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Abstract

In this article, we propose and study the performance of spectral community detection for a
family of “α-normalized” adjacency matrices A, of the type D−αAD−α with D the degree
matrix, in heterogeneous dense graph models. We show that the previously used normaliza-
tion methods based on A or D−1AD−1 are in general suboptimal in terms of correct recovery
rates and, relying on advanced random matrix methods, we prove instead the existence of
an optimal value αopt of the parameter α in our generic model; we further provide an online
estimation of αopt only based on the node degrees in the graph. Numerical simulations show
that the proposed method outperforms state-of-the-art spectral approaches on moderately
dense to dense heterogeneous graphs.

Keywords: community detection, random networks, heterogeneous graphs, random matrix
theory, spectral clustering.

1. Introduction and Motivations

The advent of the big data era is creating an unprecedented need for automating large net-
work analysis. Community detection is among the most important tasks in automated net-
work mining (Fortunato, 2010). Given a network graph, detecting communities consists in
retrieving hidden clusters of nodes based on some similarity metric (the edges are dense in-
side communities and sparse across communities). While quite simple to define, community
detection is usually not an easy task and many methods arising from different fields have
been proposed to carry it out. The most important of them are statistical inference, modu-
larity maximization and graph partitioning methods. Statistical inference methods consist in
fitting the observed network to a structured network model and infer its parameters (among
which the assignment of the nodes to the communities) (Hastings, 2006; Newman and Le-
icht, 2007). Modularity maximization algorithms rely instead on the modularity metric which
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quantifies the subdivision of networks into communities (Fortunato, 2010).1 However, retriev-
ing the modularity maximizing graph partition is generally an NP-hard problem and many
polynomial-time approximation methods have been proposed: greedy methods (Newman,
2004), simulated annealing (Guimera et al., 2004), extremal optimization (Duch and Arenas,
2005) and spectral methods (Newman, 2006b). Spectral algorithms consist in retrieving the
communities from the eigenvectors associated with the dominant eigenvalues of some matrix
representation of the graph structure (adjacency matrix, modularity matrix, Laplacian ma-
trix). By relaxing the modularity optimization problem from binary values of the community
memberships to continuous scores, it is shown that approximate modularity maximization and
even statistical inference methods can be performed via a low dimensional clustering of the
entries of the dominant eigenvectors of the representation matrix (Ng et al., 2002; Newman,
2016) in polynomial time. Precisely, the steps of spectral methods for community detection
are described in the following algorithm.

Algorithm 1: Spectral algorithm

1: Compute the, say, ` eigenvectors u1, . . . ,u` ∈ Rn corresponding to the dominant (largest
or smallest) eigenvalues of one of the matrix representations of the network (adjacency,
modularity, Laplacian) of size n× n.

2: Stack the vectors ui’s columnwise in a matrix W = [ui, . . . ,u`] ∈ Rn×`.
3: Let r1, . . . , rn ∈ R` be the rows of W. Cluster ri ∈ R`, 1 ≤ i ≤ n in one of K groups

using any low-dimensional classification algorithm (e.g., k-means (Hartigan and Wong,
1979) or Expectation Maximization (EM) (Ng et al., 2012)). The label assigned to ri
then corresponds to the label of node i.

Most of the works proposing statistical analysis of the performance of community detection
(for dense as well as sparse networks) consider the basic Stochastic Block Model (SBM) as a
model for networks decomposable into communities. Denoting G a K-class graph of n vertices
with communities C1, . . . , CK with gi the group assignment of node i, the SBM assumes
an adjacency matrix A ∈ {0, 1}n×n with Aij independent Bernoulli random variables with
parameter Pgigj where Pab represents the probability that any node of class Ca is connected to
any node of class Cb. The main limitation of this model is that it is only suited to homogeneous
graphs where all nodes have the same average degree in each community (besides, class sizes
are often taken equal). As suggested in the practical case of the popular Political Blogs
graph (Adamic and Glance, 2005) (see Figure 4), a more realistic model, the Degree-Corrected
SBM (DCSBM), was proposed in (Coja-Oghlan and Lanka, 2009; Karrer and Newman, 2011)
to account for degree heterogeneity inside communities. For the same graph G defined above,
by letting qi, 1 ≤ i ≤ n, be some intrinsic weights which affect the probability for node i
to connect to any other network node, the adjacency matrix A ∈ {0, 1}n×n of the graph
generated by the DCSBM is such that Aij are independent Bernoulli random variables with
parameter qiqjCgigj , where Cgigj is a class-wise correction factor.

Community detection in DCSBMs has recently been studied, providing “consistent”2 algo-
rithms ranging from modularity/likelihood based approaches to spectral clustering methods.

1. Precisely, the modularity is defined as the difference between the total number of edges inside the com-
munities for a given partition and the total number of edges if the partition were created randomly in the
graph.

2. Consistency is mainly defined in two forms. Informally, a community detection algorithm is weakly
consistent whenever the fraction of misclassified nodes vanishes asymptotically with high probability and
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Sufficient conditions under which likelihood based approaches (Karrer and Newman, 2011)
and modularity optimization methods (Newman, 2006b) are weakly and strongly consistent,
have been provided in (Zhao et al., 2012). The so-called CMM (Convexified Modularity
Maximization) algorithm was proposed in (Chen et al., 2015) to cope with the computa-
tional expensiveness of modularity/likelihood methods (Karrer and Newman, 2011; Newman,
2006b) by solving a convex programming relaxation of the modularity optimization. Asymp-
totic minimax risks for misclassification loss under the DCSBM have been established in (Gao
et al., 2016). There a consistent algorithm achieving the minimax optimal rates was derived,
which is similar to spectral methods but proceeds without the explicit computation of eigen-
vectors and is hence computationally less expensive. As far as spectral clustering methods
are concerned, (Lyzinski et al., 2014) and (Lei et al., 2015) show consistency of the classical
spectral clustering procedure for community detection applied to the adjacency matrix of
moderately sparse DCSBM (for not too irregular degree distributions) where the expected
degree is as small as log n. Later, its has been shown (Coja-Oghlan and Lanka, 2009; Qin and
Rohe, 2013; Jin et al., 2015; Gulikers et al., 2015) that when the degrees are highly hetero-
geneous, the classical spectral methods fail to detect the genuine communities. To illustrate
those limitations of spectral methods under the DCSBM, the two graphs of Figure 1 provide
2D representations of dominant eigenvector 1 versus eigenvector 2 for the standard modular-
ity matrix and the Bethe Hessian matrix3, when three quarters of the nodes connect with low
weight q(1) and one quarter of the nodes with high weight q(2). For both methods, it is clear
that k-means or EM alike would erroneously induce the detection of extra communities and
even a confusion of genuine communities in the Bethe Hessian approach. Those extra com-
munities are produced by some biases created by the intrinsic weights qi’s; intuitively, nodes
sharing the same intrinsic connection weights tend to create their own sub-cluster inside each
community, thereby forming additionnal sub-communities inside the genuine communities.
To overcome this issue, a number of regularized spectral clustering techniques have been pro-
posed to normalize either the adjacency matrix or the leading eigenvectors by the degrees.
In (Coja-Oghlan and Lanka, 2009; Gulikers et al., 2015), the authors have proposed to clus-
ter the nodes based on the eigenvectors of a normalized adjacency matrix D−1AD−1 with
D the diagonal matrix containing the observed degrees on the main diagonal. The SCORE
algorithm devised in (Jin et al., 2015) consists instead in using the leading eigenvectors of the
adjacency matrix (pre-normalized by the dominant eigenvector which, as shown subsequently,
is equivalent to normalizing by the inverse degree matrix D−1) and (Qin and Rohe, 2013)

proposed to use the eigenvectors of the Laplacian matrix D−
1
2 AD−

1
2 .

As previously stated, the aforementioned works have shown that under some regularity (or
regularization) conditions, an almost perfect or perfect reconstruction of the nodes labels can
be achieved asymptotically. Our motivation in this article is to go beyond mere consistency
results by understanding the performances of the different regularized spectral clustering
algorithms for large but finite network sizes n. To this end, we place ourselves in a regime
where communities are too close to induce perfect reconstructions. In order to encompass
most aforementioned methods, we study here a generalized regularization of the adjacency

a community detection algorithm is strongly consistent whenever the labels estimated by the algorithm
match exactly the true labelling asymptotically with high probability.

3. The Bethe Hessian (BH) spectral method (Saade et al., 2014) is based on the union of the eigenvectors
associated to the negative eigenvalues of H(rc) and H(−rc) respectively where H(r) = (r2−1)In−rA+D

for rc =
∑
i d

2
i∑

i di
− 1 with di the degree of node i (D and di are defined subsequently).
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matrix4 given, for any α ∈ R, by

Lα = (2m)α
1√
n

D−α
[
A− ddT

2m

]
D−α

where d is the vector of degrees (di =
∑n

j=1Aij), D is the diagonal matrix of degrees (con-

taining d on the main diagonal) and m = 1
2dT1n is the number of edges in the network. In

particular, L0 is the modularity matrix (Newman, 2006b; Jin et al., 2015), L 1
2

is a modularity

equivalent to the normalized Laplacian matrix (Qin and Rohe, 2013; Chung, 1997) and L1

is the form used in (Coja-Oghlan and Lanka, 2009; Gulikers et al., 2015; Tiomoko Ali and
Couillet, 2016).

Modularity Bethe Hessian

Figure 1: Two dominant eigenvectors (x-y axes) for n = 2000, K = 3 classes C1, C2 and C3 of
sizes |C1| = |C2| = n

4 , |C3| = n
2 , 3

4 of the nodes having qi = 0.1 and 1
4 of the nodes

having qi = 0.5, matrix of weights C = 131
T
3 + 100√

n
I3. Colors and shapes correspond

to ground truth classes.

Besides, while we believe (up to more involved mathematical treatment) that our results
essentially hold true in moderately sparse graphs (of average degree of order Ω(logn)), we
focus here on a dense DCSBM model where qi = Ω(1). In this regime, when the correction

factors Cgigj differ by a rate greater thanO(n−
1
2 ), weak consistency is shown for all regularized

spectral algorithms. Instead, we induce a regime where clusters remain at an asymptotically
“constant” distance. This is ensured by letting Cgigj = Ω(1) individually but with the Cgigj ’s

differring by O(n−
1
2 ). Under this regime, we are able to fully study the dominant eigenvalues

and associated eigenvectors (used for classification) of Lα for large dimensional dense graphs
following the DCSBM, thus allowing one to assess the performances for very large but finite-
size graphs.

In a nutshell, our main findings are as follows.

4. The leading term ddT

2m
(not providing any information about the communities) is shown in simulations to

have asymptotically no impact on the clustering performance. It is discarded here mostly for mathematical

simplicity. Note in passing that A− ddT

2m
corresponds to the so-called modularity matrix (Newman, 2006a),

therefore Lα may be seen as a “α-normalized” modularity matrix.
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• We prove the existence of and obtain an expression for an optimal value αopt of α for
which the community detectability threshold5 is maximally achievable.This value needs
not be either 0 or 1 and its proper choice is of utmost importance in highly heterogeneous
graphs.

• We provide a consistent estimator α̂opt of αopt based on d alone.

• We show that to achieve consistent clustering in the DCSBM model, the dominant
eigenvectors used for clustering should be pre-multiplied by Dα−1 prior to the low
dimensional classification (step 3 of Algorithm 1), thereby recovering the SCORE algo-
rithm (Jin et al., 2015) for α = 0 and the algorithm in (Gulikers et al., 2015) for α = 1,
as special cases.

• Our proposed method is summarized under the form of Algorithm 2. As the estimation
of αopt is essentially linear with n, Algorithm 2 does not impair the computational
cost of the underlying spectral method. A Python implementation of the algorithm is
available in (Tiomoko Ali and Couillet, 2017).

• A deeper study of the regularized eigenvectors allows us to improve the initial setting of
the EM algorithm (in the step 3 of the spectral algorithm described above) in comparison
with a random setting.

• Numerical simulations (throughout the article) show that our methods outperform state-
of-the-art spectral methods both on synthetic graphs and on real world networks.

All proofs are deferred to a separate section while sketches are provided for the main
results of the article.

Notations: Vectors (matrices) are denoted by lowercase (uppercase) boldface letters.
{va}na=1 is the column vector v with (scalar or vector) entries va and {Vab}na,b=1 is the matrix
V with (scalar or matrix) entries Vab. For a vector v, the operator D(v) = D ({va}na=1) is
the diagonal matrix having the scalars va down its diagonal and for a matrix V, D(V) is the
vector containing the diagonal entries of V. The vector 1n ∈ Rn stands for the column vector
filled with ones. The Dirac measure at x is δx. The vector ja is the canonical vector of class Ca
defined by (ja)i = δi∈Ca and J = [j1, . . . , jK ] ∈ {0, 1}n×K . The set C+ is {z ∈ C, =[z] > 0}.
We denote x ∼ N (µ,Σ) to indicate that x is a Gaussian distributed random vector with
mean µ and covariance Σ.

2. Preliminaries

This section describes the network model under study, which is based on the DCSBM defined
in the previous section, and provides preliminary technical results.

Consider an n-node random graph with K classes C1, . . . , CK of sizes |Ck| = nk. Each
node is characterized by an intrinsic connexion weight qi which affects the probability that
this node gets attached to another node in the graph. A null model would consider that the
existence of an edge between i and j has probability qiqj . In order to take into account the

5. The community detectability threshold is the point beyond which there exists a clustering algorithm which
can do better than a random guess.
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membership of the nodes to some group, we define C ∈ RK×K as a matrix of class weights Cab,
independent of the qi’s, affecting the connection probability between nodes in Ca and nodes
in Cb. Following (Karrer and Newman, 2011), the adjacency matrix A of the graph generated
from a DCSBM model has independent entries (up to symmetry) which are Bernoulli random
variables with parameter Pij = qiqjCgigj ∈ (0, 1) where gi is the group assignment of node
i. We set Aii = 0 for all i. For convenience of exposition and without loss of generality, we
assume that node indices are sorted by clusters, i.e nodes 1 to n1 constitutes C1, nodes n1 + 1
to n1 + n2 form C2, and so on.

The matrix under study is given by

Lα = (2m)α
1√
n

D−α
[
A− ddT

2m

]
D−α (1)

where d = A1n , D = D(d) and m = 1
2dT1n.

We are mainly interested in a dense network regime where clustering is not asymptotically
trivial. This regime is ensured by the following growth rate conditions.

Assumption 1 As n→∞, K remains fixed and, for all i, j ∈ {1, . . . , n}

1. Cgigj = 1 +
Mgigj√

n
, where Mgigj = Ω(1); we shall denote M = {Mab}Ka,b=1.

2. qi are i.i.d. random variables with measure µ having compact support in (0, 1).

3. ni
n → ci > 0 and we will denote c = {ck}Kk=1.

The goal of the article is to study deeply the eigenstructure of Lα in order to understand
the different mechanisms into play when performing spectral clustering on Lα. As can be
observed, Lα has non independent entries as D (and d) depend on A, and it thus does
not follow a standard random matrix model. Our strategy is to approximate Lα by a more
tractable random matrix L̃α which asymptotically preserves the eigenvalue distribution and
isolated eigenvectors of Lα. We obtain the corresponding approximate of Lα as follows.

Theorem 2 Let Assumption 1 hold and let Lα be given by (1). Then, for Dq , D(q), as
n→∞, ‖Lα − L̃α‖ → 0 in operator norm, almost surely, where

L̃α =
1√
n

D−αq XD−αq + UΛUT,

U =
[

D1−α
q J√
n

D−αq X1n
qT1n

]
,

Λ =

[(
IK − 1KcT

)
M
(
IK − c1TK

)
−1K

−1TK 0

]
,

with X = {Xij}ni,j=1 symmetric with independent entries (up to the symmetry), Xij having

zero mean and variance qiqj(1− qiqj), and J = [j1, . . . , jK ] ∈ {0, 1}n×K with (ja)i = δ{gi=a}.

