds that

lim
d→∞

1

s2+δ
d

d∑
i=1

E
[
|Wi −E[Wi]|2+δ

]
= 0, where s2

d =

d∑
i=1

σ2
Wi
, (1)

then, as d goes to infinity,

Ud −E[Ud]

σ(Ud)
=

∑d
i=1Wi −

∑d
i=1 E[Wi]√∑d

i=1 σ
2
Wi

→ N (0, 1),

i.e., the standard score (Vd − E[Vd])/σ(Vd) converges in distribution to a standard normal
random variable.

In the following, when a statement involves a d-dimensional vector xd, we will usually
assume that xd is the realization of a specific d-dimensional random vector Xd. Moreover,
we will say that a result involving the realization xd of a random vector Xd holds with high
probability if the statement is true for all the realizations of Xd except for a subset which
becomes increasingly less probable as the dimensionality d increases.

Technically, the assumption that xd is a realization of a random vector Xd is leveraged
to attain a proof of convergence in probability. This also means that when we simultaneously
account for all the realizations of a random vector Xd (by integrating on all vectors xd such
that fX(xd) > 0), the existence of such a negligible set does not affect the final result.
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4. Results

This section presents the results of the work concerning distribution of distances, nearest
neighbors, and reverse nearest neighbors.

Specifically, Section 4.1, concerning the distribution of distances between intrinsically
high-dimensional data, derives the expressions for the distance distribution between pairs
of random vectors and between a realization of a random vector and a random vector, and
analyzes the error associated with expressions.

Section 4.2 takes into account the distribution of distances from nearest neighbors,
derives the expected size of the ε-neighborhood in high-dimensional spaces, and leverages
it to characterize neighborhood instability. The section also derives a novel estimate of the
relative contrast measure.

Section 4.3 addresses the problem of determining the number of k-occurrences and de-
termines the closed form of its limiting distribution, showing that it encompasses previous
results and provides interpretability of the associated hubness phenomenon.

Section 4.4 generalizes the results derived for the i.i.d. case to independent non-
identically distributed data, depicting connections with the behavior in real data.

Section 4.5 discusses relationship to other distances, including Minkowski’s metrics and,
in general, distances satisfying certain conditions of spatial centrality.

The first three sections deal with i.i.d. random vectors. In these sections, the synthetic
data sets considered consist of data generated from a uniform distribution in [−0.5,+0.5],
a standard normal distribution, and an exponential distribution with mean 1.

For the proofs that are not reported within the main text, the reader is referred to the
Appendix.

4.1 On the Distribution of Distances for i.i.d. Data

First of all, the probability that two d-dimensional i.i.d. random vectors lie at a distance
not greater than δ from one another is considered. The expression of Theorem 6 results
from the fact that the distribution of the random variable ‖Xd − Y d‖2 converges towards
the normal distribution for large dimensionalities.

Theorem 6 Let Xd and Y d be two d-dimensional i.i.d. random vectors with common cdf
F . Then, for large values of d,

Pr [dist(Xd,Y d) ≤ δ] ≈ Φ

 δ2 − 2d(µ2 − µ2)√
2d
(
µ4 + µ2

2 + 2µ
(
µ(2µ2 − µ2)− 2µ3

))
 .

Proof of Theorem 6. The statement follows from the property shown in Lemma 7.

Lemma 7 ‖Xd − Y d‖2 ' N
(
2d(µ2 − µ2), 2d

(
µ4 + µ2

2 + 2µ
(
µ(2µ2 − µ2)− 2µ3

)))
.

Proof of Lemma 7. The squared norm ‖Xd − Y d‖2 can be written as ‖Xd − Y d‖2 =
‖Xd‖2+‖Y d‖2−2〈Xd,Y d〉, where ‖Xd‖2 ≡ ‖Y d‖2, and 〈Xd,Y d〉 are the following random

10
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variables

‖Y d‖2 =
d∑
i=1

Y 2
i and 〈Xd,Y d〉 =

d∑
i=1

XiYi.

The proof proceeds by showing that, as d → ∞, ‖Xd‖2, ‖Y d‖2, and 〈Xd,Y d〉 are both
normally distributed and jointly normally distributed and by determining their covariance,
which is accounted for in Propositions 8, 9, 10, and 11, as reported in the following.

Proposition 8 ‖Y d‖2 ' N
(
dµ2, d(µ4 − µ2

2)
)
.

Proof of Proposition 8. Consider the random variable

‖Y d‖2 =

d∑
i=1

Y 2
i =

d∑
i=1

Wi,

where Wi = Y 2
i is a novel random variable. Then, µW = E[Wi] = E[Y 2

i ] = µ2, and
σ2
W = E[W 2

i ]−E[Wi]
2 = E[Y 4

i ]− µ2
2 = µ4 − µ2

2.
Consider the sequence W1,W2,W3, . . . of i.i.d. random variables. By the Central Limit

Theorem (CLT for short) (Ash and Doléans-Dade, 1999), the standard score of Wi is such
that, as d→∞, ∑d

i=1Wi − dµW√
dσW

=

∑d
i=1 Y

2
i − dµ2√

d(µ4 − µ2
2)
→ N (0, 1),

from which the result follows.

Proposition 9 〈Xd,Y d〉 ' N
(
dµ2, d(µ2

2 − µ4)
)
.

Proof of Proposition 9. Because 〈Xd,Y d〉 =
∑d

i=1XiYi =
∑d

i=1Wi is the sum of
a sequence W1,W2,W3, . . . of i.i.d. random variables with mean E[Wi] = E[XiYi] =
E[Xi]E[Yi] = µ2 and variance σ2[Wi] = E[W 2

i ]−E[Wi]
2 = E[X2

i Y
2
i ]−(µ2)2 = E[X2

i ]E[Y 2
i ]−

µ4 = µ2
2 − µ4, from the CLT the result follows.

Proposition 10 As d→∞, ‖Xd‖2, ‖Y d‖2 and 〈Xd,Y d〉 are jointly normally distributed.

Proof of Proposition 10. The statement holds provided that all linear combinations
W = a‖Xd‖2 + b‖Y d‖2 + c〈Xd,Y d〉 are normal. Notice that

W = a

(
d∑
i=1

X2
i

)
+ b

(
d∑
i=1

Y 2
i

)
+ c

(
d∑
i=1

XiYi

)
=

d∑
i=1

(
aX2

i + bY 2
i + cXiYi

)
=

d∑
i=1

Wi,

where Wi = aX2
i + bY 2

i + cXiYi is a novel random variable. Because W1,W2,W3, . . . is a
sequence of i.i.d. random variables, the result follows from the CLT.

11
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Proposition 11

cov
(
‖Y d‖2, 〈Xd,Y d〉

)
= dµ(µ3 − µ2µ)(

and cov
(
‖Xd‖2, 〈Xd,Y d〉

)
= dµ(µ3 − µ2µ), for symmetry

)
.

Proof of Proposition 11. See the appendix.

Proof of Lemma 7 (continued). Because the random variables ‖Xd‖2, ‖Y d‖2, and
〈Xd,Y d〉 are jointly normally distributed (see Proposition 10), their linear combination
‖Xd−Y d‖2 = ‖Xd‖2+‖Y d‖2−2〈Xd,Y d〉 is normally distributed with mean µ‖Xd−Y d‖2 =
µ‖Xd‖2 + µ‖Y d‖2 − 2µ〈Xd,Y d〉 = 2d(µ2 − µ2), and variance

σ2
‖Xd−Y d‖2 = 2σ2

‖Y d‖2 + (−2)2σ2
〈Xd,Y d〉 + 4(−2)cov(‖Y d‖2, 〈Xd,Y d〉) =

= 2d(µ4 − µ2
2) + 4d(µ2

2 − µ4)− 8dµ(µ3 − µ2µ) =

= 2d
(
µ4 + µ2

2 + 2µ
(
µ(2µ2 − µ2)− 2µ3

))
.

Proof of Theorem 6 (continued). To conclude the proof: Pr [dist(Xd,Y d) ≤ δ] =
Pr
[
dist(Xd,Y d)

2 ≤ δ2
]

= Pr
[
‖Xd − Y d‖2 ≤ δ2

]
≈ Φ‖Xd−Y d‖2(δ2).

Note that, if Xd and Y d have a common pdf with null mean (µ = 0), ‖Y d‖2 (‖Xd‖2
equivalently) and 〈Xd,Y d〉 are uncorrelated, and being jointly normal distributed, they are
also independent. In such a case, the parameters of the distribution can be expressed in
the following simplified form.

Corollary 12 Let Xd and Y d be two d-dimensional i.i.d. random vectors with common
cdf FX having mean µ. Then

‖X̂d − Ŷ d‖2 ' N
(
2dµ̂2, 2d(µ̂4 + µ̂2

2)
)
,

where X̂d = Xd − µ (Ŷ d = Y d − µ, resp.) and µ̂k = E[(X − µ)k] (k > 0) are the central
moments of fX (the moments of fX̂ , resp.).

Proof of Corollary 12. Immediate from Theorem 7.

The notability of the above expression also stems from the following fact.

Proposition 13 Pr[dist(Xd,Y d) ≤ δ] = Pr[dist(X̂d, Ŷ d) ≤ δ].

Proof of Proposition 13. Distances are not affected by translation.

Until now, it has been assumed that Xd and Y d have a common cdf. The following
expression takes into account the case of different cdfs.

12
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Corollary 14 Let Xd and Y d be two d-dimensional i.i.d. random vectors with cdfs FX
and FY , respectively. Then ‖Xd − Y d‖2 ' N (µX,Y , σ

2
X,Y ), where

µX,Y = d(µX,2 + µY,2 − 2µXµY ), and

σ2
X,Y = d

(
(µX,4 − µ2

X,2) + (µY,4 − µ2
Y,2) + 4µX,2µY,2 + 4µXµY

(
µX,2 + µY,2 − µXµY

)
+

−4µXµY,3 − 4µY µX,3
)
.

Proof of Corollary 14. The expression can be obtained by following the same line of
reasoning of Theorem 7.

To characterize more precisely distance distributions, it is of interest to consider the
case in which one of the two vectors is held fixed. With this aim, the following Theorem
15 concerns the probability that a given d-dimensional vector xd and the realization of a
d-dimensional i.i.d. random vector Y d lie at a distance not greater than δ from one another.
The result holds under the condition that xd itself is the realization of a d-dimensional i.i.d.
random vector Xd, with the cdf FX of Xd not necessarily being identical to the cdf FY of
Y d.

Formally, Theorem 15 holds with high probability because it relies on a proof of con-
vergence in probability exploited in Proposition 17. Although not all the realizations may
comply with the condition of Proposition 17 (e.g., consider the case xi = ci with c 6= 1), it
holds anyway for almost all the realizations, except for a set of vanishing measure.

Theorem 15 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd, and
let Y d be a d-dimensional i.i.d. random vector. Then, for large values of d, with high
probability

Pr [dist(xd,Y d) ≤ δ] ≈ Φ

 δ2 − ‖xd‖2 − dµ2 + 2µ
∑d

i=1 xi√
d(µ4 − µ2

2) + 4(µ2 − µ2)‖xd‖2 − 4(µ3 − µµ2)
∑d

i=1 xi

 ,

where moments are relative to the random vector Y d.

Proof of Theorem 15. The proof relies on the result of Lemma 16 considering the
distribution of ‖xd − Y d‖2.

Lemma 16 With high probability

‖xd−Y d‖2 ' N

(
‖xd‖2 + dµ2 − 2µ

d∑
i=1

xi, d(µ4 − µ2
2) + 4(µ2 − µ2)‖xd‖2 − 4(µ3 − µµ2)

d∑
i=1

xi

)
.

Proof of Lemma 16. Consider the equality ‖xd − Y d‖2 = ‖xd‖2 + ‖Y d‖2 − 2〈xd,Y d〉.
The proof proceeds by studying the distribution of 〈xd,Y d〉 (see Proposition 18), by show-
ing that ‖Y d‖2 and 〈xd,Y d〉 are jointly normally distributed (see Proposition 19), and
by determining their covariance (see Proposition 20). However, a technical result that is
leveraged in the sequel of the proof is first needed; this is presented in Proposition 17.
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Proposition 17 Let Xd be a d-dimensional i.i.d. random vector having cdf FX . Moreover,
let p and q be positive integers, and β0, β1, . . . , βp, α0, α1, . . . , αq be real coefficients such that
βp 6= 0 and αq 6= 0. Then, for any ε > 0,

lim
d→∞

Pr


∣∣∣∣∣∣∣
∑d

i=1

(∑p
j=0 βjX

j
i

)
(∑d

i=1

(∑q
j=0 αjX

j
i

))2

∣∣∣∣∣∣∣ ≥ ε
 = 0.

Proof of Proposition 17. See the appendix.

Proposition 18 With high probability 〈xd,Y d〉 ' N
(
µ
∑d

i=1 xi, (µ2 − µ2)‖xd‖2
)
.

Proof of Proposition 18. Consider the random variable 〈xd,Y d〉:

〈xd,Y d〉 =
d∑
i=1

xiYi =
d∑
i=1

Wi,

where Wi = xiYi is a novel random variable. Then, µWi = E[Wi] = E[xiYi] = xiE[Yi] = xiµ,
and σ2

Wi
= E[W 2

i ]−E[Wi]
2 = E[x2

iY
2
i ]− x2

iµ
2 = x2

iµ2 − x2
iµ

2 = (µ2 − µ2)x2
i .

Consider the sequence W1,W2,W3, . . . of independent, but not identically distributed,
random variables. If the Lyapunov CLT condition reported in Equation (1) holds, the
standard score (〈xd,Y d〉−µ〈xd,Y d〉)/σ〈xd,Y d〉 converges in distribution to a standard normal
random variable as d goes to infinity, i.e.,

〈xd,Y d〉 − µ〈xd,Y d〉

σ〈xd,Y d〉
=

∑d
i=1Wi −

∑d
i=1 E[Wi]∑d

i=1 σ
2
Wi

=

∑d
i=1 xiYi − µ

∑d
i=1 xi√

µ2 − µ2‖xd‖
→ N (0, 1).

Thus, consider the Lyapunov condition for δ = 2:

lim
d→∞

∑d
i=1 E

[
|Wi −E[Wi]|2+δ

]
s2+δ
d

∣∣∣∣∣∣
δ=2

= lim
d→∞

∑d
i=1 E

[
|xi(Yi − µ)|4

]
(µ2 − µ2)2‖xd‖4

=

=
µ4 + µ(6µµ2 − 4µ3 − 3µ3)

(µ2 − µ2)2
· lim
d→∞

∑d
i=1 x

4
i(∑d

i=1 x
2
i

)2 = 0.