Proof [Sketch] The proof relies on the fact that we may write Aij = qiqj + qiqj
Mgigj√

n
+ Xij

where Xij is a zero mean random variable with variance qiqj(1−qiqj)+Θ(n−
1
2 ), since Aij is a

Bernoulli random variable with parameter qiqj(1 +
Mgigj√

n
). From there, the terms: d = A1n,
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dT1n, ddT and D = D(d) composing Lα can be evaluated. Notably, D and dT1n can
be decomposed as the sum of dominant terms (with higher spectral norms with respect to
n) and trailing terms (vanishing spectral norms with respect to n), so that we can write a
Taylor expansion of D−α and (dT1n)α for α ∈ R. By computing Lα using the asymptotic
approximations of D−α, (dT1n)α, A, ddT, we obtain L̃α. The complete proof is provided in
Section 6.1.

This result immediately implies the following Corollary.

Corollary 3 Under Assumption 1, let λi(Lα) (resp., λi(L̃α)) be the eigenvalues of Lα (resp.,
L̃α) with associated eigenvectors ui(Lα) (resp., ui(L̃α)). We have

max
1≤i≤n

∣∣∣λi(Lα)− λi(L̃α)
∣∣∣ a.s.−→ 0

and, if lim infn minj 6=i |λi(Lα)− λj(L̃α)| > 0,∥∥∥ui(Lα)− ui(L̃α)
∥∥∥ a.s.−→ 0.

Thus, for large enough n, the spectral analysis of Lα can be performed through that of L̃α.

The matrix L̃α is essentially a classical random matrix model and the study of its eigen-
values and dominant eigenvectors can be performed using standard random matrix theory
(RMT) approaches (Benaych-Georges and Nadakuditi, 2012; Hachem et al., 2013).

3. Main Results

3.1 Spike model and dominant eigenvector regularization

The matrix L̃α is an additive spiked random matrix (Baik et al., 2005) as it is the sum of

the standard full rank symmetric random matrix n−
1
2 D−αq XD−αq having independent zero

mean entries and a low rank matrix UΛUT. As shown in Figure 2, the spectrum (eigenvalue
distribution) of spiked random matrices is generally composed of (one or several) bulks of
concentrated eigenvalues and, when a phase transition is met, of additionnal eigenvalues
which isolate from the aforementioned bulks. The eigenvectors corresponding to the isolated
eigenvalues of the spiked random matrix become more correlated to the eigenvectors of the low
rank matrix when the corresponding eigenvalues are far away from the rest of the eigenvalues.

From Theorem 2, the low rank matrix UΛUT contains the matrix D1−α
q J; so, when the

phase transition is met, the eigenvectors of L̃α will be correlated to some extent to D1−α
q J as

long as the corresponding informative eigenvalues are isolated from the bulk of eigenvalues.
This is well illustrated in Figure 2 where the eigenvectors associated to non-isolated eigenval-
ues are noisy, i.e., classes can be barely distinguished from those eigenvectors. On the other
hand, the eigenvectors associated to isolated eigenvalues consist of noisy plateaus character-
izing the classes and thus a consistent classification can be expected using those eigenvectors.
However, for a better clustering, one expects instead the vectors used for classification to be
correlated to the canonical vectors ja, 1 ≤ a ≤ K, instead of D1−α

q ja.
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−6 −4 −2 0 2 4 6

−Sα Sα

Sα

Two
spikes

−4 −2 0 2 4

One spike

Figure 2: Two graphs generated upon the DCSBM with K = 3, n = 2000, c1 = 0.3, c2 =
0.3, c3 = 0.4, µ = 1

2δq(1) + 1
2δq(2) , q(1) = 0.4, q(2) = 0.9 and two different affinity

matrices M. (Left) Mii = 12, Mij = −4, i 6= j, (Right): Mii = −3, Mij =
−10, i 6= j, (Top): Eigenvalue distribution of Lα, α = 0. (Bottom): First and
second leading eigenvectors of Lα, α = 0.

As a consequence, we claim that, letting u1, . . . ,ul be the eigenvectors associated to the `
isolated eigenvalues of Lα, the vectors vi = Dα−1u1 for 1 ≤ i ≤ ` should be the ones used for
the classification instead of the ui’s.6

This important observation helps correcting the biases (creation of artificial classes) intro-
duced by the degree heterogeneity observed earlier in Figure 1. As shown in Figure 3, which
assumes the same setting as Figure 1, when the aforementioned eigenvector regularization
is performed prior to EM or k-means classification, the genuine communities are correctly
recovered.

As mentionned earlier, the eigenvectors corresponding to eigenvalues in the bulk are
asymptotically of no use for clustering. It is thus important to characterize the phase transi-
tion point beyond which eigenvalues isolate from the bulk and determine which α best ensures
this transition. To this end, we will first determine the support Sα of the limiting spectral

6. As far as the eigenvectors are concerned, we may freely replace Dq (unknown in practice) by D (which
can be computed from the observed graph) since, from Lemma 11 in the subsequent section 3.4, the vector
of degrees d is, up to a scale factor β, a consistent estimator of the vector of intrinsic weights q and thus
‖βD−Dq‖ → 0 almost surely.
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(α = 1) (α = α̂opt)

Figure 3: Two dominant eigenvectors of Lα pre-multiplied by Dα−1(x-y axes) for n = 2000,
K = 3, µ = 3

4δq(1) + 1
4δq(2) , q(1) = 0.1, q(2) = 0.5, c1 = c2 = 1

4 , c3 = 1
2 , M = 100I3

with α̂opt defined in Section 3.4. Same setting as Figure 1.

distribution of Lα. Then, following popular spiked model tools, we will find conditions for
the existence of isolated eigenvalues. This is the objective of the next sections.

3.2 Limiting support

In this section, we characterize the limiting eigenvalue distribution of Lα where most eigen-
values concentrate. This in turn shall allow to determine the transition point beyond which
informative eigenvalues isolate from the main bulk of eigenvalues and consistent clustering
can thus be achieved by using the corresponding eigenvectors associated to those eigenvalues.
The limiting eigenvalue distribution of Lα is given in the following result.

Theorem 4 (Limiting spectrum) Let παn = 1
n

∑n
i=1 δλi(Lα) be the empirical spectral dis-

tribution (e.s.d.) of Lα. Then, as n → ∞, παn → π̄α almost surely where π̄α is a probability
measure with compact symmetric support Sα = [−Sα, Sα] defined, for z ∈ C+ \ Sα, by its
Stieltjes transform

mα(z) ≡
∫

(t− z)−1 dπ̄α(t) =

∫
1

−z − fα(z)q1−2α + gα(z)q2−2α
µ(dq)

where (fα(z), gα(z)) ∈ (C+)2 (resp., (R−)2) is the unique solution for z ∈ C+ (resp., R+), of

fα(z) =

∫
q1−2αµ(dq)

−z − fα(z)q1−2α + gα(z)q2−2α

gα(z) =

∫
q2−2αµ(dq)

−z − fα(z)q1−2α + gα(z)q2−2α
. (2)

Proof [Sketch] Since L̃α = 1√
n
D−αq XD−αq +UΛUT is a spiked random matrix, the e.s.d. παn of

Lα converges weakly to the the e.s.d. π̃αn of 1√
n
D−αq XD−αq (by Weyl interlacing lemma) since

UΛUT is a low rank matrix. We thus find an asymptotic limit π̄α for π̃αn so that παn → π̄α

almost surely. To do so, we show that the Stieltjes transform of π̃αn converges to mα(z) for

9
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z ∈ C+, which is the Stieltjes transform of the probability measure π̄α so that the convergence
also holds for the probability measures (the e.s.d.). The Stieltjes transform of the e.s.d. π̃αn
is n−1 tr( 1√

n
D−αq XD−αq − zIn)−1 (where ( 1√

n
D−αq XD−αq − zIn)−1 is the so-called resolvent of

the random matrix 1√
n
D−αq XD−αq ), the deterministic limit of which gives mα(z), computed

using classical random matrix theory (RMT) tools (Pastur et al., 2011). The calculus details
are provided in Section 6.2.

Remark 5 (Stochastic Block Model) Particularizing Theorem 4 to the Stochastic Block
Model (SBM) (where qi = q0 for all i), the limiting probability measure π̄α is the popu-
lar semi-circle distribution with density π̄α(dt) = 2

π(Sα)2

√
max {(Sα)2 − t2, 0}dt with Sα =

2q1−2α
0

√
1− q2

0. The associated Stieljes transform mα(z) is explicit with in particular

q1−2α
0 mα(zq1−2α

0 ) = q
1
2
−α

0 fα(zq
1
2
−α

0 ) = q−1
0 gα(zq1−2α

0 ) = − z

2(1− q2
0)
−

√(
z

2(1− q2
0)

)2

− 1

1− q2
0

.

−1 0 1

L0

−5 0 5

L 1
2

−200 0 200 400

L1

Figure 4: Political blogs (Adamic and Glance, 2005) network. Empirical versus Theoretical
law of the eigenvalues of Lα̂opt when fitting this network with the DCSBM (dashed)
and the SBM (solid). Here α̂opt = 0. The arrow shows the position of the largest
eigenvalue.

The top of Figure 2, already discussed above, shows the density of the limiting π̄α, for
α = 0, superimposed over the histogram of παn . Figure 4 similarly displays the histogram πα of
the empirical eigenvalues of Lα corresponding to the real network of Political blogs (Adamic
and Glance, 2005) versus the theoretical limiting distribution π̄α obtained by fitting the
network to the DCSBM (from Theorem 4, with µ the actual degree distribution of the graph)
and the theoretical limiting distribution obtained by fitting the network to the SBM instead
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(in solid lines).7 We note importantly that the DCSBM is a good fit for the political blogs
network except possibly for L 1

2
while the SBM does not fit the network in any case. This

suggests that the DCSBM is a more appropriate model when studying real world networks.

3.3 Phase transition

We also observe in Figure 4 (and more obviously in the synthetic case of Figure 2) that
different choices of α lead to different behaviors in the position of the dominant eigenvalues.
We shall determine here when separation of one or several eigenvalues from the bulk occurs.
To this end, we follow popular spiked model techniques (Benaych-Georges and Nadakuditi,
2012; Hachem et al., 2013) for phase transition characterization. This entails the following
result.

Theorem 6 (Phase transition) Let Assumption 1 hold and let λ(M̄) be a non zero eigen-
value with multiplicity η of M̄ ≡

(
D(c)− ccT

)
M. Then, for α ∈ R, there exists corresponding

isolated eigenvalues λi(Lα), . . . , λi+η−1(Lα) ∈ R\Sα of Lα all converging to ρ ∈ R \ Sα, as
n→∞, almost surely, if and only if 8

∣∣λ(M̄)
∣∣ > τα , − lim

x↓Sα
1

gα(x)
,

with gα(x) defined in Theorem 4. In this case, ρ is defined by

ρ = (gα)−1

(
− 1

λ(M̄)

)
.

Proof [Sketch] From Theorem 4, the e.s.d. of Lα converges weakly to the e.s.d. of 1√
n
D−αq XD−αq

with support Sα (defined in Theorem 4) but since 1√
n
D−αq XD−αq and Lα only differ by a finite

rank matrix UΛUT, some eigenvalues of Lα may isolate from the support Sα. To find those
isolated eigenvalues, we solve for ρ /∈ Sα, det(Lα − ρIn) = 0. This leads to find the ρ’s for
which 0 = det(IK+1 + UTQα

ρUΛ) where Qα
ρ = ( 1√

n
D−αq XD−αq − ρIn)−1 is the resolvent of

1√
n
D−αq XD−αq . By using standard RMT calculus (Benaych-Georges and Nadakuditi, 2012),

we obtain a deterministic approximation of IK+1 + UTQα
zUΛ which leads to the phase tran-

sition condition in Theorem 6.

Remark 7 (τα in SBM setting) From Remark 5, in the SBM setting, τα no longer de-

pends on α and is given by τα =

√
1−q20
q0

.

Remark 8 (Number of isolated eigenvalues) From Theorem 6, there is a one-to-one
mapping between the limiting isolated eigenvalues ρ of Lα and non zero eigenvalues of M̄ =(
D(c)− ccT

)
M. As 1T

KM̄ = 0, M̄ has a maximum of K − 1 non zero eigenvalues which
means that at most K − 1 eigenvalues of Lα can be found at macroscopic distance from Sα.
Thus, at most K − 1 eigenvectors of Lα can be used in the first step of the spectral algorithm
described in the introduction.

7. The SBM assumes here qi = q0 for all i.
8. The limit limx↓Sα g

α(x) is well defined in (−∞, 0] as x 7→ gα(x) can be shown to be a continuous growing
negative function on the right side of Sα.

11
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Remark 9 (The complete spectrum of Lα) Strictly speaking, the aforementioned state-
ments are somewhat inaccurate. An exhaustive analysis of Lα indeed reveals that, under some
conditions on µ, and irrespective of the clustering matrix M, extra isolated eigenvalues can be
found in the spectrum of Lα, the eigenvectors of which do not contain any structural informa-
tion about the classes. This rather unfamiliar scenario has also been evidenced in the context
of spectral kernel clustering in (Couillet et al., 2016). Since this hypothetical eigenvalue and
eigenvector pair is of no value for the interest of clustering, it shall no longer be discussed in
the following. Besides, most settings of practical interest do not present this singular behavior.
A thorough discussion of this peculiarity is provided in Section 6.5.

The value τα defined in Theorem 6 is a community detectability threshold which in the dense
regime for the SBM case was shown to split the community detectability into two regions: a
region where no algorithm can succed better than a random guess in classifying the nodes
and a region where a non trivial detection is possible (Decelle et al., 2011; Nadakuditi and
Newman, 2012). When the separability condition of Theorem 6 is ensured, the alignment
between the properly normalized eigenvectors of Lα and linear combinations of the class
vectors ja’s (defined in Theorem 2) is away from zero, thus ensuring a non trivial classification
performance. The larger λ(M̄), the closer are the vectors used for classification to the class
vectors ja’s.

Theorem 10 Under Assumption 1, let λ(M̄) and λ(Lα) be an eigenvalue pair as defined
in Theorem 6. We further assume λ(M̄) of unit multiplicity and denote u the eigenvector

associated to the eigenvalue λ(Lα). Then, letting v̄ = Dα−1u
‖Dα−1u‖ and Π =

∑K
a=1

jajTa
na

, for all

ε > 0, there exists γ−, γ+ > 0 such that, for all n large, almost surely,

0 <
∣∣λ(M̄)

∣∣− τα < γ− ⇒ v̄TΠv̄ < ε∣∣λ(M̄)
∣∣− τα > γ+ ⇒ v̄TΠv̄ > 1− ε.

This result is a direct corrolary of Theorem 15 which is introduced later in Section 3.5.
Figure 5 illustrates Theorem 10, which confirms that, below the phase transition threshold

τα, there is asymptotically no correlation between the vectors v̄ and the class canonical vectors
ja’s and thus no consistent clustering can be achieved in this regime. The theoretical curve is
obtained by using the deterministic asymptotic approximation of v̄TΠv̄ which is explicitely
given in Section 6.4.

3.4 Optimal α

In this section, we determine the values of α for which the community detectability threshold
is maximally achieved. This, in turn, is expected to allow for the optimal extraction of
information about the classes from the extreme eigenvectors although this is not easily proved
(and in our opinion, most likely not always true).

From Theorem 6, since M̄ does not depend on α, the smaller τα the more likely the
detectability condition

∣∣λ(M̄)
∣∣ > τα is met. We then seek α for which τα is minimal. For

any compact set A ⊂ R, we may thus define

αopt , argminα∈A {τα}

which we shall assume is unique (if qi = q0 is constant, τα is constant across α; this case
is thus excluded). The estimation of αopt however requires the knowledge of gα(x) for each

12
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Figure 5: Simulated versus empirical v̄TΠv̄ for K = 3, µ = 3
4δq(1) + 1

4δq(2) , q(1) = 0.1, q(2) =

0.2, c1 = c2 = 1
4 , c3 = 1

2 , M = ∆I3 with ∆ ranging from 0 to 100.

α ∈ A. The estimation of gα(x) can be done numerically by solving the fixed point equation
defined in Theorem 4 provided µ is known. As a direct consequence of Assumption 1-(1), µ
can in fact be estimated from the empirical graph degrees irrespective of the class matrix C,
according to the following result.