The above limit converges in probability for the r.v. Xd by Proposition 17.

Proposition 19 As d→∞, with high probability ‖Y d‖2 and 〈xd,Y d〉 are jointly normally
distributed.

Proof of Proposition 19. See the appendix.
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Proposition 20 cov
(
‖Y d‖2, 〈xd,Y d〉

)
= (µ3 − µµ2)

d∑
i=1

xi.

Proof of Proposition 20. See the appendix.

Proof of Lemma 16 (continued). To conclude the proof of Lemma 16, because the
random variables ‖Y d‖2, and 〈xd,Y d〉 are jointly normally distributed, then the random
variable ‖xd − Y d‖2 is normally distributed with mean

µ‖xd−Y d‖2 = µ‖xd‖2 + µ‖Y d‖2 − 2µ〈xd,Y d〉 = ‖xd‖2 + dµ2 − 2µ

d∑
i=1

xi,

and variance

σ2
‖xd−Y d‖2 = σ2

‖Y d‖2 + (−2)2σ2
〈xd,Y d〉 + 2(−2) cov(‖Y d‖2, 〈xd,Y d〉). =

= d(µ4 − µ2
2) + 4(µ2 − µ2)‖xd‖2 − 4(µ3 − µµ2)

(
d∑
i=1

xi

)
.

Proof of Theorem 15 (continued). To conclude the proof: Pr [dist(xd,Y d) ≤ δ] =
Pr
[
dist(xd,Y d)

2 ≤ δ2
]

= Pr
[
‖xd − Y d‖2 ≤ δ2

]
= Φ‖xd−Y d‖2(δ2).

For distributions having null means, the above expressions can be simplified.

Corollary 21 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd, and
let Y d be a d-dimensional i.i.d. random vector with cdf FY having null mean µY = 0. Then,
with high probability

‖xd − Y d‖2 ' N

(
‖xd‖2 + dµ2, d(µ4 − µ2

2) + 4µ2‖xd‖2 − 4µ3

d∑
i=1

xi

)
,

where the moments are relative to the random vector Y d.

Proof of Corollary 21. The result follows by substituting µ = µY = 0 in the right-hand
side of the statement of Lemma 16.

In order to quantify the error associated with the approximations of Theorem 6 and
Theorem 15, the Kolmogorov-Smirnov statistic Dn is employed here as an error measure.
This statistic is usually used for comparing a theoretical cumulative distribution function
F to a given empirical distribution function Gn for n observations, and it is defined as

Dn(Gn, F ) = sup
δ∈R
|Gn(δ)− F (δ)| .
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In our case, given an empirical distribution function Gd,n for n observations and a theoretical
distribution function Fd, both related to the dimensionality parameter d, we define the error
errd(Gd,n, Fd) as Dn(Gd,n, Fd).

As for the approximation of Theorem 6, F‖Xd−Y d‖2(δ) = Φ
(
δ−E[‖Xd−Y d‖2]
σ(‖Xd−Y d‖2)

)
is employed

as theoretical cdf Fd, whereas F emp‖Xd−Y d‖2,n
(δ), denoting the empirical distribution of the

squared distances, is employed as the empirical cdf Gd,n, and the error measured is ed =

errd

(
F emp‖Xd−Y d‖2,n

, F‖Xd−Y d‖2
)

.

As the approximation of Theorem 15, given the realization xd of Xd, F‖xd−Y d‖2(δ) =

Φ
(
δ−E[‖xd−Y d‖2]
σ(‖xd−Y d‖2)

)
is employed as a theoretical cdf, whereas F emp‖xd−Y d‖2,n

(δ) denotes the em-

pirical cdf. Specifically, we considered three points p
(i)
d (1 ≤ i ≤ 3) as instances of xd. Each

point p
(i)
d lies ki (with k1 = 0, k2 = 1, and k3 = 5) standard deviations σ‖Xd‖2 away from the

mean µ‖Xd‖2 of the squared norm of Xd, i.e., each point p
(i)
d is such that z‖p(i)d ‖2,‖Xd‖2

= ki

(in particular, the generic coordinate of p
(i)
d has value

(
(µ‖Xd‖2 + ki · σ‖Xd‖2)/d

)1/2
). The

error measured for each point is e
(i)
d = errd

(
F emp
‖p(i)d −Y d‖2,n

, F‖p(i)d −Y d‖2

)
.

The empirical cdf F emp‖Xd−Y d‖2,n
has been obtained by generating n pairs (x

(j)
d ,y

(j)
d )

(1 ≤ j ≤ n) of realizations of the random vectors Xd and Y d, respectively, and then

by computing F emp‖Xd−Y d‖2,n
(δ) = 1

n

∑n
j=1 I[0,δ]

(
dist(x

(j)
d ,y

(j)
d )
)

, where IS denotes the in-

dicator function (with S representing a generic set), such that IS(v) = 1, if v ∈ S, and
IS(v) = 0, otherwise. The empirical cdf F emp‖xd−Y d‖2,n

, is obtained by generating n realiza-

tions y
(j)
d (1 ≤ j ≤ n) of the random vector Y d, and then by computing F emp‖xd−Y d‖2,n

(δ) =

1
n

∑n
j=1 I[0,δ]

(
dist(xd,y

(j)
d )
)

.

We note that, for any distance threshold δ ≥ 0, the value errd represents an upper
bound to the error committed when the theoretical cdf of Theorem 6 (Theorem 15, resp.)
is used to estimate the probability Pr[‖Xd − Y d‖ ≤ δ] (Pr[‖xd − Y d‖ ≤ δ], resp.).

Figure 1 shows the above defined errors ed, e
(1)
d , e

(2)
d , and e

(3)
d (red curves), for dis-

tributions FX = FY , uniform in [−0.5,+0.5] (Fig. 1a), standard normal (Fig. 1b), and
exponential with λ = 1 (Fig. 1c), respectively.

Before commenting on the results, it must be pointed out that the error errd depends
on the size n of the sample employed to build the empirical distribution. Thus, first we
discuss the behavior for unbounded sample sizes n, and then take into account the effect of
finite sample sizes. In order to simulate an unbounded sample size, the curves in the figures
have been obtained for a very large sample size n > 1.5 · 108.

From Figures 1a, 1b, and 1c it can be seen that the error errd decreases with the
dimensionality. The trend of the error curves is more regular for the uniform and normal
distribution than for the exponential distribution, probably due to the skewness of the
exponential distribution. The error ed associated with the cdf F‖Xd−Y d‖2 is greater than

the errors e
(i)
d associated with the cdf F‖xd−Y d‖2 . Intuitively, this can be explained since

the degree of uncertainty is reduced if one of the two random vectors is replaced by a

fixed point. In general, it holds that e
(1)
d > e

(2)
d > e

(3)
d , thus indicating that uncertainty
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Figure 1: [Best viewed in color.] Empirical evaluation of the approximation errors of Th.
6 and Th. 15, for dimensionalities d ∈ [100, 104] and sample sizes n ∈ [102, 107].
Error ed (red solid line) is associated with the expression of Th. 6, whereas errors

e
(1)
d (magenta dashed line), e

(2)
d (cyan dash-dotted line), and e

(3)
d (green dotted

line) are associated with the expression of Th. 15, for three different points whose
squared norm standard scores are 0, 1, and 5, respectively. Horizontal blue lines
take into account the sample size n: the dotted line is the expected error for
different n values under the hypothesis that the distance distribution is indeed
normal; the dashed line is the value under which the hypothesis that the sample
is generated according the theoretical distribution can be accepted at the 95%
confidence level.
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increases towards the most largely populated regions of the space. Moreover, the larger the

dimensionality d, the closer the errors e
(j)
d to e

(1)
d .

As anticipated above, the error errd depends on the size n of the sample employed
to build the empirical distribution. Specifically, differently from the case of unbounded n
values, for which the error decreases with the dimensionality, for any fixed sample size n,
there exists a dimensionality d such that the error converges around a value en. Such a
value en corresponds to the error Dn(Φemp

n ,Φ) between the empirical cdf Φemp
n associated

with a random sample of n elements of a (standard) normal distribution and the theoretical
cdf Φ of a (standard) normal distribution.

Let K be a random variable having a Kolmogorov distribution. According to the
Kolmogorov-Smirnov test, the null hypothesis that the sample of n observations having
empirical distribution Gn comes from the hypothesized distribution F is rejected at level
α ∈ (0, 1) if the statistic

√
n · Dn(Gn, F ) is greater than the value Kα, where Kα is such

that Pr[K ≤ Kα] = 1−α. It follows from the above that if, for a certain α and sample size
n, it holds that errd is smaller than eαn = Kα · n−1/2, then the hypothesis that the sample
complies with the theoretical distribution can be accepted at the 1−α confidence level, e.g.,
for α = 0.05, the value K0.05 is 1.3581. Moreover, the expected value en of Dn(Φemp

n ,Φ)
approximately corresponds to Kα · n−1/2 with α = 0.44, i.e., to en ≈ 0.8673 · n−1/2.

Horizontal (blue) lines in Figures 1a, 1b, and 1c take into account the effect of the
sample size n. Each pair of dashed and dotted lines is associated with a different value of
n ∈ {102, 103, . . . , 107}. Dashed lines are associated with the errors e0.05

n , whereas dotted
lines are associated with the errors en. Let n be the actual sample size, and let d∗ be the
dimensionality such that the value ed∗ of the particular curve ed is equal to en (dotted
horizontal curve). Then, for d ≥ d∗, the expected value of ed tends to en. Thus, for d < d∗,
the curve of ed is similar to the one reported in the figure, whereas for d > d∗, the curve of ed
tends to be horizontal, with a value close to en. Moreover, if ed ≤ e0.05

n (dashed horizontal
curve), then the hypothesis that the sample complies with the hypothesized distribution
can be accepted at the 95% confidence level. Informally speaking, this means that in the
latter case, the distribution hypothesized in Theorems 6 and 15 is indiscernible from the
underlying distribution generating the observed inter-point distances.

In summary, as previously pointed out, because errd depends on the worst-case thresh-
old value δ, it is an upper bound to the error committed when estimating probabilities by
leveraging the results previously presented. The analysis with unbounded sample size high-
lights that the worst-case error always decreases with the dimensionality. Moreover, let the
effective error be defined as the difference between the observed error and the error expected
when the data are generated according to the hypothesized distribution. The analysis of
finite sample sizes highlights that, in practice, the effective error can become null.

For the distributions FY having both a null mean and null skewness (µ3 = 0), it follows from
Propositions 19 and 20 that the random variables ‖Y d‖2 and 〈xd,Y d〉 are independent.

Moreover, the distribution defined in Corollary 21, in Theorem 15 and in Lemma 16,
depend only on the squared norm ‖xd‖2, whereas the actual value of xd does not matter.
However, it can be shown that the same property holds also for skewed distributions, since
the term (

∑
i xi) is related to ‖xd‖2, as accounted for in the subsequent result.
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Figure 2: Empirical validation of Proposition 22 on different distributions: (a) uniform
(µ1/µ2 = 1.5), (b) normal (µ1/µ2 = 0.5), and (c) exponential (µ1/µ2 = 0.5).
The red solid curve represents the expected value µW of the ratio W =
(
∑d

i=1Xi)/‖Xd‖2, whereas the red dashed curves represent the values µW + σW
and µW − σW , measured for n = 20,000 points and d ∈ [101, 104].

Proposition 22 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd

with cdf FX . Then, for large values of d, with high probability

∑d
i=1 xi
‖xd‖2

→ µX
µX,2

.

Proof of Proposition 22. See the appendix.

Thus, the term (
∑

i xi) can be approximated by µX
µX,2
‖xd‖2.

Notice that the above result also states that for random vectors Xd having null mean,
the term (

∑
i xi) becomes negligible with respect to ‖xd‖2 and, hence, that it can be ignored

in the expression reported in Corollary 21, thus removing the dependence from the skewness
of the distribution FY .

To empirically validate Proposition 22, the mean and the standard deviation of the ratio
W = (

∑d
i=1Xi)/‖Xd‖2 have been measured on distributions having non-null mean µ 6= 0.

Figure 2 reports the result of the experiment for d ∈ [10, 104] and n = 20,000. Specifically,
a uniform distribution with mean µ1 = 0.5 (µ2 = 0.333, µ3 = 0.25, and µ4 = 0.2) and
ratio µ1/µ2 = 1.5 (Fig. 2a), a normal distribution with mean µ1 = 1 (µ2 = 2, µ3 = 4,
and µ4 = 10) and ratio µ1/µ2 = 0.5 (Fig. 2b), and an exponential distribution with mean
µ1 = 1 (µ2 = 2, µ3 = 6, and µ4 = 24) and ratio µ1/µ2 = 0.5 (Fig. 2c), were considered. It
can be seen that the expected value E[W ] of the ratio W rapidly converges to the limiting
value µ1/µ2 and also that the standard deviation σ(W ) of the ratio W decreases with the
dimensionality. Moreover, in all cases, the trend agrees with the prediction of Proposition
22, according to which it holds that |E[W ]− µ1/µ2| = O(d−1) and σ(W ) = O(d−1/2).
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4.2 On the Distribution of Nearest Neighbors for i.i.d. Data

Given a real number % ∈ [0, 1], a d-dimensional vector xd and a d-dimensional random vector
Y d, distnn%(xd,Y d) denotes the radius of the smallest neighborhood centered in xd con-
taining at least the % fraction of the realizations of Y d. Moreover, nn%(xd,Y d), or nn%(xd)
whenever Y d is clear from the context, also called %-th nearest neighbor of xd w.r.t. Y d,
denotes an element of the set {yd ∈ Rd | fY (yd) > 0 and dist(xd,yd) = distnn%(xd,Y d)}.1
NN%(xd,Y d), or NN%(xd) whenever Y d is clear from the context, denotes the set of points
{yd ∈ Rd | fY (yd) > 0 and dist(xd,yd) ≤ dist(xd,nn%(xd,Y d))}.

In order to deal with finite sets of n points {Y d}n, the integer parameter k = %n
(k ∈ {1, . . . , n}) has to be employed in place of %. Thus, given a positive integer k,
distnnk(xd, {Y d}n) represents the radius of the smallest neighborhood centered in xd con-
taining at least k points of {Y d}n. Moreover, nnk(xd, {Y d}n) or nnk(xd), also called
k-th nearest neighbor of xd in {Y d}n, denotes an element of the set {yd ∈ {Y d}n |
dist(xd,yd) = distnnk(xd, {Y d}n)}.2 NNk(xd, {Y d}n), or NNk(xd,Y d), denotes the set
of points {yd ∈ {Y d}n | dist(xd,yd) ≤ dist(xd,nn%(xd, {Y d}n))}.