Lemma 11 Let q̂i = di√
dT1n

. Then, under Assumption 1,

max
1≤i≤n

|qi − q̂i| → 0 (3)

almost surely.

We thus have all the ingredients to estimate αopt.
9

Proposition 12 Define µ̂ , 1
n

∑n
i=1 δq̂i with q̂i = di√

dT1n
and Ŝα, f̂α(z), ĝα(z), as in Theo-

rem 4 but for µ replaced by µ̂. Then, as n→∞,

α̂opt → αopt

almost surely, where α̂opt , argminα∈A{τ̂α} with

τ̂α ≡ −
1

limx↓Ŝα ĝ
α(x)

.

Remark 13 (Numerical evaluation of Sα) Estimating τ̂α requires to determine Ŝα. To
this end, we use the fact that ĝα(x) is only defined for x /∈ Ŝα. We thus evaluate Ŝα by an
iterative dichotomic search in intervals of the type [l, r] for which ĝα(l) is undefined (and thus
the algorithm in Equation 2 does not converge) and ĝα(r) is defined (the algorithm converges),
starting from e.g., l = 0 and r quite large.

9. Note here that imposing A to be a compact set ensures the uniform validity of Theorem 4.

13
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Remark 14 (Relevance of the choice of α) Following Remarks 5 and 7, note that the
choice of α is only relevant to heterogeneous graphs, as in the SBM case, the phase transition
threshold τα is constant irrespective of α. This suggests that the more heterogeneous the graph
the more important an appropriate setting of α.

The aforementionned importance of choosing α = α̂opt along with the need to pre-multiply
the dominant eigenvectors of Lα by Dα−1 before classification, as discussed after exposing
Theorem 2, naturally bring us to an improved version of Algorithm 1 provided below. The

Algorithm 2: Improved spectral algorithm

1: Evaluate α = α̂opt = argminα∈A limx↓Ŝα ĝ
α(x) as per Proposition 12.

2: Retrieve the ` eigenvectors corresponding to the ` largest eigenvalues of

Lα = (2m)α 1√
n
D−α

[
A− ddT

2m

]
D−α. Denote uα1 , . . . ,u

α
` those eigenvectors.

3: Letting vαi = Dα−1uαi and v̄αi =
vαi
‖vαi ‖

, stack the vectors v̄αi ’s columnwise in a matrix

W = [v̄α1 , . . . , v̄
α
` ] ∈ Rn×`.

4: Let r1, . . . , rn ∈ R` be the rows of W. Cluster ri ∈ R`, 1 ≤ i ≤ n in one of the K groups
using any low-dimensional classification algorithm (e.g., k-means or EM). The label
assigned to ri then corresponds to the label of node i.

performances of Algorithm 2 mainly depend on the content of the eigenvectors v̄αi ’s. These
regularized eigenvectors happen to be shapped like noisy “plateaus” (step functions), each
plateau characterizing a class. The objective of the next section is to provide deterministic
limits of the parameters of those noisy plateaus from which the asymptotic performances of
Algorithm 2 unfold.

3.5 Eigenvectors and improvement of Expectation Maximization (EM)
algorithm

In this section, we provide a precise characterization of the asymptotic class means and class
covariances of the dominant eigenvectors entries (used for clustering) which in turn allows to
improve the classical EM algorithm used in the last step of spectral clustering procedures.
The eigenvectors of Lα have the property of remaining “stable” in the large dimensional limit,
thereby allowing for a precise characterization of their content. This behavior (classical in
the spike model analysis of random matrices) however only holds for eigenvectors associated
to strictly isolated eigenvalues (in the sense that the latter remain at macroscopic distance of
all other eigenvalues). In the remainder, we thus assume that the normalized eigenvector v̄αi
under study is associated with such a strictly isolated eigenvalue.

As one can see in Figure 3, the different clusters of points (rows of W in Algorithm 2)
have different dispersions (variances) in the DCSBM model under consideration. The most
appropriate algorithm to use in step 4 of Algorithm 2 is the expectation maximization (EM)
method. EM considers each point ri ∈ R` arising from [v̄α1 , . . . , v̄

α
` ] as a mixture of K Gaussian

random vectors with means νaEM and covariances Σa
EM ∈ R`×`, a ∈ {1, . . . ,K}. Starting from

initial means and covariances, they are sequentially updated until convergence. To identify
νaEM , Σa

EM and thus understand the performance of Algorithm 2, we may write v̄αi
10 as the

10. Recall that the graph nodes were assumed labeled by class, and thus the entries of v̄αi are similarly sorted
by class.

14
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“noisy plateaus” vector

v̄αi =
K∑
a=1

νai
ja√
na

+
√
σaiiw

a
i (4)

where wa
i ∈ Rn is a random vector orthogonal to ja, of norm

√
na and supported on the

indices of Ca and

νai =
1
√
na

(v̄αi )T ja =
1
√
na

(uαi )TDα−1ja√
(uαi )TD2(α−1)uαi

(5)

σaij =
(uαi )TDα−1DaDα−1uαj√

(uαi )TD2(α−1)ui

√
(uαj )TD2(α−1)uαj

− νai νaj (6)

with Da = D(ja). The vector νa = (νai )`i=1 ∈ R` and the matrix Σa = (σaij)
`
i,j=1 ∈ R`×`

represent respectively the empirical means and empirical covariances of the points ri (defined
in Algorithm 2) belonging to class Ca. Thus, provided that EM converges to the correct
solution, (νaEM )i and (Σa

EM )ij shall converge asymptotically to the limiting values of νai ∈ R
and σaij respectively. Clearly, for small values of Σa compared to νa, clustering the vectors
v̄αi shall lead to good performances.

We find the asymptotic limits of the class means νai and the class covariances σaij . The
explicit expressions of those limits are provided in the proof section (Theorems 22 and 23)
for readability reasons.

Theorem 15 For νai , σaij defined in (26), (27)respectively, there exist deterministic limits
νa,∞i and σa,∞ij (explicitely defined in Theorems 22 and 23 in Section 6.4) such that, as
n→∞, almost surely ∣∣(νai )2 − (νa,∞i )2

∣∣→ 0∣∣∣σaij − σa,∞ij ∣∣∣→ 0.

Proof [Sketch] Technically, the standard tools used in spiked random matrix analysis do not
allow for an immediate assessment of the quantities νai and σaij . As a workaround, we follow
the approach used in (Couillet et al., 2016) which relies on the possibility to estimate bilinear
forms of the type aTuαi (uαi )Tb for given vectors a,b ∈ Rn and unit multiplicity eigenvectors
uαi of Lα since we have from Cauchy formula, as n→∞ almost surely, (since λi(Lα)→ ρ)

aTuαi (uαi )Tb = − 1

2πi

∮
Γρ

aT (Lα − zIn)−1 bdz

and for a given matrix D

(uαi )TDuαi = tr uαi (uαi )TD = − 1

2πi

∮
Γρ

tr (Lα − zIn)−1 Ddz

where Γρ is a positively oriented contour circling around the limiting eigenvalue ρ of λi(Lα)
associated to the eigenvector uαi of Lα. The calculus details are provided in Section 6.4.
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Figure 6: n = 800, K = 3 classes C1, C2 and C3 of sizes |C1| = |C2| = n
4 , |C3| = n

2 , 3
4

of the nodes having qi = 0.3 and the others having qi = 0.8, matrix of weights
C = 131

T
3 + 30√

n
I3. Two dimensional representation of the dominant eigenvectors 1

and 2 of Lα. In blue, theoretical means and one- and two- standard deviations.

Using the asymptotic results in Theorem 15, we display in Figures 6 and 7 the theoretical
means and standard deviations versus ground truths for each class-wise block of the eigen-
vectors entries. The good fit between the ground truths and the theoretical findings of the
class means and class covariances, calls for the improvement of the random initialization of
the EM procedure in the last step of spectral clustering.

The performances of EM highly depend on the chosen starting parameters; a first natural
choice is to set them randomly, which as we shall see leads to poor performances especially
in cases where the clusters are not easily separable. Since the theoretical limiting means
νa,∞ and covariances Σa,∞ are respectively the limiting values of νaEM and covariances Σa

EM

provided EM converges to the correct solution, we may set as initial parameters of EM our
findings νa,∞ (Theorem 22) and Σa,∞ (Theorem 23) for a ∈ {1, . . . ,K} provided those can be
estimated. In most scenarios, the many unknowns prevent such an estimation. Nonetheless,
from Corollary 25 (Section 6.4), provided the class proportions (or the sizes of each class)
are (more or less) known, we can consistently estimate ν∞ and Σ∞ in a 2-class scenario. As
we shall see, this new setting of initial parameters is much better than other initializations
approaches.

To show the effect of our setting of initial parameters of EM based on the findings ν∞ and
Σ∞, Figure 8 compares the empirical performances of our new spectral algorithm based on the
regularized eigenvector of L0.5 for different initial settings of the EM parameters i) random
setting (Random EM) ii) our theoretical setting (by assuming that the class proportions
are known) and iii) the ground truth setting (oracle EM where we set the initial points to
the empirically evaluated means and covariances of each cluster based on ground truth).
Below the transition point, no consistent clustering can be achieved for large n using the
eigenvectors associated to highest eigenvalues since the clusters are not separable and our
theoretical limiting means and covariances are not defined since there is no isolated eigenvalues
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Figure 7: n = 800, K = 3 classes C1, C2 and C3 of sizes |C1| = |C2| = n
4 , |C3| = n

2 , qi’s
uniformly distributed over [0.1, 0.9], matrix of weights C = 131

T
3 + 100√

n
I3. Two

dimensional representation of the dominant eigenvectors 1 and 2 of Lα. In blue,
theoretical means and one- and two- standard deviations

in that case. We have thus initialized EM at random in this non interesting regime (as
for Random EM). The EM algorithm may in that regime set all the nodes to the same
cluster, which will then result to a classification rate close to the proportion of the nodes
in the cluster of largest size. In the interesting regime (after the transition point), we see
that the performances (in terms of correct classification rate) of the algorithm using our
theoretical setting of EM closely match the performances of an ideal setting with ground truth
(oracle EM). The performances of the algorithm using a random initialization (Random EM)
are completely degraded especially around critical cases (small values of ∆). Random EM
becomes reliable only for very large values of ∆ where clustering is somewhat trivial.

4. Numerical simulations

We restrict ourselves to α ∈ A = [0, 1] for the numerical simulations. To illustrate the
importance of the choice of αopt, Figure 9 presents the theoretical (asymptotic) ratio between
the limiting largest eigenvalue ρ of Lα and the right edge Sα of the limiting support Sα with
respect to the amplitude of the eigenvalues of M̄. Although αopt only ensures in theory to
have the best isolation of the eigenvalues only in “worst cases scenarios”(i.e., when λ(M̄) is
slighty larger than ταopt), Figure 9 shows that taking α = αopt provides the largest gap ρ

Sα for
all values of λ(M̄). This suggests (again, without any theoretical support) best performances
with α = αopt in all cases (for any value of M).

In the sequel, to compare the different algorithms, we will use the performance evaluation
measure known as overlap to ground truth communities, defined in (Krzakala et al., 2013) as

Overlap ≡
1
n

∑n
i=1 δgiĝi −

1
K

1− 1
K

,

17



Tiomoko, Couillet

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

∆

C
o
rr

ec
t

cl
a
ss

ifi
ca

te
ra

te

Oracle EM

Our initialization

Random EM

Figure 8: Probability of correct recovery for α = 0.5, n = 4000, K = 2, c1 = 0.8, c2 = 0.2,
µ = 3

4δq(1) + 1
4δq(2) with q(1) = 0.2 and q(2) = 0.8, M = ∆I2, for ∆ ∈ [0, 20].

2 4 6 8 10 12 14 16
0.98

1

1.02

1.04

1.06

1.08

1.1

0
1
4

1
2

3
4

1αopt

Eigenvalue (λ(M̄) = −1/gα(ρ) beyond phase transition)

N
o
rm

a
li
ze

d
sp

ik
e

ρ
S
α

Figure 9: Ratio between the limiting largest eigenvalue ρ of Lα and the right edge of the
support Sα, as a function of the largest eigenvalue λ(M̄) of M̄, M = ∆I3, ci = 1

3 ,
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4δq(1) + 1
4δq(2) with q(1) = 0.1 and q(2) = 0.5, for α ∈

{0, 1
4 ,

1
2 ,

3
4 , 1, αopt} (indicated on the curves of the graph). Here, αopt = 0.07. Circles

indicate phase transition.

where gi and ĝi are the true and estimated labels of node i, respectively. Figure 10 subse-
quently shows the overlap performance under the setting of Figure 9 for a simulated graph
of n = 3000 nodes. Note that the empirically observed phase transitions closely match the
theoretical ones (drawn in circles and the same as in Figure 9). We then consider in Fig-
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Figure 10: Overlap performance for n = 3000, K = 3, ci = 1
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4δq(2) with

q(1) = 0.1 and q(2) = 0.5, M = ∆I3, for ∆ ∈ [5, 50]. Here αopt = 0.07.

ure 11 a DCSBM graph where M is fixed and three quarters of the nodes connect with a
fixed intrinsic low weight q(1) = 0.1 and we vary the intrinsic weights q(2) of the remaining
quarter of the nodes from low to high weights. We observe a sudden drop of the BH overlap
for large q(2)−q(1). This phenomenon is consistent with the fact, observed earlier in Figure 1,
that BH creates artificial communities out of nodes with the same qi parameter. This is a
practical demonstration of the need for a proper eigenvector normalization to avoid degree
biases. This observation has recently led (Newman, 2013) to consider a regularization for the
non-backtracking operator on which the BH method is based, which still awaits for proper
analysis.

In Figure 12, we consider a more realistic synthetic graph where the qi’s assume a power
law of support [0.05, 0.3] which simulates a sparse graph characteristic of real world networks.
Although this is not the regime we study in this article, our method for α = α̂opt still competes
with the BH method which was developped for sparse homogeneous graphs. However, it is
seen that the theoretical phase transitions do not closely match the empirical ones especially
for the case α = 1. This mismatch is likely due to the fact that our theoretical results in this
article require Pij = Ω(1) which is not always the case in this scenario.

We finally confront the performances (in terms of overlap and modularity 11) of the dif-
ferent spectral algorithms on the Political blogs graph (Adamic and Glance, 2005) in Table 1.
We should note that while αopt = 0 in this case, it achieves the best performance both in
terms of the overlap to the ground truth and of the modularity. 12 Likely, the reason why

11. The modularity Q for a given graph partition with class labels gi’s is defined as : Q =
1

2m

∑n
i,j=1

(
Aij − didj

2m

)
δgi=gj where d = A1n is the degree vector and m = 1

2
dT1n is the total num-

ber of edges.
12. We should note here that the scores for the BH are different from the ones found in the article (Saade

et al., 2014) since here we are running k-means algorithm in the last step of the spectral algorithm while
the authors of (Saade et al., 2014) have instead used a sign classification of the eigenvector components for
networks with two communities.

19



Tiomoko, Couillet

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

q(2) (q(1) = 0.1)

O
v
er

la
p

α = 0

α = 0.5

α = 1

α = α̂opt

Bethe Hessian

Figure 11: Overlap for n = 3000, K = 3, µ = 3
4δq(1)+

1
4δq(2) with q(1) = 0.1 and q(2) ∈ [0.1, 0.9],

M defined by Mii = 10, Mij = −10, i 6= j, ci = 1
3 .

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

∆

O
v
er

la
p

α = 0

α = 0.5

α = 1

α = α̂opt

Bethe Hessian

Phase transition

Figure 12: Overlap for n = 3000, K = 3, ci = 1
3 , µ a power law with exponent 3 and support

[0.05, 0.3], M = ∆I3, for ∆ ∈ [10, 150]. Here α̂opt = 0.28.

α = 0 is optimal on the Political blogs dataset can be seen in Figure 4, where L0 is the
similarity matrix for which the isolated eigenvalue is the farthest from the bulk of the other
eigenvalues and thus the associated eigenvector is more aligned to the classes compared to
the eigenvectors of L 1

2
and L1.
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Algo Overlap Modularity

α̂opt (' 0) 0.897 0.4246
α = 0.5 0.035 ' 0
α = 1 0.040 ' 0
BH 0.304 0.2723

Table 1: Overlap performance and Modularity after applying the different spectral algorithms
on the Political blogs graph (Adamic and Glance, 2005).

5. Concluding Remarks

The thorough study of Lα performed in this article allows us to go further than the observa-
tion of (Gulikers et al., 2015) and (Jin et al., 2015) which state that it is important to use
the eigenvectors of L1 or a normalization of the eigenvectors of L0 rather than the eigen-
vectors of L0 themselves for community detection when the network has an heterogeneous
degree distribution (to avoid misclassifications induced by degree biases). Our main finding
in particular is to show that there exists an optimal α, denoted here αopt, for which taking
the eigenvectors of Lαopt pre-multiplied by Dαopt−1 ensures best performances (or to be more
precise best asymptotic cluster detectability).

The results and methods in this article are all based on the strong assumption that the
average node degree is of order O(n) and that the class-wise correction factors Cgigj differ

by O(n−
1
2 ) since ∀i, j ∈ {1, . . . , n}, Cgigj = 1 +

Mgigj√
n

. Previous works (Lyzinski et al., 2014;

Lei et al., 2015; Gulikers et al., 2015) suggest that the present analysis, which only considers
“first order spectral statistics”, should naturally extend to moderately sparse graphs (of as
little as Ω(log n) average degree). Under the sparse DCSBM graph assumption, strikingly
different tools are required, opening up a challenging area of improved algorithm research.
Similarly, if the Cgigj ’s differ at a rate n−

1
2 � rn � 1, mere refinements of our analysis ensure

asymptotic weak consistency for all values of α based on the present tools. In passing, this
shows that identifiability considerations are equivalent to those delineated for any α, as in
(Gulikers et al., 2015) for α = 1. Formally, the case where rn = Ω(1) breaks Lemma 11 and
therefore the validity of our present analysis but this scenario is also by and far covered by
previous works.

6. Proofs

Preliminaries

The random matrix under study Lα is not a classically studied matrix in random matrix
theory. We will thus first find in Section 6.1 an approximate tractable random matrix L̃α
which asymptotically preserves the eigenvalue distribution and the extreme eigenvectors of Lα.
In Section 6.2, we study the empirical distribution of the eigenvalues of Lα and in Section 6.3,
we characterize the exact localizations of those eigenvalues. Finally, a thorough study of
the eigenvectors associated to the aforementioned eigenvalues is investigated in Sections 6.4
and 6.5.

We follow here the proof technique of (Couillet et al., 2016). In the sequel, we will make
some approximations of random variables in the asymptotic regime where n → ∞. For
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the sake of random variables comparisons, we give the following stochastic definitions. For
x ≡ xn a random variable and un ≥ 0, we write x = O(un) if for any η > 0 and D > 0,
nDP(x ≥ nηun) → 0 as n → ∞. For v a vector or a diagonal matrix with random entries,
v = O(un) means that the maximal entry of v in absolute value is O(un) in the sense defined
previously. When M is a square matrix, M = O(un) means that the operator norm of M is
O(un). For x a vector or a matrix with random entries, x = o(un) means that there is κ > 0
such that x = O(n−κun).

Most of the proofs here are classical in random matrix theory (see e.g., (Baik and Sil-
verstein, 2006)) but require certain controls inherent to our model. The goal of the article
not being an exhaustive development of the proofs techniques, we will admit a number of
technical results already studied in the literature. However, we will exhaustively develop the
calculus to obtain our final results which are not trivial.

6.1 Random equivalent for Lα

The matrix Lα = (dT1n)α 1√
n
D−α

[
A− ddT

dT1n

]
D−α has non independent entries and is not

a classical random matrix model. The idea is thus to approximate Lα by a more tractable
random matrix model L̃α in such a way that they share asymptotically the same set of
outlying eigenvalues/eigenvectors which are of interest in our clustering scenario. We recall
that the entries Aij of the adjacency matrix is defined from the DCSBM model as independent

Bernoulli random variables with parameter qiqj

(
1 +

Mgigj√
n

)
; one may thus write

Aij = qiqj + qiqj
Mgigj√

n
+Xij

where Xij , 1 ≤ i, j ≤ n, are independent (up to the symmetry) zero mean random variables

of variance qiqj(1− qiqj) +O(n−
1
2 ), since Aij has mean qiqj + qiqj

Mgigj√
n

and variance qiqj(1−

qiqj) +O(n−
1
2 ). We can then write the normalized adjacency matrix as follows

1√
n

A =
1√
n

qqT +
1

n

{
q(a)q

T
(b)Mab

}K
a,b=1

+
1√
n

X (7)

=
qqT

√
n︸︷︷︸

Ad,
√
n

+
1

n
DqJMJTDq︸ ︷︷ ︸

Ad,1

+
X√
n︸︷︷︸

Ar,1

, (8)

where13 q(i) = [qn1+...+ni−1+1, . . . , qn1+...+ni ]
T ∈ Rni (n0 = 0) , X = {Xij}ni,j=1 and Dq =

D(q). The idea of the proof is to write all the terms of Lα based on Equation (8), since all
those terms depend on A. To this end, we will evaluate successively d = A1n, D = D(d),
ddT and 2m = dT1n. It will appear that D and dT1n are composed of dominant terms
(with higher operator norm) and vanishing terms (with smaller operator norm); we may then
proceed to writing a Taylor expansion of D−α and (2m)α = (dT1n)α for any α around their
dominant terms to finally retrieve a Taylor expansion of Lα.

13. We recall that subscript ‘d, nk’ stands for deterministic term whose operator norm is of order nk and ‘r, nk’
for random term with operator norm of order nk.
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Let us start by developing the degree vector d = A1n. We have

d = qqT1n+
1√
n

DqJMJTDq1n+X1n = qT1n

(
q︸︷︷︸

O(n
1
2 )

+
1√
n

DqJMJTDq1n
qT1n︸ ︷︷ ︸

O(n−
1
2 )

+
X1n
qT1n︸ ︷︷ ︸
O(n−

1
2 )

)
. (9)

Let us then write the expansions of dT1n, (dT1n)α, ddT and ddT

(dT1n)
respectively. From (9),

we obtain

dT1n = (qT1n)2
[
1 +

1√
n

1T
nDqJMJTDq1n

(qT1n)2︸ ︷︷ ︸
O(n−

1
2 )

+
1T
nX1n

(qT1n)2︸ ︷︷ ︸
O(n−

1
2 )

]
. (10)

Thus for any α, proceeding to a 1st order Taylor expansion, we may write

(dT1n)α = (qT1n)2α
[
1 +

α√
n

1T
nDqJMJTDq1n

(qT1n)2︸ ︷︷ ︸
O(n−

1
2 )

+α
1T
nX1n

(qT1n)2︸ ︷︷ ︸
O(n−

1
2 )

+o(n−
1
2 )
]
. (11)

Besides, from (9) we have

ddT = (qT1n)2
[

qqT︸︷︷︸
O(n)

+
1√
n

q1T
nDqJMJTDq

qT1n︸ ︷︷ ︸
O(
√
n)

+
1√
n

DqJMJTDq1nq
T

qT1n︸ ︷︷ ︸
O(
√
n)

+
q1T

nX

qT1n︸ ︷︷ ︸
O(
√
n)

+
X1nq

T

qT1n︸ ︷︷ ︸
O(
√
n)

+
1

n

DqJMJTDq1n1
T
nDqJMJTDq

(qT1n)2︸ ︷︷ ︸
O(1)

+
1√
n

DqJMJTDq1n1
T
nX

(qT1n)2︸ ︷︷ ︸
O(1)

+
1√
n

X1n1
T
nDqJMJTDq

(qT1n)2︸ ︷︷ ︸
O(1)

+
X1n1

T
nX

(qT1n)2︸ ︷︷ ︸
O(1)

+o(1)
]
. (12)

Keeping in mind that we shall only need terms with non vanishing operator norms asymp-

totically, we will require 1√
n

[
A− ddT

dT1n

]
to have terms with spectral norms of order at least

O(1). We get from multiplying (12) and (11) (with α = −1)

1√
n

ddT

dT1n
=

qqT

√
n

+
1

n

q1T
nDqJMJTDq

qT1n
+

1

n

DqJMJTDq1nq
T

qT1n
+

1√
n

q1T
nX

qT1n
+

1√
n

X1nq
T

qT1n

− 1

n

1T
nDqJMJTDq1n

(qT1n)2
qqT − 1√

n

1T
nX1n

(qT1n)2
qqT +O(n−

1
2 ). (13)

By subtracting (13) from (8), we obtain

1√
n

(
A− ddT

dT1n

)
=

1

n
DqJMJTDq −

1

n

q1T
nDqJMJTDq

qT1n
− 1

n

DqJMJTDq1nq
T

qT1n

+
1

n

1T
nDqJMJTDq1n

(qT1n)2
qqT +

X√
n
− 1√

n

q1T
nX

qT1n
− 1√

n

X1nq
T

qT1n

+
1√
n

1T
nX1n

(qT1n)2
qqT +O(n−

1
2 ). (14)
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It then remains to evaluate D−α. From (9), we may write D = D(d) as

D = qT1n

(
Dq︸︷︷︸
O(1)

+D

(
1√
n

DqJMJTDq1n
qT1n

)
︸ ︷︷ ︸

O(n−
1
2 )

+D
(

X1n
qT1n

)
︸ ︷︷ ︸
O(n−

1
2 )

)
.

The right hand side of D (in brackets) having a leading term in O(1) and residual terms in

O(n−
1
2 ), the Taylor expansion of the (−α)-power of D is then retrieved

D−α =
(
qT1n

)−α (
D−αq︸︷︷︸
O(1)

−αD−(α+1)
q D

(
1√
n

DqJMJTDq1n
qT1n

)
︸ ︷︷ ︸

O(n−
1
2 )

−αD−(α+1)
q D

(
X1n
qT1n

)
︸ ︷︷ ︸
O(n−

1
2 )

+O(n−1)
)
.

(15)
By combining the expressions (11), (14) and (15), we obtain a Taylor approximation of

Lα as follows

Lα = D−αq
X√
n

D−αq +
1

n
D1−α
q JMJTD1−α

q − 1

n

D1−α
q 1n1

T
nDqJMJTD1−α

q

qT1n

− 1

n

D1−α
q JMJTDq1n1

T
nD1−α

q

qT1n
+

1

n

1T
nDqJMJTDq1n

(qT1n)2
D1−α
q 1n1

T
nD1−α

q − 1√
n

D1−α
q 1n1

T
nXD−αq

qT1n

− 1√
n

D−αq X1n1
T
nD1−α

q

qT1n
+

1√
n

1T
nX1n

(qT1n)2
D1−α
q 1n1

T
nD1−α

q +O(n−
1
2 ).

The three following arguments allow to complete the proof

• 1n = J1K and Dq1n = q.

• We may write ( 1
nJTq)i = ni

n

(
1
ni

∑
a∈Ci qa

)
. For classes of large sizes ni, from the law

of large numbers,
(

1
ni

∑
a∈Ci qa

)
a.s.−→ mµ and so, 1

nJTq
a.s.−→ mµc where we recall that

mµ =
∫
tµ(dt).

• As X is a symmetric random matrix having independent entries of zero mean and finite

variance, from the law of large numbers, we have 1
n

1T
nX1n√
n

a.s.−→ 0.

Using those three arguments, Lα may be further rewritten

Lα = D−αq
X√
n

D−αq +
1

n
D1−α
q JMJTD1−α

q − 1

n
D1−α
q J1KcTMJTD1−α

q

− 1

n
D1−α
q JMc1T

KJTD1−α
q +

1

n
D1−α
q J1KcTMc1T

KJTD1−α
q

− 1√
nqT1n

D1−α
q J1K1T

nXD−αq −
1√

nqT1n
D−αq X1n1

T
KJTD1−α

q +O(n−
1
2 ). (16)

By rearranging the terms of (16), we obtain the expected result

Lα = D−αq
X√
n

D−αq

+
[

D1−α
q J√
n

D−αq X1n
qT1n

] [(IK − 1KcT
)
M
(
IK − c1TK

)
−1K

−1TK 0

] JTD1−α
q√
n

1T
nXD−αq
qT1n

+O(n−
1
2 ).
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This proves Theorem 2.

6.2 Limiting spectral distribution of Lα

It follows from Theorem 2 that L̃α = D−αq
X√
n
D−αq +UΛUT is equivalent to an additive spiked

random matrix (Chapon et al., 2012) where

U =
[

D1−α
q J√
n

D−αq X1n
qT1n

]
,

Λ =

[(
IK − 1KcT

)
M
(
IK − c1TK

)
−1K

−1TK 0

]
,

with the difference that the deterministic part UΛUT is not independent of the random part
D−αq

X√
n
D−αq (an issue that we solve here) and U is not composed of orthonormal vectors.

Let us then study X̄ = D−αq
X√
n
D−αq (having entries X̄ij with zero mean and variance σ2

ij/n

with σ2
ij = qiqj(1− qiqj) +O(n−

1
2 )) and show that its empirical spectral distribution (e.s.d.)

π̃α converges weakly to π̄α with Stieljes transform eα00(z) =
∫

(t− z)−1 dπ̄α(t) for z ∈ C+.
This will imply (By Weyl interlacing formula) that the empirical spectral measure πα ≡
1
n

∑n
i=1 δλi(L̃α) (with λi(L̃α) eigenvalues of L̃α) will also converge to π̄α.

The matrix X̄ is a classical random matrix model in RMT already studied in similar
cases (Pastur et al., 2011). It is well known for those random matrix models (having entries
with given means, variances and bounded first order moments) that the law of the X̄ij ’s
does not change the results on the limiting law of the e.s.d. π̃α: this property is kwown as
universality (e.g., (Silverstein and Bai, 1995)). For technical reasons, we can thus assume that
the X̄ij ’s are Gaussian random variables with the same means and variances in order to use
standard Gaussian calculus, introduced in (Pastur et al., 2011). The objective of the proof

is to find the deterministic limit eα00(z) for the random quantity 1
n tr

(
X̄− zIn

)−1
which is

the Stieljes transform of the e.s.d. π̃α. Deterministic equivalents for the Stieljes transform of
empirical spectral measures associated with centered and symmetric random matrix models
with a variance profile have already been studied in for example (Ajanki et al., 2015; Hachem
et al., 2007). We give in Appendix C an exhaustive development of the Gaussian calculus to
obtain eα00(z). The final result is as follows.

Lemma 16 (A first deterministic equivalent) Let Q = (X̄ − zIn)−1. Then, for all z ∈
C+,

Q↔ Q̄ = (−zIn −D (ei(z))
n
i=1)−1 (17)

where ei(z) the unique solution of ei(z) = 1
n trD

(
σ2
ij

)n
j=1

(
−zIn −D (ej(z))

n
j=1

)−1
and the

notation A↔ B stands for 1
n tr CA− 1

n tr CB→ 0 and dT
1 (A−B)d2 → 0 almost surely, for

all deterministic Hermitian matrix C and deterministic vectors di of bounded norms (spectral
norm for matrices and Euclidian norm for vectors).

From Lemma 16, we get directly 1
n tr Q−eα00(z)

a.s.−→ 0 with eα00(z) = 1
n

∑n
i=1

1
−z−ei(z) . Observe

now that

ei(z) =
1

n

n∑
j=1

q1−2α
i q1−2α

j − q2−2α
i q2−2α

j

−z − ej(z)

= q1−2α
i eα11(z)− q2−2α

i eα21(z) (18)
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where

eα11(z) =
1

n

n∑
j=1

q1−2α
j

−z − q1−2α
j eα11(z) + q2−2α

j eα21(z)

eα21(z) =
1

n

n∑
j=1

q2−2α
j

−z − q1−2α
j eα11(z) + q2−2α

j eα21(z)
(19)

from which we get

eα00(z) =

∫
1

−z − eα11(z)q1−2α + eα21(z)q2−2α
µ(dq).

where for z ∈ C+ and a, b ∈ Z we define

eαab(z) =

∫
qa−2bαµ(dq)

−z − eα11(z)q1−2α + eα21(z)q2−2α
. (20)

with µ(dq) = limn→∞
1
n

∑n
i=1 δqi . From this, we have that eα00(z) does not depend on n, so

that 1
n tr Q

a.s.−→ Eα0 (z), π̃α → π̄α, and thus πα → π̄α since L̃α and X̄ only differ by a finite
rank matrix. This proves Theorem 4.