In the rest of the work, given a d-dimensional i.i.d. random vector Xd with cdf FX ,
representing the distribution of the query points, and a d-dimensional i.i.d. random vector
Y d with cdf FY , representing the distribution of the data points, we assume w.l.o.g. that
FY has null mean µY . Indeed, if it is not the case, it is sufficient to replace them with the
random vectors X ′d = Xd − µY and Y ′d = Ŷ d = Y d − µY such that µY ′ = 0. Moreover, a
realization xd of Xd can be replaced with x′d = xd − µY .

The following result considers the distance separating a vector from its %-th nearest
neighbor w.r.t. a d-dimensional i.i.d. random vector.

Lemma 23 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd having
cdf FX . Consider the %-nearest neighbor nn%(xd,Y d) of xd w.r.t. a d-dimensional i.i.d.
random vector Y d with cdf FY . Assume, w.l.o.g., that FY has null mean µY = 0. Then,
for large values of d, with high probability

dist(xd,nn%(xd,Y d)) ≈

√√√√√‖xd‖2 + dµ2 + Φ−1 (%)

√√√√d(µ4 − µ2
2) + 4µ2‖xd‖2 − 4µ3

d∑
i=1

xi.

Proof of Lemma 23. By definition, nn%(xd,Y d) is such that

Pr [dist(xd,Y d) ≤ dist(xd,nn%(xd,Y d))] = %.

By Corollary 21,

Pr [dist(xd,Y d) ≤ dist(xd,nn%(xd,Y d))] ≈ Φ

(
dist(xd,nn%(xd,Y d))

2 −E[‖xd − Y d‖2]

σ(‖xd − Y d‖2)

)
.

1. Because our interest is only in the fact that nn%(xd,Y d) satisfies the property dist(xd, nn%(xd,Y d)) =
distnn%(xd,Y d), it can be assumed that nn%(xd) is randomly selected from the above set.

2. Because our interest is only in the fact that nnk(xd,Y d) satisfies the property
dist(xd, nnk(xd, {Y d)}n) = distnnk(xd, {Y d}n), it can be assumed that nnk(xd) is randomly
selected from the above set.
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Hence, dist(xd,nn%(xd,Y d))
2 ≈ E[‖xd − Y d‖2] + Φ−1(%)σ(‖xd − Y d‖2).

It has been already pointed out that if FY has null skewness (µ3 = 0), if FX = FY , or if FX
has null mean µX = 0, the term 4µ3(

∑
i xi) can be disregarded.

Due to the difficulty of answering nearest neighbor queries in high-dimensional spaces,
different authors have proposed to consider approximate nearest neighbor queries (Indyk
and Motwani, 1998; Arya et al., 1998), returning an ε-approximate nearest neighbor instead
of the exact nearest neighbor: given point xd and ε ≥ 0, a point yd is an ε-approximate
nearest neighbor of xd if it holds that dist(xd,yd) ≤ (1 + ε)dist(xd, nn1(xd)).

Beyer et al. (1999) called a nearest neighbor query unstable for a given ε ≥ 0, if the
distance from the query point to most data points is less than (1 + ε) times the distance
from the query point to its nearest neighbor. Moreover, Beyer et al. (1999) have shown
that in many situations, for any fixed ε > 0, as dimensionality rises, the probability that a
query is unstable converges to 1 (see Theorem 2).

Instability is undesirable because the points that fall in the enlarged query region, also
called ε-neighborhood, are valid answers to the approximate nearest neighbor problem.
Thus, the larger the expected number of data points falling within the ε-neighborhoods of
the query points, the smaller the meaningfulness of the approximate query scenario.

Definition 24 Let NNε
%(xd,Y d) denote the set of the ε-approximate %-nearest neighbors of

xd, also called ε-neighborhood, that are the realizations yd of Y d whose distance from xd is
within (1 + ε) times the distance separating xd from its %-th nearest neighbor nn%(xd,Y d),
i.e.,

NNε
%(xd,Y d) = {yd ∈ Rd | fY (yd) > 0 and dist(xd,yd) ≤ (1 + ε) dist(xd,nn%(xd))}.

In order to quantify the meaningfulness of ε-approximate queries, it is sensible to com-
pute the expected size of the ε-neighborhoods associated with query points with respect to
the data population, which is the task pursued in the following.

Theorem 25 Let ε ≥ 0, let Xd be a d-dimensional i.i.d. random vector with cdf FX ,
representing the distribution of the query points, and let Y d be a d-dimensional i.i.d. random
vector with cdf FY (not necessarily identical to FX), representing the distribution of the data
points. Assume, w.l.o.g., that FY has null mean µY = 0. Then, for large values of d,

E[|NNε
k(Xd, {Y d}n)|] ≈

nΦ

(ε2 + 2ε) d(µX,2 + µY,2) + (1 + ε)2 Φ−1( kn)

√
d
(
µY,4 − µ2

Y,2 + 4µY,2µX,2 − 4µY,3µX

)
√
d
(
µY,4 − µ2

Y,2 + 4µY,2µX,2 − 4µY,3µX

)
+ (ε2 + 2ε)2 d(µX,4 − µ2

X,2)

 .
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Proof of Theorem 25. Consider the probability (exploiting Corollary 21, Proposition 22
and Lemmas 16 and 23)

Pr[dist(xd,Y d) ≤ (1 + ε) dist(xd,nn%(xd,Y d))] =

= Pr[dist(xd,Y d)
2 ≤ (1 + ε)2dist(xd,nn%(xd,Y d))

2] ≈

≈ Φ

(
(1 + ε)2

(
E[‖xd − Y d‖2] + Φ−1(%)σ(‖xd − Y d‖2)

)
−E[‖xd − Y d‖2]

σ(‖xd − Y d‖2)

)
=

= Φ

(
(ε2 + 2ε) E[‖xd − Y d‖2] + (1 + ε)2 Φ−1(%)σ(‖xd − Y d‖2)

σ(‖xd − Y d‖2)

)
=

= Φ

 (ε2 + 2ε)(‖xd‖2 + dµY,2) + (1 + ε)2 Φ−1(%)
√
d(µY,4 − µ2

Y,2) + 4µY,2‖xd‖2 − 4µY,3
µX
µX,2
‖xd‖2√

d(µY,4 − µ2
Y,2) + 4µY,2‖xd‖2 − 4µY,3

µX
µX,2
‖xd‖2

 .

By taking into account the standard score of xd

‖xd‖2 = zxdσ‖Xd‖2 + µ‖Xd‖2 = zxd

√
d(µX,4 − µ2

X,2) + dµX,2,

and by considering that for α, β, and z finite (note that φ(z) is practically negligible

for |z| ≥ 5) and d growing,
√
αd+ z

√
βd ≈

√
αd, then the above probability can be

approximated with Φ(ad,ε,%X,Y + bd,ε,%X,Y zxd), where

ad,ε,%X,Y =
(ε2 + 2ε) (dµX,2 + dµY,2) + (1 + ε)2 Φ−1(%)

√
d(µY,4 − µ2

Y,2) + 4dµY,2µX,2 − 4dµY,3µX√
d(µY,4 − µ2

Y,2) + 4dµY,2µX,2 − 4dµY,3µX
,

bd,εX,Y =
(ε2 + 2ε)

√
d(µX,4 − µ2

X,2)√
d(µY,4 − µ2

Y,2) + 4dµY,2µX,2 − 4dµY,3µX
.

Consider now the expected value

E[|NNε
%(Xd)|] =

∫
Rd

Pr[dist(xd,Y d) ≤ (1 + ε) dist(xd,nn%(xd,Y d))] · Pr[Xd = xd] dxd =

=

∫ zd,max

zd,min

Φ
(
ad,ε,%X,Y + bd,εX,Y zxd

)
φ(zxd

) dzxd
.

The statement then follows by leveraging the following equation (Owen, 1980)∫ +∞

−∞
Φ(a+ bz)φ(z) dx = Φ

(
a√

1 + b2

)
, (2)

taking the limits of integration to infinity. Note that the extra domain of integration consid-
ered is associated with a negligible probability because zd,min = (µ‖Xd‖2−inf ‖Xd‖2)/σ‖Xd‖2
and zd,max = (sup ‖Xd‖2 − µ‖Xd‖2)/σ‖Xd‖2 , are such that both φ(zd,min) and φ(zd,max)
rapidly approach zero.

In order to validate the above result, the expected value E[|NNε
k(Xd, {Y d}n)|] is empir-

ically estimated for different values of k, d and ε ∈ [0, 0.5], by exploiting sets of n = 10,000
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Figure 3: [Best viewed in color.] Comparison between the empirically estimated (x-marked
curves) and the predicted by means of Th. 25 (o-marked curves) expected sizes of
the ε-neighborhood, for n = 10,000, d = 1,000 and k = 1 (magenta dash-dotted
line), d = 1,000 and k = 10 (green dotted line), d = 10,000 and k = 1 (red solid
line), and d = 10,000 and k = 10 ( blue dashed line).

realizations of the random vector Y d. Results are averaged by considering ten different sets.
In the experiment, it is assumed that FX = FY and that each point of the set is used in
turn as a query point; thus, the size of the ε-neighborhood may vary between k and n− 1.

Figure 3 reports the results of this experiment for uniform, normal, and exponential
i.i.d. data. The value E[|NNε

k(Xd, {Y d}n)|] empirically estimated as described above is
compared with the value predicted by means of Theorem 25. The curves for the number
of neighbors k ∈ {1, 10} and the dimensionalities d ∈ {1,000, 10,000} are reported. The
curves confirm that the prediction follows the trend of the empirical evidence with the error
vanishing as the dimensionality increases.

As already stated by Beyer et al. (1999), Theorem 2 only tells us what happens when we
take the dimensionality to infinity, but nothing is said about the dimensionality at which
do we anticipate nearest neighbors to become unstable, and the issue must be addressed
through empirical studies.

The above dimensionality, called the critical dimensionality, can, however, be obtained
as follows. Let θ ∈ [0, 1] represent a fraction of the data elements; the critical dimensionality
d∗%,ε,θ for the parameters % and ε at the threshold level θ, also called selectivity, is such that

d∗%,ε,θ = min{d ∈ N+ : E[|NNε
%(Xd,Y d)|] ≥ θ},

i.e., the dimensionality at which the expected size of the ε-neighborhood contains at least
the θ fraction of the data points.

Figure 4 reports the critical dimensionality for ε varying in [0.001, 1], thresholds θ ∈
{0.01, 0.1, 0.5}, n = 10,000 and k = 1 (i.e. % = k/(n− 1) ≈ 0.0001), obtained by exploiting
the expression reported in Theorem 25. For example, for θ = 0.1, the plot says that for
dimensionalities below the bottom curve, ε-neighborhoods contain on the average 10% of
the points (one hundred points for n = 10,000). Note that analogous predictions can be
obtained in a very similar way for any other combination of the parameters %, θ, and ε, and
distribution function F .

Figure 4 also report the values of the critical dimensionality estimated empirically
(dashed lines). The plots highlight that the predicted critical dimensionality tends to the
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Figure 4: [Best viewed in color.] Critical dimensionality for ε ∈ [103, 100], n = 10,000, k = 1,
and θ = 0.01 (red solid line), θ = 0.1 (blue solid line), and θ = 0.5 (magenta solid
line), predicted by exploiting Th. 25. The dashed curves represent the values of
the critical dimensionality estimated empirically.

empirical one for decreasing ε and that the rate of convergence is directly proportional to
θ. Interestingly, it can be seen that in different cases, the reported critical dimensionality
is quite high (e.g., consider ε = 0.01). Because approximate nearest neighbors must be as-
sociated with small values of θ (e.g., consider θ = 0.01) to be considered meaningful, it can
be concluded that the notion of approximate nearest neighbor can be considered meaning-
ful even in high-dimensional spaces provided that the approximation factor ε is sufficiently
small.

Unfortunately, this does not imply that algorithms perform efficiently in these cases.
To illustrate, the researchers have proposed different algorithms for (approximate) nearest
neighbor search problems. Most of these algorithms are randomized; that is, they are
associated with a failure probability δ. Specifically, the approximate near(est) neighbor
search problem with failure probability δ is defined as the problem to construct a data
structure over a set of points S ⊆ Rd such that, given any query point x ∈ Rd, with
probability 1− δ reports:

P1. some y ∈ S with dist(x, y) ≤ (1 + ε)r (ε-approximate r-near neighbor);

P2. some y ∈ S with dist(x, y) ≤ (1+ε)·dist(x,nn(x, S)) (ε-approximate nearest neighbor);

P3. each point y ∈ S with dist(x, y) ≤ r (r-near neighbor reporting).

The proposed algorithms offer trade-offs between the approximation factor, the space and
the query time (Andoni, 2009). From the practical perspective, the space used by an
algorithm should be as close to linear as possible. In this case, the best-existing solutions
are based on locality-sensitive hashing (LSH) (Indyk and Motwani, 1998; Har-Peled et al.,
2012). The idea of the LSH approach is to hash the points in a way that the probability of
collision is much higher for points that are close (with the distance r) to each other than
for those that are far apart (with distance at least (1 + ε)r). Under different assumptions
involving the parameters employed (Har-Peled et al., 2012), the LSH algorithm solves the
ε-approximate r-near neighbor problem using O(n1+ρε) extra space, O(dnρε) query time,
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(a) (b)

Figure 5: Temporal complexity of the E2LSH algorithm on uniform data for different se-
lectivity values, namely θ = 0.1 (red solid line), θ = 0.01 (blue dashed line), and
θ = 0.001 (magenta dash-dotted line), and dimensions d ∈ [10, 103], estimated
by using n = 10,000 data points and m = n query points. The plot on the left
concerns the cost of reporting all the neighbors. The plot on the right concerns
the cost of reporting just one neighbor. In the latter plot, dotted curves represent
the complexity of sampling until a neighbor is retrieved.

and failure probability δ = 1/e+1/3.3 As for the value of the exponent ρε, for the Euclidean
distance, it is possible to achieve ρε = 1/(1 + ε)2 + oε(1) (Andoni and Indyk, 2006), and it
is known this bound is tight.

For example, consider that if ε = 0.01, then ρε = 0.980. Because meaningfulness in
intrinsically high-dimensional spaces requires smaller and smaller ε values, this means that,
if we wish to maintain a pre-defined level of selectivity θ, we expect that the efficiency of
LSH-based schemes will diminish with the intrinsic dimensionality of the space.