In the main core of the article, we have defined eα00(z) , mα(z), eα11(z) , fα(z) and
eα21(z) , gα(z) for readability reasons. For future use, we define for z, z̃ ∈ C \ Sα

eαab;2(z, z̃) =

∫
qa−2bαµ(dq)

(−z − Eα1 (z)q1−2α + Eα2 (z)q2−2α)(−z̃ − Eα1 (z̃)q1−2α + Eα2 (z̃)q2−2α)
(21)

and

eαab;3(z, z̃) =

∫
qa−2bαµ(dq)

(−z − Eα1 (z)q1−2α + Eα2 (z)q2−2α)2(−z̃ − Eα1 (z̃)q1−2α + Eα2 (z̃)q2−2α)
. (22)

Convergence of the ei’s

Similar results to Lemma 16 have been derived for example in (Hachem et al., 2007) and the
fixed point algorithm (17) which consists of iterating the ei’s is shown to converge. Since the
calcultation of the eab’s is an intermediary step of (17) from (18), the fixed point algorithm (19)
also converges. From the analyticity of the Stieljes transform outside its support, Lemma 16
extends naturally to C \ Sα. This proves Theorem 4.

Remark 17 Similarly to (Hachem et al., 2007), when none of the (D−αq )ii’s is isolated, the
random matrix X̄ does not produce isolated eigenvalues outside the support Sα of π̄α. Here, for
large n, this property is verified since from Assumption 1, the qi’s are i.i.d. arising from a law
with compact support (the probability that a (D−αq )ii gets isolated tends to 0 asymptotically).
This gives Proposition 18 which we will not prove here; similar proofs are provided for example
in (Bai and Silverstein, 1998).
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Proposition 18 (No eigenvalues outside the support) Following the statement of The-
orem 4, let Sα− and Sα+ be respectively the left and right edges of Sα. Then, for any ε > 0, by
letting Sαε = [Sα− − ε;Sα+ + ε] , for all large n almost surely,{

λi

(
D−αq

X√
n

D−αq

)
, 1 ≤ i ≤ n

}
∩ (R \ Sαε ) = ∅.

Remark 19 The support Sα is symmetric i.e., π̄α([a, b]) = π̄α([−b,−a]). We have in par-
ticular Sα− = −Sα+ = −Sα where we denote Sα+ , supSα and Sα− , inf Sα.

6.3 Isolated eigenvalues of Lα and phase transition.

In the previous section, we have shown that the e.s.d. of Lα converges weakly to the limiting
law of the eigenvalues of X̄ since they only differ by a finite rank matrix. We shall have in
addition isolated eigenvalues of Lα induced by the aforementionned low rank matrix. We are
interested here in the localization of eigenvalues of Lα isolated from the support Sα of the
limiting law of its e.s.d. According to Proposition 18, there is almost surely no eigenvalue
of X̄ at non-vanishing distance from Sα asymptotically as n → ∞ and hence the plausible
isolated eigenvalues of Lα are only due to the matrix UΛUT. We follow classical random
matrix approaches used for the study of the spectrum of spiked random matrices (Benaych-
Georges and Nadakuditi, 2012; Chapon et al., 2012). From Theorem 2, the eigenvalues
ρ of Lα falling at non-vanishing distance from the limiting support Sα solve for large n,
0 = det(Lα−ρIn) almost surely for ρ /∈ Sα. Since ‖Lα− L̃α‖

a.s.−→ 0, ρi(Lα)−ρi(L̃α)
a.s.−→ 0 for

all eigenvalues ρi(Lα). We may then just solve 0 = det(D−αq
X√
n
D−αq + UΛUT − ρIn). Now,

as from Proposition 18, the random matrix X̄ does not have eigenvalues at non-vanishing
distance from Sα asymptotically, for ρ /∈ Sα, we can thus factor and cancel out det(X̄− ρIn)
from the previous determinant equation, so that we are left to solve

0 = det(In + Qα
ρUΛUT) = det(IK+1 + UTQα

ρUΛ)

where Qα
ρ = (X̄− ρIn)−1. As we will show next, the matrix IK+1 + UTQα

ρUΛ converges to
a deterministic matrix, almost surely for large n. By the argument principle (similar to e.g.,
(Chapon et al., 2012)), the roots of IK+1 +UTQα

ρUΛ are asymptotically those of the limiting
matrix, with same multiplicity and it suffices to study the latter.

We then proceed to retrieving a limit for IK+1 + UTQα
ρUΛ. From Theorem 2, we have

UTQα
ρU =

(
1
nJTD1−α

q Qα
ρD1−α

q J 1√
n(qT1n)

JTD1−α
q Qα

ρD−αq X1n
1√

n(qT1n)
1T
nXD−αq Qα

ρD1−α
q J 1

(qT1n)2
1T
nXD−αq Qα

ρD−αq X1n

)
.

The entries (1, 2), (2, 1) and (2, 2) of UTQα
ρU are random as they contain the random

matrix X but tend to be deterministic in the limit. In fact, using the resolvent iden-
tity, we have that Qα

ρD−αq
X√
n
D−αq = In + ρQα

ρ , the entry (1, 2) becomes 1
(qT1n)

JTDq1n +

ρ 1√
n(qT1n)

JTD1−α
q Qα

ρDα
q 1n and the entry (2, 2) is equal to n

(qT1n)2

(
1T
nX1n + ρ1T

nD2α
q 1n +

ρ21T
nDα

qQα
ρDα

q 1n

)
. Now, we can freely use Lemma 16 to evaluate the limits of the en-

tries of UTQα
ρU since all the terms are of the form aTQα

ρb with a and b deterministic
vectors. From Lemma 16, the entries (1, 1), (1, 2) and (2, 2) converge almost surely respec-

tively to 1
nJTD1−α

q Q̄α
ρD1−α

q J, 1
(qT1n)

JTDq1n+ρ 1
(qT1n)

JTD1−α
q Q̄α

ρDα
q 1n and n

(qT1n)2

(
1T
nX1n+

ρ1T
nD2α

q 1n + ρ21T
nDα

q Q̄α
ρDα

q 1n

)
for large n.

27



Tiomoko, Couillet

Now, using the fact that for any bounded continuous function f , from the law of large
numbers,

1

n

∑
j∈Ci

f(qj) =
ni
n

1

ni

∑
j∈Ci

f(qj)
a.s.−→ ci

∫
f(q)µ(dq). (23)

After some algebra, we obtain 1
nJTD1−α

q Q̄α
ρD1−α

q J
a.s.−→ eα21(ρ)D(c) where the eij ’s are given

in Theorem 4. Similarly for the terms (1, 2) and (2, 2), we obtain respectively

1

(qT1n)
JTDq1n + ρ

1

(qT1n)
JTD1−α

q Q̄α
ρDα

q 1n
a.s.−→

(
1 +

ρ

mµ
eα10(ρ)

)
c

and

n

(qT1n)2

(
1T
nX1n + ρ1T

nD2α
q 1n + ρ21T

nDα
q Q̄α

ρDα
q 1n

)
a.s.−→ 1

m2
µ

(
ρvµ + ρ2eα0;−1(ρ)

)
with vµ =

∫
q2αµ(dq) and where we have also used the fact that 1

n1T
n

X√
n
1n

a.s.−→ 0 again from

the law of large numbers.
The limit of IK+1 + UTQα

ρUΛ is then obtained as

IK+1 + UTQα
ρUΛ

a.s.−→IK + eα21(ρ)(D(c)− ccT)M(IK − c1T
K)−

(
1 + ρ

mµ
eα10(ρ)

)
c1T

K −eα21(ρ)c

ρ
m2
µ

(
vµ + ρeα0;−1(ρ)

)
1T
K −ρ e

α
10(ρ)
mµ

 .

Using the Schur complement formula for the determinant of block matrices, we have that
the determinant of the RHS matrix is zero whenever

−ρe
α
10(ρ)

mµ
det
[
IK + eα21(ρ)(D(c)− ccT)M(IK − c1T

K)

−
(

1 +
ρ

mµ
eα10(ρ)

)
c1T

K +

(
vµ + ρeα0;−1(ρ)

)
eα21(ρ)

mµeα10(ρ)
c1T

K

]
= 0

or equivalently det(Gα
ρ ) = 0 where

Gα
ρ = IK + eα21(ρ)(D(c)− ccT)M(IK − c1T

K) + θα(ρ)c1T
K

θα(ρ) = −1 +
ρ

mµ
eα10(ρ) +

(
vµ + ρeα0;−1(ρ)

)
eα21(ρ)

mµeα10(ρ)
.

The isolated eigenvalues ρ of Lα, which are the ρ for which det(IK+1 + UTQα
ρUΛ) = 0, are

then asymptotically the ρ such that det(Gα
ρ ) = 0.

Remark 20 (Two types of isolated eigenvalues) From the previous paragraph, 1+θα(ρ)
is an eigenvalue of Gα

ρ with associated left eigenvector 1K and right eigenvector c since

1TKGα
ρ = (1 + θα(ρ)) 1TK and Gα

ρc = (1 + θα(ρ)) c.
Letting ρ be such that det(Gα

ρ ) = 0, we can discriminate two cases

• 1+θα(ρ) = 0: isolated eigenvalues are found for those ρ ∈ R\Sα such that 1+θα(ρ) = 0.
We shall denote by ρ̃ such eigenvalues when they exist.
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• 1 + θα(ρ) 6= 0: the left and right eigenvectors associated to the zero eigenvalues of Gα
ρ

are respectively orthogonal to the right and left eigenvectors associated to the non-zero
eigenvalues. So, by letting Vl, Vr be matrices containing in columns the respectively
left and right eigenvectors of Gα

ρ associated with the zero eigenvalues, we have VT
l c = 0

and 1T
KVr = 0 since 1 + θα(ρ) 6= 0. It is thus immediate that (Vl,Vr) is also a pair of

eigenvectors (with multiplicity) of IK + eα21(ρ)
(
D (c)− ccT

)
M
(
IK − c1TK

)
associated

to the zero eigenvalues.

As we show in Section 6.5, for 1 + θα(ρ̃) = 0, the eigenvectors associated to the aforemen-
tioned isolated eigenvalues ρ̃ will not contain information about the classes. This case is thus
of no interest for clustering. It is nevertheless important from a practical viewpoint to note
that, even in the absence of communities, spurious isolated eigenvalues may be found that
may deceive the experimenter in suggesting the presence of node clusters. From now on, we
will only consider the isolated eigenvalues ρ for which 1 + θα(ρ) 6= 0.

We now have all the ingredients to determine the conditions under which we may have
eigenvalues of Lα which isolate from Sα. Let l be a non zero eigenvalue of Gα

ρ = (D (c) −
ccT)M(IK−c1TK). Since det((D(c)−ccT)M(IK−c1T

K)) = det((IK−c1T
K)(D(c)−ccT)M) =

det((D(c) − ccT)M), l is also a non zero eigenvalue of M̄ = (D(c) − ccT)M. For each
isolated eigenvalue ρ of Lα we have a one-to-one mapping with a non zero eigenvalue l of
M̄ such that l = − 1

Eα2 (ρ) . Hence, to show the existence of isolated eigenvalues of Lα, we

need to solve for ρ ∈ R \ Sα, l = − 1
Eα2 (ρ) for each non zero eigenvalue l of M̄. Precisely,

let us write Sα =
⋃M
m=1[Sαm,−, S

α
m,+] with Sα1,− ≤ Sα1,+ < Sα2,− ≤ . . . < SαM,+ and define

S0,+ = −∞ and SM+1,− = +∞. Then, recalling that the Stieltjes transform of a real
supported measure is necessarily increasing on R, there exist isolated eigenvalues of Lα in
(Sαm,+, S

α
m+1,−), m ∈ {0, . . . ,M}, for all large n almost surely, if and only if there exists

eigenvalues ` of M̄ such that

lim
x↓Sαm,+

Eα2 (x) < −`−1 < lim
x↑Sαm+1,−

Eα2 (x). (24)

In particular, when Sα = [Sα−, S
α
+] is composed of a single connected component (as when

Sα is the support of the semi-circle law as well as most cases met in practice), then isolated
eigenvalues of Lα may only be found beyond Sα+ if ` > limx↓Sα+ −

1
Eα2 (x) (l > 0) or below Sα−

if ` < limx↑Sα− −
1

Eα2 (x) (l < 0), for some non-zero eigenvalue ` of M̄. From the asymptotic

spectrum of Lα, Sα− = −Sα+ as one can show that for any z ∈ R \ Sα, Eα2 (−z) = −Eα2 (z) so
that both previous conditions reduce to | ` |> limx↓Sα+ −

1
Eα2 (x) . This proves Theorem 6.

The next section is advocated to the study of the eigenvectors associated to isolated
eigenvalues of Lα.

6.4 Informative eigenvectors

In this section, in order to fully characterize the performances of Algorithm 2, we study in
depth the normalized eigenvectors v̄αi used for the classification in the algorithm (step 3 of
Algorithm2). We consider here the eigenvectors corresponding to the eigenvalues for which
1 + θα(ρ) 6= 0 (when 1 + θα(ρ) = 0, the corresponding eigenvectors do not contain any
structural information about the classes; this case is treated in Section 6.5). For technical
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reasons, we restrict ourselves here to those eigenpairs (λi, v̄
α
i )’s for which there exists no

λj 6= λi such that, if λi → ρ, λj → ρ.
We recall that we may write v̄αi

14 as the “noisy plateaus” vector

v̄αi =
K∑
a=1

νai
ja√
na

+
√
σaiiw

a
i (25)

where wa
i ∈ Rn is a random vector orthogonal to ja, of norm

√
na and supported on the

indices of Ca and

νai =
1
√
na

(v̄αi )T ja =
1
√
na

(uαi )TDα−1ja√
(uαi )TD2(α−1)uαi

(26)

σaij =
(uαi )TDα−1DaDα−1uαj√

(uαi )TD2(α−1)ui

√
(uαj )TD2(α−1)uαj

− νai νaj (27)

with Da = D(ja).

• We estimate the νai ’s by obtaining an estimator of the K ×K matrix

1

n

JTDα−1uαi (uαi )TDα−1J

(uαi )TD2(α−1)uαi
,

the diagonal entries of which allow to estimate |νai | while the off-diagonal entries are
used to decide on the signs of the νai ’s (up to a convention in the sign of uαi ).

• Similarly, we first estimate the more involved object

1

n

JTDα−1uαi (uαi )TDα−1DaDα−1uαj (uαj )TDα−1J(
(uαi )TD2(α−1)uαi

) (
(uαj )TD2(α−1)uαj

)
from which

(uαi )TDα−1DaDα−1uαj√
(uαi )TD2(α−1)uαi

√
(uαj )TD2(α−1)uαj

is retrieved by dividing any entry e, f of

the former quantity by non-vanishing quantities νei ν
f
i . For the eigenvectors uαi used for

clustering, there is always at least one index f such that νfi is non zero (otherwise, this
eigenvector is of no use for clustering).

6.4.1 Evaluation of the class means νai ’s

The estimation of the νai ’s requires the evaluation of 1
n

JTDα−1uαi (uαi )TDα−1J

(uαi )TD2(α−1)uαi
for uαi eigenvector

associated to a limiting isolated eigenvalue ρ with unit multiplicity of Lα. By residue calculus,
we have that

1

n
JTDα−1uαi (uαi )TDα−1J = − 1

2πi

∮
Γρ

1

n
JTDα−1 (Lα − zIn)−1 Dα−1Jdz (28)

14. Recall that the graph nodes were assumed labeled by class, and thus the entries of v̄αi are similarly sorted
by class.
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for large n almost surely, where Γρ is a complex (positively oriented) contour circling around
the limiting eigenvalue ρ only. As from Theorem 2, Lα = D−αq

X√
n
D−αq + UΛUT + o(1), we

apply the Woodburry identity to the inverse in the previous integrand and we get

1

n
JTDα−1 (Lα − zIn)−1 Dα−1J =

1

n
JTDα−1Qα

zDα−1J

+
1

n
JTDα−1Qα

zUΛ
(
IK+1 + UTQα

zUΛ
)−1

UTQα
zDα−1J + o(1).

The first right-hand side has asymptotically no residue when we integrate over the contour
Γρ (as per Proposition 18 there is no eigenvalues of X̄ in Γρ for all large n almost surely). We
are then left with the second right-most term. Using the block structure used in Section 6.3,
we may write(

IK+1 + UTQα
zUΛ

)−1 a.s.−→IK + eα21(z)(D(c)− ccT)M(IK − c1T
K)−

(
1 + z

mµ
eα10(z)

)
c1T

K −eα21(z)c

z
m2
µ

(
vµ + zeα0;−1(z)

)
1T
K −z e

α
10(z)
mµ

−1

.

Let us write γ(z) = z
m2
µ

(
vµ + zeα0;−1(z)

)
. We can now use a block inversion formula to write

(
IK+1 + UTQα

zUΛ
)−1 a.s.−→


(Gα

z )−1 −
eα10(z)

[
Gα
z−

γ(z)mµe
α
21(z)

zeα10(z)
c1T
K

]−1

c

−
zeα21(z)

mµ
+γ(z)eα10(z)1T

K

[
Gα
z−

γ(z)mµe
α
21(z)

zeα10(z)
c1T
K

]−1

c

γ(z)mµ
zeα21(z) 1T

K(Gα
z )−1 1

−
zeα21(z)

mµ
+γ(z)eα10(z)1T

K

[
Gα
z−

γ(z)mµe
α
21(z)

zeα10(z)
c1T
K

]−1

c


(29)

with Gα
z = IK + eα21(z)

(
D (c)− ccT

)
M
(
IK − c1TK

)
+ θα(z)c1TK . The entries of the previous

matrix seem to be cumbersome but as we will see, the residue calculus will greatly simplify.
In fact, we have that 1TKGα

z = (1 + θα(z)) 1TK so that 1TK(Gα
z )−1 = 1

1+θα(z)1
T
K which is well

defined since we are considering the case 1 + θα(z) 6= 0. Similarly, we have that[
Gα
z −

γ(z)mµe
α
10(z)

zeα21(z)
c1T

K

]
c =

(
−z e

α
10(z)

mµ

)
c

meaning that
[
Gα
z −

γ(z)mµeα21(z)
zeα10(z) c1T

K

]−1
c = − mµ

zeα10(z)c. So finally, the terms (1, 2), (2, 1) and

(2, 2) of
(
IK+1 + UTQα

zUΛ
)−1

do no longer depend on (Gα
z )−1 and thus do not have poles

in the contour Γρ. We can then write

(
IK+1 + UTQα

zUΛ
)−1

=

(
(Gα

z )−1 0
0 0

)
+ R1(z)

with R1(z) having no residue in the contour Γρ. Thus, to perform the contour integration of
the integrand in (28) around Γρ, we just need to evaluate the top-left entries of JTDα−1Qα

zUΛ
and UTQα

zDα−1J. Those are easily retrieved from the calculus in Section 6.3.
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We have in particular ( 1√
n
JTDα−1Qα

zUΛ)11
a.s.−→ eα00(z)(D(c) − ccT)M(IK − c1T

K) −
βα(z)c1T

K where βα(z) = 1
mµ

[∫
t2α−1µ(dt) + eα−1;−1(z)

]
and similarly (UTQα

zDα−1J)11
a.s.−→

eα00(z)D(c), so that finally

1

n
JTDα−1uαi (uαi )TDα−1J

a.s.−→

− 1

2πi

∮
Γρ

[(
eα00(z)(D(c)− ccT)M(IK − c1T

K)− βα(z)c1T
K

)
(Gα

z )−1 × eα00(z)D(c) + R2(z)dz
]

where R2(z) is a matrix having no residue in the considered contour. Now, we are ready to
compute the integral. From the Cauchy integral formula,

1

n
JTDα−1uαi (uαi )TDα−1J

a.s.−→

lim
z→ρ

(z − ρ)
[
eα00(z)(D(c)− ccT)M(IK − c1T

K)− βα(z)c1T
K

]
(Gα

z )−1 × eα00(z)D(c).

By writing Gα
z = ρzvr,zv

T
l,z + Ṽr,zΣ̃zṽ

T
l,z where vr,z and vl,z are respectively right and left

eigenvectors associated with the vanishing eigenvalue ρz of Gα
z when z → ρ; Ṽr,z ∈ Rn×ηρ

and Ṽl,zRn×ηρ are respectively sets of right and left eigenspaces associated with non vanishing
eigenvalues, we then have

lim
z→ρ

(z − ρ)(Gα
z )−1 (1)

= lim
z→ρ

(z − ρ)
vr,zv

T
l,z

ρ′z

where we have used the l’Hopital rule and the fact that the non vanishing eigenvalue part of
Gα
z will produce zero in the limit z → ρ. Using ρz = vT

l,zG
α
z vr,z, we obtain

1

n
JTDα−1uαi (uαi )TDα−1J

a.s.−→[
eα00(ρ)(D(c)− ccT)M(IK − c1T

K)− βα(ρ)c1T
K

] vr,ρv
T
l,ρ(

vT
l,zG

α
z vr,z

)′
z=ρ

× eα00(ρ)D(c).

Since (vl,ρ)
TGα

ρ = Gα
ρvr,ρ = 0,

(
(vl,z)

TGα
z vr,z

)′
z=ρ

= ((vl,z)
T )
′
z=ρG

α
ρvr,ρ + (vl,ρ)

T (Gα
z )
′

z=ρ vr,ρ + (vl,ρ)
TGα

ρ (vr,z)
′
z=ρ

= (vl,ρ)
T (Gα

z )
′

z=ρ vr,ρ

= (eα21(ρ))
′
(vl,ρ)

T
(
D (c)− ccT

)
M
(
IK − c1TK

)
vr,ρ

where the subscript ′ denotes the first derivative with respect to z. Using the fact that vr,ρ is
orthogonal to 1TK , and (vr,ρ,vl,ρ) is also a pair of eigenvectors of

(
D (c)− ccT

)
M
(
IK − c1TK

)
associated with eigenvalue − 1

eα21(ρ) , we get

1

n
JTDα−1uαi (uiα)TDα−1J

a.s.−→ (eα00(ρ))2

eα21(ρ)′
vr,ρ(vl,ρ)

T

vTl,ρvr,ρ
D (c) . (30)
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By introducing vρ = D(c)
1
2 vl,ρ = D(c)−

1
2 vr,ρ eigenvector of the symmetric matrix

D(c)
1
2

(
IK − 1KcT

)
M
(
IK − c1TK

)
D(c)

1
2 , we obtain the final result

1

n
JTDα−1uαi (uαi )TDα−1J

a.s.−→ (eα00(ρ))2

eα21(ρ)′
D (c)1/2 vρ(vρ)

TD (c)1/2 . (31)

Next, we need to estimate the denominator term (uαi )TD2(α−1)uαi of 1
n

JTDα−1uαi (uαi )TDα−1J

(uαi )TD2(α−1)uαi
of νai .For uαi an eigenvector of Lα associated to an isolated eigenvalue converging to ρ asymp-
totically, we have

(uαi )TD2(α−1)uαi = tr(uαi (uαi )TD2(α−1))

= tr

(
− 1

2πi

∮
Γρ

(Lα − zIn) D2(α−1)dz

)
.

As in the previous section, by applying Woodburry idendity, this is equivalent to evaluating

tr

(
− 1

2πi

∮
Γρ

[
UTQα

zD2(α−1)Qα
zUΛ

(
(Gα

z )−1 0
0 0

)
+ R3(z)

]
dz

)
,

where R3(z) is a matrix having no residue in the considered contour.
Again here, we just need the top left entry of UTQα

zD2(α−1)Qα
zUΛ which is given from

Theorem 2 by

(UTQα
zD2(α−1)Qα

zUΛ)11 =
1

n
JTD1−αQα

zD2(α−1)Qα
zD1−αJ(IK − 1KcT)M(IK − c1T

K)︸ ︷︷ ︸
(I)

(32)

− 1√
n(qT1n)

D1−αQα
zD2(α−1)Qα

zD−αX1n1
T
K︸ ︷︷ ︸

(II)

. (33)

We can get rid of the term (II) since after residue calculus, we will get (similar to Equa-
tion (30)) 1T

Kvr,ρ = 0 which cancels out the whole term. Let us now concentrate on the term
(I). At this point, we need to introduce the following result which, for any deterministic vec-
tors of bounded Euclidean norm a, b and any deterministic diagonal matrix Ξ, approximates
the random quantity aTQα

z1ΞQα
z2b by a deterministic equivalent.

Lemma 21 (Second deterministic equivalents) For all z ∈ C\Sα, we have the following
deterministic equivalent

Qα
z1ΞQα

z2 ↔ Q̄α
z1ΞQ̄α

z2 + Q̄α
z1D

[
(In −Υz1,z2)−1 Υz1,z2 diag (Ξ)

]
Q̄α
z2

where Ξ is any diagonal matrix, Q̄α
z is given in Lemma 16 and

Υz1,z2(i, j) =
1

n

q1−2α
i q1−2α

j (1− qiqj)(
−z1 − eα11(z1)q1−2α

i + eα21(z1)q2−2α
i

) (
−z2 − eα11(z2)q1−2α

j + eα21(z2)q2−2α
j

) .
The equivalence relation ↔ is as defined in Lemma 16.
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Thanks to Lemma 21 (proof provided in Appendix D), a deterministic approximation of the
term (I) in Equation (32) can be obtained. We get in particular

1

n
JTD1−αQα

zD2(α−1)Qα
zD1−αJ =

1

n
JTD1−αQ̄α

zD2(α−1)Q̄α
zD1−αJ (34)

+
1

n
JTD1−αQ̄α

zD
[
(In −Υz,z)

−1 Υz,zd
α
]

Q̄α
zD1−αJ (35)

where dα = {q2(α−1)
i }ni=1 and Υz1,z2 was defined in Lemma 21. Using similar argument as in

Equation (23), we can easily show that the first right hand side term of (34) converges almost
surely to eα00;2D(c). It then remains to estimate the second right-most term of (34). Υz1,z2

(as defined in Lemma 21) may be written as the sum of two rank-one matrices

Υz1,z2 =
1

n

(
az1a

T
z2 − bz1b

T
z2

)
where az =

{
q1−2α
j

−z−q1−2α
j eα11(z)+q2−2α

j eα21(z)

}n
j=1

and bz =

{
q2−2α
j

−z−q1−2α
j eα11(z)+q2−2α

j eα21(z)

}n
j=1

.

The matrix Υz,z can thus be further written Υz,z = 1
n

(
az bz

)
I2

(
aT
z /n
−bT

z /n

)
. Using

matrix inversion lemmas, we have

(In −Υz,z)
−1 Υz,zd

α =
(
az bz

)(1− aT
zaz
n −aT

zbz
n

bT
zaz
n 1 + bT

zbz
n

)−1( aT
zdα

n

−bT
zdα

n

)
.

Using again the argument in Equation (23) , we can easily show that aT
zaz
n , aT

zbz
n , bT

zbz
n , aT

zdα

n

and bT
zdα

n converge for large n almost surely respectively to eα22;2(z), eα32;2(z), eα42;2(z), eα−1;0(z)
and eα00(z) with eαij;2 defined in Equation (21). This given, we can show that

1

n
JTD1−αQ̄α

zD
[
(In −Υz,z)

−1 Υz,zd
α
]

Q̄α
zD1−αJ

a.s.−→ χα(z)D(c)

with

χα(z) =

[(
1 + eα42;2(z)

)
eα−1,0(z)− eα32;2(z)eα00(z)

]
eα32;3(z)−

[
eα22;2(z)eα−1,0(z) +

(
1− eα22;2(z)

)
eα00(z)

]
eα42;3(z)(

1 + eα42;2(z)
)(

1− eα22;2(z)
)

+
[
eα32;2(z)

]2 .

We thus have

(uαi )TD2(α−1)uαi
a.s.−→ tr

(
lim
z→ρ

(
eα00;2(z) + χα(z)

)
(D(c)− ccT)M(IK − c1T

K)(Gα
z )−1

)
.

By applying l’Hopital rule to evaluate this limit as in the previous section, we obtain

(uαi )TD2(α−1)uαi
a.s.−→ e00;2(ρ) + χα(ρ)

(eα21(ρ))
′ .

Finally,

1

n

JTDα−1uαi (uαi )TDα−1J

(uαi )TD2(α−1)uαi

a.s.−→ (eα00(ρ))2

e00;2(ρ) + χα(ρ)
D (c)1/2 vρ(vρ)

TD (c)1/2 . (36)
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We recall that one goal of this section is to estimate νai = 1√
na

uT
i Dα−1ja√

uT
i D2(α−1)ui

, the square of

which is n
na

[
1
n
D(c)−

1
2 JTDα−1uαi (uαi )TDα−1JD(c)−

1
2

(uαi )TD2(α−1)uαi

]
aa

. From Equation (36), the former quantity

is easily retrieved and we have

|νai |
2 =

(eα00(ρi))
2

eα00;2(ρi) + χα(ρi)

∣∣via∣∣2 . (37)

This proves the following theorem giving the limit of the empirical class means νai ’s.

Theorem 22 (Means) For each eigenpair (λ(M̄),v) of D(c)
1
2

(
IK − 1KcT

)
M
(
IK − c1TK

)
D(c)

1
2

of unit multiplicity, mapped to eigenpair (ρ,uαi ) of Lα as defined in Corollary 6, under the
conditions of Assumption 1 and for νai defined in (26), we have almost surely as n → ∞,∣∣(νai )2 − (νa,∞i )2

∣∣→ 0 where

(νa,∞i )2 ≡ [eα00(ρ)]2

eα00;2(ρ, ρ) + χα(ρ)
(va)

2

with

χα(ρ) =
[(1+eα42;2(ρ))eα−1,0(ρ)−eα32;2(ρ)eα00(ρ)]eα32;3(ρ)−[eα22;2(ρ)eα−1,0(ρ)+(1−eα22;2(ρ))eα00(ρ)]eα42;3(ρ)

(1+eα42;2(ρ))(1−eα22;2(ρ))+[eα32;2(ρ)]
2 and va is

the component a of v.

Using the definition of νia in (26) and of v̄, Π in Theorem 10, Theorem 10 unfolds easily

since v̄TΠv̄ =
∑K

a=1(νia)
2 =

[eα00(ρ)]
2

eα00;2(ρ,ρ)+χα(ρ)(va)
2.

6.4.2 Evaluation of the class covariances σaij’s

We have shown at the beginning of this section that to estimate the σaij ’s, we need to evaluate
the more involved object

1

n

JTDα−1uαi (uαi )TDα−1DaDα−1uαj (uαj )TDα−1J(
(uαi )TD2(α−1)uαi

) (
(uαj )TD2(α−1)uαj

) .