To empirically illustrate the relationship among selectivity θ, the intrinsic dimensionality
d, and the temporal complexity γ of the search algorithm, 4 we analyzed the performances
of the E2LSH method as a function of the expected size θ of the r-neighborhood. The
E2LSH package solves the randomized r-near neighbor reporting problem exploiting the
basic LSH scheme.5 After preprocessing the data set, E2LSH answers queries, typically in

3. The failure probability δ can be made arbitrarily small, say δ < 1/n, by running O(log(n + m)) copies
of the basic LSH algorithm for P1, where n and m denote an upper bound on the number of points in
the data structure and on the number of queries performed at any time. Moreover, P2 can be solved by
using as building blocks O(logn) copies of an algorithm for P1, achieving failure probability O(δ logn)
(Har-Peled et al., 2012). A similar strategy allows solving the nearest neighbor reporting problem (P3 )
by building on different data structures for P1 associated with increasing values of r (Andoni and Indyk,
2008).

4. The temporal complexity is defined as the exponent γ ≥ 0 such that the total number of distances D
computed by the algorithm in order to report its answer is such that D = nγ .

5. The E2LSH package is available for download at http://www.mit.edu/~andoni/LSH/.
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sub-linear time, with each near neighbor being reported with a certain probability 1 − δ
(= 0.9 by default). As for the values of the other parameters employed, we used the values
determined automatically by the algorithm.

Figure 5 reports the results of the experiments on a family of uniformly distributed data
sets composed of n = 10,000 points with d ∈ [10, 103]. We used m = n different query points
generated from the same distribution. We also varied the selectivity θ in {0.001, 0.01, 0.1}
by determining the radius r such that the expected fraction of r-near neighbors of the query
points is θ. In Figure 5a, it can be seen that the complexity of the procedure increases with
θ, and this can be explained by noting that the total number of points to be reported is
directly proportional to θ. However, even if θ is held fixed, in all cases, the complexity of the
algorithm for large d values tends to a linear scan of the data or to the cost γs of a random
sampling procedure.6 In Figure 5b, the algorithm has been enforced to report at most one
near neighbor; hence, it stops the search as soon as it retrieves a near neighbor. It can now
be seen that the complexity of the procedure decreases with θ, and this can be explained
by noting that the probability of retrieving a neighbor is directly proportional to θ. The
dotted curves represent the complexity γs of the procedure consisting in randomly selecting
points until a r-near neighbor is retrieved. Additionally, in this case, it can be observed
that the complexity degrades towards that of the random sampling procedure irrespectively
of the selectivity value θ.7

The above analysis provides a picture of how much better an approximate search algo-
rithm can perform than the pure random search, as a function of the selectivity and of the
intrinsic dimensionality. Although the target neighborhood can be guaranteed to contain
not too many points even in very large dimensional spaces, the best search algorithms may
fail to perform better than random sampling. This can be explained by the poor separation
of distances with the objects that are outside the approximate neighborhood.

In this regard, although the critical dimensionality is a construct with which to attempt
to quantify the meaningless of a certain query, the relative contrast Cr (He et al., 2012) is
a way to attempt to quantify its difficulty. Given a query point xd, the relative contrast is
a measure of separability of the nearest neighbor of xd from the rest of the data set points.

Definition 26 (Adapted from He et al., 2012) Let DS be a data set consisting of n
realizations of a random vector Y d. The relative contrast for the data set DS for a query
xd, being the realization of a random vector Xd, is defined as Ckr (xd) = E[dist(xd,DS)]

E[distnnk(xd,DS)] .
Taking expectations with respect to queries, the relative contrast for the data set DS is

Ckr =
E[dist(Xd, DS)]

E[distnnk(Xd, DS)]
.

He et al. (2012) provided an estimate of the relative contrast for a data set valid for in-
dependent dimensions and, moreover, provided bounds on the cost of LSH-based nearest
neighbor search algorithms taking into account the relative contrast. They also noted that

6. Indeed, the expected number nγs of points to be randomly picked in order to retrieve the 1− δ fraction
of the nθ data points that are r-near neighbors of the query point is nγs = n(1− δ) and γs = 1 + log(1−
δ)/ log(n). E.g., for 1− δ = 0.9, γs = 0.9886.

7. Note that, for a query having selectivity θ, the expected number of points to be randomly picked in order
to retrieve exactly one r-near neighbor is nγs = 1/θ and, hence, γs = − log(θ)/ log(n).
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the analysis of Beyer et al. (1999) and François et al. (2007) agree with the asymptotic
behavior of the relative contrast. We refer to (He et al., 2012) for the details.

Here, we show that by exploiting the previous results, we can derive an approximation
for the relative contrast Ckr of a data set that results to be more accurate than the estimate
provided by He et al. (2012). In addition, we can derive a closed form for the relative
contrast Ckr (xd) of an individual query point.

Theorem 27 Let Xd be a d-dimensional i.i.d. random vector with cdf FX and let Y d be
a d-dimensional i.i.d. random vector with cdf FY . Assume, w.l.o.g., that FY has null mean
µY = 0. Then, for large values of d,

Ckr ≈

√√√√ √
d(µY,2 + µX,2)

√
d(µY,2 + µX,2) + Φ−1

(
k
n

)√
µY,4 − µ2

Y,2 + 4µY,2µX,2 − 4µY,3µX
.

Proof of Theorem 27. Consider the expected value of the squared distance separating a
query point Xd from nn%(Xd,Y d) (leveraging Proposition 8 and Lemma 23):

E[‖Xd − nn%(Xd,Y d)‖2] = E[distnn%(Xd,Y d)
2] = E[dist(Xd,nn%(Xd,Y d))

2] =

=

∫
Rd
Pr[Xd = xd] · dist(xd,nn%(xd,Y d))

2 dxd =

=

∫ +∞

0
φ‖Xd‖2(R) ·

(
µ‖xd−Y d‖2 + Φ−1 (%)σ‖xd−Y d‖2

)∣∣∣∣
‖xd‖2=R

dR =

=

∫ +∞

0
φ‖Xd‖2(R)·

(
R+ dµY,2 + Φ−1 (%)

√
d(µY,4 − µ2

Y,2) + 4µY,2R− 4µY,3
µX
µX,2

R

)
dR.

After approximating the R under the square root with the expected value µ‖Xd‖2 = dµX,2
of Xd:

E[dist(Xd,nn%(Xd,Y d))
2] =

∫ +∞

0
R · φ‖Xd‖2(R) dR +

+
(
dµY,2 + Φ−1 (%)

√
d(µY,4 − µ2

Y,2) + 4dµY,2µX,2 − 4dµY,3µX

)
·
∫ +∞

0
φ‖Xd‖2(R) dR =

= d(µX,2 + µY,2) + Φ−1 (%)
√
d(µY,4 − µ2

Y,2 + 4µX,2µY,2 − 4µY,3µX).

Indeed, the left hand integral above corresponds to the expected value µ‖Xd‖2 = dµX,2 of
of the random variable ‖Xd‖2, whereas the right hand integral evaluates to one.

According to the Jensen inequality (Johnson et al., 1994), if g is a concave function,
then E[g(X)] ≤ g(E[X]); moreover, the larger the relative variance σX/µX of X, the closer

the two above values, i.e., E[g(X)] ≈ g(E[X]). Specifically, E[‖Xd‖] = E[
√∑

iX
2
i ] ≤√

E[
∑

iX
2
i ] =

√
E[‖Xd‖2] and, because σ‖Xd‖2/µ‖Xd‖2 = O(d−1/2), for large values of d,

E[dist(Xd,Y d)] ≈
√

E[dist(Xd,Y d)2], and E[distnn%(Xd,Y d)] ≈
√

E[distnn%(Xd,Y d)2].

We can also provide the relative contrast Ckr (xd) of an individual query point xd.
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Figure 6: [Best viewed in color.] Comparison between the estimate of the relative contrast
Cr provided in Theorem 27 (blue dashed line) and the estimate provided by He
et al. (2012) (magenta dash-dotted line). The red solid line represents the value
of the relative contrast estimated empirically.

Corollary 28 Let xd denote a realization of a d-dimensional i.i.d. random vector, and let
Y d be a d-dimensional i.i.d. random vector with cdf FY . Then, for large values of d, with
high probability

Ckr (xd) ≈

√√√√ ‖xd‖2 + dµ2 − 2µ
∑d
i=1 xi

‖xd‖2 + dµ2 − 2µ
∑d
i=1 xi + Φ−1

(
k
n

)√
d(µ4 − µ2

2) + 4µ2‖xd‖2 − 4(µ3 − µµ2)
∑d
i=1 xi

.

Proof of Corollary 28. Following the same line of reasoning of Theorem 27, Ckr (xd) ≈√
E[dist(xd,Y d)2]

E[distnn%(xd,Y d)2]
, and the statement follows by leveraging Theorem 15 and Lemma 23.

Figure 6 compares the approximation of the relative contrast provided in Theorem 27
to the approximation provided by He et al. (2012). In all the cases, the approximation
of Theorem 27 is the more accurate. This can be understood by noting that He et al.
(2012) estimated the relative contrast by considering the differences Xi − Yi between the
components of a query pointXd and of a data point Y d as novel random variables, and then
by determining their expectations and standard deviations. This corresponds to ignoring
the form of the distribution of distances from each individual query point and all the data
points, a relationship that is conversely taken into account in Theorem 27, due to the
leveraging of Theorem 16, Proposition 8, and Lemma 23.
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4.3 On the Distribution of Reverse Nearest Neighbors for i.i.d. Data

Given a real number % ∈ [0, 1], a d-dimensional random vector Y d, and a realization xd of
Y d, it is said that a realization yd of Y d is a % reverse nearest neighbor of xd w.r.t. Y d if
xd ∈ NN%(yd,Y d).

The size N%(xd,Y d), or N%(xd) whenever Y d is clear from the context, of the % reverse
nearest neighborhood of xd w.r.t. Y d, also called reverse % nearest neighbor count or %-
occurrences, is the fraction of realizations yd of Y d such that xd ∈ NN%(yd,Y d).

As in the previous sections, in order to deal with finite sets of n points {Y d}n, the integer
parameter k = %n (k ∈ {1, . . . , n}) must be employed in place of %. In such a case, we speak
of k reverse nearest neighborhood, reverse k nearest neighbor count, or k-occurrences.

Before going into the main results, the following expression provides the probability
that a realization, having norm value R, of a d-dimensional i.i.d. random vector Y d lies at
distance not greater than δ from a given d-dimensional vector xd.

Lemma 29 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd with
cdf FX , and let Y d be a d-dimensional i.i.d. random vector with cdf FY . Assume, w.l.o.g.,
that FY has null mean µY = 0. Then, for large values of d, with high probability

Pr [dist(xd,Y d) ≤ δ | ‖Y d‖ = R] ≈ Φ

(
δ2 −R2 − ‖xd‖2

2‖xd‖
√
µ2

)
,

where moments are relative to the constrained random vector Y d.

Proof of Lemma 29. See the appendix.

The noteworthiness of the above expression lies in the fact that, by combining it with
Proposition 8, it is possible in some cases to replace multi-dimensional integrations involving
the full event space Rd with one-dimensional integrations over the domain R+

0 of the squared-
norm values. Specifically, it is essential to the proof of the following result.

Theorem 30 Let xd denote a realization of a d-dimensional i.i.d. random vector Y d, with
cdf FY having, w.l.o.g., null mean µ = 0. Consider the reverse k nearest neighbor count
N%(xd) of xd w.r.t. Y d. Then, for large values of d, with high probability

N%(xd) ≈ Φ

(
Φ−1(%)

√
µ4 + 3µ2

2 − zxd
√
µ4 − µ2

2

2µ2

)
.

Proof of Theorem 30. First of all, note that N%(xd) = Pr[xd ∈ NN%(Y d)]. Consider the
probability

Pr[xd ∈ NN%(Y d)] =

∫
Rd
Pr
[
xd ∈ NN%(yd)

]
· Pr[Y d = yd] dyd =

=

∫
Rd
Pr
[
dist(xd,yd) ≤ dist(yd,nn%(yd))

]
· Pr[Y d = yd] dyd =

=

∫ +∞

0
Pr
[
dist(xd,Y d) ≤ dist(Y d,nn%(Y d)) | ‖Y d‖2 = R

]
· Pr

[
‖Y d‖2 = R

]
dR.
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By Lemma 23 and Proposition 22, for ‖Y d‖2 = R,

dist(Y d,nn%(Y d))
2 = R+ dµ2 + Φ−1(%)

√
d(µ4 − µ2

2) + 4µ2R,

while by Lemma 29,

Pr
[
dist(xd,Y d) ≤ dist(Y d,nn%(Y d)) | ‖Y d‖2 = R

]
≈

≈ Φ

(
dist(Y d,nn%(Y d))

2 −R− ‖xd‖2

2‖xd‖
√
µ2

)
=

= Φ

(
Φ−1(%)

√
d(µ4 − µ2

2) + 4µ2R+ dµ2 − ‖xd‖2

2‖xd‖
√
µ2

)
,

from which it follows that

Pr[xd ∈ nn%(Y d)] ≈
∫ +∞

0

Φ

(
Φ−1(%)

√
d(µ4 − µ2

2) + 4µ2R+ dµ2 − ‖xd‖2

2‖xd‖
√
µ2

)
φ‖Y d‖2(R) dR,

where moments are relative to the constrained random vector Y d.
The proof proceeds by expressing ‖xd‖2 and R in terms of their standard scores with

respect to the random variable ‖Y d‖2, i.e.,

‖xd‖2 = µ‖Y d‖2 + zxd · σ‖Y d‖2 and R = µ‖Y d‖2 + zR,‖Y d‖2 · σ‖Y d‖2 .

By substituting in the left-hand side above, and by considering that for α and β being
finite and d growing,

√
αd ≈

√
αd+

√
βd,

Φ

Φ−1(%)
√
d(µ4 − µ2

2) + 4dµ2
2 + zR,‖Y d‖24µ2

√
d(µ4 − µ2

2) + dµ2 − dµ2 − zxd

√
d(µ4 − µ2

2)

2
√
µ2

√
dµ2 + zxd

√
d(µ4 − µ2

2)

 ≈
≈ Φ

(
Φ−1(%)

√
d(µ4 + 3µ2

2)− zxd
√
d(µ4 − µ2

2)

2µ2

√
d

)
=

= Φ

(
Φ−1(%)

√
µ4 + 3µ2

2 − zxd
√
µ4 − µ2

2

2µ2

)
= C(zxd , %).

Since, for large values of d, moments tend to their unconstrained values (see proof of Lemma
29), the last expression depends on zxd and on %, but not on R. Thus

Pr[xd ∈ NN%(Y d)] ≈ C(zxd , %)

∫ +∞

0
φ‖Y d‖2(R) dR = C(zxd , %).

As for the expression reported in the statement of Theorem 30, it does not explicitly
depend on the dimensionality and on the exact position of the point xd but only on the
relative position of the squared norm of the point with respect to the expected value. Thus,
the following definition naturally arises.
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Definition 31 Let z denote the standard score of the squared norm. Then, the infinite
dimensional k-occurrences function N∞% : R 7→ [0, 1], defined as

N∞% (z) = Φ

(
Φ−1(%)

√
µ4 + 3µ2

2 − z
√
µ4 − µ2

2

2µ2

)
, (3)

represents the fraction of points having a point with squared norm standard score z among
their % nearest neighbors.

An alternative expression can be provided by leveraging the kurtosis κ = µ4
µ22

, a well known

measure of tailedness of a probability distribution that is

N∞% (z) = Φ

(
Φ−1(%)

√
κ+ 3

2
− z
√
κ− 1

2

)
. (4)

In particular, it holds from the development of Theorem 30 that

lim
d→∞

Pr[N%(Xd) = N∞% (z)] = φ(z), (5)

from which it can be seen that the point z0 → −∞ is such that N∞% (z0)→ 1 and φ(z0)→ 0.
This point precisely corresponds with the expected value of Xd (the origin of the space for
variables with null mean) and is the point most likely to be selected as nearest neighbor by
any other point. At the same time, it is the point least likely to be observed as a realization
of Xd among those having norms smaller than the expected value.

As for the point z∞ →∞, it is such that N∞% (z∞)→ 0 and φ(z∞)→ 0. Hence, it is the
less likely to be observed as a realization of Xd, but it is also the less likely to be selected
as a nearest neighbor. This point is the furthest from the mean, and it is located on the
boundary of a bounded region or ad infinitum.

Figure 7 shows the curves of N∞% (red lines) for i.i.d. data coming from different distri-
butions, together with the empirical Nk/n values (black dots), with k = %n, in a random
sample of n = 10,000 points. Theoretical N∞% curves represent the picture of what happens
ad infinitum, because they provide the values to which the k-occurrences counts converge
for large dimensions. We observed that in most cases, the convergence arises very soon,
often a few tens of dimensions suffice. Indeed, empirical values tend to distribute along the
associated curves. While the first two distributions have null skewness, the same behavior
is exhibited by the third one, which instead has non-null skewness, even if, in this case,
convergence appears to be slower. In any case, it appears that the value of k-occurrences
predicted by means of the function N∞% usually is in good agreement with the empirical
evidence, even for the smallest dimension considered in the figure. For similar plots on real
data sets, we refer to Figures 10, 11, and 12, reported in the following.

It is now of interest to obtain the cdf and pdf of N%(Xd) for large values, together with
the associated variance and expected value.
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Figure 7: [Best viewed in color.] Comparison between the empirical values of the relative
number of k-occurrences (Nk/n), estimated in a random sample of n = 10,000
points with d ∈ {100, 1,000}, and the values predicted by means of the function
N∞% (red curves), for % = 0.01 (magenta dots and solid red line), % = 0.01 (green
dots and dashed red line), % = 0.01 (blue dots and dash-dotted red line), and
% = 0.01 (cyan dots and dotted red line).

Theorem 32

(i) lim
d→∞

Pr[N%(Xd) ≤ θ] = Φ

(
Φ−1(θ)2µ2 − Φ−1(%)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
,

(ii) lim
d→∞

Pr[N%(Xd) = θ] =
2µ2√
µ4 − µ2

2

· 1

φ(Φ−1(θ))
· φ

(
Φ−1(θ)2µ2 − Φ−1(%)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
,

(iii) lim
d→∞

σ2(N%(Xd)) = %(1− %)− 2T

(
Φ−1 (%) ,

2µ2√
2(µ4 + µ2

2)

)
, and

(iv) lim
d→∞

E[N%(Xd)] = %,

where T (h, a) = φ(h)

∫ a

0

φ(hx)

1 + x2
dx is the Owen’s T function.

Proof of Theorem 32. See the appendix.

Figure 8 shows the cdfs and the pdfs of the limiting distributions of the k-occurrences for
uniform, normal, and exponential distributions. As expected, the probability of observing
large values of N% increases with %. Moreover, it can be observed from the pdf functions
that for the exponential distribution, the probability of observing N% ≈ 1 is not negligible
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Figure 8: [Best viewed in color.] Cumulative distribution function (left column) and prob-
ability density function (right column) of the limiting distribution of the number
of k-occurrences for i.i.d. random vectors (see Th. 32) according to different
families of distributions, for % = 0.01 (red solid line), % = 0.05 (blue dashed line),
% = 0.10 (magenta dash-dotted line), and % = 0.25 (green dotted line).
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even for moderately large values of %. This behavior can be better understood by looking
at Figure 7, where theoretical curves of the exponential are approaching 1 earlier.

Corollary 33 Let Xd and Y d be two d-dimensional i.i.d. random vectors with common
cdf FY having, w.l.o.g., null mean µY = 0. Then, for large values of d,

Pr[Nk(Xd, {Y d}n) ≤ h] ≈ Φ

(
Φ−1(hn)2µ2 − Φ−1( kn)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
.

Proof of Corollary 33. The statement follows immediately from Theorem 32.

In order to compare the solution here derived to the large dimensional limits of the
function Nn,d

k provided by Newman et al. (1983), the same limits are derived next.

Corollary 34 Let k be a fixed positive integer. Then

(i) lim
n→∞

lim
d→∞

Nn,d
k

D−→ 0, (ii) lim
n→∞

lim
d→∞

σ2(Nn,d
k ) =∞, and (iii) lim

n→∞
lim
d→∞

E[Nn,d
k ] = k.

Proof of Corollary 34. See the appendix.

Results provided by Newman et al. (1983), correspond to points (i) and (ii) above for
the case k = 1. The point (iii) is reported only as a check, because k is expected by
definition of the k-occurrences.

The interpretation of the above result provided by Tversky et al. (1983), which is typi-
cally how it is reported in the related literature, is that if the number of dimensions is large
relative to the number of points, one may expect to have a large proportion of points with
reverse nearest neighbor counts equaling 0, and a small proportion of points with high count
values. However, according to the previous findings, the convergence in distribution to zero
does not have to be motivated by the excess of the dimensions with respect to the sample
size, but rather by the use of a fixed-size neighborhood parameter k in the presence of large
samples. As a matter of fact, the curves reported in Figure 8 tend to the zero distribution
only for % = k/n → 0. Moreover, large counts can also be achieved in the case of small
samples and large dimensionalities, as shown in Figures 7 and 8. E.g., from Equation (5),
the expected number of points such that z ≤ −1 (z ≤ −2, resp.) is about the 15.9% (2.3%,
resp.) for any sample size n. All of this suggests that hubness is definitely not an artifact
of a finite sample.

4.4 The Distribution of Independent Non-Identically Distributed Data

Previous results can be extended to independent non-identically distributed random vectors.
With this aim, we consider the following proposition.

Given a sequence W1,W2, . . . ,Wd of independent non-identically distributed random
variables having non-null variances 8 and finite central moments µ̂i,k up to the eighth mo-

8. Clearly, variables having constant domain, hence null variance, can be disregarded because they do not
alter distances.
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ment, we say that the sequence has comparable central moments if there exist positive con-
stants µ̂max ≥ maxi,k{|µ̂i,k|} and µ̂min ≤ mini{|µ̂i,k| : µ̂i,k 6= 0}. Intuitively, this guarantees
that the ratio between the greatest and the smallest non-null moment remains limited.9

Proposition 35 Let Ud =
∑d

i=1Wi be a random variable defined as the summation of a
sequence of independent, but not identically distributed, random variables Wi having com-
parable central moments. Then

Ud ' N

(
d∑
i=1

µWi ,

d∑
i=1

σ2
Wi

)
= N

(
d · µW , d · σ2

W

)
,

where µW = (1/d)
∑d

i=1 µWi and σ2
W = (1/d)

∑d
i=1 σ

2
Wi

.

Proof of Proposition 35. See the appendix.

François et al. (2007, cf. Proposition 2) affirmed that Theorem 3 holds for independent
non-identically distributed variables provided that they are normalized. Authors justify this
result by noting that norms will concentrate because normalization prevents variables from
having too little effect on the distance values. According to this interpretation, normaliza-
tion is essential for having comparable variances. (Recall that the variance is the second
order central moment.)

Definition 36 Let Y d = (Y1, Y2, . . . , Yd) be an independent non-identically distributed d-
dimensional random vector with cdfs F Y = (FY1 , FY2 , . . . , FYd) having k-th moments µk =
(µY1,k , µY2,k , . . . , µYd,k) = (µ1,k, µ2,k, . . . , µd,k). Moreover, given a positive integer h, k ≥ 1,

let µ̃hk denote the average h-th degree of the k-th central moments of Y d, also referred to as
average central moment for simplicity, defined as

µ̃hk =
1

d

d∑
i=1

µ̂hi,k =
1

d

d∑
i=1

E[(Yi − µYi)k]h,

where µ̂i,k denotes the k-th central moment of Yi.

Because considering random variables having null means simplifies expressions, for the
sake of simplicity, we next consider the case of independent non-identically distributed
random vectors having common cdfs, but we note that a similar result also holds in the
more general case FX 6= FY .

Theorem 37 Let Xd and Y d be two independent non-identically distributed d-dimensional
random vectors with common cdfs F having means µ = (µ1, . . . , µd), non null variances,

9. This definition fits the Lyapunov condition. In general, given a sequence W1,W2, . . . ,Wd of independent
non-identically distributed random variables having non-null finite variances, then their standardized
sum converges in distribution to a standard normal random variable if and only if the Feller-Lindeberg
condition holds (Feller, 1971). According to this condition, the variance σ(Wi) of any individual term
never dominates their sum sd; hence, limd→∞maxdi=1 σ

2
i (Wi)/s

2
d = 0. Because this both necessary and

sufficient for the CLT to hold, the Feller-Lindeberg condition implies the Lyapunov condition.
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and comparable central moments, and let xd denote a realization of Xd. The results of
Sections 4.1, 4.2 and 4.3 can be applied to Xd, Y d, and xd by taking into account the
average central moments of Xd and Y d and the realization xd − µ.

Proof of Theorem 37. See the appendix for details.

To illustrate the above results, real data sets having dimensionality varying at some
order of magnitude are considered. The data sets are briefly described next. The Statlog
(Landsat Satellite) data set10 consists of multi-spectral values of pixels in 3 × 3 neighbor-
hoods in a satellite image (d = 36, n = 6,435). The SIFT data set11 consists of the base
vectors of the ANN SIFT10 evaluation set used to evaluate the quality of approximate nearest
neighbors search algorithms and consists of SIFT image descriptors (d = 128, n = 10,000).
The MNIST data set12 consists of handwritten digits which have been size-normalized and
centered in a 28× 28 image. The test examples have been employed (d = 784, n = 10,000).
The Sports data set13 consists of time series representing sensor measurements associated
with activities performed by eight subjects for 5 minutes (d = 5,625, n = 9,120). The NIPS
textual data set14 consists of counts associated with words appearing in 5,812 NIPS confer-
ence papers published between 1987 and 2015 (d = 11,463, n = 5,812). The RNA-Seq data
set15 consists of gene expressions levels, measured by a illumina HiSeq sequencing platform,
of patients having different types of tumors (d = 20,531, n = 801).

In the following, we also consider the shuffled version of the original data set. Specifically,
the shuffled version of a given data set is obtained by randomly permuting the elements
within every attribute. As already noted by François et al. (2007), the shuffled data set
is marginally distributed as the original one, but because all the relationships between
variables are destroyed, its components are independent, and its intrinsic dimension is equal
to its embedding dimension.

Figure 9 reports the empirical cdf of the squared distance (solid line) associated with
each data set, together with the theoretical cdf (dashed line) associated with independent
but not identically data having the same average central moments of the original data, as
reported in Theorem 37. The latter curve has been obtained by using the average central
moments of the data according to Theorem 37. The empirical cdf of the shuffled data is
also reported (dotted line).

From the linearity of the expected value, for any pair of d-dimensional random vectors,
it follows that

E[‖Xd − Y d‖2] = d(µ̃X,2 + µ̃Y,2) and E[‖xd − Y d‖2] = ‖xd − µY ‖2 + dµ̃Y,2,

where the equality holds also for dependent and non-identically distributed random vectors.
Hence, the expected value of the pairwise distances between data set points is identical to

10. Data available at https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29.
11. Data available at http://corpus-texmex.irisa.fr/.
12. Data available at http://yann.lecun.com/exdb/mnist/.
13. Data available at https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.
14. Data available at https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015.
15. Data available at https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq.
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Figure 9: [Best viewed in color.] Pairwise distance distributions for real data sets, including
the original data (red solid line), the shuffled data (blue dashed line), and the
equivalent independent data (magenta dotted line). The last curve corresponds
to the theoretical cdf associated with independent but not identically data having
the same average central moments of the original data, as reported in Theorem
37.

the expected value of the theoretical distribution derived under the i.i.d. hypothesis, and
also to that of the shuffled data.

The difference between the curves of the original and of the independent data suggests
that the intrinsic dimensionality of the data at hand is smaller than that of the embedding
space, because dependencies evidently exist between the attributes. Moreover, it can be
seen that the empirical cdf of the shuffled data is very similar to that of the theoretical cdf.

These result confirm the correctness of Theorem 37, whose prediction agrees with the
empirical observation on real independent data. Moreover, its approximation is accurate
even in moderately large spaces, because the correspondence is good even for the smallest
data set considered (d = 36). Moreover, these experiments testify to the meaningfulness of
the analysis here accomplished as a worst-case analysis scenario, corresponding to the case
in which relationships between variables are absent.

In order to verify if the data sets satisfy the requirements for the CLT to be applied, the
value of the finite Lyapunov CLT condition (see Equation 1, for δ = 2) has been determined
on the data at hand (with the variable Wi taking value over all the terms (xj,i− xk,i)2 that
can be formed with distinct pairs of data set points xj and xk, 1 ≤ j < k ≤ n). Table
1 reports the value of the above condition (indicated as LC) together with the Relative
Variance (RV) of the norm of data set points, for both the original data set (note that the
shuffled data presents the same LC value as the original one) and its normalized version
(obtained by substituting each attribute Xi with (Xi − µi)/σi):
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Data set
Original Normalized

LC RV LC RV

Satellite 0.012675 0.463934 0.014629 0.427250
SIFT 0.003382 0.063242 0.049320 0.090368
MNIST 0.000403 0.133234 25.163236 0.502937
Sports 0.072869 0.432149 0.546147 0.361839
NIPS 0.745970 0.257738 0.307322 0.241819
RNA-Seq 0.000412 0.131759 0.096444 0.175561

Table 1: Comparison between the values of the Lyapunov CLT Condition (LC) and the
Relative Variance (RV) against those of the real data sets.