Similarly to what was done previously for the estimation of 1
n

JTDα−1uαi (uαi )TDα−1J

(uαi )TD2(α−1)uαi
, we need

here to evaluate(
1

2πi

)2 ∮
Γρ1

∮
Γρ2

1

n
JTDα−1 (Lα − z1In)−1 Dα−1DaD

α−1 (Lα − z2In)−1 Dα−1Jdz1dz2

where Γρ1 and Γρ2 are two positively oriented contours circling around some limiting isolated
eigenvalues ρ1 and ρ2 respectively. We will use the same technique as in the proof of Theo-
rem 22 to evaluate this integrand. Namely, by applying the Woodburry identity to each of
the inverse in the integrand, we get(

1

2πi

)2 ∮
Γρ1

∮
Γρ2

1

n
JTDα−1Qα

z1UΛ
(
IK+1 + UTQα

z1UΛ
)−1

UTQα
z1D

α−1DaD
α−1Qα

z2U

×Λ
(
IK+1 + UTQα

z2UΛ
)−1

UTQα
z2D

α−1Jdz1dz2
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where we have used the fact that the cross-terms 1
nJTDα−1Qα

ziD
α−1J, i = 1, 2 will vanish

asymptotically as the latter do not have poles in the considered contours. By using the

identity Λ
(
IK+1 + UTQα

z1UΛ
)−1

UT =
(
IK+1 + ΛUTQα

z1U
)−1

ΛUT , the previous integral
writes(

1

2πi

)2 ∮
Γρ1

∮
Γρ2

1

n
JTDα−1Qα

z1UΛ
(
IK+1 + UTQα

z1UΛ
)−1

UTQα
z1D

α−1DaD
α−1Qα

z2U

×
(
IK+1 + ΛUTQα

z2U
)−1

ΛUTQα
z2D

α−1Jdz1dz2

Most of those quantities have been evaluated in the evaluation of the νai ’s. We thus obtain(
1

2πi

)2 ∮
Γρ1

∮
Γρ2

[
1

n
JTDα−1Qα

z1UΛ

(
(Gα

z1)−1 0
0 0

)
UTQα

z1D
α−1DaD

α−1Qα
z2U

×

((
(Gα

z2)−1
)T

0
0 0

)
ΛUTQα

z2D
α−1J + R4(z1, z2)

]
dz1dz2

where R4(z1, z2) has no poles in the considered contours. It is then sufficient to evaluate
the top left entry of each of the matrices JTDα−1Qα

z1UΛ, UTQα
z1D

α−1DaD
α−1Qα

z2U and
ΛUTQα

z2D
α−1J to compute the whole integrand. The first and the third of the latter matrices

have been evaluated in the proof of Theorem 22. We are then left with the top left entry of
UTQα

z1D
α−1DaD

α−1Qα
z2U which is 1

nJTDα−1Qα
z1D

α−1DaD
α−1Qα

z2D
α−1J from Theorem 2.

The former quantity has already been evaluated in the previous section but for (z, z) replaced
by (z1, z2) and the diagonal matrix between Qα

z1 and Qα
z2 being here Dα−1DaD

α−1 instead

of D2(α−1). We thus have(
UTQα

z1D
α−1DaD

α−1Qα
z2U

)
11

a.s.−→ ca

(
eα00;2(z1, z2)D (δi=a)

K
i=1 + χα(z1, z2)D(c)

)
.

Finally, we are left to evaluate(
1

2πi

)2 ∮
Γρ1

∮
Γρ2

1

n

[
eα00(z1)(D(c)− ccT)M(IK − c1T

K)− βα(z1)c1T
K

]
(Gα

z1)−1

× ca
(
eα00;2(z1, z2)D (δi=a)

K
i=1 + χα(z1, z2)D(c)

)
×
(
(Gα

z2)−1
)T [

eα00(z2)(IK − 1KcT)M(D(c)− ccT)− βα(z2)1KcT
]

dz1dz2.

We can then perform a residue calculus similar to what was done in the proof of Theorem 22.
Additionnaly, we use the fact that the eigenvectors vρ1 and vρ2 corresponding to distinct

eigenvalues ρ1 and ρ2 of the symmetric matrix D(c)
1
2

(
IK − 1KcT

)
M
(
IK − c1TK

)
D(c)

1
2 are

orthogonals. All calculus done, we get 1

n

JTDα−1uαi (uαi )TDα−1DaD
α−1uαj (uαj )TDα−1J(

(uαi )TD2(α−1)uαi
) (

(uαj )TD2(α−1)uαj

)

ef

a.s.−→

eα00(ρi)e
α
00(ρj)(

eα00;2(ρi, ρi) + χα(ρi)
)(

eα00;2(ρj , ρj) + χα(ρj)
)

×
[
eα00;2(ρi, ρj)

√
cecfv

i
ev
j
fv

i
av
j
a + δρi=ρjcaχ

α(ρi)
√
cecfv

i
ev
i
f

]
. (38)
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We are thus now ready to evaluate the σaij ’s. By definition,

σaij =

 (uαi )TDα−1DaD
α−1uαj√

(uαi )TD2(α−1)uαi

√
(uαj )TD2(α−1)uαj

− 1

na

(uαi )TDα−1ja√
(uαi )TD2(α−1)uαi

(uαj )TDα−1ja√
(uαj )TD2(α−1)uαj

 .
(39)

The first right hand side term is estimated by dividing

(
1
n

JTDα−1uαi (uαi )TDα−1DaDα−1uαj (uαj )TDα−1J

((uαi )TD2(α−1)uαi )((uαj )TD2(α−1)uαj )

)
ef

(Equation (38)) by 1√
n

(uαi )TDα−1je√
(uαi )TD2(α−1)uαi

6= 0 and 1√
n

(uαj )TDα−1jf√
(uαj )TD2(α−1)uαj

6= 0 for any couple of in-

dexes (e, f) such that the aforementioned quantities are non zeros. Indeed from the definition
of νai and Equation 37, we get

1√
n

(uαi )TDα−1je√
(uαi )TD2(α−1)uαi

a.s.−→
√
ce

eα00(ρ)√
eα00;2(ρ, ρ) + χα(ρ)

∣∣vie∣∣ . (40)

The covariances σaij ’s are then found by combining the previous estimates (38) and (40) as
per the Definition (39) of the σaij ’s. This proves the following theorem giving the limit of the
empirical class covariances σaij ’s.

Theorem 23 (Covariances) For two unit multiplicity eigenpairs (λ1(M̄),v1) and (λ2(M̄),v2)

of D(c)
1
2

(
IK − 1KcT

)
M
(
IK − c1TK

)
D(c)

1
2 mapped respectively to (ρ1,u

α
i ) and (ρ2,u

α
j ) eigen-

pairs of Lα and for σaij defined in (27), we have almost surely as n → ∞,
∣∣∣σaij − σa,∞ij ∣∣∣ → 0

where

σa,∞ij ≡
[(
eα00;2(ρ1, ρ2)− eα00(ρ1)eα00(ρ2)

)
vρ1a v

ρ2
a + δρ2ρ1caχ

α(ρ1)
]√

eα00;2(ρ1) + χα(ρ1)
√
eα00;2(ρ2) + χα(ρ2)

where χα(ρ) is defined in Theorem 22.

From Theorems 22 and 23, νa,∞i and σa,∞ij depend on the eij ’s (defined in Theorem 4), the

normalized eigenvectors v of D(c)
1
2

(
IK − 1KcT

)
M
(
IK − c1TK

)
D(c)

1
2 and the proportions

ca’s of classes. Thanks to Lemma 11, the eij ’s can consistently be estimated similarly to what
was described in Proposition 12. Namely, the qi’s can be estimated using q̂i = di√

dT1n
and

replaced in Equations (20), (21), (22) to obtain consistent estimates for the eij ’s. However, the
eigenvectors v and the class proportions are not directly accessible in practice. Nevertheless,
in the particular case of K = 2 classes, we know exactly v.

Remark 24 (K = 2 classes) Here, only one isolated eigenvector is used for the classifica-
tion. Since vr (right eigenvector of M̄) is orthogonal to 12, vr is necessarily the vector

[1,−1]T. Hence, the normalized eigenvector v = D(c)−
1
2 vr

‖D(c)−
1
2 vr‖

is 1√
1/c1+1/c2

[
1√
c1
,− 1√

c2

]T
.

We thus obtain from Theorems 22 and 23 along with Remark 24,
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Corollary 25 (Means and covariances for K = 2 classes) For a = 1, 2

(νa,∞)2 =
[eα00(ρ)]2(

eα00;2(ρ, ρ) + χα(ρ)
)(

1 + ca
1−ca

)

(σa,∞)2 =

[
(eα00;2(ρ,ρ)−eα00(ρ)2)(

1+ ca
1−ca

) + caχ
α(ρ)

]
eα00;2(ρ, ρ) + χα(ρ)

for ρ the unique isolated eigenvalue of Lα (if it exists).

6.5 Non informative eigenvectors

The objective of this section is to show that the eigenvectors ũα of Lα associated to the
limiting eigenvalue ρ̃ for which 1+θα(ρ̃) = 0 (Remark 20) are not useful for the classification.

Let us write as in Section 6.4

ũα =

K∑
a=1

ν̃aja +
√
σ̃aiiw

a (41)

where wa ∈ Rn is a random vector orthogonal to ja of norm
√
na, supported on the indices

of Ca with identically distributed entries. We shall show that ν̃a is independent of class Ca
and thus, any correct classification cannot be done using ũα. From (41), ν̃a = (ũα)Tja

na
which

can be retrieved from the diagonal elements of 1
nJTũα(ũα)TJ. We will evaluate this object

by using the same technique as in Section 6.4. By the residue formula, we have

1

n
JTũα(ũα)TJ = − 1

2πi

∮
Γρ̃

1

n
JT (Lα − zIn)−1 Jdz (42)

= − 1

2πi

∮
Γρ̃

1

n
JTQα

z Jdz +
1

2πi

∮
Γρ̃

1

n
JTQα

zUΛ
(
IK+1 + UTQα

zUΛ
)−1

UTQα
z J

(43)

for large n almost surely, where Γρ̃ is a complex (positively oriented) contour circling around
the limiting eigenvalue ρ̃ only. The first integral − 1

2πi

∮
Γρ̃

1
nJTQα

z Jdz is asymptotically zero

since, from Proposition 18, the integrand has no poles in the contour Γρ̃. We thus obtain
similarly as in Section 6.4

1

n
JTũα(ũα)TJ =

1

n
JTQα

ρ̃UΛ

[
lim
z→ρ̃

(z − ρ̃)(IK+1 + UTQα
zUΛ)−1

]
UTQα

ρ̃J. (44)

From (29), the entries (1, 2) and (2, 2) of (IK+1 + UTQα
zUΛ)−1 do not contain (Gα

z )−1 since[
Gα
z −

γ(z)mµeα21(z)
zeα10(z) c1T

K

]−1
c = − mµ

zeα10(z)c and thus, the above limit will give zero for those

entries. We thus get

1

n
JTũα(ũα)TJ =

1

n
JTQα

ρ̃UΛ

[
lim
z→ρ̃

(z − ρ̃)

(
(Gα

z )−1 0
γ(z)mµ
zeα21(z) 1T

K(Gα
z )−1 0

)]
UTQα

ρ̃J. (45)

We recall that in the case under study (1 + θα(ρ̃) = 0), 1K and c are respectively left
and right eigenvectors of Gα

z associated to the vanishing eigenvalue. We can thus write
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Gα
z = ρzc1T

K+Ṽr,zΣ̃zṼ
T
l,z where ρz is the vanishing eigenvalue when z → ρ̃ and Ṽr,z and Ṽl,z

are respectively sets of right and left eigenspaces associated with non vanishing eigenvalues.
Hence, we have

lim
z→ρ̃

(z − ρ̃)(Gα
z )−1 (1)

= lim
z→ρ̃

c1T
K

ρ′z

(2)
= lim

z→ρ̃

c1T
K

1T
K(Gα

z )′c

(3)
= lim

z→ρ̃

c1T
K

(θα(z))′
(4)
=

c1T
K

(θα(ρ̃))′
(46)

where in (1) we have used the l’Hopital rule, in (2) we used the fact that ρz can be written ρz =

1T
KGα

z c and in (3) we have used (Gα
ρ̃ )
′

= (eα21(ρ̃))
′ (
D (c)− ccT

)
M
(
IK − c1TK

)
+(θα(ρ̃))

′
c1TK

and 1T
Kc = 1. We then have

1

n
JTũα(ũα)TJ =

1

n
(JTQα

ρ̃UΛ)11
c1T

K

(θα(ρ̃))′
(UTQα

ρ̃J)11 (47)

+
1

n
(JTQα

ρ̃UΛ)12
γ(ρ̃)mµ1

T
K

ρ̃eα21(ρ̃)(θα(ρ̃))′
(UTQα

ρ̃J)11. (48)

All calculus done similarly as in Section 6.4, we get

1

n
JTũα(ũα)TJ

a.s.−→
eα

1, 1
2

(ρ̃)

(θα(ρ̃))′

[
eα

1, 1
2

(ρ̃)
(
D (c)− ccT

)
M
(
IK − c1TK

)
− 1

mµ

(∫
tαµ(dt) + eα

0, 1
2

(ρ̃)

)
c1T

K

]
ccT

− (eα
1, 1

2

(ρ̃))2 γ(ρ̃)mµ

ρ̃eα21(ρ̃)(θα(ρ̃))′
ccT.

Finally,

1

n
JTũα(ũα)TJ

a.s.−→ −
eα

1, 1
2

(ρ̃)

mµ(θα(ρ̃))′

∫ tαµ(dt) + eα
0, 1

2

(ρ̃) +
eα

1, 1
2

(ρ̃)γ(ρ̃)m2
µ

ρ̃eα21(ρ̃)

 ccT. (49)

By recalling that ν̃a = (ũα)Tja
na

=

√
1
na

[
1
nD(c)−

1
2 JTũα(ũα)TJD(c)−

1
2

]
aa

, from (49) we deduce

that

ν̃a
a.s.−→ − 1√

n

eα
1, 1

2

(ρ̃)

mµ(θα(ρ̃))′

∫ tαµ(dt) + eα
0, 1

2

(ρ̃) +
eα

1, 1
2

(ρ̃)γ(ρ̃)m2
µ

ρ̃eα21(ρ̃)


which is independent of the class information (class proportions or inter-class affinities). This
concludes the proof.

Appendix A. Stein Lemma and Nash Poincare inequality

Lemma 26 Let x be a standard real Gaussian random variable and f : R → R be a C1

function with first derivative f
′
(x) having at most polynomial growth. Then,

E[xf(x)] = E[f
′
(x)].

Lemma 27 Let x be a standard real Gaussian random variable and f : R → R be a C1

function with first derivative f
′
(x). Then, we have

Var[f(x)] ≤ E[|f ′(x)|2].

The proofs of those lemma can be found in (Pastur et al., 2011).
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Appendix B. Consistent estimates of the averages connectivity weights qi’s

Lemma 28 Under Assumption 1,

max
1≤i≤n

|qi − q̂i| → 0 (50)

almost surely, where q̂i = di√
dT1n

.