A small LC value (say, less than 1) indicates that the normal approximation is correct.
This condition is met for all the configurations except for the normalized MNIST data
set. Indeed, normalizing this data set is not meaningful, because attributes (corresponding
to pixels) are already homogeneous (their domain consists of 256 gray levels encoded as
byte values) and because the normalization has only the negative effect of exaggerating the
range of variation of pixels whose domain is formed almost entirely of zeros. As a result,
a few attributes dominate the distance, and this deteriorates convergence to normality.
The relative variance has been reported for comparison, because it is a measure of the
concentration of the data. (Note that the relative variance of the shuffled data is not
coincident with that of the original one.)

Figure 10 reports the relative number of k-occurrences associated with data set points
represented in terms of their squared norm standard score z. Different values for the pa-
rameter % have been employed, Specifically, % ∈ {0.01, 0.05, 0.10, 0.25} (the color of points
in the figure is magenta for % = 0.01, green for % = 0.05, blue for % = 0.10 and cyan for
% = 0.25). The theoretical curves of N∞% (z), based on average central moments of the data,
are also reported for comparison.

Interestingly, the real distributions of k-occurrences follow the trends of the theoretical
curves; however, in contrast to the independent case, counts have much larger variability.
The interpretation is that variability is associated with a lower intrinsic dimensionality and
dependencies among variables, because independent data are much more widely distributed
along the theoretical trend, as can be seen in Figure 7. Indeed, such behavior is also
observed when considering the shuffled data set (see Figure 11). Moreover, in this case, the
empirical evidence matches the behavior predicted by Theorem 37 for the independent case.
In some cases, the trend appears to be different albeit generally analogous. It appears that
the degree of agreement between the empirical evidence and the the theoretical prediction
is directly proportional to the value of the LC condition reported in Table 1.
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Figure 10: [Best viewed in color.] Relative number of k-occurrences associated with data
set points, represented in terms of their squared norm standard score z (different
colors), and the theoretical prediction according to the infinite dimensional k-
occurrences function reported in Equation (4.3) (red lines), for the following
values of % = k/n: %1 = 0.01 (magenta-colored points and solid red line), %2 =
0.05 (green-colored points and dashed red line), %3 = 0.10 (blue-colored points
and dash-dotted red line), and %4 = 0.25 (cyan-colored points and dotted red
line).

4.5 Extension to Other Distances

In general, one may attempt to extend some of the properties discussed above to distances
having the general form

dist(xd,yd) = h

(
d∑
i=1

g(xi, yi)

)
, (6)

with g : R2 7→ R being commutative and not identically constant, and h : R 7→ R strictly
monotonic and, hence, invertible. Indeed, let Xd and Y d be d-dimensional i.i.d. random
vectors, and consider the random variable

h−1 (dist(Xd,Y d)) =
d∑
i=1

g(Xi, Yi) =
d∑
i=1

Wi.

Because W1,W2,W3, . . . is a sequence of i.i.d. random variables, by the CLT, it can be said
that h−1 (dist(Xd,Y d)) ' Φ

(
d ·E[g(Xi, Yi)], d · σ2(g(Xi, Yi))

)
and, for large values of d,

Pr [dist(Xd,Y d) ≤ δ] ≈ Φ

(
h(δ)− d ·E[g(Xi, Yi)]√

d · σ(g(Xi, Yi))

)
.
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Figure 11: [Best viewed in color.] Relative number of k-occurrences associated with data
set points (the shuffled version of each data set here being considered, which is
obtained by randomly permuting the elements within every attribute), repre-
sented in terms of their squared norm standard score z (different colors), and
theoretical prediction according to the infinite dimensional k-occurrences func-
tion reported in Equation (4.3), for the following values of % = k/n: %1 = 0.01
(magenta-colored points and solid red line), %2 = 0.05 (green-colored points and
dashed red line), %3 = 0.10 (blue-colored points and dash-dotted red line), and
%4 = 0.25 (cyan-colored points and dotted red line).

As an example, consider the Minkowski norm Lp, ‖xd‖p =
(∑d

i=1 |xi|p
)1/p

, with p a positive

integer. Let, for the sake of simplicity, p be even, then

E[‖Xd − Y d‖pp] = d

p∑
j=0

(−1)j
(
p

j

)
µX,p−jµY,j , and

σ2(‖Xd − Y d‖pp) = d

p∑
j=0

(
p

j

)2

σ2(Xp−j
i Y j

i ) +

+d

p∑
j=0

p∑
j 6=k=0

(−1)j+k
(
p

j

)(
p

k

)
cov(Xp−j

i Y j
i , X

p−k
i Y k

i ).

Newman and Rinott (1985) reported a generalized version of Theorem 4, in which dis-
tances of the form used in Equation (6) are considered.

Theorem 38 (Adapted from Newman and Rinott, 1985, cf. Theorem 3) Consider
the generalized distance function reported in Equation (6). Let βg = corr

(
g(X,Y ), g(X,Z)

)
be the correlation between g(X,Y ) and g(X,Z), where X, Y , Z are i.i.d. random variables
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with common distribution F , and let 0 < σ2(g(X,Y )) < ∞. If βg > 0, then Theorem 4
holds even if the generalized distance is employed instead of the Euclidean distance.

Both the Euclidean distance and all Minkowski’s metrics with p 6= 0 respect the condition
βg > 0. This condition implies that the location of vector components plays a role when
computing pairwise distances, because when it holds, the closer the coordinate value xi of
xd to the the expected position of Xi, the more likely it is that the vector xd will be close
to the other realizations of the same random vector.

In contrast, the case βg = 0 means that no vector occupies a special position. This
condition is valid, for example, for Poisson process, which spread the vectors uniformly
over Rd. In this case, all positions within the space become equivalent and, hence, no
concentration of distances is exhibited. As already noted by Radovanovic et al. (2010), the
absence of spatial centrality can be intuitively used to explain the absence of hubness for
cosine distance, since in this setting, no vector is more spatially central than any other, and
the observation of the emergence of hubness for distance measures such as the Lp norm,
Bray-Curtis, normalized Euclidean, and Canberra.

Because Theorems 16, 25 and 30, as well as related ones, are based on spatial centrality
in that (the standard score of) the squared norm plays a special role in their formulation,
it is conceivable that by following the same line here presented, similarly behaving closed
forms can be obtained for any other distance presenting spatial centrality (namely, such
that βg > 0), expressed in terms of the standard score (or other degree) of some measure
`(xd) of centrality of xd. For example, for Lp norms, the natural measure of centrality is
‖xd‖pp.

Figure 12 reports the distribution of pairwise distances and the relative number of k-
occurrences for different Minkowski’s metrics p. Namely, p ∈ {1, 2, 3, 4} (colors employed
are blue for p = 1, red for p = 2, green for p = 3, and magenta for p = 4), on the real data
sets considered in the previous section.

To facilitate the comparison of results involving different metrics, both distance values
and norm values have been normalized. Specifically, let Xd and Y d be two independent
and not identically distributed random vectors whose components Xi and Yi have the same
central moments of the i-th attribute of the data set, and let xd and yd be two data
set points. As for pairwise distance distributions, on the x-axis, the value zdist(xd,yd) =
‖xd−yd‖

p
p−E[‖Xd−Y d‖pp]

σ(‖Xd−Y d‖pp)
is reported, whereas for the relative number of k-occurrences, the

value znorm(xd) =
‖xd‖pp−E[‖Xd‖pp]

σ(‖Xd‖pp)
is reported on the x-axis.

In Figure 12, plots concerning the pairwise distance distribution (that are, for each data
set, the four plots on the top), report the cdf associated with the original data set (solid line)
and the cdf associated with the shuffled data (dashed line). The curve of the cdf associated
with the equivalent independent data—that is, the cdf of the normal distribution having
mean E[‖Xd − Y d‖pp] and standard deviation σ(‖Xd − Y d‖pp)—is not reported for clarity,
because its curve overlaps with that of the shuffled data. In Figure 12, plots concerning
k-occurrences (which are, for each data set, the four plots on the bottom) report the relative
number of k-occurrences (for k = %n and % = 0.1) associated with the points of the shuffled
data set (color varying with p) together with the value N∞k (znorm) of the infinite dimensional
k-occurrences function reported in Equation (4.3) evaluated in znorm(xd) (black dashed
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(a) Satellite (b) SIFT (c) MNIST

(d) Sports (e) NIPS (f) RNA-Seq

Figure 12: [Best viewed in color.] Experimental results on real data for different
Minkowski’s metrics p (blue for p = 1, red for p = 2, green for p = 3, and
magenta for p = 4). For each data set, the 4 plots on the top show the cdfs of
pairwise distances for the original (solid line) and shuffled data (dashed line).
Moreover, for each data set, the 4 plots on the bottom show the relative number
of k-occurrences (k = %n with % = 0.1) for the points of the shuffled data set
(colored dots) and the value of the function N∞% (black dashed line) reported
in Equation (4.3). The values on the x-axis are standard scores using ‖ · ‖pp as
measure of centrality.
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line). Interestingly, as previously hypothesized, by representing the data in terms of the
standard score of the measure of centrality ‖ ·‖pp, a similar behavior can also be observed for
different Minkowski’s metrics p. In general, the results for p = 1 are very similar to those
for p = 2, whereas for p > 2, it seems that the degree of agreement is related to the value
of the LC condition reported in the first column of Table 1.

5. Relationship with Hubness in Network Science

Because hubness is a phenomenon of primary importance in network science, we wondered
if the findings relative to the distribution of the reverse nearest neighbors and the emergence
of hubs in intrinsically high-dimensions have connections with the analogous phenomenon
occurring in the context of networks.

It is well understood that complex networks (Barabási and Pósfai, 2016) arise from
different natural and human-made systems, e.g., the Internet, the world-wide web, citation
networks and some social networks. These networks exhibit as a major property a few nodes,
called hubs, with unusually high degree as compared to the other nodes of the network.

In most cases, it has been observed that networks are approximatively scale-free that
is, they have approximate power-law degree distributions. Specifically, in most cases, the
approximation is true only for the tails of the node degree distribution. Tails are associated
with the larger node degrees, which are also the less probable observations, whereas most
of the probability mass is associated with the smallest degree values.

Early well-known random graph models, such as the Erdős and Rényi (1959) model, do
not exhibit power laws. Thus, other models for generating scale-free networks have been
proposed. The Bianconi and Barabási (2001) model generates scale-free networks based on
three important concepts that have been observed in real networks: growth, preferential
attachment, and fitness. Preferential attachment means that the more connected a node is,
the more likely it is to receive new links. Fitness is an intrinsic value associated with each
node, defined as the ability to attract new links.

At least two analogies between the study herein conducted and what was depicted above
can be identified by regarding nodes as point in a high-dimensional space.

First, in some cases, the behavior of the theoretical pdf of the function N∞k exhibits
a transition (on the basis of the value % = k/n) between the two aforementioned families
of networks (see Theorem 32 (ii) and the bottom left plot in Figure 8 for uniform data);
namely, the behavior is binomial-like for high % values and skewed to the right with the
emergence of hubs for small % values.

Second, the squared norm standard score z for points can be conceptualized as a value
of fitness that is assigned to nodes/points according to a certain probability (φ(z), that is
the standard Normal pdf, in the case of points); consequently, N∞k (z) represents the relative
expected number of times that a certain node/point with fitness z will be referred by any
other node of the network/data set. The more central the node (the closer the point to the
mean), the higher its fitness and the higher is its probability of being selected as a neighbor
by the rest of the points.

To ascertain whether the above analogies adhere to empirical evidence, we examined
the node (in-)degree distribution of real networks. Given a directed network, consisting of
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Figure 13: [Best viewed in color.] Relative node (in-)degrees (horizontal axis) and associ-
ated relative frequency (vertical axis) in log-log scale for different real-life com-
plex networks (blue dots). Lines are associated with the probability of observing
a point which has a certain number of reverse k-nearest neighbors in a set of n
other points. Here, the average (in-)degree number is used as value for k. The
magenta dashed line is associated with a uniform distribution in [−0.5,+0.5].
The red solid line is obtained using the moments minimizing the Cramér-von
Mises distance between the theoretical and empirical cdfs.
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n nodes and m arcs, let ei (eini , resp.) denote the number of arcs connected to (coming into,
resp.) node ni (1 ≤ i ≤ n).

Let Fk(h) denote the discrete version of the cdf associated with the infinite dimensional
k-occurrences function N∞k (see Corollary 33). Then, pk(h) = Fk(h) − Fk(h − 1) denotes
the probability of observing a point which has exactly h reverse k-nearest neighbors in a
set of n other points. As for the value of k, we used the average number of (incoming) arcs,

that is k = 1
n

∑
i=1 ei and k

in
= 1

n

∑
i=1 e

in
i , which is in general a rational number. This is

consistent at least for incoming edges with Theorem 32 (iv), for which the expected value
of Nk is indeed k.

We considered directed networks from the Stanford Large Network Dataset Collection of
the Stanford Network Analysis Project (SNAP) (Leskovec and Krevl, 2014). We obtained
similar results in different cases. Figure 13 reports the results concerning the following three
directed networks: WWW (n = 875,713 nodes and m = 5,105,039 arcs), the web-Google

web graph from Google; Twitter (n = 81,306 and m = 1,768,149), the ego-Twitter social
circles from Twitter; and Arxiv (n = 34,546 and m = 421,578), the cit-HepPh arXiv high
energy physics paper citation network.

Plots in Figure 13 are in a log-log scale and report on the horizontal axis the node
degree and on the vertical axis the associated relative frequency. Blue dots represent the
empirical values associated with each network. The magenta dashed line represents the
function puk = pk associated with a random variable uniformly distributed in [−0.5,+0.5]
(µ2 = 0.083, µ4 = 0.0125, and κ = 1.8). The red solid line represents the function p∗k = pk
using the values µ2 = µ∗2 and µ4 = µ∗4 (or κ∗ = µ∗4/(µ

∗
2)2) that minimize the Cramér-von

Mises distance, also called err in the plots, between the cdf Fk and the empirical cdf of the
node (in-)degree distribution. The Cramér-von Mises criterion corresponds to the integral
of the squared difference between the empirical and the estimated distribution functions and
is used to judge the goodness of fit of a cdf compared with an empirical cdf. This criterion
depends on the entire cdf and gives more importance to the most probable observations.
Alternative curves can be obtained by using other criteria.

Interestingly, we observed in different cases a good agreement between the empirical
distribution of the number of incoming edges and the expected number of k-occurrences
associated with the function pu. In particular, the distance err for uniform data is in
most cases similar to the distance for p∗ associated with the best values for the parameters
according to the Cramér-von mises statistics, and this is true especially for node in-degrees.

This suggests that for some real networks, the distribution of the incoming node degrees
has connections with the herein-derived infinite-dimensional k-occurrences function N∞k ,
which models the number of reverse k-nearest neighbors in an arbitrarily large feature
space of independent dimensions. Moreover, the function N∞k appears to be suitable to
be leveraged as a model for node-degrees distributions in complex real networks. We are
currently investigating to what extent the above observations can be generalized and the
use of these findings for the generation of realistic synthetic networks.

45



Angiulli

6. Concluding Discussion

This work investigated the distribution of distances in intrinsically high-dimensional spaces
and leveraged this analysis to gain knowledge of phenomena related to the so-called dimen-
sionality curse.

The study has been focused on independent data, because it is usually assumed that
the number of independent dimensions dictates the intrinsic dimensionality of the data. By
applying the central limit theorem to the Euclidean distance random variable, we obtained
an approximation of the distance probability distribution between a given realization of a
random vector and a random vector. The analysis of the error associated with the approx-
imation highlights that, whereas the worst-case error always decreases with the dimension-
ality, there are configurations of n and d for which the hypothesized distance distribution
can be considered equivalent, in terms of the expected empirical error, to the underlying
distribution generating the observed inter-point distances.

With reference to the distribution of the nearest neighbors, we derived the expected dis-
tance of a point from its k-th nearest neighbor and the expected size of the ε-neighborhood
in finite high-dimensional spaces, that is, the average number of points which emerge as
ε-approximate neighbors of any other point, and then exploited it to determine the intrinsic
dimensionality at which the neighborhood is expected to become unstable, called critical di-
mensionality. Also, a better estimate for the relative contrast for quantifying query difficulty
has been obtained.

Moreover, the function Nk, or number of k-occurrences, representing the number of
points which have a given point as one of their k nearest neighbors, has been investigated.
Despite the extensive use of this function in many fields, including, among others, applied
statistics and mathematical psychology, data mining and machine learning, information
retrieval and computational geometry, the precise characterization of its form has been a
longstanding problem. The limiting probability distribution of the function Nk has been
derived, thereby providing full interpretability of the associated hubness problem.

It is well understood that complex networks arising from different natural conditions
exhibit a few nodes, called hubs, of unusually high degree as compared to the other nodes of
the network. Thus, we investigated if the findings relative to the distribution of the reverse
nearest neighbors and the emergence of hubs in intrinsically high-dimensions is associated
with the analogous phenomenon occurring in the context of networks. We concluded that
for some real-life large-scale networks the distribution of the incoming node degrees is closely
related to the herein-derived infinite-dimensional k-occurrences function N∞k associated with
uniform data and that this function is suitable to be leveraged as a model for node-degrees
distribution in complex real networks.

We believe that the current study can be leveraged in several ways and in different con-
texts, such as direct and reverse nearest neighbor search, density estimation, anomaly and
novelty detection, density-based clustering, and network analysis, as well as others, because
almost all of them are based on the concepts of direct and reverse nearest neighbors. As
for the study’s possible applications, one is to obtain approximations of measures that are
related to distance distributions. Another is to exploit the distributions for independent
data as a worst-case scenario for data analysis and retrieval techniques in order to under-
stand their behavior and limitations, in terms of meaningfulness or computational cost, as
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dimensionality increases. Moreover, a deeper understanding of the behavior of intrinsically
high dimensional spaces is fundamental to the design strategies that seek to mitigate the
curse of dimensionality. For example, a line of research seeks to alleviate the problem by
designing dissimilarity functions that suffer less on i.i.d. uniformly distributed features
(François et al., 2007; Hsu and Chen, 2009). Moreover, from the discussion of Section 5,
different applications within geometric models of complex networks can be devised.

To illustrate, the approximation of relative contrasts described in Section 4.2 results
in estimates more accurate than those already provided, because the approach leverages
a refined characterization of the distance distribution herein provided, which takes into
account the relationship between the norm of the query point and its expected distance to
the data points.

Additionally, the Concentration Free Outlier Factor (CFOF) recently introduced by
Angiulli (2017) is a measure that aims to overcome the concentration problem in density
estimation and outlier detection, whose behavior emerges from that of the k-occurrences
function. Specifically, for a given parameter % ∈ [0, 1] representing a fraction of the data
population, the CFOF score of point xd is CFOF(xd) = min{k/n : Nk(xd) ≥ n%}, which is
the smallest value for neighborhood parameter k (normalized on n) for which xd presents
a reverse neighborhood with a size of at least n%. The intuition is that isolated points will
require larger values of k than inliers in order to be selected as neighbors by an equal-sized
fraction of the data population. In contrast to almost all known outlier detection measures,
CFOF scores do not exhibit concentration. By leveraging the closed form of the function
Nk it is possible to formally see that CFOF outliers are few in number and separated from
inliers even in intrinsically high-dimensional spaces, whereas the direct use of the number
of k-occurrences for outlier detection is prone to false positives. For further details, we refer
to (Angiulli, 2017).

The understanding of properties characterizing high-dimensional spaces is also funda-
mental for enhancing intrinsic dimensionality estimation techniques. For example, Granata
and Carnevale (2016), due to the difficulty of correctly working with the distance probabil-
ity density function at small-length scales, propose to reconstruct that pdf at intermediate
scales and then to compare it with a known pdf of a uniform distribution on a d-dimensional
support.
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Appendix A. Proofs

Proposition 11

cov
(
‖Y d‖2, 〈Xd,Y d〉

)
= dµ(µ3 − µ2µ)(

and cov
(
‖Xd‖2, 〈Xd,Y d〉

)
= dµ(µ3 − µ2µ), for symmetry

)
.
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Proof of Proposition 11. Consider the covariance

cov
(
‖Y d‖2, 〈Xd,Y d〉

)
= E

[
‖Y d‖2 · 〈Xd,Y d〉

]
−E

[
‖Y d‖2

]
·E
[
〈Xd,Y d〉

]
=

= E

( d∑
i=1

Y 2
i

)
·

 d∑
j=1

XjYj

− dµ2 · dµ2 =

= E

 d∑
i=1

Y 3
i Xi +

d∑
i=1

d∑
i 6=j=1

XjYjY
2
i

− d2µ2µ
2 =

= dµ3µ+ d(d− 1)µ2µ
2 − d2µ2µ

2 = dµ(µ3 − µ2µ).

Proposition 17 Let Xd be a d-dimensional i.i.d. random vector having cdf FX . Moreover,
let p and q be positive integers, and β0, β1, . . . , βp, α0, α1, . . . , αq be real coefficients such that
βp 6= 0 and αq 6= 0. Then, for any ε > 0,

lim
d→∞

Pr


∣∣∣∣∣∣∣
∑d

i=1

(∑p
j=0 βjX

j
i

)
(∑d

i=1

(∑q
j=0 αjX

j
i

))2

∣∣∣∣∣∣∣ ≥ ε
 = 0.

Proof of Proposition 17. Let Ui =
(∑p

j=0 βjX
j
i

)
and Vi =

(∑q
j=0 αjX

j
i

)
(1 ≤ i ≤ d).

Moreover, let U be
∑d

i=1 Ui and let V be
∑d

i=1 Vi. Now it is shown that, for all ε > 0,

lim
d→∞

Pr

[∣∣∣∣ UV 2

∣∣∣∣ ≥ ε] = 0.

The mean and variance of Vi are as follows (mean and variance of Ui are similar):

E[Vi] = E

 q∑
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αjX
j
i

 =

q∑
j=1

αjµj ,

σ2(Vi) = E[V 2
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.
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We assume that moments up to 2 max{p, q} exist finite. Since both U and V are the sum
of d independent identically distributed random variables, by the CLT, as d→∞,

U ≈ N

d p∑
j=1

αjµj , d

p∑
j=1

α2
j

(
µ2j − µ2

j

) and V ≈ N

d p∑
j=1

βjµj , d

p∑
j=1

β2
j

(
µ2j − µ2

j

) .

Consider now the random variable V 2, having mean

E[V 2] = E[V ]2 + σ2(V ) = d2µ2
Vi + dσ2

Vi = O(d2).

Now it is essential to show that σ2(V 2) = O(d3) and cov(U, V 2) = O(d2).
As for the variance σ2(V 2) = E[V 4]−E[V 2]2 of V 2, notice that the term of higher order

in E[V 4] derives from the summation

E

 ∑
i 6=j 6=k 6=h

ViVjVkVh

 = d(d− 1)(d− 2)(d− 3)µ4
Vi = (d4 − 6d3 + 11d2 − 6d)µ4

Vi ,

and that all the other terms in E[V 4] are O(d3). As for E[V 2]2 = (d2µ2
Vi

+ dσ2
Vi

)2 =
d4µ4

Vi
+ 2d3µ2

Vi
σ2
Vi

+ d2σ4
Vi

. Since both E[V 4] and E[V 2]2 contain as term of higher order
d4µ4

Vi
, it then follows that σ2(V 2) = O(d3).

As for the covariance cov(U, V 2) = E[U · V 2]−E[U ]E[V 2], similar considerations hold.
Indeed, notice that the term of higher order in E[U · V 2] derives from the summation:

E

 ∑
i 6=j 6=k

UiVjVk

 = d(d− 1)(d− 2)µUiµ
2
Vi

and that all the other terms in E[U ·V 2] are O(d2). As for E[U ]E[V 2] = dµUi(d
2µ2

Vi
+dσ2

Vi
) =

d3µUiµ
2
Vi

+ d2µUiσ
2
Vi

. Since both E[U · V 2] and E[U ]E[V 2] contain as term of higher order
d3µUiµ

2
Vi

, it then follows that cov(U, V 2) = O(d2).
By exploiting Taylor series, it can be written:

E

[
U

V 2

]
≈ E[U ]

E[V 2]
− cov(U, V 2)

E[V 2]2
+

E[U ]

E[V 2]3
σ2(V 2), and

σ2

(
U

V 2

)
≈

(
E[U ]

E[V 2]

)2( σ2[U ]

E[U ]2
+
σ2(V 2)

E[V 2]2
− 2cov(U, V 2)

E[U ]E[V 2]

)
.

Then

lim
d→∞

E

[
U

V 2

]
= lim

d→∞

(
O(d)

O(d2)
− O(d2)

O(d4)
+

O(d)

O(d6)
O(d3)

)
= lim

d→∞
O(d−1) = 0, and

lim
d→∞

σ2

(
U

V 2

)
= lim

d→∞

(
O(d)

O(d2)

)2( O(d)

O(d2)
+
O(d3)

O(d4)
− O(d2)

O(d3)

)
= lim

d→∞
O(d−3) = 0.

Since both E[U/V 2] and σ2(U/V 2) are vanishing as d → ∞, by exploiting the Chebicheff
theorem it can be proved that U/V 2 converges in probability to 0. Let Wd = U/V 2 then,
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{Wd} converges in probability towards the value zero, if for all ε > 0 the following limit
evaluates to 0:

lim
d→∞

Pr [|Wd| ≥ ε] = lim
d→∞

Pr [|Wd −E[Wd]| ≥ ε] ≤ lim
d→∞

σ2(Wd)

ε2
= lim

d→∞

1

ε2O(d3)
= 0.

Proposition 19 As d→∞, with high probability ‖Y d‖2 and 〈xd,Y d〉 are jointly normally
distributed.

Proof of Proposition 19. The proof follows a line similar to that exploited in Propositions
10 and 18. It must be shown that all linear combinations

Z = a‖Y d‖2 + b〈xd,Y d〉 = a

(
d∑
i=1

Y 2
i

)
+ b

(
d∑
i=1

xiYi

)
=

d∑
i=1

(aY 2
i + bxiYi) =

d∑
i=1

Wi

are normally distributed, where W1,W2,W3, . . . form a sequence of independent, but not
identically distributed, random variables. The proof is completed by noticing that

E
[
|Wi −E[Wi]|4

]
= E

[
W 4
i − 4W 3

i E[Wi] + 6W 2
i E[Wi]

2 − 4WiE[Wi]
3 + E[Wi]

4
]

=

= E[W 4
i ]− 4E[W 3

i ]E[Wi] + 6E[W 2
i ]E[Wi]

2 − 3E[Wi]
4 =

4∑
j=0

αjx
j ,

and

σ2
Wi

= (b2µ2)x2
i + (2abµ3)xi + (a2µ4 − aµ2

2) = β2x
2
i + β1xi + β0,

from which the Lyapunov CLT condition (see Equation 1) for δ = 2:

lim
d→∞

E
[
|Wi −E[Wi]|2+δ

]
s2+δ
d

∣∣∣∣∣∣
δ=2

= lim
d→∞

∑d
i=1

(∑4
j=0 αjx

j
i

)
(∑d

i=1

(∑2
j=0 βjx

j
i

))2 = 0.

The above limit converges in probability to zero for the r.v. Xd by Proposition 17.

Proposition 20 cov
(
‖Y d‖2, 〈xd,Y d〉

)
= (µ3 − µµ2)

d∑
i=1

xi.
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Proof of Proposition 20. Consider the covariance

cov
(
‖Y d‖2, 〈xd,Y d〉

)
= E

[
‖Y d‖2 · 〈xd,Y d〉

]
−E

[
‖Y d‖2

]
·E
[
〈xd,Y d〉

]
=

= E

( d∑
i=1

Y 2
i

)
·

 d∑
j=1

xjYj

− dµ2 · µ
d∑
i=1

xi =

= E

 d∑
i=1

d∑
j=1

xjYjY
2
i

− dµµ2

d∑
i=1

xi =

=

d∑
i=1

xiE[Y 3
i ] +

d−1∑
i=1

d∑
i 6=j=1

xjE[Yj ]E[Y 2
i ]− dµµ2

d∑
i=1

xi =

= µ3

d∑
i=1

xi + (d− 1)µµ2

d∑
i=1

xi − dµµ2

d∑
i=1

xi = (µ3 − µµ2)
d∑
i=1

xi.

Proposition 22 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd

with cdf FX . Then, for large values of d, with high probability∑d
i=1 xi
‖xd‖2

→ µX
µX,2

.

Proof of Proposition 22. Assume that in general µ ∈ R. By the CLT, following the
same line of reasoning of Proposition 8, it can be seen that the random variable

U =
d∑
i=1

Xi ≈ N
(
dµ, d(µ2 − µ2)

)
.

Let V = ‖Xd‖2 =
∑d

i=1X
2
i . By Proposition 8, V ≈ N

(
dµ2, d(µ4 − µ2

2)
)
. As for the

covariance cov(U, V ), it is d(µ3 − µµ2). Consider the ratio U/V . Now it is shown that

lim
d→∞

Pr

[∣∣∣∣UV − µ

µ2

∣∣∣∣ ≥ ε] = 0.