We need to prove that
∑∞

n=1 P (max1≤i≤n |qi − q̂i| > η) < ∞ for any η > 0 so that we
can conclude from the first Borel Cantelli lemma (Theorem 4.3 in (Billingsley, 1995)) that
P (lim supn max1≤i≤n |qi − q̂i| > η) = 0 from which Lemma 28 unfolds. We have that

P
(

max
1≤i≤n

|qi − q̂i| > η

)
≤

n∑
i=1

P(|qi − q̂i| > η)

≤
n∑
i=1

P(q̂i − qi > η) + P(qi − q̂i > η). (51)

Let us treat for instance the term P(q̂i−qi > η) in the following. Since Aij = qiqj+qiqj
Mgigj√

n
+

Xij with Xij a zero mean random variable, we have
1
n

∑n
j=1 EAij → qimµ and 1

n2

∑
i,j EAij → m2

µ in the limit n → ∞. For q̂i =
∑n
j=1 Aij√∑
i,j Aij

, we

can write

q̂i − qi =
1
n

∑n
j=1(Aij − EAij)√

1
n2

∑
i,j EAij︸ ︷︷ ︸
A

+
1
n

∑n
j=1Aij√

1
n2

∑
i,j Aij

−
1
n

∑n
j=1Aij√

1
n2

∑
i,j EAij︸ ︷︷ ︸

B

+
1
n

∑n
j=1 EAij√

1
n2

∑
i,j EAij

− qi

︸ ︷︷ ︸
C

Since A, B and C tend to zero in the limit n→∞, we will next use the fact that P(q̂i− qi >
η) ≤ P(A > η/3) +P(B > η/3) +P(C > η/3) and show that all those individual probabilities
vanish asymptotically. Since the term C is deterministic and tends to zero in the limit n→∞,
we have P(C > η/3) = 0 for all large n. Let us then control P(A > η/3) and P(B > η/3). We
have

P(A > η/3) = P

 1

n

n∑
j=1

(Aij − EAij) >
ηmµ

3
+ o(1)


≤ exp

[
−

nη2m2
µ

18 (σ2 + ηmµ/9))
+ o(1)

]
(52)

with σ2 = lim supn max1≤i≤n qi(
∑

j qj) − q2
i (
∑

j q
2
j ) and where in the last inequality of (52),

we have used Bernstein’s inequality (Theorem 3 in (Boucheron et al., 2013)) since the Aij ’s
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are independent Bernoulli random variables with variance σ2
ij = qiqj(1− qiqj) +O(n−

1
2 ). For

the term B we have

P(B > η/3) = P

 1

n

n∑
j=1

Aij

√
1
n2

∑
i,j EAij −

√
1
n2

∑
i,j Aij√

1
n2

∑
i,j Aij

>
ηmµ

3
+ o(1)


(1)

≤ P

∣∣∣∣∣∣
√

1
n2

∑
i,j EAij −

√
1
n2

∑
i,j Aij√

1
n2

∑
i,j Aij

∣∣∣∣∣∣ > ηmµ

3
+ o(1)


(2)

≤ P

∣∣∣∣∣∣
√

1

n2

∑
i,j

EAij −
√

1

n2

∑
i,j

Aij

∣∣∣∣∣∣ >
η(mµ + o(1))

√
1
n2

∑
i,j Aij

3
,

1

n2

∑
i,j

Aij > ψ


+ P

∣∣∣∣∣∣
√

1

n2

∑
i,j

EAij −
√

1

n2

∑
i,j

Aij

∣∣∣∣∣∣ >
ηmµ

√
1
n2

∑
i,j Aij

3
+ o(1),

1

n2

∑
i,j

Aij ≤ ψ


(3)

≤ P

∣∣∣∣∣∣
√

1

n2

∑
i,j

EAij −
√

1

n2

∑
i,j

Aij

∣∣∣∣∣∣ > ηmµ
√
ψ

3
+ o(1)


︸ ︷︷ ︸

B1

+P

 1

n2

∑
i,j

Aij ≤ ψ


︸ ︷︷ ︸

B2

(53)

where in the inequality (1) we have used the fact that n−1
∑n

j=1Aij ≤ 1; in the inequality (2)

ψ > 0 is any constant smaller than m2
µ and in the inequality (3) we have used

√
n−2

∑
i,j Aij >√

ψ and the fact that the probability of the intersection between two events is always smaller
than the probability of one of those events. It then remains to control B1 and B2. For B2 we
have

P

 1

n2

∑
i,j

Aij ≤ ψ

 ≤ exp

[
−

n(m2
µ − ψ)2

2
(
σ2 + (m2

µ − ψ)/3
) + o(1)

]
(54)

where the inequality follows from Bernstein’s inequality with the similar arguments as previ-
ously. Finally for the term B1 we have

P

∣∣∣∣∣∣
√

1

n2

∑
i,j

EAij −
√

1

n2

∑
i,j

Aij

∣∣∣∣∣∣ > ηmµ
√
ψ

3
+ o(1)


= P

∣∣∣∣∣∣
1
n2

∑
i,j EAij −

1
n2

∑
i,j Aij√

1
n2

∑
i,j EAij +

√
1
n2

∑
i,j Aij

∣∣∣∣∣∣ > ηmµ
√
ψ

3
+ o(1)


(1)

≤ P

∣∣∣∣∣∣ 1

n2

∑
i,j

EAij −
1

n2

∑
i,j

Aij

∣∣∣∣∣∣ > ηmµ
√
ψ(mµ +

√
ψ)

3
+ o(1)

+ P

 1

n2

∑
i,j

Aij ≤ ψ


(2)

≤ exp

[
−

nψ
[
ηmµ(mµ +

√
ψ)
]2

18
(
σ2 + ηmµ

√
ψ(mµ +

√
ψ)/9

) + o(1)

]
+ exp

[
−

n(m2
µ − ψ)2

2
(
σ2 + (m2

µ − ψ)/3
) + o(1)

]
(55)
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where in the inequality (1) of Equation (55) we have used the same arguments as in the in-
equalities (2)−(3) of Equation (52) and in the inequality (2) we have used Bernstein’s inequal-
ity along with Equation (54). From Equations (52)(54)(55), we conclude that

∑∞
n=1

∑n
i=1 P(q̂i−

qi > η) <∞ since m2
µ−ψ > 0. It follows the same lines to show that

∑∞
n=1

∑n
i=1 P(qi− q̂i >

η) <∞ which concludes the proof.

Appendix C. First deterministic equivalents

Let Qα
z =

(
X̄− zIn

)−1
with X̄ a symmetric random matrix having independent entries X̄ij

which are Gaussian random variables with zero mean and variance
σ2
ij

n . For short, we shall
denote Qα

z by Q. We want to find a deterministic equivalent Q̄ of Q in the sense that
1
n tr CQ− 1

n tr CQ̄→ 0 and dT
1 (Q− Q̄)d2 → 0 almost surely, for all deterministic Hermitian

matrix C and deterministic vectors di of bounded norms (spectral norm for matrices and
Euclidian norm for vectors). To this end, we will evaluate E(Q) since using Lemma 27,
one can show that n−1 tr(CQ) and aTQb concentrate respectively around n−1 tr(AEQ) and
dT

1 EQd2 for all bounded norm matrix C and vectors d1,d2. For the computations, we use
standard Gaussian calculus introduced in (Pastur et al., 2011). Using the resolvent identity
(for two invertible matrices A and B, A−1 −B−1 = −A−1(A−B)B−1), one has

Q =
1

z
X̄Q− 1

z
In. (56)

We then first compute E(X̄Q). By writing X̄il = σil√
n
Zil where Zil is a random variable with

zero mean and unit variance, we thus have

E(X̄Q)ij =

n∑
l=1

σil√
n
E(ZilQlj).

By applying Stein’s Lemma (Lemma 26 in Section A), we have

E(ZilQlj) = E

(
∂(X̄− zI)−1

lj

∂Zil

)

= E
(
−(X̄− zI)−1 ∂X̄

∂Zil
(X̄− zI)−1

)
lj

= E
(
−(X̄− zI)−1 σil√

n
(Eil + Eli)(X̄− zI)−1

)
lj

where Eil is the matrix with all entries equal to 0 but the entry (i, l) which is equal to 1.
Using simple algebra, we have(

(X̄− zI)−1Eil(X̄− zI)−1
)
lj

= (X̄− zI)−1
li (X̄− zI)−1

lj

and (
(X̄− zI)−1Eli(X̄− zI)−1

)
lj

= (X̄− zI)−1
ll (X̄− zI)−1

ij .

We thus get

E(X̄Q)ij =
n∑
l=1

−
σ2
il

n
(E [QliQlj ] + E [QllQij ]) .
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Going back to (56), we thus have

E(Qij) = −1

z

n∑
l=1

σ2
il

n
E [QliQlj ]−

1

z

n∑
l=1

σ2
il

n
E [QllQij ]−

1

z
δij

= −1

z
E
[
Q

Σi

n
Q

]
ij

− 1

z
E
[
Qij tr

(
ΣiQ

n

)]
− 1

z
δij (57)

where Σi = D
(
σ2
ij

)n
j=1

. Since the goal is to retrieve E(Qij), the following lemma allows to

split E
[
Qij tr

(
ΣiQ
n

)]
into E [Qij ] and E

[
tr
(

ΣiQ
n

)]
.

Lemma 29 For Q = (X̄ − zIn)−1 and Σi = D(σ2
ij)

n
j=1, where X̄ is a symmetric random

matrix having independent entries (up to the symmetry) of zero mean and variance
σ2
ij

n , we
have

E
[
Qij tr

(
ΣiQ

n

)]
= E [Qij ]E

[
tr

(
ΣiQ

n

)]
+ o(1).

Proof For two real random variables x and y, by Cauchy-Shwarz’s inequality,

|E [(x− E(x))(y − E(y))]| ≤
√

Var(x)
√

Var(y)

which, for x = tr
(

ΣiQ
n

)
and y = Qij − E(Qij) gives∣∣∣∣E [Qij tr

(
ΣiQ

n

)]
− E [Qij ]E

[
tr

(
ΣiQ

n

)]∣∣∣∣ ≤√Var(x)
√

Var(y)

since E(y) is equal to 0 in that case. Using Nash Poincaré inequality (Lemma 27 in Section A),
one can show that Var(x) = O

(
1
n2

)
(Hachem et al., 2007). Additionally, ∀i, j and z ∈ C+,

|Qij | ≤ 1
|=(z)| . This finally implies that E

[
Qij tr

(
ΣiQ
n

)]
− E [Qij ]E

[
tr
(

ΣiQ
n

)]
= O(n−1).

Since =(−z−E tr(ΣiQ
n )) < −=(z) for z ∈ C+, −z−E tr(ΣiQ

n ) does not vanish asymptotically.
Going back to E(Qij) in Equation (57), we may then write

E(Qij) =
E
[
QΣi

n Q
]
ij

+ δij

−z − E
[
tr
(

ΣiQ
n

)] +O(n−1). (58)

Multiplying Equation (58) by
σ2
ki
n , taking j = i, summing over i and scaling by n, we get

trE
(

ΣkQ

n

)
=

n∑
i=1

E
[

Σk
n QΣi

n Q
]
ii

+
σ2
ki
n

−z − E
[
tr
(

ΣiQ
n

)]
+O(n−1).

Using a similar approach to the proof of Lemma 29, we can show that
∑n

i=1 E
[

Σk
n QΣi

n Q
]
ii

=

O(n−1). We thus have

1

n
trE (ΣkQ) =

n∑
i=1

σ2
ki
n

−z − 1
nE [tr (ΣiQ)]

+ o(1).
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By using standard techniques (Hachem et al., 2007), one can show that the unique solution

ei(z) to ei(z) = 1
n

∑n
j=1

σ2
ij

−z−ej(z) is such that 1
n trE (ΣiQ) − ei(z)

a.s.−→ 0. Going back to

Equation (58), we can thus write for large n

E [(−zI−D(ei(z)))Q]ij = E
[
Q

Σi

n
Q

]
ij

+ δij + o(1). (59)

Let us denote Ξ = −zI − D(ei(z)). Since −z − E tr
(

ΣiQ
n

)
is away from zero for z ∈ C+ so

is −z − ei(z) and thus Ξ is invertible and bounded. For large n, we can write for a given
deterministic matrix C of bounded norm

E
[

1

n
tr CQ

]
=

1

n

∑
i,j

(CΞ−1)jiE (ΞQ)ij

(1)
=

1

n

∑
i,j

(CΞ−1)ji

(
E
[
Q

Σi

n
Q

]
ij

+ δij

)
+ o(1)

=
1

n
trE

(
CΞ−1Q

Σi

n
Q

)
+

1

n
tr(CΞ−1) + o(1)

where (1) follows from Equation (59). We can then prove that 1
n trE

(
CΞ−1QΣi

n Q
)

=

O(n−1) using a similar approach to the proof of Lemma 29. Hence for large n

E
[

1

n
tr CQ

]
=

1

n
tr(CΞ−1) + o(1). (60)

Similarly, for any vectors a, b of bounded norms, we may write

E [a∗Qb] =
∑
i,j

(a∗Ξ−1)iE (ΞQ)ij bj

=
∑
i,j

(a∗Ξ−1)iE
[
Q

Σi

n
Q

]
ij

bj + a∗Ξ−1b + o(1).

We also have that
∑

i,j(a
∗Ξ−1)iE

[
QΣi

n Q
]
ij

bj = O(n−1). This can be proved similarly to

the proof of Lemma 29. Hence,

E [a∗Qb] = a∗Ξ−1b + o(1). (61)

Appendix D. Second deterministic equivalents

Our goal is to find a deterministic equivalent to the random quantity Qα
z1ΞQα

z2 for any diagonal

deterministic matrix Ξ where we recall that Qα
z1 =

(
X̄√
n
− z1In

)−1
with X̄ defined previously

in Appendix C. The proof follows the same techniques as the proof of the first deterministic
equivalent Qα

z in Appendix C but here, the resolvent identity is either applied on Qα
z1 or Qα

z2 .
The technical details will be omitted as the key techniques have already been developped in
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Appendix C. For the sake of readability, we will denote Qα
z1 ≡ Q1 and Qα

z2 ≡ Q2. As in
Appendix C, we will evaluate E(Q1ΞQ2). By the resolvent identity, we have

E(Q1ΞQ2)ij = − 1

z1
E(ΞQ2)ij +

1

z1
E(XQ1ΞQ2)ij

= − 1

z1
ΞiiE(Q2)ij +

1

z1
E
∑
k,l

Xik(Q1)klΞll(Q2)lj .

We have from Lemma 26, E
∑

k,lXik(Q1)klΞll(Q2)lj =
∑

k,l
σik√
n

ΞllE
∂[(Q1)kl(Q2)lj ]

∂Zik
. By expand-

ing all terms and all calculus done, we obtain

E(Q1ΞQ2)ij = − 1

z1
E(ΞQ2)ij −

1

z1

∑
k,l

σ2
ik

n
ΞllE

(Q1)ki(Q1)kl(Q2)lj︸ ︷︷ ︸
(1)

+ (Q1)kk(Q1)il(Q2)lj︸ ︷︷ ︸
(2)

+ (Q1)kl(Q2)li(Q2)kj︸ ︷︷ ︸
(3)

+ (Q1)kl(Q2)lk(Q2)ij︸ ︷︷ ︸
(4)

 .
Asymptotically, the non vanishing terms are (2) and (4) so that

E(Q1ΞQ2)ij = − 1

z1
E(ΞQ2)ij −

1

z1

∑
k,l

σ2
ik

n
ΞllE [(Q1)kk(Q1)il(Q2)lj + (Q1)kl(Q2)lk(Q2)ij ]

+ o(1)

= − 1

z1
E(ΞQ2)ij −

1

z1

1

n
E [tr(ΣiQ1)(Q1ΞQ2)ij ]−

1

z1

1

n
E [tr(ΣiQ2ΞQ1)(Q2)ij ]

+ o(1). (62)

Similarly to what was done in the proof of of Lemma 29, we can show that
E 1
n tr(ΣiQ1)E(Q1ΞQ2)ij = E

(
1
n tr(ΣiQ1)

)
E ((Q1ΞQ2)ij)+o(1).We can then write from (62)

E
((

In +
1

z1
D
(

1

n
tr(ΣiQ1)

)n
i=1

)
Q1ΞQ2

)
=

− 1

z1
E
(

Ξ +D
(

1

n
tr(ΣiQ2ΞQ1)

)n
i=1

)
Q2 + o(1). (63)

From (63) and the result of Lemma 16, this entails

E (Q1ΞQ2)←→ Q̄1ΞQ̄2 + Q̄1D
(
E

1

n
tr(ΣiQ2ΞQ1)

)n
i=1

Q̄2. (64)

Every object in (64) is known but E 1
n tr(ΣiQ2ΞQ1) which we need to evaluate now. By

left-multiplying (64) by Σi and taking the normalized trace, we get

E
1

n
tr(ΣiQ2ΞQ1) =

1

n
tr
(
ΣiQ̄1ΞQ̄2

)
+ E

1

n
tr

(
ΣiQ̄1D

(
1

n
tr(ΣiQ2ΞQ1)

)n
i=1

Q̄2

)
. (65)
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By denoting fi = 1
nE (tr(ΣiQ2ΞQ1)), Equation (65) leads to

f =

{
1

n
tr
(
ΣiQ̄1ΞQ̄2

)}n
i=1

+
1

n

{(
Q̄2ΣiQ̄1

)
jj

}n
i,j=1

f

which finally entails

f =

(
In −

1

n

{(
Q̄2ΣiQ̄1

)
jj

}n
i,j=1

)−1 1

n

{
Q̄2ΣiQ̄1

}n
i,j=1

diag(Ξ).

To complete the proof of Lemma 21, we need to show that Var
(

1
n tr(Q1ΞQ2)

)
and Var

(
1
n tr(ΣiQ2ΞQ1)

)
are asymptotically summable so that by the Borell Cantelli Lemma,

1
n tr(Q1ΞQ2) and 1

n tr(ΣiQ2ΞQ1) converge respectively almost surely to their expectations.
Those follow directly by using Nash Poincare inequality (Lemma 27) similarly to what was
done in the proof of Lemma 29.
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