By exploiting Taylor series, the mean of U/V is:

E

[
U

V

]
≈ E[U ]

E[V ]
− cov(U, V )

E[V ]2
+

E[U ]

E[V ]3
σ2(V ) =

dµ

dµ2
− d(µ3 − µµ2)

d2µ2
2

+
dµ

d3µ3
2

d(µ4 − µ2
2) =

=
µ

µ2
− µ3 − µµ2

dµ2
2

+
µ

dµ3
2

(µ4 − µ2
2) =

µ

µ2
+

1

d
· µ(µ4 − µ2

2)− µ2(µ3 − µµ2)

µ3
2

,
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while the variance of U/V is:

σ2

(
U

V

)
≈

(
E[U ]

E[V ]

)2( σ2[U ]

E[U ]2
+
σ2(V )

E[V ]2
− 2cov(U, V )

E[U ]E[V ]

)
=

=

(
dµ

dµ2

)2(d(µ2 − µ2)

d2µ2
+
d(µ4 − µ2

2)

d2µ2
2

− 2d(µ3 − µµ2)

d2µµ2

)
=

=
1

d
· µ

2
2(µ2 − µ2) + µ(µ4 − µ2

2)− 2µµ2(µ3 − µµ2)

µ4
2

.

The statement then follows by applying the Chebicheff theorem to show that U/V converges
in probability to µ/µ2.

lim
d→∞

Pr

[∣∣∣∣UV − µ

µ2

∣∣∣∣ ≥ ε] = lim
d→∞

Pr

[∣∣∣∣UV −E

[
U

V

]∣∣∣∣ ≥ ε] ≤ lim
d→∞

σ2
(
U
V

)
ε2

= lim
d→∞

1

ε2O(d)
= 0.

Lemma 29 Let xd denote a realization of a d-dimensional i.i.d. random vector Xd with
cdf FX and let Y d be a d-dimensional i.i.d. random vector with cdf FY . Assume, w.l.o.g.,
that FY has null mean µY = 0. Then, for large values of d, with high probability

Pr [dist(xd,Y d) ≤ δ | ‖Y d‖ = R] ≈ Φ

(
δ2 −R2 − ‖xd‖2

2‖xd‖
√
µ2

)
,

where moments are relative to the random vector Y d.

Proof of Lemma 29. By Proposition 19, ‖Y d‖2 and 〈xd,Y d〉 are jointly normally dis-
tributed. Then,

Pr[dist(xd,Y d) ≤ δ | ‖Y d‖ = R] = Pr[‖xd − Y d‖ ≤ δ | ‖Y d‖ = R] =

= Pr[‖xd − Y d‖2 ≤ δ2 | ‖Y d‖2 = R2] =

= Pr[‖xd‖2 + ‖Y d‖2 − 2〈xd,Y d〉 ≤ δ2 | ‖Y d‖2 = R2].

Notice that, for distributions FY having null skewness (µY,3 = 0), by Proposition 20, ‖Y d‖2
and 〈xd,Y d〉 are both uncorrelated and independent, and it can be written that

Pr[‖xd‖2 + ‖Y d‖2 − 2〈xd,Y d〉 ≤ δ2 | ‖Y d‖2 = R2] = Pr[‖xd‖2 +R2 − 2〈xd,Y d〉 ≤ δ2],

from which the statement follows by exploiting Proposition 18.
More in general (µY,3 6= 0) by leveraging properties within Theorem 15 and by Propo-

sition 22 the distribution of the squared norm ‖xd − Y d‖2 subject to the constraint that
‖Y d‖2 = R2, tends to the normal distribution with mean

µ = ‖xd‖2 +R2

and variance (by the assumption that FX has null mean µX = 0)

σ2 = 4µY,2‖xd‖2 − 4µY,3
µX
µX,2

‖xd‖2 = 4µY,2‖xd‖2,
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from which the above expression again follows.
The above holds under the assumption that R itself is selected with high probability,

that is R2 ≈ E[‖Y d‖2], as also assumed in Theorem 30. For a generic R, the moments
µ2 and µ conditioned on ‖Y d‖ = R must be used. As for µ2 = E[Y 2 | ‖Y d‖2 = R2] =
E[Y 2 | dE[Y 2] = R2] = R2/d. As for µ conditioned on ‖Y d‖2 = R2, it is µ = µY = 0 for
symmetric distributions, since for each yd such that ‖yd‖2 = R2, it holds that ‖−yd‖2 = R2

and fY (yd) = fY (−yd).
Moreover, the closer R2 to E[‖Y d‖2] = µ‖Y d‖2 = dµY,2, the closer the moments to their

unconditioned values. Indeed, for k ≥ 1

E[Y k | ‖Y d‖2 = R2] = 1
Pr[‖Y d‖2=R2]

(∫
R y

k fY (y)Pr
[(∑d

j>1 Y
2
j

)
= R2 − y2

]
dy
)
≈

≈ 1
φ‖Y d‖2

(R2)

(∫
R y

k fY (y)φ‖Y d‖2
(
R2 − y2

)
dy
)
.

Hence, since µY exists finite, as d→∞

E
[
Y k | ‖Y d‖2 = µ‖Y d‖2

]
≈ 1

φ‖Y d‖2
(
µ‖Y d‖2

) (∫
R y

k fY (y)φ‖Y d‖2
(
µ‖Y d‖2 − y

2
)

dy
)

=

= 1
φ(0)

(∫
R y

k fY (y)φ
(
−y2/σ‖Y d‖2

)
dy
)
≈ φ(0)

φ(0)

∫
R y

k fY (y) dy = µY,k.

Theorem 32

(i) lim
d→∞

Pr[N%(Xd) ≤ θ] = Φ

(
Φ−1(θ)2µ2 − Φ−1(%)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
,

(ii) lim
d→∞

Pr[N%(Xd) = θ] =
2µ2√
µ4 − µ2

2

· 1

φ(Φ−1(θ))
· φ

(
Φ−1(θ)2µ2 − Φ−1(%)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
,

(iii) lim
d→∞

σ2(N%(Xd)) = %(1− %)− 2T

(
Φ−1 (%) ,

2µ2√
2(µ4 + µ2

2)

)
, and

(iv) lim
d→∞

E[N%(Xd)] = %,

where T (h, a) = φ(h)

∫ a

0

φ(hx)

1 + x2
dx is the Owen’s T function.

Proof of Theorem 32. Since

N∞% (Zθ) ≤ θ =⇒ Zθ ≤
Φ−1(θ)2µ2 − Φ−1(%)

√
µ4 + 3µ2

2√
µ4 − µ2

2

,

point (i) corresponds to Φ(Zθ) and point (ii) to d
dθΦ(Zθ).

As for points (iii) and (iv), consider the Owen’s Gaussian-type integrals reported in
Equation (2) and in the following equation due to Owen (1980):∫ +∞

−∞
Φ(a+ bx)2φ(x) dx = Φ

(
a√

1 + b2

)
− 2T

(
a√

1 + b2
,

1√
1 + 2b2

)
. (7)
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Let us consider first point (iv). Since

lim
d→∞

E[N%(Xd)] =

∫ +∞

−∞
Φ

(
Φ−1(%)

√
µ4 + 3µ2

2 − z
√
µ4 − µ2

2

2µ2

)
φ(z) dz,

by substituting a =
Φ−1(%)

√
µ4+3µ22

2µ2
and b = −

√
µ4−µ22
2µ2

in Equation (2):

lim
d→∞

E[N%(Xd)] = Φ

(
a√

1 + b2

)
= Φ

(
Φ−1(%)

√
µ4 + 3µ2

2√
µ4 + 3µ2

2

)
= Φ(Φ−1(%)) = %.

As for point (iii),

lim
d→∞

σ2(N%(Xd)) = lim
d→∞

E[N%(Xd)
2]−E[N%(Xd)]

2,

and by substituting a and b as above in the first (see Equation 2) and second (see Equation
7) Owen’s formula the result is obtained.

Corollary 34 Let k be a fixed positive integer. Then

(i) lim
n→∞

lim
d→∞

Nn,d
k

D−→ 0, (ii) lim
n→∞

lim
d→∞

σ2(Nn,d
k ) =∞, and (iii) lim

n→∞
lim
d→∞

E[Nn,d
k ] = k.

Proof of Corollary 34. All the points derive from Theorem 32. As for point (1) it suffices
to show that FN∞,∞k

(h) = Pr[N∞,∞k ≤ h] = 1 for h > 0, since h = 0 is not a continuity
point for the cdf:

lim
n→∞

lim
d→∞

Pr[Nn,d
k > 0] = 1− lim

n→∞
lim
d→∞

Pr[Nn,d
k ≤ 0] = 1− lim

n→∞
Pr[Nn,∞

k ≤ 0] =

= 1− lim
n→∞

Φ

(
Φ−1(0)2µ2 − Φ−1( kn)

√
µ4 + 3µ2

2√
µ4 − µ2

2

)
=

= 1− Φ

(
Φ−1(0)

2µ2 −
√
µ4 + 3µ2

2√
µ4 − µ2

2

)
= 1− Φ(−∞) = 1.

As for point (2),

lim
n→∞

lim
d→∞

σ2(Nn,d
k ) = lim

n→∞
n2

(
k

n
− k

n2
− 2T

(
Φ−1

(
k

n

)
,

2µ2√
2(µ4 + µ2

2)

))
=

= lim
n→∞

nk − k − 0 =∞.

As for point (3),

lim
n→∞

lim
d→∞

E[Nn,d
k ] = lim

d→∞
n

(
k

n

)
= k.
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Proposition 35 Let Ud =
∑d

i=1Wi be a random variable defined as the summation of a
sequence of independent, but not identically distributed, random variables Wi having com-
parable central moments. Then

Ud ' N

(
d∑
i=1

µWi ,
d∑
i=1

σ2
Wi

)
= N

(
d · µW , d · σ2

W

)
,

where µW = (1/d)
∑d

i=1 µWi and σ2
W = (1/d)

∑d
i=1 σ

2
Wi

.

Proof of Proposition 35. For variables Wi having comparable central moments the
Lyapunov CLT condition holds:

lim
d→∞

∑d
i=1 E

[
(Wi −E[Wi])

4
]

(∑d
i=1 σ

2(Wi)
)2 = lim

d→∞

∑d
i=1 µ̂i,4(∑d
i=1 µ̂i,2

)2 ≤ lim
d→∞

dµ̂max

(dµ̂min)2 = lim
d→∞

µ̂max
dµ̂2

min

= 0.

Theorem 37. Let Xd and Y d be two independent non-identically distributed d-dimensional
random vectors with common cdfs F having means µ = (µ1, . . . , µd), non null variances,
and comparable central moments, and let xd denote a realization of Xd. The results of
Sections 4.1, 4.2 and 4.3 can be applied to Xd, Y d, and xd by taking into account the
average central moments of Xd and Y d and the realization xd − µ.

Proof of Theorem 37. W.l.o.g. assume that µ = (0, . . . , 0), for otherwise it is sufficient
to replace vector Xd with X̂d = Xd − µ and vector Y d with Ŷ d = Y d − µ. Thus, from
now µi = E[Xi] = E[Yi] = 0.

Let µk = (µk,1, . . . , µk,d) denote the k-th moments of Xd (Y d, resp.). The result
follows by taking into account that the variables Xi and Yi (1 ≤ i ≤ d) are independent
but not identically distributed and, hence, by exploiting the average moments to formulate
expressions.

Let p = (p1, . . . , pd) and qd = (q1, . . . , qd) two d-dimensional vectors, and let h be a
positive integer. In the following we denote by pk the vector pk = (pk1, . . . , p

h
d) and by p · q

the scalar product 〈p, q〉 =
∑d

i=1 piqi of p and q.
Thus, as for the results of Section 4.1, we obtain the following expressions:

(P37.1) ‖Y d‖2 ' N
(
dµ̃2, d(µ̃4 − µ̃2

2)
)
;

(P37.2) 〈Xd,Y d〉 ' N
(
0, µ̃2

2

)
;

(P37.3) cov(‖Y d‖2, 〈Xd,Y d〉) = 0;

(P37.4) ‖Xd − Y d‖2 ' N
(
2dµ̃2, 2d(µ̃4 − µ̃2

2)
)
;

(P37.5) 〈xd,Y d〉 ' N
(
0, µ2 · x2

)
;

(P37.6) cov(Y d, 〈xd,Y d〉) = µ3 · xd;
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(P37.7) ‖xd − Y d‖2 ' N
(
‖xd‖2 + dµ̃2, d(µ̃4 − µ̃2

2) + 4µ2 · x2
d − 4µ3 · xd

)
.

Expression (P37.1) can be derived by exploiting E[‖Y d‖2] and σ(‖Y d‖2) in terms of the
average central moments of the random vectors, as illustrated next:

E[‖Y d‖2] = E
[∑

i Y
2
i

]
=
∑
i E[Y 2

i ] =
∑
i µi,2 = dµ̃2,

E[‖Y d‖4] = E
[(∑

i Y
2
i

)2]
= E

[∑
i Y

4
i +

∑
i 6=j Y

2
i Y

2
j

]
=
∑d
i=1 µi,4 +

∑
i 6=j µi,2µj,2, and

σ2
(
‖Y d‖2

)
= E[‖Y d‖4]−E[‖Y d‖2]2 = E[‖Y d‖4]− (

∑
i µi,2)2 =

= E[‖Y d‖4]−
(∑

i µ
2
i,2 +

∑
i 6=j µi,2µj,2

)
=
∑
i µi,4 +

∑
i µ

2
i,2 = d(µ̃4 + µ̃2

2).

The other expressions can be obtained in an analogous manner.

Moreover, by using the same line of reasoning of Proposition 22 it can be shown that:

(P37.8)
µ3 · xd
‖xd‖2

→ µ3 · µ
µ2

= 0, and (P37.9)
µ2 · x2

d

‖xd‖2
→
µ̃2
2

µ̃2
,

and, hence, (P37.7’) can be reformulated only in terms of the squared norm of xd:

(P37.7’) ‖xd − Y d‖2 ' N
(
‖xd‖2 + dµ̃2, d(µ̃4 − µ̃2

2) + 4
µ̃2

2
µ̃2
‖xd‖2

)
.

Expressions of Sections 4.2 and 4.3 can be obtained by exploiting the above ones and by
following the same line of reasoning. For completeness, we report the final expression of the
number of k-occurrences:

(P37.10) N∞% (z) = Φ

Φ−1(%)
√
µ̃4 + 3µ̃2

2 − z
√
µ̃4 − µ̃2

2

2
√
µ̃2
2

 .
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